WorldWideScience

Sample records for patterns reflect nitrogen

  1. Nitrogen vertical distribution by canopy reflectance spectrum in winter wheat

    International Nuclear Information System (INIS)

    Huang, W J; Yang, Q Y; Peng, D L; Huang, L S; Zhang, D Y; Yang, G J

    2014-01-01

    Nitrogen is a key factor for plant photosynthesis, ecosystem productivity and leaf respiration. Under the condition of nitrogen deficiency, the crop shows the nitrogen deficiency symptoms in the bottom leaves, while excessive nitrogen will affect the upper layer leaves first. Thus, timely measurement of vertical distribution of foliage nitrogen content is critical for growth diagnosis, crop management and reducing environmental impact. This study presents a method using bi-directional reflectance difference function (BRDF) data to invert foliage nitrogen vertical distribution. We developed upper-layer nitrogen inversion index (ULNI), middle-layer nitrogen inversion index (MLNI) and bottom-layer nitrogen inversion index (BLNI) to reflect foliage nitrogen inversion at upper layer, middle layer and bottom layer, respectively. Both ULNI and MLNI were made by the value of the ratio of Modified Chlorophyll Absorption Ration Index to the second Modified Triangular Vegetation Index (MCARI/MTVI2) referred to as canopy nitrogen inversion index (CNII) in this study at ±40° and ±50°, and at ±30° and ±40° view angles, respectively. The BLNI was composed by the value of nitrogen reflectance index (NRI) at ±20° and ±30° view angles. These results suggest that it is feasible to measure foliage nitrogen vertical-layer distribution in a large scale by remote sensing

  2. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  3. Patterns of cross-sensitivity in the responses of clonal subpopulations isolated from the RIF-1 mouse sarcoma to selected nitrosoureas and nitrogen mustards.

    Science.gov (United States)

    Reeve, J. G.; Wright, K. A.; Workman, P.

    1984-01-01

    The response of clonal subpopulations isolated from the RIF-1 mouse sarcoma to melphalan treatment is independent of cell ploidy, whereas a clear relationship exists between ploidy and cell sensitivity to CCNU treatment. In the present study RIF-1 clones have been exposed to nitrogen mustard, aniline mustard and chlorambucil, and to nitrosoureas BCNU, MeCCNU and chlorozotocin, in order to evaluate whether or not the different physiochemical and biological activities of these agents would affect the patterns of drug sensitivity obtained for melphalan and CCNU. Irrespective of the different lipophilicities, transport properties and chemical reactivities of the nitrogen mustards, RIF-1 clones showed the same pattern of sensitivity as previously observed for melphalan. Similarly, RIF-1 clones when exposed to nitrosoureas BCNU, MeCCNU and chlorozotocin, showed the same pattern of sensitivity as that obtained for CCNU exposure. These data suggest (a) that the variation in the sensitivity of RIF-1 clones to treatment by the nitrogen mustards is unlikely to reflect differences in either membrane permeability or in drug transport and (b) that the ploidy dependent nitrosourea responses shown by RIF-1 clones similarly do not reflect differences in drug uptake. PMID:6466534

  4. Fusing corn nitrogen recommendation tools for an improved canopy reflectance sensor performance

    Science.gov (United States)

    Nitrogen (N) rate recommendation tools are utilized to help producers maximize corn grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. Canopy reflectance sensors are capable of capturing within-fi...

  5. Simulation of Soil Nitrogen Content Effect on Weed Seedling Emergence Pattern in Moldavian Balm (Dracocephalum moldavica L.

    Directory of Open Access Journals (Sweden)

    Afsaneh Moradian

    2016-06-01

    Full Text Available The soil nitrogen content with impact on weed seed dormancy breaking can change their seedling emergence pattern. A trial was carried out in 2014 to predict seedling emergence of Xanthium strumarium, Chenopodium album, Echinocloa cruss-galli,  Amaranthus retroflexus andConvolvulus arvensis,  and to evaluate the impact of soil nitrogen content (Control with 0.07% nitrogen, adding 50 and 100 kg N.ha-1 on seedling emergence pattern in Moldavian balm. The experimental design was randomized complete block design. Weed seedlings were counted and removed on a weekly basis throughout the season. The data were converted to percent of cumulative emergence and percentage of cumulative emergence values was compared with thermal time using Gompertz modified functions. The all species showed different emergence patterns and thermal time required for the onset of emergence. The results also showed that the emergence patterns of Chenopodium and Convolvulus  not affected by nitrogen treatments. However, soil nitrogen content significantly changed emergence patterns of A. retroflexus, E. cruss-galli and X. strumarium. According to our model, A. retroflexus, E. cruss-galli and X. strumarium emergence, respectively, started at 237, 96 and 63 TT with 50 kg additional nitrogen.ha-1, while the respective value in control were 340, 117 and 135, respectively. Due to influence of soil nitrogen on emergence pattern of A. retroflexus, E. cruss-galli and X. strumarium, soil nitrogen content should be considered as an important parameter in the modeling of these weed seedling emergence.

  6. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    Science.gov (United States)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    Nitrogen plays an important role in the biogeochemistry of forests as an essential plant nutrient and indispensable substance for many reactions in living cell. Most temperate forests are N-limited (Townsend, 1999), and increased nitrogen deposition results in many negative environmental effects, such as eutrofication, acidification, and loss of biodiversity (Bobbink et al., 2010). The nitrogen biogeochemical cycle is still poorly understood (Fowler et al., 2014). In studies addressing the association between atmospheric deposition and its impacts on ecosystems, a reliable estimation of N deposition is a key factor of successful approach of this issue. The quantification of real deposition of nitrogen is a complicated task, however, due to several reasons: only some constituents are regularly measured, and throughfall is not a relevant proxy for estimation of the total deposition due to complicated interchange of nitrogen between forest canopy, understory, and atmosphere. There are studies estimating the total nitrogen deposition at one particular site, on the other hand, there are studies estimating the total nitrogen deposition over a larger domain, such as e.g. Europe. The studies for a middle scale, like one country, are practically lacking with few exceptions (Fowler et al., 2005). The advantage of such a country-scale approach is that measured constituents might be mapped in detail, which enhances also spatial accuracy and reliability. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe. The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2014). It is obvious, however, that nitrogen deposition is substantially underestimated, particularly due not fully accounted for dry and occult deposition. We present an advanced approach for estimation of spatial pattern of

  7. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  8. Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.

    Science.gov (United States)

    Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro

    2014-03-01

    We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.

  9. Effects of nitrogen nutrition on the growth, yield and reflectance characteristics of corn canopies. [Purdue Agronomy Farm, Indiana

    Science.gov (United States)

    Bauer, M. E. (Principal Investigator); Walburg, G.; Daughtry, C. S. T.

    1981-01-01

    Spectral and agronomic measurements were collected from corn (Zea mays L.) canopies under four nitrogen treatment levels (0, 67, 134, and 202 kg/ha) on 11 dates during 1978 and 12 dates during 1979. Data were analyzed to determine the relationship between the spectral responses of canopies and their argonomic characteristics as well as the spectral separability of the four treatments. Red reflectance was increased, while the near infrared reflectance was decreased for canopies under nitrogen deprivation. Spectral differences between treatments were seen throughout each growing season. The near infrared/red reflectance ratio increased spectral treatment differences over those shown by single band reflectance measures. Of the spectral variables examined, the near infrared/red reflectance ratio most effectively separated the treatments. Differences in spectral response between treatments were attributed to varying soil cover, leaf area index, and leaf pigmentation values, all of which changed with N treatment.

  10. Seasonal patterns of periphyton nitrogen fixation in calcareous wetlands

    Science.gov (United States)

    Liao, X.; Inglett, P.

    2011-12-01

    Periphyton mats are an ecologically important component of the Everglades ecosystem and plays various vital ecological functions. However, nitrogen fixation of periphyton, has received little attention throughout much of the Everglades system. The objective of this study was to characterize the seasonal pattern of periphyton N2 fixation in the Hole-in-the-Donut (HID) of Florida Everglades, where farmed marl prairie wetlands have been restored through complete soil removal (CSR) to reduce nutrient levels. Two restored areas (i.e., cleared in 2000 and 2003) and a reference (natural and unfarmed) marl prairie wetland sites were selected in the HID. Seven times of sampling were performed across the wet and dry season during the 2010 and 2011. The annual fixed nitrogen was approximately 0.4gN m-2 yr-1 in the restored sites which was higher in the reference site (~0.2gN m-2 yr-1). All the three sites showed similar seasonal patterns of N2 fixation that is higher values were observed in the wet season; but the peak value was one month later in reference sits (i.e., September) comparing to the restored areas (i.e., July). The peak of periphyton AR rates in the 2000- and 2003-restored areas appeared in July (i.e., wet season) within the range of 20-79 nmols g-1dw h-1 and 31-53nmols g-1dw h-1, respectively. In contrast, the peak of reference site was observed in September with the range of 2-5 nmols g-1dw h-1. Stable N isotopic ratios (i.e., δ15N) also varied with time but didn't show consistent seasonal pattern as nitrogen fixation. N2 fixation positively correlated with periphyton total phosphorus (TP) and negatively correlated with total nitrogen and phosphorus molar ratios (TN:TP), indicating that N2 fixation would be a indicator of nutrient limitation. In general, δ15N was negatively correlated with nitrogenase activity but the correlation became weakened in the wet season, especially in the flooded July and September, which would be explained by other environmental

  11. Soil Nitrogen Availability Is Reflected in the Bacterial Pathway1

    Institute of Scientific and Technical Information of China (English)

    V.KRIVTSOV; B.S.GRIFFITHS; K.LIDDELL; A.GARSIDE; R.SALMOND; T.BEZGINOVA; J.THOMPSON

    2011-01-01

    Measurements of concentrations of easily extractable soil nitrogen (N) were carried out on samples collected at the Heron Wood Reserve, Scotland, concurrently with investigations of N associated with total microbial biomass and the abundances of bacteria,fungi, and invertebrates. Soil biota at the studied site appeared to be limited by N. There was a remarkable difference between the ambient (i.e., easily extractable N) and biomass nitrogen. The abundance data of bacteria, protozoa and nematodes significantly negatively correlated with ambient N but showed positive correlations with the total microbial N content. There were, however,remarkable differences between the correlation patterns exhibited by the fungal and the bacterial pathways, as fungi did not show any correlations with chemical variables. These differences should be taken into account whilst interpreting biological interactions both at this important site and elsewhere.

  12. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  13. Isotopic patterns in caps and stipes in sporocarps reveal patterns of organic nitrogen use by ectomycorrhizal fungi

    Science.gov (United States)

    Hobbie, Erik; Ouimette, Andrew; Chen, Janet

    2016-04-01

    Current ecosystem models use inorganic nitrogen as the currency of nitrogen acquisition by plants. However, many trees may gain access to otherwise unavailable soil resources, such as soil organic nitrogen, through their symbioses with ectomycorrhizal fungi, and this pathway of nitrogen acquisition may therefore be important in understanding plant responses to environmental change. Different functional groups of ectomycorrhizal fungi vary in their ability to enzymatically access protein and other soil resources. Such fungal parameters as hyphal hydrophobicity, the presence of rhizomorphs (long-distance transport structures), and exploration strategies (e.g., short-distance versus long-distance, mat formation) correspond with how fungi interact with and explore the environment, and the proportions of different exploration types present will shift along environmental gradients such as nitrogen availability. Isotopic differences between caps and stipes may provide a means to test for organic nitrogen use, since caps and stipes differ in δ13C and δ15N as a result of variable proportions of protein and other classes of compounds, and protein should differ isotopically among de novo synthesis, litter sources, and soil sources. Here, we propose that (1) isotopic differences between caps and stipes could be related to organic nitrogen uptake and to the δ13C and δ15N values of different pools of soil-derived or de novo-synthesized amino acids; (2) these isotopic differences will reflect greater acquisition of soil-derived organic nitrogen by exploration types of greater enzymatic capabilities to degrade recalcitrant nitrogen forms, specifically long-distance, medium-distance fringe, and medium-distance mat exploration types. To test these hypotheses, we use a dataset of isotopic values, %N, and %C in 208 cap/stipe samples collected from Oregon, western USA. δ13C differences in caps and stipes in a multiple regression model had an adjusted r2 of 0.292 (p Ncap-stipe (20

  14. Phase retrieval from reflective fringe patterns of double-sided transparent objects

    International Nuclear Information System (INIS)

    Huang, Lei; Asundi, Anand Krishna

    2012-01-01

    ‘Ghosted’ fringe patterns simultaneously reflected from both the upper and lower sides of a transparent target in the fringe reflection technique are captured for transparent surface 3D shape measurement, but the phase retrieval from the captured ‘ghosted’ fringe patterns is still not solved. A novel method is proposed to solve this issue by using two sets of phase-shifted fringe patterns with slightly different frequencies. The nonlinear least-squares method is used to estimate the fringe phase and modulation from both front and rear interfaces. Several simulations are done to show the feasibility of the proposed method. The influence of fringe noise on the algorithm is studied as well, which indicates that the proposed method is able to retrieve the phase from double-sided reflective fringe patterns with fringe noise equivalent to that in practical measurements. The merits and limitations of the method are discussed and recommendations for future studies are made. (paper)

  15. Evaluation of nitrogen uptake patterns in spring and winter wheat in western Oregon

    International Nuclear Information System (INIS)

    Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.

    2010-01-01

    An understanding of the ground nitrogen (N) uptake pattern for wheat (Triticum aestivum L.) is essential to facilitate nitrogen management. The purpose of this study was to determine the nitrogen uptake pattern of spring and winter wheat grown in western Oregon, USA. Data used in this study were obtained from three different trials. For spring wheat rotation trials five spring wheat cultivars were used. Fertilizer N (16-16-16-4) at the rate of 140 kg ha/sup -1/ was applied at the time of planting. In small plot rotation trials five fertilizer treatments - 0, 50, 100,150 and 200 kg N ha/sup -1/ were used. Rotations include winter wheat following clover and winter wheat following oat. The N uptake and dry matter yield of winter wheat were also determined from unfertilized plots of wheat trial. The maximum N uptake for spring wheat and winter wheat were at 1100 and 2000 accumulated growing degree days (GDD), before Feekes 10, respectively. The maximum N uptake rate for spring wheat, 0.038 kg N GDD/sup -1/, occurred at 750 GDD and the peak N uptake was observed approximately 35 days after Feekes 2. Nitrogen uptake in winter wheat was significantly affected by rotations. (author)

  16. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements

    International Nuclear Information System (INIS)

    McMurtrey, J.E. III; Chappelle, E.W.; Kim, M.S.; Meisinger, J.J.; Corp, L.A

    1994-01-01

    Laser-induced fluorescence (LIF) is an active sensing technique capable of capturing immediate and specific indications of changes in plant physiology and metabolism as they relate to the concentration and photosynthetic activity of the plant pigments. Reflectance is a passive sensing technique that can capture differences in the concentration of the primary plant pigments. Fluorescence and reflectance were compared for their ability to measure levels of plant stress that are of agronomic importance in corn (Zea mays L.) crops. Laboratory LIF and reflectance spectra were made on excised leaves from field grown corn. Changes in the visible region of the spectrum were compared between groups of plants fertilized with seven different levels of nitrogen (N) fertilization. A pulsed nitrogen laser emitting photons at a wavelength of 337 nm was used as a fluorescence excitation source. Differences in maximum intensity of fluorescence occurred at 440 nm, 525 nm, 685 nm, and 740 nm. Significant separations were found between levels of N fertilization at several LIF wavelength ratios. Several reflectance algorithms also produced significant separations between certain levels of N fertilization

  17. Attachment Patterns and Reflective Functioning in traumatised refugees

    DEFF Research Database (Denmark)

    Riber, Karin

    2013-01-01

    psychotherapy research has shown is central to change and effect. Aims: 1) To examine attachment patterns and reflective functioning in traumatised refugees with PTSD, and 2) shed light on their significance to therapeutic alliance and treatment effect. Methods: All Arabic speaking patients in the study......Traumatized refugees have often suffered severe, prolonged, repeated traumas and pose a challenge to treatment. Attachment patterns and level of mentalizing seem to work as protection mechanisms in traumatizing events and to be important for positively utilizing the therapeutic alliance which...

  18. Optical patterning of trapped charge in nitrogen-doped diamond

    Science.gov (United States)

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.

    2016-08-01

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.

  19. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    Science.gov (United States)

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  20. Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall

    Science.gov (United States)

    Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad

    2017-11-01

    We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.

  1. Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012.

    Science.gov (United States)

    Swaney, Dennis P; Howarth, Robert W; Hong, Bongghi

    2018-04-17

    National-level summaries of crop production and nutrient use efficiency, important for international comparisons, only partially elucidate agricultural dynamics within a country. Agricultural production and associated environmental impacts in large countries vary significantly because of regional differences in crops, climate, resource use and production practices. Here, we review patterns of regional crop production, nitrogen use efficiency (NUE), and major inputs of nitrogen to US crops over 1987-2012, based on the Farm Resource Regions developed by the Economic Research Service (USDA-ERS). Across the US, NUE generally decreased over time over the period studied, mainly due to increased use in mineral N fertilizer above crop N requirements. The Heartland region dominates production of major crops and thus tends to drive national patterns, showing linear response of crop production to nitrogen inputs broadly consistent with an earlier analysis of global patterns of country-scale data by Lassaletta et al. (2014). Most other regions show similar responses, but the Eastern Uplands region shows a negative response to nitrogen inputs, and the Southern Seaboard shows no significant relationship. The regional differences appear as two branches in the response of aggregate production to N inputs on a cropland area basis, but not on a total area basis, suggesting that the type of scaling used is critical under changing cropland area. Nitrogen use efficiency (NUE) is positively associated with fertilizer as a percentage of N inputs in four regions, and all regions considered together. NUE is positively associated with crop N fixation in all regions except Northern Great Plains. It is negatively associated with manure (livestock excretion); in the US, manure is still treated largely as a waste to be managed rather than a nutrient resource. This significant regional variation in patterns of crop production and NUE vs N inputs, has implications for environmental quality and

  2. Optical Reflectance and Fluorescence for Detecting Nitrogen Needs in Zea mays L.

    Science.gov (United States)

    McMurtrey, J. E.; Middleton, E. M.; Corp. L. A.; Campbell, P. K. Entcheva; Butcher, L. M.; Daughtry, C. S. T.

    2003-01-01

    Nitrogen (N) status in field grown corn (Zea mays L.) was assessed using spectral techniques. Passive reflectance remote sensing and, both passive and active fluorescence sensing methods were investigated. Reflectance and fluorescence methods are reported to detect changes in the primary plant pigments (chlorophylls a and b; carotenoids) in higher plant species. As a general rule, foliar chlorophyll a (Chl a) and chlorophyll b (Chl b) usually exist in approx.3:l ratio. In plants under stress, Chl b content is affected before Chl a reductions occur. For reflectance, a version of the chlorophyll absorption in reflectance index (CARI) method was tested with narrow bands from the Airborne Imaging Spectroradiometer for Applications (ASIA). CARI minimizes the effects of soil background on the signal from green canopies. A modified CARI (MCARI) was used to track total Chl a levels in the red dip of the spectrum from the corn canopy. A second MCARI was used to track the auxiliary plant pigments (Chl b and the carotenoids) in the yellow/orange/red edge part of the reflectance spectrum. The difference between these two MCARI indices detected variations in N levels across the field plot canopies using ASIA data. At the leaf level, ratios of fluorescence emissions in the blue, green, red and far-red wavelengths sensed responses that were associated with the plant pigments, and were indicative of energy transfer in the photosynthetic process. N stressed corn stands could be distinguish from those with optimally applied N with fluorescence emission spectra obtained from individual corn leaves. Both reflectance and fluorescence methods are sensitive in detecting corn N needs and may be especially powerful in monitoring crop conditions if both types of information can be combined.

  3. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.

    Directory of Open Access Journals (Sweden)

    Erica A H Smithwick

    Full Text Available Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1 quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2 determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA. Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m. Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R²<0.29. Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21(st Century.

  4. Assessing Nitrogen Treatment Efficiency in Schima Superba Seedlings Detected Using Hyperspectral Reflectance

    Directory of Open Access Journals (Sweden)

    Miaomiao Cheng

    2014-01-01

    Full Text Available The sharp change in nitrate (N deposition fluxes due to anthropogenic influences has major consequences for terrestrial plant productivity. Early detection of plants under nitrate stress is important for forest management in the subtropical region. This study used leaf-scale hyperspectral reflectance measurements to detect the seedling growth response of Schima superba (S. superba under simulated N deposition during a period of two years. Two-year-old S. superba seedlings were planted under natural field conditions and treated with four N treatments at CK, LN-6, MN-10, and HN-24g N m-2 year-1. The chlorophyll content and leaf reflectance were examined to detect the N addition temporal effects. Results indicated that S. superba responded significantly with differences in chlorophyll content and leaf reflectance to N additional treatment. Compared with the N deficiency (CK plots, plots with higher N addition rate (HN reduced the chlorophyll concentration of S. superba seedlings. However, the long-term observed impact of LN and MN treatments increased the S. superba chlorophyll during the two years. Nitrogen additional treatments can be distinguished using the hyperspectral indices (R700/R720, R695/R420, and R695/R760 retrieved from the differences in leaf reflectance at the green spectrum and the red spectrum. The derivative shift to longer wavelength peaks with increasing N supply, accompanied by the increase in chlorophyll content. Leaf reflectance at 559 nm was negatively correlated with leaf chlorophyll content (R = -0.77. The identified N specific spectral ratios may be used for image interpretation and plant N status diagnosis for site-specific N management.

  5. Isotope Investigations of Nitrogen Compounds in Different Aquatic Ecosystems in Cyprus, Russia and Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Voropaev, A.; Voerkelius, S.; Eichinger, L. [Hydroisotop GmbH, Schweitenkirchen (Germany); Grinenko, V. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2013-07-15

    The isotope analyses of nitrogen compounds is a powerful tool for the investigation of anrthropogenic influence on the nitrogen cycle in terrestrial and aquatic ecosystems. The isotopic composition of nitrogen and oxygen in nitrates from different groundwater aquifers in Cyprus reflects anthropogenic inputs of nitrogen mainly from industrial fertilizer application in agriculture. Significant denitrification as identified at many sampling sites is an important process, which reduces nitrate concentrations in groundwater. In surface water ecosystems anthropogenic influences and natural environmental changes are detected by the isotopic composition of nitrogen in suspended organic material and in bottom sediments. In the oligotrophic fresh water of Lake Galich in Russia the waste water outflow is a reason for the local increase of {delta}{sup 15}N values in bottom sediments, where the nitrogen and carbon isotopic compositions of unpolluted sediments are very homogeneous. In the Neva estuary in russia the lateral destribution of {delta}{sup 15}N values in upper layers of bottom sediments reflects changes in the mixing pattern of marine and continental organic matter caused by a flood protection dam building in the Dneprovsko-Bugsky estuary in Ukraine - probably the increasing influence of anthropogenic {sup 15}N enriched nutrient load. (author)

  6. Distribution patterns of nitrogen micro-cycle functional genes and their quantitative coupling relationships with nitrogen transformation rates in a biotrickling filter.

    Science.gov (United States)

    Wang, Honglei; Ji, Guodong; Bai, Xueyuan

    2016-06-01

    The present study explored the distribution patterns of nitrogen micro-cycle genes and the underlying mechanisms responsible for nitrogen transformation at the molecular level (genes) in a biotrickling filter (biofilter). The biofilter achieved high removal efficiencies for ammonium (NH4(+)-N) (80-94%), whereas nitrate accumulated at different levels under a progressive NH4(+)-N load. Combined analyses revealed the anammox, nas, napA, narG, nirS, and nxrA genes were the dominant enriched genes in different treatment layers. The presence of simultaneous nitrification, ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were the primary factors accounted for the robust NH4(+)-N treatment performance. The presence of DNRA, nitrification, and denitrification was determined to be a pivotal pathway that contributed to the nitrate accumulation in the biofilter. The enrichment of functional genes at different depth gradients and the multi-path coupled cooperation at the functional gene level are conducive to achieving complete nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Spatiotemporal patterns of non-point source nitrogen loss in an agricultural catchment

    Directory of Open Access Journals (Sweden)

    Jian-feng Xu

    2016-04-01

    Full Text Available Non-point source nitrogen loss poses a risk to sustainable aquatic ecosystems. However, non-point sources, as well as impaired river segments with high nitrogen concentrations, are difficult to monitor and regulate because of their diffusive nature, budget constraints, and resource deficiencies. For the purpose of catchment management, the Bayesian maximum entropy approach and spatial regression models have been used to explore the spatiotemporal patterns of non-point source nitrogen loss. In this study, a total of 18 sampling sites were selected along the river network in the Hujiashan Catchment. Over the time period of 2008–2012, water samples were collected 116 times at each site and analyzed for non-point source nitrogen loss. The morphometric variables and soil drainage of different land cover types were studied and considered potential factors affecting nitrogen loss. The results revealed that, compared with the approach using the Euclidean distance, the Bayesian maximum entropy approach using the river distance led to an appreciable 10.1% reduction in the estimation error, and more than 53.3% and 44.7% of the river network in the dry and wet seasons, respectively, had a probability of non-point source nitrogen impairment. The proportion of the impaired river segments exhibited an overall decreasing trend in the study catchment from 2008 to 2012, and the reduction in the wet seasons was greater than that in the dry seasons. High nitrogen concentrations were primarily found in the downstream reaches and river segments close to the residential lands. Croplands and residential lands were the dominant factors affecting non-point source nitrogen loss, and explained up to 70.7% of total nitrogen in the dry seasons and 54.7% in the wet seasons. A thorough understanding of the location of impaired river segments and the dominant factors affecting total nitrogen concentration would have considerable importance for catchment management.

  8. Security authentication using the reflective glass pattern imaging effect.

    Science.gov (United States)

    Zhu, Ji Cheng; Shen, Su; Wu, Jian Hong

    2015-11-01

    The reflective glass pattern imaging effect is investigated experimentally for the utility in forming a synthetic 3D image as a security authentication device in this Letter. An array of homogeneously randomly distributed reflective elements and a corresponding micropattern array are integrated onto a thin layer of polyester film aiming to create a vivid image floating over a substrate surface, which can be clearly visible to the naked eye. By using the reflective-type configuration, the micro-optic system can be realized on a thinner substrate and is immune to external stain due to its flat working plane. A novel gravure-like doctor blading technique can realize a resolution up to 12,000 dpi and a stringent 2D alignment requirement should be imposed. Such devices can find applications in document security and banknotes or other valuable items to protect them against forgery.

  9. Linking Global Patterns of Nitrogen Resorption with Nitrogen Mineralization During Litter Decomposition

    Science.gov (United States)

    Deng, M.; Liu, L.; Jiang, L.

    2017-12-01

    The nitrogen (N) cycle in terrestrial ecosystems is strongly influenced by resorption prior to litter fall and by mineralization after litter fall. Although both resorption and mineralization make N available to plants and are influenced by climate, their linkage in a changing environment remains largely unknown. Here, we show that, at the global scale, increasing N resorption efficiency has a negative effect on the N mineralization rate. With increasing temperature and precipitation, the increasing rate of the N cycle is closely related to the shift from the more conservative resorption pathway to an acquiring mineralization pathway. Furthermore, systems with faster N-cycle rates support plants with higher foliar N:P ratios and microbes with lower fungi:bacteria ratios. We highlight the importance of considering the geographic pattern and the dynamic interaction between N resorption and N mineralization, which should be incorporated into earth-system models to improve the simulation of nutrient constraints on ecosystem productivity.

  10. Autofluorescence and diffuse reflectance patterns in cervical spectroscopy

    Science.gov (United States)

    Marin, Nena Maribel

    Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted

  11. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

    DEFF Research Database (Denmark)

    Pörtl, K.; Zechmeister-Boltenstern, S.; Wanek, W.

    2007-01-01

    Natural N-15 abundance measurements of ecosystem nitrogen (N) pools and N-15 pool dilution assays of gross N transformation rates were applied to investigate the potential of delta N-15 signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected...

  12. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    Science.gov (United States)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the

  13. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization

    Science.gov (United States)

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan EB; Kastner, Sabine; Hasson, Uri

    2015-01-01

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI: http://dx.doi.org/10.7554/eLife.03952.001 PMID:25695154

  14. Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms.

    Science.gov (United States)

    Mayor, Jordan; Bahram, Mohammad; Henkel, Terry; Buegger, Franz; Pritsch, Karin; Tedersoo, Leho

    2015-01-01

    Ectomycorrhizal (EcM)-mediated nitrogen (N) acquisition is one main strategy used by terrestrial plants to facilitate growth. Measurements of natural abundance nitrogen isotope ratios (denoted as δ(15)N relative to a standard) increasingly serve as integrative proxies for mycorrhiza-mediated N acquisition due to biological fractionation processes that alter (15)N:(14)N ratios. Current understanding of these processes is based on studies from high-latitude ecosystems where plant productivity is largely limited by N availability. Much less is known about the cause and utility of ecosystem δ(15)N patterns in the tropics. Using structural equation models, model selection and isotope mass balance we assessed relationships among co-occurring soil, mycorrhizal plants and fungal N pools measured from 40 high- and 9 low-latitude ecosystems. At low latitudes (15)N-enrichment caused ecosystem components to significantly deviate from those in higher latitudes. Collectively, δ(15)N patterns suggested reduced N-dependency and unique sources of EcM (15)N-enrichment under conditions of high N availability typical of the tropics. Understanding the role of mycorrhizae in global N cycles will require reevaluation of high-latitude perspectives on fractionation sources that structure ecosystem δ(15)N patterns, as well as better integration of EcM function with biogeochemical theories pertaining to climate-nutrient cycling relationships. © 2014 John Wiley & Sons Ltd/CNRS.

  15. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    Science.gov (United States)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the

  16. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings.

    Science.gov (United States)

    Engelsberger, Wolfgang R; Schulze, Waltraud X

    2012-03-01

    Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  17. Nitrogen speciation and trends, and prediction of denitrification extent, in shallow US groundwater

    Science.gov (United States)

    Hinkle, Stephen R.; Tesoriero, Anthony J.

    2014-01-01

    Uncertainties surrounding nitrogen cycling complicate assessments of the environmental effects of nitrogen use and our understanding of the global carbon–nitrogen cycle. In this paper, we synthesize data from 877 ambient-monitoring wells across the US to frame broad patterns of nitrogen speciation and trends. At these sites, groundwater frequently contains substantial co-occurring NO3− and XSN2 (N2 from denitrification), reflecting active/ongoing denitrification and/or a mixture of undenitrified and denitrified groundwater. NO3− and NH4+ essentially do not co-occur, indicating that the dominant source of NH4+ at these sites likely is not dissimilatory reduction of NO3− to NH4+. Positive correlations of NH4+ with apparent age, CH4, dissolved organic carbon, and indicators of reduced conditions are consistent with NH4+ mobilization from degradation of aquifer organic matter and contraindicate an anthropogenic source of NH4+ for most sites. Glacial aquifers and eastern sand and gravel aquifers generally have lower proportions of NO3− and greater proportions of XSN2 than do fractured rock and karst aquifers and western sand and gravel aquifers. NO3− dominates in the youngest groundwater, but XSN2 increases as residence time increases. Temporal patterns of nitrogen speciation and concentration reflect (1) changing NO3− loads over time, (2) groundwater residence-time controls on NH4+ mobilization from solid phases, and (3) groundwater residence-time controls on denitrification. A simple classification tree using readily available variables (a national coverage of soil water depth, generalized geology) or variables reasonably estimated in many aquifers (residence time) identifies categorical denitrification extent (50%) with 79% accuracy in an independent testing set, demonstrating a predictive application based on the interconnected effects of redox, geology, and residence time.

  18. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China

    International Nuclear Information System (INIS)

    Bu, Hongmei; Zhang, Yuan; Meng, Wei; Song, Xianfang

    2016-01-01

    This study investigated the effects of land-use patterns on nitrogen pollution in the Haicheng River basin in Northeast China during 2010 by conducting statistical and spatial analyses and by analyzing the isotopic composition of nitrate. Correlation and stepwise regressions indicated that land-use types and landscape metrics were correlated well with most river nitrogen variables and significantly predicted them during different sampling seasons. Built-up land use and shape metrics dominated in predicting nitrogen variables over seasons. According to the isotopic compositions of river nitrate in different zones, the nitrogen sources of the river principally originated from synthetic fertilizer, domestic sewage/manure, soil organic matter, and atmospheric deposition. Isotope mixing models indicated that source contributions of river nitrogen significantly varied from forested headwaters to densely populated towns of the river basin. Domestic sewage/manure was a major contributor to river nitrogen with the proportions of 76.4 ± 6.0% and 62.8 ± 2.1% in residence and farmland-residence zones, respectively. This research suggested that regulating built-up land uses and reducing discharges of domestic sewage and industrial wastewater would be effective methods for river nitrogen control. - Highlights: • Land-use types were correlated well with most nitrogen variables over seasons. • Built-up land dominated in predicting nitrogen variables during different seasons. • Shape metrics predicted most nitrogen variables in different seasons. • Nitrogen sources and their contributions were estimated using nitrate isotopes. • Domestic sewage mainly contributed to river nitrogen pollution in residence zone.

  19. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Hongmei, E-mail: buhm2004@163.com [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Yuan; Meng, Wei [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Song, Xianfang [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-05-15

    This study investigated the effects of land-use patterns on nitrogen pollution in the Haicheng River basin in Northeast China during 2010 by conducting statistical and spatial analyses and by analyzing the isotopic composition of nitrate. Correlation and stepwise regressions indicated that land-use types and landscape metrics were correlated well with most river nitrogen variables and significantly predicted them during different sampling seasons. Built-up land use and shape metrics dominated in predicting nitrogen variables over seasons. According to the isotopic compositions of river nitrate in different zones, the nitrogen sources of the river principally originated from synthetic fertilizer, domestic sewage/manure, soil organic matter, and atmospheric deposition. Isotope mixing models indicated that source contributions of river nitrogen significantly varied from forested headwaters to densely populated towns of the river basin. Domestic sewage/manure was a major contributor to river nitrogen with the proportions of 76.4 ± 6.0% and 62.8 ± 2.1% in residence and farmland-residence zones, respectively. This research suggested that regulating built-up land uses and reducing discharges of domestic sewage and industrial wastewater would be effective methods for river nitrogen control. - Highlights: • Land-use types were correlated well with most nitrogen variables over seasons. • Built-up land dominated in predicting nitrogen variables during different seasons. • Shape metrics predicted most nitrogen variables in different seasons. • Nitrogen sources and their contributions were estimated using nitrate isotopes. • Domestic sewage mainly contributed to river nitrogen pollution in residence zone.

  20. [Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field].

    Science.gov (United States)

    Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei

    2015-03-01

    A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.

  1. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    Science.gov (United States)

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  2. Changes in vertical distribution of spectral reflectance within Spring barley canopy as an indicator of nitrogen nutrition, canopy structure and yield parametrs

    Czech Academy of Sciences Publication Activity Database

    Klem, Karel; Rajsnerová, Petra; Novotná, Kateřina; Míša, P.; Křen, J.

    2014-01-01

    Roč. 60, č. 2 (2014), s. 50-59 ISSN 0551-3677 R&D Projects: GA MZe QI111A133; GA TA ČR TA02010780 Institutional support: RVO:67179843 Keywords : Hordeum vulgare * spectral reflectance * vertical gradient * vegetation indices * nitrogen * grain yield * protein content Subject RIV: GC - Agronomy

  3. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates.

    Science.gov (United States)

    Martin, Adam R; Erickson, David L; Kress, W John; Thomas, Sean C

    2014-11-01

    In tropical and temperate trees, wood chemical traits are hypothesized to covary with species' life-history strategy along a 'wood economics spectrum' (WES), but evidence supporting these expected patterns remains scarce. Due to its role in nutrient storage, we hypothesize that wood nitrogen (N) concentration will covary along the WES, being higher in slow-growing species with high wood density (WD), and lower in fast-growing species with low WD. In order to test this hypothesis we quantified wood N concentrations in 59 Panamanian hardwood species, and used this dataset to examine ecological correlates and phylogenetic patterns of wood N. Wood N varied > 14-fold among species between 0.04 and 0.59%; closely related species were more similar in wood N than expected by chance. Wood N was positively correlated with WD, and negatively correlated with log-transformed relative growth rates, although these relationships were relatively weak. We found evidence for co-evolution between wood N and both WD and log-transformed mortality rates. Our study provides evidence that wood N covaries with tree life-history parameters, and that these patterns consistently co-evolve in tropical hardwoods. These results provide some support for the hypothesized WES, and suggest that wood is an increasingly important N pool through tropical forest succession. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Nitrogen transformations in wetlands: Effects of water flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, T.

    1997-11-01

    In this thesis, I have studied nitrogen turnover processes in water meadows. A water meadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. I have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes are affected by water flow characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the water meadows was poor. This was due to release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using {sup 15}N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface water flow, diffusion is the main transfer mechanism. The relation between release and removal processes sometimes resulted in shifts towards net nitrogen production. This occurred in infiltration treatments when ammonium efflux was high in relation to denitrification. It was concluded that ammonium and DON was of soil origin and hence not a product of dissimilatory nitrate reduction to ammonium. Both denitrification potential and mineralization rates were higher in peaty than in sandy soil. Vertical or horizontal subsurface flow is substantial in many wetland types, such as riparian zones, tidal salt marshes, fens, root-zone systems and water meadows. Moreover, any environment where aquatic and terrestrial ecosystems meet, and where water level fluctuates

  5. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    Science.gov (United States)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.

    2007-01-01

    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  6. Do subjective assessments of running patterns reflect objective parameters?

    Science.gov (United States)

    Lussiana, Thibault; Gindre, Cyrille; Mourot, Laurent; Hébert-Losier, Kim

    2017-08-01

    Running patterns are often categorized into subgroups according to common features before data analysis and interpretation. The Volodalen ® method is a simple field-based tool used to classify runners into aerial or terrestrial using a 5-item subjective rating scale. We aimed to validate the Volodalen ® method by quantifying the relationship between its subjective scores and 3D biomechanical measures. Fifty-four runners ran 30 s on a treadmill at 10, 12, 14, 16, and 18 km h -1 while their kinematics were assessed subjectively using the Volodalen ® method and objectively using 3D motion capture. For each runner and speed, two researchers scored the five Volodalen ® items on a 1-to-5 scale, which addressed vertical oscillation, upper-body motion, pelvis and foot position at ground contact, and footstrike pattern. Seven 3D biomechanical parameters reflecting the subjective items were also collected and correlated to the subjective scores. Twenty-eight runners were classified as aerial and 26 as terrestrial. Runner classification did not change with speed, but the relative contribution of the biomechanical parameters to the subjective classification was speed dependent. The magnitude of correlations between subjective and objective measures ranged from trivial to very large. Five of the seven objective parameters significantly differed between aerial and terrestrial runners, and these parameters demonstrated the strongest correlations to the subjective scores. Our results support the validity of the Volodalen ® method, whereby the visual appreciation of running gait reflected quantifiable objective parameters. Two minor modifications to the method are proposed to simplify its use and improve agreement between subjective and objective measures.

  7. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  8. Successional patterns of key genes and processes involved in the microbial nitrogen cycle in a salt marsh chronosequence

    NARCIS (Netherlands)

    Salles, Joana Falcao; Cassia Pereira e Silva , de Michele; Dini-Andreote, Francisco; Dias, Armando C. F.; Guillaumaud, Nadine; Poly, Franck; van Elsas, Jan Dirk

    Here, we investigated the patterns of microbial nitrogen cycling communities along a chronosequence of soil development in a salt marsh. The focus was on the abundance and structure of genes involved in N fixation (nifH), bacterial and archaeal ammonium oxidation (amoA; AOB and AOA), and the

  9. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2

    Science.gov (United States)

    Haley F. Wicklein; Scott V. Ollinger; Mary E. Martin; David Y. Hollinger; Lucie C. Lepine; Michelle C. Day; Megan K. Bartlett; Andrew D. Richardson; Richard J. Norby

    2012-01-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen-albedo relationship have not been established, and it is unknown whether factors affecting...

  10. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession.

    Science.gov (United States)

    Knelman, Joseph E; Graham, Emily B; Prevéy, Janet S; Robeson, Michael S; Kelly, Patrick; Hood, Eran; Schmidt, Steve K

    2018-01-01

    Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.

  11. Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales.

    Science.gov (United States)

    Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G

    2011-10-01

    The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.

