WorldWideScience

Sample records for patients radiation protection

  1. Patient Radiation Protection in Radiotherapy

    International Nuclear Information System (INIS)

    Hegazy, M.

    2010-01-01

    The Role of Radiotherapy is treatment modalities for cancer which is generally assumed that 50 to 60% of cancer patients will benefit from radiotherapy. It constitutes a peaceful application of ionizing radiation and an essential part of cancer management. The two aims of radiation protection Prevention is of deterministic effect and Reduction of the probability of stochastic effects. The Shielding fundamentals is to limit radiation exposure of staff, patients, visitors and the public to acceptable levels it also optimize protection of patients, staff and the public. Diagnosis is important for target design and the dose required for cure or palliation while Simulator is often used twice in the radiotherapy process where Patient data acquisition - target localization, contours, outlines and Verification. The Prescription is the responsibility of individual clinicians, depending on the patient’s condition, equipment available, experience and training. An ultimate check of the actual treatment given can only be made by using in vivo dosimetry. Treatment records must be kept of all relevant aspects of the treatment – including Session and Summary Record information, Records all treatment parameters, Dose Calculations and Dose Measurements

  2. Radiation Protection of Patients program (Argentina)

    International Nuclear Information System (INIS)

    Touzet, R.; Perez, M. R.; Buzzi, A.; Andisco, D.

    2006-01-01

    After an initial period of conviction for installing an active discussion on Radiation Protection of Patients inside the medical community, there were organized working groups in Radiodiagnosis, Radiotherapy, Nuclear Medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a Program of RPP that is being put nowadays into practice. This program has three aims and a series of targets to be fulfilled in successive stages: Basic aims and short term targets: 1) To guarantee the Justification. First goal: Development of the Prescription Guide (achieve) 2) To optimize the radioprotection: First goal: Development of a Manual of Procedures (achieved) 3) To prevent potential exposures. First goal: Design of a Basic Quality System in Health (achieved) The effective participation of the professional's and technician's associations in the development of the program of radiological protection of the patient is a key aspect for the success. (Author)

  3. Patients radiation protection in medical imaging. Conference proceedings

    International Nuclear Information System (INIS)

    2011-12-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  4. Protection of persons occupationally exposed to radiation and of patients

    International Nuclear Information System (INIS)

    Stieve, F.E.

    1976-01-01

    The experiences of the last ten years have shown that the measures of the First Radiation Protection Ordinance generally proved to be sufficient for the protection of the employed or of the patients. They had to be amended in so far as the exposure to radiation for those occupationally exposed can be reduced. This results in changes to the regulations so that certain groups of persons can also be effectively controlled. The recognition that medical supervision for radiation protection reasons is reasonable only if exposure has occurred should be additionally utilized in the regulations if the Euratom standards make this possible. The protection of patients attains some new rules which can be derived from handling and from therapeutical use. In this case too experience resulted in a more reasonable application of ionizing radiation and radioactive materials than was expected when the First Radiation Protection Ordinance was issued. (orig.) [de

  5. Optimization and radiation protection of the patient in medical exposure

    International Nuclear Information System (INIS)

    Mwambinga, S.A.

    2012-04-01

    Radiography has been an established imaging modality for over a century, continuous developments have led to improvements in technique resulting in improved image quality at reduced patient dose. If one compares the technique used by Roentgen with the methods used today, one finds that a radiograph can now be obtained at a dose which is smaller. The International Atomic Energy Agency (IAEA) has a statutory responsibility to establish standards for the protection of people against exposure to ionising radiation and to provide for the worldwide application of those standards. A fundamental requirement of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (BSS) is the optimization of radiological protection of patients undergoing medical exposure. By using technique such as added filtration, use of high kVp techniques, low mAs, use of appropriate screen-film combination and making sure that all practices and any exposure to patient are justified, using ALARA principles and diagnostic Reference Levels, patient protection can be optimised. (author)

  6. Radiation protection seminar

    International Nuclear Information System (INIS)

    2012-01-01

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  7. Program of radiation protection of patients (Argentina)

    International Nuclear Information System (INIS)

    Touzet, Rodolfo E.; Buzzi, Alfredo; Rojas, Roberto; Andisco Daniel

    2008-01-01

    After an initial period of conviction for installing an active discussion on Radiation Protection of Patients inside the medical community, there were organized 'working groups' in Radiodiagnosis, Radiotherapy, Nuclear Medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a 'Program of RPP' that is being put nowadays into practice. The rapid advances which are present in medicine today, both in equipment and work protocol, determine that 'norms and regulations never arrive on time' which is why it is paramount that health services have 'systems of dynamic quality' and 'continual improvement' that can be adapted quickly to changes. This program has 6 principal aims and a series of targets to be fulfilled in successive stages: Basic aims and short term targets: 1) To guarantee the Justification. First goal: Development of the 'Prescription Guide' (achieved); 2) To optimize the radioprotection: First goal: Development of a 'Manual of Procedures' (In process); 3) To prevent potential exposures. First goal: Design of a 'Basic Quality System' in Health (achieved); 4) To achieve a qualification of the professionals by means of a process of certification and re-certification (In process); 5) To spread PRP's criteria by means of chats, meetings and the use of the media and graphical means. (Partially fulfilled); 6) To establish criteria for the protection of patient and operators in Interventional Radiology by creating a referral service. Strategies to cope with different interests within society are described. Main problems, failures and difficulties are also described. The effective participation of the professional and technicians' associations in the development of the program for radiation protection of the patient is a key aspect for the success of the whole national programme. (author)

  8. Radiation protection of the patient during medical uses of ionizing radiation in the GDR

    International Nuclear Information System (INIS)

    Arndt, D.

    1987-01-01

    Section 18 of the new Radiation Protection Ordinance of the GDR defines basic principles for the radiation protection of patients undergoing diagnostic examinations or treatments with ionizing radiation, including, for example, the requirements that necessary exposures should be justifiable in terms of the benefit to be expected and that doses administered should be limited to as low an amount as possible. An outline is given of these principles, their importance and enforcement. (author)

  9. Program for radiation protection of the patient (Argentina)

    International Nuclear Information System (INIS)

    Touzet, Rodolfo E.; Perez, Maria del R.; Alfredo Buzzi; Andisco, Daniel

    2006-01-01

    After an initial period of conviction for installing an active discussion on radiation protection of patients inside the medical community, there were organized 'working groups' in radiodiagnosis, radiotherapy, nuclear medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a 'Program of RPP' that is being put nowadays into practice. This program has three aims and a series of targets to be fulfilled in successive stages: basic aims and short term targets: 1) To guarantee the justification: first goal: development of the 'Prescription Guide' (achieved); 2) To optimize the radioprotection: first goal: Development of a 'Manual of Procedures' (achieved); 3) To prevent potential exposures: first goal: Design of a 'Basic quality system' in Health (achieved). The effective participation of the professional's and technician's associations in the development of the program of radiological protection of the patient is a key aspect for the success. (author) [es

  10. The ICRP principles applied to radiation protection of the patient in diagnostic radiology

    International Nuclear Information System (INIS)

    Carlsson, S.; Mattsson, S.

    1994-01-01

    The International Commission on Radiation Protection (ICRP) has published new recommendations in Publication 60. These take account of the new biological information and trends in the setting of radiation protection standards since 1977. The main principle for radiation protection of the patient is that the exposure should be justified not only at a broad level but also with respect to the individual patient. Protection arrangements should be optimised using reference dose levels as an upper bound of the optimisation process. The reference levels should be applied with flexibility and based on sound clinical judgement. (authors)

  11. The ICRP principles applied to radiation protection of the patient in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, S [Department of Medical Physics, s-451 80 Uddevalla (Sweden); Mattsson, S [Department of Radiation Physics, University of Lund, S-214 01 Malmo (Sweden)

    1994-12-31

    The International Commission on Radiation Protection (ICRP) has published new recommendations in Publication 60. These take account of the new biological information and trends in the setting of radiation protection standards since 1977. The main principle for radiation protection of the patient is that the exposure should be justified not only at a broad level but also with respect to the individual patient. Protection arrangements should be optimised using reference dose levels as an upper bound of the optimisation process. The reference levels should be applied with flexibility and based on sound clinical judgement. (authors). 7 refs.

  12. The radiologist's responsibilities for the radiation protection of patients

    International Nuclear Information System (INIS)

    Etard, C.

    2010-01-01

    The obligations of the radiologist for the radiation protection of patients include a review of the appropriateness of the examination and optimization of the protocol. Both internal and external quality assurance programs are mandatory. The specific tasks and their frequency are defined by the AFSSAPS. The radiology report of procedures performed over radiosensitive regions must include the delivered dose. The imaging technique must be optimized based on published guidelines or law for the most frequent examinations. All radiologists should be familiar with radiation protection. Incidents should be reported to the Nuclear Safety Authority. (author)

  13. Radiation protection in Sudan

    International Nuclear Information System (INIS)

    Elamin, O.I.; Hajmusa, E.A.; Shaddad, I.A.

    2001-01-01

    The regulatory framework as established by the Sudan Atomic Energy Commission (SAEC) Act, promulgated in 1996, is described in the report. Three levels of responsibility in meeting radiation protection requirements are established: the Board, the Radiation Protection Technical Committee as the competent authority in the field of radiation protection, and the SAEC Department of Radiation Protection and Environmental Monitoring as the implementing technical body. The report also refers to environmental activities, patient doses in diagnostic radiology, the management of disused sources, emergency preparedness and orphan sources, and the national training activities in the radiation protection field. (author)

  14. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    Kramer, H.M.; Schnuer, K.

    1992-01-01

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  15. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  16. Evaluation of the knowledge of physicians prescribing CT examinations on the radiation protection of patients

    International Nuclear Information System (INIS)

    Gervaise, A.; Pernin, M.; Naulet, P.; Portron, Y.; Lapierre-Combes, M.; Esperabe-Vignau, F.

    2011-01-01

    Purpose: To evaluate the knowledge of physicians prescribing CT examinations on the radiation protection of patients. Materials and methods: A questionnaire was distributed to all clinicians on medical staff who prescribe CT examinations. Several questions related to their prescription pattern and their knowledge of radiation protection. Results: Forty-four questionnaires were analyzed. While 70% of physicians claimed that they considered the risks from exposure to ionizing radiation when prescribing a CT examination, only 25% informed their patients about those risks. Knowledge of the radiation dose delivered during CT evaluation of the abdomen and pelvis was poorly understood and the risks related to small doses of radiation were grossly underestimated. Finally, only a third of clinicians had received training with regards to radiation protection. Conclusion: While most clinicians claim that they consider the risks from exposure to ionizing radiation when prescribing a CT examination, the risks are either not well known or not known at all. Increased formation of clinicians with regards to the radiation protection of patients, maybe through a dedicated clinical rotation while in medical school, could be a solution to improve the knowledge of hospital clinicians with regards to radiation protection. (authors)

  17. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  18. The principles of radiation protection

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  19. Manual on radiation protection in hospital and general practice. Volume 4. Radiation protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K; Wuehrmann, A H

    1977-01-01

    The nine chapters of this manual on radiation protection in dentistry discuss the following topics: the need for radiation protection; delegation of responsibility; radiographic equipment; radiographic film; radiographic techniques; film processing and handling; patient doses; general radiation protection and monitoring; and educational standards. (HLW)

  20. Radiation protection in radio-oncology

    International Nuclear Information System (INIS)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido

    2017-01-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  1. A review of the fundamental principles of radiation protection when applied to the patient in diagnostic radiology

    International Nuclear Information System (INIS)

    Moores, B. Michael

    2017-01-01

    A review of the role and relevance of the principles of radiation protection of the patient in diagnostic radiology as specified by ICRP has been undertaken when diagnostic risks arising from an examination are taken into account. The increase in population doses arising from diagnostic radiology over the past 20 years has been due to the widespread application of higher dose CT examinations that provide significantly more clinical information. Consequently, diagnostic risks as well as radiation risks need to be considered within the patient radiation protection framework. Justification and optimisation are discussed and the limitations imposed on patient protection by employing only a radiation risk framework is highlighted. The example of radiation protection of the patient in breast screening programmes employing mammography is used to highlight the importance of defined diagnostic outcomes in any effective radiation protection strategy. (author)

  2. Legislative and statutory framework of radiation protection of patients in Romania

    International Nuclear Information System (INIS)

    Milu, Constantin

    2008-01-01

    The paper presents the legislative and statutory framework of radiation protection of patients in Romania, starting with the basic Law 111/1996 on the Safe Deployment of Nuclear Activities, and its amendments in 1998 and 2006 and the general nuclear safety regulation, which is in agreement with the international regulation. Regarding the medical exposure, jointly the Nuclear Regulatory Authority and the Ministry of Public Health issued in 2002 a separate regulation, which was published in the Official Gazette Part I No. 446 bis in 25 June 2002 and represents the transposition of the European Directive 97/43/EURATOM of 30 June 1997 on health protection on individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/EURATOM. Following this document, several specific regulations on radiation protection of the patients were approved by the Ministry of Public Health. Some practical problems already arise, particularly due to the lack of medical physics departments in hospitals. (author)

  3. [Evaluation of the knowledge of physicians prescribing CT examinations on the radiation protection of patients].

    Science.gov (United States)

    Gervaise, A; Esperabe-Vignau, F; Pernin, M; Naulet, P; Portron, Y; Lapierre-Combes, M

    2011-01-01

    To evaluate the knowledge of physicians prescribing CT examinations on the radiation protection of patients. A questionnaire was distributed to all clinicians on medical staff who prescribe CT examinations. Several questions related to their prescription pattern and their knowledge of radiation protection. Forty-four questionnaires were analyzed. While 70% of physicians claimed that they considered the risks from exposure to ionizing radiation when prescribing a CT examination, only 25% informed their patients about those risks. Knowledge of the radiation dose delivered during CT evaluation of the abdomen and pelvis was poorly understood and the risks related to small doses of radiation were grossly underestimated. Finally, only a third of clinicians had received training with regards to radiation protection. While most clinicians claim that they consider the risks from exposure to ionizing radiation when prescribing a CT examination, the risks are either not well known or not known at all. Increased formation of clinicians with regards to the radiation protection of patients, maybe through a dedicated clinical rotation while in medical school, could be a solution to improve the knowledge of hospital clinicians with regards to radiation protection. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.

  4. IAEA calls for enhanced radiation protection of patients. Safety specialists warn against overuse of new imaging devices

    International Nuclear Information System (INIS)

    2009-01-01

    Advances in medical imaging techniques are allowing doctors to detect hidden diseases and make ever more accurate diagnoses. But radiation safety experts at the International Atomic Energy Agency (IAEA) say that overuse of high-tech scanning procedures may unnecessarily expose patients to increased radiation levels. The IAEA, in collaboration with other international organizations, is developing a series of measures aimed at strengthening patient protection. The focus of recent efforts is a Smart Card project, to log how much radiation a person receives in the course of a lifetime. Concern surrounds procedures such as computed tomography (CT) scans because they deliver higher doses of radiation to patients in comparison to conventional X-rays (radiographs). It's been estimated that the average radiation dose of one CT scan is equal to roughly 500 chest X-rays. And that can increase a patient's lifetime risk of cancer, particularly if CT scans are repeated. The IAEA is one of the key international players in the field of patient radiation protection. A unit dedicated to the Radiological Protection of Patients (RPoP) was established in 2001. The IAEA's activities in radiation protection of patients include training, knowledge sharing and capacity building in the medical use of radiation. Extensive, up-to-date training material for health professionals is freely available on the RPoP website. An International Action Plan on the Radiological Protection of Patients that has been established together with leading international organizations such as the World Health Organization (WHO), UNSCEAR, the International Commission on Radiological Protection (ICRP) and others to identify strategies for strengthening radiation protection of patients. Coordinating and managing technical cooperation projects with Member States on patient dose assessment. The aim is to identify the factors that contribute to unnecessary radiation dose to patients, provide guidance on dealing with

  5. A REVIEW OF THE FUNDAMENTAL PRINCIPLES OF RADIATION PROTECTION WHEN APPLIED TO THE PATIENT IN DIAGNOSTIC RADIOLOGY.

    Science.gov (United States)

    Moores, B Michael

    2017-06-01

    A review of the role and relevance of the principles of radiation protection of the patient in diagnostic radiology as specified by ICRP has been undertaken when diagnostic risks arising from an examination are taken into account. The increase in population doses arising from diagnostic radiology over the past 20 years has been due to the widespread application of higher dose CT examinations that provide significantly more clinical information. Consequently, diagnostic risks as well as radiation risks need to be considered within the patient radiation protection framework. Justification and optimisation are discussed and the limitations imposed on patient protection by employing only a radiation risk framework is highlighted. The example of radiation protection of the patient in breast screening programmes employing mammography is used to highlight the importance of defined diagnostic outcomes in any effective radiation protection strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Radiation protection in medicine

    International Nuclear Information System (INIS)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-01-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  7. Radiation protection in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-08-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  8. Assessment of patient radiation protection in external radiotherapy departments after inspections performed by the ASN 2008

    International Nuclear Information System (INIS)

    Franchi, Vincent; Marchal, Carole

    2009-10-01

    This report proposes an assessment of patient radiation protection in external radiotherapy. It is based on inter-regional syntheses of inspections performed by the ASN in external radiotherapy departments during 2008. It addresses 6 main themes related to patient radiation protection: human and material resources, organisation of medical physics, training in patient radiation protection, mastering of equipment (maintenance, internal quality controls of medical devices), safety and care quality management (formalization of the patient care process and definition of responsibilities, patient identity control, treatment preparation, and treatment execution), and risk management (a priori risk analysis, declaration, recording and internal processing of dysfunctions, improvements of care quality and safety management system)

  9. Protection of the patient from ionizing radiation in medical exposure in Israel

    International Nuclear Information System (INIS)

    Schlesinger, T.; Ben Shlomo, A.; Berlovitz, Y.

    2002-01-01

    The ICRP issued in 1991 its recent recommendations related to the protection of the worker, the public and the patient from ionizing radiation. In 1996 the IAEA together with the WHO, the ILO and other major international bodies published the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the BSS). The BSS are based on the core principles of Justification, Optimization and Dose Limitation. Many countries adopted the radiation protection philosophy and the administrative framework presented in the BSS as the basis for their legal radiation protection system. Following the publication of the BSS, the EC published in 1997 its Medical Exposure Directive 97/43 /Euratom. Article 14 of the ME Directive requires that EC member states bring into force the laws and administrative provisions necessary to comply with this directive before 13 May 2000. Most EC member states have complied with this requirement and issued the relevant laws and /or regulations. The Ionizing Radiation (Medical Exposure) Regulations that came into force in the UK on 13 May 2000 are a good example

  10. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Brisse, H.; Foucart, J.M.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.; Talbot, A.; Aubert, B.; Scanff, P.; Roudier, C.; Donadieu, J.; Pirard, P.; Bar, O.; Maccia, C.; Benedittini, M.; Bouziane, T.; Brat, H.; Bricoult, M; Heuga, O.; Hauger, O.; Bonnefoy, O.; Diard, F.; Chateil, J.F.; Schramm, R.; Reisman, J.; Aubert, B.

    2005-01-01

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  11. Thematic course: patient radiation protection

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.

    2009-01-01

    The ratio benefit/risk of radiological examinations, especially with the multislice scanner cannot be ensured only if the principles of justification and optimization are rigorously respected. The justification relies on the reference to the guide of the appropriate use of imaging examinations and compliance with the Public Health Code which requires a written information exchange between the applicant and who will realizes the examination. The optimization relies on the dosimetry evaluation of our practice and the comparison with the diagnosis reference levels, to realize the examinations at the radiation lowest cost. the stakes are the insurance does not harm our patients, the rehabilitation of the radiologist in his role of consultant rather than performer and the protection against eventual legal consequences. (N.C.)

  12. Radiation protection in nuclear reactors

    International Nuclear Information System (INIS)

    El-Ashkar, Mohamed

    2008-01-01

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  13. Problems with radiation protection concerning volunteers accompanying radiological patients

    International Nuclear Information System (INIS)

    Adrian Daoud

    2008-01-01

    Full text: The purpose of this work is to point out, within the framework of the Radiation Protection guidelines, the irregular situation of the 'volunteer' or 'accompanying person' who accompanies anyone requiring medical treatment with ionising radiation, as well as to suggest a possible justification for such role. It should be noted that most of these persons are subject to ionising radiation without knowing anything about the effects that it could cause on them, so that their condition could be hardly considered as 'voluntary'. There are several circumstances under which the presence of accompanying persons is required, being different among them. Several examples could be mentioned such as: those who are accompanying a direct relative (family bonds), those who are acting in service during their normal work (social workers, policemen) and even those who are forced by unusual under an accidental situation. The qualitative classification that radiological protection established in society concerning radiation risks for people in general enables to set mechanisms of justification, optimisation and dose limitation for each category, being perfectly identified which of them each person belongs to. But the figure of 'accompanying person' has been excluded from such characterisation. They are subject to radiation exposure without knowing it, or without having any information concerning the potential risks. For them, no balance between the net benefit of an adequate medical treatment versus potential health detriment may be applied as for the case of a patient. Thus, their exposure could be not justified. It is not the purpose of this work to question radiological medicine or its practices, but to clarify certain aspects involving members of the public in general, patients and members of the radiological community, as well as to propose lines of action concerning this subject. We conclude that it is not the volunteer who should decide about medical actions, a role

  14. Patients radiation protection in medical imaging. Conference proceedings; Radioprotection des patients en imagerie medicale. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  15. Radiation protection of patients: need of a paradigm change?

    International Nuclear Information System (INIS)

    Gisone, Pablo A.; Perez, Maria del R.

    2004-01-01

    Radiological protection of patients is founded on two basic principles: optimization and justification. However, the justification used to be an 'exclusion zone' observed as a foreign territory by radiation protection officers. Inspired in the Council Directive 97/43/EURATOM, the Nuclear Regulatory Authority (ARN) from Argentina has decided to perform a National Programme of Radiation Protection of Patients. Along with the regulation of medical practices in its particular fields of competence, the ARN will play a role in coordinating the actions with scientific associations representing health professionals involved in the medical uses of ionizing radiation. This programme, which includes three working groups (dosimetry, justification and optimization), will be developed in three stages. The first stage will consider the adaptation of the principles for validation of practices to local conditions, the adoption of a system for sorting medical practices according to prescription criteria taking into account alternative methods, the utilization of the dosimetric studies carried out by the ARN, the determination of diagnostic reference levels for pediatric and adult populations and the improvement of quality assurance concerning equipment and procedures. In cooperation with national sanitary authorities as the Health Ministry, the second stage will concern the elaboration of specific requirements regarding the justification of practices. The last stage will be addressed to the diffusion of the information and the promotion of continuing education and training of human resources. Is it a new paradigm focused on justification? A justification applied to a rational medical prescription where the 'obvious' does not always imply the 'need'. (author)

  16. Operational radiation protection and radiation protection training

    International Nuclear Information System (INIS)

    Kraus, W.

    1989-01-01

    The radiation protection system in the German Democratic Republic (GDR) is reviewed. The competent authority (the SAAS) and its systems of licensing and supervision are described. Discussion covers the role of the Radiation Protection Officer, the types of radiation monitoring, medical surveillance programs and the classification of workers and work areas. Unusual occurrences in the GDR, 1963-1976, are presented and the occupational radiation protection problems at some specific types of workplaces are discussed. The GDR's system of training in radiation protection and nuclear safety is described. 5 figs., 18 tabs

  17. A review of the scientific basis for radiation protection of the patient

    International Nuclear Information System (INIS)

    Moores, B. M.; Regulla, D.

    2011-01-01

    The use of ionising radiation in medicine is the single largest man-made source of population exposure. Individual and collective doses to patients arising from the medical use of ionising radiations continue to rise significantly year on year. This is due to the increasing use of medical imaging procedures in modern health care systems as well as the continued development of new high dose techniques. This paper reviews the scientific basis for the principles of radiation protection as defined by the International Commission on Radiological Protection. These principles attempt to include exposures arising from both medical and non-medical applications within a common framework and have evolved over many years and changing socioeconomic considerations. In particular, the concepts of justification and ALARA (doses should be as low as reasonably achievable), which underpin the principles for medical exposures are assessed in terms of their applicability to the scientific process and relevance to a rapidly changing technologically-led health care system. Radiation protection is an integral component of patient safety in medical practices and needs to be evidence based and amenable to the scientific process. The limitations imposed by the existing philosophy of radiation protection to the development of a quantitative framework for adequately assessing the performance of medical imaging systems are highlighted. In particular, medical practitioners will require quantitative guidance as to the risk-benefits arising from modern X-ray imaging methods if they are to make rational judgements as to the applicability of modern high-dose techniques to particular diagnostic and therapeutic tasks. At present such guidance is variable due to the lack of a rational framework for assessing the clinical impact of medical imaging techniques. The possible integration of radiation protection concepts into fundamental bio-medical imaging research activities is discussed. (authors)

  18. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  19. Radiation Protection. Chapter 24

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, D. [Ninewells Hospital, Dundee (United Kingdom); Collins, L. T. [Westmead Hospital, Sydney (Australia); Le Heron, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Chapter 21, in describing basic radiation biology and radiation effects, demonstrates the need to have a system of radiation protection that allows the many beneficial uses of radiation to be realized while ensuring detrimental radiation effects are either prevented or minimized. This can be achieved with the twin objectives of preventing the occurrence of deterministic effects and of limiting the probability of stochastic effects to a level that is considered acceptable. In a radiology facility, consideration needs to be given to the patient, the staff involved in performing the radiological procedures, members of the public and other staff that may be in the radiology facility, carers and comforters of patients undergoing procedures, and persons who may be undergoing a radiological procedure as part of a biomedical research project. This chapter discusses how the objectives given above are fulfilled through a system of radiation protection and how such a system should be applied practically in a radiology facility.

  20. Radiation Protection in PET-CT

    International Nuclear Information System (INIS)

    2011-10-01

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  1. The patient radiation protection in external radiotherapy: specificity and methods; La radioprotection du patient en radiotherapie externe: specificites et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Beauvais March, H. [Hopital Val de Grace, 75 - Paris (France)

    1999-07-01

    The daily use of high level radiation doses to fight against carcinomas has often led to consider radiation protection as a marginal problem, in this area. But the therapeutic advances, by increasing the life time and life quality have made the side effects unacceptable and revealed the appearance of radioinduced carcinomas. So, it is necessary to practice a patient radiation protection. The general principles of radiation protection are applicable to radiotherapy. (justification, optimization and dose limit, planning of the treatment, quality control of installations). (N.C.)

  2. Studies on optimization of radiation protection for patients in diagnostic radiology

    International Nuclear Information System (INIS)

    Wei, Z.; Zhang, Q.; Li, W.; Li, K.; Wei, L.; Zong, X.; Qiang, Z.; Wu, Y.

    1994-01-01

    For the exposure of patients in diagnostic radiology, individual dose limit does not apply, but optimization of radiological protection may play a major role. This project has been carried out with the purpose of improving the protection of patients in medical diagnostic radiology in China utilizing the principles of optimization. Taking Sichuan, Shandong and Beijing as surveyed areas, we investigated the present situation of the protection of patients. In the survey, the patient doses were classified into practical dose, justified dose and optimized dose to evaluate the influences of managerial and equipment factors separately. The results show that there are some urgent protection problems in X-ray protection to be solved in the surveyed regions. This paper, however, points out that the prospects of reducing patient doses are encouraging provided that appropriate measures are adopted. For instance, taking proper managerial measures without radical change of existing equipments may reduce patient doses in chest fluoroscopy and radiography by 40% and 18% respectively; refitting some equipment may reduce the doses by 82.4% in chest fluoroscopy, 66% in chest radiography, and 80% in barium meal examination of the gastrointestinal (GI) tract. Using chest radiography instead of fluoroscopy supplemented by other protection measures may reduce the doses by 91.7%. Optimization analysis shows that adoption of the above measures conforms to the principle of optimization of radiation protection. (authors). 5 refs., 7 tabs

  3. 33. Days of Radiation Protection. Presentations

    International Nuclear Information System (INIS)

    2011-11-01

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  4. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  5. Manual on radiation protection in hospitals and general practice. Radiation protection in dentistry. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K [Statens Institutt for Straalehygiene, Oslo (Norway); Wuehrmann, A H [Alabama Univ., Birmingham (USA)

    1977-01-01

    The booklet deals with all aspects of the use of X rays in dentistry. The recommendations made are designed to reduce unnecessary exposure of the patient, will result in the production of superior radiographs and assist in eliminating unnecessary exposure of the operator himself. Separate chapters deal with the following topics: the need for radiation protection, delegation of responsibility, radiographic equipment, radiographic film, radiographic techniques, film processing and handling, patient doses (adults and children), general radiation protection and monitoring, educational standards.

  6. Radiation protection - Revision of French radiation protection regulations (1988)

    International Nuclear Information System (INIS)

    Mayoux, J.C.

    1989-01-01

    This article analyses the recent amendments to the 1966 and 1975 Decrees on general radiation protection principles and radiation protection of workers in large nuclear installations respectively and also describes national radiation protection law. In particular, the amendments incorporate the revised EURATOM basic radiation protection standards and the new international units (sievert and becquerel replace rem and curie) in the Decrees. (NEA) [fr

  7. A knowledge and awareness level survey of radiation protection among the radiation workers in Henan Province

    International Nuclear Information System (INIS)

    Cheng, Xiao-jun; Tian, Chong-bin; Zhang, Qin-fu; Liu, Cheng; Ding, Li

    2008-01-01

    Full text: Objective: To reveal the knowledge and awareness level of radiation protection among radiation workers in Henan province and to explore the methods to improve it. Methods: A questionnaire survey was carried out among 208 radiation workers. Results: The correct rate of the answer to radiation protection knowledge from radiation workers in Henan province is 53.78%. Most of them (88.9%) realized that it is important to protect patients and their companions. They adhere to the principles of justification of medial exposure and optimization of radiation protection and follow the management system of radiation protection. However, a few workers didn't follow the principles strictly. Sometime, during the radio diagnosis and radiotherapy services, the patients and their companions were not well protected from the radiation, and some patients were given unnecessary X-ray examine. Even worse, some workers did not attach importance to the regulations of radiation protection and disobey them frequently. Again, some hospital leaders disregard the regulation of radiation protection and didn't follow the regulation of health surveillance and radiation protection monitoring properly. And those behaviors and attitude, in fact, influence some workers' attitude to radiation protection. Conclusion: The level of radiation protection knowledge and awareness among the radiation workers in Henan province needs to be improved. It is necessary to strengthen radiation protection knowledge by strengthening training, and to improve safety awareness among the radiation staff, and, more important, the hospital leaders as well. (author)

  8. Focus radiation protection

    International Nuclear Information System (INIS)

    Ebermann, Lutz

    2016-01-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  9. Radiation protection of patients in general diagnostic radiology in Lithuania

    International Nuclear Information System (INIS)

    Morkunas, G.; Ziliukas, J.

    2001-01-01

    The situation in control of exposure due to general diagnostic radiological examinations in Lithuania is described. Experience in creation of legal basis for radiation protection, results of measurements of patients' doses and quality control tests of x-ray units are given. The main problems encountered in implementation of international recommendations and requirements of European Medical Exposure Directive are discussed. (author)

  10. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  11. The development of radiation protection

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1981-01-01

    The harm that might be caused by radiation exposure was recognised within months of Rontgen's discovery of X-rays, and recommendations for protection of patients and workers with radiation were formulated first in 1928. In the light of increasing radiobiological, genetic and human epidemiological evidence, it became clear that there might be no threshold, below which harmful effects did not occur. Recommendation and practice in radiation protection reflected this opinion from the early 1950's, and emphasised the consequent need for minimising exposures, quantifying risks and revising the dose limits appropriate for internal radiation of body organs. (author)

  12. Protection of patient In radiotherapy

    International Nuclear Information System (INIS)

    Deiyi, P.

    2013-04-01

    The purpose of this project is to clarify some aspects about protection of patient in radiotherapy. Therefore, some basic information about how the use of ionizing radiation in medicine has brought tremendous health benefits to the population globally, the requirement of radiation protection (Justification of practices, Dose limitation and Optimization of protection), and the deterministic and stochastic effects of radiation are presented. The aim of radiotherapy is to use ionizing radiation to cure diseases or make the symptoms of a disease less severe. Also presented are layout of a radiotherapy facility (controlled areas, supervised areas, mazes, door and interlocks, patient observation and communication, and warning sign and lights), radionuclides commonly used for radiation therapy and their main emissions, equipment and devices used in radiotherapy, aspect of protection of patient in radiotherapy such as: leakage test, source on/off, emergency buttons, radiation oncology team, treatment planning, room monitoring, equipment or for protection and Cobalt-60 unit stuck source. The advantages of brachytherapy, leakage from the treatment head and radiation incidents resulting from incorrect dose calibration are discussed. The importance of minimization dose exposure, by considering the basic principles of: time, distance and shielding are also stated. These principles prevent deterministic effects and limit stochastic effects of radiation. (author)

  13. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  14. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  15. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    International Nuclear Information System (INIS)

    Clement, Christopher H.