  12. Voluntary intake, nitrogen metabolism and rumen fermentation ...

    African Journals Online (AJOL)

    Voluntary intake, nitrogen metabolism and rumen fermentation patterns in sheep given cowpea, silverleaf desmodium and fine-stem stylo legume hays as ... utilisation, the negative nitrogen retentions might indicate the inadequacy of the specific legume hays used as nitrogen supplementary feeds to sheep fed a basal diet

  13. A word-count approach to analyze linguistic patterns in the reflective writings of medical students

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lin

    2016-02-01

    Full Text Available Background: Teaching reflection and administering reflective writing assignments to students are widely practiced and discussed in medical education and health professional education. However, little is known about how medical students use language to construct their narratives. Exploring students’ linguistic patterns in their reflective writings can facilitate understanding the scope and facets of their reflections and their representational or communication approaches to share their experiences. Moreover, research findings regarding gender differences in language use are inconsistent. Therefore, we attempted to examine how females and males differ in their use of words in reflective writing within our research circumstance to detect the unique and gender-specific approaches to learning and their applications. Methods: We analyzed the linguistic profiles of psychological process categories in the reflective writings of medical students and examined the difference in word usage between male and female medical students. During the first year of a clinical rotation, 60 fifth-year medical students wrote reflective narratives regarding pediatric patients and the psychosocial challenges faced by the patients and their family members. The narratives were analyzed using the Chinese version of Linguistic Inquiry and Word Count (CLIWC, a text analysis software program. Multivariate procedures were applied for statistical analysis. Results: Cognitive words were most pervasive, averaging 22.16%, whereas perceptual words (2.86% were least pervasive. Female students used more words related to positive emotions and sadness than did male students. The male students exceeded the female students only in the space category. The major limitation of this study is that CLIWC cannot directly acquire contextual text meanings; therefore, depending on the research topic, further qualitative study of the given texts might be necessary. Conclusions: To enhance students

  14. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (< 3 nm) optical spectra (350-2500 nm) of reflectance, transmittance, and absorptance were also acquired for both adaxial and abaxial leaf surfaces. Species differences were demonstrated for several optical parameters. A 'red edge' derivative ratio determined from transmittance spectra [as the maximum first deivative, between 650-750 nm, normalized to the value at 744 nm, or Dmax/D744], was strongly associated with the C/N ratio (r(exp 2) = 0.90, P +/- 0.001). This ratio, calculated from reflectance spectra, was inversely related to chlorophyll b content (r(exp 2) = 0.91, P +/- 0.001) as was the ChlF (F685/F740) ratio obtained with 532 nm excitation (r(exp 2) = 0.76, P +/- 0.01). Discrimination of N treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces

  15. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession

    Directory of Open Access Journals (Sweden)

    Joseph E. Knelman

    2018-02-01

    Full Text Available Past research demonstrating the importance plant–microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder to late successional Picea sitchensis (Sitka spruce in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant–microbe interactions with late-successional plants and interspecific plant interactions more generally.

  16. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].

    Science.gov (United States)

    Tan, Chang-Wei; Zhou, Qing-Bo; Qi, La; Zhuang, Heng-Yang

    2008-06-01

    The correlations of rice plant nitrogen content with raw hyperspectral reflectance, first derivative hyperspectral reflectance, and hyperspectral characteristic parameters were analyzed, and the hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status with these remote sensing parameters as independent variables were constructed and validated. The results indicated that the nitrogen content in rice plant organs had a variation trend of stem plant nitrogen nutritional status, with the decisive coefficients (R2) being 0.7996 and 0.8606, respectively; while the model with vegetation index (SDr - SDb) / (SDr + SDb) as independent variable, i. e., y = 365.871 + 639.323 ((SDr - SDb) / (SDr + SDb)), was most fit rice plant nitrogen content, with R2 = 0.8755, RMSE = 0.2372 and relative error = 11.36%, being able to quantitatively diagnose the nitrogen nutritional status of rice.

  17. The global stoichiometry of litter nitrogen mineralization.

    Science.gov (United States)

    Manzoni, Stefano; Jackson, Robert B; Trofymow, John A; Porporato, Amilcare

    2008-08-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of approximately 2800 observations to show that these global nitrogen-release patterns can be explained by fundamental stoichiometric relationships of decomposer activity. We show how litter quality controls the transition from nitrogen accumulation into the litter to release and alters decomposers' respiration patterns. Our results suggest that decomposers lower their carbon-use efficiency to exploit residues with low initial nitrogen concentration, a strategy used broadly by bacteria and consumers across trophic levels.

  18. Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA

    Science.gov (United States)

    Adam P. Coble; Alisha Autio; Molly A. Cavaleri; Dan Binkley; Michael G. Ryan

    2014-01-01

    Across sites in Brazil and Hawaii, LMA and Nmass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations. Abstract Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (Narea) commonly increase with height. Previous research has suggested that these patterns...

  19. Trends in nitrogen isotope ratios of juvenile winter flounder reflect changing nitrogen inputs to Rhode Island, USA estuarine systems.

    Science.gov (United States)

    Pruell, Richard J; Taplin, Bryan K; Miller, Kenneth M

    2017-05-15

    Nitrogen isotope ratios (δ 15 N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the δ 15 N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low δ 15 N values measured in 2002-2004 were related to concentration-dependent fractionation at this location. Increased δ 15 N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. Published by Elsevier Ltd.

  20. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    DEFF Research Database (Denmark)

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania...... huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen-replete and -limited conditions is not well understood in this ecologically important species....... In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic...

  1. Nitrogen regulation of the xyl genes of Pseudomonas putida mt-2 propagates into a significant effect of nitrate on m-xylene mineralization in soil

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa; Nicolaisen, Mette Haubjerg; Hansen, Hans Chr. Bruun

    2016-01-01

    nitrogen sensing status in both experimental systems. Hence, for nitrogen sources, regulatory patterns that emerge in soil reflect those observed in liquid cultures. The current study shows how distinct regulatory traits can lead to discrete environmental consequences; and it underpins that attempts......The nitrogen species available in the growth medium are key factors determining expression of xyl genes for biodegradation of aromatic compounds by Pseudomonas putida. Nitrogen compounds are frequently amended to promote degradation at polluted sites, but it remains unknown how regulation observed...... that NO3(-) compared with NH4(+) had a stimulating effect on xyl gene expression in pure culture as well as in soil, and that this stimulation was translated into increased m-xylene mineralization in soil. Furthermore, expression analysis of the nitrogen-regulated genes amtB and gdhA allowed us to monitor...

  2. The influence of nitrogen inputs on biomass and trophic structure of ocean plankton: a study using biomass and stable isotope size-spectra

    KAUST Repository

    Mompeán, Carmen

    2016-08-18

    Large scale patterns in planktonic food web structure were studied by applying continuous size-scaled models of biomass and δ15N to plankton samples, collected at 145 stations during the Malaspina-2010 Expedition across three ocean basins and including major biomes. Carbon biomass and δ15N were determined in size-fractionated samples (40 to 5000 μm) collected by vertical hauls (0–200 m). Biomass-normalized size-spectra were constructed to summarize food web structure and spatial patterns in spectral parameters were analyzed using geographically-weighted regression analysis. Except in the northwestern Atlantic, size-spectra showed low variability, reflecting a homogeneity in nitrogen sources and food web structure for the central oceans. Estimated predator-to-prey mass ratios <104 and mean trophic transfer efficiency values between 16% (coastal biome) and >20% (Trades and Westerlies biomes) suggested that oceanic plankton food webs may support a larger number of trophic levels than current estimates based on high efficiency values. The largest changes in spectral parameters and nitrogen sources were related to inputs of atmospheric nitrogen, either from diazotrophic organisms or dust deposition. These results suggest geographic homogeneity in the net transfer of nitrogen up the food web.

  3. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics.

    Science.gov (United States)

    Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2003-11-01

    What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.

  4. Toward a nitrogen footprint calculator for Tanzania

    Science.gov (United States)

    Hutton, Mary Olivia; Leach, Allison M.; Leip, Adrian; Galloway, James N.; Bekunda, Mateete; Sullivan, Clare; Lesschen, Jan Peter

    2017-03-01

    We present the first nitrogen footprint model for a developing country: Tanzania. Nitrogen (N) is a crucial element for agriculture and human nutrition, but in excess it can cause serious environmental damage. The Sub-Saharan African nation of Tanzania faces a two-sided nitrogen problem: while there is not enough soil nitrogen to produce adequate food, excess nitrogen that escapes into the environment causes a cascade of ecological and human health problems. To identify, quantify, and contribute to solving these problems, this paper presents a nitrogen footprint tool for Tanzania. This nitrogen footprint tool is a concept originally designed for the United States of America (USA) and other developed countries. It uses personal resource consumption data to calculate a per-capita nitrogen footprint. The Tanzania N footprint tool is a version adapted to reflect the low-input, integrated agricultural system of Tanzania. This is reflected by calculating two sets of virtual N factors to describe N losses during food production: one for fertilized farms and one for unfertilized farms. Soil mining factors are also calculated for the first time to address the amount of N removed from the soil to produce food. The average per-capita nitrogen footprint of Tanzania is 10 kg N yr-1. 88% of this footprint is due to food consumption and production, while only 12% of the footprint is due to energy use. Although 91% of farms in Tanzania are unfertilized, the large contribution of fertilized farms to N losses causes unfertilized farms to make up just 83% of the food production N footprint. In a developing country like Tanzania, the main audiences for the N footprint tool are community leaders, planners, and developers who can impact decision-making and use the calculator to plan positive changes for nitrogen sustainability in the developing world.

  5. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig

  6. The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China

    International Nuclear Information System (INIS)

    Gu Baojing; Dong Xiaoli; Peng Changhui; Luo Weidong; Chang Jie; Ge Ying

    2012-01-01

    Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952–2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr −1 during the period 1952–2004, mainly attributing to fossil fuel combustion (43%), Haber–Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr −1 , while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. - Highlights: ► Major Nr emission source shifts from agriculture to industry alongside urbanization. ► Decoupling of nitrogen with GDP and urban expansion arises alongside urbanization. ► Nitrogen fluxes increase with population growth and living standard promotion. - Major nitrogen emission source shifts from agriculture to industry and human, and decoupling of nitrogen with GDP and urban expansion arises alongside urbanization.

  7. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    Science.gov (United States)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  8. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?

    Directory of Open Access Journals (Sweden)

    Brooke eCrowley

    2015-11-01

    Full Text Available Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

  9. Foliar Reflectance and Fluorescence Responses for Plants Under Nitrogen Stress Determined with Active and Passive Systems

    Science.gov (United States)

    Middleton, E. M.; McMurtrey, J. E.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; Chappelle, E. W.

    2003-01-01

    Vegetation productivity is driven by nitrogen (N) availability in soils. Both excessive and low soil N induce physiological changes in plant foliage. In 2001, we examined the use of spectral fluorescence and reflectance measurements to discriminate among plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight daily). Three types of steady state laser-induced fluorescence measurements were made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broad irradiance excitation; 2) emission spectra (5 nm resolution) produced by excitation at single wavelengths (280,380 or 360, and 532 nm); and 3) excitation spectra (2 nm resolution), with emission wavelengths fixed at wavelengths centered on selected solar Fraunhofer lines (532,607,677 and 745 nm). Two complementary sets of high resolution (less than 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces: 1) optical properties (350-2500 nm) for reflectance, transmittance, and absorptance; and 2) reflectance spectra (500-1000 nm) acquired with and without a short pass filter at 665 nm to determine the fluorescence contribution to apparent reflectance in the 650-750 spectrum, especially at the 685 and 740 nm chlorophyll fluorescence (ChIF) peaks. The strongest relationships between foliar chemistry and optical properties were demonstrated for C/N content and two optical parameters associated with the red edge inflection point. Select optical properties and ChIF parameters were highly correlated for both species. A significant contribution of ChIF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2 - 6% at 740 nm over all N treatments. Discrimination of N treatment

  10. The quality of school lunch consumed reflects overall eating patterns in 11-16-year-old schoolchildren in Finland.

    Science.gov (United States)

    Tilles-Tirkkonen, Tanja; Pentikäinen, Saara; Lappi, Jenni; Karhunen, Leila; Poutanen, Kaisa; Mykkänen, Hannu

    2011-12-01

    To explore how the quality of school lunch consumed reflected overall eating patterns in school-aged children. Children filled in an Internet-based questionnaire about their eating patterns. The children were then divided into balanced and imbalanced school lunch eaters on the basis of their responses in the questionnaire. A balanced school lunch consisted of, by the definition used in the present study, a main dish, salad and bread. Eleven primary schools and one middle school in eastern Finland. A total of 531 schoolchildren (247 boys and 284 girls) aged 11-16 years. The school lunch was balanced in 46·5% of children. Eating a balanced school lunch was associated with overall healthier eating patterns outside school. Children who ate a balanced school lunch had more regular meal times and consumed healthier snacks. They ate fruit or berries and vegetables, dairy products and wholegrain foods more often, consumed fewer salty snacks, pizzas, meat pies and drank fewer soft drinks and energy drinks. Their eating patterns at home were also healthier, with vegetables being offered at every family dinner and fruit being offered daily, whereas soft drinks were offered seldom. The choices made by children in their school lunch reflect the overall eating patterns among school-aged children. Eating a balanced school lunch is associated with more regular meal patterns, the availability of healthier foods at home and an overall healthier diet, suggesting that healthy eating patterns are learnt at home.

  11. Root distribution pattern and nitrogen uptake of some wheat and triticale germplasms in relation to rates and methods of nitrogen application

    International Nuclear Information System (INIS)

    Meena, N.L.; Seth, Jagdish

    1975-01-01

    A field experiment was conducted under irrigated conditions with four germplasms viz. Triticale(70-2), and wheat varieties HD 4502(durum), Kalyan Sona and Moti (aestivums) at the Indian Agricultural Research Institute Farm, New Delhi, during rabi season of 1972-73. The treatments comprised of three rates of nitrogen viz. 0,60 and 120 kg/ha and two methods of nitrogen application viz. (1) soil + foliar and (2) soil. The root distribution of the four germplasms, studied by 32 P injection technique was increased both vertically and horizontally with the addition of nitrogen. Root distribution of triticale was observed to be deep and spreading in habit, while durum proved to be shallow rooted and compact in nature. The total uptake of nitrogen was significantly increased with higher rates of nitrogen in all the germplasms. The maximum uptake of nitrogen was observed in the durum wheat. (author)

  12. Is a Nitrogen-rich Reference Needed for Canopy Sensor-based Corn Nitrogen Applications?

    Science.gov (United States)

    The nitrogen (N) supplying capacity of the soil available to support corn (Zea mays L.) production can be highly variable both among and within fields. In recent years, canopy reflectance sensing has been investigated for in-season assessment of crop N health and fertilization. Typically, the proced...

  13. The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China.

    Science.gov (United States)

    Gu, Baojing; Dong, Xiaoli; Peng, Changhui; Luo, Weidong; Chang, Jie; Ge, Ying

    2012-12-01

    Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952-2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr(-1) during the period 1952-2004, mainly attributing to fossil fuel combustion (43%), Haber-Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr(-1), while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces. Abaxial surfaces also produced higher reflectances, in general, in the 400-800 nm spectrum.

  15. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  16. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2013-01-01

    Full Text Available The stable isotopes of nitrogen offer a unique perspective on changes in the nitrogen cycle, past and present. However, the presence of multiple forms of nitrogen in marine sediments can complicate the interpretation of bulk nitrogen isotope measurements. Although the large-scale global patterns of seafloor δ15N have been shown to match process-based expectations, small-scale heterogeneity on the seafloor, or alterations of isotopic signals during translation into the subseafloor record, could obscure the primary signals. Here, a public database of nitrogen isotope measurements is described, including both seafloor and subseafloor sediment samples ranging in age from modern to the Pliocene, and used to assess these uncertainties. In general, good agreement is observed between neighbouring seafloor sites within a 100 km radius, with 85% showing differences of < 1‰. There is also a good correlation between the δ15N of the shallowest (< 5 ka subseafloor sediments and neighbouring seafloor sites within a 100 km radius (R2 = 0.83, which suggests a reliable translation of sediments into the buried sediment record. Meanwhile, gradual δ15N decreases over multiple glacial–interglacial cycles appear to reflect post-depositional alteration in records from the deep sea (below 2000 m. We suggest a simple conceptual model to explain these 100-kyr-timescale changes in well-oxygenated, slowly accumulating sediments, which calls on differential loss rates for pools of organic N with different δ15N. We conclude that bulk sedimentary nitrogen isotope records are reliable monitors of past changes in the marine nitrogen cycle at most locations, and could be further improved with a better understanding of systematic post-depositional alteration. Furthermore, geochemical or environmental criteria should be developed in order to effectively identify problematic locations and to account for

  17. Understanding deviations in lithographic patterns near interfaces: Characterization of bottom anti-reflective coatings (BARC) and the BARC resist interface

    Science.gov (United States)

    Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama

    2007-02-01

    Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.

  18. [Computer-assisted measurement of ocular misalignment in infants and young children using the digital Purkinje reflection pattern procedure].

    Science.gov (United States)

    Barry, J C; Effert, R; Kaupp, A; Kleine, M; Reim, M

    1994-02-01

    A digital image recording and processing system is presented that allows a quick diagnosis of microstrabismus in non-cooperative children. It is thus particularly suited for screening purposes. The Purkinje Reflection Pattern Evaluation (RPE) method is used: three small flashes are used to produce the desired Purkinje images. Two horizontal rows of the three 1st Purkinje images (anterior corneal reflections) and of the three 4th Purkinje images (posterior crystalline lens reflections) stemming from the three light sources form the characteristic Purkinje image reflection pattern. Each eye's position is calculated from the shift between the upper and lower rows of reflections by means of two simple formulae. From the angles obtained in binocular fixation and monocular fixation the manifest angle of strabismus corresponding to the angle measured in the simultaneous prism-and-cover test is computed. The measurement is performed at a fixation distance of 50 cm under natural viewing conditions. To obtain a picture one only has to get the child's attention for a short moment. The primary position is triggered with the fixation light, which is operated by a switch. The digital image recording is done with a hand-held device comprising two miniaturized video cameras, three photo flashes and a fixation light that is operated manually. An IBM-compatible PC equipped with a hard disk and two frame grabbers was adapted for the storage and processing of the pictures. The pictures are evaluated interactively in a few minutes on the workstation's monitor immediately after the measurement. To this end specially designed menu-driven software was implemented. Examples of the measuring procedure and clinical results in infants with microtropic highlight the potential of the system as a screening apparatus and for the exact measurement of small and large squint angles. Usually even 1-year-old children can cooperate well enough to get good-quality pictures in binocular fixation. The new

  19. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.

    Science.gov (United States)

    Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen

    2018-01-01

    Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.

  20. Compound-specific amino acid δ15N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean

    Science.gov (United States)

    McCarthy, Matthew D.; Lehman, Jennifer; Kudela, Raphael

    2013-02-01

    Stable nitrogen isotopic analysis of individual amino acids (δ15N-AA) has unique potential to elucidate the complexities of food webs, track heterotrophic transformations, and understand diagenesis of organic nitrogen (ON). While δ15N-AA patterns of autotrophs have been shown to be generally similar, prior work has also suggested that differences may exist between cyanobacteria and eukaryotic algae. However, δ15N-AA patterns in differing oceanic algal groups have never been closely examined. The overarching goals of this study were first to establish a more quantitative understanding of algal δ15N-AA patterns, and second to examine whether δ15N-AA patterns have potential as a new tracer for distinguishing prokaryotic vs. eukaryotic N sources. We measured δ15N-AA from prokaryotic and eukaryotic phytoplankton cultures and used a complementary set of statistical approaches (simple normalization, regression-derived fractionation factors, and multivariate analyses) to test for variations. A generally similar δ15N-AA pattern was confirmed for all algae, however significant AA-specific variation was also consistently identified between the two groups. The relative δ15N fractionation of Glx (glutamine + glutamic acid combined) vs. total proteinaceous N appeared substantially different, which we hypothesize could be related to differing enzymatic forms. In addition, the several other AA (most notably glycine and leucine) appeared to have strong biomarker potential. Finally, we observed that overall patterns of δ15N values in algae correspond well with the Trophic vs. Source-AA division now commonly used to describe variable AA δ15N changes with trophic transfer, suggesting a common mechanistic basis. Overall, these results show that autotrophic δ15N-AA patterns can differ between major algal evolutionary groupings for many AA. The statistically significant multivariate results represent a first approach for testing ideas about relative eukaryotic vs. prokaryotic

  1. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  2. Commercial and home-made nitrogen modified titanias. A short reflection about the advantageous/disadvantageous properties of nitrogen doping in the frame of their applicability

    Science.gov (United States)

    Pap, Zs.; Mogyorósi, K.; Veréb, G.; Dombi, A.; Hernádi, K.; Danciu, V.; Baia, L.

    2014-09-01

    As visible light driven photocatalysis became more and more intensively studied, the first commercial products showed up on the market. Simultaneously controversial results appeared in the literature generating an intensive debate regarding the advantages and draw-backs of nitrogen doping of titania. Hence, the present work focuses on two commercially available and four sol-gel made nitrogen modified titania powders regarding their structure and activity. It is demonstrated that the interstitial nitrogen entities “leak out” from the catalysts if the material is irradiated with UV light, while substitutional nitrogen remains stable. However, the latter one was proven to be less important in the photocatalytic point of view. These observations were also valid in the case of sol-gel made nitrogen modified titanias. Furthermore, the results obtained after applying different spectroscopic methods (IR, XPS and DRS) shown that the yellow color of the titanias, does not necessary mean that a successful doping is achieved.

  3. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    OpenAIRE

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we deve...

  4. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies

    International Nuclear Information System (INIS)

    Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A.

    1996-01-01

    Techniques that measure the N status of corn (Zea mays L.) can aid in management decisions that have economic and environmental implications. This study was conducted to identify reflected electromagnetic wavelengths most sensitive to detecting N deficiencies in a corn canopy with the possibility for use as a management tool. Reflected shortwave radiation was measured from an irrigated corn N response trial with four hybrids and five N rates at 0, 40, 80, 120, and 160 kg N ha -1 in 1992 and 0, 50, 100, 150, and 200 kg N ha -1 in 1993. A portable spectroradiometer was used to measure reflected radiation (400-1100 nm in 1992, 350-1050 nm in 1993) from corn canopies at approximately the R5 growth stage. Regression analyses revealed that reflected radiation near 550 and 710 nm was superior to reflected radiation near 450 or 650 nm for detecting N deficiencies. The ratio of light reflectance between 550 and 600 nm to light reflectance between 800 and 900 nm also provided sensitive detection of N stress. In 1993, an inexpensive photometric cell, which has peak sensitivity to light centered at 550 nm, was also used to measure reflected radiation from a corn canopy. Photometric cell readings correlated with relative grain yield (P < 0.001, r 2 = 0.74), but more research will be required to develop procedures to account for varying daylight conditions. These results provide information needed for the development of variable-rate fertilizer N application technology. (author)

  5. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation.

    Science.gov (United States)

    Krapp, Anne; Berthomé, Richard; Orsel, Mathilde; Mercey-Boutet, Stéphanie; Yu, Agnes; Castaings, Loren; Elftieh, Samira; Major, Hilary; Renou, Jean-Pierre; Daniel-Vedele, Françoise

    2011-11-01

    Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency.

  6. Human Decisions: Nitrogen Footprints and Environmental Effects

    Science.gov (United States)

    Leach, A. M.; Bleeker, A.; Galloway, J. N.; Erisman, J.

    2012-12-01

    Human consumption choices are responsible for growing losses of reactive nitrogen (Nr) to the environment. Once in the environment, Nr can cause a cascade of negative impacts such as smog, acid rain, coastal eutrophication, climate change, and biodiversity loss. Although all humans must consume nitrogen as protein, the food production process releases substantial Nr to the environment. This dilemma presents a challenge: how do we feed a growing population while reducing Nr? Although top-down strategies to reduce Nr losses (e.g., emissions controls) are necessary, the bottom-up strategies focusing on personal consumption patterns will be imperative to solve the nitrogen challenge. Understanding the effects of different personal choices on Nr losses and the environment is an important first step for this strategy. This paper will utilize information and results from the N-Calculator, a per capita nitrogen footprint model (www.N-Print.org), to analyze the impact of different food consumption patterns on a personal food nitrogen footprint and the environment. Scenarios will analyze the impact of the following dietary patterns on the average United States (28 kg Nr/cap/yr) food nitrogen footprint: 1) Consuming only the recommended protein as defined by the WHO and the USDA; 2) Reducing food waste by 50%; 3) Consuming a vegetarian diet; 4) Consuming a vegan diet; 5) Consuming a demitarian diet (replacing half of animal protein consumption with vegetable protein); 6) Substituting chicken (a more efficient animal protein) with beef (a less efficient animal protein); 7) Consuming sustainably-produced food; and 8) Using advanced wastewater treatment. Preliminary results suggest that widespread advanced wastewater treatment with nutrient removal technology and halving food waste would each reduce the US personal food nitrogen footprint by 13%. In addition, reducing protein consumption to the recommended levels would reduce the footprint by about 42%. Combining these measures

  7. Sample preparation for total reflection X-ray fluorescence analysis using resist pattern technique

    Science.gov (United States)

    Tsuji, K.; Yomogita, N.; Konyuba, Y.

    2018-06-01

    A circular resist pattern layer with a diameter of 9 mm was prepared on a glass substrate (26 mm × 76 mm; 1.5 mm thick) for total reflection X-ray fluorescence (TXRF) analysis. The parallel cross pattern was designed with a wall thickness of 10 μm, an interval of 20 μm, and a height of 1.4 or 0.8 μm. This additional resist layer did not significantly increase background intensity on the XRF peaks in TXRF spectra. Dotted residue was obtained from a standard solution (10 μL) containing Ti, Cr, Ni, Pb, and Ga, each at a final concentration of 10 ppm, on a normal glass substrate with a silicone coating layer. The height of the residue was more than 100 μm, where self-absorption in the large residue affected TXRF quantification (intensity relative standard deviation (RSD): 12-20%). In contrast, from a droplet composed of a small volume of solution dropped and cast on the resist pattern structure, the obtained residue was not completely film but a film-like residue with a thickness less than 1 μm, where self-absorption was not a serious problem. In the end, this sample preparation was demonstrated to improve TXRF quantification (intensity RSD: 2-4%).

  8. Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget

    Science.gov (United States)

    Yoshioka, Takahiro; Wiedenbeck, Michael; Shcheka, Svyatoslav; Keppler, Hans

    2018-04-01

    be modeled. Such models show that if the magma ocean coexisted with a primordial atmosphere having a nitrogen partial pressure of just a few bars, several times the current atmospheric mass of nitrogen must have been trapped in the deep mantle. It is therefore plausible that the apparent depletion of nitrogen relative to other volatiles in the near-surface reservoirs reflects the storage of a larger reservoir of nitrogen in the solid Earth. Dynamic exchange between these reservoirs may have induced major fluctuations of bulk atmospheric pressure over Earth's history.

  9. Reflective masks for extreme ultraviolet lithography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khanh Bao [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  10. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    Science.gov (United States)

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    NO 3 - -N accumulation layer moved downward. By comprehensively considering above-ground biomass, seed cotton yield, water and nitrogen uptake and utilization, and soil NO 3 - -N accumulation in the soil profile, the treatment N 3 I 1 could be recommended as the optimal water and nitrogen application pattern for summer cotton production in the experimental region.

  11. Do ethnic patterns in cryptorchidism reflect those found in testicular cancer?

    Science.gov (United States)

    Gurney, Jason; Sarfati, Diana; Stanley, James; Studd, Rodney

    2013-11-01

    There are established variations in testicular cancer incidence between ethnic groups within countries. It is currently unclear whether the occurrence of cryptorchidism-a known risk factor for testicular cancer-follows similar patterns. In New Zealand Māori have unusually high rates of testicular cancer compared to individuals of European ancestry. We hypothesized that ethnic trends in the incidence of cryptorchidism would reflect those for testicular cancer in this setting. We followed 318,441 eligible male neonates born in New Zealand between 2000 and 2010 for the incidence of orchiopexy confirmed cryptorchidism and the incidence of known risk factors for cryptorchidism (low birth weight, short gestation, small size for gestational age) using routine maternity, hospitalization and mortality records. Logistic regression was used to calculate odds ratios for the presence of known risk factors for cryptorchidism by ethnic group. Poisson regression was used to calculate relative risk of cryptorchidism by ethnicity, adjusted for risk factors. Ethnic patterns of cryptorchidism incidence in New Zealand closely mirrored those previously observed for testicular cancer. Māori had higher rates of cryptorchidism than all other ethnic groups (adjusted RR 1.2 [95% CI 1.11-1.3]), with Pacific (0.89 [0.8-0.99]) and Asian groups (0.68 [0.59-0.79]) having the lowest rates (European/other, referent). Since the principal risk factors for cryptorchidism are present in utero, the results of the current study strengthen the likelihood that the ethnic patterning of testicular cancer is at least partly due to prenatal risk factors. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Attachment patterns and Reflective Functioning in Traumatized Refugees

    DEFF Research Database (Denmark)

    Riber, Karin

    , attachment systems, emotion-regulation, and personality. Attachment research on the consequences of organized violence and forced migration is sparse and research in PTSD-treatment for refugees is lacking behind. Cumulative pre-migration traumatic experiences and ongoing post-migration stressors might lead...... Psychiatry, Denmark. June 2011-March 2012 patients fulfilling inclusion criteria entered the trial. The present sample consisted of those of the 135 patients who were Arabic-speaking (N=67). Measures involved the Adult Attachment Interview, The Reflective Functioning Scale, Revised Adult Attachment Scale...... and reflective functioning will be described and implications for psychotherapy discussed. Keywords: Adult attachment, reflective functioning, refugee traumatisation....

  13. Fabrication of high-resolution reflective scale grating for an optical encoder using a patterned self-assembly process

    International Nuclear Information System (INIS)

    Fan, Shanjin; Jiang, Weitao; Li, Xuan; Yu, Haoyu; Lei, Biao; Shi, Yongsheng; Yin, Lei; Chen, Bangdao; Liu, Hongzhong

    2016-01-01

    Steel tape scale grating of a reflective incremental linear encoder has a key impact on the measurement accuracy of the optical encoder. However, it is difficult for conventional manufacturing processes to fabricate scale grating with high-resolution grating strips, due to process and material problems. In this paper, self-assembly technology was employed to fabricate high-resolution steel tape scale grating for a reflective incremental linear encoder. Graphene oxide nanoparticles were adopted to form anti-reflective grating strips of steel tape scale grating. They were deposited in the tape, which had a hydrophobic and hydrophilic grating pattern when the dispersion of the nanoparticles evaporated. A standard lift-off process was employed to fabricate the hydrophobic grating strips on the steel tape. Simultaneously, the steel tape itself presents a hydrophilic property. The hydrophobic and hydrophilic grating pattern was thus obtained. In this study, octafluorocyclobutane was used to prepare the hydrophobic grating strips, due to its hydrophobic property. High-resolution graphene oxide steel tape scale grating with a pitch of 20 μ m was obtained through the self-assembly process. The photoelectric signals of the optical encoder containing the graphene oxide scale grating and conventional scale grating were tested under the same conditions. Comparison test results showed that the graphene oxide scale grating has a better performance in its amplitude and harmonic components than that of the conventional steel tape scale. A comparison experiment of position errors was also conducted, demonstrating an improvement in the positioning error of the graphene oxide scale grating. The comparison results demonstrated the applicability of the proposed self-assembly process to fabricate high-resolution graphene oxide scale grating for a reflective incremental linear encoder. (paper)

  14. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    Science.gov (United States)

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run

  15. Xylem sap nitrogen compounds of some Crotalaria species

    Directory of Open Access Journals (Sweden)

    Vitória Angela Pierre

    1999-01-01

    Full Text Available Thirteen species of Crotalaria were analysed for nitrogen compounds in the xylem root bleeding sap. Amino acids were the main form of organic nitrogen found, but only traces of ureides were present. Of the four species analysed for amino acid composition, asparagine was found to be the major amino acid, accounting for over 68% of the nitrogen transported. No striking deviations from this general pattern was found between species, between vegetative and floral stages of development, or between nodulated and non-nodulated plants. It was concluded that the Crotalaria species studied here have an asparagine-based nitrogen metabolism, consistent with many other non-ureide-producing legume species.

  16. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  17. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  18. Nitrogen frost migration on Triton: A historical model

    International Nuclear Information System (INIS)

    Spencer, J.R.

    1990-01-01

    The author presents the results of numerical simulations of the seasonal migration of nitrogen frost on Triton, constrained by Voyager observations of atmospheric pressure, temperature, and albedo distribution. Most of the exposed nitrogen is probably seasonal frost, whose migration can produce major variations in atmospheric pressure. For instance, models explored here predict a tenfold pressure drop in the coming decade. The observed albedo patterns can be understood if fresh nitrogen frost is relatively dark butt brightens with increasing insolation in a manner analogous to the Martian southern CO 2 cap

  19. Blue-green fluorescence and visible-infrared reflectance of corn (Zea mays L.) grain for in situ field detection of nitrogen supply

    International Nuclear Information System (INIS)

    McMurtrey, J.E. III; Chappelle, E.W.; Kim, M.S.; Corp, L.A.; Daughtry, C.S.T.

    1996-01-01

    The sensing of spectral attributes of corn (Zea mays L.) grain from site specific areas of the field during the harvest process may be useful in managing agronomic inputs and production practices on those areas of the field in subsequent growing seasons. Eight levels of nitrogen (N) fertilization were applied to field grown corn at Beltsville, Maryland. These N treatments produced a range of chlorophyll levels, biomass and physiological condition in the live plant canopies. After harvest, spectra were obtained in the laboratory on whole grain samples. Fluorescence emissions were acquired from 400 to 600 nm and percent reflectance were measured in the visible (VIS) near infrared (NIR) and mid-infrared (MIR) regions from 400 nm to 2400 nm. A ultraviolet (UV) excitation band centered at 385 nm was the most effective in producing fluorescence emission differences in the blue-green region of the fluorescence spectrum with maxima centered from 430-470nm in the blue and with an intense shoulder centered at around 530-560 nm in the green region. Reflectance showed the most spectral differences in the NIR and MIR (970-2330 nm) regions

  20. Urban rivers as hotspots of regional nitrogen pollution

    International Nuclear Information System (INIS)

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-01-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3–5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. - Highlights: • Nitrogen concentrations in urban rivers are much higher than that in regional rivers. • Domestic wastewater is the main source of urban river pollution in Hangzhou. • Pollutant collecting and water diversion can sharply reduce the urban river pollution. - Urban river pollution is not being measured by the current monitoring networks that are designed to measure regional patterns causing an underestimation

  1. Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO₂

    NARCIS (Netherlands)

    Zhou, Yipin; Brunner, D.; Spurr, R.J.D.; Boersma, K.F.; Sneep, M.; Popp, C.; Buchmann, B.

    2010-01-01

    Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2) vertical tropospheric columns (VTCs). Current operational retrievals rely on coarse-resolution reflectance data and do not account for the

  2. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle.

    Science.gov (United States)

    Niu, Shuli; Classen, Aimée T; Dukes, Jeffrey S; Kardol, Paul; Liu, Lingli; Luo, Yiqi; Rustad, Lindsey; Sun, Jian; Tang, Jianwu; Templer, Pamela H; Thomas, R Quinn; Tian, Dashuan; Vicca, Sara; Wang, Ying-Ping; Xia, Jianyang; Zaehle, Sönke

    2016-06-01

    Nitrogen (N) deposition is impacting the services that ecosystems provide to humanity. However, the mechanisms determining impacts on the N cycle are not fully understood. To explore the mechanistic underpinnings of N impacts on N cycle processes, we reviewed and synthesised recent progress in ecosystem N research through empirical studies, conceptual analysis and model simulations. Experimental and observational studies have revealed that the stimulation of plant N uptake and soil retention generally diminishes as N loading increases, while dissolved and gaseous losses of N occur at low N availability but increase exponentially and become the dominant fate of N at high loading rates. The original N saturation hypothesis emphasises sequential N saturation from plant uptake to soil retention before N losses occur. However, biogeochemical models that simulate simultaneous competition for soil N substrates by multiple processes match the observed patterns of N losses better than models based on sequential competition. To enable better prediction of terrestrial N cycle responses to N loading, we recommend that future research identifies the response functions of different N processes to substrate availability using manipulative experiments, and incorporates the measured N saturation response functions into conceptual, theoretical and quantitative analyses. © 2016 John Wiley & Sons Ltd/CNRS.

  3. Nitrogen-rich higher-molecular soil organic compounds patterned by lignin degradation products: Considerations on the nature of soil organic nitrogen

    Science.gov (United States)

    Liebner, Falk; Bertoli, Luca; Pour, Georg; Klinger, Karl; Ragab, Tamer; Rosenau, Thomas

    2016-04-01

    The pathways leading to accumulation of covalently bonded nitrogen in higher-molecular soil organic matter (SOM) are still a controversial issue in soil science and geochemistry. Similarly, structural elucidation of the variety of the types of nitrogenous moieties present in SOM is still in its infancy even though recent NMR studies suggest amide-type nitrogen to form the majority of organically bonded nitrogen which is, however, frequently not in accordance with the results of wet-chemical analyses. Following the modified polyphenol theory of Flaig and Kononova but fully aware of the imperfection of a semi-abiotic simulation approach, this work communicates the results of a study that investigated some potential nitrogen accumulation pathways occurring in the re-condensation branch of the theory following the reactions between well-known low-molecular lignin and carbohydrate degradation products with nitrogenous nucleophiles occurring in soils under aerobic conditions. Different low-molecular degradation products of lignin, cellulose, and hemicellulose, such as hydroquinone, methoxyhydroquinone, p-benzoquinone, 2,5-dihydroxy-[1,4]benzoquinone, glucose, xylose, and the respective polysaccharides, i.e. cellulose, xylan as well as various types of lignin were subjected to a joint treatment with oxygen and low-molecular N-nucleophiles, such as ammonia, amines, and amino acids in aqueous conditions, partly using respective 15N labeled compounds for further 15N CPMAS NMR studies. Product mixtures derived from mono- and polysaccharides have been comprehensively fractionated and analyzed by GC/MS after derivatization. Some of ammoxidized polyphenols and quinones have been analyzed by X-ray photoelectron spectroscopy. Some products, such as those obtained from ammoxidation of methoxy hydroquinone using 15N labeled ammonia were fractionated following the IHSS protocol. Individual humin (H), humic acid (HA), and fulvic acid (FA) fractions were subjected to elemental analyses

  4. Nitrogen nutrition of the grape-vine (Vitis vinifera spp)

    International Nuclear Information System (INIS)

    Conradie, W.J.

    1985-12-01

    A thorough knowledge concerning the nitrogen relationship in the grape-vine is essential in order to appreciate how different patterns of uptake, assimilation, storage and utilisation of nitrogen might be advantageous in particular environmental situations. The 15 N-isotope technique has been used to determine the uptake and distribution of nitrogen absorbed during early spring, early summer and autumn. Apart from the total N fraction, protein N and soluble N were determined as well. The utilisation of labelled N applied in the field, was determined for vineyards on heavier and lighter soils

  5. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marc Souris

    2012-06-01

    Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS(750/700 and Ratio Spectral Index (RVI based on FDS(724/700 are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior

  6. Estimating foliar nitrogen in Eucalyptus using vegetation indexes

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Ramalho de Oliveira

    Full Text Available ABSTRACT Nitrogen (N has commonly been applied in Eucalyptus stands in Brazil and it has a direct relation with biomass production and chlorophyll content. Foliar N concentrations are used to diagnose soil and plant fertility levels and to develop N fertilizer application rates. Normally, foliar N is obtained using destructive methods, but indirect analyses using Vegetation Indexes (VIs may be possible. The aim of this work was to evaluate VIs to estimate foliar N concentration in three Eucalyptus clones. Lower crown leaves of three clonal Eucalyptus plantations (25 months old were classified into five color patterns using the Munsell Plant Tissue Color Chart. For each color, N concentration was determined by the Kjeldahl method and foliar reflectance was measured using a CI-710 Miniature Leaf Spectrometer. Foliar reflectance data were used to obtain the VIs and the VIs were used to estimate N concentrations. In the visible region, the relationship between N concentration and reflectance percentage was negative. The highest correlations between VIs and N concentrations were obtained by the Inflection Point Position (IPP, r = 0.97, Normalized Difference Red-Edge (reNDVI, r = 0.97 and Modified Red-Edge Normalized Difference Vegetation Index (mNDI, r = 0.97. Vegetation indexes on the red edge region provided the most accurate estimates of foliar N concentration. The reNDVI index provided the best N concentration estimates in leaves of different colors of Eucalyptus urophylla × grandis and Eucalyptus urophylla × urophylla (R2 = 0.97 and RMSE = 0.91 g kg−1.

  7. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies

    International Nuclear Information System (INIS)

    Takahashi, W.; Nguyen-Cong, V.; Kawaguchi, S.; Minamiyama, M.; Ninomiya, S.

    2000-01-01

    Various multivariate regression models were examined with ten-fold cross-validation to develop efficient, accurate models to predict dry weight and nitrogen accumulation of rice crops (cultivars Koshihikari, Hanaechizen, Nipponbare, and IR-36) from the maximum tiller number stage to the meiosis stage, using plant-canopy reflectance of hyper-spectra within the 400-1100 nm domain without any variable selection. The results showed that the principal component regression using hyper-spectra gave better fits and predictability than that using specific wavelengths. On the other hand, partial least squares regression was the most useful among the models tested; this method avoided overfitting and multicollinearity by using all wavelength information without variable selection and by inclusion of both x and y variations in its latent variables. (author)

  8. Recent Nitrogen Deposition In Poland Monitored With The Moss Pleurozium Schreberi

    Directory of Open Access Journals (Sweden)

    Kapusta Paweł

    2014-07-01

    Full Text Available In this study, atmospheric deposition of nitrogen was determined for Poland by moss biomonitoring. Nitrogen content was measured in the moss Pleurozium schreberi (Willd. ex Brid. Mitt. sampled in 2010 from 320 sites evenly distributed throughout the country. Mosses (green parts contained an average 1.56% nitrogen. The result places Poland among the European countries most polluted by airborne nitrogen. The highest nitrogen concentrations were found in mosses from the central and southern parts of the country, and the lowest in samples from some eastern and northern regions. Multiple regression showed that this variability was due mostly to nitrogen emissions from agricultural and industrial areas (moss nitrogen was positively associated with the consumption of mineral nitrogen fertilizers and the magnitude of particulate pollution. Some details of the spatial variability of the nitrogen data indicate that local and regional point sources of pollution (e.g., chemical plants played an important role in shaping the nitrogen deposition pattern

  9. The reaction between barium and nitrogen in liquid sodium: resistivity studies

    International Nuclear Information System (INIS)

    Addison, C.C.; Creffield, G.K.; Hubberstey, P.; Pulham, R.J.

    1976-01-01

    The reaction of nitrogen with solutions of barium (between 0.34 and 6.89 mol % Ba) in liquid sodium at 573 K has been followed by changes in the electrical resistivity of the liquid. The capillary method has been employed, continuous sampling during reaction being achieved by electromagnetic pumping. The initial solution of nitrogen in the metal, followed by precipitation of barium and nitrogen from sodium as the nitride Ba 2 N, are reflected in the resistivity changes. The solubility of nitrogen in the alloy is a linear function of the barium concentration: S(mol % N) = x/4 (0 <= x <= 6.89 mol % Ba). This and the decrease in resistivity which invariably occurs during the solution process, provides additional information on the nature of solvation of nitrogen in solution in the liquid metal. (author)

  10. Determinação não destrutiva do nitrogênio total em plantas por espectroscopia de reflectância difusa no infravermelho próximo Non-destructive determination of total nitrogen in plants by diffuse reflectance near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Kássio M. G. Lima

    2008-01-01

    Full Text Available Diffuse reflectance near-infrared (DR-NIR spectroscopy associated with partial least squares (PLS multivariate calibration is proposed for a direct, non-destructive, determination of total nitrogen in wheat leaves. The procedure was developed for an Analytical Instrumental Analysis course, carried out at the Institute of Chemistry of the State University of Campinas. The DR-NIR results are in good agreement with those obtained by the Kjeldhal standard procedure, with a relative error of less than ± 3% and the method may be used for teaching purposes as well as for routine analysis.

  11. Food, Feed and Fuel: a Story About Nitrogen

    Science.gov (United States)

    Galloway, J. N.; Burke, M. B.; Mooney, H. A.; Steinfeld, H.

    2008-12-01

    Humans obtain metabolic energy by eating food. Nitrogen is required to grow food, but natural supplies of N for human purposes have been inadequate since the beginning of the twentieth century. The Haber-Bosch process now provides a virtually inexhaustible supply of nitrogen, limited primarily by the cost of energy. However, most nitrogen used in food production is lost to the environment, where it cascades through environmental reservoirs contributing to many of the major environmental issues of the day. Furthermore, growing international trade in nitrogen-containing commodities is increasingly replacing wind and water as an important international transporter of nitrogen around the globe. Finally, the rapid growth in crop-based biofuels, and its attendant effects on the global production and trade of all agricultural commodities, could greatly affect global patterns of N use and loss. In the light of the findings above, this paper examines the role of nitrogen in food, feed and fuel production. It describes the beneficial consequences for food production and the negative consequences associated with the commodity nitrogen cascade and the environmental nitrogen cascade. The paper reviews estimates of future projections of nitrogen demands for food and fuel, including the impact of changing diets in the developing world. The paper concludes by presenting the potential interactions among global change, agricultural production and the nitrogen and carbon cycles.

  12. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    Science.gov (United States)

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  13. Right fusiform response patterns reflect visual object identity rather than semantic similarity.

    Science.gov (United States)

    Bruffaerts, Rose; Dupont, Patrick; De Grauwe, Sophie; Peeters, Ronald; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik

    2013-12-01

    We previously reported the neuropsychological consequences of a lesion confined to the middle and posterior part of the right fusiform gyrus (case JA) causing a partial loss of knowledge of visual attributes of concrete entities in the absence of category-selectivity (animate versus inanimate). We interpreted this in the context of a two-step model that distinguishes structural description knowledge from associative-semantic processing and implicated the lesioned area in the former process. To test this hypothesis in the intact brain, multi-voxel pattern analysis was used in a series of event-related fMRI studies in a total of 46 healthy subjects. We predicted that activity patterns in this region would be determined by the identity of rather than the conceptual similarity between concrete entities. In a prior behavioral experiment features were generated for each entity by more than 1000 subjects. Based on a hierarchical clustering analysis the entities were organised into 3 semantic clusters (musical instruments, vehicles, tools). Entities were presented as words or pictures. With foveal presentation of pictures, cosine similarity between fMRI response patterns in right fusiform cortex appeared to reflect both the identity of and the semantic similarity between the entities. No such effects were found for words in this region. The effect of object identity was invariant for location, scaling, orientation axis and color (grayscale versus color). It also persisted for different exemplars referring to a same concrete entity. The apparent semantic similarity effect however was not invariant. This study provides further support for a neurobiological distinction between structural description knowledge and processing of semantic relationships and confirms the role of right mid-posterior fusiform cortex in the former process, in accordance with previous lesion evidence. © 2013.

  14. Near-Horizontal, Two-Phase Flow Patterns of Nitrogen and Hydrogen at Low Mass Heat and Flux (on CD-ROM)

    Science.gov (United States)

    VanDresar, N. T.; Siegwarth, J. D.

    2001-01-01

    One reason for NASA's interest in cryogenic two-phase flow with low mass and heat flux is the need to design spacecraft heat exchangers used for vaporizing cryogenic propellants. The CD-ROM provides digitized movies of particular flow patterns observed in experimental work. The movies have been provided in (QuickTime9Trademark) format, encoded at 320w x 240h pixels, 15 fps, using the Sorenson(Trademark) Video Codec for compression. Experiments were conducted to obtain data on the two-phase (liquid and vapor) flow behavior of cryogenic nitrogen and hydrogen under low mass and heat flux conditions. Tests were performed in normal gravity with a 1.5 degree up flow configuration. View ports in the apparatus permitted visual observation of the two-phase flow patterns. Computer codes to predict flow patterns were developed from theoretical/empirical models reported in the literature. Predictions from the computer codes were compared with experimental flow pattern observations. Results are presented employing the traditional two-dimensional flow pattern map format using the liquid and gas superficial velocities as coordinates. In general, the agreement between the experimental results and the analytical predictive methods is reasonably good. Small regions of the flow pattern maps are identified where the models are deficient as a result of neglecting phase change phenomena. Certain regions of the maps were beyond the range of the experiments and could not be completely validated. Areas that could benefit from further work include modeling of the transition from separated flow, collection of additional data in the bubble and annular flow regimes, and collection of experimental data at other inclination angles, tube diameters and high heat flux.

  15. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    Science.gov (United States)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  16. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds

    International Nuclear Information System (INIS)

    Su, Long-Jyun; Fang, Chia-Yi; Chang, Yu-Tang; Chang, Huan-Cheng; Chen, Kuan-Ming; Yu, Yueh-Chung; Hsu, Jui-Hung

    2013-01-01

    This work explores the possibility of increasing the density of negatively charged nitrogen-vacancy centers ([NV − ]) in nanodiamonds using nitrogen-rich type Ib diamond powders as the starting material. The nanodiamonds (10–100 nm in diameter) were prepared by ball milling of microdiamonds, in which the density of neutral and atomically dispersed nitrogen atoms ([N 0 ]) was measured by diffuse reflectance infrared Fourier transform spectroscopy. A systematic measurement of the fluorescence intensities and lifetimes of the crushed monocrystalline diamonds as a function of [N 0 ] indicated that [NV − ] increases nearly linearly with [N 0 ] at 100–200 ppm. The trend, however, failed to continue for nanodiamonds with higher [N 0 ] (up to 390 ppm) but poorer crystallinity. We attribute the result to a combined effect of fluorescence quenching as well as the lower conversion efficiency of vacancies to NV − due to the presence of more impurities and defects in these as-grown diamond crystallites. The principles and practice of fabricating brighter and smaller fluorescent nanodiamonds are discussed. (paper)

  17. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds.

    Science.gov (United States)

    Su, Long-Jyun; Fang, Chia-Yi; Chang, Yu-Tang; Chen, Kuan-Ming; Yu, Yueh-Chung; Hsu, Jui-Hung; Chang, Huan-Cheng

    2013-08-09

    This work explores the possibility of increasing the density of negatively charged nitrogen-vacancy centers ([NV(-)]) in nanodiamonds using nitrogen-rich type Ib diamond powders as the starting material. The nanodiamonds (10-100 nm in diameter) were prepared by ball milling of microdiamonds, in which the density of neutral and atomically dispersed nitrogen atoms ([N(0)]) was measured by diffuse reflectance infrared Fourier transform spectroscopy. A systematic measurement of the fluorescence intensities and lifetimes of the crushed monocrystalline diamonds as a function of [N(0)] indicated that [NV(-)] increases nearly linearly with [N(0)] at 100-200 ppm. The trend, however, failed to continue for nanodiamonds with higher [N(0)] (up to 390 ppm) but poorer crystallinity. We attribute the result to a combined effect of fluorescence quenching as well as the lower conversion efficiency of vacancies to NV(-) due to the presence of more impurities and defects in these as-grown diamond crystallites. The principles and practice of fabricating brighter and smaller fluorescent nanodiamonds are discussed.

  18. Long-term ecosystem nitrogen storage and soil nitrogen availability in post-fire lodgepole pine ecosystems

    Science.gov (United States)

    Erica A. H. Smithwick; Daniel M. Kashian; Michael G. Ryan; Monica G.  Turner

    2009-01-01

    Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N...

  19. Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns

    International Nuclear Information System (INIS)

    Zhou Xun; Luo Zi-Jiang; Guo Xiang; Zhang Bi-Chan; Shang Lin-Tao; Zhou Qing; Deng Chao-Yong; Ding Zhao

    2012-01-01

    Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As 4 BEP for InGaAs films. When the As 4 BEP is set to be zero, the RHEED pattern keeps a 4×3/(n × 3) structure with increasing temperature, and surface segregation takes place until 470 °C. The RHEED pattern develops into a metal-rich (4 × 2) structure as temperature increases to 495 °C. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515 °C, the RHEED pattern turns into a GaAs(2 × 4) structure due to In desorption. While the As 4 BEP comes up to a specific value (1.33 × 10 -4 Pa−1.33 × 10 -3 Pa), the surface temperature can delay the segregation and desorption. We find that As 4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption. (condensed matter: structural, mechanical, and thermal properties)

  20. Patterns of nutrient utilization. Implications for nitrogen metabolism

    International Nuclear Information System (INIS)

    Oldham, J.D.

    1983-01-01

    Nutrients react within both the rumen and the ruminant body, and the patterns of availability of different nutrients greatly influence their net utilization. In the rumen, microbial capture of N substrates, especially ammonia, depends on the degree of synchronization between rates of production of N substrates and of ATP to drive microbial protein synthesis. The form of dietary carbohydrate and of dietary N and the frequency of feeding can all affect the efficiency of microbial growth and digestion. The pattern of supply of nutrients to the body will also influence nutrient utilization. Disparities between diurnal patterns of supply of volatile fatty acids from the rumen and amino acids from the intestines will result in changes in balance of metabolic pathways. The balance between supply of glucogenic and lipogenic nutrients will influence efficiency of fattening. A major factor determining the pattern of utilization/metabolism of amino acids is the metabolic demand for protein synthesis, which varies with physiological state. (author)

  1. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  2. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1997-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  3. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T. [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1996-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  4. 长江口外海域沉积物中有机物的来源及分布%Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area

    Institute of Scientific and Technical Information of China (English)

    高建华; 汪亚平; 潘少明; 张瑞; 李军; 白风龙

    2008-01-01

    The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton,after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.

  5. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    Science.gov (United States)

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  6. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti.

    Science.gov (United States)

    D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C

    2017-01-01

    the cell. The impact of carbon storage on cellular metabolism would be reflected in global transcription patterns. By investigating the transcriptomic effects of genetically disrupting genes involved in the PHB carbon storage cycle, we revealed a relationship between intracellular carbon storage and nitrogen metabolism. This work demonstrates the utility of combining transcriptome sequencing with metabolic pathway mutations for identifying underlying gene regulatory mechanisms.

  8. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China.

    Science.gov (United States)

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J

    2014-02-01

    Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Nitrogen was added to the soil at rates of 0, 0.5, 1.0, 3.0, 6.0 and 24.0 g N m(-2) year(-1). Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.

  9. Patterns and controls on nitrogen cycling of biological soil crusts

    Science.gov (United States)

    Barger, Nichole N.; Zaady, Eli; Weber, Bettina; Garcia-Pichel, Ferran; Belnap, Jayne

    2016-01-01

    Biocrusts play a significant role in the nitrogen [N ] cycle within arid and semi-arid ecosystems, as they contribute major N inputs via biological fixation and dust capture, harbor internal N transformation processes, and direct N losses via N dissolved, gaseous and erosional loss processes (Fig. 1). Because soil N availability in arid and semi-arid ecosystems is generally low and may limit net primary production (NPP), especially during periods when adequate water is available, understanding the mechanisms and controls of N input and loss pathways in biocrusts is critically important to our broader understanding of N cycling in dryland environments. In particular, N cycling by biocrusts likely regulates short-term soil N availability to support vascular plant growth, as well as long-term N accumulation and maintenance of soil fertility. In this chapter, we review the influence of biocrust nutrient input, internal cycling, and loss pathways across a range of biomes. We examine linkages between N fixation capabilities of biocrust organisms and spatio-temporal patterns of soil N availability that may influence the longer-term productivity of dryland ecosystems. Lastly, biocrust influence on N loss pathways such as N gas loss, leakage of N compounds from biocrusts, and transfer in wind and water erosion are important to understand the maintenance of dryland soil fertility over longer time scales. Although great strides have been made in understanding the influence of biocrusts on ecosystem N cycling, there are important knowledge gaps in our understanding of the influence of biocrusts on ecosystem N cycling that should be the focus of future studies. Because work on the interaction of N cycling and biocrusts was reviewed in Belnap and Lange (2003), this chapter will focus primarily on research findings that have emerged over the last 15 years (2000-2015).

  10. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    NARCIS (Netherlands)

    Brauer, V.S.; Stomp, M.; Rosso, C.; van Beusekom, S.A.M.; Emmerich, B.; Stal, L.J.; Huisman, J.

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  11. Effect of Different Planting Methods of Onion (Allium cepa L. and Nitrogen Rate on Onion Growth Pattern under Interference with Purple Nutsedge (Cyperus rotundus

    Directory of Open Access Journals (Sweden)

    N Karimi Arpnahy

    2016-07-01

    Full Text Available Introduction Human always has looked for improving food production through increasing crops yield. In this path, weeds through competition with crop for environmental factors and inputs have reduced the quantity and quality of crop products. Competition for nitrogen absorption not only is the most common form of intra-specific competition amongst crop plants, but also is the most popular form of inter-specific competition in the system of weed-crop interference. Therefore, understanding the method of nitrogen absorption and its allocation in competing plants, will be a key tool to improve weed management strategies. Materials and Methods In order to study the effect of sowing method and nitrogen rate on the growth pattern of onion under interference with purple nutsedge, a factorial experiment based on a randomized complete block design was conducted with three replications at the Research Greenhouse of University of Birjand in 2013. The first factor included three sowing methods of onion (seed sowing, onion set and transplanting and the second factor consisted of three levels of nitrogen (50, 100 and 150 kg N ha-1, equivalent of 25, 50 and 75 mg N kg-1 soil that urea fertilizer with a purity of 46% was used for this purpose. Results and Discussion The results of the analysis of variance showed that nitrogen levels had significant effects on plant height, leaf area index as well as aboveground and bulb dry weights. Furthermore, sowing methods revealed significant effects on plant height, leaf number, leaf area index as well as aboveground and bulb dry weights. Moreover, the interaction between sowing methods and levels of nitrogen had a significant effect on plant height, leaf area index and aboveground dry weight, while it had no significant effect on leaf number and bulb dry weight. The results of the comparisons of the means of onion planting methods and nitrogen levels interactions confirmed that the superiority of the influence of onion set

  12. A tradeoff frontier for global nitrogen use and cereal production

    International Nuclear Information System (INIS)

    Mueller, Nathaniel D; West, Paul C; Gerber, James S; MacDonald, Graham K; Foley, Jonathan A; Polasky, Stephen

    2014-01-01

    Nitrogen fertilizer use across the world’s croplands enables high-yielding agricultural production, but does so at considerable environmental cost. Imbalances between nitrogen applied and nitrogen used by crops contributes to excess nitrogen in the environment, with negative consequences for water quality, air quality, and climate change. Here we utilize crop input-yield models to investigate how to minimize nitrogen application while achieving crop production targets. We construct a tradeoff frontier that estimates the minimum nitrogen fertilizer needed to produce a range of maize, wheat, and rice production levels. Additionally, we explore potential environmental consequences by calculating excess nitrogen along the frontier using a soil surface nitrogen balance model. We find considerable opportunity to achieve greater production and decrease both nitrogen application and post-harvest excess nitrogen. Our results suggest that current (circa 2000) levels of cereal production could be achieved with ∼50% less nitrogen application and ∼60% less excess nitrogen. If current global nitrogen application were held constant but spatially redistributed, production could increase ∼30%. If current excess nitrogen were held constant, production could increase ∼40%. Efficient spatial patterns of nitrogen use on the frontier involve substantial reductions in many high-use areas and moderate increases in many low-use areas. Such changes may be difficult to achieve in practice due to infrastructure, economic, or political constraints. Increases in agronomic efficiency would expand the frontier to allow greater production and environmental gains

  13. Selectively reflective transparent sheets

    Science.gov (United States)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  14. δ 15N Studies of Nitrogen Use by the Red Mangrove, Rhizophora mangle L. in South Florida

    Science.gov (United States)

    Fry, B.; Bern, A. L.; Ross, M. S.; Meeder, J. F.

    2000-02-01

    To help define nitrogen (N) sources and patterns of N processing in mangrove ecosystems, mangrove leaf nitrogen contents and δ 15N values were assayed in three marshes along the south Florida coast. In each marsh, leaf samples were collected from dwarf mangroves at interior locations and taller mangroves at the ocean fringe. Leaf % N and δ 15N values did not differ consistently between dwarf and tall mangroves, even though there were large variations in δ 15N (18‰ range, -5 to +13‰) and % N (1·2% range, 0·9-2·1%). Highest % N and δ 15N values occurred along the western margin of Biscayne Bay where canals draining agricultural lands deliver high-nitrate waters to fringing mangrove marshes. High mangrove δ 15N values may be good biomonitors of anthropogenic N loading to south Florida estuaries. Lower values likely reflect less anthropogenic N entering the mangrove marshes, as well as differences in plant physiology that occur along the fringe-dwarf gradient.

  15. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  16. Evaluation the Effect of Corn (Zea mays L. Sowing Pattern and Nitrogen Application Method on Herbicide Optimizing and Reducing Foramsulfuron (Equip® Dose

    Directory of Open Access Journals (Sweden)

    E. Izadi Darbandi

    2016-06-01

    Full Text Available Introduction: In the whole agro ecosystems, weeds had existence as unwanted plant that control of them is necessary. The competition between weeds and corn for moisture, light, nutrients during the growth season is induced reducing the quality and quantity of corn yield. Although the corn is high and powerful crop but is sensitive to competition with the weed and reduction of yield has been reported over 30%. Since the weeds are adapted to conditions, they are successful to completion and reducing the yield. So weed management is important in corn production. Chemical control has not been the unique and best way to manage the weeds and it reduce the sustainability of agro ecosystems. Although developing the herbicides, reduce the pressures caused by the weeds, but by developing rapidly the weed resistance to herbicides and increasing the environmental concerns and its high cost, today need to new, more immune and sustainable techniques for weed management. The main approach for sustainable weed management in an integrated weed management program is increasing crop competitiveness with weeds to reduce herbicide use. In this regard, the planting date, crop rotation, planting density, intercropping, planting pattern, fertilizer type, rate and application method are some of the most crop management strategies. Among the nutrients necessary for plants, nitrogen is the most nutrient in plant competition. Therefore, its application management plays a key role in reducing weed interference with crops and reduced herbicide use. Foramsulfuron herbicide from ALS inhibitors is a post-emergence sulfonylurea herbicide for the control of grasses and certain broadleaf weeds in maize. Unfortunately, these herbicides are also notorious for their ability to select resistant weed populations. Now, there are more weed species that are resistant to ALS-inhibiting herbicides than to any other herbicide group. In several cropping systems, ALS-inhibiting herbicides were

  17. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    Science.gov (United States)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  18. Analysis of seismic reflectivity and AVO pattern of BSR using OBS data in the southwestern offshore region of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, W.B.; Yang, H.R. [Jinwen Univ. of Science and Technology, Hsintien City, Taipei County, Taiwan (China). Dept. of Environment and Property Management; Schnurle, P.; Liu, C.S. [National Taiwan Univ., Taipei, Taiwan (China). Inst. of Oceanography; Lee, C.S. [National Taiwan Ocean Univ., Keelung, Taiwan (China). Inst. of Applied Earth Science; Wang, Y.; Chung, S.H.; Chen, S.C. [Ministry of Economic Affairs, Taiwan (China). Central Geological Survey

    2008-07-01

    Regional multi-channel seismic reflection profiles that were conducted in Taiwan from 2003 to 2006 resulted in the identification of a gas hydrate-related bottom simulating reflector (BSR) in the broad southwestern offshore region of Taiwan. In order to understand the regional distribution of methane hydrate bearing layers and explore concentrated hydrate bearing layers, this paper presented a comprehensive analysis of reflection coefficient and amplitude-versus-offset (AVO) pattern of BSR using ocean bottom seismographs (OBSs) seismic data acquired in the southwestern offshore region of Taiwan. The study focused on the analysis and interpretation of airgun array signals recorded by OBSs during 2004 and 2006. Ten profiles of seismic reflection/refraction with a total length of about 140 km and recorded by 50 recovered OBSs were acquired on the active and passive margins in offshore southwestern Taiwan. Amplitudes of the direct water arrival, the multiple, and the BSR were picked interactively for all the OBS lines. A quantitative representation of reflector strength was provided by calculation of reflection coefficients. In general, the seafloor reflection coefficients for the active and passive margins were estimated as 0.1-0.25. The paper presented the data and analysis as well as the results of the study. It was concluded that the results of calculated reflection coefficient of the BSR in offshore southwest Taiwan suggested that inferred hydrate concentration for the passive margin profiles was relatively higher than that for the active margin profiles. 4 refs.

  19. Environmental science. The shape of nitrogen to come

    Energy Technology Data Exchange (ETDEWEB)

    Bleeker, A. [ECN Environment and Energy Engineering, 1755 ZG Petten (Netherlands); Sutton, M.A. [NERC Centre for Ecology and Hydrology CEH, Edinburgh Research Station, Edinburgh EH26 0QB (United Kingdom)

    2013-02-28

    An analysis reveals the huge impact of human activity on the nitrogen cycle in China. With global use of Earth's resources rising per head, the findings call for a re-evaluation of the consumption patterns of developed societies.

  20. Reflection-type hologram for atoms

    International Nuclear Information System (INIS)

    Shimizu, Fujio; Fujita, Jun-ichi

    2002-01-01

    A cold metastable neon atomic beam was manipulated with a reflective amplitude hologram that was encoded on a silicon surface. A black-and-white pattern of atoms was reconstructed on a microchannel plate detector. The hologram used the enhanced quantum reflection developed by authors and was made of a two-dimensional array of rectangular low and high reflective cells. The surface of the high reflective cell was composed of regularly spaced roof-shaped ridges, while the low reflective cell was simply a flat surface. The hologram was the first demonstration of reflective atom-optical elements that used universal interaction between a neutral atom and solid surface

  1. Crop sensors for automation of in-season nitrogen application

    Science.gov (United States)

    Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...

  2. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks

    Science.gov (United States)

    Hoos, Anne B.; McMahon, Gerard

    2009-01-01

    Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.

  3. Effect of Abiotic Stresses on the Nondestructive Estimation of Rice Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Stephan M. Haefele

    2010-01-01

    Full Text Available Decision support tools for non-destructive estimation of rice crop nitrogen (N status (e.g., chlorophyll meter [SPAD] or leaf color chart [LCC] are an established technology for improved N management in irrigated systems, but their value in rainfed environments with frequent abiotic stresses remains untested. Therefore, we studied the effect of drought, salinity, phosphorus (P deficiency, and sulfur (S deficiency on leaf N estimates derived from SPAD and LCC measurements in a greenhouse experiment. Linear relations between chlorophyll concentration and leaf N concentration based on dry weight (Ndw between SPAD values adjusted for leaf thickness and Ndw and between LCC scores adjusted for leaf thickness and Ndw could be confirmed for all treatments and varieties used. Leaf spectral reflectance measurements did not show a stress-dependent change in the reflectance pattern, indicating that no specific element of the photosynthetic complex was affected by the stresses and at the stress level applied. We concluded that SPAD and LCC are potentially useful tools for improved N management in moderately unfavorable rice environments. However, calibration for the most common rice varieties in the target region is recommended to increase the precision of the leaf N estimates.

  4. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn.

    Science.gov (United States)

    Jin, Xiuliang; Yang, Guijun; Tan, Changwei; Zhao, Chunjiang

    2015-04-01

    A field experiment was conducted using three corn cultivars (Jingyu7, Nongda80, and Tangyu10) and three nitrogen (N) application rates (0, 75, and 150 kg N ha(-1)). The objectives of this study were to investigate the responses of photosynthetic CO2 assimilation (Ph), the maximum quantum yield of photosystem II (Fv/Fm), leaf dry weight (LDW), leaf nitrogen concentration (LNC), leaf sugar concentration (LSC), and the sugar-to-nitrogen concentration ratio (S/N) to N levels in three different field-grown corn cultivars on three sampling dates. The results showed that the LDW, Fv/Fm, Ph, LNC, and LSC increased with increasing N levels, and the variation patterns of Fv/Fm, Ph, and LNC were "low-high-low". In contrast, S/N decreased with increasing N levels, and its variation pattern was "high-low-high". The values of LDW, Fv/Fm, Ph, LNC, LSC, and S/N were greatest under high N conditions, followed by medium N conditions, and finally low N conditions. Significant interactions occurred between Ph, Fv/Fm, LNC, LSC, LDW, and S/N, with the exception of the interaction between LSC and S/N and between LSC and LDW. The correlation coefficients between Ph and S/N and between Fv/Fm and S/N were -0.714 and -0.798, respectively.

  5. Nitrogen footprints: past, present and future

    Science.gov (United States)

    Galloway, James N.; Winiwarter, Wilfried; Leip, Adrian; Leach, Allison M.; Bleeker, Albert; Willem Erisman, Jan

    2014-11-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems.

  6. Nitrogen footprints: past, present and future

    International Nuclear Information System (INIS)

    Galloway, James N; Leach, Allison M; Winiwarter, Wilfried; Leip, Adrian; Bleeker, Albert; Erisman, Jan Willem

    2014-01-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems. (paper)

  7. Dry etching technologies for reflective multilayer

    Science.gov (United States)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  8. Release of organic nitrogen compounds from Kerogen via catalytic hydropyrolysis

    Directory of Open Access Journals (Sweden)

    Bennett B

    2000-12-01

    Full Text Available High hydrogen pressure pyrolysis (hydropyrolysis was performed on samples of solvent extracted Kimmeridge Clay Formation source rock with a maturity equivalent to ca. 0.35% vitrinite reflectance. We describe the types and distributions of organic nitrogen compounds in the pyrolysis products (hydropyrolysates using GC-MS. Compounds identified included alkyl-substituted indoles, carbazoles, benzocarbazoles, quinolines and benzoquinolines. The distributions of the isomers of methylcarbazoles, C2-alkylcarbazoles and benzocarbazoles in the hydropyrolysates were compared to a typical North Sea oil. The hydropyrolysates compared to the North Sea oil, showed increased contributions from alkylcarbazole isomers where the nitrogen group is "exposed" (no alkyl substituents adjacent to the nitrogen functionality and appreciable levels of benzo[b]carbazole relative to benzo[a]- and benzo[c]carbazoles. Hydropyrolysis is found to be an ideal technique for liberating appreciable quantities of heterocyclic organic nitrogen compounds from geomacromolecules. The products released from the immature Kimmeridge Clay are thought to represent a potential source of nitrogen compounds in the bound phase (kerogen able to contribute to the free bitumen phase during catagenesis.

  9. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  10. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  11. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  12. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    Science.gov (United States)

    A. Argerich; S.L. Johnson; S.D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; M.B. Adams; G.E. Likens; J.L. Campbell; W.H. McDowell; F.N. Scatena; G.G. Ice

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among...

  13. Atmospheric Nitrogen Deposition in the Western United States: Sources, Sinks and Changes over Time

    Science.gov (United States)

    Anderson, Sarah Marie

    Anthropogenic activities have greatly modified the way nitrogen moves through the atmosphere and terrestrial and aquatic environments. Excess reactive nitrogen generated through fossil fuel combustion, industrial fixation, and intensification of agriculture is not confined to anthropogenic systems but leaks into natural ecosystems with consequences including acidification, eutrophication, and biodiversity loss. A better understanding of where excess nitrogen originates and how that changes over time is crucial to identifying when, where, and to what degree environmental impacts occur. A major route into ecosystems for excess nitrogen is through atmospheric deposition. Excess nitrogen is emitted to the atmosphere where it can be transported great distances before being deposited back to the Earth's surface. Analyzing the composition of atmospheric nitrogen deposition and biological indicators that reflect deposition can provide insight into the emission sources as well as processes and atmospheric chemistry that occur during transport and what drives variation in these sources and processes. Chapter 1 provides a review and proof of concept of lichens to act as biological indicators and how their elemental and stable isotope composition can elucidate variation in amounts and emission sources of nitrogen over space and time. Information on amounts and emission sources of nitrogen deposition helps inform natural resources and land management decisions by helping to identify potentially impacted areas and causes of those impacts. Chapter 2 demonstrates that herbaria lichen specimens and field lichen samples reflect historical changes in atmospheric nitrogen deposition from urban and agricultural sources across the western United States. Nitrogen deposition increases throughout most of the 20 th century because of multiple types of emission sources until the implementation of the Clean Air Act Amendments of 1990 eventually decrease nitrogen deposition around the turn of

  14. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland

    Science.gov (United States)

    Sartoris, J.J.; Thullen, J.S.; Barber, L.B.; Salas, D.E.

    2000-01-01

    A 9.9-ha combined habitat and wastewater treatment demonstration wetland was constructed and planted in the summer of 1994, at Eastern Municipal Water District’s (EMWD) Hemet/San Jacinto Regional Water Reclamation Facility (RWRF) in southern California. From January 1996 through September 1997, the marsh–pond–marsh wetland system was operated to polish an average of 3785 m3 d−1 (1×106 gal day−1) of secondary-treated effluent from the RWRF. Nitrogen removal was a major objective of this wetland treatment. Weekly inflow/outflow water quality monitoring of the wetland was supplemented with biannual, 45-station synoptic surveys within the system to determine internal distribution patterns of the nitrogen species (total ammonia, nitrite, nitrate, and organic nitrogen), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV254). Synoptic surveys were carried out during May 22 and September 17, 1996, and May 6 and September 25, 1997 and the results were mapped using the ARC/INFO processing package and inverse distance weighted mathematical techniques. Distribution patterns of the various nitrogen species, TOC, and UV254 within the wetland indicate that the nitrogen dynamics of the system are influenced both by variations in treatment plant loading, and, increasingly, by the degree of coverage and maturity of the emergent vegetation.

  15. Patterns in stable isotope values of nitrogen and carbon in particulate matter from the Northwest Atlantic Continental Shelf, from the Gulf of Maine to Cape Hatteras

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2016-12-01

    Full Text Available Stable isotope measurements of nitrogen and carbon (δ15N, δ13C are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step towards developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter δ15N values ranged from 0.8 to 17.4 ‰, and δ13C values from -26.4 to -15.6 ‰ over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends towards lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher δ15N and δ13C values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the δ15N of subsurface and surface particulate matter (PM significantly increased with water depth (r2 = 0.41, df = 35, p < 0.001, while δ13C values did not change. There were significant positive correlation between δ15N and δ13C values for surface PM in each of the three marine ecoregions that make up the study area. Stable isotope dynamics on the shelf can inform both nearshore and open ocean research efforts, reflecting regional productivity patterns and, even possibly, large-scale climate fluctuations.

  16. Interaction between Solid Nitrogen and 1-3-keV Electrons

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.

    1978-01-01

    V. At 3 keV, the SEE coefficient is 12 times that for solid deuterium. This is attributed partly to the larger production rate for low-energy electrons in nitrogen and partly to the larger escape probability for these electrons. Moreover, measurements were made of the electron-reflection coefficient, both......Experimental studies were made of the interaction between solid nitrogen and beams of 1-2-keV electrons. The projected range for the electrons was measured by means of the mirror-substrate method (gold substrate), giving the result 9.02×1016 E1.75 molecules/cm2 with the energy given in ke...... for solid nitrogen and for the carbon substrate. For nitrogen, it varied from 0.17 el/el at 1 keV to 0.13 el/el at 3 keV, and for carbon it varied from 0.13 to 0.12. The observations are discussed and comparisons made with other theoretical and experimental results. The agreement ranges from good to fair...

  17. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...

  18. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa

    International Nuclear Information System (INIS)

    Wilson, D.; Stock, W.D.; Hedderson, T.

    2009-01-01

    Information on changes in precipitation chemistry in the rapidly expanding Cape Metropolitan Area (CMA) of South Africa is scarce. To obtain a long-term record of N deposition we investigated changes in moss foliar N, C:N ratios and nitrogen isotope values that might reflect precipitation chemistry. Tissue from 9 species was obtained from herbarium specimens collected between 1875 and 2000 while field samples were collected in 2001/2002. There is a strong trend of increasing foliar N content in all mosses collected over the past century (1.32-1.69 %N). Differences exist between ectohydric mosses which have higher foliar N than the mixohydric group. C:N ratios declined while foliar δ 15 N values showed no distinct pattern. From relationships between moss tissue N and N deposition rates we estimated an increase of 6-13 kg N ha -1 a -1 since 1950. Enhanced N deposition rates of this magnitude could lead to biodiversity losses in native ecosystems. - This study of bryophyte tissue nutrient contents shows a historical increase in N deposition rates to the low nutrient adapted plant biodiversity hotspot in the Western Cape, South Africa

  19. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D. [Botany Department, University of Cape Town, Rondebosch 7701 (South Africa); Stock, W.D. [Botany Department, University of Cape Town, Rondebosch 7701 (South Africa); Centre for Ecosystem Management, School of Natural Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, Perth, WA 6027 (Australia)], E-mail: w.stock@ecu.edu.au; Hedderson, T. [Botany Department, University of Cape Town, Rondebosch 7701 (South Africa)

    2009-03-15

    Information on changes in precipitation chemistry in the rapidly expanding Cape Metropolitan Area (CMA) of South Africa is scarce. To obtain a long-term record of N deposition we investigated changes in moss foliar N, C:N ratios and nitrogen isotope values that might reflect precipitation chemistry. Tissue from 9 species was obtained from herbarium specimens collected between 1875 and 2000 while field samples were collected in 2001/2002. There is a strong trend of increasing foliar N content in all mosses collected over the past century (1.32-1.69 %N). Differences exist between ectohydric mosses which have higher foliar N than the mixohydric group. C:N ratios declined while foliar {delta}{sup 15}N values showed no distinct pattern. From relationships between moss tissue N and N deposition rates we estimated an increase of 6-13 kg N ha{sup -1} a{sup -1} since 1950. Enhanced N deposition rates of this magnitude could lead to biodiversity losses in native ecosystems. - This study of bryophyte tissue nutrient contents shows a historical increase in N deposition rates to the low nutrient adapted plant biodiversity hotspot in the Western Cape, South Africa.

  20. Uptake of fertilizer nitrogen and soil nitrogen by rice using 15N-labelled nitrogen fertilizer

    International Nuclear Information System (INIS)

    Reddy, K.R.; Patrick, W.H. Jr.

    1980-01-01

    Data from five field experiments using labelled nitrogen fertilizer were used to determine the relative effects of soil nitrogen and fertilizer nitrogen on rice yield. Yield of grain was closely correlated with total aboveground nitrogen uptake (soil + fertilizer), less closely correlated with soil nitrogen uptake and not significantly correlated with fertilizer nitrogen uptake. When yield increase rather than yield was correlated with fertilizer nitrogen uptake, the correlation coefficient was statistically significant. (orig.)

  1. Investigation into the role of canopy structure traits and plant functional types in modulating the correlation between canopy nitrogen and reflectance in a temperate forest in northeast China

    Science.gov (United States)

    Yu, Quanzhou; Wang, Shaoqiang; Zhou, Lei

    2017-10-01

    A precise estimate of canopy leaf nitrogen concentration (CNC, based on dry mass) is important for researching the carbon assimilation capability of forest ecosystems. Hyperspectral remote sensing technology has been applied to estimate regional CNC, which can adjust forest photosynthetic capacity and carbon uptake. However, the relationship between forest CNC and canopy spectral reflectance as well as its mechanism is still poorly understood. Using measured CNC, canopy structure and species composition data, four vegetation indices (VIs), and near-infrared reflectance (NIR) derived from EO-1 Hyperion imagery, we investigated the role of canopy structure traits and plant functional types (PFTs) in modulating the correlation between CNC and canopy reflectance in a temperate forest in northeast China. A plot-scale forest structure indicator, named broad foliar dominance index (BFDI), was introduced to provide forest canopy structure and coniferous and broadleaf species composition. Then, we revealed the response of forest canopy reflectance spectrum to BFDI and CNC. Our results showed that leaf area index had no significant effect on NIR (P>0.05) but indicated that there was a significant correlation (R2=0.76, P0.05). On the contrary, removing the CNC effect, the partial correlation between BFDI and NIR was positively significant (R=0.69, Pforest types. Nevertheless, the relationship cannot be considered as a feasible approach of CNC estimation for a single PFT.

  2. NEMA, a functional-structural model of nitrogen economy within wheat culms after flowering. II. Evaluation and sensitivity analysis.

    Science.gov (United States)

    Bertheloot, Jessica; Wu, Qiongli; Cournède, Paul-Henry; Andrieu, Bruno

    2011-10-01

    Simulating nitrogen economy in crop plants requires formalizing the interactions between soil nitrogen availability, root nitrogen acquisition, distribution between vegetative organs and remobilization towards grains. This study evaluates and analyses the functional-structural and mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), developed for winter wheat (Triticum aestivum) after flowering. NEMA was calibrated for field plants under three nitrogen fertilization treatments at flowering. Model behaviour was investigated and sensitivity to parameter values was analysed. Nitrogen content of all photosynthetic organs and in particular nitrogen vertical distribution along the stem and remobilization patterns in response to fertilization were simulated accurately by the model, from Rubisco turnover modulated by light intercepted by the organ and a mobile nitrogen pool. This pool proved to be a reliable indicator of plant nitrogen status, allowing efficient regulation of nitrogen acquisition by roots, remobilization from vegetative organs and accumulation in grains in response to nitrogen treatments. In our simulations, root capacity to import carbon, rather than carbon availability, limited nitrogen acquisition and ultimately nitrogen accumulation in grains, while Rubisco turnover intensity mostly affected dry matter accumulation in grains. NEMA enabled interpretation of several key patterns usually observed in field conditions and the identification of plausible processes limiting for grain yield, protein content and root nitrogen acquisition that could be targets for plant breeding; however, further understanding requires more mechanistic formalization of carbon metabolism. Its strong physiological basis and its realistic behaviour support its use to gain insights into nitrogen economy after flowering.

  3. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  4. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  5. Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany

    International Nuclear Information System (INIS)

    Boltersdorf, Stefanie H.; Pesch, Roland; Werner, Willy

    2014-01-01

    To compare three biomonitoring techniques for assessing nitrogen (N) pollution in Germany, 326 lichen, 153 moss and 187 bark samples were collected from 16 sites of the national N deposition monitoring network. The analysed ranges of N content of all investigated biomonitors (0.32%–4.69%) and the detected δ 15 N values (−15.2‰–1.5‰), made it possible to reveal species specific spatial patterns of N concentrations in biota to indicate atmospheric N deposition in Germany. The comparison with measured and modelled N deposition data shows that particularly lichens are able to reflect the local N deposition originating from agriculture. - Highlights: • We investigated N pollution with the help of bioindicators in Germany. • The N load was monitored with lichens, mosses and bark by tissue N content. • Main source of N pollution was revealed by tissue δ 15 N values. • Particularly the N content and δ 15 N in lichens reflected agriculture-related N deposition. - First nationwide comparison of lichens, mosses and tree bark to assess the N deposition in Germany by analysing N content and δ 15 N values

  6. Laser reflection spot as a pattern in a diamond coating – a microscopic study

    Directory of Open Access Journals (Sweden)

    GORDANA S. RISTIĆ

    2009-07-01

    Full Text Available Diamond coatings were deposited by the synchronous and coupled action of a hot filament CVD method and a pulsed CO2 laser in spectro-absorbing and spectro-non-absorbing diamond precursor atmospheres. The obtained coatings were structured/patterned, i.e., they were comprised of uncovered, bare locations. An extra effect observed only in the spectro-active diamond precursor atmosphere was the creation of another laser spot in the coating – a reflection spot. In order to establish the practical usability of the latter one, extensive microscopic investigations were performed with consideration of the morphology changes in the spot of the direct laser beam. Normal incidence SEM images of this spot showed a smooth surface, without any pulse radiation damage. AFM imaging revealed the actual surface condition and gave precise data on the surface characteristics.

  7. Prediction of purine derivatives, creatinine and total nitrogen concentrations in urine by FT-Near-lnfrared Reflectance spectroscopy (FT-NIR)

    International Nuclear Information System (INIS)

    Susmel, P.; Piani, B.; Toso, B.; Stefanon, B.