    2008-01-01

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and

  16. The healing arts radiation protection guidelines

    International Nuclear Information System (INIS)

    Yaffe, M.

    1987-06-01

    The objective of these guidelines is to help the health professional render the risks associated with diagnostic radiation as low as reasonably achievable. The guidelines contain advice and recommendations, but no mandatory requirements. They assist radiation protection officers in establishing and maintaining a Quality Assurance Program and in carrying out other duties required by the Healing Arts Radiation Protection Act; assist staff to comply with the X-ray Safety Code in a way that will raise the standards of x-ray diagnosis and patient safety; address the relationship between the radiation exposure of the patient and the quality of the image; address the problem of protecting the patient in x-ray examinations; summarize x-ray safety problems from the point of view of the operator and other staff; indicate what remedial measures can be taken; define the quality assurance needs of x-ray users; and encourage the users of x-rays for diagnostic purposes to go beyond the scope of the Act and comply with the ALARA principle

  17. Secondary radiation from supervoltage accelerators - its implications in patient protection

    International Nuclear Information System (INIS)

    Bhatnagar, J.P.

    1977-01-01

    If the collimator and compensator of a supervoltage accelerator are made of high atomic number material they will tend to interact with the high energy photon beam predominantly by pair production. Associated with pair-production is a cascade formation resulting in a variety of radiations which may be serious from the point of view of patient protection, particularly if the field of treatment is close to some superficially located critical organ such as the lens of the eye or the gonads. Gonadal doses of about 15% of the mid-depth dose were measured on a young male patient undergoing treatment of the prostate by a 42MV X-ray beam from a Siemen's betatron. A lead block 1.5 cm thick placed over the patient's thighs covering the scrotum reduced the gonadal dose to less than 2% of the mid-depth dose. A similar set of measurements made on a specially constructed scrotum-penis phantom confirmed these results, and showed that the lead block must be placed close to the phantom to be effective. Comparative measurements made just outside a cobalt 60 beam showed that the doses were far smaller than those outside the 42MeV X-ray beam. Recommendations are therefore made for the thickness and positioning of lead shielding required to protect critical organs from secondary radiation in radiotherapy. (U.K.)

  18. 6. national congress of radiation protection S.F.R.P. 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This congress tackles the following subjects: individual dosimetry for external irradiation, update of arrangements in the public health code relative to the radiation protection, implementation of zoning decree, regulation, radiation protection in professional area, radiation protection in ITER, non ionizing radiation, radiation protection in accident situation, biological radiation effects, radiation protection for patients, dosimetry, environmental exposure, radiation protection and radioactive waste management. (N.C.)

  19. MO-E-213-03: Newer Radiation Protection Requirements in Last Decade

    Energy Technology Data Exchange (ETDEWEB)

    Clements, J. [Kaiser Permanente (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  20. Current Trends in Radiation Protection Recommendations

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2008-01-01

    The third generation of the ICRP recommendations was adopted in April 2007. The recommendations rely on situations (planned, emergency and existing), individual (occupational, public and patient) and radiation protection system (justification, optimization and dose limits). In the present work attention is paid to discuss the new recommendations and role of IAEA in updating its Basic Safety Standards for protection against ionizing radiation and safety of radiation sources and its impact for the national regulations

  1. Concepts of radiation protection

    International Nuclear Information System (INIS)

    2013-01-01

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  2. Enhancing radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology

  3. Radiation risk and protection of patients in clinical SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Gunnar; Nekolla, Elke A.; Nosske, Dietmar [Federal Office for Radiation Protection, Department of Medical and Occupational Radiation Protection, Oberschleissheim (Germany); Borowski, Markus [Klinikum Braunschweig, Institute of Radiation Diagnostics and Nuclear Medicine, Braunschweig (Germany)

    2014-05-15

    Clinical studies have demonstrated that hybrid single photon emission computed tomography (SPECT)/CT for various diagnostic issues has an added value as compared to SPECT alone. However, the combined acquisition of functional and anatomical images can substantially increase radiation exposure to patients, in particular when using a hybrid system with diagnostic CT capabilities. It is, therefore, essential to carefully balance the diagnostic needs and radiation protection requirements. To this end, the evidence on health effects induced by ionizing radiation is outlined. In addition, the essential concepts for estimating radiation doses and lifetime attributable cancer risks associated with SPECT/CT examinations are presented taking into account both the new recommendations of the International Commission on Radiological Protection (ICRP) as well as the most recent radiation risk models. Representative values of effective dose and lifetime attributable risk are reported for ten frequently used SPECT radiopharmaceuticals and five fully diagnostic partial-body CT examinations. A diagnostic CT scan acquired as part of a combined SPECT/CT examination contributes considerably to, and for some applications even dominates, the total patient exposure. For the common SPECT and CT examinations considered in this study, the lifetime attributable risk of developing a radiation-related cancer is less than 0.27 %/0.37 % for men/women older than 16 years, respectively, and decreases markedly with increasing age at exposure. Since there is no clinical indication for a SPECT/CT examination unless an emission scan has been indicated, the issue on justification comes down to the question of whether it is necessary to additionally acquire a low-dose CT for attenuation correction and anatomical localization of tracer uptake or even a fully diagnostic CT. In any case, SPECT/CT studies have to be optimized, e.g. by adapting dose reduction measures from state-of-the-art CT practice, and

  4. Manual on radiation protection in hospitals and general practice. Basic protection requirements

    International Nuclear Information System (INIS)

    Braestrup, C.B.; Vikterloef, K.J.

    1974-01-01

    The manual as a whole deals with the radiation protection of patients, occupationally exposed persons, and the public. Volume 1, on basic protection requirements, is a general review common to all medical applications of ionizing radiation and radionuclides. Radiation protection is required for patients and staff, and with regard to medical research and chemical trials of new methods; radiation equipment and operating procedures are discussed in connection with diagnostic x-ray installations, x-ray beam therapy, gamma-ray installations for teletherapy, brachytherapy, unsealed sources for therapeutic use, and the diagnostic use of unsealed sources in nuclear medicine. In planning of radiation facilities, attention is paid to levels at which medical care is given, the centralization and decentralization of radiation facilities, diagnostic x-ray facilities and therapy facilities, and nuclear medicine and therapy with unsealed sources. Shielding design is discussed applicable to diagnostic radiology, radiotherapy, nuclear medicine and the therapeutic use of radionuclides. Assignment of responsibilities, legal responsibilities, safety checks, refresher courses and symposia are discussed in the context of organizing radiation protection. Radiation surveys are necessary, and such surveys are described for x-ray and gamma-ray beams, sealed radioactive sources and nuclear medicine. A whole section is devoted to personnel monitoring and health surveillance. An annex gives a list of commonly used radionuclides, another deals with the design of protective shielding

  5. Encouraging the radiation protection practice

    International Nuclear Information System (INIS)

    Silva, Natanael O.; Cunha, Paulo C.N.; Junior, Jose N.S.; Silva, Jessyca B.

    2013-01-01

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  6. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  7. Radiation protection in radio-oncology; Strahlenschutz in der Radioonkologie

    Energy Technology Data Exchange (ETDEWEB)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido [Universitaetsmedizin Rostock (Germany). Klinik und Poliklinik fuer Strahlentherapie

    2017-07-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  8. THE PSYCHOLOGY OF DECISION MAKING AND ITS RELEVANCE TO RADIATION PROTECTION OF THE PATIENT IN MEDICINE.

    Science.gov (United States)

    Moores, B Michael

    2018-02-01

    An analysis and review of the fundamental psychological basis of decision making has been undertaken in respect of radiation protection of the patient in medicine. Both clinical and scientific aspects of patient protection have been considered. Every stage of the clinical process of radiological examinations, from referral through to diagnostic outcome, has been shown to be subject to proven psychological effects including biases, framing, anchoring and prospect theory, which deals with perceived gains and losses. Such factors also influence the scientific aspects of radiation protection of the patient. Justification for the use of single dose reference level (DRL) values has employed framing with substitution or manipulation by accessibility in order to promote their usefulness. The use of DRLs as presently proposed constrains a diverse patient population to a reference or representative person. This approach is shown to represent a public health initiative that largely ignores the ethical basis of patient protection inherent in the Hippocratic Oath. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Radiation and man. From radiology to radiation protection

    International Nuclear Information System (INIS)

    2005-04-01

    Man first became aware of the invisible radiation surrounding him in 1895, when Wilhelm Roentgen showed that a photographic plate could be affected by an invisible radiation capable of passing through matter. He called this radiation 'X-rays' from X, the unknown. Doctors immediately saw the usefulness of this type of radiation and began to use it in medical research. This was the birth of radiology. 'Mankind has been exposed to radiation since his first appearance on Earth. We first became aware of this at the end of the 19. century'. However, it was not long before some of the doctors and radiologists treating their patients with X-rays began to fall ill. It began to be understood that exposure to high doses of radiation was dangerous and protective measures were necessary. From the 1920's onwards, international commissions were established to specify regulations for the use of radiation and for the radiological protection of personnel. (authors)

  10. Foundations for radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely

  11. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  12. Radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' series explains in a simple but scientifically accurate way what radiation is, the biological effects and the relative sensitivity of different parts of the human body. The leaflet then discusses radiation protection principles, radiation protection in the UK and finally the effectiveness of this radiation protection as judged by a breakdown of the total dose received by an average person in the UK, a heavy consumer of Cumbrian seafood, an average nuclear industry worker and an average person in Cornwall. (UK)

  13. Radiation Protection Elephants in the Room

    International Nuclear Information System (INIS)

    Vetter, R. J.

    2004-01-01

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial e lephants in the room . They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of

  14. Radiation protection in nuclear medicine: fundamentals and methods

    International Nuclear Information System (INIS)

    Kaul, A.; Roedler, H.D.; Freie Univ. Berlin

    1976-01-01

    Consequences for the protection of patients, protection of persons, and protection of the public are derived from the recommendations of the ICRP and the legal requirements for the handling of unsealed radioactive substances in diagnostics and therapy according to the First Radiation Protection Ordinance and its amended version, as well as from the 'guidelines for radiation protection when using radioactive substances in medicine'. (orig./LN) [de

  15. PET scan and radiation protection

    International Nuclear Information System (INIS)

    Montoya, F.; Lahmi, A.; Rousseau, A.

    2006-01-01

    The purpose was the optimization of the radiation protection during examinations with 18 F-FDG, The immediate validation by the D.G.S.N.R., the results of dosimetry (h.p.10 = 12 μ sievert (average value/ technician / day for 6 patients) demonstrate the efficiency of the implemented means. From the very beginning, the installation of a PET-scanner requires a multidisciplinary conception. This essential thought contributes to an optimal radiation protection of the entire personnel of the service. (N.C.)

  16. Methodology for comprehensive patient, worker and public radiation protection considerations while introducing new medical procedures

    International Nuclear Information System (INIS)

    Neeman, E.; Keren, M.

    2001-01-01

    Patient protection is a major consideration while introducing new medical procedure. But protection of the workers and the public should be considered too. A methodology of combining non-patient radiation protection considerations with the introduction of new medical procedures is described. The new medical procedure was the Intracoronary Gamma Irradiation for the Prevention of Restenosis by using Iridium 192 gamma radiation sources. The usual authors' responsibility is the licensing of the use of radioactive materials while keeping public protection. According to this responsibility, the methodology's original orientation is public protection. As a result of coordination between several competent authorities, managed by the authors, the methodology was adopted for patient and worker protection too. Applicants, actually possible users (hospitals) of the new procedure, were obliged to plan medical procedures and working area according to dose limits and constrains as recommended by the International Atomic Energy Agency and local competent authorities. Exposure calculations had to consider the usual parameters as sources types and activity, dose rate and dose levels, duration and number of treatments. Special attention was given to the presence workers and public by chance presence in or near treatment area. A usual condition to give a license was the installation of continuous (during treatment) radiation monitoring systems. But a special attention was given to physical barriers and procedures in order to stop unauthorized personal to arrive near to working area. Satisfactory staff training for normal operation and emergency situations are essential, including appropriate safety procedures and the presence of safety assistance team while executing treatment. (author)

  17. Establish radiation protection programme for diagnostic radiology

    International Nuclear Information System (INIS)

    Mboya, G.

    2014-01-01

    Mammography is an effective method used for breast diagnostics and screening. The aim of this project is to review the literature on how to establish radiation protection programme for mammography in order to protect the patients, the occupationally exposed workers and the members of the public from harmful effects of ionizing radiation. It reviews some of the trends in mammography doses and dosimetric principles such as average glandular dose in the glandular tissue which is used for description of radiation risk, also the factors affecting patient doses are discussed. However, the average glandular dose should not be used directly to estimate the radiation risk from mammography. Risk is calculated under certain assumptions from determined entrance surface air kerma. Given the increase in population dose, emphasis is placed on the justification and optimization of the mammographic procedures. Protection is optimized by the radiation dose being appropriate with the purpose of the mammographic examination. The need to establish diagnostic reference levels as an optimization is also discussed. In order to obtain high quality mammograms at low dose to the breast, it is necessary to use the correct equipment and perform periodic quality control tests on mammography equipment. It is noted that in order to achieve the goal of this project, the application of radiation protection should begin at the time of requesting for mammography examination, positioning of the patient, irradiation, image processing and interpretation of mammogram. It is recommended that close cooperation between radiology technologists, radiologist, medical physicists, regulatory authority and other support workers be required and established to obtain a consistent and effective level of radiation protection in a mammography facility. (author)

  18. Radiation. Protection. Health. Proceedings

    International Nuclear Information System (INIS)

    Hajek, Michael; Maringer, Franz Josef; Steurer, Andreas; Schwaiger, Martina; Timal, Guenter

    2015-01-01

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  19. Radiation protection principles

    International Nuclear Information System (INIS)

    Ismail Bahari

    2007-01-01

    The presentation outlines the aspects of radiation protection principles. It discussed the following subjects; radiation hazards and risk, the objectives of radiation protection, three principles of the system - justification of practice, optimization of protection and safety, dose limit

  20. Radiation protection for nurses

    Energy Technology Data Exchange (ETDEWEB)

    Mould, R F

    1978-01-01

    Various aspects of radiation protection relevant to nurses are presented. The different radioisotopes used in internal radiotherapy and scintiscanning techniques and any necessary precautions which should be observed when nursing these patients are described. General information is also given on nuclear and atomic terminology, the physical half-life of radioisotopes, radiation dose as a function of distance, shielding, film badges and the maximum permissible dose.

  1. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    International Nuclear Information System (INIS)

    Rehani, M.

    2015-01-01

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  2. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Rehani, M. [Massachusetts General Hospital (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  3. Radiation Protection Ordinance. Preventive Radiation Protection Act. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1990-01-01

    This 3rd edition presents the official explanations of the legislative intent behind the Radiation Protection Ordinance of 1976 and the 2nd amending ordinance, and the commentaries which as usual refer to the legal aspects and the related medical, scientific, and technical aspects. As a consequence of the reactor accident at Chernobyl, the existing radiation protection law has been extended by the Act for Preventive Measures for Pretection of the Population Against the Hazards of Ionizing Radiation (Preventive Radiation Protection Act), establishing preventive legal provisions and measures, so that this new edition has likewise been extended by commentaries on the Protective Radiation Protection Act and an introduction to the new area of law. The material also includes the Act for Establishment of a Federal Office for Radiation Protection, of October 9, 1989, which amended the Atomic Energy Act and the Preventive Radiation Protection Act. The correction of the Radiation Protection Ordinance of October 16, 1989 (BGBl. I p. 1926) has been incorporated into the text of the amended version of the Radiation Protection Ordinance. Court decisions and literature referred to cover material published up to the first months of 1989. (orig.) [de

  4. Computer Based Radiation Protection- A New Cd-Rom

    International Nuclear Information System (INIS)

    Geringer, T.; Bammer, M.; Ablber, M.

    2004-01-01

    Within the next few years, there'll be a lot of new challenges required from radiation protection. According to EU regulation[1] and the new austrian radiation protection law [2] regular additional training are requested. Patients protection in diagnostic and therapeutic usage of ionising radiation gains also more and more importance.[3] Not really surprisingly, the general population is definitely highly aware of the risks coming with the usage of radionuclides and x-rays in medicine. Furthermore, the nuclear power plant in Temelin, near the austrian border initiated a lively discussion about risks, necessity and use of ionising radiation in medicine and industry. It turned out to be a really hard job handling these topics in public. A brilliant didactics based on independent information and viewpoints was required. ARC Seibersdorf Research GmbH, represented by the department of medical technical applications and the radiation protection academy, developed an interactive CD-ROM covering several applications: Basics on radiation protection for medical and technical personnel ; preparation for a radiation protection training. Repetition of the main topics for graduates of a radiation protection training. Basics on radiation protection and emergency management for medical staff as well as for the general public. (Author)

  5. Strengthening the radiation protection culture: a priority of EDF radiation protection policy

    International Nuclear Information System (INIS)

    Garcier, Y.

    2006-01-01

    Full text of publication follows: In order to improve the management of radiation protection at EDF nuclear power plants, the Human Factors Group of the Research and Development Division of EDF has performed some studies on the appropriation process of the radiation protection requirements. These studies have notably shown that an efficient application of the radiation protection requirements lies on a comprehension by all workers of the meaning of these requirements. Furthermore, they should not be applied under the constraint or because of the fear of a sanction, but the workers need to perceive and understand the benefits in terms of protection associated with the radiation protection requirements. The strengthening of the radiation protection culture is therefore a key element of the radiation protection policy developed by EDF. This culture lies on an awareness of the health risks potentially associated with low levels of ionising radiations, as well as on the knowledge of tools, techniques and good practices developed to control the level of exposures and improve the radiation protection. Various type of actions have been undertaken to reinforce among the relevant players (exposed and non-exposed workers, contractors, all levels of management,... ) an awareness of radiation protection in order to integrate it in their day to day work: elaboration of a 'radiation protection system of reference' explaining how the radiation protection regulatory requirements are applied at EDF, publication of a 'radiation protection handbook' available for all workers (including contractors), training sessions, creation of networks of specialists from the various nuclear power plants on specific radiation protection issues, organisation of feed-back experience forum, etc. Beyond these specific actions, i t is also important to ensure a support and an assistance on the field by dedicated specialists. In this perspective, the health physicists have to play a key role in order to

  6. General organisation of radiation protection in Senegal

    International Nuclear Information System (INIS)

    Casanova, P.; Ndiaye, M.; Sow, M.L.; Ndao, A.S.

    2015-01-01

    Organization of radiation protection in Senegal is governed by three main texts that define the general principles and implement legal means for their actions. Efficient control of nuclear activities to ensure protection of workers, the environment and patients against ionizing radiation is subject to criminal penalties in case of breach of this legislation. (authors)

  7. Reinforce the radiation protection of the health personnel, patients and public

    International Nuclear Information System (INIS)

    2003-03-01

    One of the missions of the IRSN is the public radiation protection. In this context and in order to inform the public, this press document presents the actions of the IRSN in the occupational safety, the patients and the public, with a special interest to the Chernobyl accident consequences in France. The prevention policy against the radon, implemented by the Institute is also presented. (A.L.B.)

  8. Radiation protection and communication. Sociology and communication impact in radiation protection

    International Nuclear Information System (INIS)

    Berne, G.; Bicheron, G.; Franco, P.

    2000-01-01

    Communication about nuclear energy was the subject of this conference. Different examples of communications are detailed in fields as different as impact of iodine 131 release in waste waters or public information about radiation protection, the north Cotentin radioecology group or what information to give to the patients in nuclear medicine. (N.C.)

  9. VI Congress of Spanish Radiation Protection Society, Cordoba, 24-27 Set 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This special issue of the journal Radioprotection compiles the sessions of VI Congress of Spanish Radiation Protection Society. The sessions were: 1.- Radiation protection and the environment. 2.- Radiation protection of the workers. 3.- Natural radiation. 4.- Biological effects of the radiations. 5.- Radiation protection of patients. 6.- Dosimetry. 7.- Quality control. 8.- Training on radiation protection. 9.- Legislation. (Author)

  10. Radiation protection day - Book of abstracts

    International Nuclear Information System (INIS)

    2000-06-01

    This document brings together the abstracts of all presentations given at the Radiation protection day organised in May 2000 by the French association for radiation protection techniques and sciences (ATSR) on the topic of the new European and French radiation protection regulations and their conditions of application in hospitals. Content: 1 - Presentation of the Office of Protection against Ionizing Radiations (O.P.R.I.), status of texts and evolution, practical implementation of operational dosimetry (Alain Valero, O.P.R.I.); 2 - Presentation of the Radiation Protection Service of the Army (S.P.R.A.) and its role in French army's hospitals (Jean-Baptiste Fleutot, S.P.R.A.); 3 - 96/29 European directive and water quality - transposition in French law (Daniel Robeau, I.P.S.N. Fontenay-Aux-Roses); 4 - Presentation of an automatized active dosimetry system (Michel Deron, G.E.M. System); 5 - Euratom 97/43 Directive from June 30, 1997 - assessment of the existing framework for patients protection in medical environment (Pierre Muglioni, APAVE Nord Ouest); 6 - Specificities of the ionising radiations risk in medical environment - presentation of a ionising radiations risk assessment grid (Marie-Christine Soula, Labour regional direction Ile de France); 7 - Low dose effects (B. Le Guen, E.D.F. G.D.F.); 8 - Operational dosimetry in the medical domain - the Saphydose dosemeter (Frederico Felix - Saphymo); 9 - Positrons and radiation protection (Luc Cinotti - C.E.R.M.E.P.); 10 - Workplace studies in medical environment - areas and personnel classification (Jean-Claude Houy, Sandrine Laugle, Eugene Marquis Cancer Centre Rennes); 11 - Experience feedback after 4 years of active dosimetry in a nuclear medicine service (Albert Lisbona, Centre Rene Gauducheau Nantes/Saint-Herblain); 12 - Operational dosimetry as it is performed today in CNRS laboratories (Helene Dossier - C.N.R.S. Orsay); 13 - Radiation protection in submarine naval forces (Pierre Laroche, Army's health service

  11. Radiation protection in the field of environmental protection

    International Nuclear Information System (INIS)

    Zhao Yamin

    2003-01-01

    The relationship of radiation protection with environmental protection, the sources that may give rise to the environmental radiation contamination, and the system of radiation protection and the fundamental principles and requirements for radiation environmental management are introduced. Some special radiation protection problems faced with in the radiation environmental management are discussed. (author)

  12. Training for Radiation Protection in Interventional Radiology

    International Nuclear Information System (INIS)

    Bartal, G.; Sapoval, M.; Ben-Shlomo, A.

    1999-01-01

    Program in radiological equipment has incorporated more powerful x-ray sources into the standard Fluoroscopy and CT systems. Expanding use of interventional procedures carries extensive use of fluoroscopy and CT which are both associated with excessive radiation exposure to the patient and personnel. During cases of Intravenous CT Angiography and direct Intraarterial CT Angiography, one may substitute a substantial number of diagnostic angiography checks. Basic training in interventional radiology hardly includes some of the fundamentals of radiation protection. Radiation Protection in Interventional Radiology must be implemented in daily practice and become an integral part of procedure planning strategy in each and every case. Interventional radiological most master all modern imaging modalities in order to choose the most effective, but least hazardous one. In addition, one must be able to use various imaging techniques (Fluoroscopy, CTA, MM and US) as a stand-alone method, as well as combine two techniques or more. Training programs for fellows: K-based simulation of procedures and radiation protection. Special attention should be taken in the training institutions and a basic training in radiation protection is advised before the trainee is involved in the practical work. Amendment of techniques for balloon and stent deployment with minimal use of fluoroscopy. Attention to the differences between radiation protection in cardiovascular and nonvascular radiology with special measures that must be taken for each one of them (i.e., peripheral angiography vs. stenting, Endo luminal Aortic Stent Graft, or nonvascular procedures such as biliary or endo urological stenting or biliary intervention). A special emphasis should be put on the training techniques of Interventional Radiologists, both beginners and experienced. Patient dose monitoring by maintaining records of fluoroscopic time is better with non-reset timer, but is optional. Lee of automated systems that

  13. Radiation protection of patients in diagnostic radiology in Estonia

    International Nuclear Information System (INIS)

    Filippova, I.

    2001-01-01

    The medical use of ionizing radiation started at the beginning of the century. It has always been considered necessary, as well as for diagnostic applications where exposure to the patient is the price to pay in order to obtain useful images, as for therapy where the patient is exposed on purpose, in order to kill malignant cells. It is nowadays the major man-made contribution to the population dose. Even with the developments of substitutive imaging or treatment techniques, there is still an increasing demand and many organizations are joining their efforts to try to keep the dose to the patient 'as low as reasonably achievable'. This is particularly the case for the International Commission on Radiological Protection (ICRP) which recommended in publication 26 to follow three main principles: justification, optimisation and limitation. Limitation, however, does not apply to patients since the individuals exposed are expected to benefit from this exposure, but justification and optimization are relevant. (author)

  14. Training in radiation protection

    International Nuclear Information System (INIS)

    Schreiber, F.

    1998-01-01

    Persons who are exposed to ionizing radiation at their workplace have to be trained in radiation protection. According to the Radiation Protection Ordinance the person with responsibility in radiation protection has to guarantee that the training is performed twice a year. Our training material was created especially for the persons defined in the Radiation Protection Ordinance and the X-ray Ordinance. It enables persons who teach (generally the radiation protection officer) to perform the training without tedious study and preparation of the documents. Our material is not just another textbook for radiation protection but rather a folder with colour transparencies and explanatory texts which make a difference in volume and price in comparison to other existing materials. (orig.) [de

  15. Radiation protection, optimization and justification; Radioprotection, optimisation et justification

    Energy Technology Data Exchange (ETDEWEB)

    Cordoliani, Y.S.; Brisse, H.; Foucart, J.M. [75 - Paris (France); Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C. [51 - Reims (France); Rehel, J.L.; Talbot, A.; Aubert, B.; Scanff, P. [92 - Fontenay aux Roses (France); Roudier, C.; Donadieu, J.; Pirard, P. [Saint Maurice (France); Bar, O. [37 - Tours (France); Maccia, C.; Benedittini, M. [92 - Bourg la Reine (France); Bouziane, T. [Tournai (Belgium); Brat, H. [Hornuy (Belgium); Bricoult, M [Bruxelles (Belgium); Heuga, O.; Hauger, O.; Bonnefoy, O.; Diard, F.; Chateil, J.F. [33 - Bordeaux (France); Schramm, R. [Forcheim (Germany); Reisman, J. [Princeton (United States); Aubert, B

    2005-10-15

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  16. New legislative regulations for ensuring radiation protection using ionizing radiation sources in medicine

    International Nuclear Information System (INIS)

    Boehm, K.

    2018-01-01

    European Commission Directive No. 2013/59 / EURATOM laying down basic safety requirements for the provision of radiation protection regulates the provision of radiation protection for workers with radiation sources and residents in all areas of use of ionizing radiation sources. This Directive also addresses radiation protection in the use of ionizing radiation sources in medicine. The European Commission Directive regulates the requirements for radiation protection but also extends to its scope and provisions on the use of medical radiation sources (so-called m edical exposure ) in the scope of further legislation in the field of health care, which has to be amended and modified or possibly issued new. It was necessary in the preparation of the new act on radiation protection to amend simultaneously Act no. 576/2004 on the provision of health care and services related to provision of health care and Act no. 578/2004 on Health care Providers, Health care Professionals and Organizations in Health Care and to prepare a series of implementing regulations not only to the Law on Radiation Protection but also to the Laws governing the Provision of Health Care. The paper presents changes to existing legislation on radiation protection in medical radiation and new requirements for the construction and operation of health workplaces with radiation sources, the protection of the health of patients, the requirements for instrumentation used for medical radiation and radiological instrumentation tests. (authors)

  17. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    Kisolo, A.

    2001-01-01

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  18. The radiologist's responsibilities for the radiation protection of patients; Obligations du radiologue pour la radioprotection des patients

    Energy Technology Data Exchange (ETDEWEB)

    Etard, C. [Institut de Radioprotection et de Surete Nucleaire, 92 - Fontenay-aux-Roses (France)

    2010-11-15

    The obligations of the radiologist for the radiation protection of patients include a review of the appropriateness of the examination and optimization of the protocol. Both internal and external quality assurance programs are mandatory. The specific tasks and their frequency are defined by the AFSSAPS. The radiology report of procedures performed over radiosensitive regions must include the delivered dose. The imaging technique must be optimized based on published guidelines or law for the most frequent examinations. All radiologists should be familiar with radiation protection. Incidents should be reported to the Nuclear Safety Authority. (author)

  19. Radiation protection awareness in dentistry students

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Vaziefehdoust, S.

    2007-01-01

    Complete text of publication follows. Dentistry students were assessed in one of the school of dentistry in Iran. 11% of responders had attended a radiation protection course. This study showed that those who have attended this course had improved knowledge of ALARA principle, assessment of the impact of digital imaging in patient dose reduction and usage of personal dosimeter systems. Course attendance made no considerable difference to knowledge of the patient dose, dose reduction techniques and annual permissible dose limits of general public and radiation workers. The results of this study revealed that the majority of students have not received adequate radiation protection teaching and even if a course has been attended, overall knowledge is still poor and formal teaching at undergraduate level should be corrected in the future.

  20. Radiation protection in the operating room

    International Nuclear Information System (INIS)

    Kunz, B.; Stargardt, A.

    1978-01-01

    On the basis of legally provided area dose measurements and time records of fluoroscopic examinations during the operation, radiation doses to medical personnel and patients are evaluated. Adequate radiation protection measures and a careful behaviour in the operating room keep the radiation exposure to the personnel below the maximum permissible exposure. Taking into account the continuous personnel radiation monitoring and medical supervision, radiation hazards in the operating room can be considered low

  1. Modernization and consolidation of the European radiation protection legislation. The new EURATOM radiation protection basic safety standards

    International Nuclear Information System (INIS)

    Mundigl, S.

    2013-01-01

    With the development of new basic safety standards for the protection against the dangers arising from ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. The new Directive offers in a single coherent document, basics safety standards for radiation protection which take account of the status-quo of science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After having received very positive opinions of the Article 31 Group of Experts and the European Economic and Social Committee, the proposed Directive has reached agreement in the Working Party on Atomic Questions of the European Council (WPAQ). The Opinion of the European Parliament is expected in September 2013, which would allow a publication of the Directive in the Official Journal of the European Union by the end of 2013. (orig.)

  2. Radiation protection of patients in epiescleral brachytherapy

    International Nuclear Information System (INIS)

    Frutos, J.M. de; Sanchez, G.; Sendon, J.R.; Castillo, A. del; Hernando, I.

    2001-01-01

    Introduction. Choroidal melanoma and other ophthalmic tumors are treated with episcleral plaques. Optimisation and other criteria are necessary to avoid damage in eye and visual function preservation. Purpose. To study the dosimetric phases to apply radiation protection criteria. To determine procedures for quality assurance of applicators, sources and treatment prescription and planning. Method. We have revised treatment procedure. First, aspects shared for all the patients. Then treatment planning and applicator assembling. After that, we study insertion and treatment. Finally, we check the chart flow to modify, if necessary. It necessary consider normative and recommendations. Results and conclusions. Quality assurance of sources (calibration, autoradiography), applicator (effects, dose distribution) and treatment planning are revised. Appropriate patient data acquisition is essential due the special characteristics of tumor and eye. Treatment planning involves optimisation as a factor. Seed selection is very important to avoid misadministration. Next procedure is applicator assembling. We must care to choose the same as dosimetry and to carry out its verification. Sources insertion is a surgical procedure. It is essential in accurate placement. Desinsertion is also surgical, and must be adapted to dosimetry and prescription. Flow chart is modified adding two staff meetings to discuss about patient data and doses. (author)

  3. Knowledge plus Attitude in Radiation Protection

    International Nuclear Information System (INIS)

    Velez, G. R.; Sanchez, G. D.