    2004-01-01

    The objective of this study was to provide an alternative method for the determination of purine derivatives (PD, which include allantoin, uric acid, hypoxanthine and xanthine), creatinine and total nitrogen (N) concentrations in urine. About 180 urine samples from cattle, buffaloes and rabbit were collected and analyzed for PD by HPLC, creatinine by spectrophotometry and N by Kjeldahl method. The urine samples were then analyzed by Fourier Transformed Near Infrared Reflectance Spectroscopy (FT-NIR) to find conformity between this technique and the HPLC and colorimetric methods. FT-NIR can predict allantoin, uric acid, hypoxanthine, xanthine, creatinine, total N and sum of N in both allantoin and uric acid with a satisfactory level of accuracy: the determination coefficient (r 2 ) of validation ranged from 0.888% for uric acid to 0.982% for total N. The coefficients of determination for allantoin, creatinine and sum of N in both allantoin and uric acid were 0.92, 0.894 and 0.90%, respectively. Hypoxanthine and xanthine in urine samples were not detectable by NIRS, probably because of their low concentrations, and therefore they were not considered for instrumental calibration. (author)

  8. The effect of high pressure on nitrogen compounds of milk

    International Nuclear Information System (INIS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-01-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, t const. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, p const. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration

  9. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Science.gov (United States)

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  10. Sociocultural patterning of neural activity during self-reflection

    DEFF Research Database (Denmark)

    Ma, Yina; Bang, Dan; Wang, Chenbo

    2014-01-01

    ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e., interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection...

  11. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics.

    Science.gov (United States)

    Heather Erickson; Michael Keller; Eric Davidson

    2001-01-01

    The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...

  12. Molecular nitrogen fixation and nitrogen cycle in nature

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, A I

    1952-01-01

    The origin of nitrogen oxides in the atmosphere is discussed. Evidently only a small proportion of the nitrate-and nitrite-nitrogen found in the precipitation is formed through electric discharges from molecular nitrogen, photochemical nitrogen fixation being probably of greater importance. Formation of nitrate nitrogen through atmospheric oxidation of nitrous oxide (N/sub 2/O) evaporating from the soil is also considered likely. Determination of nitrogen compounds at different altitudes is indispensable for gaining information of the N/sub 2/-fixation in the atmosphere and, in general, of the origin of nitrogen oxides and their decomposition. International cooperation is needed for this as well as for the quantitative determination of the nitrogen compounds removed from the soil by leaching and brought by waters into the seas.

  13. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution

    International Nuclear Information System (INIS)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J.; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha −1 yr −1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. - Highlights: • Total DIN deposition fluxes showed a significant spatial variation in the

  14. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation

  15. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks

  16. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Directory of Open Access Journals (Sweden)

    Chonggang Xu

    Full Text Available Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2 concentration, temperature, and radiation when evaluated against published data of V(c,max (maximum carboxylation rate and J(max (maximum electron transport rate. A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the

  17. Modeling nitrogen fluxes in Germany - where does the nitrogen go?

    Science.gov (United States)

    Klement, Laura; Bach, Martin; Breuer, Lutz

    2016-04-01

    patterns of the groundwater bodies which fail the good WFD status, the N-surplus or the measured data. The parameters for denitrification and the percolation rate seemed to have a higher model sensitivity than the nitrogen surplus. MoRE was previously validated only for the total N load from groundwater into surface water but the modeling concept for nitrate concentration was seemingly never fitted to observed data and needs refinements. A literature research showed that no groundwater concentrations modeled with MoRE or MONERIS have been published for Germany until now. Instead, only the concentration in percolating water was shown - sometimes misleadingly labeled so that the reader could presume the map displayed groundwater concentrations. According to the MoRE approach, model parameters such as the percolation rate and denitrification intensity are more sensitive than the N surplus. The surplus can indicate only a potential leaching risk, while the actual threat varies substantially with regional soil and climate conditions. Consequently, the use of the nitrogen surplus as a sole indicator for nitrate leaching should be critically examined. For conception of nitrate reduction programs obviously the regionally varying site conditions cannot be disregarded.

  18. Improved Canopy Sensor-based Corn Nitrogen Recommendations Using Auxiliary Information

    Science.gov (United States)

    The nitrogen (N) supplying capacity of the soil available to support corn (Zea mays L.) production can be highly variable both among and within fields. Thus, the amount of N fertilizer applied should be site-specific and also climate-sensitive. In recent years, canopy reflectance sensing has been in...

  19. The Effect of Feeding Calliandra Calothyrus in Different Patterns as a Supplement to Rhodes Grass Hay on Intake, Nitrogen Utilization and Milk Yield of dual Purpose Goats

    International Nuclear Information System (INIS)

    Kariuki, J.N.

    2002-01-01

    Eighteen dual purpose goats were used to evaluate the effects of feeding Calliandra caryothyrus leaf meal at different patterns as a supplement to Rhodes grass hay on intake, nitrogen utilization and milk yield. A basal diet of low quality Rhodes grass hay (fed at 90% ad libitum) and 100 g maize germ were offered to the goats over a 60-day experimental period. The treatments were:- (T1) 100 g day -1 calliandra for 60 days; (T2) 200 g day -1 calliandra for 30 days followed by another 30 days where 200 g or 0 g day -1 calliandra were alternated every 5 days; and (T3) 200 g or 0 g day -1 alternated every 5 days for 60 days. Total dry matter intake (DMI) was significantly (p -1 for T1, T2 and T3, respectively.Milk Yields had similar trend and averaged 166.1, 231.8 and 201.1 g day -1 for T1, T2, and T3, respectively. The utilization of nitrogen was also significantly (p<0.05) affected by pattern of supplement feeding. It was concluded from the results that the overall animal response could be influenced by how a limited quantity of supplement was fed

  20. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  1. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source and root-zone and aerial environment on growth and productivity of soybean

    Science.gov (United States)

    Raper, C. David, Jr.

    1994-01-01

    The interdependence of root and shoot growth produces a functional equilibrium as described in quantitative terms by numerous authors. It was noted that bean seedlings grown in a constant environment tended to have a constant distribution pattern of dry matter between roots and leaves characteristic of the set of environmental conditions. Disturbing equilibrium resulted in a change in relative growth of roots and leaves until the original ratio was restored. To define a physiological basis for regulation of nitrogen uptake within the balance between root and shoot activities, the authors combined a partioning scheme and a utilization priority assumption in which: (1) all carbon enters the plant through photosynthesis in leaves and all nitrogen enters the plant through active uptake by roots, (2) nitrogen uptake by roots and secretion into the xylem for transport to the shoots are active processes, (3) availability of exogenous nitrogen determines concentration of soluble carbohydrates within the roots, (4) leaves are a source and a sink for carbohydrates, and (5) the requirement for nitrogen by leaf growth is proportionally greater during initiation and early expansion than during later expansion.

  2. Carbon: Nitrogen Interaction Regulates Expression of Genes Involved in N-Uptake and Assimilation in Brassica juncea L.

    Science.gov (United States)

    Goel, Parul; Bhuria, Monika; Kaushal, Mamta

    2016-01-01

    In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C) and Nitrogen (N) are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source) on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N), C source alone (+Suc-N), with N and C source (+Suc+N) or without N and C source (-Suc-N). Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8) in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2) in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen. PMID:27637072

  3. Carbon: Nitrogen Interaction Regulates Expression of Genes Involved in N-Uptake and Assimilation in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Parul Goel

    Full Text Available In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C and Nitrogen (N are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N, C source alone (+Suc-N, with N and C source (+Suc+N or without N and C source (-Suc-N. Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8 in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2 in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen.

  4. [Measurement of plasma parameters in cluster hexagon pattern discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Shen, Zhong-Kai; Li, Xin-Chun; Liu, Liang; Lu, Ning; Shang, Jie

    2012-09-01

    The cluster hexagon pattern was obtained in a dielectric barrier discharge in air/argon for the first time. Three plasma parameters, i. e. the molecular vibrational temperature, the molecular rotational temperature and the average electron energy of individual cluster in cluster hexagon pattern discharge, were studied by changing the air content. The molecular vibrational temperature and the molecular rotational temperature were calculated using the second positive band system of nitrogen molecules (C 3IIu --> B 3IIg) and the first negative band system of nitrogen molecular ions (B 2Sigma(u)+ --> Chi2 Sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391. 4 nm) and nitrogen molecules emission spectrum line (337.1 nm) were analyzed for studying the variations of the electron energy. It was found that the three plasma parameters of individual cluster in cluster hexagon pattern increase with air content increasing from 16% to 24%.

  5. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data

    Science.gov (United States)

    Scott V. Ollinger; Marie-Louise Smith

    2005-01-01

    Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...

  6. Remote sensing of water and nitrogen stress in broccoli

    Science.gov (United States)

    Elsheikha, Diael-Deen Mohamed

    Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.

  7. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  8. The atomic and electronic structure of nitrogen- and boron-doped phosphorene.

    Science.gov (United States)

    Boukhvalov, Danil W

    2015-10-28

    First principles modeling of nitrogen- and boron-doped phosphorene demonstrates the tendency toward the formation of highly ordered structures. Nitrogen doping leads to the formation of -N-P-P-P-N- lines. Further transformation into -P-N-P-N- lines across the chains of phosphorene occurs with increasing band gap and increasing nitrogen concentration, which coincides with the decreasing chemical activity of N-doped phosphorene. In contrast to the case of nitrogen, boron atoms prefer to form -B-B- pairs with the further formation of -P-P-B-B-P-P- patterns along the phosphorene chains. The low concentration of boron dopants converts the phosphorene from a semiconductor into a semimetal with the simultaneous enhancement of its chemical activity. Co-doping of phosphorene by both boron and nitrogen starts from the formation of -B-N- pairs, which provides flat bands and further transformation of these pairs into hexagonal BN lines and ribbons across the phosphorene chains.

  9. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  10. Atomic nitrogen encapsulated in fullerenes: realization of a chemical Faraday cage

    International Nuclear Information System (INIS)

    Lips, K.

    2000-01-01

    Fullerenes, C 60 and C 70 , are ideal containers for atomic nitrogen. We will show by electron paramagnetic resonance (EPR) experiments that nitrogen in C 60 keeps its atomic ground state configuration and resides in the center of the cage. This is the first time that atomic nitrogen is stabilized at ambient conditions. The inert shell of the fullerene protects the highly reactive nitrogen from undergoing chemical reactions with the surroundings. The fullerene cage is the chemical analogue of the Faraday cage in case of electrical fields, i.e. it shields off the chemical reactivity. As for the free nitrogen atom, the spins of the three p-electrons of nitrogen in C 60 are parallel (S = 3/2) and the atom has spherical symmetry. Due to the center position of nitrogen in C 60 , extremely sharp EPR lines are observed. This reflects the absence of a strong host-guest interaction and shows that the individuality of nitrogen in the fullerenes is preserved. Further evidence for the almost interaction-free suspension of nitrogen in the fullerene cages is provided by g-factor measurements. These investigations show that magnetic shielding of the host molecules can account for the observed differences between N rate at C 60 and N rate at C 70 . The fullerene cage can be chemically modified without destroying the endohedral complex. The chemical modifications change the symmetry of the molecule which is observed through an additional fine structure in the EPR spectrum. Influences of the modifications on the stability of N rate at C 60 will be discussed. (orig.)

  11. Nitrogen fertilization and yield formation of potato during a short growing period

    Directory of Open Access Journals (Sweden)

    L. MUSTONEN

    2008-12-01

    Full Text Available The effects various rates of nitrogen application on accumulation of dry matter and nitrogen in potato (Solanum tuberosum L. were studied during a short growing period of 140–180 days, at MTT Agrifood Research Finland in 2000–2001. The treatments were 0, 60 and 120 kg N ha-1 and the potato cultivars tested were Van Gogh and Nicola. Four successive harvests were made during the course of the experiment to monitor changes in the accumulation of dry matter and nitrogen over the season. Applications of nitrogen substantially increased haulm dry matter accumulation and to an even greater extent their nitrogen contents. The highest dry matter values were generally registered at 120 kg N ha-1. Dry matter and nitrogen content of haulms started to decline during the later part of season and most nitrogen was relocated to tubers. The results suggest that an application of only 60 kg N ha-1 was sufficient to promote rapid canopy development and there were only small reductions in dry matter and nitrogen accumulation until late in the season when the canopy started to senesce as nitrogen supply diminished. Tuber yield, plant dry matter and nitrogen accumulation at maturity were related to crop nitrogen supply. Although application of the high rate, 120 N kg ha-1, resulted in a significant increase in dry matter accumulation, this was not reflected in the profit because the higher nitrogen application reduced dry matter content of tubers by 2.6% in 2000 and by 1.1% in 2001 relative to the use of 60 kg N ha-1. Apparent fertilizer nitrogen recovery values on a whole plant basis ranged from 53 to 75%. The proportion of fertilizer recovered in tubers clearly declined with increase in nitrogen supply.;

  12. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  13. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    R. R. Hood

    2007-07-01

    Full Text Available The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997; GS97 anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2-fixation that are required to do so. We present results from a new Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2-fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detrital iron compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr−1 from 25° S–65° N. In the model the surface nitrogen fixation rate patterns are not co-located with subsurface gradients in N*. Rather, the fixed nitrogen is advected away from its source prior to generating a subsurface N* anomaly. Changes in the phosphorus remineralization rate (relative to nitrogen linearly determine the surface nitrogen fixation rate because they change the degree of phosphorus limitation, which is the dominant limitation in the Atlantic in the model. Phosphorus remineralization rate must be increased by about a factor of 2 (relative to nitrogen in order to generate subsurface N* anomalies that are comparable to the observations. We conclude that N2-fixation rate estimates for the Atlantic (and globally may need to be revised upward, which

  14. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  15. Broadening the ecological context of ungulate-ecosystem interactions: the importance of space, seasonality, and nitrogen.

    Science.gov (United States)

    Murray, Bryan D; Webster, Christopher R; Bump, Joseph K

    2013-06-01

    Spatial heterogeneity of soil resources, particularly nitrogen availability, affects herbaceous-layer cover and diversity in temperate forest ecosystems. Current hypotheses predict that ungulate herbivores influence nitrogen availability at the stand scale, but how ungulates affect nitrogen availability at finer spatial scales that are relevant to the herb layer is less understood. We tested the hypothesis that ungulate exclusion reduces the spatial complexity of nitrogen availability at neighborhood scales (1-26 m) apart from mean stand scale effects. This outcome was expected due to a lack of ungulate nitrogenous waste deposition within exclosures and seasonally variable ungulate habitat use. To test this hypothesis we examined spatial patterning of ammonium and nitrate availability, herb-layer cover and diversity, and under-canopy solar radiation using geostatistical models. Our study sites included six stands of eastern hemlock (Tsuga canadensis) forest: three where white-tailed deer (Odocoileus virginianus) were excluded and three that were accessible to deer. Where deer were present, patch sizes of ammonium availability, cover, and diversity were smaller compared to deer exclosures, whereas mean site-level effects were not significant. Within deer exclosures cover and solar radiation were more similar in patch size than were cover and nitrogen availability. Our results suggest that browsing ungulates affect spatial patterns of herb-layer cover and diversity through the excretion of nitrogenous wastes in small, discrete patches. Ungulate-excreted nitrogen deposition and herbivory were concentrated in the dormant season, allowing herb-layer plants a greater opportunity to benefit from nitrogen additions. Therefore, the impact of ungulates on nitrogen cycling in forest ecosystems varies with spatial scale and the seasonal timing of ungulate impacts. In this way, ungulates may function as a seasonally dependent link between fine-scale and landscape

  16. Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China

    Science.gov (United States)

    Wang, Xuyang; Chen, Yinping; Lian, Jie; Luo, Yongqing; Niu, Yayi; Gong, Xiangwen

    2018-01-01

    The spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) densities plays a profound important role in estimating carbon and nitrogen budgets. Naiman Banner located in northern China was chosen as research site, a total of 332 soil samples were taken in a depth of 100 cm from the low hilly land in the southern part, sandy land in the middle part and an alluvial plain in the northern part of the county. The results showed that SOC and TN density initially decreased and then increased from the north to the south, The highest densities, were generally in the south, with the lowest generally in the middle part. The SOC and TN densities in cropland were significantly greater than those in woodland and grassland in the alluvial plains and for Naiman as a whole. The woodland SOC and TN density were higher than those of grassland in the low hilly land, and higher densities of SOC and TN in grassland than woodland in the sandy land and low hilly land. There were significant differences in SOC and TN densities among the five soil types of Cambisols, Arenosols, Gleysols, Argosols, and Kastanozems. In addition, SOC and TN contents generally decreased with increasing soil depth, but increased below a depth of 40 cm in the Cambisols and became roughly constant at this depth in the Kastanozems. There is considerable potential to sequester carbon and nitrogen in the soil via the conversion of degraded sandy land into woodland and grassland in alluvial plain, and more grassland should be established in sandy land and low hilly land. PMID:29771979

  17. Inter-species and intra-annual variations of moss nitrogen utilization: Implications for nitrogen deposition assessment.

    Science.gov (United States)

    Dong, Yu-Ping; Liu, Xue-Yan; Sun, Xin-Chao; Song, Wei; Zheng, Xu-Dong; Li, Rui; Liu, Cong-Qiang

    2017-11-01

    Moss nitrogen (N) concentrations and natural 15 N abundance (δ 15 N values) have been widely employed to evaluate annual levels and major sources of atmospheric N deposition. However, different moss species and one-off sampling were often used among extant studies, it remains unclear whether moss N parameters differ with species and different samplings, which prevented more accurate assessment of N deposition via moss survey. Here concentrations, isotopic ratios of bulk carbon (C) and bulk N in natural epilithic mosses (Bryum argenteum, Eurohypnum leptothallum, Haplocladium microphyllum and Hypnum plumaeforme) were measured monthly from August 2006 to August 2007 at Guiyang, SW China. The H. plumaeforme had significantly (P < 0.05) lower bulk N concentrations and higher δ 13 C values than other species. Moss N concentrations were significantly (P < 0.05) lower in warmer months than in cooler months, while moss δ 13 C values exhibited an opposite pattern. The variance component analyses showed that different species contributed more variations of moss N concentrations and δ 13 C values than different samplings. Differently, δ 15 N values did not differ significantly between moss species, and its variance mainly reflected variations of assimilated N sources, with ammonium as the dominant contributor. These results unambiguously reveal the influence of inter-species and intra-annual variations of moss N utilization on N deposition assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Forest fuel reduces the nitrogen load - calculations of nitrogen flows

    International Nuclear Information System (INIS)

    Burstroem, F.; Johansson, Jan.

    1995-12-01

    Nitrogen deposition in Sweden has increased strongly during recent decades, particularly in southern Sweden. Nitrogen appears to be largely accumulated in biomass and in the soil. It is therefore desirable to check the accumulation of nitrogen in the forest. The most suitable way of doing this is to remove more nitrogen-rich biomass from the forest, i.e., increase the removal of felling residues from final fellings and cleanings. An ecological condition for intensive removal of fuel is that the ashes are returned. The critical load for nitrogen, CL(N), indicates the level of nitrogen deposition that the forest can withstand without leading to ecological changes. Today, nitrogen deposition is higher than the CL(N) in almost all of Sweden. CL(N) is calculated in such a manner that nitrogen deposition should largely be balanced by nitrogen losses through harvesting during a forest rotation. The value of CL(N) thus largely depends on how much nitrogen is removed with the harvested biomass. When both stems and felling residues are harvested, the CL(N) is about three times higher than in conventional forestry. The increase is directly related to the amount of nitrogen in the removed biofuel. Use of biofuel also causes a certain amount of nitrogen emissions. From the environmental viewpoint there is no difference between the sources of the nitrogen compounds. An analysis of the entire fuel chain shows that, compared with the amount of nitrogen removed from the forest with the fuel, about 5 % will be emitted as nitrogen oxides or ammonia during combustion, and a further ca 5 % during handling and transports. A net amount of about 90 % of biomass nitrogen is removed from the system and becomes inert nitrogen (N 2 ). 60 refs, 3 figs, 4 tabs, 11 appendices

  19. International food trade reduces environmental effects of nitrogen pollution in China.

    Science.gov (United States)

    Shi, Yaxing; Wu, Shaohua; Zhou, Shenglu; Wang, Chunhui; Chen, Hao

    2016-09-01

    The globalization of agricultural trade has dramatically altered global nitrogen flows by changing the spatial pattern of nitrogen utilization and emissions at a global scale. As a major trading country, China uses a large amount of nitrogen, which has a profound impact on global nitrogen flows. Using data on food production and trade between China and 26 other countries and regions, we calculated nitrogen inputs and outputs in food production ecosystem in each country. We estimated nitrogen flows in international food trade and analyzed their impact on nitrogen pollution in China. We divided nitrogen flows into embodied and virtual nitrogen flows. Embodied nitrogen is taken up by the plant and incorporated into the final food product, whereas virtual nitrogen is lost to the environment throughout the food production process and is not contained in the final food product. Our results show that China mainly imports food products from America and Asia, accounting for 95 % of all imported food. Asia (mainly Japan) and Europe are the main exporters of food from China, with Japan and the EU accounting for 17 and 10 % of all exported food, respectively. Total nitrogen inputs and outputs in food production in China were 55,400 and 61,000 Gg respectively, which were much higher than in other countries. About 1440 and 950 Gg of embodied and virtual nitrogen respectively flow into China through the food trade, mainly from food-exporting countries such as the USA, Argentina, and Brazil. Meanwhile, 177 and 160 Gg of embodied and virtual nitrogen respectively flow out of China from the export of food products, mainly to Japan. China's net food imports have reduced 720 and 458 Gg for nitrogen utilization and outputs, respectively, which accounted for 1.3 and 0.78 % of total nitrogen inputs and outputs in China. These results suggest that food trade in China has a profound effect on nitrogen flows and has greatly reduced environmental impacts on nitrogen pollution in China.

  20. Food nitrogen footprint reductions related to a balanced Japanese diet.

    Science.gov (United States)

    Oita, Azusa; Nagano, Ichiro; Matsuda, Hiroyuki

    2018-04-01

    Dietary choices largely affect human-induced reactive nitrogen accumulation in the environment and resultant environmental problems. A nitrogen footprint (NF) is an indicator of how an individual's consumption patterns impact nitrogen pollution. Here, we examined the impact of changes in the Japanese diet from 1961 to 2011 and the effect of alternative diets (the recommended protein diet, a pescetarian diet, a low-NF food diet, and a balanced Japanese diet) on the food NF. The annual per capita Japanese food NF has increased by 55% as a result of dietary changes since 1961. The 1975 Japanese diet, a balanced omnivorous diet that reportedly delays senescence, with a protein content similar to the current level, reduced the current food NF (15.2 kg N) to 12.6 kg N, which is comparable to the level in the recommended protein diet (12.3 kg N). These findings will help consumers make dietary choices to reduce their impacts on nitrogen pollution.

  1. Reproductive effects on fecal nitrogen as an index of diet quality: an experimental assessment

    Science.gov (United States)

    Monteith, Kyle B.; Monteith, Kevin L.; Bowyer, R. Terry; Leslie,, David M.; Jenks, Jonathan A.

    2014-01-01

    Concentration of fecal nitrogen has been used widely as an indicator of dietary quality for free-ranging ruminants. Differences in digestive function between species of dimorphic ungulates render interspecific comparisons of fecal nitrogen unreliable; however, whether intraspecific sexual differences in digestive function also bias this nutritional index is unknown. Our objective was to compare sex-specific variation in concentration of fecal nitrogen using male, nonlactating female, and lactating female white-tailed deer (Odocoileus virginianus) on high- and low-quality diets. During weekly trials over spring and summer (2008-2009), we monitored intake rates, collected feces twice daily, and used micro-Kjeldahl procedures to determine percent fecal nitrogen. We also determined nitrogen content of feces following a neutral detergent fiber (NDF) rinse during pre-, peak, and postlactation. Fecal nitrogen reflected general differences in dietary quality between diets; however, fecal nitrogen of lactating females in both dietary groups was lower than for males or nonlactating females throughout lactation. Nitrogen concentration following an NDF rinse also was lower for lactating females during peak lactation. We hypothesize that the remodeling of the digestive tract and increased rumination by lactating females may enhance their ability to extract nitrogen from their forage. These adjustments may expand the foraging options of lactating females by increasing their ability to process low-quality foods, but also affects the interpretation of fecal nitrogen during the season of lactation.

  2. Nitrogen content, 15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt. and Scleropodium purum (Hedw.) Limpr. in relation to atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Solga, A.; Burkhardt, J.; Zechmeister, H.G.; Frahm, J.-P.

    2005-01-01

    The suitability of the two pleurocarpous mosses Pleurozium schreberi and Scleropodium purum for assessing spatial variation in nitrogen deposition was investigated. Sampling was carried out at eight sites in the western part of Germany with bulk deposition rates ranging between 6.5 and 18.5 kg N ha -1 yr -1 . In addition to the effect of deposition on the nitrogen content of the two species, its influence on 15 N natural abundance (δ 15 N values) and on productivity was examined. Annual increases of the mosses were used for all analyses. Significant relationships between bulk N deposition and nitrogen content were obtained for both species; δ 15 N-values reflected the ratio of NH 4 -N to NO 3 -N in deposition. A negative effect of nitrogen input on productivity, i.e. decreasing biomass per area with increasing N deposition due to a reduction of stem density, was particularly evident with P. schreberi. Monitoring of N deposition by means of mosses is considered an important supplement to existing monitoring programs. It makes possible an improved spatial resolution, and thus those areas that receive high loads of nitrogen are more easily discernible. - Mosses are useful as monitors of nitrogen deposition

  3. Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Lin, Chinan

    2014-12-17

    Nitrogen-doped graphene (NGR) was utilized in dye-sensitized solar cells for energy harvesting. NGR on a Pt-sputtered fluorine-doped tin oxide substrate (NGR/Pt/FTO) as counter electrodes (CEs) achieves the high efficiency of 9.38% via the nitrogen doping into graphene. This is due to (i) the hole-cascading transport at the interface of electrolyte/CEs via controlling the valence band maximum of NGR located between the redox potential of the I-/I- redox couple and the Fermi level of Pt by nitrogen doping, (ii) the extended electron transfer surface effect provided by large-surface-area NGR, (iii) the high charge transfer efficiency due to superior catalytic characteristics of NGR via nitrogen doping, and (iv) the superior light-reflection effect of NGR/Pt/FTO CEs, facilitating the electron transfer from CEs to I3 - ions of the electrolyte and light absorption of dye. The result demonstrated that the NGR/Pt hybrid structure is promising in the catalysis field. (Chemical Presented). © 2014 American Chemical Society.

  4. From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption

    Science.gov (United States)

    Wang, Yana; Zhou, Zhili; Chen, Mingji; Huang, Yixing; Wang, Changxian; Song, Wei-Li

    2018-05-01

    Since achievement in electromagnetic (EM) technology dramatically promotes the critical requirement in developing advanced EM response materials, which are required to hold various advantageous features in light weight, small thickness, strong reflection loss and broadband absorption, the most important requirements, i.e. strong reflection loss and broadband absorption, are still highly pursued because of the intrinsic shortage in conventional EM absorbers. For addressing such critical problems, a unique three-dimensional nitrogen doped carbon monolith was demonstrated to understand the effects of the nitrogen doping on the dielectric and microwave absorption performance. The chemical components of the nitrogen doped carbon monoliths have been quantitatively determined for fully understanding the effects of nanoscale structures on the macroscopic composites. A modified Cole-Cole plot is plotted for guiding the chemical doping and material process, aiming to realizing the best matching conditions. The results have promised a universal route for achieving advanced materials with strong and broadband EM absorption.

  5. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers: a suitable anoxic and aerobic environment in biofilms.

    Science.gov (United States)

    He, Qiang; Yin, Feixian; Li, Hong; Wang, Yinliang; Xu, Jingwei; Ai, Hainan

    2018-03-25

    The sewers have the function of carbon removal, which has been proven. But if the effect of nitrogen removal can be enhanced at the same time of carbon removal, it can lay a foundation for the realization of "sewer's working as a reactor." This paper investigated the effects of shear stress and C/N ratio on nitrogen removal through biofilms on the sewer inner wall and nitrogen transfer. The main conclusions are as follows: (1) nitrogen could be partially removed in sewers after a series of reactions; (2) the anaerobic, anoxic, aerobic environment and some bacteria related to nitrogen metabolism, which exist in the biofilm, promote the nitrification and denitrification; (3) a total of 722 functional genes involved in nitrogen metabolism were detected in the biofilm (C/N ratio of 10, shear stress of 1.4 Pa), accounting for 0.67% of all genes, and the functional genes related to denitrification were dominant. Graphical abstract ᅟ.

  6. Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds

    Science.gov (United States)

    Bogdanov, S.; Shalaginov, M. Y.; Akimov, A.; Lagutchev, A. S.; Kapitanova, P.; Liu, J.; Woods, D.; Ferrera, M.; Belov, P.; Irudayaraj, J.; Boltasseva, A.; Shalaev, V. M.

    2017-07-01

    Nitrogen-vacancy centers in diamond allow for coherent spin-state manipulation at room temperature, which could bring dramatic advances to nanoscale sensing and quantum information technology. We introduce a method for the optical measurement of the spin contrast in dense nitrogen-vacancy (NV) ensembles. This method brings insight into the interplay between the spin contrast and fluorescence lifetime. We show that for improving the spin readout sensitivity in NV ensembles, one should aim at modifying the far-field radiation pattern rather than enhancing the emission rate.

  7. Nitrogen Atom Energy Distributions in a Hollow-cathode Planar Sputtering Magnetron

    International Nuclear Information System (INIS)

    Ruzic, D.N.; Goeckner, M.J.; Cohen, S.A.; Wang, Zhehui

    1999-01-01

    Energy distributions of N atoms in a hollow-cathode planar sputtering magnetron were obtained by use of optical emission spectroscopy. A characteristic line, N I 8216.3 , well-separated from molecular nitrogen emission bands, was identified. Jansson's nonlinear spectral deconvolution method, refined by minimization of χ w ampersand sup2; , was used to obtain the optimal deconvolved spectra. These showed nitrogen atom energies from 1 eV to beyond 500 eV. Based on comparisons with VFTRIM results, we propose that the energetic N atoms are generated from N 2 + ions after these ions are accelerated through the sheath and dissociatively reflect from the cathode

  8. Long-term trends in nitrogen isotope composition and nitrogen concentration in brazilian rainforest trees suggest changes in nitrogen cycle.

    Science.gov (United States)

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-02-15

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analyzed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in delta(15)N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood delta(15)N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, delta(15)N increased significantly during the past century even when analyzing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood delta(15)N often decreased, the delta(15)N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e., higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics.

  9. Liquid nitrogen fire extinguishing system test report

    International Nuclear Information System (INIS)

    Beidelman, J.A.

    1972-01-01

    The objective of this test series was to demonstrate the feasibility of using liquid nitrogen as a fire-extinguishing agent for certain types of metal fires. It was intended to provide data and experience appropriate to the design of a second series which will test the applicability of this technique to plutonium fires and which will develop more detailed operating information and permit more precise measurement of test parameters-oxygen depletion rates and equilibrium concentrations, temperature effects, and nitrogen pressures, flow rates, spray methods and patterns, etc. The test series was directed specifically toward extinguishment of metal fires occurring in well-confined areas and was not intended to be representative of any larger classification. Fires of several types were tested, e.g., magnesium, mixed magnesium and zirconium, sodium and cerium

  10. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    Science.gov (United States)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  11. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    Science.gov (United States)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  12. Reflection of a polarized light cone

    Science.gov (United States)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  13. Characterization of waterborne nitrogen emissions for marine eutrophication modelling in life cycle impact assessment at the damage level and global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2017-01-01

    Current life cycle impact assessment (LCIA) methods lack a consistent and globally applicable characterization model relating nitrogen (N, as dissolved inorganic nitrogen, DIN) enrichment of coastal waters to the marine eutrophication impacts at the endpoint level. This paper introduces a method...... to calculate spatially explicit characterization factors (CFs) at endpoint and damage to ecosystems levels, for waterborne nitrogen emissions, reflecting their hypoxia-related marine eutrophication impacts, modelled for 5772 river basins of the world....

  14. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments.

    Science.gov (United States)

    Kornartit, C; Sokhi, R S; Burton, M A; Ravindra, Khaiwal

    2010-01-01

    People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).

  15. Nitrogen availability for nitrogen fixing cyanobacteria upon growth ...

    African Journals Online (AJOL)

    The filamentous cyanobacterium Nostoc PCC 7120 is able to convert dinitrogen to ammonia in the absence of combined nitrogen. The expression of 20% of coding sequences from all major metabolic categories was examined in nitrogen fixing and non-nitrogen fixing growth conditions. The expression data were correlated ...

  16. Integrated Science Assessment (ISA) for Oxides of Nitrogen ...

    Science.gov (United States)

    This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision on retaining or revising the current secondary standards for NO2, SO2, PM 2.5 and PM 10 since the prior release of the assessment. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes scientific research from atmospheric sciences, exposure and deposition, biogeochemistry, hydrology, soil science, marine science, plant physiology, animal physiology, and ecology conducted at multiple scales (e.g., population, community, ecosystem, landscape levels). Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for oxides of nitrogen, oxides of nitrogen and particulate matter for ecological effects are included; Appendixes provide additional details supporting the ISA. Together, the ISA and Appendixes serve to update and revise the last oxides of nitrogen and oxides of sulfur ISA which was published in 2008 and the ecological portion of the last particulate matter ISA, which was published in 2009.

  17. Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555.

    Science.gov (United States)

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhang, Hongtao; Zhan, Xiaobei

    2017-09-01

    To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.

  18. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    Science.gov (United States)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  19. Subtypes of the Type II Pit Pattern Reflect Distinct Molecular Subclasses in the Serrated Neoplastic Pathway.

    Science.gov (United States)

    Aoki, Hironori; Yamamoto, Eiichiro; Yamano, Hiro-O; Sugai, Tamotsu; Kimura, Tomoaki; Tanaka, Yoshihito; Matsushita, Hiro-O; Yoshikawa, Kenjiro; Takagi, Ryo; Harada, Eiji; Nakaoka, Michiko; Yoshida, Yuko; Harada, Taku; Sudo, Gota; Eizuka, Makoto; Yorozu, Akira; Kitajima, Hiroshi; Niinuma, Takeshi; Kai, Masahiro; Nojima, Masanori; Suzuki, Hiromu; Nakase, Hiroshi

    2018-03-15

    Colorectal serrated lesions (SLs) are important premalignant lesions whose clinical and biological features are not fully understood. We aimed to establish accurate colonoscopic diagnosis and treatment of SLs through evaluation of associations among the morphological, pathological, and molecular characteristics of SLs. A total of 388 premalignant and 18 malignant colorectal lesions were studied. Using magnifying colonoscopy, microsurface structures were assessed based on Kudo's pit pattern classification system, and the Type II pit pattern was subcategorized into classical Type II, Type II-Open (Type II-O) and Type II-Long (Type II-L). BRAF/KRAS mutations and DNA methylation of CpG island methylator phenotype (CIMP) markers (MINT1, - 2, - 12, - 31, p16, and MLH1) were analyzed through pyrosequencing. Type II-O was tightly associated with sessile serrated adenoma/polyps (SSA/Ps) with BRAF mutation and CIMP-high. Most lesions with simple Type II or Type II-L were hyperplastic polyps, while mixtures of Type II or Type II-L plus more advanced pit patterns (III/IV) were characteristic of traditional serrated adenomas (TSAs). Type II-positive TSAs frequently exhibited BRAF mutation and CIMP-low, while Type II-L-positive TSAs were tightly associated with KRAS mutation and CIMP-low. Analysis of lesions containing both premalignant and cancerous components suggested Type II-L-positive TSAs may develop into KRAS-mutated/CIMP-low/microsatellite stable cancers, while Type II-O-positive SSA/Ps develop into BRAF-mutated/CIMP-high/microsatellite unstable cancers. These results suggest that Type II subtypes reflect distinct molecular subclasses in the serrated neoplasia pathway and that they could be useful hallmarks for identifying SLs at high risk of developing into CRC.

  20. X ray reflection masks: Manufacturing, characterization and first tests

    Science.gov (United States)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  1. Nitrogen nutrition effects on development, growth and nitrogen accumulation of vegetables

    NARCIS (Netherlands)

    Biemond, H.

    1995-01-01

    In order to be able to match nitrogen supply and nitrogen requirement of vegetable crops, insight is necessary in the responses to nitrogen of important processes of growth and development. This study focused on effects of amount of nitrogen applied and fractionation of nitrogen supply on

  2. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

    Science.gov (United States)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Petya K. E.; Huemmrich, K. Fred; Cheng, Yen-Ben; Daughtry, Craig S. T.

    2009-08-01

    Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D730/D705, the normalized difference of R750 vs. R705, and simple ratio R800/R750 differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.

  3. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Science.gov (United States)

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P nitrogen cycle in recently abandoned croplands.

  4. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA

    International Nuclear Information System (INIS)

    Costanza, Jennifer K.; Marcinko, Sarah E.; Goewert, Ann E.; Mitchell, Charles E.

    2008-01-01

    To examine the consequences of increased spatial aggregation of livestock production facilities, we estimated the annual production of nitrogen in livestock waste in North Carolina, USA, and analyzed the potential distribution of atmospheric nitrogen deposition from confined animal feeding operations ('CAFO') lagoons. North Carolina is a national center for industrial livestock production. Livestock is increasingly being raised in CAFOs, where waste is frequently held, essentially untreated, in open-air lagoons. Reduced nitrogen in lagoons is volatilized as ammonia (NH 3 ), transported atmospherically, and deposited to other ecosystems. The Albemarle-Pamlico Sound, NC, is representative of nitrogen-sensitive coastal waters, and is a major component of the second largest estuarine complex in the U.S. We used GIS to model the area of water in the Sound within deposition range of CAFOs. We also evaluated the number of lagoons within deposition range of each 1 km 2 grid cell of the state. We considered multiple scenarios of atmospheric transport by varying distance and directionality. Modeled nitrogen deposition rates were particularly elevated for the Coastal Plain. This pattern matches empirical data, suggesting that observed regional patterns of reduced nitrogen deposition can be largely explained by two factors: limited atmospheric transport distance, and spatial aggregation of CAFOs. Under our medium-distance scenario, a small portion (roughly 22%) of livestock production facilities contributes disproportionately to atmospheric deposition of nitrogen to the Albemarle-Pamlico Sound. Furthermore, we estimated that between 14-37% of the state receives 50% of the state's atmospheric nitrogen deposition from CAFO lagoons. The estimated total emission from livestock is 134,000 t NH 3 yr -1 , 73% of which originates from the Coastal Plain. Stronger waste management and emission standards for CAFOs, particularly those on the Coastal Plain nearest to sensitive water bodies

  5. Effects of amount and timing of nitrogen application and weed density on wild mustard (Sinapis arvensis seed production in winter wheat

    Directory of Open Access Journals (Sweden)

    mehdi rastgoo

    2009-06-01

    Full Text Available In order to study the effects of amount and timing of nitrogen application and weed density on wild mustard (Sinapis arvensis seed production in winter wheat, an experiment was conducted in 2001 at Research station of college of agriculture, Ferdowsi University of Mashhad. A Split plot design with three replications were used with factorial combination of weed density (0, 8, 16, and 32 plant/m2 and nitrogen (low=100, optimum= 150, and high= 225 Kg/ha as main plots.The sub plot factor included nitrogen splitting pattern (P1=1/3 at planting time+2/3 at tillering, P2= 1/3 at planting time + 1/3 at tillering + 1/3 at shooting. According to the results, wild mustard seed production increased with increasing wild mustard density and nitrogen rates, due to high wild mustard biomass production. Seed production of wild mustard was 161, 311, and 488 million/ha in low, optimum and high nitrogen rates, respectively. In the other hand, density and nitrogen rates had a significant effect on wild mustard fecundity. However, nitrogen splitting pattern showed no significant effect on wild mustard seed production.

  6. The Effect of Percentage of Nitrogen in Plasma Gas on Nitrogen ...

    African Journals Online (AJOL)

    Increase in nitrogen percent in the plasma gas results in increased content of dissociated nitrogen and molecular nitrogen possessing excess vibrational energy and therefore the increased solution of nitrogen in the liquid iron. It would appear that above 35% nitrogen in the plasma gas, frequency of collisions of species in ...

  7. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.

    Science.gov (United States)

    Sims, David W; Humphries, Nicolas E; Bradford, Russell W; Bruce, Barry D

    2012-03-01

    1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting

  8. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  9. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    Science.gov (United States)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2011-02-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we measured nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high latitude and polar areas. Sixteen percent of δ18O values was observed lower than the expected minimum of +55‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  10. ASSESSING INTRA- AND INTER-FIELD VARIABILITY OF CORN NITROGEN FERTILIZER NEED USING GROUND-BASED REFLECTANCE SENSORS

    Science.gov (United States)

    Since soil types within and between corn (Zea mays L.) fields can be highly variable, the amount of nitrogen (N) provided by those different soil types to support production can also be highly variable. Ideally, the amount of N fertilizer added during a given growing season should be both climate-se...

  11. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  12. Do cephalopods communicate using polarized light reflections from their skin?

    Science.gov (United States)

    Mäthger, Lydia M; Shashar, Nadav; Hanlon, Roger T

    2009-07-01

    Cephalopods (squid, cuttlefish and octopus) are probably best known for their ability to change color and pattern for camouflage and communication. This is made possible by their complex skin, which contains pigmented chromatophore organs and structural light reflectors (iridophores and leucophores). Iridophores create colorful and linearly polarized reflective patterns. Equally interesting, the photoreceptors of cephalopod eyes are arranged in a way to give these animals the ability to detect the linear polarization of incoming light. The capacity to detect polarized light may have a variety of functions, such as prey detection, navigation, orientation and contrast enhancement. Because the skin of cephalopods can produce polarized reflective patterns, it has been postulated that cephalopods could communicate intraspecifically through this visual system. The term 'hidden' or 'private' communication channel has been given to this concept because many cephalopod predators may not be able to see their polarized reflective patterns. We review the evidence for polarization vision as well as polarization signaling in some cephalopod species and provide examples that tend to support the notion--currently unproven--that some cephalopods communicate using polarized light signals.

  13. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    International Nuclear Information System (INIS)

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2010-01-01

    Stable nitrogen isotopes (δ 15 N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ 15 N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ 15 N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ 15 N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations.

  14. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  15. Portable reflection for C++ with the Mirror library

    Directory of Open Access Journals (Sweden)

    Matus Chochlik

    2012-06-01

    Full Text Available Reflection and reflective programming can be used for a wide range of tasks such as implementationof serialization-like operations, remote procedure calls, scripting, automated GUIgeneration,implementation of several software design patterns, etc. C++ as one of the mostprevalent programming languages however, for various reasons, lacks a standardized reflectionfacility. In this paper we present Mirror - a portable library adding reflection to C++ with acommand-line utility automating its usage. This library supports functional style static compiletimereflection and metaprogramming and also provides two different object-oriented run-timepolymorphic layers for dynamic reflection.

  16. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen

    Science.gov (United States)

    2018-01-01

    Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway. PMID:29432462

  17. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen.

    Science.gov (United States)

    Brice, Claire; Cubillos, Francisco A; Dequin, Sylvie; Camarasa, Carole; Martínez, Claudio

    2018-01-01

    Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.

  18. One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L; Hirose, Y; Hitosugi, T; Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: chen@ksp.or.jp

    2008-03-21

    We present a novel way to obtain heavily nitrogen doped anatase TiO{sub 2} films by using a solid-state nitrogen source. Epitaxial growth of the films was realized by introducing one unit-cell seed layer, which was indicated by reflection high-energy electron diffraction as intensity oscillation. Results of x-ray diffraction and x-ray photoelectron spectroscopy confirmed that the films were in the anatase phase heavily doped with nitrogen of {approx}15 at%. The films obtained exhibited considerable narrowing of the optical bandgap, resulting in an enhancement of absorption in the visible-light region. (fast track communication)

  19. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.

    Science.gov (United States)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.

  20. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips.

    Science.gov (United States)

    Gross, Briana L; Henk, Adam D; Bonnart, Remi; Volk, Gayle M

    2017-03-01

    Transcripts related to abiotic stress, oxidation, and wounding were differentially expressed in Arabidopsis shoot tips in response to cryoprotectant and liquid nitrogen treatment. Cryopreservation methods have been implemented in genebanks as a strategy to back-up plant genetic resource collections that are vegetatively propagated. Cryopreservation is frequently performed using vitrification methods, whereby shoot tips are treated with cryoprotectant solutions, such as Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3); these solutions remove and/or replace freezable water within the meristem cells. We used the model system Arabidopsis thaliana to identify suites of transcripts that are up- or downregulated in response to PVS2 and PVS3 treatment and liquid nitrogen (LN) exposure. Our results suggest that there are many changes in transcript expression in shoot tips as a result of cryoprotection and that these changes exceed the number detected as a result of LN exposure. In total, 180 transcripts showed significant changes in expression level unique to treatment with either the cryoprotectant or cryopreservation followed by recovery. Of these 180 transcripts, 67 were related to stress, defense, wounding, lipid, carbohydrate, abscisic acid, oxidation, temperature (cold/heat), or osmoregulation. The responses of five transcripts were confirmed using qPCR methods. The transcripts responding to PVS2 + LN suggest an oxidative response to this treatment, whereas the PVS3 + LN treatment invoked a more general metabolic response. This work shows that the choice of cryoprotectant can have a major influence on the patterns of transcript expression, presumably due to the level and extent of stress experienced by the shoot tip. As a result, there may be divergent responses of study systems to PVS2 and PVS3 treatments.

  1. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Directory of Open Access Journals (Sweden)

    Huhe

    Full Text Available In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively. The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.

  2. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency.

    Science.gov (United States)

    Li, Pengcheng; Zhuang, Zhongjuan; Cai, Hongguang; Cheng, Shuai; Soomro, Ayaz Ali; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2016-03-01

    Maize (Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen (N) deficiency, but the underlying genetic architecture remains to be investigated. Using an advanced BC4 F3 population, we investigated the root growth plasticity under two contrasted N levels and identified the quantitative trait loci (QTLs) with QTL-environment (Q × E) interaction effects. Principal components analysis (PCA) on changes of root traits to N deficiency (ΔLN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC, while root traits scattered highly on PC2 and PC3. Hierarchical cluster analysis on traits for ΔLN-HN further assigned the BC4 F3 lines into six groups, in which the special phenotypic responses to N deficiency was presented. These results revealed the complicated root plasticity of maize in response to N deficiency that can be caused by genotype-environment (G × E) interactions. Furthermore, QTL mapping using a multi-environment analysis identified 35 QTLs for root traits. Nine of these QTLs exhibited significant Q × E interaction effects. Taken together, our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N deficiency, which will be useful for developing maize tolerance cultivars to N deficiency. © 2015 Institute of Botany, Chinese Academy of Sciences.

  3. Nitrogen Dynamics Variation in Overlying Water of Jinshan Lake, China

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2015-01-01

    Full Text Available Jinshan Lake is a famous urban landscape lake with approximately 8.8 km2 water area, which is located on the north of Zhenjiang, of Jiangsu Province, China. Eighteen sampled sites were selected and overlying water was sampled from 2013 to 2014 to study the seasonal and spatial variation of nitrogen in overlying water of Jinshan Lake. Results showed that physicochemical characteristics of temperature, pH, and DO showed high seasonal variation, whereas they had no significant spatial differences in the 18 sampling points (P>0.05 in overlying water of Jinshan Lake. Nitrogen concentrations showed strong seasonal variation trends. The ranked order of TN was as follows: spring > summer > autumn > winter; the order of NH4+-N was as follows: spring > autumn > summer > winter, whereas NO3--N concentrations revealed an inverse seasonal pattern, with maxima occurring in winter and minimal values occurring in spring. Nitrogen concentrations had dramatic spatial changes in 18 sampling points of Jinshan Lake. Physicochemical parameter difference, domestic wastes pollution, and rainfall runoff source may have led to seasonal and spatial fluctuation variations of nitrogen in overlying water of Jinshan Lake, China.

  4. Development of soil properties and nitrogen cycling in created wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  5. Pollution and Climate Effects on Tree-Ring Nitrogen Isotopes

    Science.gov (United States)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2009-04-01

    Georgian Bay reflect deposition of NOx emissions from cars and coal-power plants, with higher proportions from coal burning in Georgian Bay (Savard et al., 2009b). This interpretation is conceivable because recent monitoring indicates that coal-power plant NOx emissions play an important role in the annual N budget in Ontario, but they are negligible on the Quebec side. CONCLUSION Interpretations of long tree-ring N isotopic series in terms of effects generated by airborne N-species have been previously advocated. Here we further propose that the contrasted isotopic trends obtained for wood samples from two regions reflect different regional anthropogenic N deposition combined with variations of climatic conditions. This research suggests that nitrogen tree-ring series may record both regional climatic conditions and anthropogenic perturbations of the N cycle. REFERENCES Savard, M.M., Bégin,C., Marion, J., Aznar, J.-C., Smirnoff, A., 2009a. Changes of Air Quality in an urban region as inferred from tree-ring width and stable isotopes. Chapter 9 in "Relating Atmospheric Source Apportionment to Vegetation Effects: Establishing Cause Effect Relationships" (A. Legge ed.). Elsevier, Amsterdam; doi: 10.1016/S1474-8177(08)00209x. Savard, M.M., Bégin, C., Smirnoff, A., Marion, J., Rioux-Paquette, E., 2009b. Tree-ring nitrogen isotopes reflect climatic effects and anthropogenic NOx emissions. Env. Sci. Tech (doi: 10.1021/es802437k).

  6. Nitrogen assimilation in soybean nodules, 1

    International Nuclear Information System (INIS)

    Ohyama, Takuji; Kumazawa, Kikuo

    1980-01-01

    In order to elucidate the pathways to assimilate the ammonia produced by N 2 -fixation in soybean nodules, 15 N-labeled compounds were administered to intact nodules or nodule slices pretreated with various inhibitors of nitrogen assimilation. After exposure to 15 N 2 , 15 N-incorporation into various nitrogenous compounds was investigated in attached nodules injected with methionine sulfoximine (MSX) or azaserine (AS). MSX treatment increased the 15 N content of ammonia more than 6 times, however, depressed 15 N content of most of amides and amino acids. AS treatment enhanced 15 N content of amido-N of glutamine as well as ammonia, but decreased amino-N of glutamine and most of amino acids. Experiments with nodule slices pretreated with MSX or AS solution and then fed with 15 N-labeled ammonia or amido- 15 N of glutamine showed the same trends. Aminooxyacetate inhibited nitrogen flow from glutamic acid to other amino acids. These results strongly indicate that the ammonia produced by N 2 -fixation is assimilated by GS/GOGAT system to glutamic acid and then transaminated to various amino acids in situ. 15 N-incorporation patterns in nodule slices fed with 15 N-labeled ammonia, hydroxylamine, nitrite were similar, but nitrate seemed to be reduced in a definite compartment and assimilated similarly as in intact nodules fed with 15 N 2 (author)

  7. Mucin pattern reflects the origin of the adenocarcinoma in Barrett's esophagus: a retrospective clinical and laboratorial study

    Directory of Open Access Journals (Sweden)

    Corbett Carlos

    2009-03-01

    Full Text Available Abstract Background Mucin immunoexpression in adenocarcinoma arising in Barrett's esophagus (BE may indicate the carcinogenesis pathway. The aim of this study was to evaluate resected specimens of adenocarcinoma in BE for the pattern of mucins and to correlate to the histologic classification. Methods Specimens were retrospectively collected from thirteen patients who underwent esophageal resection due to adenocarcinoma in BE. Sections were scored for the grade of intestinal metaplasia. The tissues were examined by immunohistochemistry for MUC2 and MUC5AC antibodies. Results Eleven patients were men. The mean age was 61 years old (varied from 40 to 75 years old. The tumor size had a mean of 4.7 ± 2.3 cm, and the extension of BE had a mean of 7.7 ± 1.5 cm. Specialized epithelium with intestinal metaplasia was present in all adjacent mucosas. Immunohistochemistry for MUC2 showed immunoreactivity in goblet cells, while MUC5AC was extensively expressed in the columnar gastric cells, localizing to the surface epithelium and extending to a variable degree into the glandular structures in BE. Tumors were classified according to the mucins in gastric type in 7/13 (MUC5AC positive and intestinal type in 4/13 (MUC2 positive. Two tumors did not express MUC2 or MUC5AC proteins. The pattern of mucin predominantly expressed in the adjacent epithelium was associated to the mucin expression profile in the tumors, p = 0.047. Conclusion Barrett's esophagus adenocarcinoma shows either gastric or intestinal type pattern of mucin expression. The two types of tumors developed in Barrett's esophagus may reflect the original cell type involved in the malignant transformation.

  8. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    Science.gov (United States)

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  9. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites

    Science.gov (United States)

    Desai, Mahesh S; Brune, Andreas

    2012-01-01

    Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., ‘Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of ‘Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host. PMID:22189498

  10. Preparation of nitrogen-doped titania using sol-gel technique and its photocatalytic activity

    International Nuclear Information System (INIS)

    Qin Haoli; Gu Guobang; Liu Song

    2008-01-01

    Yellowish nitrogen-doped titania was produced through sol-gel method at room temperature, with the elemental nitrogen derived from aqua ammonia. The titania catalysts were characterized using TG-DSC, XRD, BET, TEM, and UV-vis diffuse reflectance spectrophotometer. Methyl orange (MO) and 2-mercaptobenzothiazole (MBT) were used in this study as model chemicals and both the adsorption isotherm and photocatalytic activity of the nitrogen-doped titania catalysts were evaluated based on the MO and MBT photodegradation in aqueous solution under UV and visible light, respectively. The results showed that all titania catalysts were anatase. The crystallite size of nitrogen-doped ones increased with the increase of N/Ti proportion, both the adsorption capacity and adsorption equilibrium constants of the nitrogen-doped titania catalysts were improved by the doping of nitrogen. The doping of nitrogen could extend the absorption shoulder into the visible-light region, thus nitrogen-doped titania possessed visible-light activity illustrated by that higher capability of degradation of MO and MBT under the irradiation of visible light, whereas the pure ones showed little such kind of visible-light activity. The kinetics of the MO and MBT photodegradation using different nitrogen-doped titania were also studied, the experiments demonstrated that there was an optimum N/Ti proportion of 4 mol% to exhibit the highest visible-light activity. The UV activity of nitrogen-doped titania catalysts were worse than that of the pure one and Degussa P-25. In addition, nitrogen-doped titania had weakened appreciably activity in the visible-light region as the N/Ti proportion increased, while a reverse relationship exists for the UV light. It was concluded that the enhancement of MO and MBT photodegradation using the nitrogen-doped titania catalysts mainly involved in both the improvement of the organic substrate adsorption in catalysts suspension and the enhancement of the separation of electron

  11. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  12. Reflection-type electromagnetically induced transparency analogue in terahertz metamaterials

    International Nuclear Information System (INIS)

    Ding Chun-Feng; Zhang Ya-Ting; Yao Jian-Quan; Xu De-Gang; Zhang Gui-Zhong; Sun Chong-Ling

    2014-01-01

    A reflection-type electromagnetically induced transparency (EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum (THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Diet-animal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants.

    Science.gov (United States)

    Cantalapiedra-Hijar, G; Ortigues-Marty, I; Sepchat, B; Agabriel, J; Huneau, J F; Fouillet, H

    2015-04-14

    The natural abundance of ¹⁵N in animal proteins (δ¹⁵Nanimal) is greater than that in the diet consumed by the animals (δ¹⁵Ndiet), with a discrimination factor (Δ¹⁵N = δ¹⁵Nanimal - δ¹⁵Ndiet) that is known to vary according to nutritional conditions. The objectives of the present study were to test the hypothesis that Δ¹⁵N variations depend on the efficiency of nitrogen utilisation (ENU) in growing beef cattle, and to identify some of the physiological mechanisms responsible for this N isotopic fractionation in ruminants. Thus, we performed the regression of the Δ¹⁵N of plasma proteins obtained from thirty-five finishing beef cattle fed standard and non-conventional diets against different feed efficiency indices, including ENU. We also performed the regression of the Δ¹⁵N of different ruminant N pools (plasma and milk proteins, urine and faeces) against different splanchnic N fluxes obtained from multi-catheterised lactating dairy cows. The Δ¹⁵N of plasma proteins was negatively correlated with feed efficiency indices in beef cattle, especially ENU (body protein gain/N intake) and efficiency of metabolisable protein (MP) utilisation (body protein gain/MP intake). Although Δ¹⁵N obtained from different N pools in dairy cows were all negatively correlated with ENU, the highest correlation was found when Δ¹⁵N was calculated from plasma proteins. Δ¹⁵N showed no correlation with urea-N recycling or rumen NH₃ absorption, but exhibited a strong correlation with liver urea synthesis and splanchnic amino acid metabolism, which points to a dominant role of splanchnic tissues in the present N isotopic fractionation study.

  14. Past and future trends in concentrations of sulphur and nitrogen compounds in the Arctic

    DEFF Research Database (Denmark)

    Hole, Lars R.; Christensen, Jesper H.; Ruoho-Airola, Tuija

    2009-01-01

    Recent trends in nitrogen and sulphur compounds in air and precipitation from a range of Arctic monitoring stations are presented, with seasonal data from the late 70s to 2004 or 2005. Earlier findings of declining sulphur concentrations are confirmed for most stations, while the pattern is less...... clear for reduced and oxidized nitrogen. In fact there are positive trends for nitrogen compounds in air at several stations. Acidity is generally reduced at many stations while the precipitation amount is either increasing or stable. Variability of sulphate concentrations in air for the period 1991......-2000 is reasonably well reproduced at most stations using an Eulerian, hemispherical model. Results for nitrogen compounds are weaker. Scenario studies show that even if large sulphur emission reductions take place in important source regions in South-East Asia in the coming decades, only small changes in Arctic...

  15. Effects of nitrogen applocation on yield and nitrogen accumulation in soybean

    International Nuclear Information System (INIS)

    Di Wei; Jin Xijun; Ma Chunmei; Dong Shoukun; Gong Zhenping; Zhang Lei

    2010-01-01

    Methods of sand cultre and 15 N tracing were used to study the effects of nitrogen application on yield and nitrogen accumulation in soybean variety SN 14 . The results showed as follows: accumulated nitrogen in the whole plant, petiole, pod shell and seed increased at the beginning and then decreased with the increase of nitrogen levels; Nitrogen accumulation in leaf and stem increased in 3 and 5 times for N 150 than that of N 0 , which indicated that high nitrogen levels promoted the nitrogen accumulation in leaf and stem, however compared with N 0 , nitrogen accumulation in root, Nodulation-N accumulated in the whole plant and seed of N 150 decreased by 60.3%, 74. 9% and 85.7% respectively, and Fertilizer-N harvest index of N 150 decreased, which was 19.8% lower than that of N 50 , as well as Nodulation-N harvest index 25.5% lower than that of N 50 . The nitrogen levels of soybean yield also firstly increased and then decreased; Compared with N 0 , plant height, pod height and lowest pod nodes of soybean treated with N 150 increased by 55.2%, 199.7% and 142.9% respectively, while no effects were found on node number. (authors)

  16. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  17. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  18. The influence of nitrogen implantation on the electrical properties of amorphous IGZO

    Science.gov (United States)

    Zhan, S. L.; Zhao, M.; Zhuang, D. M.; Fu, E. G.; Cao, M. J.; Guo, L.; Ouyang, L. Q.

    2017-09-01

    In this study, nitrogen (N) implantation was adopted to regulate the carrier concentration and the Hall mobility of amorphous Indium Gallium Zinc Oxide (a-IGZO) films. The Hall Effect measurement demonstrates that the increase of implantation fluence can decrease the carrier concentration of a-IGZO by three orders to 1016 cm-3, which attributes to the reduction of oxygen defects. The addition of nitrogen atoms can result in the increase of Hall mobility to 9.93 cm2/V s with the subsequent decrease to 6.49 cm2/V s, which reflects the reduction of the average potential barrier height (φ0) to be 22.0 meV with subsequent increase to 74.8 meV in the modified percolation model. The results indicate that nitrogen can serve as an effective p-type dopants and oxygen defect suppressors. N-implantation with an appropriate fluence can effectively improve the Hall mobility and reduce the carrier concentration simultaneously.

  19. A study on reflection pattern of swells from the shoreline of peninsular India

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Johnson, G.

    and tidal current on the reflected waves were examined. For the locations off the west coast of India, seasons have large impact on the reflection coefficient and were relatively less during the monsoon season due to the increase in incident wave energy...

  20. Effect of Nitrogen Nutritional Stress on some Mineral Nutrients and Photosynthetic Apparatus of Zea mays L. and Vigna unguiculata L.

    Directory of Open Access Journals (Sweden)

    Akinbode Foluso OLOGUNDUDU

    2013-08-01

    Full Text Available The study investigated the responses of maize (Zea mays L. and cowpea (Vigna unguiculata L. Walp. seedlings metabolic activities and photosynthetic apparatus to nitrogen nutritional stress. Germination of seeds was done using treated sand in sixty plastic pots and the seedlings were divided into four nutrient regimes. A group of the seedlings was nutrient stressed by administering 200 ml of complete nutrient solution minus nitrogen (-N while the other groups were fed with five times (X5N and ten times (X10N the optimal concentration of nitrogen and the last regime was fed with full nutrient solution (FN. The photosynthetic parameters studied included chlorophylls ‘a’ and ‘b’ respectively; carotenes and xanthophyll while the mineral elements investigated include potassium, calcium and magnesium. The result of the growth analysis showed that nitrogen deficiency promotes an increase in the content of abscisic acid (ABA, causing stomatal closure and a reduction in photosynthesis. This explains the higher rate of leaf abscission in -N plants. A comparison of calcium ion and magnesium ion concentrations in both optimal and stressed conditions reveals that the two ions show antagonism in uptake. There is a correlation between nitrogen and magnesium accumulation as magnesium ion plays a vital role in chlorophyll biosynthesis, protein synthesis and photosynthesis. The pattern of accumulation of photosynthetic apparatus in both maize and cowpea follow a similar pattern. Chlorophyll a dictated the growth pattern of other photosynthetic apparatus in both Zea mays and Vigna unguiculata.

  1. Toroidally symmetric/asymmetric effect on the divertor flux due to neon/nitrogen seeding in LHD

    Directory of Open Access Journals (Sweden)

    H. Tanaka

    2017-08-01

    Full Text Available Toroidal distributions of divertor particle flux during neon (Ne and nitrogen (N2 seeded discharges were investigated in the Large Helical Device (LHD. By using 14 toroidally distributed divertor probe arrays, which were positioned at radially inner side where the divertor flux concentrates in the inward-shifted magnetic axis configuration, it is found that Ne puffing leads to toroidally quasi-uniform reduction of divertor particle fluxes; whereas toroidally localized reductions were observed with N2 puffing. The toroidally asymmetric reduction pattern with N2 puffing is strongly related to the magnetic field structure around the N2 puffing port. Assuming that nitrogen particles do not recycle, EMC3-EIRENE simulation shows similar reduction pattern with the experiment around the N2 puffing port.

  2. Monitoring leaf photosynthesis with canopy spectral reflectance in rice

    International Nuclear Information System (INIS)

    Tian, Y.; Zhu, Y.; Cao, W.

    2005-01-01

    We determined the quantitative relationships between leaf photosynthetic characteristics (LPC) and canopy spectral reflectance under different water supply and nitrogen application rates in rice plants. The responses of reflectance at red radiation (680 nm) to different water contents and N rates were parallel to those of leaf net photosynthetic rate (PN). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red) to PN of different leaf positions and layers indicated that the top two full leaves were the best positions for quantitative monitoring of PN with remote sensing technique, and the index R(810,680) was the best ratio index for evaluating LPC. Testing of the models with independent data sets indicated that R(810,680) could well estimate PN of the top two leaves and canopy leaf photosynthetic potential. Hence R(810,680) can be used to monitor LPC in rice under diverse growing conditions

  3. Tightening the nitrogen cycle

    OpenAIRE

    Christensen, B.T.

    2004-01-01

    The availability of nitrogen to crop plants is a universally important aspect of soil quality, and often nitrogen represents the immediate limitation to crop productivity in modern agriculture. Nitrogen is decisive for the nutritive value of plant products and plays a key role in the environmental impact of agricultural production. The fundamental doctrine of nitrogen management is to optimise the nitrogen use efficiency of both introduced and native soil nitrogen by increasing the temporal a...

  4. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  5. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    NARCIS (Netherlands)

    Sleen, van der J.P.; Vlam, M.; Groenendijk, P.; Anten, N.P.R.; Bongers, F.; Bunyavejchewin, S.; Hietz, P.; Pons, T.L.; Zuidema, P.

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated N-15 abundance (delta N-15) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of N-15-depleted

  6. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Science.gov (United States)

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  7. Nitrogen supply of crops by biological nitrogen fixation. 2

    International Nuclear Information System (INIS)

    Jensen, E.S.; Andersen, A.J.; Soerensen, H.; Thomsen, J.D.

    1985-02-01

    In the present work the contributions from combined N-sources and symbiotic nitrogen fixation to the nitrogen supply of field-grown peas and field beans were evaluated by means of 15 N fertilizer dilution. The effect of N-fertilizer, supplied at sowing and at different stages of plant development, on nitrogen fixation, yield and protein production in peas, was studied in pot experiments. (author)

  8. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  9. Sequential, progressive, equal-power, reflective beam-splitter arrays

    Science.gov (United States)

    Manhart, Paul K.

    2017-11-01

    The equations to calculate equal-power reflectivity of a sequential series of beam splitters is presented. Non-sequential optical design examples are offered for uniform illumination using diode lasers. Objects created using Boolean operators and Swept Surfaces can create objects capable of reflecting light into predefined elevation and azimuth angles. Analysis of the illumination patterns for the array are also presented.

  10. Fate of nitrogen (15N) from velvet bean in the soil-plant system

    International Nuclear Information System (INIS)

    Scivittaro, Walkyria Bueno; Muraoka, Takashi; Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze

    2004-01-01

    Because of their potential for N 2 biological fixation, legumes are an alternative source of nitrogen to crops, and can even replace or supplement mineral fertilization. A greenhouse experiment was carried out to evaluate temporal patterns of velvet bean (Mucuna aterrima) green manure release of nitrogen to rice plants, and to study the fate of nitrogen from velvet bean in rice cultivation. The isotopic dilution methodology was used. Treatments consisted of a control and 10 incubation periods of soil fertilized with 15 N-labeled velvet bean (0, 20, 40, 60, 90, 120, 150, 180, 210, and 240 days). The plant material was previously chopped, sifted (10 mm mesh sieve) and oven-dried (65 deg C). Incubation of the plant material (2.2 g kg -1 soil) was initiated by the longest period, in order to synchronize the planting of the test crop, rice (Oryza sativa), at time zero for all treatments. Green manure incorporation promoted increases in rice dry matter yield and nitrogen uptake. These variables showed maximum values at incubation periods of 38 and 169 days, respectively. Green manure nitrogen utilization by rice plants was highest at an incubation period corresponding to 151 days. More than 60% of the green manure nitrogen remained in the soil after rice cultivation. The highest green manure nitrogen recovery from the soil-plant system occurred at an incubation period equivalent to 77 days. (author)

  11. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  12. Cost of reactive nitrogen release from human activities to the environment in the United States

    Science.gov (United States)

    The leakage of reactive nitrogen (N) from human activities to the environment can cause human health and ecological problems. Often these harmful effects are not reflected in the costs of food, fuel, and fiber that derive from N use. Spatial analyses of economic costs and benef...

  13. Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea

    International Nuclear Information System (INIS)

    Remke, Eva; Brouwer, Emiel; Kooijman, Annemieke; Blindow, Irmgard; Esselink, Hans; Roelofs, Jan G.M.

    2009-01-01

    Coastal dunes around the Baltic Sea have received small amounts of atmospheric nitrogen and are rather pristine ecosystems in this respect. In 19 investigated dune sites the atmospheric wet nitrogen deposition is 3-8 kg N ha -1 yr -1 . The nitrogen content of Cladonia portentosa appeared to be a suitable biomonitor of these low to medium deposition levels. Comparison with EMEP-deposition data showed that Cladonia reflects the deposition history of the last 3-6 years. With increasing nitrogen load, we observed a shift from lichen-rich short grass vegetation towards species-poor vegetation dominated by the tall graminoid Carex arenaria. Plant species richness per field site, however, does not decrease directly with these low to medium N deposition loads, but with change in vegetation composition. Critical loads for acidic, dry coastal dunes might be lower than previously thought, in the range of 4-6 kg N ha -1 yr -1 wet deposition. - Even low to medium nitrogen deposition impacts Baltic dune vegetation promoting a dominance of taller graminoids

  14. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Efficiency of an emissions payment system for nitrogen in sewage treatment plants - a case study.

    Science.gov (United States)

    Malmaeus, J Mikael; Ek, Mats; Åmand, Linda; Roth, Susanna; Baresel, Christian; Olshammar, Mikael

    2015-05-01

    An emissions payment system for nitrogen in Swedish sewage treatment plants (STPs) was evaluated using a semi-empirical approach. The system was based on a tariff levied on each unit of nitrogen emitted by STPs, and profitable measures to reduce nitrogen emissions were identified for twenty municipal STPs. This was done through direct involvement with the plant personnel and the results were scaled up to cover all treatment plants larger than 2000 person equivalents in the Swedish tributary areas of the Kattegat and the Baltic Proper. The sum of costs and nitrogen reductions were compared with an assumed command-and-control regulation requiring all STPs to obtain 80% total nitrogen reduction in their effluents. Costs for the latter case were estimated using a database containing standard estimates for reduction costs by six specified measures. For both cases a total reduction target of 3000 tonnes of nitrogen was set. We did not find that the emissions payment system was more efficient in terms of total reduction costs, although some practical and administrative advantages could be identified. Our results emphasize the need to evaluate the performance of policy instruments on a case-by-case basis since the theoretical efficiency is not always reflected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Formation of Haloacetonitriles, Haloacetamides, and Nitrogenous Heterocyclic Byproducts by Chloramination of Phenolic Compounds.

    Science.gov (United States)

    Nihemaiti, Maolida; Le Roux, Julien; Hoppe-Jones, Christiane; Reckhow, David A; Croué, Jean-Philippe

    2017-01-03

    The potential formation of nitrogenous disinfection byproducts (N-DBPs) was investigated from the chloramination of nitrogenous and non-nitrogenous aromatic compounds. All molecules led to the formation of known N-DBPs (e.g., dichloroacetonitrile, dichloroacetamide) with various production yields. Resorcinol, a major precursor of chloroform, also formed di/trichloroacetonitrile, di/trichloroacetamide, and haloacetic acids, indicating that it is a precursor of both N-DBPs and carbonaceous DBPs (C-DBPs) upon chloramination. More detailed experiments were conducted on resorcinol to understand N-DBPs formation mechanisms and to identify reaction intermediates. Based on the accurate mass from high resolution Quadrupole Time-of-Flight GC-MS (GC-QTOF) and fragmentation patterns from electronic impact and positive chemical ionization modes, several products were tentatively identified as nitrogenous heterocyclic compounds (e.g., 3-chloro-5-hydroxy-1H-pyrrole-2-one with dichloromethyl group, 3-chloro-2,5-pyrroledione). These products were structurally similar to the heterocyclic compounds formed during chlorination, such as the highly mutagenic MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) or halogenated pyrroles. To our knowledge, this is the first time that the formation of halogenated nitrogenous heterocyclic compounds is reported from chloramination process. The formation of these nitrogenous byproducts during chloramination might be of concern considering their potential toxicity.

  17. Nitrogen uptake and fertilizer nitrogen use efficiency of wheat under different soil water conditions

    International Nuclear Information System (INIS)

    Wang Baiqun; Zhang Wei; Yu Cunzu

    1999-01-01

    The pot experiment was conducted to study the effects of soil water regime and fertilizer nitrogen rate on the yields, nitrogen uptake and fertilizer nitrogen utilization of wheat by using 15 N tracer method. The results showed that the aboveground biomass, stem yield and grain yield increased with the increase of soil moisture in the fertilizer nitrogen treatments. All the yield increased with the increase of the fertilizer nitrogen rate in the soil water treatments. It was found that both soil water regime and fertilizer nitrogen rate significantly influenced the amount of nitrogen uptake by wheat according to the variance analysis. The amount of nitrogen uptake increased with the rise of the soil moisture in fertilizer nitrogen treatments and the amount also increased with the increase of the urea nitrogen rate in the soil water regime. Soil water regimes not only had an impact on nitrogen uptake but also had a close relationship with soil nitrogen supply and fertilizer nitrogen use efficiency. The soil A values decreased in urea treatment and increased with the rise of the soil moisture in the combination treatment of urea with pig manure. The fertilizer nitrogen use efficiency rose with the rise of the soil moisture in the same fertilizer nitrogen treatment. The fertilizer nitrogen use efficiency of the urea treatment was 13.3%, 27.9% and 32.3% in the soils with 50%, 70% and 90% of the field water capacity, respectively. The fertilizer nitrogen use efficiency in the combination treatment of urea with pig manure was 20.0%, 29.9% and 34.4% in the soils of above three levels, respectively. It was concluded that the low soil moisture restricted urea nitrogen use efficiency (UNUE) and the UNUE could be raised by combination treatment of urea with manure in the soil of enough moisture

  18. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation

  19. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Science.gov (United States)

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Natural abundance of 15N in barley as influenced by prior cropping or fallow, nitrogen fertilizer and tillage

    International Nuclear Information System (INIS)

    Doughton, J.A.; Saffigna, P.G.; Vallis, I.

    1991-01-01

    The 15 N abundance of nitrogen was measured in barley grown with 0,50 and 100 kg/ha of applied nitrogen after pretreatments of either fallow or grain sorghum, where sorghum stubble was either incorporated, removed or retained on the soil surface (zero-till). Barley 15 N abundance was assumed to reflect that of assimilated soil mineral nitrogen. 15 N enrichment was assumed to be mostly the result of isotope fractionation between 14 N and 15 N during denitrification of the large excess of NO 3 -N present prior to and during the experiment. Nitrogen fertilizer additions caused 15 N depletion of nitrogen in barley. However, where fertilizer additions resulted in excess availability of NO 3 -N, subsequent denitrification and 15 N enrichment of this NO 3 -N levels partially counterbalanced the 15 N depleting effect of fertilizer additions. Where soil NO 3 -N levels were low ( 3 -N/ha) following sorghum there were no differences in 15 N abundance of nitrogen in barley between tillage treatments. With additions of nitrogen fertilizer and the availability of excess NO 3 -N for denitrification, differences between tillage treatments occurred with some being significant. 27 refs., 6 tabs

  1. Litter cover as an index of nitrogen availability in rehabilitated mine sites

    International Nuclear Information System (INIS)

    Todd, M.C.L.; Grierson, P.F.; Adams, M.A.

    2000-01-01

    The spatial heterogeneity of litter cover and bioavailability of nitrogen within a 9-year-old rehabilitated bauxite mine in south Western Australia was examined. Three replicate plots (6 m by 6 m) were each divided into 100 quadrats. Litter cover, vegetation distribution, and projected foliage cover were mapped, and litter (overstorey leaves, understorey leaves, and other assorted fractions) and soil (depth: 0-5, 5-10, and 10-30 cm) were sampled from within each quadrat. Litter distribution reflected projected foliage cover, and accumulated within microtopographic depressions. Distribution of soil nitrate (NO 3 - ) reflected the distribution of litter. The 15 N natural abundance (δ 15 N) values of soil (0-5 cm) and the understorey litter fraction were significantly correlated (R 2 = 0.529, P 13 C) of soil (0-5 cm) was significantly correlated with the distribution of the assorted litter fraction (R 2 0.296, P < 0.05). It is concluded that site preparation practices that effect microtopography, such as contour ripping and revegetation along contours, will have a significant impact on nitrogen (N) distribution and bioavailability within rehabilitated mine sites. Copyright (2000) CSIRO Australia

  2. Nitrogen utilization efficiency and nitrogen nutrition of rice crops at MADA using the microplot nitrogen balance method

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Abdul Razak Ruslan; Latiffah Norddin; Hazlina Abdullah; Khairuddin Abdul Rahim

    2004-01-01

    Nitrogen (N) is a very important nutrient for rice crops and is a main component of protein. Nitrogen is essential in the production of plant chlorophyll and involves in vegetative and fruit growth and development processes. Nitrogen is a critical input and exert high cost in rice crop production. Nitrogen fertilizer is not fully utilised by the rice crop; some is lost due the processes of vaporization, hydrolysis, erosion, leaching and used by other plants and microorganisms. Several agronomic practices have been studied and adopted in this country with the purpose of increasing the efficiency nitrogen fertilizer utilization and thus, reducing the output cost for rice crops. The microplot nitrogen balance method is one of the methods used to determine uptake efficiency of nitrogen fertilizers by rice crops. In this research, the microplot of 1 m x 1 m squares in paddy plot were used, to ensure that sequential sampling was done at predetermined areas. Scheduled monthly sampling of soil and rice crops was conducted until the mature stage, harvest and post-harvest period. This MINT-MADA cooperative project contains the elements of information sharing on fertilizer efficiency measurement methods by using the N-15 isotopic tracer technique and the N-balance technique in soil, besides the cooperation on use of infrastructure and facilities, expertise and labour. (Author)

  3. Phenotypic Plasticity Explains Response Patterns of European Beech (Fagus sylvatica L. Saplings to Nitrogen Fertilization and Drought Events

    Directory of Open Access Journals (Sweden)

    Christoph Dziedek

    2017-03-01

    Full Text Available Abstract: Climate and atmospheric changes affect forest ecosystems worldwide, but little is known about the interactive effects of global change drivers on tree growth. In the present study, we analyzed single and combined effects of nitrogen (N fertilization and drought events (D on the growth of European beech (Fagus sylvatica L. saplings in a greenhouse experiment. We quantified morphological and physiological responses to treatments for one‐ and two‐year‐old plants. N fertilization increased the saplings’ aboveground biomass investments, making them more susceptible to D treatments. This was reflected by the highest tissue dieback in combined N and D treatments and a significant N × D interaction for leaf δ13C signatures. Thus, atmospheric N deposition can strengthen the drought sensitivity of beech saplings. One‐year‐old plants reacted more sensitively to D treatments than two‐year‐old plants (indicated by D‐induced shifts in leaf δ13C signatures of one‐year‐old and two‐year‐old plants by +0.5‰ and −0.2‰, respectively, attributable to their higher shoot:root‐ratios (1.8 and 1.2, respectively. In summary, the saplings’ treatment responses were determined by their phenotypic plasticity (shifts in shoot:root‐ratios, which in turn was a function of both the saplings’ age (effects of allometric growth trajectories = apparent plasticity and environmental impacts (effects of N fertilization = plastic allometry.

  4. Relationship between ruminal ammonia and non-protein nitrogen utilization by ruminants

    International Nuclear Information System (INIS)

    Satter, L.D.; Roffler, R.E.

    1976-01-01

    Non-protein nitrogen (NPN) may be utilized as well as plant protein when ruminal ammonia nitrogen concentration is low ( 3 -N at 5 mg/100 ml will provide considerably less metabolizable protein, and the amount of metabolizable protein will be directly proportional to the amount of protein that escapes degradation. A simplified scheme for estimating metabolizable protein is presented. It has the flexibility needed for accommodating different feedstuffs, yet is easy to apply. The proposed scheme is based upon ruminal ammonia concentration, which in turn reflects protein intake, ration fermentability and protein degradation, the major determinants of protein supply to the lower intestine. It has the potential of more accurately describing the nutritional value of dietary crude protein, particularly if both protein and NPN are in the diet. (author)

  5. Reflectivity level of radio anechoic chambers

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    A comparison between the antenna-pattern comparison technique and the free-space voltage standing-wave ratio technique for evaluating the reflectivity level of radio anechoic chambers is presented. Based on an analysis of the two techniques, it is pointed out which parameters influence the measured...

  6. Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Poonsak Miphokasap

    2018-04-01

    Full Text Available This study aims to estimate the spatial variation of sugarcane Canopy Nitrogen Concentration (CNC using spectral data, which were measured from a spaceborne hyperspectral image. Stepwise Multiple Linear Regression (SMLR and Support Vector Regression (SVR were applied to calibrate and validate the CNC estimation models. The raw spectral reflectance was transformed into a First-Derivative Spectrum (FDS and absorption features to remove the spectral noise and finally used as input variables. The results indicate that the estimation models developed by non-linear SVR based Radial Basis Function (RBF kernel yield the higher correlation coefficient with CNC compared with the models computed by SMLR. The best model shows the coefficient of determination value of 0.78 and Root Mean Square Error (RMSE value of 0.035% nitrogen. The narrow sensitive spectral wavelengths for quantifying nitrogen content in the combined cultivar environments existed mainly in the electromagnetic spectrum of the visible-red, longer portion of red edge, shortwave infrared regions and far-near infrared. The most important conclusion from this experiment is that spectral signals from the space hyperspectral data contain the meaningful information for quantifying sugarcane CNC across larger geographic areas. The nutrient deficient areas could be corrected by applying suitable farm management.

  7. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem delta15N.

    Science.gov (United States)

    Averill, Colin; Finzi, Adrien

    2011-04-01

    It is hypothesized that decreasing mean annual temperature and rates of nitrogen (N) cycling causes plants to switch from inorganic to organic forms of N as the primary mode of N nutrition. To test this hypothesis, we conducted field experiments and collected natural-abundance delta15N signatures of foliage, soils, and ectomycorrhizal sporocarps along a steep elevation-climate gradient in the White Mountains, New Hampshire, USA. Here we show that with increasing elevation organic forms of N became the dominant source of N taken up by hardwood and coniferous tree species based on dual-labeled glycine uptake analysis, an important confirmation of an emerging theory for the biogeochemistry of the N cycle. Variation in natural abundance foliar delta15N with elevation was also consistent with increasing organic N uptake, though a simple, mass balance model demonstrated that the uptake of delta15N depleted inorganic N, rather than fractionation upon transfer of N from mycorrhizal fungi, best explains variations in foliar delta15N with elevation.

  8. Photosynthate partitioning and nitrogen fixation of alfalfa and birdsfoot trefoil

    International Nuclear Information System (INIS)

    Shieh, W.J.

    1985-01-01

    Nodule mass and number are usually correlated with rates of nitrogen fixation in legumes. Birdsfoot trefoil (Lotus corniculatus L.) with more than twice the nodule number and mass, however, fixes far less nitrogen than alfalfa (Medicago sativa L.) at the same age. In this research, photosynthesis and photosynthate partitioning and utilization in relation to nitrogen fixation of alfalfa and birdsfoot trefoil were examined in order to determine their relationship to nitrogen fixation potential. Photosynthate to nodules was studied using 14 CO 2 labeling techniques. Partitioning patterns were altered by shading and dark depletion treatments. Efficiency of photosynthate utilization was examined by determining turnover of 14 C photosynthate in nodule metabolites and by studying rates of cyanide-resistant and cyanide-sensitive O 2 uptake. Alfalfa nodule activity was greater than trefoil expressed on a hole pot or nodule dry weight basis. Both shading and dark treatments significantly reduced nodule activity as estimated by the acetylene reduction assay. Shoots of both species were found to be the dominant sinks for photosynthate. Percentage 14 C recovered in alfalfa roots was more than twice that of trefoil at 1,2,3,4 and 24 h after labeling. Greater relative specific radioactivity (RSA) in nodules of both species suggests that they were stronger sinks for current photosynthate than roots

  9. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe

    International Nuclear Information System (INIS)

    Harmens, H.; Norris, D.A.; Cooper, D.M.; Mills, G.; Steinnes, E.; Kubin, E.; Thoeni, L.; Aboal, J.R.; Alber, R.; Carballeira, A.; Coskun, M.; De Temmerman, L.; Frolova, M.; Gonzalez-Miqueo, L.