    2003-01-01

    Since the introduction of the Basic Safety Standards recommendations, the scope of the radiation protection was broadening. On behalf of the incorporation of radiation protection of the patient in medical exposures, the different groups of professionals involved: physicians, medical physicists, radiation protection officers, regulators, etc., have to work together. The objective of radiation protection, that is, to reduces doses from practices, to prevent potential exposures, to detect its occurrence as well as to evaluate and spread such abnormal situations, will be obtained only if it were possible to joint two basic conditions: knowledge and attitude. It should be well known the differences between the backgrounds needed to be for example, a medical physicist or an R.P.O., However, their attitude to solve an eventual problem involving radiation protection should be the same; as well as the behavior of the specialized physician and regulators, in order to add towards common goals. In this work, we show as an example the curricula contents about radiation protection of the cancer of medical physics in the Universidad Nacional de San Martin (UNSAM), and the corresponding module on medical exposures from the Post-Graduate course on Radiation Protection and Nuclear Safety, held since the 80s in Buenos Aires by the National Commission of Atomic Energy, ARN, IAEA, and the Universidad de Buenos Aires. On the other hand, we describe different attitudes which leads or could start major radiological accidents, regardless the level of knowledge in radiation protection. We conclude that the larger numbers of accidents are due to problems in the attitude than in the level of knowledge of the person involved. Consequently; we suggest emphasizing the discussion on how to generate positive attitudes in every professional involucrated, independently of its cognitive profile or level. (Author) 2 refs

  4. Assessment of the international meeting of radiation protection professionals

    International Nuclear Information System (INIS)

    Nikodemova, Denisa; Cabanekova, Helena

    2012-01-01

    The conclusions from and main agenda of the conference are summarized. The conference was divided into 8 sections, dealing with biological effects of ionizing radiation, general aspects of radiation protection, dosimetry and metrology of ionizing radiation, radiation protection problems in nuclear power plants, management of nuclear radiation emergencies, radiation load of patients and staff during medical applications of ionizing radiation (radiodiagnosis, nuclear medicine and radiation oncology), control of exposure to radiation from natural sources in the environment and at workplaces, and education in radiation protection. The programme included round-table discussions devoted to the Fukushima nuclear power plant accident, optimization of the radiation load of children in radiology, and recent advances in the radon risk countermeasures area. (orig.)

  5. Practical radiation protection of the patient in radiological diagnostics; Praktischer Strahlenschutz am Patienten in der radiologischen Diagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Fiebich, M. [Technische Hochschule Mittelhessen, Institut fuer Medizinische Physik und Strahlenschutz, Giessen (Germany)

    2017-07-15

    The use of radiation protection equipment can reduce the radiation exposure of patients. The aim was to show which patient shields should be used for the different types of examination. The results of multiple studies were compiled and analyzed and recommendations made for the use of patient shields. The absolute dose values and the protective effect were considered. Radiological protection should be used in many investigations; particularly in the case of CT investigations, a reasonable dose reduction potential exists due to the higher radiation dose. Based on these recommendations, workflow changes in some types of investigation are expected due to the use of additional patient shields. (orig.) [German] Durch die Verwendung von Strahlenschutzmitteln kann die Strahlenexposition von Patienten reduziert werden. Es soll dargestellt werden, welche Strahlenschutzmittel bei welchen Untersuchungen eingesetzt werden sollen. Die Ergebnisse von Studien wurden zusammengestellt, analysiert und daraus Empfehlungen fuer die Anwendung von Strahlenschutzmitteln erstellt. Dabei wurden die absoluten Dosiswerte und die Schutzwirkung beruecksichtigt. Bei vielen Untersuchungen sind Strahlenschutzmittel anzuwenden, insbesondere bei CT-Untersuchungen besteht aufgrund der hoeheren Strahlendosis ein gutes Dosisreduktionspotenzial. Aufgrund der Empfehlungen ist bei einigen Untersuchungsarten mit veraenderten Arbeitsablaeufen aufgrund der Anwendung weiterer Strahlenschutzmittel zu rechnen. (orig.)

  6. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives.

  7. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  8. Radiation protection programme for planned medical exposure situation

    International Nuclear Information System (INIS)

    Hanciles, Milford

    2016-04-01

    Radiation protection programme for planned medical exposure situation which involved diagnostic and interventional radiology was discussed. The radiation protection programme (RPP) should reflect the management’s commitment to radiation protection and safety through the management structure, policies, procedures and organizational arrangement commensurate with the nature and extent of the risk. Registrants and licensees should use the RPP as a tool for the development of a safety culture in diagnostic and interventional radiology departments .Recommendations are provided which when implemented in the education and training of radiographers, referral physician and all those involved in the use of ionizing radiation for diagnosis purposes will improve protection and safety of the occupationally exposed worker, the patient, the public and the environment. (au)

  9. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    1976-06-01

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  10. [Radiation protection in interventional radiology].

    Science.gov (United States)

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  11. Radium organisation and radiation protection

    International Nuclear Information System (INIS)

    Goyal, D.R.; Negi, P.S.; Dutta, T.K.; Gupta, B.D.

    1977-01-01

    In India, the brachytherapy sources used are mostly 226 Ra, 137 Cs and 60 CO. Radiotherapy of patients with these sources may also result in some degree of radiation exposure of radiologists, technologists, radiation source porters and even other workers in rooms around radiotherapy unit. Proper organization of radiotherapy unit leads to accuracy in treatment and protection to patients as well as medical and paramedical personnel. With this objective in view, a set of instructions to be followed while working with radiation sources, particularly radium; guidelines for the physical layout of the unit and staffing and a list of essential monitoring instruments are given. (M.G.B.)

  12. The Radiation Protection Act

    International Nuclear Information System (INIS)

    Persson, L.

    1989-01-01

    The new Radiation Protection Act (1988:220) entered into force in Sweden on July 1st, 1988. This book presents the Act as well as certain regulations connected to it. As previously, the main responsibility for public radiation protection will rest with one central radiation protection authority. According to the 1988 Act, the general obligations with regard to radiation protection will place a greater responsibility than in the past on persons carrying out activities involving radiation. Under the act, it is possible to adjust the licensing and supervisory procedures to the level of danger of the radiation source and the need for adequate competence, etc. The Act recognises standardised approval procedures combined with technical regulations for areas where the risks are well known. The Act contains several rules providing for more effective supervision. The supervising authority may in particular decide on the necessary regulations and prohibitions for each individual case. The possibilities of using penal provisions have been extended and a rule on the mandatory execution of orders has been introduced. The Ordinance on Radiation Protection (1988:293) designates the National Institute of Radiation Protection (SSI) as the central authority referred to in the Radiation Protection Act. The book also gives a historic review of radiation protection laws in Sweden, lists regulations issued by SSI and presents explanations of radiation effects and international norms in the area. (author)

  13. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    Fuente Puch, A.E. de la

    2013-01-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  14. Radiation protection requirements for dental X-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Taschner, P.; Koenig, W.; Andreas, M.; Trinius, W.

    1976-01-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients. (author)

  15. Radiation protection requirements for dental X-ray diagnostic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Taschner, P; Koenig, W [Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (German Democratic Republic); Andreas, M [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Fachrichtung Stomatologie; Trinius, W [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Radiologische Klinik

    1976-03-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients.

  16. Radiation protection requirements for medical application of ionizing radiation in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Nestoroska, Svetlana; Angelovski, Goran; Shahin, Nuzi

    2010-01-01

    In this paper, the regulatory infrastructure in radiation protection in the Republic of Macedonia is presented. The national radiation protection requirements for the medical application of ionizing radiation are reviewed for both occupational exposed persons and patients undergoing a medical treatment with ionizing radiation and their compliance with the international standards is considered. The gaps identified on the national level are presented and steps for overcoming such gaps are analyzed.(Author)

  17. The physics of radiation protection

    International Nuclear Information System (INIS)

    Doerschel, B.; Schuricht, V.; Steuer, J.

    1996-01-01

    The book is aimed at both practising specialists and scientists wishing to learn about the fundamental science of radiation protection. The first part of the book, 'Physical Fundamentals of Radiation Protection', presents a concise description of radiation sources and radiation fields, interaction of radiation with matter, radiation effects and radiation damage, basic concept of radiation protection, radiation exposure of man, radiation protection measuring techniques and physical fundamentals for limiting radiation exposure. The second part, 'Calculational Exercises for Radiation Protection' is intended to supplement the first part by carrying out relevant calculations, amending and adding special aspects and to give guidance in solving practical problems. The book is written for scientists as well as for students and staff working in nuclear facilities, hospitals and institutions responsible for radiation and environmental protection. (UK)

  18. Focus radiation protection; Schwerpunkt Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Ebermann, Lutz (comp.)

    2016-07-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  19. Code of practice for radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Hamed, M. I.

    2010-05-01

    In aim of this study was to develop a draft for a new code practice for radiation protection in nuclear medicine that meets the current relevant international recommendation. The draft includes the following main fields: methods of radiation protection for workers, patients and public. Also, the principles of safe design of nuclear medicine departments, quality assurance program, proper manipulation of radiation sources including radioactive waste and emergency preparedness and response. The practical part of this study includes inspections of three nuclear medicine departments available in Sudan so as to assess the degree of compliance of those departments with what is stated in this code. The inspection missions have been conducted using a checklist that addresses all items that may affect radiation raincoat issues in addition to per formin area radiation monitoring around the installation of the radioactive sources. The results of this revealed that most of the departments do not have effective radiation protection program which in turn could lead to unnecessary exposure to patients, public and workers. Finally, some recommendations are given that - if implemented - could improve the status of radiation protection in nuclear medicine department. (Author)

  20. Radiation protection

    International Nuclear Information System (INIS)

    Ures Pantazi, M.

    1994-01-01

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  1. Radiation Protection in Medical Physics : Proceedings of the NATO Advanced Study Institute on Radiation Protection in Medical Physics Activities

    CERN Document Server

    Lemoigne, Yves

    2011-01-01

    This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.

  2. The protection of the patient for x radiation

    International Nuclear Information System (INIS)

    Delhove, J.

    1977-01-01

    At the level of the individual, the benefit form the examination is out of all proportion to the hazard involved; it should be primarily aimed at a best possible radiological information. At the level of the community, it is necessary to eliminate any undue irradiation of the patient, causing an unbearable potential increase of the genetic or somatic load. Facing the specific problems of protection against radiation, the English-speaking countries have already since long initiated a multidisciplinary cooperation between the doctor and the radiological safety officer. In Belgium this cooperation either fits into the task of the physical control officer attached to the establishment itself, or is being ordered by a private organization for physical controls. Some results of physical controls carried out during the past ten years now being illustrated. (author)

  3. Medical radiation protection in next decade

    International Nuclear Information System (INIS)

    Rehani, M. M.; Vano, E.

    2011-01-01

    Interest in medical radiation protection today is the same as what it would have been almost a century ago. After many decades of relatively safe application of radiation in medicine, the recent spurt in over exposures, over-use of imaging and accidental exposures has created the need for stakeholders to join hands and contribute towards increasing radiation safety levels. Whether it be the need for technological developments to achieve sub-mSv CT scans, tracking of patient exposure history, accounting for repeated exposures of the same patient, specific consideration of requests for radiological examinations that deliver few mSv of dose, or utilization of regulatory approaches, radiological equipment will need to alert users whenever the radiation dose to the patient is above a defined value. The current decade will focus increasingly on carcinogenic effects in patients. (authors)

  4. Radiation Protection

    International Nuclear Information System (INIS)

    Loos, M.

    2002-01-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2001 are described. The main areas for R and D of the department are enviromnental remediation, emergency planning, radiation protection research, low-level radioactvity measurements, safeguards and physics measurements, decision strategy research and policy support and social sciences in nuclear research. Main achievements for 2001 in these areas are reported

  5. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  6. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2008-12-01

    The justification of the practices is the fundamental principle on which rests the peaceful use of ionizing radiations. They actually contain as aspirations to improve the quality of people's lives, contributing to sustainable development through environmental protection, so that the sources security and the individuals protection will be conditions which are not and should can not be operated. For medical applications is a highly illustrative example of this, since both for the diagnosis and therapy, the goal is to achieve what is sought for the white tissue, secured the least possible damage to the neighboring tissues so that in turn reduce the negative effects for the patient. As a basis for achieving the above, it is essential to have qualified personnel in all areas incidents, for example users, workers, officials and staff members. There are a variety of specialists in the field of medical applications as, nuclear chemistry, nuclear engineering, radiation protection, medical physics, radiation physics and others. Among the human resource in the country must make up the majority are medical radiologists, highlighting gaps in the number of radiotherapy and nuclear medicine but specially in the medical physics, who is in some way from a special viewpoint of the formal school, new to the country. This is true for the number of facilities which are in the country. The radiation protection responsibilities in medical applications focus primarily on two figures: the radiology safety manager, who is primarily dedicated to the protection of occupationally exposed personnel and the public, and the medical physicist whose functions are geared towards the radiological protection of the patient. The principal legislation in the medical applications area has been enacted and is monitored by the Health Secretary and National Commission on Nuclear Safety and Safeguards, entities that have reached agreements to avoid overlap and over-regulation. Medical applications in the

  7. Radiation protection during hybrid procedures: innovation creates new challenges.

    Science.gov (United States)

    Sawdy, Jaclynn M; Gocha, Mark D; Olshove, Vincent; Chisolm, Joanne L; Hill, Sharon L; Phillips, Alistair; Galantowicz, Mark; Cheatham, John P; Holzer, Ralf J

    2009-09-01

    The cooperation between interventional cardiologists and cardiothoracic surgeons has expanded the spectrum of treatment modalities for patients with congenital heart disease. These hybrid techniques have created new challenges, one of which being the provision of adequate but practical radiation protection. This study evaluates the use of a lightweight radiation protection drape (RADPAD) that may be suitable for shielding during hybrid procedures. To simulate a pediatric patient, an 8.7 liter water-filled tub was placed on an X-ray table and exposed to 10-second cine acquisition runs. Radiation exposure was measured at twelve specified locations around the table using a model with three different levels of radiation protection: no shielding, shielding using a traditional 0.35 mm lead-equivalent apron, and shielding using the 0.25 mm lead-equivalent RADPAD. The traditional lead apron and the RADPAD significantly reduced the amount of radiation dose when compared with no shielding. The standard lead apron provided slightly greater radiation protection than the RADPAD (0.000064 radiation absorbed dose [rad] vs. 0.000091 rad; p = 0.012). The measured rad was significantly higher on the right side of the table, and the measured radiation dose decreased significantly with increasing distance from the table. The RADPAD has been shown to function as an efficient shielding device, even though it does not quite match the protection that can be expected from a standard lead apron. It complies with regulatory radiation protection requirements and its lightweight and sterile use make it particularly useful during hybrid procedures in the operating room.

  8. The national radiation protection infrastructure

    International Nuclear Information System (INIS)

    Mastauskas, A.

    1999-01-01

    The state system of radiation protection is still being created after Lithuania regained its independancy and in connection with recommendations laid in the ICRP-60 publication and requirements of legislation of European Community. A new regulation institutions was established and a number of laws and regulations related to radiation protection was prepared. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for radiation protection of public and of workers using sources of ionizing radiation in Lithuania. A new Radiation Protection Law, Nuclear Energy Law, Radioactive Waste Management Law and different regulations was approved. Preparation of legislation, creation of state system of radiation protection and its upgrading allow to presume that the necessary level of radiation protection is to be achieved. (au)

  9. Radiation protection medical care of radiation workers

    International Nuclear Information System (INIS)

    Walt, H.

    1988-01-01

    Radiation protection medical care for radiation workers is part of the extensive programme protecting people against dangers emanating from the peaceful application of ionizing radiation. Thus it is a special field of occupational health care and emergency medicine in case of radiation accidents. It has proved helpful in preventing radiation damage as well as in early detection, treatment, after-care, and expert assessment. The medical checks include pre-employment and follow-up examinations, continued long-range medical care as well as specific monitoring of individuals and defined groups of workers. Three levels of action are involved: works medical officers specialized in radiation protection, the Institute of Medicine at the National Board for Atomic Safety and Radiation Protection, and a network of clinical departments specialized in handling cases of acute radiation damage. An account is given of categories, types, and methods of examinations for radiation workers and operators. (author)

  10. Radiation protection in Bolivia

    International Nuclear Information System (INIS)

    Miranda Cuadros, A.A.

    2001-01-01

    Radiation protection in Bolivia has gone through a number of stages. Initially, in the 1970s, the focus was mainly on the analysis of environmental sources resulting from the nuclear tests carried out by France in the Pacific Ocean. Subsequently, the focus switched somewhat to radiation protection in connection with the mining of uranium and in the area of public health. During the third stage, radiation protection in other areas became important as the use of radiation sources was introduced. Finally, during the present -- fourth -- stage, radiation protection regulations are being introduced and mechanisms for the control of radiation sources are being established. (author)

  11. Radiation protection textbook

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.

    2007-01-01

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  12. Problems of radiation protection at medical use of radiation equipment

    International Nuclear Information System (INIS)

    Larwin, K.

    1979-01-01

    For medical use of radiation equipment man is not only operator, but also object (patient). The question, if or how much it is necessary to expose the patient, is a medical problem and therefore not to be discussed here. For the user of medical equipments we have often special conditions. For many diagnostic applications the physician has to stay in the application room in contact with the patient. As a typical example for the problems of radiation protection there is discussed the situation on a well known fluoroscopic unit for lung and stomach examinations. (author)

  13. Radiation protection forum

    International Nuclear Information System (INIS)

    Cabral, W.

    2010-01-01

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  14. Radiation protection law

    International Nuclear Information System (INIS)

    Hebert, J.

    1981-01-01

    This article first reviews the general radiation protection law at international and national level, with particular reference to the recommendations of the International Commission on Radiological Protection (ICRP) which, although not mandatory, are nevertheless taken into consideration by international organisations establishing basic radiation protection standards such as the UN, IAEA, NEA and Euratom, at Community level, and by national legislation. These standards are therefore remarkably harmonized. Radiation protection rule applied in France for the different activities and uses of radioactive substances are then described, and finally, a description is given of the regulations governing artificial radioisotopes and radioactive effluents. (NEA) [fr

  15. VI Congress of the Radiation Protection Spanish Society: Cordoba, 24-27 Sep 1996: lectures

    International Nuclear Information System (INIS)

    1996-01-01

    This special issue of journal ''Radioproteccion'' complies the lectures presented at the VI Congress of the Radiation Protection Spanish Society. The sessions were: 1.- Radiation protection of people and environment 2.- Radiation protection workers. 3.- Natural radiation 4.- Biological effects of radiations 5.- Radiation protection of patients. 6.- Measurement of radiations 7.- Legislation 8.- Quality Control 9.- Training in radiation protection

  16. Radiation protection standards

    International Nuclear Information System (INIS)

    Koelzer, W.

    1980-01-01

    The present paper deals with: Objectives and basic concepts of radiation protection, basic radiobiological considerations, the ICRP system of dose limitation and with operational radiation protection (limits, reference levels, occupational exposure). (RW)

  17. Adjustable radiation protection device of the fluoroscope DG 10

    International Nuclear Information System (INIS)

    Hoermann, D.

    1980-01-01

    In cooperation with the 'VEB Transformatoren- und Roentgenwerk Hermann Matern', Dresden, an adjustable radiation protection device has been developed. This supplementary equipment for fluoroscopes ensures a sufficient protection of the gonads against undesirable X radiation, can be handled easily and does not annoy patients, esp. children

  18. Protection of the patient in radiation therapy

    International Nuclear Information System (INIS)

    1991-01-01

    In the ICRP report (ICRP-Pub-44) a broad picture of radiotheraphy is presented useful to all involved in the care of cancer patients, for instance to physicians, including medical oncologists, and to medical physicists, radiographers, dosimetrists, and administrators. Information is given on the general principles of radiation therapy including external beam therapy and brachytherapy; the accuracy of radiation delivery and quality assurance; the biological radiation response; the expected risk to specific organs or tissues from therapeutic irradiation; the absorbed dose to tissues inside and outside the useful radiation beams; the organization and planning of radiation oncology services; radiation therapy staff education, training and duties; and finally medical research involving the use of radiation therapy. (orig./HP) [de

  19. The philosophy, past and present of radiation protection in radiotherapy

    International Nuclear Information System (INIS)

    Kaercher, K.H.

    1985-01-01

    Radiation protection in radiotherapy can be effected not only by legal provisions, regulations and a sophisticated supervisory apparatus but also by a high level of radiation protection awareness among medical doctors and staff who are responsible for patient radiation protection, too. This awareness will have to be promoted by imparting knowledge and experience to and by those involved with therapeutical measures. However, any exaggeration when doing so will result in causing doctors to become irritated with legal supervision and will cause radiation protection practice to deteriorate. Positive implementation of radiation protection does not only involve the handling of lead and baryte but also the joy in doing something meaningful. (orig./HSCH) [de

  20. About the training on radiation protection in health environment

    International Nuclear Information System (INIS)

    Hernandez Armas, J.

    2007-01-01

    Paper education on Radiation Protection in health environments is essential to optimise the use of radiation for diagnostic or therapeutic purposes. The continuous increment in the number of available radiation emitting equipment in health environments and the generalisation of procedures, which imply important radiation exposures to patients, are expected to increase the overall doses to patients. A consequence of this will be the increment of harmful effects, especially, radiation induced cancer. General concern towards this respect has produced a generalisation of the requirements considered to be needed in a proper Radiation Protection education. Norms have been created for this purpose at both national and European level. here, the European and Spanish norms are reviewed. the applications of these norms are, also reviewed. Furthermore, the objectives of various platforms and European projects, aimed at improving the formation of health personnel on Radiation Protection, are presented. A conclusion of the review is that there exist significant differences in the syllabuses proposed for various professionals at different levels. Moreover, all the legislation collected in the norms has not been implemented in common practice. (Author) 24 refs

  1. Radiation protection of patients in medical exposures: regional project IAEA 2007-2008 RLA/9/57

    International Nuclear Information System (INIS)

    2007-01-01

    The radiation protection of patients in medical exposures as a project is composed of 5 regional covers some 80 countries, 94 hospitals and 120 activities related to radiology and radiation. A workshop was developed with the following objectives: to provide theoretical and practical elements for professionals in radiation protection of patients developing tasks assigned, to identify the methodology by measurement through sheets for data collection and interpretation of the same, to perform practical exercises of the procedures to apply in radiology, mammography, computed tomography and interventionism. The workshop was divided into theoretical and practical sections, sections for analysis and interpretation of data and a final exam. This project aims to identify strengths and weaknesses, simple primary objectives with fast results, involvement of doctors, institutional commitment to see results after more complex stages, technique stiffness, sustainability. Among the goals of the member states are: To prevent radioinjury in interventional procedures and reduce the probability of stochastic effect, especially in pediatrics; dose reduction changing of rare earth in countries that have not yet made, optimization in mammography, optimization of protection in CT, with emphasis in pediatrics; protection of family and the public to give discharge the patient, after therapy with radiopharmaceuticals; to prevent accidental exposures in radiotherapy and pediatric radiology. The content is divided into four parts which include different forms to collect information constituted on the following topics: Intervention, with information over Uncertainties in calibration of the meter P K A, Evaluation of dose with radiochromatic movie, Data processing and radiation protection, Measurements of kerma-area product, Practice: Exposure assessment of the patient in interventional radiology, Determination of the Hemi reducer layer, Recalibration and use of a meter of Kerma-area product

  2. Development of nuclear medicine techniques - radiation protection issues for patients; Evolution des techniques en medecine nucleaire - Enjeux de radioprotection pour les patients

    Energy Technology Data Exchange (ETDEWEB)

    Marchandise, Xavier [Faculte de Medecine de Lille, F-59045 Lille Cedex (France)

    2011-07-15

    Nuclear medicine uses radioactive isotopes for diagnostic or therapeutic purposes. The radiation protection culture is now well-anchored in the training of nuclear medicine specialists in France and must remain at the highest possible level. However, practices change and the immediate medical - or even media - interest in new equipment and new tracers must not obscure the fundamentals of patient radiation protection. Particular vigilance is today required with regard to two aspects: - children; - the corresponding computed tomography. (author)

  3. National congress of radiation protection - Book of presentations (slides)

    International Nuclear Information System (INIS)

    2013-06-01

    This document brings together all the available presentations (slides) of the 9. French national congress of radiation protection. The congress comprised 9 tutorial sessions and 13 ordinary sessions. The tutorial sessions covered the following topics: T1 - Fukushima accident's consequences on terrestrial environment; T2 - The efficient dose: use and limitations in the industrial and medical domains; T3 - Revision of the NFC 15-160 standard relative to radiological facilities; T4 - Medical implants and low frequency electromagnetic fields; T5 - Report from the working group on radiological zoning; T6 - Incidents in medical environment; T7 - ADR: European agreement about the international road transport of dangerous goods; T8 - Cigeo project: industrial geologic disposal facility; T9 - Dose control in medical imaging: what progress since 2010? The ordinary sessions gathered fifty-nine presentations dealing with the following subjects: 1 - effects of ionising radiations on man and ecosystems; 2 - radiation protection regulation and standards; 3 - radiation protection in incident, accident and post-accident situation; 4 - radiation protection of populations and ecosystems; 5 - Radiation protection and society; 6/11 - Radiation protection of patients; 7/8 - Eye lens irradiation and dosimetry; 9 - Non-ionising radiations; 10/12 - Radiation protection in professional environments; 13 - advances in dosimetry and metrology

  4. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1976-01-01

    The lecture is divided into five sections. The introduction deals with the physical and radiological terms, quantities and units. Then the basic principles of radiological protection are discussed. In the third section attention is paid to the biological effects of ionizing radiation. The fourth section deals with the objectives of practical radiological protection. Finally the emergency measures are discussed to be taken in radiation accidents. (HP) [de

  5. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  6. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  7. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  8. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  9. Report by the work-group on radiation protection in interventional radiology. Recommendations related to the improvement of radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    2010-01-01

    This report aims at proposing recommendations for the improvement of the quality of radiation protection of workers and patients in the field of interventional radiology. These recommendations concern the training of health personnel, the application of the optimization principle to health professionals and patients, dosimetry and the definition of diagnosis reference levels. More particularly, these recommendations concern professions involved in interventional radiology, and take into account the experience of other European Union State members and recommendations made by the IAEA. The authors analyze the equipment, radiological actions, procedures and doses, practitioners, equipment used for radio-guided interventions. They discuss doses received by patients, patient monitoring and radio-induced lesions. Then, they address the role and training of the different interveners in radiation protection, the equipment maintenance issue, and personnel dosimetry and protection

  10. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    2002-01-01

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  11. What is good radiation protection?

    International Nuclear Information System (INIS)

    Lorenz, B.

    2016-01-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  12. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  13. Radiological protection of the patient in the diagnostic X-ray

    International Nuclear Information System (INIS)

    Araujo, A.M.C. de

    1983-01-01

    Measures and procedures are given in relation to the radiological protection of the patient in diagnostic radiology. Technical and physical factors of the patient protection are discussed, as radiation beam properties, size of the irradiation field, shieldings, control of the scattered radiation that reaches the imaging record system, films, ecrans and radiographic film processing. General recommendations about the radiation protection of the patient in diagnostic radiology are given. (M.A.) [pt

  14. Principles of Radiation Protection Concepts

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli

    2004-01-01

    The contents of this chapter are follows - Radiation Protection Concepts: justification, dose limitation, optimisation, potential exposures, situation requiring intervention; Special Considerations. Protection from Radiation Hazards, Remove the Hazard, Prevent the Hazard, Guard the Worker, Implementation of Radiation Protection and Safety Measures, Distance, Shielding, Time, Monitoring Programme, Safety System. Radiation Protection in Radiological Service: Specific Requirement in Diagnostic Radiological Service

  15. Foundations of radiation physics and radiation protection. 5. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2017-01-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  16. Radiation Protection Training in Lithuania

    International Nuclear Information System (INIS)

    Jankauskiene, D.

    2003-01-01

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  17. Radiation in dental practice: awareness, protection and recommendations.

    Science.gov (United States)

    Praveen, B N; Shubhasini, A R; Bhanushree, R; Sumsum, P S; Sushma, C N

    2013-01-01

    Radiation is the transmission of energy through space and matter. There are several forms of radiation, including ionizing and nonionizing. X-rays are the ionizing radiation used extensively in medical and dental practice. Even though they provide useful information and aid in diagnosis, they also have the potential to cause harmful effects. In dentistry, it is mainly used for diagnostic purposes and in a dental set-up usually the practicing dentist exposes, processes and interprets the radiograph. Even though such exposure is less, it is critical to reduce the exposure to the dental personnel and patients in order to prevent the harmful effects of radiation. Several radiation protection measures have been advocated to ameliorate these effects. A survey conducted in the Bengaluru among practicing dentists revealed that radiation protection awareness was very low and the necessary measures taken to reduce the exposure were not adequate. The aim of the article is to review important parameters that must be taken into consideration in the clinical set-up to reduce radiation exposure to patients and dental personnel.

  18. Medical Physics expert and competence in radiation protection

    International Nuclear Information System (INIS)

    Vano, E.; Lamn, I. N.; Guerra, A. del; Van Kleffens, H. J.

    2003-01-01

    The Council Directive 97/43/EURATOM on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, defines the Medical Physical Expert as an expert in radiation physics or radiation technology applied to exposure, within the scope of the Directive, whose training and competence to act is recognized by the competent authorities; and who, as appropriate, acts or gives advice on patient dosimetry, on the development and use of complex techniques and equipment, on optimization, on quality assurance, including quality control, and on other matters relating to radiation protection, concerning exposure within the scope of this Directive. As a consequence, it might be implied that his competence in radiation protection should also cover the staff and the public. In fact, the training programmes of medical physics experts include all the aspects concerning these topics. Some confusion could arise in the medical area when the Qualified Expert defined in the Council Directive 96/29/Euratom laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation is considered. The Qualified Expert is defined as a person having the knowledge and training needed to carry out physical, technical or radiochemical tests enabling doses to be assessed, and to give advice in order to ensure effective protection of individuals and the correct operation of protective equipment, whose capacity to act a qualified expert is recognized by the competent authorities. A qualified expert may be assigned the technical responsibility for the tasks of radiation protection of workers and members of the public. In Europe, the Qualified Expert is acting at present in the Medical Area in countries where there are not enough Medical Physics Experts or in countries where this role was established before the publication of the Council Directive 97/43/EURATOM. Now, the coherent

  19. Practical radiation protection

    International Nuclear Information System (INIS)

    Brouwer, G.; Van den Eijnde, J.H.G.M.

    1997-01-01

    This textbook aims at providing sufficient knowledge and insight to carry out correctly radiation protection activities and operations. The subjects are appropriate for the training of radiation protection experts for the levels 5A (encapsulated sources, X rays) and 5B (open sources, laboratory activities)

  20. Radiation protection in BNCT patients

    International Nuclear Information System (INIS)

    Blaumann, Hernan R.; Scharnichia, E.; Levanon, I.; Fernandez, C.; Facchini, Guillermo; Longhino, J.; Calzetta, Osvaldo; Pereira, M.

    2008-01-01

    Full text: Boron Neutron Capture Therapy (BNCT) is a technique that selectively targets cancer cells while sparing normal tissues by virtue of the differential uptake of a 10 B carrier compound in tumor. The National Atomic Energy Commission (CNEA) and the Oncology Institute 'Angel H. Roffo' (IOAR) began a BNCT programme in 2003 for treating cutaneous skin melanomas in extremities. The neutron beam used is the hyperthermal one developed at the RA-6 Reactor of the Bariloche Atomic Centre (CAB). The prescribed dose is delivered in one fraction and therefore patient positioning and knowledge of the dose received by normal tissue are crucial. 10 irradiations have been done since 2003, all of them in legs and feet and the dose prescription was determined by the maximum tolerable skin dose. Due to the characteristics of this treatment the patient body might be exposed not only to the primary beam but also to the secondary photon beam produced by neutron capture at the target itself. Thus a patient radiation-monitoring plan was implemented in order to evaluate the gamma dose delivered to sensible organs of each patient. An acrylic water-filled whole body phantom was used for preliminary gamma dose and thermal neutron flux measurements at positions related to patient's body sensible organs considering tentative patient positions. The beam port shielding was, in this way, optimized. TLD-700 and Manganese foils were used for gamma and thermal neutron detection. The TLD-700 thermal neutron response was previously evaluated by using the in-phantom beam dosimetry characterization. In-vivo dosimetry with TLD is routinely implemented in order to evaluate gamma dose to sensible organs of each patient. These organs are chosen depending on its distance from the zone to be irradiated and its radio-sensibility. All TLDs have been positioned well outside the irradiation field. Maximum gamma dose received outside the radiation field in healthy tissues was well below tolerance dose for

  1. Perspectives for environmental radiation protection in EU radiation protection legislation

    International Nuclear Information System (INIS)

    Janssens, A.