    2011-01-01

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses ( 2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. - Highlights: → Nitrogen concentrations in mosses were determined at ca. 3000 sites across Europe. → Moss concentrations were compared with EMEP modelled nitrogen deposition. → The asymptotic relationship for Europe showed saturation at ca. 15 kg N ha -1 y -1 . → Linear relationships were found with measured nitrogen deposition in some countries. → Moss concentrations complement deposition measurements at high spatial resolution. - Mosses as biomonitors of atmospheric nitrogen deposition in Europe.

  10. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    International Nuclear Information System (INIS)

    Jeong, In Sung; Choi, Hyo Sang; Chung, Dong Chul

    2017-01-01

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils

  11. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  12. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    Science.gov (United States)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    Biodiversity has been described as the diversity of life on earth within species, between species and in ecosystems. Biodiversity contributes to regulating ecosystem services like climate, flood, disease, and water quality regulation. Biodiversity also supports and sustains ecosystem services that provide material goods like food, fiber, fuel, timber and water, and to non-material benefits like educational, recreational, spiritual, and aesthetic ecosystem services. The Millennium Ecosystem Assessment estimated that the rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and that many of the drivers of biodiversity loss are increasing. The strongest drivers of biodiversity loss include habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen. Of these stressors, climate change and reactive nitrogen from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in consistent patterns of poleward and elevational range shifts of flora and fauna, causing changes in biodiversity. Warming has also resulted in changes in phenology, particularly the earlier onset of spring events, migration, and lengthening of the growing season, disrupting predator-prey and plant-pollinator interactions. In addition to warming, elevated carbon dioxide by itself can affect biodiversity by influencing plant growth, soil water, tissue stoichiometry, and trophic interactions. Nitrogen enrichment also impacts ecosystems and biodiversity in a variety of ways. Nitrogen enhances plant growth, but has been shown to favor invasive, fast-growing species over native species adapted to low nitrogen conditions. Although there have been a limited number of empirical studies on climate change and nitrogen interactions, inferences can be drawn from observed responses to each stressor by itself. For

  13. Imaging the dorsal hippocampus: light reflectance relationships to electroencephalographic patterns during sleep

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1995-01-01

    We assessed the correspondence of 660 nm light reflectance changes from the dorsal hippocampus with slow wave electroencephalographic (EEG) activity during quiet sleep (QS) and rapid eye movement (REM) sleep in four cats. An optic probe, attached to a charge-coupled-device (CCD) video camera...... as EEG changes. Dividing the image into 10 subregions revealed that reflectance changes at the rhythmical slow wave activity band (RSA, 4-6 Hz) persisted in localized regions during QS and REM sleep, but regional changes showed considerable wave-by-wave independence between areas and from slow wave...

  14. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  15. Self-reflection and positive schizotypy in the adolescent brain.

    Science.gov (United States)

    Debbané, Martin; Vrtička, Pascal; Lazouret, Marine; Badoud, Deborah; Sander, David; Eliez, Stephan

    2014-01-01

    Clinical and phenomenological accounts of schizophrenia suggest that impairments in self-reflective processes significantly contribute to psychopathological expression. Recent imaging studies observe atypical cerebral activation patterns during self-reflection, especially around the cortical midline structures, both in psychosis-prone adults and individuals with schizophrenia. Given that self-reflection processes consolidate during adolescence, and that early transient expression of psychosis (positive schizotypy) also arises during this period, the present study sought to examine whether atypical cerebral activation during self-reflection task could be associated with early schizotypic expression during adolescence. Forty-two neurotypical adolescent participants (19 females) aged from 12 to 19 (15.92±1.9) underwent a self-reflection task using functional neuroimaging (fMRI), where they had to evaluate trait adjectives (1 to 4 ratings) about themselves or their same sex best friend. The Schizotypal Personality Questionnaire (SPQ) was employed to assess positive schizotypic expression. Results showed that positive schizotypy in adolescents significantly correlated with cortical midline activation patterns in the dorsomedial prefrontal cortex (dmPFC) and the posterior cingulate cortex (PCC), as well as the dorsolateral PFC and the lingual gyrus. The results are consistent with previous imaging literature on self-reflection and schizophrenia. They further highlight that the relationship between self-reflection processes and positive schizotypy operates at the trait level of expression and can be observed as early as adolescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Spatial patterns of soil pH and the factors that influence them in plantation forests of northern China

    Science.gov (United States)

    Hong, Songbai; Liu, Yongwen; Piao, Shilong

    2017-04-01

    Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, ppH (0.13 for every degree centigrade, ppH (ppH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.

  17. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  18. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  19. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    Science.gov (United States)

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  20. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    International Nuclear Information System (INIS)

    Thornber, Carol S.; DiMilla, Peter; Nixon, Scott W.; McKinney, Richard A.

    2008-01-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and δ 15 N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in δ 15 N among sites, but with two exceptions had δ 15 N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (δ 15 N = ∼14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries

  1. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Thornber, Carol S. [Department of Biological Sciences, 100 Flagg Road, University of Rhode Island, Kingston, RI 02881 (United States)], E-mail: thornber@uri.edu; DiMilla, Peter; Nixon, Scott W. [Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, RI 02881 (United States); McKinney, Richard A. [US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882 (United States)

    2008-02-15

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and {delta}{sup 15}N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in {delta}{sup 15}N among sites, but with two exceptions had {delta}{sup 15}N above 10 per mille , reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals ({delta}{sup 15}N = {approx}14-17 per mille and 8-12 per mille , respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  2. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae.

    Science.gov (United States)

    Thornber, Carol S; DiMilla, Peter; Nixon, Scott W; McKinney, Richard A

    2008-02-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and delta(15)N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in delta(15)N among sites, but with two exceptions had delta(15)N above 10 per thousand, reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (delta(15)N= approximately 14-17 per thousand and 8-12 per thousand, respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  3. [Storages and distributed patterns of soil organic carbon and total nitrogen during the succession of artificial sand-binding vegetation in arid desert ecosystem].

    Science.gov (United States)

    Jia, Xiao-Hong; Li, Xin-Rong; Zhou, Yu-Yan; Li, Yuan-Shou

    2012-03-01

    Soil carbon pool acts as the largest one of carbon pools in the terrestrial ecosystem. The storages and distributed patterns of soil organic carbon (SOC) and total nitrogen (TN) evaluated accurately are helpful to predict the feedback between the terrestrial ecosystem and climate changes. Based on the data about bulk density, content of SOC and TN at 0-100 cm soil profile, the density of SOC and TN at the temporal (chronosequence of artificial vegetation) and spatial (vertical) distributed patterns have been estimated. The results indicated that storages of SOC and TN at 0-100 cm depth increased with the chronosequence of artificial vegetation. The storages of SOC and TN showed the same tendency with the succession time of artificial vegetation. Storages of SOC and TN significantly increased at the early stage of banding sand by artificially vegetation ( 25 a). The variation of storages mainly occurred in the 0-20 cm depth. The storages decreased with the soil vertical depth. At the early stage of banding sand, increase in storage included every depth (0-100 cm). Whereas, at the later stage, increase in storage at 0-20 cm depth was main, and increase in the 20-100 cm was inconspicuous. The accumulation of storage at the shallow soil depth was more notability with the succession of artificial vegetation. The distributed pattern of storage in SOC and TN has been confirmed in arid desert regions below 200 mm annual precipitation. This was beneficial to understand the carbon cycle and to predict the feedback relationship between desert ecosystem and climate changes.

  4. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    KAUST Repository

    Pogoreutz, Claudia; Radecker, Nils; Cardenas, Anny; Gä rdes, Astrid; Wild, Christian; Voolstra, Christian R.

    2017-01-01

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.

  5. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    KAUST Repository

    Pogoreutz, Claudia

    2017-06-28

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.

  6. Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth

    OpenAIRE

    SANCHO FORNER, MARTA; Alicia Gutiérrez; BELTRAN CASELLAS, GEMMA; José Manuel Guillamon; Jonas Warringer

    2016-01-01

    Wine yeast capacity to take up nitrogen from the environment and catabolize it to support population growth, fermentation, and aroma production is critical to wine production. Under nitrogen restriction, yeast nitrogen uptake is believed to be intimately coupled to reproduction with nitrogen catabolite repression (NCR) suggested mediating this link. We provide a time- and strain-resolved view of nitrogen uptake, population growth, and NCR activity in wine yeasts. Nitrogen uptake was found to ...

  7. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    DEFF Research Database (Denmark)

    Bøgh, Eva; Houborg, R; Bienkowski, J

    2013-01-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing data from satellites can be used to estimate leaf area index (LAI), leaf......). Predictabilities of SVIs and REGFLEC simulations generally improved when constrained to single land use categories (wheat, maize, barley, grass) across the European landscapes, reflecting sensitivity to canopy structures. Predictability further improved when constrained to local (10 × 10 km2) landscapes, thereby...

  8. Effectiveness of Ammonium-Nitrogen and Nitrate-Nitrogen in Irrigation Water in Paddy Rice without Topdressed Nitrogen at the Panicle Formation Stage

    OpenAIRE

    池田, 元輝; 渡辺, 孝賢; Ikeda, Motoki; Watanabe, Takayasu

    2002-01-01

    A pot experiment was conducted to evaluate the efficiency of ammonium- and nitrate- nitrogen contained in irrigation water during the reproductive growth period of paddy rice (Oryza sativa L. cv. Hinohikari) that did not receive topdressed nitrogen at the panicle formation stage. lrrigation of water containing a low level of nitrogen (7mgNL^-1) did not increase yields so much compared to topdressed nitrogen. lrrigation of water containing a high level of nitrogen (14mgNL^-1) caused substantia...

  9. Prediction of future nitrogen loading to Lake Rotorua

    International Nuclear Information System (INIS)

    Morgenstern, U.; Gordon, D.

    2006-01-01

    loading estimate for the direct groundwater has the largest uncertainty because very limited age and chemistry data is available. Lake side springs and minor streams together contribute only about 5% of the total nitrogen load to Lake Rotorua. Hamurana, Awahou and Waingaehe streams are expected to show the largest increases in N loading in the future because they contain the oldest water, and Hamurana and Awahou streams will have the largest increase in nitrogen mass loading because they have the largest flow. Utuhina, Waiteti, and Puarenga streams are expected to have medium increases in nitrogen loading because of younger water age and lower flow. Ngongotaha, Waiohewa, and Waiowhiro streams are expected to have little further increase in N loading because of low flow or steady-state already reached. Landuse intensification that has occurred within the last 20 years is not yet reflected in the current nitrogen prediction model because information on the timing and amount of intensification was not yet available. The present nitrogen prediction model assumes that the nitrogen input in the catchment from landuse development has remained relatively constant since the 1950's. The current predictions would therefore represent a lower limit to which the more recent nitrogen loads would have to be added. If more information on timing and amount of landuse changes becomes available, the N load predictions can be refined to incorporate landuse change in several stages by calculating the predicted N load for each stage and adding these. Positive (intensification) or negative (retirement) changes can be considered. The large groundwater system of the Lake Rotorua catchment responds delayed by decades to landuse changes. These timeframes will need to be considered carefully for any possible mitigation options in the catchment. (author). 8 refs., 14 figs., 2 tabs

  10. The Value of Reflective: Functioning within an Academic Therapeutic Nursery.

    Science.gov (United States)

    LaLonde, Mary M; Dreier, Mona; Aaronson, Gayle; O'Brien, John

    2015-01-01

    The self begins as a social self and is dependent on the other and the self-other relationship. Furthermore, shortly after birth, the intersubjective self is nurtured and sustained by the reciprocal interactions with the significant other. Recent research suggests that the significant other's reciprocity depends on his or her capacity for mentalization, and this reflective functioning capacity influences not only the child's developing sense of I, other, and we, but also his or her developing attachment pattern. Several studies have demonstrated that parental reflective functioning can be improved with intervention, and enhancing parental reflective functioning can lead to a more secure attachment pattern and better outcomes for the child and parent. Therefore, intervention with toddlers and their families requires us to consider this dynamic two-person psychology. In this paper, we describe an academic parent-child nursery program aimed at enhancing parental reflective functioning. A clinical example from the collaborative treatment of a mother and her two-year-old will demonstrate how reflective functioning can be enhanced in the parent-child dyad and lead to a more secure parent-child relationship. We will also discuss the value of reflective functioning to the interdisciplinary team and how we dealt with countertransference issues that arose during the treatment.

  11. Distribution and utilization of nitrogenated compounds explanted by the soybean nodules by plants during seeds developing

    International Nuclear Information System (INIS)

    Alencar, Severino Matias de

    1997-01-01

    An experiment was carried out, using radioisotopes, for evaluation of the leaf, schuck and seeds areas and, examination of the pattern which is used by the nitrogenated compounds explanted by the soybean nodules

  12. Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995–2006

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2011-10-01

    Full Text Available The EMEP/MSC-W model has been used to compute atmospheric nitrogen deposition into the Baltic Sea basin for the period of 12 yr: 1995–2006. The level of annual total nitrogen deposition into the Baltic Sea basin has changed from 230 Gg N in 1995 to 199 Gg N in 2006, decreasing 13 %. This value corresponds well with the total nitrogen emission reduction (11 % in the HELCOM Contracting Parties. However, inter-annual variability of nitrogen deposition to the Baltic Sea basin is relatively large, ranging from −13 % to +17 % of the averaged value. It is mainly caused by the changing meteorological conditions and especially precipitation in the considered period. The calculated monthly deposition pattern is similar for most of the years showing maxima in the autumn months October and November. The source allocation budget for atmospheric nitrogen deposition to the Baltic Sea basin was calculated for each year of the period 1997–2006. The main emission sources contributing to total nitrogen deposition are: Germany 18–22 %, Poland 11–13 % and Denmark 8–11 %. There is also a significant contribution from distant sources like the United Kingdom 6–9 %, as well as from the international ship traffic on the Baltic Sea 4–5 %.

  13. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  14. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Harmens, H., E-mail: hh@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Norris, D.A., E-mail: danor@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Cooper, D.M., E-mail: cooper@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Mills, G., E-mail: gmi@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Steinnes, E., E-mail: Eiliv.Steinnes@chem.ntnu.no [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Kubin, E., E-mail: Eero.Kubin@metla.fi [Finnish Forest Research Institute, Kirkkosaarentie 7, 91500 Muhos (Finland); Thoeni, L., E-mail: lotti.thoeni@fub-ag.ch [FUB-Research Group for Environmental Monitoring, Alte Jonastrasse 83, 8640 Rapperswil (Switzerland); Aboal, J.R., E-mail: jesusramon.aboal@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Alber, R., E-mail: Renate.Alber@provinz.bz.it [Environmental Agency of Bolzano, 39055 Laives (Italy); Carballeira, A., E-mail: alejo.carballeira@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Coskun, M., E-mail: coskunafm@yahoo.com [Canakkale Onsekiz Mart University, Faculty of Medicine, Department of Medical Biology, 17100 Canakkale (Turkey); De Temmerman, L., E-mail: ludet@var.fgov.be [Veterinary and Agrochemical Research Centre, Tervuren (Belgium); Frolova, M., E-mail: marina.frolova@lvgma.gov.lv [Latvian Environment, Geology and Meteorology Agency, Riga (Latvia); Gonzalez-Miqueo, L., E-mail: lgonzale2@alumni.unav.es [Univ. of Navarra, Irunlarrea No 1, 31008 Pamplona (Spain)

    2011-10-15

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations ({>=}1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km x 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r{sup 2} = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. - Highlights: > Nitrogen concentrations in mosses were determined at ca. 3000 sites across Europe. > Moss concentrations were compared with EMEP modelled nitrogen deposition. > The asymptotic relationship for Europe showed saturation at ca. 15 kg N ha{sup -1} y{sup -1}. > Linear relationships were found with measured nitrogen deposition in some countries. > Moss concentrations complement deposition measurements at high spatial resolution. - Mosses as biomonitors of atmospheric nitrogen deposition in Europe.

  15. Multi-segmental movement patterns reflect juggling complexity and skill level.

    Science.gov (United States)

    Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella

    2017-08-01

    The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component

    International Nuclear Information System (INIS)

    Cornell, Sarah E.

    2011-01-01

    The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles. - Highlights: → Organic-nitrogen deposition is globally ubiquitous. → Geographic patterns can now be seen in the near-global dataset. → Organic N can be formed through interactions of biogenic and anthropogenic compounds. → Neglecting organic N in deposition assessments increases critical loads uncertainty - Routinely including the organic component of atmospheric deposition (known to be around 25-35% worldwide) would make the understanding and prediction of nitrogen biogeochemistry more robust. This paper makes a preliminary global synthesis based on literature reports.

  17. Microbial contamination of embryos and semen during long term banking in liquid nitrogen.

    Science.gov (United States)

    Bielanski, A; Bergeron, H; Lau, P C K; Devenish, J

    2003-04-01

    We report on microbial contamination of embryos and semen cryopreserved in sealed plastic straws and stored for 6-35 years in liquid nitrogen. There were 32 bacterial and 1 fungal species identified from randomly drawn liquid nitrogen, frozen semen, and embryos samples stored in 8 commercial and 8 research facility liquid nitrogen (LN) tanks. The identified bacteria represented commensal or environmental microorganisms and some, such as Escherichia coli, were potential or opportunistic pathogens for humans and animals. Stenotrophomonas maltophilia was the most common contaminant identified from the samples and was further shown to significantly suppress fertilization and embryonic development in vitro. Analysis of the strains by pulsed field gel electrophoresis revealed restriction patterns with no relatedness indicating that there was no apparent cross-contamination of S. maltophilia strains between the germplasm and liquid nitrogen samples. In addition, no transmission of bovine viral diarrhea virus (BVDV) and bovine herpesvirus-1 (BHV-1) from infected semen and embryos straws to clean germplasm stored in the same LN tanks or LN was detected.

  18. Radar-based rainfall estimation: Improving Z/R relations through comparison of drop size distributions, rainfall rates and radar reflectivity patterns

    Science.gov (United States)

    Neuper, Malte; Ehret, Uwe

    2014-05-01

    The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the

  19. Deciphering the Principles of Bacterial Nitrogen Dietary Preferences: a Strategy for Nutrient Containment.

    Science.gov (United States)

    Wang, Jilong; Yan, Dalai; Dixon, Ray; Wang, Yi-Ping

    2016-07-19

    A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. Bacteria exhibit different growth rates under various nutrient conditions. These environmentally related behaviors reflect the coordination between metabolism and the underlying regulatory networks. In the present study, we investigated the intertwined nitrogen metabolic and nitrogen regulatory systems to understand the growth differences between rich and poor nitrogen sources. Although maximal growth rate is considered to be evolutionarily advantageous for bacteria (as remarked by François Jacob, who said that the "dream" of every cell is to become two cells), we showed that negative-feedback loops in the regulatory system inhibit growth rates on amino acids. We demonstrated that in the absence of regulatory feedback, amino acids are capable

  20. Studies involving tracer techniques for certain nutritional aspects of nitrogen and phosphorus with reference to fertilization of wheat plant

    International Nuclear Information System (INIS)

    Rizk, M. A.

    1987-01-01

    Two short-term experiments were carried out to study the mutual effects between nitrogen and phosphatic fertilizers, wheat seedlings being the indicator plant grown on different soil types, namely; sandy loam of inshas, clay of bahtim and calcareous of salheya. Response of wheat plants to mutual interactions between applied nitrogenous and phosphatic fertilizers. 1- Dry matter content of wheat seedlings are significantly affected by the interactions between sources of nitrogen and phosphorus for the investigated seedlings which may reflect the importance of ion balance between the two concerned elements. 2- Nitrogen content in the two weeks old seedlings is positively affected with the interaction between P-source (ortho and poly-phosphate), nitrogen level and nitrogen source.3- A positive response of total P- uptaken by wheat plants for the rate of applied nitrogenous fertilizer is observed, trend being attributed to influence of nitrogen on the status of P in the soil adjacent to roots as to have a concentration gradient suitable for absorption. 4- Except for nitrogen rate, other parameters and certain interactions have been generally not significantly effective on P - in plant derived from both fertilizer and soil. 5- Utilization percentages of the used P- fertilizer show significant responses to applied N- rate along with interactions with source of applied N and P nutritional elements with one week old plants

  1. Effect of residual nitrogen and fertilizer nitrogen on sugar beet production in Finland

    Directory of Open Access Journals (Sweden)

    Veikko Brummer

    1974-09-01

    Full Text Available Preliminary determinations for NO3- and NH4-N in topsoil from nitrogen field experiments are discussed. The amounts of residual nitrogen as well as the dates and depth for sampling are considerd in order to investigate the need of fertilizer-N for continuous sugar beet. Tops ploughed down as manure increased the available soil nitrogen by about 50 kg/ha. In practice nitrogen from fertilizer and farmyard manure given to previous beet crops seems to accumulate in the beet soils of Finland. The concentrations of nitrate and ammonium nitrogen in topsoil were low in the spring of 1972 and 1973. NO3-N increased in topsoil during the early summer, and the highest concentrations were found at the beginning of July. Starting from the middle of July the amount of NH4-N began to increase both in topsoil and in subsoil. With increasing amounts of nitrogen in the topsoil the sugar content decreases continuously. Also the α-amio N content of beets correlates with the soil nitrogen. There is experimental evidence that 150 180 kg/ha nitrate nitrogen in topsoil (residual + fertilizer N in early July gives the best economic result. The effects of fertilizer and accumulated soil nitrogen on the sugar beet quality together with som other experimental data have been statistically analysed. Regression coefficients indicated that both forms of nitrogen affected the suger content, the α-amino N concentration and clear juice purity, in a similar way.

  2. Is nitrogen the next carbon?

    Science.gov (United States)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  3. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    International Nuclear Information System (INIS)

    Argerich, A; Greathouse, E; Johnson, S L; Sebestyen, S D; Rhoades, C C; Knoepp, J D; Adams, M B; Likens, G E; Campbell, J L; McDowell, W H; Scatena, F N; Ice, G G

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among sites across the USA. We found both increasing and decreasing trends in monthly flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments, we found that the length and period of analysis influenced whether trends were positive, negative or non-significant. Trends also differed among neighboring catchments within several Experimental Forests, suggesting the importance of catchment-specific factors in determining nutrient exports. Over the longest time periods, trends were more consistent among catchments within sites, although there are fewer long-term records for analysis. These findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring at a network of sites across the USA to elucidate patterns of change in nutrient concentrations at minimally disturbed forested sites. (letter)

  4. [Research on the influence of urban land use structure and pattern on nitrogen, phosphorus of wetland water environment in Xianlin New Town of Nanjing].

    Science.gov (United States)

    Cai, Chun-Xiao; Liu, Hong-Yu; Li, Yu-Feng; Wang, Cong; Hou, Ming-Hang

    2014-08-01

    The 10 typical wetlands in Xianlin New Townof Nanjing were classified into three categories, including rural wetland, suburban wetland, and urban wetland according to the influence of urbanization as well as the characteristics of wetland and LUCC of catchment regions. RDA was used to analyse the relationships between nitrogen and phosphorus in urban wetland and various types and patterns of land use. It was found that the water quality of the urban wetlands presented to be worse than that from rural wetlands, followed by sub urban wetlands. Secondly, according to all investigated wetlands, TP and TN turned out to be higher during the wet seasons than dry seasons. In addition, significant differences of TP were observed between wet and dry seasons for rural and suburban wetlands, and it was not so obvious for urban wetlands. However, the differences of TN was opposite to that of TP. Thirdly, factors affecting the water quality of wetlands were comprised of types and patterns of land use, and thus significant positive relationships were found between the concentrations of TN and TP and the impervious land, while negative correlations for meadows, woodlands and wetlands. What's more, higher remarkable differences were found in wetlands than those from meadows and woodlands. Regarding to patterns of land use, TP, TN concentrations were negatively correlated with the average patch shape in the dry and wet seasons, whereas positively relationships were observed for patch density and diversity index; furthermore, with refer to the impact of adjacent landscape, significant relationships were found between the content of TN and the patterns of land use and thus, a negative correlation in the wet season and a positive correlation in the dry season were observed, respectively.

  5. Nitrogen accumulation and residual effects of nitrogen catch crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    The nitrogen accumulation in Italian ryegrass (Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), white mustard (Sinapis alba L.) and tansy phacelia (Phacelia tanacetifolia L.), under- or aftersown as nitrogen catch crops to spring barley (Hordeum vulgare L.) and field pea (Pisum s...

  6. Sensitive Ceramics_Pattern #1-#5

    DEFF Research Database (Denmark)

    2014-01-01

    pattern of which are reflecting the position and speed of the hands. In that way the user is able to interact and model a responding pattern. The second level has to do with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers...

  7. Nitrogen and Warming Control the Vegetation in Inner Mongolia Tourist Area

    OpenAIRE

    Sun, Qiong; Hu, Xiaobing; Zhang, Chi

    2016-01-01

    The global warming and atmospheric nitrogen deposition problem has become more and more serious under the influence of human activities, and it has become one of the hot issues in this field, which will have far-reaching impact on all kinds of vegetation, thus the functioning of the ecosystem will be changed, which will be reflected in climate warming process. Inner Mongolia Autonomous Region is mainly composed of desert grasslands, so the development and protection of vegetation has consider...

  8. Relationship of Nitrogen Use Efficiency with the Activities of Enzymes Involved in Nitrogen Uptake and Assimilation of Finger Millet Genotypes Grown under Different Nitrogen Inputs

    Directory of Open Access Journals (Sweden)

    Nidhi Gupta

    2012-01-01

    Full Text Available Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour PRM-1 (brown, PRM-701 (golden, and PRM-801 (white grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR, glutamine synthetase (GS, glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.

  9. NITROGEN LOSS FROM SMALL WATERSHEDS IN THE OREGON CASCADES: A STUDY OF FOREST SUCCESSION INFLUENCE

    Science.gov (United States)

    Traditional biogeochemical theory suggests that biotic N limitation (N demand by plants and soil microorganisms) controls ecosystem nitrogen (N) losses, and that stream N export should increase with successional age. I am examining patterns of inorganic and organic N export from...

  10. Glutamine nitrogen and ammonium nitrogen supplied as a nitrogen source is not converted into nitrate nitrogen of plant tissues of hydroponically grown pak-choi (Brassica chinensis L.).

    Science.gov (United States)

    Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M

    2009-03-01

    Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.

  11. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.

    Science.gov (United States)

    Ecke, Robert E

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.

  12. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  13. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  14. Ectocranial suture fusion in primates: pattern and phylogeny.

    Science.gov (United States)

    Cray, James; Cooper, Gregory M; Mooney, Mark P; Siegel, Michael I

    2014-03-01

    Patterns of ectocranial suture fusion among Primates are subject to species-specific variation. In this study, we used Guttman Scaling to compare modal progression of ectocranial suture fusion among Hominidae (Homo, Pan, Gorilla, and Pongo), Hylobates, and Cercopithecidae (Macaca and Papio) groups. Our hypothesis is that suture fusion patterns should reflect their evolutionary relationship. For the lateral-anterior suture sites there appear to be three major patterns of fusion, one shared by Homo-Pan-Gorilla, anterior to posterior; one shared by Pongo and Hylobates, superior to inferior; and one shared by Cercopithecidae, posterior to anterior. For the vault suture pattern, the Hominidae groups reflect the known phylogeny. The data for Hylobates and Cercopithecidae groups is less clear. The vault suture site termination pattern of Papio is similar to that reported for Gorilla and Pongo. Thus, it may be that some suture sites are under larger genetic influence for patterns of fusion, while others are influenced by environmental/biomechanic influences. Copyright © 2013 Wiley Periodicals, Inc.

  15. Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition

    Science.gov (United States)

    Ye, Dong; Wu, Shu-Qun; Yu, Yao; Liu, Lin; Lu, Xin-Pei; Wu, Yue

    2014-03-01

    In this work, a mask-free method is introduced for patterned nitrogen doping of graphene using a micro-plasma jet under ambient condition. Raman and X-ray photoelectron spectroscopy spectra indicate that nitrogen atoms are incorporated into the graphene lattice with the two-dimensional spatial distribution precisely controlled in the range of mm down to 10 μm. Since the chemistry of the micro-plasma jet can be controlled by the choice of the gas mixture, this direct writing process with micro-plasma jet can be a versatile approach for patterned functionalization of graphene with high spatial resolution. This could have promising applications in graphene-based electronics.

  16. Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition

    International Nuclear Information System (INIS)

    Ye, Dong; Yu, Yao; Liu, Lin; Wu, Shu-Qun; Lu, Xin-Pei; Wu, Yue

    2014-01-01

    In this work, a mask-free method is introduced for patterned nitrogen doping of graphene using a micro-plasma jet under ambient condition. Raman and X-ray photoelectron spectroscopy spectra indicate that nitrogen atoms are incorporated into the graphene lattice with the two-dimensional spatial distribution precisely controlled in the range of mm down to 10 μm. Since the chemistry of the micro-plasma jet can be controlled by the choice of the gas mixture, this direct writing process with micro-plasma jet can be a versatile approach for patterned functionalization of graphene with high spatial resolution. This could have promising applications in graphene-based electronics

  17. Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Dong; Yu, Yao, E-mail: ensiyu@mail.hust.edu.cn; Liu, Lin [School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan (China); Wu, Shu-Qun; Lu, Xin-Pei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Wu, Yue [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3255 (United States)

    2014-03-10

    In this work, a mask-free method is introduced for patterned nitrogen doping of graphene using a micro-plasma jet under ambient condition. Raman and X-ray photoelectron spectroscopy spectra indicate that nitrogen atoms are incorporated into the graphene lattice with the two-dimensional spatial distribution precisely controlled in the range of mm down to 10 μm. Since the chemistry of the micro-plasma jet can be controlled by the choice of the gas mixture, this direct writing process with micro-plasma jet can be a versatile approach for patterned functionalization of graphene with high spatial resolution. This could have promising applications in graphene-based electronics.

  18. Composition determination of quaternary GaAsPN layers from single X-ray diffraction measurement of quasi-forbidden (002) reflection

    Energy Technology Data Exchange (ETDEWEB)

    Tilli, J.-M., E-mail: juha-matti.tilli@iki.fi; Jussila, H.; Huhtio, T.; Sopanen, M. [Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-05-28

    GaAsPN layers with a thickness of 30 nm were grown on GaP substrates with metalorganic vapor phase epitaxy to study the feasibility of a single X-ray diffraction (XRD) measurement for full composition determination of quaternary layer material. The method is based on the peak intensity of a quasi-forbidden (002) reflection, which is shown to vary with changing arsenic content for GaAsPN. The method works for thin films with a wide range of arsenic contents and shows a clear variation in the reflection intensity as a function of changing layer composition. The obtained thicknesses and compositions of the grown layers are compared with accurate reference values obtained by Rutherford backscattering spectroscopy combined with nuclear reaction analysis measurements. Based on the comparison, the error in the XRD defined material composition becomes larger with increasing nitrogen content and layer thickness. This suggests that the dominating error source is the deteriorated crystal quality due to the nonsubstitutional incorporation of nitrogen into the crystal lattice and strain relaxation. The results reveal that the method overestimates the arsenic and nitrogen content within error margins of about 0.12 and about 0.025, respectively.

  19. In-stream Nitrogen Processing and Dilution in an Agricultural Stream Network

    Science.gov (United States)

    Prior, K.; Ward, A. S.; Davis, C. A.; Burgin, A. J.; Loecke, T.; Riveros-Iregui, D. A.; Thomas, S. A.; St Clair, M. A.

    2014-12-01

    The interaction of agricultural fertilizer use and extremes in drought and flood conditions in 2012-2013 set up conditions for a natural experiment on watershed-scale nutrient dynamics. The region-wide drought in 2012 left surface soils disconnected from stream networks and restricted nutrient use by crops, resulting in an unusually large nitrogen pool in soil columns through the winter. When wet conditions returned to the Midwest in 2013, the unused fertilizer was mobilized, resulting in a six-week period of extremely high in-stream nutrient concentrations. This study analyses three synoptic samples from the Iowa-Cedar River Basin in 2013 to quantify patterns in nitrogen dynamics. We use multiple conservative ions as tracers to estimate dilution by lateral inflows. We also estimate nutrient spiraling metrics by treating the fertilizer pulse as a constant rate nutrient addition across the watershed—a scale on which these processes are increasingly modeled numerically, but on which standard nutrient addition experiments are simply not feasible. Results of this study compare patterns in dilution and uptake across spatial and temporal scales, and bound feasible explanations for each reach of the network.

  20. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  1. Nitrogen biogeochemistry in the Adirondack Mountains of New York: hardwood ecosystems and associated surface waters

    International Nuclear Information System (INIS)

    Mitchell, Myron J.; Driscoll, Charles T.; Inamdar, Shreeram; McGee, Greg G.; Mbila, Monday O.; Raynal, Dudley J.

    2003-01-01

    Factors that regulate the fate of atmospherically deposited nitrogen to hardwood forests and subsequent transport to surface waters in the Adirondack region of New York are described. - Studies on the nitrogen (N) biogeochemistry in Adirondack northern hardwood ecosystems were summarized. Specific focus was placed on results at the Huntington Forest (HFS), Pancake-Hall Creek (PHC), Woods Lake (WL), Ampersand (AMO), Catlin Lake (CLO) and Hennessy Mountain (HM). Nitrogen deposition generally decreased from west to east in the Adirondacks, and there have been no marked temporal changes in N deposition from 1978 through 1998. Second-growth western sites (WL, PHC) had higher soil solution NO 3 - concentrations and fluxes than the HFS site in the central Adirondacks. Of the two old-growth sites (AMO and CLO), AMO had substantially higher NO 3 - concentrations due to the relative dominance of sugar maple that produced litter with high N mineralization and nitrification rates. The importance of vegetation in affecting N losses was also shown for N-fixing alders in wetlands. The Adirondack Manipulation and Modeling Project (AMMP) included separate experimental N additions of (NH 4 ) 2 SO 4 at WL, PHC and HFS and HNO 3 at WL and HFS. Patterns of N loss varied with site and form of N addition and most of the N input was retained. For 16 lake/watersheds no consistent changes in NO 3 - concentrations were found from 1982 to 1997. Simulations suggested that marked NO 3 - loss will only be manifested over extended periods. Studies at the Arbutus Watershed provided information on the role of biogeochemical and hydrological factors in affecting the spatial and temporal patterns of NO 3 - concentrations. The heterogeneous topography in the Adirondacks has generated diverse landscape features and patterns of connectivity that are especially important in regulating the temporal and spatial patterns of NO 3 - concentrations in surface waters

  2. Backscattered EM-wave manipulation using low cost 1-bit reflective surface at W-band

    Science.gov (United States)

    Taher Al-Nuaimi, Mustafa K.; Hong, Wei; He, Yejun

    2018-04-01

    The design of low cost 1-bit reflective (non-absorptive) surfaces for manipulation of backscattered EM-waves and radar cross section (RCS) reduction at W-band is presented in this article. The presented surface is designed based on the reflection phase cancellation principle. The unit cell used to compose the proposed surface has an obelus (division symbol of short wire and two disks above and below) like shape printed on a grounded dielectric material. Using this unit cell, surfaces that can efficiently manipulate the backscattered RCS pattern by using the proposed obelus-shaped unit cell (as ‘0’ element) and its mirrored unit cell (as ‘1’ element) in one surface with a 180°  ±  35° reflection phase difference between their reflection phases are designed. The proposed surfaces can generate various kinds of backscattered RCS patterns, such as single, three, or four lobes or even a low-level (reduced RCS) diffused reflection pattern when those two unit cells are distributed randomly across the surface aperture. For experimental characterization purposes, a 50  ×  50 mm2 surface is fabricated and measured.

  3. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    Science.gov (United States)

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  4. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determination of nitrogen absorption and endogenous nitrogen secretion in the digestive tract of pigs fed with nitrogen-15-labelled dried whey

    International Nuclear Information System (INIS)

    Gebhardt, G.; Souffrant, W.; Koehler, R.; Zebrowska, T.

    1977-01-01

    Two fistulated pigs weighing between 15kg and 54kg were given experimental diets containing 15 N-labelled dried whey. The labelled experimental diets were given once only. Samples of the digesta were taken from the duodenum and terminal ileum at various intervals of time up to 48h after feeding the labelled protein feed. The digesta were separated into the four following fractions: Residue on centrifugation, proteins, peptides and free amino acids. The secretion of endogenous nitrogen in the duodenum was 12.5g/24h in pigs having a live weight of 50kg. The endogenous nitrogen was found to be relatively uniformly distributed among the four fractions. The rate of secretion of endogenous nitrogen showed a continuous decrease during 24h. The secretion of endogenous nitrogen in the terminal ileum was 54 to 60mg of nitrogen per kilogram live weight. After passage through the small intestine the greater part of the free amino acids in digesta was of exogenous origin. In the protein fraction most came from endogenous proteins. A true absorption of 17% of nitrogen was determined in the duodenum. The amount of nitrogen absorbed in the terminal part of the small intestine was, on average, 90% relative to the nitrogen intake. The true digestibility calculated with the amount of 15 N in food and faeces was 98%. (author)

  6. Effects of Controlled-Release Urea on Grain Yield of Spring Maize, Nitrogen Use Efficiency and Nitrogen Balance

    Directory of Open Access Journals (Sweden)

    JI Jing-hong

    2017-03-01

    Full Text Available The effects of mixing controlled-released urea (CRU (release period of resin coated urea is 90 days and urea (U on maize yield, nitrogen use efficiency and nitrogen balance were studied by 4 plot experiments (site:Shuangcheng, Binxian, Harbin and Zhaoyuan in two years (from year 2011 to 2012 to clarify the effect of controlled release urea on spring maize and soil nitrogen balance. Results were as follow:Spring maize yield and nitrogen absorption were increased with the increasing nitrogen fertilizer. Compared with applying urea treatment, applying CRU could increase yield, nitrogen absorption, nitrogen use efficiency, agriculture efficiency of nitrogen and nitrogen contribution rate. Under the same amount of nitrogen (100%, 75%, 50%, compared with 100% U as basic fertilizer treatment, maize yield of 100% CRU treatment increased 391, 427, 291 kg·hm-2, nitrogen use efficiency increased by 5.9%,4.9% and 5.1%, agriculture efficiency of nitrogen increased 2.0, 2.6, 2.6 kg·kg-1, and nitrogen contribution rate increased 2.7%, 3.1% and 2.4%, respectively. The value of maize yield, nitrogen absorption, nitrogen use efficiency and agriculture efficiency of nitrogen between the treatment four (40% urea as basic fertilizer+60% urea as topdressing and treatment five (40% urea plus 60% controlled release urea as basic fertilizer were similar. Apparent profit and loss of nitrogen decreased with the increase of nitrogen nitrogen fertilizer. Nitrogen apparent loss by applying 100% controlled release urea was reduced of 15.0 kg·hm-2 than applying 100% U treatment;Nitrogen apparent loss amount was decreased of 23.9 kg·hm-2 under treatment five. The method of mixing 40% urea and 60% controlled release urea should be applied in maize production in Heilongjiang Province.

  7. Prokaryotic community composition involved production of nitrogen in sediments of Mejillones Bay

    International Nuclear Information System (INIS)

    Moraga, Ruben; Galan, Alexander; Rosello-Mora, Ramon; Araya, Ruben; Valdes, Jorge

    2014-01-01

    Conventional denitrification and anaerobic ammonium oxidation (anammox) contributes to nitrogen loss in oxygen-deficient systems, thereby influencing many aspects of ecosystem function and global biogeochemistry. Mejillones Bay, northern Chile, presents ideal conditions to study nitrogen removal processes, because it is inserted in a coastal upwelling system, its sediments have anoxia and hypoxia conditions and under the influence of the Oxygen Minimum Zone (OMZ), unknown processes that occur there and what are the microbial communities responsible for their removal. Microbial communities associated with coastal sediments of Mejillones Bay were studied by denaturing gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH), by incubation experiments with 15 N isotope tracers were studied nitrogen loss processes operating in these sediments. DGGE analysis showed high bacterial diversity, certain redundant phylotypes and differences in community structure given by the depth; this reflects the microbial community adaptations to environmental conditions. A large fraction (up to 70%) of DAPI-stained cells hybridized with the bacterial probes. Nearly 52-90% of the cell could be further identified to know phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in the sediments (13-26%), followed by Proteobacteria. Isotopic tracer experiments for the sediments studied indicated that nitrogen loss processes that predominated were performed by denitrifying communities (43.31-111.20 μMd -1 ) was not possible to detect anammox in the area and not anammox bacteria were detected

  8. Effect of organic manure on nitrogen mineralization, nitrogen accumulation, nitrogen use efficiency and apparent nitrogen recovery of cauliflower (Braccica oleracea L., var. Botrytis)

    NARCIS (Netherlands)

    Beah, A.A.; Norman, P.E.; Scholberg, J.M.S.; Lantinga, E.A.; Conteh, A.R.

    2015-01-01

    Aims: The main aim of the study was to assess the effects of organic manure on nitrogen mineralization, uptake, use and recovery of cauliflower.
    Methodology: Nitrogen is one of the major yield limiting nutrients in cauliflower production. However, organic manure is applied to supplement soil

  9. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    Science.gov (United States)

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  10. Nitrogen Dynamics in European Forest Ecosystems: Considerations regarding Anthropogenic Nitrogen Depositions

    OpenAIRE

    Agren, G.I.; Kauppi, P.

    1983-01-01

    This study deals with the nutrient cycle of forest ecosystems over large geographic regions in Europe as affected by nitrogen deposition. The view is taken that the nitrogen cycle of a forest ecosystem has a maximum capacity for circulating nitrogen. Two different cases are defined: case (1) in which the nutrient cycle functions below its maximum capacity, and case (2) in which the circulation operates at the maximum level.

  11. Geomorphology and reflectance patterns of vegetation-covered dunes at the Tsodilo Hills, north-west Botswana

    Science.gov (United States)

    Jacobberger, P. A.; Hooper, D. M.

    1991-01-01

    Seasonal reflectance variations in semigrid environments provide a means of assessing vegetation health and density as well as monitoring landform processes. Multitemporal Landsat Thematic Mapper scenes with field measurements are used to map geomorphology and vegetation density in a stabilized dune environment and to measure seasonal reflectance changes for a series of ten geomorphological and vegetation units on the Kalahari-age linear dunes. Units were chosen based on differences in landform and proportion of trees, forbs and bare soil. Reflectance curves and normalized-difference vegetation indices (NDVI) show that dune crests have the strongest seasonal variability in color and brightness. The geomorphological link with reflectance and NDVI values are linked to biomass production and zoning of vegetation with slope, drainage and subtle soil differences.

  12. Adaptive infrared-reflecting systems inspired by cephalopods

    Science.gov (United States)

    Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.

    2018-03-01

    Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.

  13. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new seasonal, global-scale model

    Science.gov (United States)

    Understanding sub-annual patterns of catchment dissolved inorganic nitrogen (DIN) export is critical for predicting and mitigating impacts of coastal eutrophication, such as algal blooms and hypoxic areas, which are often seasonal phenomena. We developed the first calibrated glob...

  14. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  15. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  16. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Science.gov (United States)

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  17. Past and future trends in concentrations of sulphur and nitrogen compounds in the Arctic

    DEFF Research Database (Denmark)

    Hole, Lars R.; Christensen, Jesper H.; Ruoho-Airola, Tuija

    2009-01-01

    Recent trends in nitrogen and sulphur compounds in air and precipitation from a range of Arctic monitoring stations are presented, with seasonal data from the late 70s to 2004 or 2005. Earlier findings of declining sulphur concentrations are confirmed for most stations, while the pattern is less ...

  18. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.

    Science.gov (United States)

    Wang, Yi; Liu, Xinliang; Wang, Hua; Li, Yong; Li, Yuyuan; Liu, Feng; Xiao, Runlin; Shen, Jianlin; Wu, Jinshui

    2017-06-01

    Increased nitrogen (N) concentrations in water bodies have highlighted issues regarding nutrient pollution in agricultural catchments. In this study, the ammonium-N (NH 4 + -N), nitrate-N (NO 3 - -N), and total N (TN) concentrations were observed in the stream water and groundwater of two contrasting catchments (named Tuojia and Jianshan) in subtropical central China from 2010 to 2014, to determine the rice agriculture impacts on the hydrographic patterns, and N export characteristics of the catchments. The results suggested that greater amounts of stream flow (523.0 vs. 434.7 mm year -1 ) and base flow (237.6 vs. 142.8 mm year -1 ) were produced in Tuojia than in Jianshan, and a greater base flow contribution to stream flow and higher frequencies of high-base flow days were observed during the fallow season than during the rice-growing season, indicating that intensive rice agriculture strongly influences the catchment hydrographic pattern. Rice agriculture resulted in moderate N pollution in the stream water and groundwater, particularly in Tuojia. Primarily, rice agriculture increased the NH 4 + -N concentration in the stream water; however, it increased the NO 3 - -N concentrations in the groundwater, suggesting that the different N species in the paddy fields migrated out of the catchments through distinct hydrological pathways. The average TN loading via stream flow and base flow was greater in Tuojia than in Jianshan (1.72 and 0.58 vs. 0.72 and 0.15 kg N ha -1  month -1 , respectively). Greater TN loading via stream flow was observed during the fallow season in Tuojia and during the rice-growing season in Jianshan, and these different results were most likely a result of the higher base flow contribution to TN loading (33.5 vs. 21.3%) and greater base flow enrichment ratio (1.062 vs. 0.876) in Tuojia than in Jianshan. Therefore, the impact of rice agriculture on catchment eco-hydrological processes should be considered when performing water quality

  19. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    Science.gov (United States)

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in 5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  20. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation.

    Science.gov (United States)

    Kondyurin, Alexey

    2018-04-24

    Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 10 13 to 10 16 ions/cm². The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.

  1. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Alexey Kondyurin

    2018-04-01

    Full Text Available Ethylene-propylene diene monomer rubber (EPDM was treated by plasma immersion ion implantation (PIII with nitrogen ions of 20 keV energy and fluence from 1013 to 1016 ions/cm2. The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.

  2. The nitrogen footprint tool network: a multi-institution program to reduce nitrogen pollution

    Science.gov (United States)

    Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional...

  3. Determination of nitrogen in boron carbide with the Leco UO-14 Nitrogen Determinator

    International Nuclear Information System (INIS)

    Gardner, R.D.; Ashley, W.H.; Henicksman, A.L.

    1977-11-01

    Use of various metals as fluxes for releasing nitrogen from boron carbide in the Leco Nitrogen Determinator was investigated. Metals such as iron, chromium, and molybdenum that wet the graphite crucible all promoted nitrogen release. Tin, copper, aluminum, and platinum did not wet the graphite and were of no value as fluxes. A procedure for sample handling and the resulting performance of the method are described. The precision at 0.06 to 0.6 percent nitrogen averaged 4 percent relative standard deviation

  4. Nitrate signals determine the sensing of nitrogen through differential expression of genes involved in nitrogen uptake and assimilation in finger millet.

    Science.gov (United States)

    Gupta, Alok Kumar; Gaur, Vikram Singh; Gupta, Sanjay; Kumar, Anil

    2013-06-01

    In order to understand the molecular basis of high nitrogen use efficiency of finger millet, five genes (EcHNRT2, EcLNRT1, EcNADH-NR, EcGS, and EcFd-GOGAT) involved in nitrate uptake and assimilation were isolated using conserved primer approaches. Expression profiles of these five genes along with the previously isolated EcDof1 was studied under increased KNO3 concentrations (0.15 to 1,500 μM) for 2 h as well as at 1.5 μM for 24 h in the roots and shoots of 25 days old nitrogen deprived two contrasting finger millet genotypes (GE-3885 and GE-1437) differing in grain protein content (13.76 and 6.15 %, respectively). Time kinetics experiment revealed that, all the five genes except EcHNRT2 in the leaves of GE-3885 were induced within 30 min of nitrate exposure indicating that there might be a greater nitrogen deficit in leaves and therefore quick transportation of nitrate signals to the leaves. Exposing the plants to increasing nitrate concentrations for 2 h showed that in roots of GE-3885, NR was strongly induced while GS was repressed; however, the pattern was found to be reversed in leaves of GE-1437 indicating that in GE-3885, most of the nitrate might be reduced in the roots but assimilated in leaves and vice-versa. Furthermore, compared with the low-protein genotype, expression of HNRT2 was strongly induced in both roots and shoots of high-protein genotype at the least nitrate concentration supplied. This further indicates that GE-3885 is a quick sensor of nitrogen compared with the low-protein genotype. Furthermore, expression of EcDof1 was also found to overlap the expression of NR, GS, and GOGAT indicating that Dof1 probably regulates the expression of these genes under different conditions by sensing the nitrogen fluctuations around the root zone.

  5. Communication Patterns, Contradictions, and Family Functions.

    Science.gov (United States)

    Yerby, Janet; Buerkel-Rothfuss, Nancy L.

    Families are rule-governed systems of interdependent individuals whose interaction follows an intricate pattern of behavior. Communication patterns in a family reflect and emerge from contradictions in rules. A function may be defined as something that a system does and must do if it is not to break down. For instance identity and stability…

  6. Transformation of fertilizer nitrogen in soil

    International Nuclear Information System (INIS)

    Soechting, H.

    1980-01-01

    Pot experiments are described in which the transformations between nitrogen added as fertilizer urea, plant-assimilated nitrogen, and different chemical fractions of soil or added straw nitrogen were studied with 15 N as a tracer. The data indicated that: (a) The transformation of added fertilizer nitrogen to immobilized amide nitrogen is decreased with added decomposable organic carbon. The transformation to immobilized α-amino N is increased, on the other hand, by the addition of decomposable organic carbon. (b) The freshly immobilized amide nitrogen is more readily remineralized than the α-amino form. The immobilization of added nitrogen continues in the presence of growing plants. (c) Mineralization of nitrogen added as 15 N-labelled straw is also increased with increasing fertilizer-nitrogen additions. (author)

  7. Changes in the content of total nitrogen and mineral nitrogen in the basil herb depending on the cultivar and nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Katarzyna Dzida

    2013-04-01

    Full Text Available Among fundamental nutrients, nitrogen fertilization is considered one of the most effective factors affecting both the yield and the quality of plant material. Nitrogen form used for fertilizing is also of great importance. The aim of this study was to investigate the impact of nitrogen nutrition (calcium nitrate, ammonium nitrate, and urea as well as (green, purple, and‘Fino Verde’ on the chemical composition and yielding of basil (Ocimum basilicumL.. After drying the plant material at a temperature of 60°C and milling, total nitrogen was determined by means of Kjeldahl method, while mineral nitrogen content (N-NH 4, N-NO 3 was analyzed in 2% acetic acid extract. Yield of fresh basil matter depended significantly on the variety grown. The highest yields were obtained from a cultivar of ‘Fino Verde’ fertilized with ammonium nitrate. The purple variety plants fertilized with urea were characterized by a largest amount of total nitrogen. The‘Fino Verde’cultivar fertilized with urea accumulated the least quantities of nitrates in the basil herb.

  8. Design, Analysis, and On-Sun Evaluation of Reflective Strips Under Controlled Buckling

    Science.gov (United States)

    Jaworske, Donald A.; Sechkar, Edward A.; Colozza, Anthony J.

    2014-01-01

    Solar concentrators are envisioned for use in a variety of space-based applications, including applications involving in situ resource utilization. Identifying solar concentrators that minimize mass and cost are of great interest, especially since launch cost is driven in part by the mass of the payload. Concentrators must also be able to survive the wide temperature excursions on the lunar surface. Identifying smart structures which compensate for changes in concentrator geometry brought about by temperature extremes are of interest. Some applications may benefit from the ability to change the concentrators focal pattern at will. This paper addresses a method of designing a single reflective strip to produce a desired focal pattern through the use of controlled buckling. Small variations in the cross section over the length of the reflective strip influence the distribution of light in the focal region. A finite element method of analysis is utilized here which calculates the curve produced for a given strip cross section and axial load. Varying axial force and strip cross section over the length of the reflective strip provide a means of optimizing ray convergence in the focal region. Careful selection of a tapered cross section yields a reflective strip that approximates a parabola. An array of reflective strips under controlled buckling produces a light weight concentrator and adjustments in the compression of individual strips provide a means of compensating for temperature excursions or changing the focal pattern at will.

  9. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    Science.gov (United States)

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  10. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea.

    Science.gov (United States)

    Dutta, Debasree; Gachhui, Ratan

    2006-08-01

    The four nitrogen-fixing bacteria so far described in the family Acetobacteraceae belong to the genera Gluconacetobacter and Acetobacter. Nitrogen-fixing bacterial strain RG1(T) was isolated from Kombucha tea and, based on the phylogenetic analysis of 16S rRNA gene sequence which is supported by a high bootstrap value, was found to belong to the genus Acetobacter. Strain RG1(T) differed from Acetobacter aceti, the nearest member with a 16S rRNA gene sequence similarity of 98.2 %, and type strains of other Acetobacter species with regard to several characteristics of growth features in culture media, growth in nitrogen-free medium, production of gamma-pyrone from glucose and dihydroxyacetone from glycerol. Strain RG1(T) utilized maltose, glycerol, sorbitol, fructose, galactose, arabinose and ethanol, but not methanol as a carbon source. These results, along with electrophoretic mobility patterns of nine metabolic enzymes, suggest that strain RG1(T) represents a novel nitrogen-fixing species. The ubiquinone present was Q-9 and DNA G+C content was 64.1 mol%. Strain RG1(T) exhibited a low value of 2-24 % DNA-DNA relatedness to the type strains of related acetobacters, which placed it as a separate taxon. On the basis of this data, the name Acetobacter nitrogenifigens sp. nov. is proposed, with the type strain RG1(T) (=MTCC 6912(T)=LMG 23498(T)).

  11. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  12. Effect of Phosphorous and Potassium Fertilization on Nitrogen Utilized by wheat Grown in Saline Soil Amended with Organic Manures

    International Nuclear Information System (INIS)

    Soliman, S.M.; Gadalla, A.M.; Kotb, E.A.; Mostafa, S.M.A.; Mansour, M.M.F.

    2008-01-01

    This study was carried out on poor saline soil located at Wad Ras Sudr, South Saini Governorate, and suffers from shortage of water resources. Therefore, we aimed to utilize this soil as well as the saline ground water for plant production. Organic fertilizers such as green manure(GM) or poultry manure(PM) can be used as nutrient sources, where it improves the physical, chemical and biological properties of the soil. Economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. Also, phosphorus and/or potassium supplementation separately or in combination with green or poultry manures improved the growth of wheat plants under such adverse condition of salinity. Application of 15 N technique indicated that labeled nitrogen added as ammonium sulphate (AS) to investigate and discrimination between the different N sources i.e. nitrogen derived from fertilizer (Ndff) and nitrogen derived from soil (Ndfs) as well as nitrogen use efficiency (FUE %)

  13. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Science.gov (United States)

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, d15N of foliage and soil also increases. We measured foliar d15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  14. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    Science.gov (United States)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  15. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  16. The impact of culture on adaptive versus maladaptive self-reflection.

    Science.gov (United States)

    Grossmann, Igor; Kross, Ethan

    2010-08-01

    Although recent findings indicate that people can reflect either adaptively or maladaptively over negative experiences, extant research has not examined how culture influences this process. We compared the self-reflective practices of Russians (members of an interdependent culture characterized by a tendency to brood) and Americans (members of an independent culture in which self-reflection has been studied extensively). We predicted that self-reflection would be associated with less-detrimental outcomes among Russians because they self-distance more when analyzing their feelings than Americans do. Findings from two studies supported these predictions. In Study 1, self-reflection was associated with fewer depressive symptoms among Russians than among Americans. In Study 2, Russians displayed less distress and a more adaptive pattern of construals than Americans after reflecting over a recent negative event. In addition, they self-distanced more than Americans while analyzing their feelings, and self-distancing mediated the cultural differences in self-reflection. These findings demonstrate how culture shapes the way people reflect over negative experiences.

  17. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...... the current reflective paradigm I supervision and relate this to emotive, normative and formative views supervision. The paper is relevant for Nordic educational research into the supervision and guidance...

  19. Nitrogen-15 studies on identifying fertilizer excess in environmental systems

    International Nuclear Information System (INIS)

    Freyer, H.D.; Aly, A.I.M.

    1975-01-01

    The feasibility of identifying fertilizer excesses in surface and ground waters on the basis of variations in the isotope ratio of nitrogen has been studied. The isotope ratio of the commonly used ammonium and nitrate fertilizers is similar to that of atmospheric nitrogen. These ratios are shifted when fertilizers are added to the soil. In the soil, fertilizer ammonium is oxidized and the nitrate formed is reduced in the heavy isotope. The fractionation factors are calculated. This artificially added nitrate becomes mixed with natural nitrate which, in general, is enriched in the heavy isotope. Only 50% (or even less) of the nitrate formed may stem from the added fertilizer. The mixing ratios are time-dependent, and different for various types and conditions of soil. In spite of this complexity, information on this isotopic process should be obtainable, if the isotope ratios of artificial and natural nitrate, respectively, are substantially different. Surface waters, in general, show no significant correlation between nitrate content and isotope ratio due to additions of sewage waters. Some data on ground waters from agricultural areas, however, where the nitrate content apparently resulted from fertilizers, gave a negative correlation of lower isotope ratios with higher nitrate contents. An inverse correlation was found in the isotope ratios of nitrate in untouched surface waters, and they even reflect the composition of the total soil nitrogen. (author)

  20. Efficiency of nitrogen fertilizers for rice

    OpenAIRE

    Roger, Pierre-Armand; Grant, I.F.; Reddy, P.M.; Watanabe, I.

    1987-01-01

    The photosynthetic biomass that develops in the floodwater of wetland rice fields affects nitrogen dynamics in the ecosystem. This review summarizes available data on the nature, productivity, and composition of the photosynthetic aquatic biomass, and its major activities regarding the nitrogen cycle, i.e., nitrogen fixation by free living blue-green algae and #Azolla$, nitrogen trapping, nitrogen accumulation at the soil surface, its effect on nitrogen losses by ammonia volatilization, nitro...

  1. Effect of different nitrogen application types on nitrogen utilization efficiency and fate of fertilizer for sugacane

    International Nuclear Information System (INIS)

    Wei Jianfeng; Wei Dongping; Liu Huanyu; Chen Chaojun; Lan Libin; Liang He

    2013-01-01

    A pot experiment in greenhouse was conducted with "1"5N-labeled urea 5 g/pot (equal to 450 kg · hm"-"2) total nitrogen by three kinds of treatments of disposable bottom application nitrogen before sowing (T1), 50% nitrogen before sowing and 50% nitrogrn during tillering stage (T2), and 30% nitrogen before sowing, 30% nitrogen during tillering stage and 40% nitrogen applied during elongation stage (T3) to investigate the use efficiency and fate of fertilizer nitrogen using the sugarcane cultivar ROC22. Results showed that almost 18% ∼ 29% of total N uptake by sugarcane was supplied by fertilizer, and 71% ∼ 82% N derived from soil and seed-stem. Nitrogen use efficiency ranged from 21.0% to 34.52%, with "1"5N-fertilizer residue of 37.61% ∼ 44.13%, and "1"5N-fertilizer loss of 21.35% ∼ 41.39% among three treatments. Under the three levels of nitrogen application, residual was "1"5N-fertilizer was mainly distributed in 0 ∼ 20 cm top soil. The uptake of nitrogen and the proportion of total N from fertilizer in sugarcane plant, the yield of stalk and sugar after the nitrogen applied, and the use efficiency and residue ratio of "1"5N-fertilizer increased significantly over time, while loss rate of "1"5N-fertilizer decreased significantly with a slight decline trend of nitrogen distribution and sucrose accumulation in stalk. The results also indicated that after the nitrogen applied the amounts "1"5N-fertilizer residue in 0 ∼ 20 cm top soil showed a rising trend, but dropped in 20 ∼ 40 cm soil profile. From the viewpoints of economic benefit and ecological benefit, the nitrogen fertilizer applied of T3 could be optimal treatment. (authors)

  2. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions.

    Science.gov (United States)

    Wang, Da-Wei; Li, Feng; Yin, Li-Chang; Lu, Xu; Chen, Zhi-Gang; Gentle, Ian R; Lu, Gao Qing; Cheng, Hui-Ming

    2012-04-23

    A nitrogen-doped porous carbon monolith was synthesized as a pseudo-capacitive electrode for use in alkaline supercapacitors. Ammonia-assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size-distributions and increased the specific surface area from 383 m(2) g(-1) to 679 m(2) g(-1). The nitrogen-containing porous carbon material showed a higher capacitance (246 F g(-1)) in comparison with the nitrogen-free one (186 F g(-1)). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen-containing functional groups on the surface of the N-doped carbon electrodes in a three-electrode cell. In addition, first-principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  4. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Science.gov (United States)

    Bartrons, M.; Camarero, L.; Catalan, J.

    2010-05-01

    Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN) between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover) vary considerably with elevation. The isotopic composition of nitrogen (δ15N) is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio. We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW) and sediment pore water (SPW) from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰), with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes. In the water column, the range of δ15N values was larger for ammonium (-9.4‰ to 7.4‰) than for nitrate (-11.4‰ to -3.4‰), as a result of higher variation both between and within lakes (epilimnetic vs. DCM water). For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion). Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil interaction; and another highly influenced by soil conditions. The snow-type flow path contributes low DIN

  5. 77 FR 7149 - Notice of Workshop and Call for Information on Integrated Science Assessment for Oxides of Nitrogen

    Science.gov (United States)

    2012-02-10

    ... existing air quality criteria to reflect advances in scientific knowledge on the effects of the pollutant... part of the review of the primary National Ambient Air Quality Standards (NAAQS) for oxides of nitrogen... assist the EPA in developing and refining the scientific information base for the review of the NO 2...

  6. A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation.

    Science.gov (United States)

    Li, Xiukai; Kikugawa, Naoki; Ye, Jinhua

    2009-01-01

    A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb(3)O(8) and H(2)Ti(4)O(9)) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb(3)O(8) sample than for the less acidic H(2)Ti(4)O(9). Compared with the nitrogen-doped KNb(3)O(8) and K(2)Ti(4)O(9) samples, the nitrogen-doped HNb(3)O(8) and H(2)Ti(4)O(9) solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb(3)O(8) sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis.

  7. Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters

    Science.gov (United States)

    Huang, Changchun; Jiang, Quanliang; Yao, Ling; Yang, Hao; Lin, Chen; Huang, Tao; Zhu, A.-Xing; Zhang, Yimin

    2018-03-01

    We examined the relationship between, and variations in, particulate organic carbon (POC) and particulate organic nitrogen (PON) based on previously acquired ocean and inland water data. The latitudinal dependency of POC / PON is significant between 20 and 90° N but weak in low-latitude areas and in the Southern Hemisphere. The mean values of POC / PON in the Southern Hemisphere and Northern Hemisphere were 7.40 ± 3.83 and 7.80 ± 3.92, respectively. High values of POC / PON appeared between 80-90 (12.2 ± 7.5) and 70-80° N (9.4 ± 6.4), while relatively low POC / PON was found from 20 (6.6 ± 2.8) to 40° N (6.7 ± 2.7). The latitudinal variation of POC / PON in the Northern Hemisphere is much stronger than in the Southern Hemisphere due to the influence of more terrestrial organic matter. Higher POC and PON could be expected in coastal waters. POC / PON growth ranged from 6.89 ± 2.38 to 7.59 ± 4.22 in the Northern Hemisphere, with an increasing rate of 0.0024 km from the coastal to open ocean. Variations of POC / PON in lake water also showed a similar latitude-variation tendency of POC / PON with ocean water but were significantly regulated by the lakes' morphology, trophic state and climate. Small lakes and high-latitude lakes prefer relatively high POC / PON, and large lakes and low-latitude lakes tend to prefer low POC / PON. The coupling relationship between POC and PON in oceans is much stronger than in inland waters. Variations in POC, PON and POC / PON in inland waters should receive more attention due to the implications of these values for the global carbon and nitrogen cycles and the indeterminacy of the relationship between POC and PON.

  8. Terrestrial nitrogen cycles: Some unanswered questions

    Science.gov (United States)

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  9. Evolution of farm management, nitrogen efficiency and economic performance on Dutch dairy farms reducing external inputs

    NARCIS (Netherlands)

    Groot, J.C.J.; Rossing, W.A.H.; Lantinga, E.A.

    2006-01-01

    The implementation of the statutory Mineral Accounting System (MINAS) in the Netherlands in the period 1998¿2003 required large reductions in nutrient inputs of dairy farms. Patterns in farm management adjustments throughout 6 years and their effectiveness in terms of nitrogen use efficiency (NUE)

  10. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    Science.gov (United States)

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  11. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species

    NARCIS (Netherlands)

    Agawin, N.S.; Rabouille, S.; Veldhuis, M.; Servatius, L.; Hol, S.; van Overzee, H.M.J.; Huisman, J.

    2007-01-01

    Abstract: Recent discoveries show that small unicellular nitrogen-fixing cyanobacteria are more widespread than previously thought and can make major contributions to the nitrogen budget of the oceans. We combined theory and experiments to investigate competition for nitrogen and light between these

  12. Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh

    Science.gov (United States)

    Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei

    2018-02-01

    Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be

  13. WAVELENGTH SELECTION OF HYPERSPECTRAL LIDAR BASED ON FEATURE WEIGHTING FOR ESTIMATION OF LEAF NITROGEN CONTENT IN RICE

    Directory of Open Access Journals (Sweden)

    L. Du

    2016-06-01

    Full Text Available Hyperspectral LiDAR (HSL is a novel tool in the field of active remote sensing, which has been widely used in many domains because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can improve the spectral resolution and receiving range, but maybe result in data redundancy, difficulty in system integration and high cost as well. Thus, it is necessary and urgent to pick out the nitrogen-sensitive feature wavelengths among the spectral range. The present study, aiming at solving this problem, assigns a feature weighting to each centre wavelength of HSL system by using matrix coefficient analysis and divergence threshold. The feature weighting is a criterion to amend the centre wavelength of the detector to accommodate different purpose, especially the estimation of leaf nitrogen content (LNC in rice. By this way, the wavelengths high-correlated to the LNC can be ranked in a descending order, which are used to estimate rice LNC sequentially. In this paper, a HSL system which works based on a wide spectrum emission and a 32-channel detector is conducted to collect the reflectance spectra of rice leaf. These spectra collected by HSL cover a range of 538 nm – 910 nm with a resolution of 12 nm. These 32 wavelengths are strong absorbed by chlorophyll in green plant among this range. The relationship between the rice LNC and reflectance-based spectra is modeled using partial least squares (PLS and support vector machines (SVMs based on calibration and validation datasets respectively. The results indicate that I wavelength selection method of HSL based on feature weighting is effective to choose the nitrogen-sensitive wavelengths, which can also be co-adapted with the hardware of HSL system friendly. II The chosen wavelength has a high correlation with rice LNC

  14. Sociocultural patterning of neural activity during self-reflection.

    Science.gov (United States)

    Ma, Yina; Bang, Dan; Wang, Chenbo; Allen, Micah; Frith, Chris; Roepstorff, Andreas; Han, Shihui

    2014-01-01

    Western cultures encourage self-construals independent of social contexts, whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional magnetic resonance imaging, we monitored neural responses from adults in East Asian (Chinese) and Western (Danish) cultural contexts during judgments of social, mental and physical attributes of themselves and public figures to assess cultural influences on self-referential processing of personal attributes in different dimensions. We found that judgments of self vs a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e. interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection by changing the weight of the mPFC and TPJ in the social brain network.

  15. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic

  16. Vertical distribution of total carbon, nitrogen and phosphorus in sediments of Drug Spring Lake, Wudalianchi

    Science.gov (United States)

    Zeng, Ying; Yang, Chen

    2018-02-01

    The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.

  17. Longer-term Stream Nitrogen Dynamics after Wildfire and Salvage Harvesting: Implications for Management Concepts based on Trajectories of Post-disturbance Watershed Recovery.

    Science.gov (United States)

    Silins, U.; Emelko, M. B.; Bladon, K. D.; Stone, M.; Williams, C.; Martens, A. M.; Wagner, M. J.

    2015-12-01

    Biogeochemical processes reflecting interaction of vegetation and hydrology govern long-term export of nutrients such as nitrogen, phosphorus, and carbon over successional time scales. While management concepts of watershed "recovery" from disturbance back towards pre-disturbance conditions are often considered over much shorter timescales, few studies have directly explored watershed biogeochemical responses to disturbance long enough to directly document the longer-term trajectory of responses to severe land disturbance on nitrogen export. The objectives of this study were to document both the initial magnitude and patterns of longer-term recovery of stream nitrogen after the 2003 Lost Creek wildfire over nine years in front ranges of the Rocky Mountains in south-west Alberta, Canada. The study was conducted in seven instrumented catchments (4-14 km2), including burned, burned and salvage logged, and unburned (reference) conditions since 2004. Total nitrogen (TN) and nitrate (NO3-) concentrations and area-normalized yields were greater and more variable in burned and post-fire salvage logged catchments when compared with unburned catchments. Large initial increases in stream TN and NO3- production 1-3 years after both wildfire and post-fire salvage logging declined strongly to levels similar to, or below that of unburned watersheds 4-6 years after the fire, and continued to decline (although more slowly) 7-9 years after the wildfire. Post-fire salvage logging produced lower impacts on TN and NO3- in streams and these effects declined even more rapidly compared to the effects of wildfire alone. These changes closely corresponded to the early trajectory of establishment and rapid juvenile growth of post-fire regenerating forest vegetation in both catchment groups. While the concept of hydrologic recovery from disturbance is both a practical and meaningful concept for integrated landscape management for protection of forest water resources, the benchmark for

  18. Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data.

    Science.gov (United States)

    Medina, José M; Díaz, José A; Vukusic, Pete

    2015-04-20

    Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.

  19. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  20. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Science.gov (United States)

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  1. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    OpenAIRE

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic variation for yield, leaf area index, period of maximum soil cover, sensitivity for N-shortage and nitrogen efficiency under low input circumstances was found. However, in these experiments varietie...

  2. Forest fuel reduces the nitrogen load

    International Nuclear Information System (INIS)

    Lundborg, A.

    1993-03-01

    A study of the literature was made on the basis of the following hypothesis: ''If nitrogen-rich felling residues are removed from the forest, the nitrogen load on the forest ecosystem is decreased and the risk of nitrogen saturation also decreases''. The study was designed to provide information on how the nitrogen situation is influenced if felling residues are removed from nitrogen-loaded forests and used as fuel. Felling residues release very little nitrogen during the first years after felling. They can immobilize nitrogen from the surroundings, make up a considerable addition to the nitrogen store in the soil, but also release nitrogen in later stages of degradation. The slash has an influence on the soil climate and thus on soil processes. Often there is an increase in the mineralization of litter and humus below the felling residues. At the same time, nitrification is favoured, particularly if the slash is left in heaps. Felling residues contain easily soluble nutrients that stimulate the metabolization of organic matter that otherwise is rather resistant to degradation. The slash also inhibits the clear-cut vegetation and its uptake of nitrogen. These effects result in increased leaching of nitrogen and minerals if the felling residues are left on the site. (99 refs.)

  3. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  4. Brucella, nitrogen and virulence.

    Science.gov (United States)

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  5. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    International Nuclear Information System (INIS)

    Tang, Chong-Jian; He, Rui; Zheng, Ping; Chai, Li-Yuan; Min, Xiao-Bo

    2013-01-01

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor

  6. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chong-Jian, E-mail: chjtangzju@yahoo.com.cn [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China); He, Rui; Zheng, Ping [Department of Environmental Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Chai, Li-Yuan; Min, Xiao-Bo [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor.

  7. Patterns of new versus recycled primary production in the terrestrial biosphere

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...

  8. Pattern formation in urbanism : A critical reflection on urban morphology, planning and design

    NARCIS (Netherlands)

    Çaliskan, O.

    2013-01-01

    This thesis is all about urban patterns, what we see through the windows of the plane with an admiration of their relief-like scenery covering the land surface. In a sense, the spatial pattern within our cities is the biggest collectively produced artifact of human beings. It is both the originator

  9. Enhancing biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Danso, S.K.A.; Eskew, D.L. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))

    1984-06-01

    Several co-ordinated research programmes (CRPs) conducted by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division have concentrated on finding the most efficient way of applying nitrogen fertilizers to various crops, using nitrogen-15 (/sup 15/N) as a tracer. The findings of these studies have been adopted in many countries around the world, resulting in savings of nitrogen fertilizers worth many millions of dollars every year. More recently, the Section's CRPs have focused on enhancing the natural process of biological di-nitrogen fixation. The /sup 15/N isotope technique has proven to be very valuable in studies of the legume-Rhizobium symbiosis, allowing many more experiments than before to be done and yielding much new practical information. The Soils Section is now working to extend the use of the technique to other nitrogen-fixing symbioses.

  10. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom

    International Nuclear Information System (INIS)

    Dixon, J.

    2001-01-01

    There is a possibility of further controls on emissions to the atmosphere of nitrogen dioxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the responses non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial fits have been developed for the empirical ratio NO 2 :NO x (the 'yield'). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than about 50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. (Author)

  11. Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Peter P. J. Roosjen

    2017-04-01

    Full Text Available Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs are affected by this because of their relatively large field of view (FOV and thus large range of viewing angles. In this study, we investigated the magnitude of reflectance anisotropy effects in the 500–900 nm range, captured by a frame camera mounted on a UAV during a standard mapping flight. After orthorectification and georeferencing of the images collected by the camera, we calculated the viewing geometry of all observations of each georeferenced ground pixel, forming a dataset with multi-angular observations. We performed UAV flights on two days during the summer of 2016 over an experimental potato field where different zones in the field received different nitrogen fertilization treatments. These fertilization levels caused variation in potato plant growth and thereby differences in structural properties such as leaf area index (LAI and canopy cover. We fitted the Rahman–Pinty–Verstraete (RPV model through the multi-angular observations of each ground pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. The Θ parameter of the RPV model, which controls the proportion of forward and backward scattering, showed strong correlation with canopy cover, where in general an increase in canopy cover resulted in a reduction of backward scattering intensity, indicating that reflectance anisotropy contains information on canopy structure. In this paper, we demonstrated that anisotropy data can be extracted from measurements using a frame camera, collected during a typical UAV mapping flight. Future research will focus on how to use the anisotropy signal as a source of information for estimation of physical vegetation properties.

  12. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    Science.gov (United States)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  13. Nitrogen in rock: Occurrences and biogeochemical implications

    Science.gov (United States)

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  14. Canine and incisor microwear in pitheciids and Ateles reflects documented patterns of tooth use.

    Science.gov (United States)

    Delezene, Lucas K; Teaford, Mark F; Ungar, Peter S

    2016-09-01

    Platyrrhine species differ in the extent to and the manner in which they use their incisors and canines during food ingestion. For example, Ateles uses its anterior teeth to process mechanically nondemanding soft fruits, while the sclerocarp-harvesting pitheciids rely extensively on these teeth to acquire and process more demanding foods. Pitheciids themselves vary in anterior tooth use, with the pitheciines (Cacajao, Chiropotes, and Pithecia) noted to use their robust canines in a variety of ways to predate seeds, while Callicebus, which rarely predates seeds, uses its incisors and exceptionally short canines to scrape tough mesocarp from fruits. To investigate the relationship between tooth use and dental wear, microwear textures were investigated for the anterior teeth of these five genera of platyrrhine primates. Using a white light confocal microscope, 12 microwear texture attributes that reflect feature size, anisotropy, density, and complexity were recorded from high-resolution epoxy casts of the incisors and canines of adult wild-collected Brazilian specimens of Ateles, Callicebus, Cacajao, Chiropotes, and Pithecia. Pitheciine canines tend to have deep microwear features and complex, anisotropic microwear textures, while Ateles anterior teeth tend to have very small features, low feature density, and less complex and anisotropic surfaces. Callicebus incisor and canine microwear is generally intermediate in size and complexity between those extremes. These findings align with expectations from reported field observations of tooth use and illustrate the potential for using microwear texture analysis to infer patterns of anterior tooth use in extinct primates. Am J Phys Anthropol 161:6-25, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. The effect of percentage of nitrogen in plasma gas on nitrogen

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... an arc plasma into liquid iron has been investigated by melting iron in an atmosphere of nitrogen and argon using an arc plasma. Results show that both the rate of ..... "Solubility of Nitrogen in arc melted and Levitation-melted.

  16. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  17. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    Science.gov (United States)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  18. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially explicit, global model

    Science.gov (United States)

    Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in depth. Much less is known, however, about seasonal patterns and controls of coastal DIN delivery across larg...

  19. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests

    International Nuclear Information System (INIS)

    Hůnová, Iva; Maznová, Jana; Kurfürst, Pavel

    2014-01-01

    We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1–0.2 g m −2 year −1 with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m −2 year −1 is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO 3 − /SO 4 2− and NH 4 + /SO 4 2− in precipitation show significantly increasing trends in time similarly to those of pH. -- Highlights: • Significant decrease of sulphur deposition at most of sites has been recorded. • Nitrogen deposition still represents a considerable stress in Czech forests. • Significantly increasing trends of NO 3 − /SO 4 2− , NH 4 + /SO 4 2− , and pH in precipitation. -- While sulphur deposition significantly decreased with the highest improvement in formerly most affected areas, nitrogen deposition still represents a considerable stress in Czech forests

  20. Patterns of nitrogen export from a seasonal freezing agricultural watershed during the thawing period.

    Science.gov (United States)

    Zhao, Qiang; Chang, Dan; Wang, Kang; Huang, Jiesheng

    2017-12-01

    The objectives of this study were to investigate water, ammonium nitrogen (NH 4 + -N), and nitrate nitrogen (NO 3 - -N) export processes during the thawing period in a watershed with heavy agricultural activities and to evaluate contributions of N (i.e., NO 3 - -N and NH 4 + -N) from different source areas under different climate conditions. Experiments were conducted within the 75km 2 agricultural Heidingzi watershed in northeast China. The thawing period was divided into four stages: early-melt, late-melt, rain-on-melt, and post-melt. Drainage regions (DRs) were separated into three types. The processes of water and N discharge from soil into rivers were monitored in these DRs during the thawing periods of 2014, 2015, and 2016. Results show that the processes of water and N discharge were not synchronous during the thawing period. Variations in discharge concentrations of NH 4 + -N and NO 3 - -N during the thawing period were mainly affected by the flushing effect, which was controlled by the physical state of the surface water (snow or ice) and the melt rate of frozen soil. Contributions of N export from the DRs varied under different land uses and climate conditions during the thawing period. NO 3 - -N export was mainly from maize fields. Thawing stages with high NO 3 - -N export were always accompanied by higher discharge rates. NH 4 + -N export mainly occurred during the early-melt and late-melt stages and from riverside rural regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    Science.gov (United States)

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that

  2. Fire effects on the mobilization and uptake of nitrogen by cheatgrass (Bromus tectorum L.)

    Science.gov (United States)

    Brittany G. Johnson; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank

    2011-01-01

    Cheatgrass (Bromus tectorum L.), an invasive annual grass, is displacing native species and causing increased fire frequency in the Great Basin of the southwestern United States. Growth and nitrogen uptake patterns by cheatgrass were examined in a greenhouse study using soils from sites with the same soil type but different fire histories: 1) an area that burned in...

  3. Evaluation of the Impact of Alveolar Nitrogen Excretion on Indices Derived from Multiple Breath Nitrogen Washout

    Science.gov (United States)

    Nielsen, Niklas; Nielsen, Jorgen G.; Horsley, Alex R.

    2013-01-01

    Background A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of body nitrogen excreted across the alveoli has previously been ignored. Methods A two-compartment lung model was developed that included ventilation heterogeneity and dead space (DS) effects, but also incorporated experimental data on nitrogen excretion. The model was used to assess the impact of nitrogen excretion on washout progress and accuracy of functional residual capacity (FRC) and lung clearance index (LCI) measurements. Results Excreted nitrogen had a small effect on accuracy of FRC (1.8%) in the healthy adult model. The error in LCI calculated with true FRC was greater (6.3%), and excreted nitrogen contributed 21% of the total nitrogen concentration at the end of the washout. Increasing DS and ventilation heterogeneity both caused further increase in measurement error. LCI was increased by 6–13% in a CF child model, and excreted nitrogen increased the end of washout nitrogen concentration by 24–49%. Conclusions Excreted nitrogen appears to have complex but clinically significant effects on washout progress, particularly in the presence of abnormal gas mixing. This may explain much of the previously described differences in washout outcomes between SF6 and nitrogen. PMID:24039916

  4. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  5. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Directory of Open Access Journals (Sweden)

    Brian L Zielinski

    Full Text Available The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon

  6. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    Science.gov (United States)

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  7. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  8. Developments in nitrogen generators

    International Nuclear Information System (INIS)

    Ayres, C.L.; Abrardo, J.M.; Himmelberger, L.M.

    1984-01-01

    Three process cycles for the production of nitrogen by the cryogenic separation of air are described in detail. These cycles are: (1) a waste expander cycle; (2) an air expander cycle; and (3) a cycle for producing large quantities of gaseous nitrogen. Each cycle has distinct advantages for various production ranges and delivery pressures. A dicussion of key parameters that must be considered when selecting a cycle to meet specific product requirements is presented. The importance of high plant reliability and a dependable liquid nitrogen back up system is also presented. Lastly, a discussion of plant safety dealing with the hazards of nitrogen, enriched oxygen, and hydrocarbons present in the air is reviewed

  9. Nitrogen from mountain to fjord - Annual report 1993; Nitrogen fra fjell til fjord. Aarsrapport 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kaste, Oe; Bechmann, M; Toerset, K

    1994-07-01

    ``Nitrogen from mountain to fjord`` is an interdisciplinary research programme which studies the nitrogen cycle from deposition to discharge into the sea. The project includes investigation of the nitrogen budgets for two catchments and selected areas of mountain, heath, forest, crop land and fresh water. The main purpose of the project is to increase the knowledge of uptake and runoff of nitrogen and thus to improve the prediction of future effects on soil, forest, fresh water and fjords. The activities are concentrated about two water courses in Norway: Bjerkreimsvassdraget and Aulivassdraget. In Bjerkreimsvassdraget the nitrate concentration changed only little from 1992 to 1993. Relatively large variations in the nitrate concentrations were found in the forest and heath areas of the system. In Aulivassdraget the nitrogen concentration has changed considerably in 1992 and 1993. The maximum concentration measured in the main river was 13.2 mg N/l. In autumn 1992 and spring 1993 much nitrogen remained in the soil after the poor harvest of 1992 and at that time much nitrogen was carried away by the runoff. 16 refs., 19 figs., 16 tabs.