    2000-01-01

    The basis of EU radiation protection legislation is the EURATOM Trealy. It is discussed whether the Treaty offers a legal basis for the protection of the natural environment. The incorporation of provisions pertaining to the nuclear fuel cycle or to radioactive substances in general environmental legislation is explained, as well as the possible implications of international conventions subscribed by the European Union. The European Commission is in the process of developing an overall approach to risk analysis for the protection of health, consumer interests, and the environment. It is examined to what extent the consideration of the impact of radiation on the natural environment fits in the overall framework and whether the principles underlying classical radiation protection are applicable to biota. Specific attention is given to situations where high levels of environmental radioactivity would require intervention. (Author)

  2. Current Challenges in Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    KASE, K.R.

    2008-01-01

    Radiation protection professionals in medical facilities and practices are being challenged by new imaging technologies that use x-rays or radioactive materials. These include faster computerized tomography (CT) scanners, new interventional techniques that use extended fluoroscopy time, increased use of positron emission tomography (PET), and digital imaging techniques. More frequently these technologies are being fused into a single procedure, such as combined CT and PET scanning. Radiation Protection professionals are challenged to (1) be aware of developing technologies and clinical techniques, (2) analyze the potential radiation risks to patients and staff, (3) initiate necessary radiation safety training for medical staff, and (4) be involved in planning, dose measurement and optimization of the procedure to achieve appropriate dose control and ALARA

  3. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawano, Takao

    2013-01-01

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  4. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    1993-01-01

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  5. National congress of radiation protection

    International Nuclear Information System (INIS)

    2001-01-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  6. Radiation protection. Scientific fundamentals, legal regulations, practical applications. Compendium

    International Nuclear Information System (INIS)

    Buchert, Guido; Gay, Juergen; Kirchner, Gerald; Michel, Rolf; Niggemann, Guenter; Schumann, Joerg; Wust, Peter; Jaehnert, Susanne; Strilek, Ralf; Martini, Ekkehard

    2011-06-01

    The compendium on radiation protection, scientific fundamentals, legal regulations and practical applications includes contributions to the following issues: (1) Effects and risk of ionizing radiation: fundamentals on effects and risk of ionizing radiation, news in radiation biology, advantages and disadvantages of screening investigations; (2) trends and legal regulations concerning radiation protection: development of European and national radiation protection laws, new regulations concerning X-rays, culture and ethics of radiation protection; (3) dosimetry and radiation measuring techniques: personal scanning using GHz radiation, new ''dose characteristics'' in practice, measuring techniques for the nuclear danger prevention and emergency hazard control; (4) radiation exposure in medicine: radiation exposure of modern medical techniques, heavy ion radiotherapy, deterministic and stochastic risks of the high-conformal photon radiotherapy, STEMO project - mobile CT for apoplectic stroke patients; (5) radiation exposure in technology: legal control of high-level radioactive sources, technical and public safety using enclosed radioactive sources for materials testing, radiation exposure in aviation, radon in Bavaria, NPP Fukushima-Daiichi - a status report; (6) radiation exposure in nuclear engineering: The Chernobyl accident - historical experiences or sustaining problem? European standards for radioactive waste disposal, radioactive material disposal in Germany risk assessment of ionizing and non-ionizing radiation (7) Case studies.

  7. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    2007-01-01

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  8. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  9. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  10. Optimisation of radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  11. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  12. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system

  13. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system. 8 refs

  14. Radiation exposure in gastroenterology: improving patient and staff protection.

    LENUS (Irish Health Repository)

    Ho, Immanuel K H

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  15. Training of human resources on radiation protection and safe use of radiation sources. Argentine experience

    International Nuclear Information System (INIS)

    Biaggio, Alfredo L.; Nasazzi, Nora B.; Arias, Cesar

    2004-01-01

    Argentina has a long experience in Radiation Protection training since 25 years ago. In the present work we analyse those variable and non variable training aspects according to scientific development, increasing radiation source diversity (including new concepts like orphan sources and security), mayor concern about patient in Radiation Protection, previous exposures, etc. We comment what we consider the main steps in the training of Radiation Protection specialists, like university degree, post graduate education distinguishing between formative and informative contents and on the job training. Moreover, we point out the trainees aptitudes and attitudes to be developed in order to work properly in this interdisciplinary field. (author)

  16. Radiation protection in hospitals

    International Nuclear Information System (INIS)

    MOuld, R.F.

    1985-01-01

    A book on radiation protection in hospitals has been written to cater for readers with different backgrounds, training and needs by providing an elementary radiation physics text in Part I and an advanced, comprehensive Part II relating to specific medical applications of X-rays and of radioactivity. Part I includes information on basic radiation physics, radiation risk, radiation absorption and attenuation, radiation measurement, radiation shielding and classification of radiation workers. Part II includes information on radiation protection in external beam radiotherapy, interstitial source radiotherapy, intracavitary radiotherapy, radioactive iodine-131 radiotherapy, nuclear medicine diagnostics and diagnostic radiology. (U.K.)

  17. MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, J. [UC Davis Medical Center (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  18. MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards

    International Nuclear Information System (INIS)

    Seibert, J.

    2015-01-01

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  19. Radiation protection training in Switzerland

    International Nuclear Information System (INIS)

    Pfeiffer, H.J.

    1999-01-01

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.) [de

  20. Assessment of radiation protection practices among radiographers in Lagos, Nigeria.

    Science.gov (United States)

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-11-01

    Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation.

  1. Radiation protection and certification of health professionals in Brazil

    International Nuclear Information System (INIS)

    Luz, C.P.V. Castro; Sá, L.V.; Delgado, J.U.

    2017-01-01

    Radiation protection has three pillars: justification, optimization and dose limitation. The safe use of ionizing radiation is established by the dose limits resulting from exposure of the public and worker, justification and optimization for medical exposures. In Brazil, there are at least 200,000 professionals working in medical facilities involving the use of ionizing radiation. There are standards of radiation protection that establish the obligation of performance of professionals certified in the facilities through criteria pre-established in Specific Norms. Certification in radiation protection assesses the skills, knowledge and skills of professionals. A detailed research, classification and analysis of the requirements required by the regulatory body for professional performance in this area was carried out, as well as the skills and abilities required by the radiation protection standards in force in the country. The results obtained demonstrated that the certification process of these professionals aims at higher quality and optimization of the medical procedures performed. The direct beneficiaries of this process would be practitioners themselves and patients of medical practices involving the use of ionizing radiations. Certifying health care professionals in radiation protection would meet the demand for national standards and that require a performance control of those involved in medical treatments using ionizing radiations

  2. Management in the protection from ionizing radiation

    International Nuclear Information System (INIS)

    Radunovic, Miodrag; Nikolic, Krsto; Rakic, Goran

    2008-01-01

    There are numerous types and forms of endangering working and living environment, ranging from natural disasters to nuclear accidents. Challenges of the New Age determined that most of the countries reviewed its strategic decisions in the system of protection from ionizing radiation and nuclear safety and defined in a new way the threats, which could considerably imperil health of the population and national interests as well. Excessive radiation of the population became a serious and actual problem in the era of increasingly mass application of ionizing radiation, especially in medicine. The goal of this work is to reduce the risk through using knowledge and existing experiences, in particular when it comes to ionizing radiation in medicine. Optimization of the protection in radiology actually means an effort to find the compromise between quality information provided by diagnostics procedure and quality effects of therapy procedure on one side and dose of radiation received by patients on the other. Criteria for the quality management in the protection from ionizing radiation used in diagnostic radiology was given by the European Commission: European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR, 16260. (author)

  3. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    This textbook is addressed to all those concerned with the protection of radiation workers. It provides full coverage of the implications of radiation in exposed workers, and, after a chapter outlining, in simple terms, the basic facts about radiation, deals with measurement of ionising radiation; radiation dosimetry; effectiveness of absorbed dose; general biological effects of ionising radiation; somatic effects of radiation; the acute radiation syndrome; other somatic effects; hereditary effects; radiation protection standards and regulations; radiation protection; medical supervision of radiation workers; general methods of diagnosis and treatment; metabolism and health problems of some radioisotopes; plutonium and other transuranium elements; radiation accidents; emergency plans and medical care; atomic power plants; medico-legal problems

  4. Radiation Protection Infrastructure In Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Zafimanjato, J.L.R.; Randriantseheno, H.F.; Ramanandraibe, M.J.; Randriantsizafy, D.R.

    2008-01-01

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This Regulatory Authority is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Managing Radioactive Waste.The paper includes an overview of the regulatory infrastructure and the organizations of radiation protection in Madagascar

  5. Radiation protection - thirty years after

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1989-01-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  6. Radiation protection - thirty years after

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  7. ISO radiation protection standards

    International Nuclear Information System (INIS)

    Becker, K.; West, N.

    1981-01-01

    After a brief description of the International Organization for Standardization (ISO) and its Technical Committee (TC) 85 ''Nuclear Energy'', the work of its Sub-Committee (SC) 2 ''Radiation Protection'' is described in some detail. Several international standards on subjects closely related to radiation protection have already been published, for example ISO-361 (Basic radiation protection symbol), ISO-1757 (Photographic dosimeters), ISO-1758 and 1759 (Direct and indirect-reading pocket exposure meters), ISO-2889 (Sampling of airborne radioactive materials), ISO-4037 (X and gamma reference radiations for calibration) and ISO-4071 (Testing of exposure meters and dosimeters). TC 85/SC 2 has currently eight active Working Groups (WG) dealing with 14 standards projects, mostly in advanced stages, in such fields as neutron and beta reference radiations, and X and gamma radiations of high and low dose-rates and high energies for calibration purposes, reference radiations for surface contamination apparatus, ejection systems for gamma radiography apparatus, industrial and laboratory irradiators, lead shielding units, protective clothing, thermoluminescence dosemeters, radioelement gauges, and surface contamination and decontamination. (author)

  8. Radiological protection of the radiotherapy patient?

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Lesiak, J.

    2001-01-01

    We propose that the system and concepts of radiation protection should not be used with reference to radiotherapy patients. We justify this on conceptual grounds. The patient undergoing radiotherapy procedures, as prescribed by the medical practitioner, is protected by the quality assurance system legally required for medical exposures. (author)

  9. Prevalence of Protective Shielding Utilization for Radiation Dose Reduction in Adult Patients Undergoing Body Scanning Using Computed Tomography.

    Science.gov (United States)

    Safiullah, Shoaib; Patel, Roshan; Uribe, Brittany; Spradling, Kyle; Lall, Chandana; Zhang, Lishi; Okhunov, Zhamshid; Clayman, Ralph V; Landman, Jaime

    2017-10-01

    Ionizing radiation is implicated in nearly 2% of malignancies in the United States; radiation shields prevent unnecessary radiation exposure during medical imaging. Contemporary radiation shield utilization for adult patients in the United States is poorly defined. Therefore, we evaluated the prevalence of protective shielding utilization in adult patients undergoing CT scans in United States' hospitals. An online survey was sent to established radiology departments randomly selected from the 2015 American Hospital Association Guide. Radiology departments conducting adult CT imaging were eligible; among 370 eligible departments, 215 departments accepted the study participation request. Questions focused on shielding practices during CT imaging of the eyes, thyroid, breasts, and gonads. Prevalence data were stratified per hospital location, size, and type. Main outcomes included overall protective shielding utilization, respondents' belief and knowledge regarding radiation safety, and organ-specific shielding prevalence. Sixty-seven of 215 (31%) hospitals completed the survey; 66 (99%) reported familiarity with the ALARA (as low as reasonably achievable) principle and 56 (84%) affirmed their belief that shielding is beneficial. Only 60% of hospitals employed shielding during CT imaging; among these institutions, shielding varied based on CT study: abdominopelvic CT (13, 33%), head CT (33, 83%), or chest CT (30, 75%). Among surveyed hospitals, 40% do not utilize CT shielding despite the majority acknowledging the ALARA principle and agreeing that shielding is a beneficial practice. Failure to address the low prevalence of protective shielding may lead to poor community health due to increased risk of radiation-related cancers.

  10. Collection of regulatory texts relative to radiation protection. Part 2: by-laws, decisions, non-codified decrees / Collection of legal and statutory provisions relative to radiation protection. Part 2: by-laws and decisions taken in application of the Public Health Code and Labour Code concerning the protection of populations, patients and workers against the risks of ionizing radiations

    International Nuclear Information System (INIS)

    Rivas, Robert; Feries, Jean; Marzorati, Frank; Chevalier, Celine; Lachaume, Jean-Luc

    2012-01-01

    This second part gathers texts extracted from the Public Health Code and related to ionizing radiations (general measures for the protection of the population, exposure to natural radiations, general regime of authorizations and declarations, purchase, retailing, importation, exportation, transfer and elimination of radioactive sources, protection of persons exposed to ionizing radiations for medical or forensics purposes, situations of radiological emergency and of sustained exposure to ionizing radiations, control), to the safety of waters and food products, and to the control of medical devices, to the protection of patients. It also contains extracts for the Labour Code related to workers protection. This document is an update of the previous version from March 2011

  11. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures.

    Science.gov (United States)

    Germano, Joseph J; Day, Gina; Gregorious, David; Natarajan, Venkataraman; Cohen, Todd

    2005-09-01

    The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures. In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses. The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction. Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction). The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.

  12. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    Science.gov (United States)

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  13. Special radiation protection aspects of medical accelerators

    CERN Document Server

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  14. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Massiot, Philippe; Ammerich, Marc; Viguier, Herve; Jimonet, Christine; Bruchet, Hugues; Vivier, Alain; Bodineau, Jean-Christophe; Etard, Cecile; Metivier, Henri; Moreau, Jean-Claude; Nourredine, Abdel-Mijd

    2014-01-01

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  15. Approaches to promotion and implementation of action on radiation protection for children

    International Nuclear Information System (INIS)

    Goske, M. J.; Applegate, K. E.; Bulas, D.; Butler, P. F.; Callahan, M. J.; Coley, B. D.; Don, S.; Farley, S.; Frush, D. P.; Hernanz-Schulman, M.; Kaste, S. C.; Morrison, G.; Sidhu, M.; Strauss, K. J.; Treves, S. T.

    2011-01-01

    The Radiation Protection in Medicine conference, reviewed in this journal supplement, outlined nine strategies to promote radiation protection for patients. The Alliance for Radiation Safety in Pediatric Imaging has focused its work on three of those areas: creating awareness of the need and opportunities for radiation protection for children; developing open-source educational materials for medical professionals and parents on this critical topic for improved patient safety and communication; and lastly, advocating on behalf of children with industry, government and regulatory bodies to improve equipment design and safety features, standardisation of nomenclature and displays of dose reports across vendor platforms that reflect the special considerations of children. (authors)

  16. Are physicians aware enough of patient radiation protection? Results from a survey among physicians of Pavia District- Italy.

    Science.gov (United States)

    Campanella, Francesca; Rossi, Laura; Giroletti, Elio; Micheletti, Piero; Buzzi, Fabio; Villani, Simona

    2017-06-14

    Radiological practices are the first anthropic sources of ionizing radiation exposure of the population. However, a review of recent publications underlines inadequate doctors' knowledge about doses imparted in medical practices and about patient protection that might explain unnecessary radiological prescriptions. We investigated the knowledge of the physicians of Pavia District (Italy) on the risk of radiation exposure. A cross sectional study was performed involving the Medical Association of Pavia District. Data were collected with a self-administered questionnaire, available on-line with private login and password. Four hundred nineteen physicians fulfilled the questionnaire; 48% of participants reported training about radiation protection. The average percentage of correct answers on the knowledge on ionizing radiation was 62.29%, with a significantly higher result between radiologist. Around 5 and 13% of the responders do not know that, respectively, ultrasonography and magnetic resonance do not expose patients to ionizing radiations. Only 5% of the physicians properly identified the cancer risk rate associated to abdomen computed tomography. The findings show a quite good level of the general knowledge about ionizing radiations, higher that reported in literature. Nevertheless, we believe the usefulness of training on the risk linked to radiation exposure in medicine for physicians employed in every area.

  17. Radiation protection in radionuclide investigations

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1985-01-01

    The subject is covered in sections: introduction; radiation and radioactivity; alpha particles; beta particles; neutrons; electromagnetic radiation; units of radioactivity and radiation; biological effects of radiation; the philosophy of radiation protection (ALARA principle); practical aspects of radiation protection; work with unsealed radiation sources; radionuclide studies in experimental animals; radiation safety during clinical investigations; legislative control of radiation work; radioactive waste disposal; emergency procedures; conclusion. (U.K.)

  18. Radiation protection housing

    Energy Technology Data Exchange (ETDEWEB)

    Maier, A

    1975-04-10

    The radiation protection housing consists of a foot rim with castor swivel wheels, a tubular frame tapering off at the top, and a crown. In the upper part of the tubular frame a lead glass window is permanently installed. The sides are covered with radiation attenuating curtains of leaded rubber. The housing has the shape of a truncated pyramid which can be dismantled into its constituent parts. It is used for protection from radiation encountered in X-ray facilities in dental radiology.

  19. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  20. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, Lars

    2000-03-01

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  1. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  2. Is radiation protection for the unborn child guaranteed by radiation protection for female workers?

    International Nuclear Information System (INIS)

    Nosske, C.; Karcher, K.

    2003-01-01

    ICRP Publication 88 recommends doses to embryo and fetus from intakes of radionuclides by the mother for various intake scenarios. Mainly by answering the question 'Is radiation protection for the unborn child guaranteed by radiation protection for female workers?' it has been assessed if the intake scenarios given in ICRP Publication 88 are adequate for radiation protection purposes. This is generally the case, but the consideration of an additional chronic intake scenario for early pregnancy would be helpful. It is demonstrated that following chronic intake by inhalation, for most radionuclides radiation protection for (female) workers is also adequate for protection of the unborn child, considered as a member of the public. However, there are a number of radionuclides for which possible intakes in routine operations should be more restricted (up to 1% of the annual limits on intake for workers in the case of nickel isotopes) to ensure radiation protection for the unborn child. (author)

  3. Optimization and radiation protection culture

    International Nuclear Information System (INIS)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi

    2013-01-01

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  4. Optimization and radiation protection culture

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-04-15

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  5. Dosimetric evaluation of indigenously developed non-lead bilayered radiation protective aprons

    International Nuclear Information System (INIS)

    Senthilkumar, S.

    2018-01-01

    Radiation shielding garments are commonly used to protect medical patients and radiation workers from X-radiation exposure during diagnostic imaging in hospitals. Originally, protective aprons consisted of lead-impregnated vinyl with a shielding equivalent given in millimeters of lead. All contained up to 2 mm of lead. While lead has long been used to shield patients from X-rays, its toxicity poses a health threat if the protective apron containing the metal wear out or the lead gets damaged. However, lead garments must be treated as hazardous waste for disposal and are heavy, causing back strain and other orthopedic problems for those who must wear them for long periods of time. The main purpose of this work was to indigenously develop light weight non lead based bilayered radiation protective aprons and evaluate dosimetrically with different combination of fabricated non lead materials and commercially available lead based aprons

  6. Law of the Republic of Belarus about radiation protection of the population

    International Nuclear Information System (INIS)

    1998-01-01

    Law of Republic of Belarus about radiation protection of the population determines bases of legal regulation in the field of guarantee of radiation protection of the population and is directed on creation of conditions for protection of life and health of the people from harmful influence of ionising radiation. The law contains the following mail articles: Legal regulation in the field of guarantee of radiation protection; Principles of guarantee of radiation protection; Measures for guarantee of radiation protection; Functions of the state in the field of guarantee of radiation protection; System of the executive authority bodies in the field of guarantee of radiation protection; The state programs in the field of guarantee of radiation protection; State standardisation in the field of guarantee of radiation protection; Licensing of activity in sphere of handling with ionising radiation sources; Industrial control for guarantee of radiation protection; Estimation of a condition of radiation protection; Duties of the user for guarantee of radiation protection at handling with ionising radiation sources; Guarantee of radiation protection at influence of radon and gamma - radiation of natural radioisotopes; Guarantee of radiation protection at production of foodstuff and usage of drinking water; Guarantee of radiation protection of the citizens (patients) at a medical irradiation; Control and account of individual irradiation dozes; Protection of the population and workers (personnel) from radiation accident; Duties of the user of ionising radiation sources for guarantee of radiation protection at radiation accident; Standardisation of irradiation of the citizens attracted for liquidation of consequences of radiation accidents; Right of the citizens of Republic of Belarus, foreign citizens and persons without citizenship for radiation protection; Right of the citizens and public associations on receiving of information; The public control for guarantee of radiation

  7. Radiation Protection Ordinance 1989. Supplement with Radiation Protection Register Ordinance, general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance, general administration regulation pursuant to Sect. 62 sub-sect. radiation passport

    International Nuclear Information System (INIS)

    Veith, H.M.

    1990-01-01

    The addendum contains regulations issued supplementary to the Radiation Protection Ordinance: The Radiation Protection Register as of April 3, 1990 including the law on the setting up of a Federal Office on Radiation Protection; the general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance as of February 21, 1990; the general administration regulation pursuant to Sect. 62 sub-sect. 2 Radiation Protection Ordinance as of May 3, 1990 (AVV Radiation passport). The volume contains, apart from the legal texts, the appropriate decision by the Bundesrat, the official explanation from the Bundestag Publications as well as a comprehensive introduction into the new legal matter. (orig.) [de

  8. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  9. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  10. The role of radiologic technologist in radiation protection and quality assurance programs

    International Nuclear Information System (INIS)

    Djurovic, B.; Spasci -Jokic, V.; Misovic, M.

    2001-01-01

    The most important sources of ionizing radiation for general public are medical sources. Good working protocols and radiological protections measurements provided significant reduction of patients and professional doses. Medical users of ionizing radiation are radiological technologists. The purpose of this paper is to point out to several facts and errors in radiation protection educational programs for radiological technologists. Medical College educational program covers main specific topics in radiation protection, but there are some omissions in training process. Radiological technologists must be actively involved in radiation protection. Following ethical standards they will reach higher standards than the law requires

  11. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  12. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  13. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  14. Radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Brunner, H.

    1990-01-01

    Switzerland's present radiation protection regulations are based on only two paragraphs of the atomic law but have been very successful in practice. A new radiation protection law, separated from nuclear legislation and valid for all application of ionizing radiation and radioctive materials, was proposed and drafted by the Federal Commission on Radiation Protection and has now been accepted by parliament with only minor modifications. The draft of the revised regulations which also will cover all applications, should be ready for consultations next year. Both the law (which contains principles but no figures such as limits) and the regulations incorporate the latest state of ICRP recommendations and are formulated in such a way as to allow application of or quick adaptation to the new basic ICRP recommendation expected for 1991. The legislation is flexible, with a relatively low regulation density and leaves sufficient room for professional judgement on a case by case basis both for authorities and for the specialists responsible for radiation protection in practice. (orig./HSCH)

  15. Understanding of radiation protection in medicine. Pt. 1. Knowledge about radiation exposure and anxiety about radiation injury

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation exposure in correctly understood by medical doctors (n=140), nurses (n=496) and the general public (n=236). Thirty-three percent of medical doctors, 53% of nurses and the general public did not know who is legally allowed to irradiate the human body. Forty-five percent of doctors, 63% of nurses and 48% of the general public complained of anxiety about radiation injury. Fifty-six percent of patients did not ask medical doctors or nurses for an explanation of the risk of exposure. Moreover, 64% of doctors did not explain the risk to patients. In addition, 21% of doctors, 46% of nurses and the general public incorrectly understood that x-rays remain in the examination room. Twenty-seven percent of doctors, 49% of nurses and 80% of the general public did not know the t en-day rule . In conclusion, the results of this questionnaire indicated that basic knowledge about radiation exposure was not adequate. To protect against medical radiation exposure, personnel who are licensed to irradiate to the human body should be well recognized by medical staff and the general public. It is also important that informed consent for radiological examinations be based on fundamental knowledge about radiation exposure. Therefore, to reach a general consensus on radiological examinations and to reduce individual exposure, general public education regarding radiation protection is required. Postgraduate education on radiation protection for medical doctors and nurses is also strongly recommended. (author)

  16. The role of medical physicist in health care and radiation protection

    International Nuclear Information System (INIS)

    Mattsson, S.; Adliene, D.

    2004-01-01

    Medical physics is a part of physics that is associated with the practice of medicine dealing with a use of various types of ionizing and non-ionizing radiation for medical purposes as well as with the radiation protection of patients and personnel. The role, responsibilities and duties of medical physicists in the fields of radiation therapy, diagnostic imaging using X-rays and magnetic resonance methods, diagnostics and therapeutic nuclear medicine, radiation dosimetry and radiation protection are discussed in this paper. It is shown that, the medical physicists have the unique possibility to combine their knowledge in medical radiation physics with the recent achievements in medicine and technology and to apply this knowledge for the adequately safe treatment or diagnosis of patients during radiological procedures. (author)

  17. Status of radiation protection in interventional radiology. Assessment of inspections in 2009 by the ASN

    International Nuclear Information System (INIS)

    2011-01-01

    This report first describes the organization of inspections performed in health institutions, indicates the inspected establishments, the types of fixed installations in interventional radiology, the use of imagery in the operating theatre, and discusses the regulatory arrangements applicable to interventional radiology (in the Public Health Code, in the Labour Code). Then, the report discusses the results of inspections regarding radiation protection in interventional radiology: application of public health code arrangements (justification, patient training in radiation protection, radiological procedures and protocols, patient dosimetry monitoring), application of Labour Code arrangements (designation of the person with expertise in radiation protection, risk assessment and delimitation of monitored and controlled areas, workstation analysis, workers' training in radiation protection, individual protection equipment, workers' dosimetric monitoring, workers' medical monitoring, radiation protection technical controls), significant events, radiation protection in operating theatre. Propositions are stated regarding the differences noticed within or between the health establishments, the methodological and organisational difficulties faced by persons with expertise in radiation protection (PCR), the need of an interdisciplinary team

  18. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    Jozani, F.; Parnianpour, H.

    1976-08-01

    In considering the special provisions required in dental radiography, investigations were conducted in Iran. Radiation dose levels in dental radiography were found to be high. Patient exposure from intraoral radiographic examination was calculated, using 50kV X-ray. Thermoluminescent dosimeters were fastened to the nasion, eyes, lip, philtrum, thyroid, gonads and to the right and left of the supra-orbital, infra-orbital temporomandibular joints of live patients. The highest exposure value was for the lower lip. Recommendations concerning educational training and protection of staff and patients were included

  19. Evaluation of radiation protection conditions in intraoral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, Cristiano; Barros, Frieda Saicla; Rocha, Anna Silvia Penteado Setti da, E-mail: miguel_cristianoch@yahoo.com.br [Universidade Tecnologica Federal do Parana (PPGEB/UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Biomedica; Tilly Junior, Joao Gilberto [Universidade Federal do Parana (UNIR/UFPR), Curitiba, PR (Brazil). Hospital de Clinicas. Unidade de Imagem e Radioterapia; Almeida, Claudio Domingues de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2016-04-15

    Introduction: The dental radiology represents about 20% of human exposure to radiation in radio diagnostic. Although the doses practiced in intraoral dentistry are considered low, they should not be ignored due to the volume of the performed procedures. This study presents the radiation protection conditions for intraoral radiology in Curitiba - PR. Methods: Data was collected through a quantitative field research of a descriptive nature during the period between September of 2013 and December of 2014. The survey sample consisted of 97 dentists and 130 intraoral equipment. The data related to the equipment was collected using structured questions and quality control evaluations. The evaluations of the entrance skin dose, the size of the radiation field and the total filtration were performed with dosimetry kits provided and evaluated by IRD/CNEN. The exposure time and voltage were measured using noninvasive detectors. The occupational dose was verified by thermoluminescent dosimeters. The existence of personal protection equipment, the type of image processing and knowledge of dentists about radiation protection were verified through the application of a questionnaire. Results: Among the survey's results, it is important to emphasize that 90% of the evaluated equipment do not meet all the requirements of the Brazilian radiation protection standards. Conclusion: The lack of knowledge about radiation protection, the poor operating conditions of the equipment, and the image processing through visual method are mainly responsible for the unnecessary exposure of patients to ionizing radiation. (author)

  20. Radiation protection glossary

    International Nuclear Information System (INIS)

    1986-01-01

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  1. Radiation protection guidelines for radiation emergencies

    International Nuclear Information System (INIS)

    Lessard, E.T.; Meinhold, C.B.

    1986-01-01

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material

  2. The objectives of the directive on radiation protection for patients

    International Nuclear Information System (INIS)

    Courades, J.M.

    1992-01-01

    Improvement of the quality of medical uses of radiation and avoiding unnecessary exposure are the main objectives of the 1984 Directive laying down basic measures for the radiation protection of persons undergoing medical examination or treatment. This paper explains how these goals have been achieved through the implementation of the various provisions of the Community act since its adoption

  3. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2014-01-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose–response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  4. Optimization of patient radiation protection in pelvic X-ray examination in Ghana.

    Science.gov (United States)

    Ofori, Eric K; Antwi, William K; Scutt, Diane N; Ward, Matt

    2012-07-05

    Pelvis X-ray examinations inevitably involve exposure of the gonads to ionizing radiation. In line with the principle of keeping doses as low as reasonably practicable (ALARP), accurate patient dose measurement is vital if we are to ascertain that these exposures are fully optimized. The study aimed to provide patient dose estimates for pelvis examination being undertaken at 10 separate hospitals in Ghana in order to provide an initial quantitative indication of each site's typically achievable radiation safety and quality standards. The method employed was adapted from established methods and peer reviewed literature, such as the International Atomic Energy Agency (IAEA) publications on optimization of the radiological protection of patients undergoing radiography, fluoroscopy, and computed tomography examinations in some countries in Africa, Asia, and Eastern Europe. Dose measurements were calculated on 323 patients (137 (42%) male, 186 (58%) female, ages, 38.56 yr ± 9.0; range 20-68). The entrance surface dose (ESD) was determined by an indirect method, using the patient's anatomical data and exposure parameters utilized for the specific examination. The Quality Assurance Dose Database software (QADDs) developed by Integrated Radiological Services Ltd. in Liverpool, UK was used to generate the ESD values. The study identified variations in the technique factors used compared with the recommendations in the European Commission (EC) quality criteria. Eighty percent of the hospitals recorded lower ESD values below IAEA recommended diagnostic reference levels (10 mGy) and 40% of the hospitals exceeded the UK national reference value (4 mGy). However, one hospital consistently recorded higher ESDs than the other hospitals. The variations in the data recorded demonstrate the importance of creating awareness by the radiographic staff on quality assurance and standardization of protocols to ensure satisfactory standards and optimized radiation dose to patients and

  5. Radiation Protection: Introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2007-01-01

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  6. Concepts in radiation protection

    International Nuclear Information System (INIS)

    Oncescu, M.

    1996-01-01

    This monograph provides basic notions and principles in dosimetry and radiation protection in compliance with two fundamental works: IAEA Safety Series No.115 - International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - and Publication no. 60 of International Commission on Radiological Protection. After the review of quantities and units necessary in radiation protection, the book presents the new values of dose limits as well as the values of 'radiation weighting factor', 'tissue weighting factor' and 'conversion factor intake-dose' (committed effective dose per unit intake) by ingestion and inhalation for 30 most important radionuclides. The new values of dose limits, lower than the old values, are a challenge for the radiation protection, especially of the 'public' where the dose limit diminished by a factor of five relative to the earlier edition. The new value of dose limit for public, 1 mSv per year (obviously over the natural exposure of 2.4 mSv per year), imposes new action ways and levels in radiation protection, especially in some cases of exacerbated natural radioactivity. The book provides the calculus of external exposure with the Gamma constant expressed in adequate units, to make the calculation easier. In the calculus of protection shield for gamma sources one uses a method, which while approximate helps save time. The calculus of internal exposure is made using the conversion factor intake-dose. Finally, the 'dosimetric watch' of the natural and artificial radioactivity of the atmosphere, hydrosphere and biosphere is intended to comply with the International Basic Safety Standards. Each chapter ends with a set of illustrative problems which enhances the reader's understanding of underlying concepts and current methods used in the field

  7. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Ninkovic, M.

    1995-01-01

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  8. International Society of Radiology and Radiation Protection

    International Nuclear Information System (INIS)

    Standertskjoeld-Nordenstam, C.G.