  10. Nitrogen trading tool

    Science.gov (United States)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  11. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    Science.gov (United States)

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  12. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new seasonal, spatially explicit, global model - 2012

    Science.gov (United States)

    Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and zone and ...

  13. Photocatalytic activity and RNO dye degradation of nitrogen-doped TiO{sub 2} prepared by ionothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pipi, Angelo; Ruotolo, Luis, E-mail: pluis@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia Quimica; Byzynski, Gabriela [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil)

    2017-05-15

    This work concerns the preparation a nitrogen-doped TiO{sub 2} by ionothermal synthesis methods and the photocatalytic studies. In this procedure, alkoxide was used as a titanium source, and a deep eutectic mixture of choline chloride and urea (molar ratio 1:2) served as a solvent and source of nitrogen. Different samples were synthesized varying the percentages of the eutectic mixture, titanium butoxide, and water, as well as temperature and reaction time. The catalysts were characterized by X-ray diffraction, Raman spectrometry, scanning electron microscopy, and diffuse reflectance spectroscopy. N-doping was confirmed by X-ray photoelectron spectroscopy. The photocatalytic activity of the N-TiO{sub 2} nanoparticles was evaluated in the oxidation of N,N-dimethyl-4-nitrosoaniline (RNO) dye. The best photocatalytic activity under illumination by UV and visible light was found for the catalysts prepared under reflux in the presence of water, and for the catalysts prepared hydrothermally using intermediate percentages of the nitrogen source (the eutectic mixture). (author)

  14. State-dependent cellular activity patterns of the cat paraventricular hypothalamus measured by reflectance imaging

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, D M; Poe, G R

    1996-01-01

    Activity within the cat paraventricular hypothalamus (PVH) during sleep and waking states was measured by quantifying intrinsic tissue reflectivity. A fiber optic probe consisting of a 1.0 mm coherent image conduit, surrounded by plastic fibers which conducted 660 nm source light, was attached...... to a charge-coupled device camera, and positioned over the PVH in five cats. Electrodes for assessing state variables, including electroencephalographic activity, eye movement, and somatic muscle tone were also placed. After surgical recovery, reflected light intensity was measured continuously at 2.5 Hz...

  15. Revised models of interstellar nitrogen isotopic fractionation

    Science.gov (United States)

    Wirström, E. S.; Charnley, S. B.

    2018-03-01

    Nitrogen-bearing molecules in cold molecular clouds exhibit a range of isotopic fractionation ratios and these molecules may be the precursors of 15N enrichments found in comets and meteorites. Chemical model calculations indicate that atom-molecular ion and ion-molecule reactions could account for most of the fractionation patterns observed. However, recent quantum-chemical computations demonstrate that several of the key processes are unlikely to occur in dense clouds. Related model calculations of dense cloud chemistry show that the revised 15N enrichments fail to match observed values. We have investigated the effects of these reaction rate modifications on the chemical model of Wirström et al. (2012) for which there are significant physical and chemical differences with respect to other models. We have included 15N fractionation of CN in neutral-neutral reactions and also updated rate coefficients for key reactions in the nitrogen chemistry. We find that the revised fractionation rates have the effect of suppressing 15N enrichment in ammonia at all times, while the depletion is even more pronounced, reaching 14N/15N ratios of >2000. Taking the updated nitrogen chemistry into account, no significant enrichment occurs in HCN or HNC, contrary to observational evidence in dark clouds and comets, although the 14N/15N ratio can still be below 100 in CN itself. However, such low CN abundances are predicted that the updated model falls short of explaining the bulk 15N enhancements observed in primitive materials. It is clear that alternative fractionating reactions are necessary to reproduce observations, so further laboratory and theoretical studies are urgently needed.

  16. Use of stable nitrogen isotope 15N in investigating nitrogen uptake by plants from allylisothiocyanate decomposition products

    International Nuclear Information System (INIS)

    Dolejskova, J.; Kovar, J.

    1976-01-01

    The assimilability of nitrogen from allylisothiocyanate or from its nitrogenous decomposition products by plants was investigated using 15 N-labelled allylisothiocyanate. The results show that plant nitrogen assimilation from allylisothiocyanate is the higher, the lower the total nitrogen content of the nutritive medium. (author)

  17. Nitrogen balance during growth of cauliflower

    NARCIS (Netherlands)

    Everaarts, A.P.

    2000-01-01

    The potential for loss of nitrogen to the environment during growth of cauliflower was investigated. A comparison was made between cauliflower growth and nitrogen uptake without, and with, nitrogen application of the recommended amount (=225 kg ha-1 minus mineral nitrogen in the soil layer 0–60 cm,

  18. Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC No. 2a, isolated from mangrove wood

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza-Ticlo, D.; Verma, A.K.; Mathew, M.; Raghukumar, C.

    Carbon and nitrogen sources in the growth medium play an important role in the production of lignin-degrading enzymes in the white-rot basidiomyceteous fungi. The role of nutrient nitrogen sources in growth media on production of lignin...

  19. [Control of Soil Nutrient Loss of Typical Reforestation Patterns Along the Three Gorges Reservoir Area].

    Science.gov (United States)

    Wu, Dong; Huang, Zhi-lin; Xiao, Wen-fa; Zeng, Li-xiong

    2015-10-01

    Annual soil nutrient loss characteristics on typical reforestation patterns in watershed along the Three Gorges Reservoir Area were studied based on runoff plot experiment. Runoff and sediment nutrition content from May to October 2014 of typical reforestation patterns including garden plot (tea garden), forest land (Chinese chestnut) and the original slope farmland were determined and then analyzed. The results showed that: (1) After the Returning Farmland to Forest Project the quantity of annual soil nutrient (nitrogen and phosphorus, the sum of them in sediment and runoff) loss decreased. The output of total nitrogen (TN) was in the order of slope farmland (2 444.27 g x hm(-2)) > tea garden (998.70 g x hm(-2)) > Chinese chestnut forest (532.61 g x hm(-2)), and for total phosphorus (TP) loss was slope farmland (1 690.48 g x hm(-2)) > tea garden (488.06 g x hm(-2)) > Chinese chestnut forest (129.00 g x hm(-2)) . Compared with slope farmland, the load of TN and TP output of reforestation patterns decreased 68.68% and 81.75%, respectively. (2) Compared with slope farmland, available nitrogen loss decreased in reforestation patterns. Total nitrate nitrogen (NO3(-)-N) loss ranked in the order of slope farmland (113.79 g x hm(-2)) > tea garden (73.75 g x hm(-2)) > Chinese chestnut forest (56.06 g x hm(-2)) The largest amount of ammonium nitrogen (NH4(+)-N) was found in tea garden (69.34 g x hm(-2)), then in farmland (52.45 g x hm(-2)), and the least in Chinese chestnut forest (47.23 g x hm(-2)). (3) The main route of NO3(-)-N and NH4(+)-N loss was both through runoff, the quantity of NO3(-)-N and NH4(+)-N output in which accounted for 91.4% and 92.2% of the total, respectively. The quantity of TN and TP in sediment accounted for 86.6% and 98.4% of the total. TN and TP loss showed an extremely significant correlation with sediments, which showed that sediment output was the main approach of TN and TP loss.

  20. Global Patterns of the Isotopic Composition of Soil and Plant Nitrogen

    Science.gov (United States)

    Amundson, R.; Yoo, K.

    2014-12-01

    From a societal perspective, soil N follows only soil C in the importance of soil to 21st century environmental issues. Amundson et al (2003) developed a mass balance model for soil N and the ratio of 15N/14N, and provided the first global projections of the spatial patterns of soil and plant δ15N values. It was hypothesized that state factors, particularly climate, should drive broad patterns of soil and plant δ15N values in a manner analogous to the known patterns of total soil N (e.g. Post et al., 1984). At that time, the N isotope data available to explore the effect of individual factors was modest. In the past decade, numerous papers from a broad spectrum of locations have created a rich database that can be used to further refine the initial projections made more than a decade ago. In this paper, hundreds of published measurements will be used to more deeply examine the climatic impacts on soil and plant δ15N values. Additionally, we will focus on the local controls of topography on ecosystem N cycling, which can create local isotopic variation that is similar in magnitude to the global effects of climate. The adoption of process-based models from the hillslope geomorphology community appears to be a powerful tool for explaining some existing data from toposequences, designing new studies of topographic controls on biogeochemistry, and particularly for parameterization in global models. Amundson, R., A.T. Austin, E.A.G. Schuur, K. Yoo, V. Matzek, C. Kendall, A. Uebersax, D. Brenner, and W.T. Baisden. 2003. Global Biogeochemical Cycles 17(1):1031.

  1. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    Science.gov (United States)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  2. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  3. Nitrogen abundance in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion. 88 refs

  4. [Diagnoses of rice nitrogen status based on characteristics of scanning leaf].

    Science.gov (United States)

    Zhu, Jin-Xia; Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Zhu-Lu; Han, Ning; Wang, Ke

    2009-08-01

    In the present research, the scanner was adopted as the digital image sensor, and a new method to diagnose the status of rice based on image processing technology was established. The main results are as follows: (1) According to the analysis of relations between leaf percentage nitrogen contents and color parameter, the sensitive color parameters were abstracted as B, b, b/(r+g), b/r and b/g. The leaf position (vertical spatial variation) effects on leaf chlorophyll contents were investigated, and the third fully expanded leaf was selected as the diagnosis leaf. (2) Field ground data such as ASD were collected simultaneously. Then study on the relationships between scanned leaf color characteristics and hyperspectral was carried out. The results indicated that the diagnosis of nitrogen status based on the scanned color characteristic is able to partly reflect the hyperspectral properties. (3) The leaf color and shape features were intergrated and the model of diagnosing the status of rice was established with calculated at YIQ color system. The distinct accuracy of nitrogen status was as follows: N0: 74.9%; N1 : 52%; N2 : 84.7%; N3 : 75%. The preliminary study showed that the methodology has been proved successful in this study and provides the potential to monitor nitrogen status in a cost-effective and accurate way based on the scanned digital image. Although, some confusion exists, with rapidly increasing resolution of digital platform and development of digital image technology, it will be more convenient for larger farms that can afford to use mechanized systems for site-specific nutrient management. Moreover, deeper theory research and practice experiment should be needed in the future.

  5. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa

    2018-03-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and

  6. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa

    2018-01-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and

  7. Broiler litter and inorganic nitrogen fertilizers influence on earliness and yield on strawberry and cabbage

    International Nuclear Information System (INIS)

    Chehab, Abed Elghani

    1996-01-01

    Author.Comparison of broiler litter (BL) rates to inorganic nitrogen fertilizers was studied during 1994-1995 as to its effect on earliness and yield of strawberry and cabbage grown on a calcareous soil. Strawberry (Frag aria x ananassa Duch.cv.Oso Grande) was grown using BL at rates which supplied 100 (BL1) or 200 (BL2) Kg N/ha, ammonium nitrate or nitrogen+trace elements applied at 150 Kg N/ha in six equally split applications throughout the growing season. Crop yield was higher (P 0.05) under the litter treated plots especially the BL2 rate. Leaf Fe was comparable among treatments (P>0.05) and no Fe chlorosis symptoms were observed, even though the soil is calcareous. Residual soil nitrate-nitrogen was comparable (P>0.05) among all the treatments with the ammonium nitrate and the BL2 having the highest values, indicating that BL at 200 Kg N/ha apparently released an amount of N equivalent to that from the 150 Kg N/ha of ammonium nitrate. Available soil P (water soluble), although comparable among treatments (P>0.05), was higher under the BL treated plots especially at the 200 Kg N/ha rate reflecting the P content of the manure. It is recommended to apply BL at a rate of 200 Kg N/ha to fertilize strawberry over the use of inorganic N fertilizers at similar rates. O-S-Cross cabbage (Brassica oleracea var. Capitata) was tested using the same rates of BL described previously, ammonium nitrate or nitrogen+trace elements at 125 Kg N/ha split as 25 Kg N/ha early in the season, 50 Kg N/ha just before heading, and 50 Kg N/ha at heading. Total yield and marketable yield were higher under the inorganic treated plots than under BL (P 2 . The higher yields under the inorganic N fertilizer treated plots were also reflected in leaf nitrate-nitrogen. Leaf blade P was comparable (P>0.05) among all treatments indicating a high soil P level at the beginning of all treatments before heading (P>0.05) and at heading, where as at first harvest it was higher (P<0.05) under the nitrogen

  8. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    1998-01-01

    Literature reports show little effect of nitrogen supply on radiation use efficiency in potato and in other dicotyledonous C3 species. This paper tests the hypothesis that potato reduces leaf size rather than leaf nitrogen concentration and photosynthetic capacity when nitrogen is in short supply.

  9. Design principles for morphologies of antireflection patterns for solar absorbing applications.

    Science.gov (United States)

    Moon, Yoon-Jong; Na, Jin-Young; Kim, Sun-Kyung

    2015-07-01

    Two-dimensional surface texturing is a widespread technology for imparting broadband antireflection, yet its design rules are not completely understood. The dependence of the reflectance spectrum of a periodically patterned glass film on various structural parameters (e.g., pitch, height, shape, and fill factor) has been investigated by means of full-vectorial numerical simulations. An average weighted reflectivity accounting for the AM1.5G solar spectrum (λ=300-1000  nm) was sinusoidally modulated by a rod pattern's height, and was minimized for pitches of 400-600 nm. When a rationally optimized cone pattern was used, the average weighted reflectivity was less than 0.5%, for incident angles of up to 40° off normal. The broadband antireflection of a cone pattern was reproduced well by a graded refractive index film model corresponding to its geometry, with the addition of a diffraction effect resulting from its periodicity. The broadband antireflection ability of optimized cone patterns is not limited to the glass material, but rather is generically applicable to other semiconductor materials, including Si and GaAs. The design rules developed herein represent a key step in the development of light-absorbing devices, such as solar cells.

  10. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  11. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  13. Nitrogen and energy metabolism of sows during several reproductive cycles in relation to nitrogen intake

    NARCIS (Netherlands)

    Everts, H.

    1994-01-01

    By feeding the same diet during pregnancy and lactation sows are fed above the nitrogen requirement during pregnancy due to the relatively high nitrogen requirement during lactation. For feeding closer to the requirements at least two diets are needed: one diet with a low nitrogen content

  14. Invasive insect effects on nitrogen cycling and host physiology are not tightly linked.

    Science.gov (United States)

    Rubino, Lucy; Charles, Sherley; Sirulnik, Abby G; Tuininga, Amy R; Lewis, James D

    2015-02-01

    Invasive insects may dramatically alter resource cycling and productivity in forest ecosystems. Yet, although responses of individual trees should both reflect and affect ecosystem-scale responses, relationships between physiological- and ecosystem-scale responses to invasive insects have not been extensively studied. To address this issue, we examined changes in soil nitrogen (N) cycling, N uptake and allocation, and needle biochemistry and physiology in eastern hemlock (Tsuga canadensis (L) Carr) saplings, associated with infestation by the hemlock woolly adelgid (HWA) (Adelges tsugae Annand), an invasive insect causing widespread decline of eastern hemlock in the eastern USA. Compared with uninfested saplings, infested saplings had soils that exhibited faster nitrification rates, and more needle (15)N uptake, N and total protein concentrations. However, these variables did not clearly covary. Further, within infested saplings, needle N concentration did not vary with HWA density. Light-saturated net photosynthetic rates (Asat) declined by 42% as HWA density increased from 0 to 3 adelgids per needle, but did not vary with needle N concentration. Rather, Asat varied with stomatal conductance, which was highest at the lowest HWA density and accounted for 79% of the variation in Asat. Photosynthetic light response did not differ among HWA densities. Our results suggest that the effects of HWA infestation on soil N pools and fluxes, (15)N uptake, needle N and protein concentrations, and needle physiology may not be tightly coupled under at least some conditions. This pattern may reflect direct effects of the HWA on N uptake by host trees, as well as effects of other scale-dependent factors, such as tree hydrology, affected by HWA activity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The nitrogen doping effect on the properties of Ge-In-Sb-Te phase-change recording media investigated by blue-light laser

    International Nuclear Information System (INIS)

    Yeh, T.-T.; Hsieh, T.-E.; Shieh, H.-P.D.

    2005-01-01

    This work investigates the thermal, optical and recrystallization properties as well as the microstructure of nitrogen-doped Ge-In-Sb-Te (GIST) phase-change material when irradiated by blue-light laser. The experimental results showed that nitrogen doping at the condition of N 2 /Ar sputtering gas flow ratio equals to 3% might enhance the recrystallization speed of GIST recording layer up to 1.5 times. However, the disk failed when too much nitrogen (N 2 /Ar ≥ 5.0%) was introduced. The data obtained by differential scanning calorimetry, X-ray diffraction and ellipsometry revealed changes of thermal and optical properties due to the nitrogen doping in GIST. When appropriate amount of nitrogen was added, the activation energy (E a ) of amorphous-crystalline phase transition of GIST decreased and the optical constants of amorphous and crystalline phases (except the k value of amorphous phase) gradually reduced with the increase of wavelength in the range of 600-750 nm. Modulation simulation based on the reflectively of doped GIST layers obtained from static test indicated that appropriate nitrogen doping benefited the signal characteristics of optical disks. Transmission electron microscopy observed numerous tiny precipitates uniformly distributed in the doped GIST layers. These were believed to be nitride particles generated by nitrogen doping that might offer the preferential sites for amorphous-crystalline phase transition so that the recrystallization speed was accelerated

  16. 21 CFR 582.1540 - Nitrogen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Nitrogen. 582.1540 Section 582.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Nitrogen. (a) Product. Nitrogen. (b) Conditions of use. This substance is generally recognized as safe when...

  17. Mean age distribution of inorganic soil-nitrogen

    Science.gov (United States)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  18. Effects of Watering and Nitrogen Fertilization on Yield and Water and Nitrogen Use Efficiency of Cropping Oil Sunflower

    Directory of Open Access Journals (Sweden)

    TAN Jian-xin

    2015-10-01

    Full Text Available The field experiment with split-plot design was conducted to study the effects of the interaction of water and nitrogen fertilization on the growth and yield of oil sunflower, water and nitrogen use efficiency of cropping oil sunflower. This experiment set three irrigation rate treatments, including high irrigation treatment (5 250 m3·hm-2, middle irrigation treatment (3 750 m3·hm-2, low irrigation treatment (2 250 m3·hm-2, and four nitrogen application rate treatments, covering no nitrogen fertilization treatment (0 kg·hm-2, low nitrogen application treatment (120 kg·hm-2, middle nitrogen application treatment (240 kg·hm-2 and high nitrogen application treatment (360 kg·hm-2. The results showed that the nitrogen absorption and nitrogen use efficiency of cropping oil sunflower increased as the irrigation rate increased. With the nitrogen application rate increased, the yield of cropping oil sunflower was increased when the nitrogen application rate was 0~240 kg·hm-2, but beyond the 240 kg·hm-2, there was no significant increase. With the irrigation rate increased, the water consumption amount of cropping oil sunflower increased all the time, but the water use efficiency increased first, and hen decreased. Besides there was no significant difference between 240 kg·hm-2 and 360 kg·hm-2 treatment. Under our experiment condition, during the cropping oil sunflower growth period, when the irrigation rate was 5 250 m3·hm-2 (high irrigation rate and the nitrogen ertilization was 360 m3·hm-2 (high nitrogen application rate, the yield of cropping oil sunflower was 3 598 kg·hm-2. When the irrigation rate was 3 750 m3·hm-2 (middle irrigation rate and the nitrogen fertilization was 240 m3·hm-2 (middle nitrogen application rate, the yield was 3 518 kg·hm-2, with the yield components similar with the high irrigation rate and high nitrogen application rate treatment. Considering various factors, middle irrigation rate and middle nitrogen

  19. Convergence of soil nitrogen isotopes across global climate gradients

    Science.gov (United States)

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  20. 46 CFR 154.1755 - Nitrogen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-522). [CGD 74-289, 44 FR 26009, May 3...

  1. [Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil].

    Science.gov (United States)

    Wang, Zhaohui; Wang, Bing; Li, Shengxiu

    2004-08-01

    Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.

  2. Influence of diet on the distribution of nitrogen isotopes in animals

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The delta 15 N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different delta 15 N values. The variability of the relationship between the delta 15 N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in 15 N relative to the diet, with the difference between the delta 15 N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The delta 15 N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the delta 15 N value of the diet. The dependence of the delta 15 N values of whole animals and their tissues and biochemical components on the delta 15 N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different delta 15 N values. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the delta 13 C and delta 15 N values of bone collagen suggest that C 4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis. (author)

  3. Influence of diet on the distribution of nitrogen isotopes in animals

    Energy Technology Data Exchange (ETDEWEB)

    DeNiro, M J; Epstein, S [California Inst. of Tech., Pasadena (USA). Div. of Geological Sciences

    1981-03-01

    The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The delta/sup 15/N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different delta/sup 15/N values. The variability of the relationship between the delta/sup 15/N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in /sup 15/N relative to the diet, with the difference between the delta/sup 15/N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The delta/sup 15/N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the delta/sup 15/N value of the diet. The dependence of the delta/sup 15/N values of whole animals and their tissues and biochemical components on the delta/sup 15/N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different delta/sup 15/N values. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the delta/sup 13/C and delta/sup 15/N values of bone collagen suggest that C/sub 4/ and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

  4. Disturbance and topography shape nitrogen availability and ä15N over long-term forest succession

    Science.gov (United States)

    Steven S. Perakis; Alan J. Tepley; Jana E. Compton

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil ä15N values. We examined soil and foliar patterns in N and ä15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane...

  5. Motor Patterns in Walking.

    Science.gov (United States)

    Lacquaniti, F.; Grasso, R.; Zago, M.

    1999-08-01

    Despite the fact that locomotion may differ widely in mammals, common principles of kinematic control are at work. These reflect common mechanical and neural constraints. The former are related to the need to maintain balance and to limit energy expenditure. The latter are related to the organization of the central pattern-generating networks.

  6. Nitrogen system for the SSC

    International Nuclear Information System (INIS)

    McAshan, M.; Thirumaleshwar, M.; Abramovich, S.; Ganni, V.

    1992-10-01

    The Superconducting Super Collider consists of two parallel magnet rings, each 87,120 m in circumference, constructed in a tunnel 25 m to 74 m below ground level. They are operated at a controlled low helium temperature in order to maintain the magnet windings in the superconducting state. To obtain this condition, the magnet cryostat is designed with a high-quality insulation obtained by a high vacuum chamber, multilayer insulation, and thermal shields at nominal temperatures of 84 K and 20 K. Thermal radiation and the conduction heat load through the supports are intercepted and absorbed by the 84-K shield. Liquid nitrogen provides the refrigeration for these loads. The 84-K shield is anchored to two 63.5-mm stainless-steel tubes. One of the tubes, the ''liquid line,'' serves as a conduit in the distribution system of liquid nitrogen. The other tube, the ''vapor line,'' is used to collect the nitrogen vapor generated in the cooling process and to supply this vapor to,the helium refrigerators for precooling. The vapor line may also be used as a continuous cooler by injecting controlled amounts of liquid nitrogen. The nitrogen system consists of nitrogen supplies; ten nitrogen dewars for the collider and two for the High Energy Booster located on the ground at the main shaft entrances; liquid and vapor transfer lines through the shaft to connect the surface and the tunnel systems; and transfer lines to bypass warm equipment sections of the collider. The nitrogen system is expected to operate at steady state condition except for cooldown, warmup, and system repair, for which transients are expected. During normal operation and standby modes of the collider, temperature, pressure, and mass flow are expected to be constant in all circuits of the nitrogen system. The conceptual design requirements for various flow schemes and the engineering considerations are presented in this report

  7. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    Science.gov (United States)

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T modulation, NIR light reflection, and on-demand heat transfer.

  8. 21 CFR 184.1540 - Nitrogen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrogen. 184.1540 Section 184.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9...

  9. A nitrogen mass balance for California

    Science.gov (United States)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows

  10. Eddy-induced salinity pattern in the North Pacific

    Science.gov (United States)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  11. Odd nitrogen production by meteoroids

    Science.gov (United States)

    Park, C.; Menees, G. P.

    1978-01-01

    The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.

  12. Nitrogen Cycling In Latin America and : Drivers, Impacts And Vulnerabilities

    Science.gov (United States)

    Ometto, J. P.; Bustamante, M.; Forti, M. C.; Peres, T.; Stein, A. F.; Jaramillo, V.; Perez, C.; Pinho, P. F.; Ascarrunz, N.; Austin, A.; Martinelli, L. A.

    2015-12-01

    Latin America is at a crossroads where a balance should be found between production of the major agricultural commodities, reasonable and planned urbanization and conservation of its natural ecosystems and associated goods and services. Most of the natural biological fixation of the globe occurs in forests of Latin America. On the other hand, Latin America has one of the highest rate of deforestation in the world, and one of the highest increases in the use of nitrogen fertilizers. A better understanding of the responses of the N cycle to human impacts will allow better conservation of biodiversity and natural resources, with an improvement in food security and more effective land use choices in biofuel development. Latin America is a unique region in multiple aspects, and particularly relevant for this proposal are the broad climatic gradient and economic patterns that include a diverse range of natural ecosystems and socio-economic development pathways. Additionally, the region is impaired by the lack of information on actual impacts of human activity on N cycling across this diverse range of ecosystems. Finally, the large expanse of tropical ecosystems and reservoirs of biodiversity juxtaposed with an intense economic incentive for development make our understanding of human impacts in this context particularly important for global change research in the region. An evaluation of current and predicted changes in climate and land use on nitrogen stocks and fluxes in the region what is being develop by the Nnet network (Nitrogen Cycling In Latin America: Drivers, Impacts And Vulnerabilities ). This presentation will bring the latest results of this integrative initiative in Latin America, focusing on the nitrogen budget associated to provision of ecosystem services and climate change.

  13. Study on Release Characteristics and Recovery of Nitrogen and Phosphorus during the Anaerobic Fermentation of Excess Sludge

    Science.gov (United States)

    Qin, Yuqian; Hu, Shulong

    2018-01-01

    Ammonia nitrogen and phosphate are produced from activated excess sludge under anaerobic conditions,and will cause eutrophication upon release to the environment. A study of sludge from a eutrophication was carried out, to obtain knowledge of the nitrogen and phosphorus release patterns of the excess sludge during anaerobic fermentation and the recycling efficiency of both nitrogen and phosphorus, by adding magnesium salt and alkali solution to the supernatant liquors. The results showed that the concentration of ammonia nitrogen and phosphate of the supernatant liquors continued to increase during the process of anaerobic digestion, and both reached a maximum in 12 days, at 41.56mg / L and 47.02 mg / L respectively. By adding magnesium salt to the supernatant with c(Mg): c(P) = 1.1:1, adjusting pH value to 9.0 ∼ 9.5, phosphorus recovery rate reached up to 95.0%, while the recovery rate of ammonia was 47.4%, resulting in the formation of a sediment of magnesium ammonium phosphate, or MAP, which may he used as a high-quality fertilizer.

  14. Effect of water and nitrogen additions on free-living nitrogen fixer populations in desert grass root zones.

    Science.gov (United States)

    Herman, R P; Provencio, K R; Torrez, R J; Seager, G M

    1993-01-01

    In this study we measured changes in population levels of free-living N2-fixing bacteria in the root zones of potted Bouteloua eriopoda and Sporobolus flexuosus plants as well as the photosynthetic indices of the plants in response to added nitrogen, added water, and added water plus nitrogen treatments. In addition, N2 fixer population changes in response to added carbon source and nitrogen were measured in plant-free soil columns. There were significant increases in the numbers of N2 fixers associated with both plant species in the water and the water plus nitrogen treatments. Both treatments increased the photosynthetic index, suggesting that plant exudates were driving N2 fixer population changes. Population increases were greatest in the water plus nitrogen treatments, indicating that added nitrogen was synergistic with added water and suggesting that nitrogen addition spared bacteria the metabolic cost of N2 fixation, allowing greater reproduction. Plant-free column studies demonstrated a synergistic carbon-nitrogen effect when carbon levels were limiting (low malate addition) but not when carbon was abundant (high malate), further supporting this hypothesis. The results of this study indicate the presence of N2 fixer populations which interact with plants and which may play a role in the nitrogen balance of desert grasslands. PMID:8215373

  15. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  16. Ileal endogenous nitrogen recovery is increased and its amino acid pattern is altered in pigs fed quebracho extract

    NARCIS (Netherlands)

    Steendam, C.A.C.; Tamminga, S.; Boer, H.; de Jong, E.J.; Visser, G.H.; Verstegen, M.W.A.

    2004-01-01

    lleal endogenous nitrogen recovery (ENR) in pigs (9 +/- 0.6 kg body weight) was estimated simultaneously using the N-15-isotope dilution technique (N-15-IDT) and the peptide alimentation ultrafiltration (UF) method. Diets were cornstarch, enzyme-hydrolyzed casein with no (control) or high (4%)

  17. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints

    NARCIS (Netherlands)

    Lin, J.T.; Liu, M.Y.; Xin, J.Y.; Boersma, K.F.; Spurr, R.; Zhang, Q.; Martin, R.

    2015-01-01

    Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the

  18. The nitrogen cycle on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  19. Nitrogen excretion during embryonic development of the green iguana, Iguana iguana (Reptilia; Squamata).

    Science.gov (United States)

    Sartori, M R; Taylor, E W; Abe, A S

    2012-10-01

    Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02 mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55 days of incubation then were unchanged until hatching. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Future Riverine Inorganic Nitrogen Load to the Baltic Sea From Sweden: An Ensemble Approach to Assessing Climate Change Effects

    Science.gov (United States)

    Teutschbein, C.; Sponseller, R. A.; Grabs, T.; Blackburn, M.; Boyer, E. W.; Hytteborn, J. K.; Bishop, K.

    2017-11-01

    The dramatic increase of bioreactive nitrogen entering the Earth's ecosystems continues to attract growing attention. Increasingly large quantities of inorganic nitrogen are flushed from land to water, accelerating freshwater, and marine eutrophication. Multiple, interacting, and potentially countervailing drivers control the future hydrologic export of inorganic nitrogen. In this paper, we attempt to resolve these land-water interactions across boreal/hemiboreal Sweden in the face of a changing climate with help of a versatile modeling framework to maximize the information value of existing measurement time series. We combined 6,962 spatially distributed water chemistry observations spread over 31 years with daily streamflow and air temperature records. An ensemble of climate model projections, hydrological simulations, and several parameter parsimonious regression models was employed to project future riverine inorganic nitrogen dynamics across Sweden. The median predicted increase in total inorganic nitrogen export from Sweden (2061-2090) due to climate change was 14% (interquartile range 0-29%), based on the ensemble of 7,500 different predictions for each study site. The overall export as well as the seasonal pattern of inorganic nitrogen loads in a future climate are mostly influenced by longer growing seasons and more winter flow, which offset the expected decline in spring flood. The predicted increase in inorganic nitrogen loading due to climate change means that the political efforts for reducing anthropogenic nitrogen inputs need to be increased if ambitions for reducing the eutrophication of the Baltic Sea are to be achieved.

  1. Acute metabolic and physiologic response of goats to narcosis

    Science.gov (United States)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  2. Predicting seed yield in perennial ryegrass using repeated canopy reflectance measurements and PLSR

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Boelt, Birte

    2009-01-01

    with first year seed crops using three sowing rates and three spring nitrogen (N) application rates. PLSR models were developed for each year and showed correlation coefficients of 0.71, 0.76, and 0.92, respectively. Regression coefficients showed in these experiments that the optimum time for canopy...... reflectance measurements was from approximately 600 cumulative growing degree-days (CGDD) to approximately 900 CGDD. This is the period just before and at heading of the seed crop. Furthermore, regression coefficients showed that information about N and water is important. The results support the development......Repeated canopy reflectance measurements together with partial least-squares regression (PLSR) were used to predict seed yield in perennial ryegrass (Lolium perenne L.). The measurements were performed during the spring and summer growing seasons of 2001 to 2003 in three field experiments...

  3. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  4. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Directory of Open Access Journals (Sweden)

    M. Bartrons

    2010-05-01

    Full Text Available Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover vary considerably with elevation. The isotopic composition of nitrogen15N is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio.

    We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW and sediment pore water (SPW from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰, with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes.

    In the water column, the range of δ15N values was larger for ammonium (−9.4‰ to 7.4‰ than for nitrate (−11.4‰ to −3.4‰, as a result of higher variation both between and within lakes (epilimnetic vs. DCM water. For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion. Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil

  5. Nitrogen fixation in denitrified marine waters.

    Directory of Open Access Journals (Sweden)

    Camila Fernandez

    Full Text Available Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria, whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria. Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP, a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ. Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2 d(-1. Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2 d(-1 than the oxic euphotic layer (48±68 µmol m(-2 d(-1. Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.

  6. Nitrogen Fixation in Denitrified Marine Waters

    Science.gov (United States)

    Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m−2 d−1). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m−2 d−1) than the oxic euphotic layer (48±68 µmol m−2 d−1). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions. PMID:21687726

  7. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    Science.gov (United States)

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  8. Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Shi, Lang; Liu, Suqin; He, Zhen; Shen, Junxi

    2014-01-01

    Nitrogen-doped graphene nanosheets (NGS), prepared by a simple hydrothermal reaction of graphene oxide (GO) with urea as nitrogen source were studied as positive electrodes in vanadium redox flow battery (VRFB). The synthesized NGS with the nitrogen level as high as 10.12 atom% is proven to be a promising material for VRFB. The structures and electrochemical properties of the materials are investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impendence spectroscopy. The results demonstrate that not only the nitrogen doping level but the nitrogen type in the NGS are significant for its catalytic activity towards the [VO] 2+ /[VO 2 ] + redox couple reaction. In more detail, among four types of nitrogen species (pyridinic-N, pyrrolic-N, quaternary-N, oxidic-N) doped into the graphene lattice, quaternary-N play mainly roles for improving the catalytic activity toward the [VO] 2+ /[VO 2 ] + couple reaction

  9. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    Science.gov (United States)

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    reflect taxa-specific responses nitrogen availability. Finally, this study demonstrates that under nitrogen-limiting conditions, the phytoplankton community and its various taxa are capable of using both urea and nitrate to support growth.

  10. Nitrogen metabolism and microbial production of dairy cows fed sugarcane and nitrogen compounds

    OpenAIRE

    Gonçalves,Geógenes da Silva; Pedreira,Marcio dos Santos; Pereira,Mara Lúcia Albuquerque; Santos,Dimas Oliveira; Souza,Dicastro Dias de; Porto Junior,Antonio Ferraz

    2014-01-01

    The aim of this study was to evaluate the effect of dairy cow diets containing two different sources of urea on nitrogen metabolism and microbial synthesis. Eight crossbred cows were confined and distributed in two 4x4 Latin: FS - soybean meal (control), conventional urea (UC) 100%; ULL 44 UC = 56% / 44% ULL, ULL 88 UC = 12% / 88% ULL. Diets were offered to animals during 21 days with 14 days of adaptation. The N intake, retained nitrogen balance, nitrogen excretion in milk, urine, feces and ...

  11. Response of SC704 maize hybrid seed production to planting pattern

    African Journals Online (AJOL)

    Mohammed Reza

    2012-05-08

    May 8, 2012 ... EC, Electrical conductivity; N, nitrogen; P, phosphorus;. K, potassium; OC, organic carbon. in plants leads to more assimilation in them, thereby increasing yield. Leaf area index increases yield in two ways: increase in the reformation of leaf surface in plants and increase in plant density. Planting pattern ...

  12. Ileal endogenous nitrogen recovery is increased and its amino acid pattern is altered in pigs fed quebracho extract

    NARCIS (Netherlands)

    Steendam, C.A.; Tamminga, S.; Boer, H.; Jong, de E.J.; Visser, G.H.; Verstegen, M.W.A.

    2004-01-01

    Ileal endogenous nitrogen recovery (ENR) in pigs (9 ± 0.6 kg body weight) was estimated simultaneously using the 15N-isotope dilution technique (15N-IDT) and the peptide alimentation ultrafiltration (UF) method. Diets were cornstarch, enzyme-hydrolyzed casein with no (control) or high (4%) content

  13. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    Science.gov (United States)

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  14. Nitrogen-containing steels and thermomechanical treatment

    International Nuclear Information System (INIS)

    Kaputkina, L.; Prokoshkina, V.G.; Svyazhin, G.

    2004-01-01

    The strengthening of nitrogen-containing corrosion-resistant steels resulting from alloying and thermomechanical treatment have been investigated using X-ray diffraction analysis, light microscopy, hardness measurements and tensile testing. Combined data have been obtained for nitrogen interaction with alloying elements , peculiarities of deformed structure and short-range of nitrogen-containing steels of various structural classes. The higher nitrogen and total alloying element contents, the higher deformation strengthening. Prospects of use the steels with not high nitrogen content and methods of their thermomechanical strengthening are shown. High temperature thermomechanical treatment (HTMT) is very effective for obtaining high and thermally stable constructional strength of nitrogen-containing steels of all classes. The HTMT is most effective if used in a combination with dispersion hardening for aging steels or in the case of mechanically unstable austenitic steels. (author)

  15. Transformation of nitrogen and distribution of nitrogen-related bacteria in a polluted urban stream.

    Science.gov (United States)

    Jiao, Y; Jin, W B; Zhao, Q L; Zhang, G D; Yan, Y; Wan, J

    2009-01-01

    Most researchers focused on either nitrogen species or microbial community for polluted urban stream while ignoring the interaction between them and its effect on nitrogen transformation, which restricted the rational selection of an effective and feasible remediation technology. Taking Buji stream in Shenzhen (China) as target stream, the distribution of nitrogen-related bacteria was investigated by most probable number (MPN) besides analysis of nitrogen species etc. The nitrogen-related bacteria in sediment were 10(2) times richer than those in water. Owing to their faster growth, the MPN of ammonifying bacteria and denitrifying bacteria were 10(5) and 10(2) times higher than those of nitrifying bacteria, respectively. The ammonifying bacteria numbers were significantly related to BOD5 in water, while nitrifying bacteria in sediment correlated well with nitrate in water. Thus, nitrification occurred mainly in sediment surface and was limited by low proportion of nitrifying bacteria. The denitrifying bacteria in sediment had good relationship with BOD5 and nitrite and nitrate in water. Low DO and rich organic compounds were beneficial to denitrification but unfavourable to nitrification. Denitrification was restricted by low nitrite and nitrate concentration. These results could be served as a reference for implementing the remediation scheme of nitrogen polluted urban stream.

  16. Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources

    International Nuclear Information System (INIS)

    Neirynck, J.; Kowalski, A.S.; Carrara, A.; Genouw, G.; Berghmans, P.; Ceulemans, R.

    2007-01-01

    Concentrations of nitrogen gases (NH 3 , NO 2 , NO, HONO and HNO 3 ) and particles (pNH 4 and pNO 3 ) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO 2 ) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH 3 ). A combination of gradient method (NH 3 and NO x ) and resistance modelling techniques (HNO 3 , HONO, pNH 4 and pNO 3 ) was used to calculate dry deposition of nitrogen compounds. Net flux of NH 3 amounted to -64 ng N m -2 s -1 over the measuring period. Net fluxes of NO x were upward (8.5 ng N m -2 s -1 ) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha -1 yr -1 and consisted for almost 80% of NH x . Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (±15 kg N ha -1 yr -1 ) within the canopy. - Reduced nitrogen was found to be the main contributor to total deposition which was predominantly governed by dry deposition

  17. Stable isotopes of carbon and nitrogen as markers of dietary variation among sociocultural subgroups of Inuit in Greenland

    DEFF Research Database (Denmark)

    Bjerregaard, Peter; Larsen, Christina V L; Dahl-Petersen, Inger K

    2017-01-01

    OBJECTIVES: We assessed the use of stable isotopes of carbon and nitrogen as biomarkers for traditional versus store-bought food among the Inuit. Furthermore, we compared the isotope patterns among sociocultural population groups. METHODS: As a part of a country-wide health survey in Greenland...... food in the diet was estimated at 21% from the mean δ(13) C value, 25% from the mean δ(15) N value, and 23% from the FFQ. CONCLUSION: Nail samples for analysis of stable isotopes of carbon and nitrogen were convenient to collect during a large population health survey among the Inuit. Isotope...

  18. Effects of nitrogen and nitrogen getters in lithium on the corrosion of type 316 stainless steel

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1979-01-01

    This paper presents preliminary results on the corrosion of type 316 stainless steel in nitrogen-contaminated lithium. Nitrogen is a principal interstitial impurity in lithium and has a significant detrimental effect on compatibility, while O, H, and C in lithium do not enhance corrosion of type 316 stainless steel. Because of this, there is a need to understand the corrosion mechanisms and kinetics associated with nitrogen-induced attack in lithium. Results from experiments with getters in nitrogen-contaminated lithium are also reported

  19. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley

    DEFF Research Database (Denmark)

    Cai, Jian; Jiang, Dong; Liu, Fulai

    2011-01-01

    photosynthesis after anthesis, dry matter accumulation and assimilates remobilization, nitrogen use efficiency and grain yield to fraction of topdressed nitrogen treatments were investigated in malting barley. Net photosynthetic rate of the penultimate leaf, leaf area index and light extinction coefficient...... assimilation rate and nitrogen use efficiency resulting in higher grain yields and proper grain protein content in malting barley.......Split nitrogen applications are widely adopted to improve grain yield and enhance nitrogen use effective in crops. In a twoyear field experiment at two eco-sites, five fractions of topdressed nitrogen of 0%, 20%, 30%, 40% and 50% were implemented. Responses of radiation interception and leaf...

  20. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M

    2018-01-01

    Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.