    2001-01-01

    The purpose of the International Society of Radiology (ISR), as being the global organization of radiologists, is to promote and help co-ordinate the progress of radiology throughout the world. In this capacity and as a co-operating organization of the IAEA, the ISR has a specific responsibility in the global radiological protection of patients. Globally, there are many users of medical radiation, and radiology may be practised in the most awkward circumstances. The individuals performing X ray studies as well as those interpreting them may be well trained, as in industrialized parts of the world, but also less knowledgeable, as in developing areas. The problems of radiological protection, both of patients and of radiation workers, still exist, and radiation equipment is largely diffused throughout the world. That is why a conference like this is today as important as ever. Radiation protection is achieved through education, on the one hand, and legislation, on the other. Legislation and regulation are the instruments of national authorities. The means of the ISR are education and information. Good radiological practice is something that can be taught. The ISR is doing this mainly through the biannual International Congress of Radiology (ICR), now arranged in an area of radiological need; the three previous ICRs were in China, in India and in South America; the next one is going to be in Mexico in 2002. The goal of the ICR is mainly to be an instructive and educational event, especially designed for the needs of its surrounding region. The ISR is aiming at producing educational material. The International Commission on Radiological Education (ICRE), as part of the ISR, is launching the production of a series of educational booklets, which also include radiation protection. The ICRE is actively involved in shaping and organizing the educational and scientific programme of the ICRs

  9. Importance of establishing radiation protection culture in Radiology Department.

    Science.gov (United States)

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment.

  10. Some perspectives on radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1979-01-01

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85 Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  11. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  12. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  13. The objectives of the Directive on radiation protection for patients

    International Nuclear Information System (INIS)

    Courades, J.M.

    1992-01-01

    Improvement of the quality of medical uses of radiation and avoiding unnecessary exposure are the main objectives of the 1984 Directive laying down basic measures for the radiation protection of persons undergoing medical examination or treatment. This paper explains how these goals have been achieved through the implementation of the various provisions of the Community act since its adoption. (author)

  14. Manual of Radiation Protection

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.; Boisserie, G.

    1992-01-01

    This manual explains the principles and practice of radiation protection for those whose work in research, in the field of medicine or in the industry requires the use of radiation sources. It provides the information radiation users need to protect themselves and others and to understand and comply with international recommendations, regulations and legislation regarding the use of radionuclides and radiation machines. It is designed to teach a wide audience of doctors, biologists, research scientists, technicians, engineers, students and others

  15. Efficiency of radiation protection means in pediatric roentgenology

    International Nuclear Information System (INIS)

    Burdina, L.M.; Stavitskij, R.V.; Lapina, T.V.; Yudaev, V.I.; Pavlova, M.K.

    1989-01-01

    Set of radiation protection means made by MAVIG Company and used in pediatric roentgenology is considered. The set includes protective shields, aprous for medical staff, gloves aprous to protect patient gonades, caps for testicules, protectors, for gonades, irregular devices to shield children during examination of hip joints. Schielding coefficients, which indicate high efficiency of individual protection means produced by MAVIG Company and which may be recommended for widespread application in roentgenology, are given

  16. Radiation Protection Procedures to Individuals According to Situations

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2008-01-01

    The new recommendations of the International Commission for Radiological Protection (ICRP) had been adopted in March 2007. Historically, the first main ICRP recommendations were adopted in 1976. Hence, IAEA issued its publication (safety series no 9) entitled Basic safety standards for radiation protection, EU issued its legislative directive. Furthermore, U K issued its 1985 Ionizing Radiation Regulations . These recommendations were based upon system of dose limitation (justification, optimization and annual dose limits and Four types of exposures (occupational, medical, public and planned special exposure) The second main ICRP recommendations were adopted in 1990. Hence, IAEA together with other international organizations issued its publication (safety series no 115) entitled International Basic Safety Standards for protection against ionizing radiation and safety of radiation sources in 1996. Furthermore, EU issued its new legislative directive and UK issued its updated Ionizing radiation regulations in 1999. These recommendations based upon two systems of protection, these are system of protection in practice and system of protection in intervention. The new ICRP or 2007 recommendations is based upon situations 1- Planned situations, 2- Emergency situations, and 3- Existing situations. The 2007 recommendations rely also on Individuals 1- Occupational, 2- Public and 3- Patient and Furthermore, elements of Radiation Protection system are 1- Justification, 2- Optimization and 3- Dose limits. Updated numerical values for radiation weighting factors for proton is 2 instead of 5 and for neutron , its continuous function instead of discrete values . New numerical values for tissue weighting factors include value of 8% for Gonads instead of 20%. The recommended nominal probability is around 5 per cSv. IAEA as well other international organization are updating its Basic Safety Standards . National regulations shall also be updated accordingly

  17. Guideline for radiation protection in veterinary medicine. Guideline relating to the Ordinance for Protection Against Damage Through Ionising Radiation (Radiation Protection Ordinance - StrlSchV) and the Ordinance for Protection Against X-Ray Radiation (X-Ray Ordinance - RoeV)

    International Nuclear Information System (INIS)

    Michalczak, H.

    2005-05-01

    The Guideline on ''Radiation Protection in Veterinary Medicine'' primarily addresses the supreme Land authorities that are responsible for radiation protection. Its purpose is to harmonise the radiation protection procedures employed by the Laender, thus establishing a nationwide uniform system for monitoring the handling of radioactive substances and ionising radiation applications in veterinary medicine on the basis of the legal regulations in force. In addition the guideline is intended to serve veterinary staff as a source of practical information which explains the radiation protection requirements stipulated by the legal regulations and technical rules. This concerns in particular the rules for the acquisition of the necessary radiation protection skills or the necessary knowledge of radiation protection by the veterinary surgeon performing the application or the staff cooperation in the application

  18. The role of medical physicist in radiation protection

    International Nuclear Information System (INIS)

    Nusslin, F.

    2010-01-01

    Ionizing Radiation is applied in Radiation Therapy, Nuclear medicine and Diagnostic Radiology. Radiation Protection in Medical Application of Ionizing Radiation requires specific Professional Competence in all relevant details of the radiation source instrumentation / equipment clinical dosimetry application procedures quality assurance medical risk-benefit assessment. Application in general include Justification of practices (sufficient benefit to the exposed individuals) Limitation of doses to individuals (occupational / public exposure) Optimization of Protection (magnitude and likelihood of exposures, and the number of individuals exposed will be ALARA. Competence of persons is normally assessed by the State by having a formal mechanism for registration, accreditation or certification of medical physicists in the various specialties (e.g. diagnostic radiology, radiation therapy, nuclear medicine). The patient safety in the use of medical radiation will be increased through: Consistent education and certification of medical team members, whose qualifications are recognized nationally, and who follow consensus practice guidelines that meet established national accrediting standards

  19. Radiation protection optimization of workers

    International Nuclear Information System (INIS)

    Lochard, J.

    1994-11-01

    This report presents the contribution of CEPN (study center on protection evaluation in nuclear area) to the Days of the French Radiation Protection Society (SFRP) on optimization of workers radiation protection in electronuclear, industrial and medical areas

  20. On ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    1996-01-01

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  1. Ethics and radiation protection

    International Nuclear Information System (INIS)

    Hansson, Sven Ove

    2007-01-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle

  2. Ethics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sven Ove [Department of Philosophy and the History of Technology, Royal Institute of Technology (KTH), Teknikringen 78 B, 2tr, SE-100 44 Stockholm (Sweden)

    2007-06-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle.

  3. Education in Radiation Protection

    International Nuclear Information System (INIS)

    Dodig, D.; Kasal, B.; Tezak, S.; Poropat, M.; Kubelka, D.

    2001-01-01

    Full text: This paper discussed the problem of the education in radiation protection. All aspects of education are included started with primary school and lasted with very specialised courses for the experts. In the last few years the lack of interest for education in radiation protection was recognised by many agencies included also IAEA and EU commission. In this paper the reasons for this situation will be presented and the way how to promote this subject again. It is not possible to prevent effects of radiation on environment and population if qualified and well educated experts do not exist. The situation in the field of education in radiation protection in Croatia will be presented, according to the new regulations in this field. (author)

  4. The radiation protection code of practice in teletherapy facilities

    International Nuclear Information System (INIS)

    Fadlalla, N. S. M.

    2010-05-01

    This study aimed to provide a document (code) for the standard practice in teletherapy facilities to be a reference and guide for establishing new teletherapy facilities or mending an existing one, another aim was to evaluated the teletherapy facilities with regard to their compliance to the recommendations and guides mentioned in this document. This document includes: safety specifications for teletherapy equipment, facility planning and shielding design, radiation protection and work practice, quality assurance and personnel requirements and responsibilities. In order to assess the degree of compliance of the two centers in the country with what was stated in the developed document IAEA inspection checklist was utilized and made some radiation measurement were made around the treatment rooms. The results of such inspection mission revealed that the current status of radiation protection in both of inspected centers is almost similar and both are not satisfactory as many of the essential items of radiation protection as stipulated in this document were not followed, which lead to unnecessary, radiation exposure to patients and staff. Finally, some recommendations that may help to improve the status of radiation protection in radiotherapy departments in Sudan are given. (Author)

  5. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Terbeek, Christoph

    2011-01-01

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  6. Adaptation of the present concept of dosimetric radiation protection quantities for external radiation to radiation protection practice

    International Nuclear Information System (INIS)

    Boehm, J.; Thompson, I. M. G.

    2004-01-01

    The present concept of dosimetric radiation protection quantities for external radiation is reviewed. For everyday application of the concept some adaptations are recommended. The check of the compliance with dose limits should be performed either by the comparison with values of the respective operational quantities directly or by the calculation of the protection quantity by means of the operational quantity, the appertaining conversion coefficient and additional information of the radiation field. Only four operational quantities are regarded to be sufficient for most applications in radiation protection practice. The term equivalent should be used in the connection dose equivalent only. Proposals are made for names of frequently used operational quantities which are denoted up to now by symbols only. (authors)

  7. Summary of radiation protection in exploitation

    International Nuclear Information System (INIS)

    Garcier, Yves; Guers, Rene; Bidard, Francoise; Colson, Philippe; Gonin, Michele; Delabre, Herve; Hemidy, Pierre-Yves; Corgnet, Bruno; Perrin, Marie-Claire; Phan Hoang, Long; Abela, Gonzague; Crepieux, Virginie; Guyot, Pierre; Haranger, Didier; Warembourg, Philippe

    2004-01-01

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and

  8. Software for radiation protection

    International Nuclear Information System (INIS)

    Graffunder, H.

    2002-01-01

    The software products presented are universally usable programs for radiation protection. The systems were designed in order to establish a comprehensive database specific to radiation protection and, on this basis, model in programs subjects of radiation protection. Development initially focused on the creation of the database. Each software product was to access the same nuclide-specific data; input errors and differences in spelling were to be excluded from the outset. This makes the products more compatible with each other and able to exchange data among each other. The software products are modular in design. Functions recurring in radiation protection are always treated the same way in different programs, and also represented the same way on the program surface. The recognition effect makes it easy for users to familiarize with the products quickly. All software products are written in German and are tailored to the administrative needs and codes and regulations in Germany and in Switzerland. (orig.) [de

  9. Radiation protection in medicine. Actual regulations and the new EU BSS

    International Nuclear Information System (INIS)

    Loose, R.; Wucherer, M.

    2013-01-01

    Medical radiation protection is based on the principles of justification, optimisation and dose limitation. Depending on the application, medical staff and patients are affected. The implementation of new basic safety standards (BSS) of the European Commission (EC) brings changes, which must be implemented into national law. They have varying effects depending on the type of application (radiology, nuclear medicine, radiation therapy) for all three principles of radiation protection. (orig.)

  10. Procedure and methodology of Radiation Protection optimization

    International Nuclear Information System (INIS)

    Wang Hengde

    1995-01-01

    Optimization of Radiation Protection is one of the most important principles in the system of radiation protection. The paper introduces the basic principles of radiation protection optimization in general, and the procedure of implementing radiation protection optimization and methods of selecting the optimized radiation protection option in details, in accordance with ICRP 55. Finally, some economic concepts relating to estimation of costs are discussed briefly

  11. Radiation protection

    International Nuclear Information System (INIS)

    Kamalaksh Shenoy, K.

    2013-01-01

    Three main pillars underpin the IAEA's mission: Safety and Security - The IAEA helps countries to upgrade their infrastructure for nuclear and radiation safety and security, and to prepare for and respond to emergencies. Work is keyed to international conventions, the development of international standards and the application of these standards. The aim is to protect people and the environment from the harmful effects of exposure to ionizing radiation. Science and Technology - The IAEA is the world's focal point for mobilizing peaceful applications of nuclear science and technology for critical needs in developing countries. The work contributes to alleviating poverty, combating disease and pollution of the environment and to other goals of sustainable development. Safeguards and Verification - The IAEA is the nuclear inspectorate, with more than four decades of verification experience. Inspectors work to verify that nuclear material and activities are not diverted towards military purposes. Quantities and Units: Dose equivalent is the product of absorbed dose of radiation and quality factor (Q). For absorbed dose in rads, dose equivalent is in rems. If absorbed dose is in gray, the dose equivalent is in sievert. Quality factor is defined without reference to any particular biological end point. Quality factors are recommended by committees such as the International Commission on Radiological Protection (ICRP) or the National Council on Radiation Protection and Measurements (NCRP), based on experimental RBE values but with some judgment exercised. Effective Dose Equivalent: It is the sum of the weighted dose equivalents for all irradiated tissues, in which the weighting factors represent the different risks of each tissue to mortality from cancer and hereditary effects. Committed dose equivalent: It is the integral over 50 years of dose equivalent following the intake of a radionuclide. Collective effective dose equivalent: It is a quantity for a population and is

  12. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    Leith, I.S.

    1993-01-01

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  13. Agencies revise standards for radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article deals with a guideline, compiled by the IAEA, for radiation protection. The guidelines aim at the control of individual risk through specified limits, optimisation of protection and the justification of all practices involving exposure to radiation. The guideline is a revision of the 1967 publication of the IAEA, Basic safety standards for radiation protection. According to the document the main resposibility for radiation protection lies with the employer. The workers should be responsible for observing protection procedures and regulations for their own as well as others' safety

  14. Radiation protection technology. Specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). 2. rev. ed.

    International Nuclear Information System (INIS)

    Rahn, Hans-Joachim

    2012-01-01

    The specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). Covers the following issues: radiation protection - generally; licenses and notifications; scientific fundamentals; dosimetry, surveillance, control, documentation; technical radiation protection; radiation protection calculations.

  15. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  16. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  17. Priorities in radiation protection. Propositions for a better protection of persons against the danger of ionizing radiations. Report of the Vrousos commission

    International Nuclear Information System (INIS)

    2004-03-01

    this report presents priorities for actions and recommendations on subjects such communication, information, education, and also research, monitoring of technological development, expertise or giving users more responsibility. these recommendations are given with actions propositions on field of workers radiation protection or patients protection or radioactive sources management. (N.C.)

  18. The Association of German Radiation Protection Physicians: Its origins, pathways and objectives

    International Nuclear Information System (INIS)

    Beck, H.R.

    1985-01-01

    The paper highlights three principles which will hold good for future development, too: 1) In terms of the protection of the health of personnel, patients and total population, radiation protection constitutes a primary task for the physician; 2) The association endeavours to make a realistic assessment of the radiation hazard and dismisses both its overestimation and its underestimation; 3) Training and vocational qualification appear to be more important for radiation protection than perfectionist-bureaucratic provisions. (orig./HSCH) [de

  19. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  20. Environmental radiation protection - a brief history

    International Nuclear Information System (INIS)

    Zapantis, A.P.

    2003-01-01

    The effects of ionising radiation on man has been studied intensely for decades, and the system of radiation protection for man has been continually refined in the light of those studies. That system assumes that if man is protected, non-human biota at the species level will also be adequately protected. However, an increasing recognition of the need to protect the environment, and international agreements signed in 1992, have resulted in that paradigm being questioned, with the onus shifting slowly towards demonstrating that the environment is protected. Further, radiation protection agencies and environmental protection agencies around the world have now started considering the issue of developing a system of radiation protection for the environment. The International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA) are also active in this area. The purpose of this paper is to briefly outline some of the issues confronting environmental and radiation protection specialists, and to mention some of the initiatives being taken by the international community to resolve those issues

  1. Pregnancy and Radiation Protection

    International Nuclear Information System (INIS)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  2. Days of Radiation Protection 2001. Conference Proceedings of the 24th Days of Radiation Protection

    International Nuclear Information System (INIS)

    Bohunice NPP

    2001-11-01

    Already the 24 th annual international conference 'Days of Protection from Radiation' was taking place in Jan Sverma Hotel in Demaenova dolina on 26-29 November 2001. More than 180 participants from the Slovak Republic and the Czech Republic participated in the meetings of experts on protection from radiation. Representative of IAEA Division for Protection from Radiation and the representatives of several European companies securing the project, advisory and supplier's activities in dosimetry of ionising radiation also participated in the conference. The participants discussed in 7 expert panels the issue of protection from radiation in the legislative field, in the nuclear facilities operation and in medicine. The expert part of the other panels concerned the issues of ionising radiation impact on the environment and working environment, natural radio-nuclides, including radon and biologic impacts of radiation. One separate panel was dedicated to device techniques and methods of dosimetry of ionising radiation. More than 45 expert lectures and more than 40 poster presentations were presented at the conference during 3 days. The exhibition and presentation of measuring technique products and devices and of materials used in the area of radiation protection and nuclear medicine was prepared during the course of the conference. Participation in the conference showed that a great interest in problems of protection from radiation persists. This was proved by rich lecturing activity and wide discussions on the floor and during the poster presentations. Participants were satisfied since the organisers of the event prepared a worthy event with the rich expert themes at a good organisational and social level in a beautiful environment of Low Tatras

  3. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.-J.

    1990-01-01

    This book grew out of a series of courses in radiobiology and radiation protection which were given to students in schools for radiology technicians, radiation safety officers and to medical students. Topics covered include the sources of ionizing radiation and their interactions with matter; the detection and measurement of ionizing radiation; dosimetry; the biological effects of ionizing radiation; the effects of ionizing radiation on the human body; natural radioexposure; medical radio-exposure; industrial radioexposure of electronuclear origin; radioexposure due to experimental nuclear explosions; radiation protection; and accidents with external and/or internal radio-exposure. (UK)

  4. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    Sollet, E.

    1996-01-01

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  5. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  6. Some considerations on radiation protection. A questionnaire report from the nursing department

    International Nuclear Information System (INIS)

    Hirata, Toshiyuki; Koyama, Masanori; Saito, Masato; Ikai, Takeshi; Nakajima, Fujio; Matsui, Masayuki; Kadono, Koji; Miura, Teruo; Igimi, Yutaka

    1998-01-01

    Authors conducted the questionnairing on the radiation protection in cooperation with nurses. And on the basis of the results, we reported here what is now important for the radiation protection and what we can do as the team medical activities, including the discussion with other documents. On November 1996, the questionnairing was conducted in 165 nurses of Saiseikai Shiga Hospital and replies were received from 78% of them. Nurses from 1 year to <3 years in experience were 44% and these from 3 to <5 years in experience 19%. The questionaire was designed to elicit the interest, the sense and the understanding on the medical radiation protection, and to obtain what kinds of the interest they have and what they want to know. On the understanding of the radiation, many nurses had much interest in the radiation exposure to patients and nurses own, which occupied 33% of the respondents. One hundred thirteen nurses (68%) had some questions on the radiation protection, in which the most was on the potable radiation apparatus. Among patients' questions about the radiation, the most numerous was on the physical and genetic effects and many nurses could not respond the suitably. On the basis of these results nurses were given the training. (K.H.)

  7. Consequences of the new radiation protection law on the radiation protection register and the occupational radiation protection; Auswirkungen des neuen Strahlenschutzgesetzes auf das Strahlenschutzregister und die berufliche Strahlenueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Frasch, Gerhard

    2017-08-01

    The implementation of the guideline 2013/59/EURATOM has been performed in the new radiation protection law. The most important consequences of the new radiation protection law for the occupational radiation protection are the following: the introduction of an explicit personal indicator and the actualization of occupational categories for employees. These facts require technical and administrative reorganization in data transmission of the licensee to the regulatory monitoring executive and the radiation protection register.

  8. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  9. Radiation protection standards

    International Nuclear Information System (INIS)

    Fitch, J.

    1983-11-01

    Topics covered include biological radiation effects, radiation protection principles, recommendations of the ICRP and the National Health and Medical Research Council, and dose limits for individuals, particularly the limit applied to the inhalation of radon daughters

  10. Proceedings of Asia congress on radiation protection

    International Nuclear Information System (INIS)

    1993-01-01

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  11. State Radiation Protection Supervision and Control

    International Nuclear Information System (INIS)

    2003-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented

  12. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  13. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1994-12-01

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection [sr

  14. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    Various governmental agencies, including the Ministry of Health, the Ministry of Labor and the Israel AEC are responsible for the control of the use of radioactive materials and medical X-ray machines in Israel. Present legislation deals mainly with the legal aspects of the purchase, transport and possession of radioactive materials and the purchase and operation of medical X-ray machines. No legislation refers explicitly to the protection of the worker from ionizing (and non-ionizing) radiation. A special group of experts appointed by the Minister of Labor recently worked out a comprehensive draft law concerning all legal aspects of occupational radiation protection in Israel. Among the main chapters of the draft are: general radiation protection principles, national radiation protection standards, medical supervision of radiation workers, personal monitoring requirements. The present situation with regard to radiation hazard control in Israel and details of the proposed radiation protection law is discussed. (Author)

  15. Protection of patients in dentistry

    International Nuclear Information System (INIS)

    Selato Selato, P.

    2013-04-01

    Current literature on dental radiology was reviewed in order to seek justification for radiological protection of patients in dental radiography, to explore the different factors affecting patient dose and to derive practical guidance on how to achieve radiological protection of patients in dentistry. Individual doses incurred in dental radiology are in general relatively low, however it is generally accepted that there is no safe level of radiation dose and that no matter how low the doses received are, there is a mathematical probability of an effect. Hence appropriate patient protection measures must be instituted to keep the exposures as low as reasonably achievable (ALARA). The literature review demonstrated that there is considerable scope for significant dose reductions in dental radiology using the techniques of optimisation of protection. The techniques of optimization of protection that can be used to ensure patient dose is as low as reasonably achievable whilst achieving clinically adequate image quality include the following: image receptor selection, image receptor holders, collimation, beam filtration, operating potential and exposure time, patient protective equipment, film exposure and processing, film storage, image viewing, quality assurance, diagnostic reference levels, technique charts and training and education.(au)

  16. Overview of radiation protection programme in nuclear medicine facility for diagnostic procedures

    International Nuclear Information System (INIS)

    Ahmed, Ezzeldein Mohammed Nour Mohammed

    2015-02-01

    This project was conducted to review Radiation Protection Program in Nuclear Medicine facility for diagnostic procedures which will provide guide for meeting the standard and regulatory requirements in diagnostic nuclear medicine. The main objective of this project is to keep dose to staff, patient and public as low as reasonably achievable (ALARA). The specific objectives were to review the Radiation Protection Program (RPP) in diagnostic nuclear medicine and to make some recommendation for improving the level of radiation protection in diagnostic nuclear medicine that will help to control normal exposure and prevent or mitigate potential exposure. The methodology used is review of various documents. The review showed that if the Radiation Protection Program is inadequate it leads to unjustified exposure to radiation. Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a qualified Radiation Protection Officer (RPO) should be appointed to lay down and oversee a radiation protection in the nuclear medicine department. The RPO must be given the full authority and the adequate time to enable him to perform his duties effectively. (au)

  17. Recommendations of International Commission of Radiation Protection 1990

    International Nuclear Information System (INIS)

    1995-01-01

    The book summarizes the recommendations on radiation protection of International of Radiation Protection. The main chapters are: 1.- Rates in radiation protection 2.- Biological aspects of radiation protection 3.- Framework of radiation protection. 4.- System of protection. 5.- Implantation of commission's recommendations. 6.- Summary of recommendations

  18. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  19. Regulations in radiation protection

    International Nuclear Information System (INIS)

    1986-01-01

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  20. Radiation protection in hospitals of Equatorial Guinea

    International Nuclear Information System (INIS)

    Rabat Macambo, P.

    2001-01-01

    With a population of four hundred thousand (400.000) inhabitants and distributed in a territory of 28 thousand (28.000) km 2 , the use of ionizing radiations for medical practice in Equatorial Guinea is few and decreasing. It is used for diagnostic practices in the main hospitals of the country, where the work burden is not over 20 patients per day. The political, social and economical embryonic development of the country until recently had a negative influence on indicators and health organisations, so that even now the country does not have any radiological protection law, this shortness, in addition with the old architectural structure that x ray tools is lodging, as well as dosimetrical lack of employed staff, put this staff under risk of electromagnetic energy. This is to show the present survey of medical activities with ionizing radiation and to request technical support for implementing suitably the basic standards of radiation protection which will help us as basis for the elaboration outline law, on radiological protection in accordance with the new guidelines of the International Atomic Energy Agency. (author)

  1. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  2. Collection of regulatory texts related to radiation protection (collection of legal and regulatory measures related to radiation protection). Part 1: laws and decrees (Extracts of the Public Health Code and of the Labour Code dealing with the protection of population, patients and workers against the hazards of ionizing radiations); Part 2: orders, decisions, non codified decrees (Orders and decisions taken in application of the Public Health Code and of the Labour Code dealing with the protection of population, patients and workers against the hazards of ionizing radiations)

    International Nuclear Information System (INIS)

    Rivas, R.; Saad, N.; Niel, X.; Cottin, V.; Lachaume, J.L.; Feries, J.

    2011-01-01

    The first part contains legal and regulatory texts extracted from the Public Health Code and related to health general protection and to health products (medical devices), from the Social Security Code, and from the Labour Code related to individual work relationships, to health and safety at work, to work places, to work equipment and means of protection, to the prevention of some exposure risks and of risks related to some activities. The second part gathers texts extracted from the Public Health Code and related to ionizing radiations (general measures for the protection of the population, exposure to natural radiations, general regime of authorizations and declarations, purchase, retailing, importation, exportation, transfer and elimination of radioactive sources, protection of persons exposed to ionizing radiations for medical or forensics purposes, situations of radiological emergency and of sustained exposure to ionizing radiations, control), to the safety of waters and food products, and to the control of medical devices, to the protection of patients. It also contains extracts for the Labour Code related to workers protection

  3. Radiation protection; Proteccion Radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Ures Pantazi, M [Universidad de la Republica, Facultad de Quimica (Uruguay)

    1994-12-31

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection.

  4. New radiation protection legislation in Sweden

    International Nuclear Information System (INIS)

    Jender, M.; Persson, Lars

    1984-01-01

    The objective of the new Act is to protect humans, animals and the environment from the harmful effects of ionizing as well as non-ionizing radiation. As previously, the main responsibility for public radiation protection will rest with a single central radiation protection authority. According to the Act, the general obligations with regard to radiation protection will assign greater responsibility than in the past to persons carrying out activities involving radiation. Persons engaged in such activities will be responsible for the safe processing and storage of radioactive waste. The Act also contains rules governing decommissioning of technical equipment capable of generating radiation. The Act contains several rules providing for more effective supervision. The supervisory authority may, in particular, decide on the necessary regulations and prohibitions for each individual case. The scope for using penal provisions has been extended and a rule on the mandatory execution of orders regarding radiation protection measures has been introduced. (authors)

  5. Proceedings of the International Conference on Modern Radiotherapy. Advances and Challenges in Radiation Protection of Patients

    International Nuclear Information System (INIS)

    2009-12-01

    The use of ionizing radiation in medicine has led to major improvements in the diagnosis and treatment of human diseases. While bringing new benefits for cancer treatment, modern radiotherapy also poses new challenges in terms of radiation protection of patients. Prevention of radiotherapy incidents and accidents is a major issue in this area. In December 2009, the French Nuclear Safety Authority (ASN) organised the 1. international conference on radiation protection of patients in radiotherapy. The major objective of the conference was to provide a platform for exchanging experience, and reviewing the actions implemented to improve the radiation safety in radiotherapy both at national and international level. The expected result was: - to reach a consensus about the necessity to strengthen existing international actions for prevention of incidents and accidents, - to set up an international cooperation to improve management for overexposed patients, - to outline a strategy for strengthening regulation, - to contribute to the elaboration of an international scale to rate patient related events for communication and reporting purpose. 360 delegates from 50 countries across the world participated at the 3-day conference. 41 presentations were made and 67 posters were displayed. The conference brought together a broad spectrum of expertise: scientists, health professionals, medical devices manufacturers, risk management specialists, radiation protection experts, representatives from Radiation Protection and Health Authorities as well as patient's associations. The programme covered both scientific and medical issues, such as patient sensitivity to ionising radiation and the treatment of complications. It also provided scope to discuss the benefits and risks of modern radiotherapy and to explore treatment safety issues from various perspectives, including human resources, expertise, education and training along with control and prevention strategies. The conference

  6. Radiological protection issues in endovascular use of radiation sources

    International Nuclear Information System (INIS)

    2006-02-01

    The use of radiation from radioactive materials for cancer treatment is well established. However, examples of uses of radiation therapy for benign conditions have been limited. Placing a radioactive source in the blood vessel so as to irradiate the surrounding inner periphery of the vessel has been attempted in recent years to prevent restenosis after percutaneous coronary and peripheral interventions. This kind of endovascular application provides treatment options that are less invasive for various vascular conditions compared with open surgery. As a part of the International Atomic Energy Agency's (IAEA) function for providing for application of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) that were jointly sponsored by the IAEA, FAO, ILO, OECD/NEA, PAHO and WHO, the IAEA planned a coordinated research project (CRP) that was to start in 2002 on radiological protection problems in endovascular use of radiation sources. However, as experts soon realized that the interest in this modality was waning, the CRP was not initiated. Nevertheless, it was felt that it would be appropriate to compile the information available on radiological protection problems observed so far and their possible solutions. This work was seen as part of a broader IAEA programme that covered accident prevention in radiotherapy. Publications on this topic have included, inter alia, Lessons Learned from Accidental Exposures in Radiotherapy (Safety Reports Series No. 17); Accidental Overexposure of Radiotherapy Patients in Bialystok; Investigation of an Accidental Exposure of Radiotherapy Patients in Panama; Accidental Overexposure of Radiotherapy Patients in San Jose, Costa Rica; and Investigation of an Accidental Exposure of Radiotherapy Patients in Poland. Keeping in mind that endovascular applications involve specialists such as cardiologists, angiologists and surgeons, all of whom might not have a

  7. History of radiation protection in the Czech Republic. Ten years of the National Radiation Protection Institute, 1995-2005

    International Nuclear Information System (INIS)

    Drabkova, A.

    2006-01-01

    The first part of the publication, highlighting the history of radiation protection in the country which today is the Czech Republic, is divided into the following sections: Inception of the field of science and applications 'Protection from ionizing radiation'; Beginnings of work with ionizing radiation in the Czech lands; Formulation of the first health physics and radiation protection requirements in the Czech lands; Beginnings of institutionalization of radiation protection in Czechoslovakia after World War II; The Clinic and Institute of Occupational Medicine in Prague; Institute of Occupational Hygiene and Occupational Diseases in Prague and the regional Institute of Occupational Hygiene and Occupational Diseases in Bratislava; Peaceful uses of atomic energy in Czechoslovakia; First man-made radioisotopes in Czechoslovakia; Health rules and standards applicable to work with ionizing radiation; The responsibilities of the Ministry of Health in the area of health physics and radiation protection within peaceful uses of atomic energy in the Czech Socialist Republic; Research Institute of Health Physics; Institute of Occupational Hygiene and Prevention of Occupational Diseases in the Mining and Processing of Radioactive Raw Materials; Health physics and radiation protection in sectorial and national research plans; Health Physics Centre, Institute of Hygiene and Epidemiology; National Radiation Protection Institute (as a subsidiary of the State Office for Nuclear Safety). The second part of the publication gives details of the recent history of the National Radiation Protection Institute. (P.A.)

  8. Judgement in achieving protection against radiation

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1980-01-01

    This article includes the following topics: Ionizing radiation as a toxic agent; value judgement in establishing protection standards; origin of radiation protection standards; numerical radiation protection standards; exposure of populations; the proportional dose-effect relationship; assumptions involved in the proportional dose-effect relationship and a continued need for value judgement

  9. Critical Issues in Radiation Protection Knowledge Management for Preserving Radiation Protection Research and Development Capabilities.

    Science.gov (United States)

    Dewji, Shaheen Azim

    2017-02-01

    As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory's Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. However, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort.

  10. The nuclear safety and the radiation protection in France in 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Nine points are reviewed: the law project relative to the safety and openness in nuclear field, the safety of the European PWR type Reactor, the priorities in radiation protection, inspection of radiation protection, the surveillance of patients exposure to ionizing radiations, the hot days and dryness of summer 2003 and the functioning of nuclear power plant, the national planning of radioactive waste management, the becoming of high level and years living radioactive waste, the European nuclear policy. (N.C.)

  11. Precautionary radiation protection

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    The German federal government annually reports about the development of radioactivity in the environment, providing the most important data and changes in environmental radioactivity and radiation exposure. These reports are based on the Act on Precautionary Protection of the Public against Radiation Exposure (Radiation Protection Provisions Act) of December 19, 1986 as a consequence of the Chernobyl reactor accident. The purpose of the Act is protection of the public from health hazards arising from a nuclear accident or any other event with comparable radiological consequences, and to create the foundations for correct evaluation of the risks resulting from specific radiation exposures. After 1986, the Act was soon given concrete shape by legal ordinances, which made it a workable tool. The following points, among others, can be summarized form the report for 2004: - The calculated natural and manmade overall exposure is 4.0 mSv/a, as in the previous year, and happens to be exactly the same figure as in the report for 1994. - The contribution to radiation exposure by nuclear power plants and other nuclear facilities is less than 0.01 mSv/a. Over a period of nearly twenty years, the Act and the annual reporting regime have proved to work. Standardized criteria prevent data abuse and misinterpretation, respectively. Definitions of limits have contributed to more transparency and more objectivity. (orig.)

  12. National Sessions of Radiation Protection

    International Nuclear Information System (INIS)

    Sociedad Argentina de Radioproteccion

    2012-01-01

    The Radioprotection Argentine Society (SAR) was organized the National Sessions on Radiation Protection 2012 in order to continue the exchange in the radiation protection community in the country, on work areas that present a challenge to the profession. The new recommendations of the ICRP and the IAEA Safety Standards (2011), among others, includes several topics that are necessary to develop. The SAR wants to encourage different organizations from Argentina, to submit projects that are developing in order to strengthen radiation protection.

  13. Radiation protection programme progress report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  14. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  15. Radiation protection program for early detection of breast cancer in a mammography facility

    Science.gov (United States)

    Villagomez Casimiro, Mariana; Ruiz Trejo, Cesar; Espejo Fonseca, Ruby

    2014-11-01

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1-4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (radiation protection program in this work is applied.

  16. Radiation protection in Qatar

    International Nuclear Information System (INIS)

    Al Maadheed, Khalid; Al Khatibeh, Ahmad

    2008-01-01

    Full text: The State of Qatar has become a member State of IAEA since 1974. Later the Department of Industrial Development (DID) beam the focal point and the competent authority regarding all aspects of the peaceful application of Nuclear Technology. In July, 2000 the Supreme Council was established and charged with all matters related to environmental protection. The Supreme Council joined the IAEA Projects on upgrading protection infrastructure in West Asia region. A preliminary research was initiated to discover where radiation sources are being used, and the legal framework, if any, to regulate their use. The research indicated that radiation sources were being used in the industrial practices (well logging, industrial radiography and nuclear gauges) and in medical practices (mainly diagnostic radiology). The research also indicated that there was virtually no legal framework to regulate them. In less than five years, the State of Qatar was able to issue the radiation protection law, three sets of regulations, namely: Radiation Protection Regulations, Radioactive Waste Management Regulations and the Safe Transport of Radioactive Materials Regulations. In addition, several specific regulation work, dose limits and radiation protection officers were issued. A radiation Protection Department, comprising three sections was established. We are providing individual exposure monitoring for most of the radiation workers in the public sector and some in the private sector. We have set up a proper licensing and inspections procedures, where our inspectors are enforcing the law. More recently, we established an early warning network for nuclear of radiological emergencies, consisting of 6 transplantable stations, five mobile stations and two navigating stations. This year, the network was augmented with five fixed station and an advanced early warning centre, which provides early warning via multiple means (MMS, Fax, E-mail and audio alarms). Last year we signed a nuclear

  17. New general radiation protection training course

    CERN Document Server

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  18. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  19. Cost-risk-benefit analysis in diagnostic radiology: a theoretical and economic basis for radiation protection of the patient

    International Nuclear Information System (INIS)

    Moores, B. Michael

    2016-01-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost-benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: B=V-(P+X+Y). This article presents a theoretical cost-risk-benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. (author)

  20. COST-RISK-BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT.

    Science.gov (United States)

    Moores, B Michael

    2016-06-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost-benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: [Formula: see text] This article presents a theoretical cost-risk-benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. © The Author 2015. Published by Oxford University Press.

  1. Radiation protection: Principles, recommendations and regulations

    International Nuclear Information System (INIS)

    Reitan, J.B.

    1989-01-01

    Radiation protection is a highly international dicipline with a high degree of international harmonization. Especially within the Nordic countries there is general agreement upon principles and standards, despite the actual practice may differ slightly. The basic recommendations of the International Commission on Radiological Protection (ICRP) are accepted by the regulatory bodies and should be followed by all users of radiation. The users are in principle responsible for the radiation protection standard and activities themselves. Because most companies or hospitals lack sufficient expertise by themselves, they must rely upon recommendations from others. Primarily they should contact the national radiation protection agency. However, due to the international harmonization of radiation protection, information from other national or international agencies may be used with confidence. All users of radiation in the Nordic countries are obliged to act according to recognition and assessment of both risks and benefits, and they are responsible for updating their knowledge

  2. Principles of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Karamourtzounis, J. N. [World Health Organization, Geneva (Switzerland)

    1969-05-15

    In the rapidly developing areas of occupational and public health devoted to the protection of people from both immediate and delayed harmful (and sometimes Irreversible) effects of radiation exposure, industrial hygienists, radiological physicists and radiologists must now assume the additional responsibility of protection against radiation. Everyone during his life will have had one or more X-rays taken for diagnostic purposes. The doses received, depending upon the site, are not harmful to the individual, from the genetic aspect, however, the increasing use of X-ray examinations does present a danger,since almost the whole population is involved. Rapid progress in the development of nuclear energy and the practical extension of its use in medicine, agriculture and industry are steadily increasing the potential danger of large groups of the population being exposed to radiation, and radiation hazards are becoming an important aspect of industrial and public hygiene. WHO is concerned with the overall evaluation of population exposure from peaceful uses of atomic energy and through medical practice, the evaluation of radiation risks,and the control of medical radiation exposure. WHO stimulates and provides technical assistance for the development of appropriate programs of radiation protection with respect to the agricultural, industrial and medical applications of radioisotopes. X-rays and radium. (author)

  3. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  4. Ethical problems in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  5. Radiation protection research and training programme review radiation protection programme 1960-89 synopsis of results 1985-89

    International Nuclear Information System (INIS)

    1990-01-01

    This document aims to trace the evolution of the CEC radiation protection programme over its 30 years of existence. During this time, research carried out in the framework of the Community programme has made major contributions to the scientific understanding of the action of ionizing radiation and the protection of man and his environment. This information was crucial for developing better radiation protection management for existing and new technologies and for providing the scientific basis for the regulatory activities of the Commission. One important feature of the programme was the success of bringing together scientists from different Member States to cooperate in the various fields of radiation protection and to integrate different areas of radiation protection research into a coherent approach. The structures thus developed within the programme have enabled research in radiation protection to be conducted in a cost-effective manner on behalf of the Member States. This document aims also to give a synopsis of the most important results of the 1985-89 radiation protection programme. This period was characterized by two challenges, the integration of two Member States into Community research and the impact of the Chernobyl accident. The programme has, in spite of reduced funding, continued to provide a high degree of expertise for the Community in the context of the needs in radiation protection. This has been explicity acknowledged in the evaluation of the 1980-89 programmes carried out by an independent panel

  6. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Revisions to Radiation Protection AGENCY: Nuclear..., ``Radiation Sources,'' Section 12.3 -12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.'' DATES: The effective date of this Standard Review Plan update is...

  7. Establishment of radiation protection and safety programme in Nuclear Medicine

    International Nuclear Information System (INIS)

    Chene, E.

    2014-04-01

    Radiation is useful because of its ability to penetrate tissue, allowing imaging of internal structures. However radiation may produce harmful biological effects. Observations of exposed human populations and animal experimentation indicate that exposure to low levels of radiation over a period of time may lead to stochastic radiation effects. Exposures to high levels of radiation above threshold also leads to deterministic effects. Establishment of radiation protection and safety programme and implement it without fail may help prevent deterministic effect and limit chances of stochastic effects. This is achieved by assigning responsibilities to the proposed organizational structure, management commitment to safety culture by providing continuous education and training to employees, regular reviewing and auditing of radiation safety policies. Occupational, public and environmental radiation exposure is further achieved by implementation of set local rules and operational procedures, proper management of radioactive waste and safe transport of radioactive material. Medical radiation exposure is achieved by justified procedures, optimization of doses, guidance levels, quality assurance and quality control programme through image quality, radiopharmaceutical quality and records keeping of radiation doses, calibration certificates of equipment used, equipment service and test certificates. Diagnostic radiopharmaceuticals must deliver the minimum possible radiation dose to the patient while therapeutic radiopharmaceuticals must deliver the maximum dose to the target organ or tissue, while minimizing the dose to non-target tissues such as the bone marrow. Special considerations shall be given to pregnant and breast-feeding patients. The proper facility design and shielding of a nuclear medicine facility shall further provide for the radiation protection to the worker, the patient, public and the environment. Precautions should be given to radioactive patients as there

  8. Radiation protection technologist training and certification program

    International Nuclear Information System (INIS)

    1982-10-01

    The purpose of this program is to establish training requirements and methods for certifying the technical competence of Radiation Protection Technologists. This manual delineates general requirements as well as academic training, on-the-job training, area of facility training, and examination or evaluation requirements for Radiation Protection Trainees (Trainees), Junior Radiation Protection Technologists (JRPT), Radiation Protection Technologists (RPT), and Senior Radiation Protection Technologists (SRPT). This document also includes recertification requirements for SRPTs. The appendices include training course outlines, on-the-job training outlines, and training certification record forms

  9. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  10. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    Essential information on the health protection of radiation workers which has accumulated since the advent of nuclear fission thirty years ago is presented in simple terms. Basic facts on ionizing radiation, its measurement, and dosimetry are presented. Acute and chronic somatic and genetic effects are discussed with emphasis on prevention. Radiation protection standards and regulations are outlined, and methods for maintaining these standards are described. Diagnosis and treatment of radiation injury from external radiation and/or internally deposited radionuclides is considered generally as well as specifically for each radioisotope. The medical supervision of radiation workers, radiation accidents, atomic power plants, and medicolegal problems is also covered. (853 references) (U.S.)

  11. Critical issues in radiation protection knowledge management for preserving radiation protection research and development capabilities

    International Nuclear Information System (INIS)

    Dewji, Shaheen Azim

    2017-01-01

    As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory’s Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. Furthermore, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort.

  12. Radiation protection - radiographer's role and responsibilities

    International Nuclear Information System (INIS)

    Popli, P.K.

    2002-01-01

    Ever since discovery of x-rays, radiographers has been the prime user of radiation. With the passage of time, the harmful effects of radiation were detected. Some of radiographers, radiologists and public were affected by radiation, but today with enough knowledge of radiation, the prime responsibility of radiation protection lies with the radiographers only. The radiologist and physicist are also associated with radiation protection to some extent

  13. Radiation protection in the Brazilian universities

    International Nuclear Information System (INIS)

    Caballero, K.C.S.; Borges, J.C.

    1994-01-01

    A research covering 91 institutions was undertaken in order to elucidate how radiation protection were indeed fulfilled. A questionary including technical administrative and legal subjects was sent by mail and 36% of which were answered propitiating substantial data for analysis. Only in few cases universities have knowledge of basic procedures in radiation protection, claiming for the elaboration of a plan that could guide supervisors and workers in radiation protection in these institution. Based on the tree analysis technique proposed by IAEA, a Reference Radiation protection Program has been elaborated and proposed for Brazilian universities. (author). 14 refs, 1 figs

  14. Radiation Protection Training in Intracoronary Brachytherapy

    International Nuclear Information System (INIS)

    Prieto, C.; Vano, E.; Fernandez, J. M.; Sabate, M.; Galvan, C.; Meiggs, L.; Corral, J. M.

    2003-01-01

    To report the educational objectives and contents on Radiation Protection (RP) for the practice of Intracoronary Brachytherapy (ICB) procedures. The wide international experience on training programs for ICB as well as our own experience organizing several courses aimed at Cardiologists, Radio therapists and Medical Physicists has been used to elaborate specific RP objectives and contents. The objectives, differentiated for Cardiologists, Radio therapists, Medical Physicists, Nurses and Technicians, pretend to guarantee the safety and RP of both patient and staff in the procedures of ICB. The objectives are necessarily different because their RP formation and their role in the procedure are different. The general topics included in RP training programmes for ICB could be: general topics on RP (Interaction of radiation and matter, RP principles, radiobiology, etc), principles of operation of ICB and interventional X-ray equipment, quantification of radiation dose and risks, optimisation of protection of staff and patients, accidents and emergencies, regulations, responsibilities, quality assurance program, handling of ICB sources, installation and commissioning. Training programs based on the objectives presented in this paper would encourage positive safety culture in ICB and can also be used as a starting point by the Regulatory Authority for the authorization of new Installations and credentialing of professionals involved in this technique as well as for the continuous education of the staff involved. (Author) 10 refs

  15. Radiation protection in newer medical imaging techniques: Cardiac CT

    International Nuclear Information System (INIS)

    2008-01-01

    Medical imaging has seen many developments as it has evolved since the mid-1890s. In the last 30-40 years, the pace of innovation has increased, starting with the introduction of computed tomography (CT) in the early 1970s. During the last decade, the rate of change has accelerated further, in terms of continuing innovation and its global application. Most patient exposure now arises from practices that barely existed two decades ago. These developments are evident in the technology on which this volume is based - multislice/detector CT scanning and its application in cardiac imaging. However, this advance is achieved at the cost of a radiation burden to the individual patient, and possibly to the community, if its screening potential is exploited. Much effort will be required to ensure that the undoubted benefit of this new practice will not pose an undue level of detriment to the individual in multiple examinations. For practitioners and regulators, it is evident that innovation has been driven by both the imaging industry and an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill this growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed as part of the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture

  16. Health physics limitations for radiation protection of patients and medical staff

    International Nuclear Information System (INIS)

    Golikov, V.Ya.; Ermolina, E.P.

    1997-01-01

    Norm-setting documents regulating the requirements to radiation safety during medical x-ray and radiological procedures are reviewed. Besides the Federal Law On Radiation Safety of the Population and Radiation Safety Norms-96, the authors comment on the norm-setting documents issued later and supplementing the above documents. The authors emphasize the obligatory licensing during medical use of ionizing radiation sources. Effective dose is introduced as the criterion of radiation safety of the patients and staff during prophylactic x-ray examinations. Principles of normsetting, validation, and optimization of medical exposures and criteria of radiation safety of patients are discussed

  17. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, L.

    1997-01-01

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  18. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  19. XXXVI. Days of Radiation Protection. Book of Abstracts

    International Nuclear Information System (INIS)

    2014-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 93 abstracts are published. The Conference consists of following sections: (I) General aspects and new trends of radiation protection); (II) Radiation protection in medicine; (III): Dosimetry and metrology of external and internal radiation exposure; (IV) Regulation of radiation exposure to natural sources and control of radon exposure; (V) Radiation protection in nuclear power plants, their decommissioning and waste management; (VI) Application of radiation protection standards in the emergency management; (VII) Biological effects of ionizing radiation and risk estimation; (VIII) Education and training in radiation protection in the light of new recommendations of EU, ICRP and IAEA.

  20. Global view on radiation protection in medicine

    International Nuclear Information System (INIS)

    Vano, E.

    2011-01-01

    When planning good management of ionising radiation in medicine, key factors such as ensuring that health professionals work together and convincing them that radiation protection (RP) represents a substantial part of the quality management system in their clinical practice are of utmost importance. The United Nations Scientific Committee on the Effects of Atomic Radiation has decided that one of the thematic priorities will be medical radiation exposure of patients. The International Commission on Radiological Protection has recently updated the report on RP in medicine and continues to work on focused documents centred on specific areas where advice is needed. The roles of the International Atomic Energy Agency, World Health Organization and the European Commission, in the area of RP in medicine, are described in the present document. The industry, the standardisation organisations as well as many scientific and professional societies are also dedicating significant effort to radiation safety aspects in medicine. Some of the efforts and priorities contemplated in RP in medicine over the coming years are suggested. The best outcome will be accomplished when all the actors, i.e. medical doctors, other health professionals, regulators, health authorities and the industry manage to work together. (authors)

  1. Radiation protection to firemen

    International Nuclear Information System (INIS)

    Almeida, E.S. de.

    1985-01-01

    The basic Knowledge about ionizing radiation oriented for firemen, are presented. The mainly damage and effects caused by radiation exposure as well as the method of radiation protection are described in simple words. The action to be taken in case of fire involving radiation such as vehicles transporting radioactive materials are emphasized. (author)

  2. Radon in balneology - measurement of radon retention by patients and radiation protection for personell

    International Nuclear Information System (INIS)

    Just, G.; Falkenbach, A.; Grunewald, W.A.; Philipsborn, H. von

    2001-01-01

    In radon balneology patients are exposed to radon either from water or air through the skin or through inhalation. Drinking radon water was not included in the study. Previously, the radon transfer has been determined for an estimate of the medically active amount of radon retained in the patient. A simpler approach of measuring radon in expiration under and after exposure has now been standardised and applied to probands under different conditions of exposure. In addition, radon decay products were measured in sweat, saliva and in the skin. Experimental parameters were evaluated for a comparison of different concentrations observed under different conditions. Results are likely to improve both therapy for patients and radiation protection for members of the personnel. (orig.) [de

  3. Looking into future: challenges in radiation protection in medicine.

    Science.gov (United States)

    Rehani, M M

    2015-07-01

    Radiation protection in medicine is becoming more and more important with increasing wider use of X-rays, documentation of effects besides the potential for long-term carcinogenic effects. With computed tomography (CT) likely to become sub-mSv in coming years, positron emission tomography (PET), single photon emission computed tomography (SPECT) and some of the nuclear medical examination will become focus of attraction as high-dose examinations, even though they are less-frequent ones. Clarity will be needed on radiation effects at levels of radiation doses encountered in a couple of CT scans and if effects are really cumulative. There is challenge to develop radiation metrics that can be used as easily as units of temperature and length and avoidance of multiple meaning of a single dose metric. Other challenges include development of biological indicators of radiation dose, transition from dose to a representative phantom to dose to individual patient, system for tracking of radiation exposure history of patient, avoidance of radiation-induced skin injury in patients and radiation cataract in staff, cutting down inappropriate referrals for radiological examinations, confidence building in patient and patient safety in radiotherapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. New radiobiological, radiation risk and radiation protection paradigms

    International Nuclear Information System (INIS)

    Goodhead, Dudley T.

    2010-01-01

    The long-standing conventional paradigm for radiobiology has formed a logical basis for the standard paradigm for radiation risk of cancer and heritable effects and, from these paradigms, has developed the internationally applied system for radiation protection, but with many simplifications, assumptions and generalizations. A variety of additional radiobiological phenomena that do not conform to the standard paradigm for radiobiology may have potential implications for radiation risk and radiation protection. It is suggested, however, that the current state of knowledge is still insufficient for these phenomena, individually or collectively, to be formulated systematically into a new paradigm for radiobiology. Additionally, there is at present lack of direct evidence of their relevance to risk for human health, despite attractive hypotheses as to how they might be involved. Finally, it remains to be shown how incorporation of such phenomena into the paradigm for radiation protection would provide sufficient added value to offset disruption to the present widely applied system. Further research should aim for better mechanistic understanding of processes such as radiation-induced genomic instability (for all radiation types) and bystander effects (particularly for low-fluence high-LET particles) and also priority should be given to confirmation, or negation, of the relevance of the processes to human health risks from radiation.

  5. Radiation protection and safety aspects in the use of radiation in medicine, industry and research

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    1998-01-01

    While ionizing radiations have significant and indispensable uses in several fields, it must be borne in mind that it may be harmful to the radiation workers and public if used indiscriminately and without due caution. Radiation doses received by these individuals should be kept well within the recommended limits through good work practices. It is therefore necessary to ensure safety of radiation workers, patients undergoing radiation diagnosis and treatment, public and environment so that maximum benefit is derived from the use of radiation with minimum and acceptable risk. General principles of radiation protection and safety in various applications of radiations are discussed

  6. Basic principles of radiation protection in Canada

    International Nuclear Information System (INIS)

    1990-03-01

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  7. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  8. New radiation protection law

    International Nuclear Information System (INIS)

    1985-01-01

    The structure of the existing legislation and its contents and aims are reconsidered. New rules which correspond to the present situation are to be established. Also the fundamental principles of the task and methods of radiation protection are to be changed. The main effort will be to create conditions so that all human beings will be protected against the harmful effects of radiation. The effects on plants, animals and on the environment should be considered as well. The legislation should include both ionizing and non-ionizing radiation. The main responsibility of protection should stay with the central authority. Licensing of apparatus, liability for medical applications and radioactive waste is discussed. Granting of permissions and control should be accomplished by the authority. Cooperation with other national and international authorities is dealt with. (G.B.)

  9. The Seven (Or More) Deadly (Or Not So Deadly) Sins of Radiation Protection

    International Nuclear Information System (INIS)

    Strom, Daniel J.; Stansbury, Paul S.

    1999-01-01

    This editorial considers the errors that can occur in the routine practice of radiation protection in the workplace. This work provides a tool and an incentive for radiation protection professionals to mentally examine their radiation protection responsibilities to identify actions they may take to improve their part of the practice of radiation protection for the benefit of humankind. We introduce a rating tool that is patterned after the IAEA International Nuclear Event Scale.?Sins? discussed include ignorance of the radiological situation, failure to integrate safety management, disabling safety interlocks, warning devices, access controls, omission of''reasonable'' from the policy of''as low as reasonably achievable'' (ALARA), extrapolation of risk beyond reason, using radiation exposure as an excuse for terminating an unwanted pregnancy, escalation of safety requirements beyond reason, failure to average a concentration standard, not responding to concerns (of workers, public, patient s, etc.), over-training, and substitution of prescriptive procedures for judgment. Readers are encouraged to look at their radiation protection activities and judge which ones do not make sense from the viewpoint of protecting people against radiation. It is likely that readers will find more than one radiation protection activity that bears scrutiny

  10. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1998-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  11. Radiation Protection Group annual report (1996)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1997-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  12. Radiation Protection Group annual report (1998)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1999-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  13. Radiation Protection Group annual report (1996)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1997-03-25

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  14. Radiation Protection Group annual report (1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1999-04-15

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  15. Radiation Protection Group annual report (1997)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1998-04-10

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  16. Radiation Protection Group annual report (1995)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1996-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1995. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  17. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    Pellet, S.; Giczi, F.; Elek, R.; Temesi, A.; Csizmadia, H.; Sera, E.

    2012-01-01

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  18. Effects of the new radiation protection act on the radiation protection register and the monitoring of occupational radiation exposure

    International Nuclear Information System (INIS)

    Frasch, G.

    2016-01-01

    The implementation of DIRECTIVE 2013/59 / EURATOM (EURATOM Basic Safety Standards) is via the new radiation protection law and brings in the monitoring of occupational radiation among others two significant new features and changes: - Introduction of a unique personal identifier, - update of the occupational categories. Both require technical and organizational changes in the data transmission of the licensees to the dosimetry services and the radiation protection register.

  19. Strengthening Radiation Protection Infrastructures in Africa: Towards Establishing Effective and Sustainable Co-operations and Networks

    International Nuclear Information System (INIS)

    2010-09-01

    The third African IRPA 2010 conference on Strengthening Radiation Protection Infrastructures in Africa: Towards Establishing Effective and Sustainable Co-operations and Networks. IAEA's role in radiation protection with focus in Africa. The controlling of exposure to indoor Radon. And Measure of activities and calculation of effective dose of indoor 222 Rn in some dwelling and enclosed areas in Africa - capacity building for radiation protection. It had also address Patient Radiation Protection in Radiotherapy, challenges for advancing medical physic globally, Heath effects and medical applications of non-ionizing radiation, nuclear safety and radiation protection consideration in the design of research and development. The International radiation protection association (IRPA) 2010-2011 strategic plan that address among other issues educations and training activities (2000-2020) and the current UNSCLEAR activities

  20. The development of radiation protection in Hungary

    International Nuclear Information System (INIS)

    Bisztray-Balku, S.; Bozoky, L.; Koblinger, L.

    1982-01-01

    This book contains the short history, development and present status of radiation protection and health physics in Hungary. The first chapter discusses the radiation protection standards and practices used in scientific, technical and medical radiology in this country, with their development history. The next chapter is devoted to the radiation protection techniques applied for medical uses of radioisotopes and accelerators including the organizational and management problems. The last chapter presents a review on radiation protection and health physics aspects of the Hungarian industry and agriculture, on radiation protection research and management, on instruments and dosimeters. A national bibliography on the subject up to 1979 is included. (Sz.J.)

  1. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  2. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia; Pereira, Aline Garcia

    2011-01-01

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  3. Radiation protection of the patient radiotherapy

    International Nuclear Information System (INIS)

    Novotny, J.; Tarakanath, M.S.

    1976-01-01

    Systematic studies of gonadal doses to patients undergoing therapy on 60 Co and X-ray machines were carried out using thermoluminescence dosimeters (TLD). Phantom and in vivo measurements were performed for various field sizes and for different positions of the centre of the field on the patient's body with the exception of fields including the gonads during radiotherapeutic treatment. It was shown that there is no effect of various SSD and that most radiation reaching gonads is transmitted axially through the body and therefore, it is impossible to reduce this dose with a simple shielding. The figures presented allow prediction of gonadal doses at various conditions. The efficiency of lung, mouth etc. shielding during radiotherapy was also investigated. (orig.) [de

  4. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Malasek, A.

    1992-04-01

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  5. ESR statement on radiation protection: globalisation, personalised medicine and safety (the GPS approach).

    Science.gov (United States)

    2013-12-01

    In keeping with its responsibility for the radiation protection of patients undergoing radiological examinations and procedures, as well as of staff who are getting exposed, and with due regard to requirements under European Directives, the European Society of Radiology (ESR) issues this statement. It provides a holistic approach, termed as Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS. While being conscious that there is need to increase access of radiological imaging, ESR is aware about the increasing inappropriate medical exposures to ionising radiation and wide variation in patient doses for the same examination. The ESR is convinced that the different components of radiation protection are often interrelated and cannot be considered in isolation The ESR's GPS approach stands for: Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS It can be anticipated that enhanced protection of patients in Europe will result through the GPS approach. Although the focus is on patient safety, staff safety issues will find a place wherever pertinent.

  6. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Choukri, A.

    2010-01-01

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  7. [Optimizing staff radiation protection in radiology by minimizing the effective dose].

    Science.gov (United States)

    von Boetticher, H; Lachmund, J; Hoffmann, W; Luska, G

    2006-03-01

    In the present study the optimization of radiation protection devices is achieved by minimizing the effective dose of the staff members since the stochastic radiation effects correlate to the effective dose. Radiation exposure dosimetry was performed with TLD measurements using one Alderson Phantom in the patient position and a second phantom in the typical position of the personnel. Various types of protective clothing as well as fixed shields were considered in the calculations. It was shown that the doses of the unshielded organs (thyroid, parts of the active bone marrow) contribute significantly to the effective dose of the staff. Therefore, there is no linear relationship between the shielding factors for protective garments and the effective dose. An additional thyroid protection collar reduces the effective dose by a factor of 1.7 - 3.0. X-ray protective clothing with a 0.35 mm lead equivalent and an additional thyroid protection collar provides better protection against radiation than an apron with a 0.5 mm lead equivalent but no collar. The use of thyroid protection collars is an effective preventive measure against exceeding occupational organ dose limits, and a thyroid shield also considerably reduces the effective dose. Therefore, thyroid protection collars should be a required component of anti-X protection.

  8. The Montbeliard Radiation Protection Pilot Project: a global approach of radiation protection addressing occupational, public and patient exposures at the level of a large urban community

    International Nuclear Information System (INIS)

    Schieber, Caroline; Lochard, Jacques; Badajoz, Coralie; Bataille, Celine; Croueail, Pascal; Klein, Didier; Klopfenstein, Jean-Francois; Makovicka, Libor

    2008-01-01

    The Montbeliard Radiation Protection Pilot Project started in March 2004, at the initiative of the Inter- City Council of the Montbeliard Country in cooperation with CEPN. It aims at improving the radiation protection of the inhabitants of the Montbeliard Country in the various exposure situations which can be potentially encountered on the territory (hospital, dwellings, environment,...) as well as at promoting the creation of a pole of competence in the field of radiation protection in the Montbeliard Country. The project relies on the involvement of all relevant stakeholders at the local, national and international level. This paper provides with a quick insight of the project organisation, followed by a synthetic description of the main achievements of the various project areas. (author)

  9. Assessment of radiation protection of patients and staff in interventional procedures in four Algerian hospitals

    International Nuclear Information System (INIS)

    Khelassi-Toutaoui, N.; Toutaoui, A.; Merad, A.; Sakhri-Brahimi, Z.; Baggoura, B.; Mansouri, B.

    2016-01-01

    This study was aimed to assess patient dosimetry in interventional cardiology (IC) and radiology (IR) and radiation safety of the medical operating staff. For this purpose, four major Algerian hospitals were investigated. The data collected cover radiation protection tools assigned to the operating staff and measured radiation doses to some selected patient populations. The analysis revealed that lead aprons are systematically worn by the staff but not lead eye glasses, and only a single personal monitoring badge is assigned to the operating staff. Measured doses to patients exhibited large variations in the maximum skin dose (MSD) and in the dose area product (DAP). The mean MSD registered values are as follows: 0.20, 0.14 and 1.28 Gy in endoscopic retrograde cholangio-pancreatography (ERCP), coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) procedures, respectively. In PTCA, doses to 3 out of 22 patients (13.6 %) had even reached the threshold value of 2 Gy. The mean DAP recorded values are as follows: 21.6, 60.1 and 126 Gy cm 2 in ERCP, CA and PTCA procedures, respectively. Mean fluoroscopic times are 2.5, 5 and 15 min in ERCP, CA and PTCA procedures, respectively. The correlation between DAP and MSD is fair in CA (r = 0.62) and poor in PTCA (r = 0.28). Fluoroscopic time was moderately correlated with DAP in CA (r = 0.55) and PTCA (r = 0.61) procedures. Local diagnostic reference levels (DRLs) in CA and PTCA procedures have been proposed. In conclusion, this study stresses the need for a continuous patient dose monitoring in interventional procedures with a special emphasis in IC procedures. Common strategies must be undertaken to substantially reduce radiation doses to both patients and medical staff. (authors)

  10. General principles of radiation protection in hospital media

    International Nuclear Information System (INIS)

    Chanteur, J.

    1993-01-01

    Principles of radiation protection given by ICRP in term of justification, optimization, limitation are applicable in hospital media. The medical act has to be justified and, in France, it is not possible to use ionizing radiations without a prescription from a doctor. The acceleration of technologies development make non radiological techniques more employed than radiologic ones, in an aim of efficiency more than an aim radiation protection. The second principle of optimization means to give medical care with the minimum of ionizing radiations for the patients as well the operators. For the principle of limitation which applied only for operators, we have the new recommends of ICRP, but it would be reasonable to give the most part of decision to the works doctor to decide if somebody has the aptitude to work at an exposed place. The last points concern the quality of equipment, the safety of installations, the organization of works which are under laws and regulations. 3 tabs

  11. Training in radiation protection and the safe use of radiation sources

    International Nuclear Information System (INIS)

    2001-01-01

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  12. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  13. Obligations and responsibilities in radiation protection in the medical field

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  14. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    1979-01-01

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  15. Radiation protection course for physicians. 3. rev. ed.

    International Nuclear Information System (INIS)

    Stieve, F.E.

    1979-01-01

    The regulations of the Radiation Protection Ordinance and the X-ray Ordinance concerning the expert training of radiological safety officers and health physicists working in hospitals and general practice require expert knowledge in radiation protection of these persons. Expert knowledge includes knowledge of radiation protection itself but also experience in the medical application of ionizing radiation and radioactive materials and experience required for judging the state of health of persons occupationally exposed to radiation. The discussions between lectures and participants of the radiation protection courses made it necessary to update the textbooks with regard to the latest state of knowledge in radiobiology, radiation hygiene, radiation protection, and legislation. (orig./HP) [de

  16. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Moser, B.

    1977-01-01

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ) [de

  17. Coastal sea radiation environment and biodiversity protection

    International Nuclear Information System (INIS)

    Tang Senming; Shang Zhaorong

    2009-01-01

    This paper characterizes the types, trend and the potential of radiation contamination in the sea against the development of nuclear power stations. Combined with the present status of radioactive contamination and marine biodiversity in China seas, it is pointed out that non-human radiation protection should be considered on the bases of marine biodiversity protection. Besides, the reference species for marine radiation protection and some viewpoints on the work of marine radiation protection in China are pro- posed. (authors)

  18. Knowledge in Radiation Protection: a Survey of Professionals in Medical Imaging, Radiation Therapy and Nuclear Medicine Units in Yaounde

    International Nuclear Information System (INIS)

    Ongolo-Zogo, P.; Nguehouo, M.B.; Yomi, J.; Nko'o Amven, S.

    2013-01-01

    Medical use of ionizing radiation is now the most common radiation source of the population at the global level. The knowledge and practices of health professionals working with X-rays determine the level and quality of implementation of internationally and nationally recommended measures for radiation protection of patients and workers. The level of implementation and enforcement of international recommendations in African countries is an issue of concern due to weak laws and regulations and regulatory bodies. We report the results of a cross-sectional survey of health professionals working with ionizing radiation in Yaounde, the capital city of Cameroon. More than 50% of these professionals have a moderate level of knowledge of the norms and principles of radiation protection and more than 80% have never attended a continuing professional development workshop on radiation protection. (authors)

  19. Radiation and your patient: A guide for medical practitioners

    International Nuclear Information System (INIS)

    Valentin, Jack; )

    2002-01-01

    This didactic text is devoted to patients' protection against unnecessary exposure to ionizing radiation. There are obvious benefits to health from medical uses of radiation, i.e. in X-ray diagnostics, in interventional radiology, nuclear medicine and radiotherapy. However, there are well-established risks from improperly applied high doses of radiation (therapy, interventional radiology) and possible deleterious effects from small radiation doses used in diagnostics). Appropriate use of large doses prevents serious harm from therapy, but low doses carry a risk that cannot be entirely eliminated. Diagnostic use of radiation requires therefore such methodology that would secure high diagnostic gains while limiting the possible harm to the lowest possible level. The text provides ample information on opportunities to minimize the doses, and therefore the risk from diagnostic uses of radiation. This objective may be reached by avoiding unnecessary (unjustified) examinations, and optimizing the applied procedures both from the standpoint of diagnostic quality and of reduction of the excessive doses to patients. Optimization of patient protection in radiotherapy must depend on maintaining sufficiently high doses to irradiated tumours, securing a high cure rate, while protecting the healthy tissues to the largest extent possible. Problems related to special protection of human embryo and foetus in course of diagnostic and therapeutic uses of radiation are presented and respective practical solutions are recommended

  20. Abstracts of 20. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1988-01-01

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  1. First Asian regional congress on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-12-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection.

  2. XXXIX Days of Radiation Protection. Proceedings of Abstracts

    International Nuclear Information System (INIS)

    2018-01-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 91 abstracts are published. The Conference consists of following sections: (I) Radiation protection, consequences of implementation of the EU2013 / 59 directive in the Czech Republic and the Slovak Republic); (II) Radiation protection in the application of ionizing radiation in medicine; (III) Dosimetry and metrology of external and internal irradiation; (IV) Natural sources of ionizing radiation, national radon programs; (V) Nuclear energy, the concept of decommissioning of nuclear power plants in terms of radiation protection; (VI) Use of standards of radiation protection in emergency management; (VII) Biological effects of radiation and estimation of irradiation risk.

  3. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers.

    Science.gov (United States)

    Paolicchi, F; Miniati, F; Bastiani, L; Faggioni, L; Ciaramella, A; Creonti, I; Sottocornola, C; Dionisi, C; Caramella, D

    2016-04-01

    To evaluate radiation protection basic knowledge and dose assessment for radiological procedures among Italian radiographers A validated questionnaire was distributed to 780 participants with balanced demographic characteristics and geographic distribution. Only 12.1 % of participants attended radiation protection courses on a regular basis. Despite 90 % of radiographers stating to have sufficient awareness of radiation protection issues, most of them underestimated the radiation dose of almost all radiological procedures. About 5 % and 4 % of the participants, respectively, claimed that pelvis magnetic resonance imaging and abdominal ultrasound exposed patients to radiation. On the contrary, 7.0 % of the radiographers stated that mammography does not use ionising radiation. About half of participants believed that radiation-induced cancer is not dependent on age or gender and were not able to differentiate between deterministic and stochastic effects. Young radiographers (with less than 3 years of experience) showed a higher level of knowledge compared with the more experienced radiographers. There is a substantial need for radiographers to improve their awareness of radiation protection issues and their knowledge of radiological procedures. Specific actions such as regular training courses for both undergraduate and postgraduate students as well as for working radiographers must be considered in order to assure patient safety during radiological examinations. • Radiographers should improve their knowledge on radiation protection issues. • Only 12.1 % of participants attended radiation protection courses on a regular basis. • Specific actions must be considered in order to increase knowledge and awareness.

  4. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  5. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    1974-01-01

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene [fr

  6. National congress of radiation protection - SFRP 2005

    International Nuclear Information System (INIS)

    Lagroye, I.; Gonzague, A.; Ammerich, M.; Blanc, D.; Lecomte, J.F.; Boucher, D.; Boucher, D.; Averbeck, D.; Gourmelon, P.; Barbey, P.; Bourguignon, M.; Cordoliani, Y.S.; Dutrillaux, B.; Radecki, J.J.; Schieber, C.; Cosset, J.M.; Lecomte, J.F.; Lochard, J.; Metivier, H.; Sugier, A.; Tirmarche, M.; Aurengo, A.; Lamartine, J.; Martin, M.; Mallard, C.; Malfoy, B.; Ugolin, N.; Chevillard, S.; Schlumberger, M.; Laurier, D.; White-Koning, M.L.; Hemon, D.; Tirmarche, M.; Jougla, E.; Clavel, J.; Miccoli, L.; Barber, R.; Angulo, J.F.; Dubrova, Y.E.; Le Gall, B.; Phan, G.; Grillon, G.; Rouit, E.; Benech, H.; Fattal, E.; Deverre, J.R.; Legros, A.; Beuter, A.; Verrier, A.; Magne, I.; Souques, M.; Lambrozo, J.; Schmitt, P.; Roth, P.; Nadi, M.; Joly, L.; Chapel, C.; Burgain, A.; Marliot, F.; Cordier, E.; Courant, D.; Elabbassi, E.B.; Seze, R. de

    2005-01-01

    The nine tutorial sessions are: first one, the new recommendations of the ICRP; second one, effects on health of ionizing radiations with the following subjects ( the dose-response relationship and the estimation of carcinogen effects of ionizing radiation low doses; effect of dose rate on the induction and repair of radioinduced DNA double strand break; interest of global approach in radiation protection; molecular signature of the radioinduction in the thyroid tumors: example of radioinduced thyroid tumors after radiotherapy; incidence of child leukemia near the nuclear facilities: results of a multi sites study in France; genome instability and mutations induction after ionizing irradiation: consequences for the progeny; D.T.P.A encapsulation, an efficient strategy for the plutonium decorporation among the rat); the third one, non-ionizing radiation with the following subjects (can the exposure to a magnetic field of 100 μ T at 50 Hz be detected in the human physiological shiver; evaluation of the population exposure to the magnetic fields of 50 Hz: what indicators to choose; experimental study of the immunity of implantable defibrillators to the low frequencies electro-magnetic perturbations; DNA damages induced by the Ar F laser; dosimetry with a phantom in gel of human head); fourth session concerns the regulatory aspects; the fifth one presents the radiation protection and the radioactive waste management; the sixth session concerns the public and patients radiation protection; the seventh one treats the radiation protection in professional area with the following subjects ( optimization of radiation protection in the underground uranium mine of Cominak in Niger; revealing by multi parameters capillaroscopy, of micro vascular alterations of fingers among interventional radiologists; use of radioactive and chemical probes in biological research; uncertainties on doses and D.P.U.I.; monitoring of work areas. Evaluation of workers exposure towards a particular

  7. Nuclear Safety and Radiation Protection in France in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    In 2005, the Asn pursued its significant investment in radiation protection and reaffirms its ambition to become as efficient in radiation protection as it is in nuclear safety as of 2009. 2005 was a year of great progress for the Asn as it consolidated its organisation and working methods, in accordance with the 2005-2007 strategic plan it set for itself. The Asn continued progress in the field of radiation protection has given rise to various new regulations to improve the legislative and regulatory framework in this area. The Asn plans to step up its efforts to ensure better monitoring of patient exposure to ionizing radiation and to provide better management of radon-related risks, particularly in housing. Fully aware that its newfound power in this area requires outside evaluation, the Asn has asked the International Atomic Energy Agency (IAEA) to organize an I.R.R.S. (Integrated Regulatory Review Service) assignment consisting of a peer-conducted audit. The IAEA has confirmed that this audit will take place in November 2006. (N.C.)

  8. Radiation protection in newer medical imaging techniques: CT colonography

    International Nuclear Information System (INIS)

    2008-01-01

    Multislice/detector computed tomography (CT) scanning, applied to visualization of the colon in CT colonography (CTC), also known as virtual colonoscopy (VC), is a relatively new application of CT introduced in recent years. The possibility of its application in population screening techniques raises a number of questions. Effort is required to ensure that the benefit of this new practice will not pose an undue level of detriment to the individual in multiple examinations. For practitioners and regulators, it is evident that innovation has been driven by both the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind the industrial and clinical innovations being achieved. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill this growing vacuum, by bringing up to date and timely advice to bear on the problems involved. Under its statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for worldwide application of these standards, the IAEA has developed the Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The BSS was issued by the IAEA and co-sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and requires radiation protection of patients undergoing medical exposures through justification of the procedures involved and through optimization. The IAEA programme on radiation protection of patients encourages the reduction of patient doses without losing diagnostic benefits. To facilitate this

  9. Radiation protection in newer medical imaging techniques: PET/CT

    International Nuclear Information System (INIS)

    2008-01-01

    A major part of patient exposure now arises from practices that barely existed two decades ago, and the technological basis for their successful dissemination only began to flourish in the last decade or so. Hybrid imaging systems, such as the combination of computed tomography (CT) and positron emission tomography (PET), are an example of a technique that has only been introduced in the last decade. PET/CT has established a valuable place for itself in medical research and diagnosis. However, it is an application that can result in high patient and staff doses. For practitioners and regulators, it is evident that innovation has been driven both by the imaging industry and by an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill the growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed within the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and through

  10. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  11. Greetings from Austrian Radiation Protection Association

    International Nuclear Information System (INIS)

    Hajek, M.; Brandl, A.

    2015-01-01

    Austrian Radiation Protection Association (OVS) share with others a long-standing tradition of common endeavours and close collaboration. We have been and are able to influence the European radiation protection environment and IRPA initiatives and policies. We are intrigued by the breadth and comprehensive nature of the symposium programme, covering the most important sub-fields in our profession, and spanning topics from radiation dosimetry to radiobiology, from instrumentation and measurement to radioecology, and from radiation protection for workers and in medicine to our professional responsibilities towards the general public. These topics are timeless and current, providing testimony to the fact that the science of radiation protection is not exhausted. Novel applications of ionizing and non-ionizing radiation, including new modalities in the fields of medical therapy and diagnosis, a resurgence of nuclear energy generation in some parts of the globe, combined with increased efforts for decontamination and decommissioning of existing sites and facilities, they are all attest to the continued need for further research and our professional input and discussion. The national radiation protection associations will have a role to play in both, the advocacy of increased efforts to educate and train our future professionals and the retention of those professionals in our field.

  12. Radiation protection in education

    International Nuclear Information System (INIS)

    Viragh, Elemer

    1985-01-01

    The education of secondary school students in the fields of nuclear sciences was strictly limited according to the 9th recommendations of the ICRP issued in 1966 saying that people under age 18 are not allowed to deal with ionizing radiations. Due to the changes concerning the concept of radiation protection, new opportunities for teaching nuclear technology even in the secondary schools were opened. The 36th recommendations of the ICRP published in 1983 dealing with the maximum permissible doses and the measures taken for radiation protection should be kept in mind while organizing the education of the pupils between age 16 and 18. (V.N.)

  13. New trends in radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1977-10-01

    The introduction of new concepts such as the effective dose equivalent, the collective dose and the dose commitment, and the application of the basic principles of justification, optimization and individual dose limitation has had a major impact on the planning and implementation of radiation protection during the last few years. The basic principles are summarized in ICRP Publication 26. It is a chalenge to research in radiobiology, genetics and health physics to explore the scientific foundation of the current principles of radiation protection. The most interesting trend to-day, however, is the observation that the principles applied in radiation protection have now been generally recognized and accepted to the extent that they become utilized in the protection of man against non-radioactive carcinogenic substances and environmental pollutants. (author)

  14. First Asian regional congress on radiation protection

    International Nuclear Information System (INIS)

    Kumar, S.K.

    1975-01-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection. (S.K.K.)

  15. Course of radiation protection: technical level

    International Nuclear Information System (INIS)

    2002-01-01

    The course handbook on radiation protection and nuclear safety, technical level prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 19 chapters and 2 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, occupational exposure, radiation shielding, radioactive waste management, criticality accidents, safe transport of radioactive materials, regulatory aspects

  16. Radiation protection. The past and the future

    International Nuclear Information System (INIS)

    Michel, Rolf

    2016-01-01

    After a short summary of the history of radiation protection and its scientific basis a survey is given on the actual state of radiation protection, thereby entering into open questions like risk perception and communication with the general public. Finally, the future tasks of radiation protection are described.

  17. New aspects regarding to radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Amiri, M.

    2002-01-01

    Introduction and objectives: The society has been concerned about nuclear energy usage and nuclear environment pollution for ages. The necessity of using radiation and its applications in modern life especially in medicine is undeniable. Some interesting properties such as the potential for non-destructive tests, detection simplicity, and penetrability into substances and having reactions with them cause radiation to be known as a useful tool for peace purposes. Nuclear weapons' experiments (1945-1973) and nuclear accidents in Three-Mile Island in USA, Goiania in Brazil and Chernobyl in Ukraine Republic have enhanced man's worries towards nuclear radiation and radioactivity in environment, and founding associations and groups which are against nuclear energy, such as green peace society, can be related with above mentioned concerns. Today, nuclear medicine has rapidly been developed so that in some cases plays a unique role in diagnosis but unfortunately in spite of diagnostic and therapeutic advantages, the term N UCLEAR c an induce worries in patients and society. In this article, base on new documents we intend to show that this worries has no scientific basis. Material and Methods: To produce a realistic view, regarding to radiation protection we used several ways such as natural origin of radiation, high natural background radiation areas' data non-linear dose-effect model, risk versus benefit, use of arbitrary unit for measurement of radiation, radio adaptive response and radiation hormesis. Discussion and conclusion: Harmful effects of radiation on biologic systems has obviously been shown, but most of related documents are based on receiving high doses in nuclear and atomic accidents and explosions and radiation protection regulations are based on this observations. So, it sometimes causes patients are afraid of low doses of radiation in medical diagnostic procedures so that some of them even resist against performing this procedures. Thus, being aware of

  18. Regional radiation protection initiatives by Australia

    International Nuclear Information System (INIS)

    Grey, J.

    1993-01-01

    Australia both through the auspices of the IAEA and from Government Aid Grants has contributed to the improvement of radiation protection throughout the Asia/Pacific region. The assistance has been in the form of training and improvement to radiation protection infrastructures. The presentation describes the objectives, scope and diversity of the radiation protection infrastructure program and the benefits to the large number of persons included in the program. An outline of the current IAEA program is also discussed together with an explanation of how the program will assist national regulators in the education of radiation workers, in hazardous operations such as industrial radiography

  19. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  20. Utilization of information communication technology (ICT) - Based training / learning for capacity building in radiation protection framework

    International Nuclear Information System (INIS)

    Oluyemi, I.O.D.

    2008-01-01

    Full text: Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy electromagnetic radiation. It includes occupational radiation protection, which is the protection of workers; medical radiation protection, which is the protection of patients; and public radiation protection, which is about protection of individual members of the public, and of the population as a whole. ICT has made possible the development of e-learning and several Virtual Learning Environments (VLEs) which can support a wide range of capacity building requirements, ranging from under-graduate and post-graduate programmes, continuing professional development courses, right through to short subject specific and research courses, thereby eliminating the problems of conventional forms of training / learning, some of which are: limited access, cost effectiveness and language / cultural barriers. This paper focuses on the utilization of these ICT-based training / learning for capacity building in radiation protection framework and concludes with suggestions on implementation strategies. (author)

  1. Radiation safety, protection and recommendations in dentistry - a review

    International Nuclear Information System (INIS)

    Castelino, Renita

    2013-01-01

    Radiation is the transmission of energy through space and matter. Diagnostic radiology uses ionizing radiations which have sufficient energy to ionize atoms or molecules in biological and other systems. X-rays used in diagnostic radiology are a potent mutagenic agent, capable of inducing both gene mutations and chromosomal aberrations. X-rays are extensively used in medical and dental practice for the purpose of diagnosis and treatment. X-rays provide useful information and aid in diagnosis but at the same time they also have the potential to cause harmful effects. In dentistry X-rays are used mainly for diagnosis. Radiation in doses required for dentistry may not present any major risks, however these small doses are not necessarily risk free. Hence, no exposure to X-rays can be considered completely free of risk, so the use of radiation by dentists is accompanied by a responsibility to ensure appropriate protection. Several radiation safety measures have been recommended and advocated to reduce harmful effects. Dental professionals are the only practitioners who perform radiographical examination of their patients themselves. Although the exposure used in dentistry is low every effort should be made to reduce radiation in order to prevent the accumulated dose to the dentist in their lifetime. The dose reduction can be achieved in three main steps. They are decision making, optimising radiologic procedures and patient protection. The potential for undesirable effects must be balanced against the benefits obtained from radiographs. Therefore, the aim of the paper is to review important parameters that must be taken into consideration in the clinical set up to reduce radiation exposure to patients and dental personnel. (author)

  2. Radiation protection education and training for physicians. Technical qualification for radiation protection and radiation protection instruction for physicians. More important than ever

    International Nuclear Information System (INIS)

    Loecker, Hubert

    2017-01-01

    The medical application of ionizing radiation - especially X-ray diagnostics - is contributing most of the civilizing radiation exposure of the population. More than 80 percent of occupationally exposed persons work in nuclear medicine. Therefore radiation protection in medicine and instruction and training of physicians is more important than ever.

  3. 7th Expert meeting radiation protection. International developments, waste management, challenges for the radiation protection in aging nuclear installations

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings of the 7th Expert meeting on radiation protection include contributions to the following topics: nuclear power and public opinion, IAEA safety standards, ISOE - information system on occupational exposure, European harmonization of the radiation protection education, WANO - challenges and results, CTBTO's global radiation measurement network, state of final radioactive waste disposal in Germany and worldwide, radioactive waste management and disposal in French NPPs, preparedness for final waste disposal in Schacht Konrad, actualization of the transport study Konrad, transport of NPPs' operational radioactive waste and waste from decommissioned reactor demolition to the final repository Konrad, qualification of radioactive waste casks for the final repository Konrad, radioactive waste disposal management concept in Switzerland, aging management and radiation protection, decontamination as effective measure for dose rate reduction - long-term and sustainable dose rate reduction by primary circuit decontamination, system and component decontamination for individual and collective dose reduction - practical examples, radiation protection map - electronic assistance for work planning, EPR dismantling already today? radiation protection register 2002-2010 - knowledge based on a decade of radiation monitoring, actual information on radiation protection in medicine, mobile telecommunication - actual research results.

  4. An outlook to radiation protection development

    International Nuclear Information System (INIS)

    Martincic, R.; Strohal, P.

    1996-01-01

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy

  5. 6. national congress of radiation protection S.F.R.P. 2007; 6. congres national de radioprotection S.F.R.P. 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This congress tackles the following subjects: individual dosimetry for external irradiation, update of arrangements in the public health code relative to the radiation protection, implementation of zoning decree, regulation, radiation protection in professional area, radiation protection in ITER, non ionizing radiation, radiation protection in accident situation, biological radiation effects, radiation protection for patients, dosimetry, environmental exposure, radiation protection and radioactive waste management. (N.C.)

  6. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    A committee of experts appointed by the Minister of Labour and Social Affairs has proposed a comprehensive draft regulation, concerning the legal aspects of occupational radiation protection in Israel. The first section of the proposed regulation sets forth guidelines for control in facilities where workers handle radioactive materials or radiation equipment. This includes the duties of the managers of such places to ensure adequate radiation protection and also the maximum recommended doses (whole body and individual organs) for radiation workers. The second section deals with the monitoring regulations for radiation workers who may be exposed to doses in excess of 500 mRem/y. The third section outlines the nature of the mechanical supervision required, i.e. routine and special examinations. Finally the committee also proposed six miscellaneous recommendations for radiation protection. (UK)

  7. Training aspects contributing to radiation protection

    International Nuclear Information System (INIS)

    Gupta, M.S.

    2001-01-01

    Radiation Protection assumes special significance with increasing use of radioactive materials and processes. Scientific and industrial organisations dealing with radioactive materials have prime responsibility of ensuring effective control of all activities which may lead to radiation exposure. Training of all the persons involved in the work associated with radioactivity is absolutely necessary to develop radiation protection skill, radiation measurement proficiency and special precautions to be taken in abnormal situations. NPCIL having responsibility for design, construction, operation and de-commissioning of nuclear power plants, employs about 10,000 workers on several project/station sites all over the country. NPCIL has developed a good training system to accurately control the exposure of workers to radiation. This paper covers the system and other relevant details of radiation protection training organised by NPCIL. (author)

  8. Public understanding of radiation protection concepts

    International Nuclear Information System (INIS)

    1988-01-01

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  9. Radiation protection planning and management during revision

    International Nuclear Information System (INIS)

    Gewehr, K.

    1984-01-01

    During the operation of nuclear power plants it is normally possible for the in-house personnel to take care of arising radiation protection problems. However, in the comparatively short revision phases, the duties of radiation protection become much more varied. Additional trained radiation protection crews are needed at short notice. This is also the time in which the largest contributions are made to the annual cumulated doses of the personnel. Recent guidelines and rules trying to reduce the radiation exposure of personnel concentrate on this very point. The article outlines the radiation protection activities performed by the service personnel in the course of a steam generator check. (orig.) [de

  10. Modernization and consolidation of the European radiation protection legislation. The new EURATOM radiation protection basic safety standards; Modernisierung und Konsolidierung der europaeischen Strahlenschutzgesetzgebung. Die neuen Euratom-Strahlenschutzgrundnormen

    Energy Technology Data Exchange (ETDEWEB)

    Mundigl, S. [Commission of the European Communities, Luxembourg (Luxembourg). Directorate-General for Energy, Abt. D3 - Strahlenschutz, EUFO

    2013-07-01

    With the development of new basic safety standards for the protection against the dangers arising from ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. The new Directive offers in a single coherent document, basics safety standards for radiation protection which take account of the status-quo of science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After having received very positive opinions of the Article 31 Group of Experts and the European Economic and Social Committee, the proposed Directive has reached agreement in the Working Party on Atomic Questions of the European Council (WPAQ). The Opinion of the European Parliament is expected in September 2013, which would allow a publication of the Directive in the Official Journal of the European Union by the end of 2013. (orig.)

  11. From regulations towards radiation protection culture

    International Nuclear Information System (INIS)

    Boehler, M.C.

    1996-01-01

    Compliance with the technical standards and specifications is a necessary but not sufficient condition for quality in radiation protection. Reaching this quality objective is not a matter of forcing improvements by a regulatory policy of reducing dose limits, but of promoting a real radiation protection culture. The spread of such a radiological protection culture encourages the deliberate adoption in everyday practice of behaviour likely to reduce exposure to ionizing radiation as loser as reasonably achievable. The aim of this paper is to demonstrate that the need to diffuse a radiological protection culture is inspired by the philosophy behind the system recommended by ICPR Publication 60 on the management of residual radiological risk and, in particular by the behavioural and incentive approach implied by the optimization principle. Special attention will be given to the fundamentals likely to contribute in a definition of radiation protection culture. (author)

  12. Radiological protection optimization derived from radiation induced lesions in interventional cardiology finding

    International Nuclear Information System (INIS)

    Vano, E.; Arranz, L.; Sastre, J.M.; Ferrer, N.

    1997-01-01

    Interventional Cardiology is one of the specialties in which patients are submitted to the greatest radiation doses with x ray systems used for diagnostic purposes and then, it is also a specialty of high occupational radiation risk. In the last years, several cases of radiation induced lesions produced on patients derived of new complex interventional procedures have been described. As consequence, different rules for avoiding this kind of incidents have been recommended by International Organisations and regulatory Bodies. Nevertheless it has been devoted relatively few attention to the evaluation of the occupational risks that inevitably are also high in these facilities. In this work, some cases of radioinduced skin lesions produced on patients submitted to cardiac ablation procedures are described. Radiological protection considerations of interest for the regulatory Bodies are made, that permit to minimize the probability of these incidents, in what to the X-rays equipment is referred as well as to the operation procedures and level of radiation protection training of the medical specialists. (author)

  13. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    Strohal, P.

    1993-01-01

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  14. Basic radiation protection training for nurses and paramedical personnel: Belgian experience and future perspectives

    International Nuclear Information System (INIS)

    Clarijs, T.; Coeck, M.; Van Bladel, Lodewijk; Fremout, An

    2015-01-01

    When using ionising radiation for medical diagnosis or treatment of patients, understanding of relevant radiation protection principles and issues is indispensable. In Belgium, nurses and paramedical staff are required to acquire knowledge for protecting the patient against the detrimental effects of ionising radiation by means of a vocational training course. The experience with and challenges for this training course are presented here from a lecturer's point of view, together with a proposal for a future approach that harmonises the training content, its level and quality, according to European recommended standards. (authors)

  15. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  16. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  17. Manual for medical problems of radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The manual deals comprehensively and topically with the theoretical and practical fundamentals of radiation protection of the population considering the present knowledge in the fields of radiobiology and radiation protection medicine. The subject is covered under the following headings: (1) physics of ionizing radiations, (2) biological radiation effects, (3) the acute radiation syndrome, (4) medical treatment of the acute radiation syndrome, (5) combined radiation injuries, and (6) prophylaxis and therapy of injuries caused by fission products of nuclear explosions. The book is of interest to medical doctors, medical scientists, and students in medicine who have to acquire special knowledge in the field of radiation protection and it is of value as a reference book in daily routine

  18. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  19. Application of microprocessors to radiation protection measurements

    International Nuclear Information System (INIS)

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  20. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  1. Radiation protection manual

    International Nuclear Information System (INIS)

    Spang, A.

    1983-01-01

    According to the Radiation Protection Ordinance, radiation protection experts directing or supervising the handling of radioactive materials must have expert knowledge. The concept of expert knowledge has been clearly defined by the Fachverband e.V. in a catalogue of instruction goals. The manual follows the principles of this catalogue; it presents the expert knowledge required in a total of 15 subject groups. There is an index which helps the reader to find his specific subject group and the knowledge required of him in this subject group. However, the manual gives only an outline of the subject matter in many instances and should therefore not be regarded as a textbook in the proper sense. (orig./HP) [de

  2. Radiation protection programme for nuclear gauges

    International Nuclear Information System (INIS)

    Muzongomerwa, A.

    2014-04-01

    Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)

  3. Preventive radiation protection in Hamburg

    International Nuclear Information System (INIS)

    Boikat, U.; Lauer, R.; Plath, S.; Sachde, Z.G.

    2001-01-01

    Monitoring of environmental radioactivity as well as complex investigations for precautionary radiation protection are carried out in Hamburg by two radiation monitoring labs. The spectrum of their tasks is specified by the media to be investigated. The tasks are originating from the Federal Precautionary Radiation Protection Act and from local needs. Mostly since a lot of years all interesting materials are analysed for their radioactivity content, as a safe and precautionary radiation protection demands. Until today samples show the influence of global nuclear weapon fallout of the period until 1964. Partly they show the radioactivity of Caesium originating from the Chernobyl accident. Since ten years the radioactivity contents in the material investigated are decreasing. Mostly the activity reached levels as at the end of 1985. The basic food stuff investigated in Hamburg can be considered as to be uncontaminated by radioactivity. With the introduction of the Federal Precautionary Radiation Protection Act, a series of new investigation programs and investigation methods were developed. This allows a better preparedness for extraordinary situations of increased radioactivity in the environment as 12 years ago. Thus a precise assessment of situations of increased radioactivity levels can be given together with coordinated and solid information to the public concerning provisions and actions. (orig.) [de

  4. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  5. Management information system on radiation protection

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela

    2011-01-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  6. Regulatory requirements for radiation protection

    International Nuclear Information System (INIS)

    Mason, E.A.; Cunningham, R.E.; Hard, J.E.; Mattson, R.J.; Smith, R.D.; Peterson, H.T. Jr.

    1977-01-01

    Regulatory requirements for radiation protection have evolved and matured over several decades. Due to the wide adoption of recommendations of the International Commission on Radiation Protection (ICRP), there exists international agreement on the principles to be followed for radiation protection. This foundation will be increasingly important due to the growing need for international agreements and standards for radiation protection and radioactive materials management. During the infancy of the commercial nuclear industry, primary reliance was placed on the protection of the individual, both in the work force and as a member of the public. With the growth of nuclear power in the 1960's and 1970's, environmental impact assessments and expert reviews of bio-effects data have focused attention on statistical risks to large population groups and the use of the collective dose commitment concept to estimate potential effects. The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the international level. The initial development efforts for addressing these concerns already have been instituted by the ICRP and the IAEA. However, formal international agreements and a unified set of international standards may be required to implement the recommendations of these groups. Further international efforts in the field of radiation protection are also called for in developing waste management practices and radioactive effluent control technology, in site selection for fuel reprocessing plants and waste dispersal facilities, and for ensuring safe transport of high-level wastes in various forms. Since the regulation of very low dose rates and doses will be involved, it will be useful to reexamine dose-effect relationships and societal goals for health protection. Improved criteria and methodologies for ''as low as readily

  7. Radiation protection legislation in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, L.

    1992-01-01

    A close collaboration exists in the Nordic countries in the field of radiation protection. The radiation protection authorities attach major importance to a uniform interpretation of the international recommendations. The legal situation of the Nordic countries in the radiation protection field will be reviewed with the main emphasis on the new Swedish and Finnish laws. (author)

  8. XXXIII. Days of Radiation Protection. Conference Proceedings of Abstracts; XXXIII. Dni radiacnej ochrany. Zbornik abstraktov

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 120 abstracts are published. The Conference consists of following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  9. The revised German radiation protection ordinance

    International Nuclear Information System (INIS)

    Palm, M.

    2002-01-01

    Since August 2001, German radiation protection law is governed by a new Radiation Protection Ordinance, implementing two new Euratom Directives and taking into account new scientific developments, which provides a comprehensive basis for the protection of man and the environment. The Ordinance has been completely restructured; however, it is still a very complex piece of legislation comprising 118 provisions and 14 annexes, some of them highly technical. Reduced dose limits for occupationally exposed persons and members of the public, a detailed provision on clearance of radioactive substances, a new part aiming at the protection of man and the environment against ionising radiation emanating from natural sources, and regulations dealing with the protection of consumers in connection with the addition of radioactive substances to consumer goods are some of the centre pieces of the new legislation which shall contribute significantly to the further prevention or at least minimisation of the adverse effects of radiation exposure. (orig.) [de

  10. The state of radiation protection in Iran

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1988-01-01

    Historically, radiation protection in Iran can be related to when the first x-ray machine was applied for medical diagnosis. However, organized activities were started with the establishment of the Tehran University Nuclear Center (TUNC) in 1959, and within a broader scope when AEOI research reactor went into operation in 1967. In 1974, the Atomic Energy Organization Law of Iran was ascribed the responsibility for radiological safety and protection to the AEOI. Then this responsibility was assigned by AEOI to the Radiation Protection Department (RPD), as the national authority. The RPD's organization and functions have been divided into three main RPD divisions: Radiation Protection Control; Radiation Dosimetry Research and Development and Services; and Radiological Protection of the Environment

  11. Radiation Protection Officer certification scheme. Malaysian experience

    International Nuclear Information System (INIS)

    Pungut, Noraishah; Razali, Noraini; Mod Ali, Noriah

    2011-01-01

    In Malaysia, the need for maintaining competency in radiation protection is emerging, focusing on the qualification of Radiation Protection Officers (RPO). Regulation 23 of Malaysian Radiation Protection (Basic Safety Standards) Regulations 1988, requires the applicant to employ an RPO, with the necessary knowledge, skill and training, enabling effective protection of individuals and minimizing danger to life, property and the environment for all activities sought to be licensed. An RPO must demonstrate the knowledge required, by attending RPO courses organised by an accredited agency and pass the RPO certification examination. Maintaining a high level of competency is crucial for future development of safe applications of ionising radiation. The major goal of training is to provide essential knowledge and skills and to foster correct attitudes on radiation protection and safe use of radiation sources. Assessment of the competency is through theoretical and practical examination. A standard criterion on the performance of the individuals evaluated has been established and only those who meet this criterion can be accepted as certified RPO. The National Committee for the Certification of Radiation Protection Officer (NCCRPO), comprising experts in various fields, is responsible to review and update requirements on competency of a certified RPO. With increasing number of candidates (i.e. 701 in 2008) and the international requirement for radioactive source security, it is incumbent upon the NCCRPO to improve the syllabus of the certification scheme. The introduction of a Radiation Protection Advisor (RPA) to provide service and advice to the radiation industry in Malaysia is also seriously considered. (author)

  12. Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Carazo, N.

    1979-01-01

    The tasks connected with radiation protection are allocated to the National Institute for Nuclear Energy in Guatemala. Regulatory measures are further needed to identify the responsibilities of various authorities to ensure that all radiation workers are provided with personal dosemeters. (author)

  13. New infrastructures for training in radiation protection

    International Nuclear Information System (INIS)

    Marco, M.; Rodriguez, M.; Van der Steen, J.

    2007-01-01

    In this work, an analysis of the new infrastructure used in the radiation protection training and professional education, which is developed nowadays, is carried out. CIEMAT has been making many efforts in the education and training of professionals at all levels, for years. At present CIEMAT is developing educational activities in radiation protection general courses and professionals updating courses. The newest strategies for the radiation protection learning are developing in collaboration with professional societies. These try to encourage the technology transference, the collaboration between the actors involved with the radiation protection and the new information technology implementation. (Author) 11 refs

  14. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  15. The new radiation protection ordinance and its consequences in radiation therapy

    International Nuclear Information System (INIS)

    Wucherer, M.; Schmidt, T.

    2002-01-01

    The new radiation protection ordinance (StrlSchV) entails a number of additional or changed instructions. They require that personnel exposed to radiation at work be reclassified, or that personnel not exposed to radiation at work be classified as personnel exposed to radiation at work, that local dosage measurements be taken particularly in radiation therapy, in order to insure that the radiation protection areas prevailing to date can be maintained, that generally accessible areas be examined to determine whether with persons not exposed to radiation in the course of work, in the case of their prolonged presence there, 1 mSv per year is not exceeded, that instructions be put in writing, that at regular 5-year intervals the proficiency of physicians, specialists in medical physics and MTRAs be brought up to date and, that medical positions for radiooncologists be established. The stricter requirements in radiation protection are inevitably connected with greater expenditures and higher costs. These results of the new radiation protection ordinance are in direct opposition to the financial possibilities that are being restricted through budgeting and pressure on hospitals and practices to reduce costs. (orig.) [de

  16. CEC radiation protection research and training program

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1991-01-01

    The Radiation Protection Program (RPP), initiated as a consequence of the Euratom Treaty aims to promote: scientific knowledge to evaluate possible risks from low doses of natural, medical and man-made radiation; development of methods to assess radiological risks; incentive and support for cooperation between scientists of Member States; expertise in radiation protection by training scientists and the scientific basis for continual updating of the 'Basic Safety Standards', and the evolution of radiation protection concepts and practices. 3 refs

  17. Patient radiation exposure and dose tracking: a perspective.

    Science.gov (United States)

    Rehani, Madan M

    2017-07-01

    Much of the emphasis on radiation protection about 2 decades ago accrued from the need for protection of radiation workers and collective doses to populations from medical exposures. With the realization that individual patient doses were rising and becoming an issue, the author had propagated the concept of a smart card for radiation exposure history of individual patients. During the last 7 years, much has happened wherein radiation exposure and the dose history of individual patients has become a reality in many countries. In addition to dealing with overarching questions, such as "Why track, what to track, and how to track?," this review elaborates on a number of points such as attitudes toward tracking, review of practices in large parts of the world, description of various elements for exposure and dose tracking, how to use the information available from tracking, achievements and stumbling blocks in implementation to date, templates for implementation of tracking at different levels of health care, the role of picture archiving and communication systems and eHealth, the role of tracking in justification and optimization of protection, comments on cumulative dose, how referrers can use this information, current provisions in international standards, and future actions.

  18. The new German radiation protection ordinance

    International Nuclear Information System (INIS)

    Pfeffer, W.; Weimer, G.

    2003-01-01

    According to European law, the Basic Safety Standards (BSS) published by the European Council in 1996 and the Council Directive on health protection of individuals against dangers of ionising radiation in relation to medical exposure had to be transferred into national law within due time. In 2001 the new Ordinance for the Implementation of the Euratom Guidelines on Radiation Protection] was published, which replaces the old Radiation Protection Ordinance. The new German Ordinance adapts the European Directive to German law, covering the general principles but even giving more details in many fields of radiation protection. The BSS scope certainly is much broader than the prescriptions important for the field of radiation protection in nuclear power plants. According to the scope of this workshop on occupational exposure in nuclear power plants - and as the BSS most probably will be quite familiar to all of you - after a short general overview on relevant contents of the German Ordinance, this presentation will focus on the main issues important in the operation of NPP and especially on some areas which may give rise to necessary changes caused by the new Ordinance. (A.L.B.)

  19. Deviating measurements in radiation protection. Legal assessment of deviations in radiation protection measurements

    International Nuclear Information System (INIS)

    Hoegl, A.

    1996-01-01

    This study investigates how, from a legal point of view, deviations in radiation protection measurements should be treated in comparisons between measured results and limits stipulated by nuclear legislation or goods transport regulations. A case-by-case distinction is proposed which is based on the legal concequences of the respective measurement. Commentaries on nuclear law contain no references to the legal assessment of deviating measurements in radiation protection. The examples quoted in legal commentaries on civil and criminal proceedings of the way in which errors made in measurements for speed control and determinations of the alcohol content in the blood are to be taken into account, and a commentary on ozone legislation, are examined for analogies with radiation protection measurements. Leading cases in the nuclear field are evaluated in the light of the requirements applying in case of deviations in measurements. The final section summarizes the most important findings and conclusions. (orig.) [de

  20. The competent person in radiation protection: practical radiation protection for industry and research - unsealed sources

    International Nuclear Information System (INIS)

    Bruchet, H.

    2009-01-01

    The mission of the competent person in radiation protection has been broadly developed these last years to take an essential function in firm:study of working place, delimitation of regulated areas, monitoring of exposure, relations with authorities. The competent person in radiation protection must follow a training, defined by decree and shared in two parts: a theoretical part used as compulsory subjects and a practical part specific to the different sectors of activity (research, industry, medical centers, nuclear facilities) as well as the radiation use type. This volume corresponds to the practical module devoted to the industrial and research facilities concerned by the possession of management of sealed or unsealed sources. In accordance with the regulations stipulating that this module must allow to apply the theoretical knowledge to concrete situations in work. It includes eight chapters as following: radiation protection in industrial and research facilities, use of sources and associated risks, fitting out professional premises, evaluation of exposure, control of radiation protection; use of detection equipment and radioactive contamination and exposure measurement equipment, associated to methods and calculation tools; radioactive waste management; accidental or damaged situations management; methodology of working place analysis completed by the application to practical cases found in laboratories. (N.C.)

  1. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  2. Providing Radiation Protection Experts in the United Kingdom

    International Nuclear Information System (INIS)

    Partington, C.; Owen, D.

    2004-01-01

    The EEC Directive on Qualified Experts in Radiation Protection has been implemented in the United Kingdom by the Ionising Radiations Regulations 1999 (IRR99). These Regulations require Radiation Employers to appoint suitable Radiation Protection Advisers (RPA) who must be consulted in certain circumstances when starting work with, or using ionising radiations. Radiation Protection Advisers have to have a current certificate of competence and, to gain one of these, must have demonstrated their competence in one of two ways either by achieving a National Vocational Qualification in Radiation Protection Practice or by being Certificated by an Assessing Body. Assessing Bodies have to be recognised by the Health and Safety Executive, who undertake a rigorous assessment process to determine whether the proposed Assessing Body is fit to undertake RPA Assessments. By July 2003, only two such Assessing Bodies had been approved in the UK. These two Assessing Bodies are ? RPA 2000 a company established by the four leading Radiation Protection Professional Societies in the UK for assessing anyone in the UK as Radiation Protection Advisers, And ? BNFL established by BNFL to assess the competence of BNFL's own Radiation Protection Advisers. This paper will describe the standards against which Radiation Protection Advisers are assessed, the manner in which each of these two Assessing Bodies carry out the assessment process and their experience to date. The way in which Radiation Employers carry out the appointment process will also be described. Potential future developments of the Assessment Process and standards will also be discussed. (Author)

  3. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  4. Activities of Institute of Radiation Protection and Dosimety/Brazil as Technical and Scientific Support Organization on Occupational Radiation Protection

    International Nuclear Information System (INIS)

    Da Silva, F.C.A.; Ferreira, P.R.; Matta, L.E.C.; Peres, M.A.L.; Godoy, J.M.; Alencar, M.A.V.; Carlos, M.T.; Souza-Santos, D.; Leocadio, J.C.; Oliveira, M.S.

    2010-01-01

    There are, in Brazil, about 126,000 workers registered on National Dose Registry System (SRD/IRD) as occupationally exposed. They work on 4,000 radioactive installations, 20 nuclear fuel cycle installations and with 90,000 x-ray diagnostic devices. There are two main Regulatory Authorities to license and control these installations on nuclear and radioactive areas, and another Regulatory Authority that is responsible for safety and health protection of workers on their labour activities. Belonging to structure of the National Commission of Nuclear Energy (CNEN-Brazil) there is an Institute dedicated to radiation protection, dosimetry and metrology of ionizing radiation, that is the Institute of Radiation Protection and Dosimetry (IRD). This paper presents two main IRD activities related to occupational radiation protection that can be seen as example of technical and scientific support to Regulatory Authorities: the Radiation Overexposure Analysis that is performed by the Radiation Overexposure Analysis Group (GADE) and the Approval of Individual Monitoring Services and Calibration Laboratory of Equipment used in Radiation Protection that is performed by the Committee for the Evaluation of Essay and Calibration Services (CASEC). (author)

  5. Justification and optimization in radiation protection

    International Nuclear Information System (INIS)

    Beninson, D.

    1980-01-01

    Two requirements of the system recommended by the ICRP for radiation protection are discussed: 1) justification of practices involving radiation exposures and 2) optimization of the level of protection for such practices. The ICRP recommended the use of cost-benefit analysis in justification and optimization. The application of cost-benefit analysis and the quantification of the radiation detriment are also discussed. (H.K.)

  6. Patient treatment in radiation accidents

    International Nuclear Information System (INIS)

    Tanum, G.; Bruland, Oe.S.; Hjelle, D.; Reitan, J.B.

    1999-01-01

    Accidental human injury due to ionizing radiation is rare. Industrial accidents are comparatively the most common. Life saving procedures should always have priority to any concern about radiation injury or contamination. The personal risks for emergency medial personnel is negligible when simple measures are taken. Repeated clinical examinations and blood lymphocyte counts should be performed on all patients with suspected radiation injury to allow a diagnosis. The radiation syndrome develops within days or weeks depending on total radiation dose, dose rate and dose distribution. Damage to the bone marrow and gut are the most important. Local radiation injuries to the hands are common in industrial accidents. The Norwegian Radiation Protection Authority should always be called when a potential ionizing radiation accident takes place within Norway

  7. Blended learning specialists in radiation protection

    International Nuclear Information System (INIS)

    Mayo, P.; Campayo, J. M.; Verdu, G.

    2011-01-01

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  8. Radiation protection and the female worker

    International Nuclear Information System (INIS)

    Folsom, S.C.

    1983-01-01

    An influx of young women into industrial occupations has resulted in a reexamination of policy regarding fetal protection. Each of the Environmental Protection Agency's four alternatives, as listed in Federal Radiation Protection Guidance for Occupational Exposures, is examined and given a critique: voluntary limitation of radiation exposure to the unborn, voluntary sterilization by women, exclusion of child-bearing-age women from occupational tasks resulting in possible fetal exposure, and limiting the mandatory exposure limit for all workers. The author lists employers and women employees responsibilities in considering occupations with radiation risks. 1 reference

  9. Role of the IAEA in the radiological protection of patients

    International Nuclear Information System (INIS)

    Ortiz Lopez, P.; Wrixon, A.D.; Meghzifene, A.; Izewska, J.

    2001-01-01

    The paper discusses the role of the IAEA in relation to the radiological protection of patients. Within the IAEA there are two major programmes which have an impact on the protection of the patient. Firstly, patient protection is part of the programme on radiation safety; secondly, the human health programme contains a number of activities related to quality assurance (QA), and these also contribute to the protection of patients. A function of the IAEA, as stipulated in its Statute, is 'to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property' and to provide for the application of these standards...'. There are three different levels of the IAEA Safety Standards: Safety Fundamentals, Safety Requirements and Safety Guides. The Standards are supported by other documents such as Safety Reports. There are five means used by the IAEA in providing for the application of the Standards: co-ordinating research, promoting education and training, providing assistance, fostering information exchange and rendering services to its Member States. All these means are used in the programme on radiological protection of patients as described in the paper. The IAEA is assisting its Member Sates in the development and implementation of QA programmes. These activities help disseminate not only the technical knowledge but also the basic ingredients of the QA culture. The IAEA assistance is directed at: (1) national regulatory bodies for the establishment of a regulatory framework which complies with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; (2) standards laboratories for metrological traceability; and (3) end users at medical institutions for the development and implementation of QA programmes

  10. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements

  11. Questions concerning radiation protection in the field of radiometry

    International Nuclear Information System (INIS)

    Gruen, W.; Quednau, F.; Wels, Ch.

    1987-01-01

    Based on legal regulations, guidelines, and standards valid in the German Democratic Republic 105 questions concerning radiation protection are answered covering subjects indicated by the following key words and headings: radiometric gages, radiation protection measures, working within protected areas, legal provisions, responsible staff member, radiation protection officer, operating personnel, radiation protection instructions, safe keeping of radiation sources, leak testing, unusual occurrence, transport of radioactive materials, and ceasing of operation

  12. Gonad protective effect of radiation protective apron in chest radiography

    International Nuclear Information System (INIS)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-01-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28±2% and 39±4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few μGy even without a protector. Thus, the risk of a genetic effect would be as small as 10 -8 . Given that acceptable risk is below 10 -6 , we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography. (author)

  13. [Gonad protective effect of radiation protective apron in chest radiography].

    Science.gov (United States)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-12-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.

  14. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  15. The German radiation protection standards

    International Nuclear Information System (INIS)

    Becker, Klaus; Neider, Rudolf

    1977-01-01

    The German Standards Institute (DIN Deutsches Institut fuer Normung, Berlin) is engaged in health physics standards development in the following committees. The Nuclear Standards Committee (NKe), which deals mainly with nuclear science and technology, the fuel cycle, and radiation protection techniques. The Radiology Standards Committee (FNR), whose responsibilities are traditionally the principles of radiation protection and dosimetry, applied medical dosimetry, and medical health physics. The German Electrotechnical Commission (DKE), which is concerned mostly with instrumentation standards. The Material Testing Committee (FNM), which is responsible for radiation protection in nonmedical radiography. The current body of over one hundred standards and draft standards was established to supplement the Federal German radiation protection legislation, because voluntary standards can deal in more detail with the specific practical problems. The number of standards is steadily expanding due to the vigorous efforts of about thirty working groups, consisting of essentially all leading German experts of this field. Work is supported by the industry and the Federal Government. A review of the present status and future plans, and of the international aspects with regard to European and world (ISO, etc.) standards will be presented

  16. Evaluation of radiation protection and technical procedures in Wad Madani Heart Diseases and Surgery Center (WHDSC) (cardiac catheterization laboratory)

    International Nuclear Information System (INIS)

    Gesmallah, A. H. A.

    2013-07-01

    The purpose of this study is conducted in order to evaluate the application of radiation protection program, evaluate the design of cardiac catheterization laboratory, evaluate the effectiveness of radiation protection devices, evaluate personal monitoring, usage of G-Arm x-ray machine, to evaluate the responsibilities of radiation protection officer (RPO), to assess monitoring devices if available, and to assess patient patient dose in Wad Madani hear disease and surgery center in a period from march 2013 to june 2013. The most data in this study was obtained from the results of the team of quality assurance and control of radiation safety institute when they visited hospital on 14/2/2011 for inspection and calibration for issue of registration and licenses, except the data of patients dose which obtained from exposure parameters and dosimetric information's in the archive of G-arm x-ray fluoroscopic machine (which were 110 of cardiac catheterization diagnostic and therapeutic cases, 60 of adult patients and 50 of children. The patient data included age, weight, kv, mAs, DAP, air kerma, and fluoro time. The results of this study show that there is radiation protection program need correction and partially applied, the design of cardiac catheterization laboratory is accepted according to radiation safety institute team of quality control. Also the study shows that the radiation protection program devices are available and good condition and enough in number. The study shows that there are no personal monitoring devices and services and the radiological technologist are well trained to dial with the G-arm x-ray machine and to apply the radiation protection program effectively. Also the study states that the radiation protection officer could apply his responsibilities partially. Finally the study shows that there is a direct linear relationship between the patient's weight and (DAP, air kerma, kv, and mAs) concludes that there is excessive radiation dose in cardiac

  17. Training courses for radiological technicians: radiation protection of the patient and control of image quality

    International Nuclear Information System (INIS)

    Mateus Yoshimura, Elisabeth; Costa, Paulo Roberto; Furquim, Tania Aparecida; Freitas, Marcelo Baptista de; Valente, Marcelo; Cerri, Giovanni Guido

    2008-01-01

    Full text: As in other countries, life expectancy is increasing in Brazil, and the number of radiological examinations tends to increase. Old equipment and high technology ones cohabit, radiology technicians are not well prepared to conduct practices, images and doses to patients are not optimized. Digital techniques that began to be introduced in the last years are also an important issue, because, as it is possible to modify the image digitally, there is less concern about the choice of equipment parameters that produce the best-image/lowest-dose compromise. Pediatric radiology, CT and fluoroscopy require attention too, as they are of dosimetric interest or because the patient ages imply higher risks or because the techniques deliver higher doses than the conventional ones. In our opinion, the most important role that we can play is educating and forming people to work in this area: training programs and refreshing courses are a way of facing the problem. This way, we are organizing, in a technical cooperation with IAEA, two training courses in quality assurance and radiation protection in radiology, one designed to physicists (60 h), and the radiological technicians (40 h). An important cooperation with a paediatric and a general hospital made it possible to offer courses with 50% practical lessons, performed both in the University and in hospital equipment. Both courses cover a basic Radiation Physics program, radiation protection, image formation and quality control in conventional and digital equipment, and patient dosimetry. Equipment donated by IAEA facilitate the practical QA and dosimetry lessons. The rationale of our project is making it sustainable through the formation of physicists that will go on in the education process of technicians in technical schools. We present the results of the first two courses (physicists and technicians), considering the selection process, the development of the activities, and the assessment both of the students enrolled

  18. The new operational quantities for radiation protection

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1985-01-01

    Philosophies and quantities for radiation protection have often been subjected to changes, and some of the developments are traced which ultimately led to recent proposals by ICRU. Development in the past has largely been towards clarification and generalisation of definitions. The present changes, however, reflect a more fundamental issue, the transition from the limitation system to the assessment system in radiation protection. The index quantities were suitable tools to ascertain compliance with the limitation system of radiation protection. The new quantities proposed by ICRU are suitable estimators for effective dose equivalent, which is an essential quantity in the assessment system of radiation protection. A synopsis of the definitions is given. (author)

  19. Health regulations about radiation oncology in Spain: The legislative dilemma between radiation protection and treatment of cancer

    International Nuclear Information System (INIS)

    Esco, R.; Biete, A.; Pardo, J.; Carceller, J.A.; Veira, C.; Palacios, A.; Vazquez, M.G.

    2001-01-01

    The Royal Decree 1566/1998 of July 17th establishes the criteria on quality in radiation therapy and is a cornerstone in Spanish regulation of this medical field. The Royal Decree gives some rules that, from a medical point of view, are considered as a good practice. Radiation protection of patients is necessary to achieve a high quality radiation oncology treatments. That is the reason why Royal decree 1566/1998 is titled 'quality criteria in radiation therapy'. A quality control program must be tailored to every single radiation oncology department and, for this reason, its standardization is difficult. Nevertheless, some medical procedures are defined by the royal decree and such procedures are the minimum criteria that all the departments must follow in the development of its own quality control program. The authors make some reflections about health regulations about radiation oncology in Spain, pointing out that a legislative dilemma between radiation protection and treatment of cancer due to application of the legislative rules may occur. The social and medical cost of rigid bureaucratic procedures is pointed out. A large amount of equipment controls and measurements takes time that could be used in treating patients. This is more important in an environment of limited technical and human resources. (author)

  20. First Central and Eastern European Workshop on Quality control, patient dosimetry and radiation protection in diagnostic and interventional radiology and nuclear medicine

    International Nuclear Information System (INIS)

    National Frederic Joliot-Curie Research Institute for Radiobiology and Radiohygiene

    2007-01-01

    First Central and Eastern European Workshop on Quality Control, Patient Dosimetry and Radiation Protection in Diagnostic and Interventional Radiology and Nuclear Medicine, scientifically supported and accredited as a CPD event for medical physicists by EFOMP, National 'Frederic Joliot-Curie' Research Institute for Radiobiology and Radiohygiene (NRIRR), Budapest, Hungary, April 25-28, 2007. Topics of the meeting included all areas of medical radiation physics except radiation therapy. A unique possibility was realized by inviting four European manufacturers of quality control instrumentation, not only for exhibiting but they also had 45 minutes individual presentations about each manufacturer's product scale and conception. Further sessions dealt with dosimetry, optimization, quality control and testing, radiation protection and standardization, computed tomography and nuclear medicine, in 29 oral presentations and 1 poster of the participants. (S.I.)

  1. Developing a Radiation Protection Hub

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Nolan E [ORNL

    2017-01-01

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.

  2. Proceedings of the Tenth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    2011-01-01

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  3. Military radiation protection

    International Nuclear Information System (INIS)

    Harrison, J.

    1993-01-01

    The Ministry of Defence and the military in particular have a very strong commitment to radiation protection of personnel in war and peace. MOD endeavours to do better all the time because it is essential that the armed forces have the confidence to fulfil their role and this is best achieved by providing them with the best possible protection irrespective of the hazard. (author)

  4. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  5. Considerations on radiation protection and accidents in nuclear medicine

    International Nuclear Information System (INIS)

    Lima, Carla Flavia de; Avelar, Artur Canella; Campos, Tarcisio P.R.

    2001-01-01

    The present study presents the radiation protection in the services of nuclear medicine in relation to the design of the services, manipulation of sources, cares with the patient, accomplishment of procedures and definition of accidents and incidents; besides approaching the CNEN requirements

  6. 8. national congress of radiation protection 'SFRP 2011' - Proceedings

    International Nuclear Information System (INIS)

    Souques, M.; Lambrozo, J.; Perrin, A.; Magne, I.; Bedja, M.; Fleury, G.; Le Brusquet, L.; Barbe, R.; Lahaye, T.; Laurier, D.; Tomasek, L.; Tirmarche, M.; Guseva Canu, I.; Garsi, J.P.; Caer-Lorho, S.; Jacob, S.; Acker, A.; Fernandez, F.; Bertho, J.M.; Synhaeve, N.; Stefani, J.; Desbree, A.; Blanchardon, E.; Dublineau, I.; Petitot, F.; Lestaevel, P.; Tourlonias, E.; Mazzucco, C.; Jacquinot, S.; Dhieux, B.; Delissen, O.; Tournier, B.; Gensdarmes, F.; Godet, J.L.; Perrin, M.L.; Saad, N.; Bardelay, C.; Voytchev, M.; Doursout, T.; Chapalain, E.; Dandrieux, G.; Cazala, C.; Gay, D.; Chabanis, O.; Palut-Laurent, O.; Ringeard, C.; Thomassin, A.; Roxin, A.M.; Gschwind, R.; Makovicka, L.; Roxin, I.; Henriet, J.; Martin, E.; Klopfenstein, J.F.; Lochard, J.; Guillaumont, R.; Marignac, Y.; Petitfrere, M.; Catelinois, O.; Devin, P.; Sene, M.; Barbey, P.; Reaud, C.; Schneider, T.; Achikian, S.; Le Clerc, A.; Rochereau, S.; Schneider, C.; Vigneron, H.; Charron, S.; Delattre, A.; Luccioni, C.; Monti, P.; Bernaud, J.Y.; Michielsen, N.; Bondiguel, S.; Bordy, J.M.; Daures, J.; Denoziere, M.; Gualdrini, G.; Mariotti, F.; Barre, A.; Beauval, A.; Davi, J.N.; Dupic, S.; Grincourt, D.; Kandil, A.; Marteel, C.; Vrammout, D.; Saintamon, F.; Aberkane, J.; Paquet, F.; Barbey, P.; Bardies, M.; Biau, A.; Blanchardon, E.; Chetioui, A.; Lebaron-Jacobs, L.; Pasquier, J.L.; Broggio, D.; Beurrier, J.; Farah, J.; Franck, D.; Sauget, M.; Bertrand, A.; Boveda, S.; Bar, O.; Brezin, A.; Maccia, C.; Bernier, M.O.; Struelens, L.; Carinou, E.; Dominiek, J.; Brodecki, M.; Donadille, L.; Ferrari, P.; Koukorava, C.; Krim, S.; Nikodemova, D.; Ruiz-Lopez, N.; Sans Merce, M.; Vanhavere, F.; Clairand, I.; Bordy, J.M.; Debroas, J.; Ginjaume, M.; Itie, C.; Krim, S.; Lebacq, A.L.; Martin, P.; Struelens, L.; Sans-Merce, M.; Vanhavere, F.; Gauron, C.; Wild, P.; Grzebyk, M.; Derock, C.; Champion, K.; Cohen, P.; Menez, C.; Tellart, A.S.; Thiel, H.; Pennarola, R.; Choudat, D.; Dillenseger, P.; Rehel, J.L.; Aubert, B.; Gagna, G.; Amabile, J.C.; Laroche, P.; Grandcoing, A.; Roch, P.; Challeton-de Vathaire, C.; Franck, D.; Roy, C.; Doucet, J.; Jancon, G.; Pelletier, B.; Marchal, C.; Megnigbeto, C.; Franchi, C.; Cillard, P.; Etard, C.; Sinno-Tellier, S.; Guersen, J.; Chabrot, P.; Cassagnes, L.; Gabrillargues, J.; Boyer, L.; Kien, N.; Schieber, C.; Almen, A.; Magne, S.; Spasic, E.; Ngo, C.; Bordy, J.M.; Carlan, L. de; Bridier, A.; Ginestet, C.; Malet, C.; Ferdinand, P.; Courdi, A.; Rucka, G.; Bondiau, P.Y.; Cazoulat, A.; Bohand, S.; Schoen, V.; Bey, E.; Roche, H.; Quesne, B.; Monier, C.; Leonard, J.G.; Cordier, G.; Gurriaran, R.; De Vismes, A.; Picolo, J.L.; Elbast, M.; Saudo, A.; Holler, V.; Blanchin, N.

    2011-06-01

    radiation protection and related domains; 22 - O'CLOC study - cataracts in interventional cardiologists; 23 - Doses received in extremities and eye lens by medical personnel: results of the ORAMED European project; 24 - Use of operational dosemeters in interventional radiology/cardiology: results of the ORAMED European project; 25 - Sub-ungual multi-parametric capillaroscopy of occupational chronic exposure in interventional radiology; 26 - Example of workplace and zoning analysis in interventional neuro-radiology; 27 - Dosimetric study of various work places in prostate brachytherapy; 28 - Contribution to radiation protection of the partial redesigning of a nuclear medicine service; 29 - Committed effective doses evaluated by the IRSN after internal contamination of nuclear medicine personnel - 2006-2010 status; 30 - Why and how developing a quality approach in radiation protection?; 31 - 2011 status and perspectives of radiation protection in medical environment. The ASN's viewpoint; 32 - Doses in scanography: results of a multi-centric inquiry; 33 - Status of the optimization approach of patients dosimetry in interventional radiology at Clermont Ferrand univ. health centre; 34 - Can we define reference levels in interventional neuro-radiology with diagnostic and therapeutic purposes?; 35 - EMAN: implementation of an ALARA european network in the medical domain; 36 - In-vivo surface and intra-cavitary dosimetry in patient's radiotherapy using multi-channel OSL/FO technique; 37 - Estimation of secondary cancers after robotized stereotactic radiotherapy of lung cancer; 38 - Medical-surgical management of an injured person after radio-contamination by plutonium or americium (Percy area); 39 - Industrial radiography incident at Flamanville nuclear site; 40 - Incorporated activity mapping using Monte-Carlo simulations in case of complex contaminations; 41 - IRSN's metrology teams preparedness for crisis; 42 - Alpha irradiation problem following an internal contamination: dose

  7. Application of radioprotectors in radiation protection

    International Nuclear Information System (INIS)

    Kljajic, R.R.; Masic, Z.S.

    2000-01-01

    Application of the ionizing radiation in almost all the fields of human activities enlarged the knowledge of their harming influence on the living beings. At the same time there have been many investigations of different chemical means that could successfully be used in protection from radiation. Until today several hundreds of different chemical compounds have been considered to be a potential chemical radioprotector. Analyzing the results of investigating great number of potential radioprotective compounds, it can be said that those containing sulfur provide the most effective protection. That are aminothiols, aminodisulphides, derivatives of thiourea, thiosulphuric and thiophosphate acid, dithiocarbamates, thiazolines, some of biogen amines and their derivates. Among the investigated compounds there is a certain number that, under some circumstances, has shown a protective effect on the experimental animals. In the work comparative investigation of the protective effect of cistaphosa (WR-638) and gamaphosa (WR-2721) have been researched on the big experimental animals, radiated with a high level of X-radiation. Well protective influence of both radioprotectors has been proven but gamafos showed higher efficiency. (author)

  8. Research priorities for occupational radiation protection

    International Nuclear Information System (INIS)

    1994-02-01

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided open-quotes smartclose quotes instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines

  9. [Radiation protection. Implications for clinical practice on the new regulations governing roentgen ray irradiation and radioprotection].

    Science.gov (United States)

    Nestle, U; Berlich, J

    2006-08-01

    In 2001 or 2002, the legislator made substantial alterations to the "Röntgenverordnung" [regulations governing use of roentgen ray radiation] and "Strahlenschutzverordnung" [regulations governing radiation protection]. This was done to bring German law in line with EU Directives 96/29/Euratom (basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation) and 97/43/Euratom (health protection of individuals against the dangers of ionizing radiation in relation to medical exposure). Proper use of radiation in medicine requires that those involved in its application are aware of the biological effect of radiation. When staff and others are protected good organization and appropriate technology at the workplace can achieve a great deal. In the new directives, the radiation protection for the patient is quantified and the responsibility of the physician is clearly pointed out. The most important aim is uniform quality throughout Europe in radiological diagnosis and radiation protection.

  10. Radiological Protection of Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.

    2011-01-01

    Full text: This lecture aims at presenting the state of the art of radiological protection of patients in nuclear medicine focusing on three aspects of interest where to achieve improvement. The hierarchy of the justification principle of the radiation protection is one of them. There seems for a change to be presented in the paradigm of the radiological protection of patients. The role of the physician who prescribes the medical practice becomes more relevant, together with the nuclear medicine specialist who should be co-responsible for the application of this justification principle. Regarding the doses optimization and the implementation of Dose Reference Level the involvement extends far beyond the physician and radioprotection officer. It is clear that the Medical Physicist is to play a very relevant role in the coordination of actions, as the nuclear medicine technician is to execute them. Another aspect to consider is patient specific dosimetry. It should become a routine practice through calculation of the absorbed dose based on biodistribution data. It should be assessed for each individual patient, as it depends on a number of patient-specific parameters, such as gender, size and the amount of fatty tissue in the body, as well as the extent and nature of the disease. In most cases, dosimetry calculations are not carried out and patients are administered standard levels of activity. There may be situations with a lack of knowledge on internal dosimetry as in many centers either none or only one or two medical physics experts are available. It shows that a formal training for experts in internal dosimetry at national level is required. However up to now, there has been no satisfactory correlation between absorbed dose estimates and patient response. Moreover, the radiation protection for the patient is not assured, as the dose values given are often numbers without connection to radiobiological and/or hematological findings. Pending tasks related to

  11. Radiation protective clothing

    International Nuclear Information System (INIS)

    Fujinuma, Tadashi; Tamura, Shoji; Ijiri, Yasuo.

    1988-01-01

    Purpose: To obtain radiation protective clothings of excellent workability and durability. Constitution: Protective clothings of the present invention comprise shielding materials for the upper-half of the body having lead foils laminated on one surface and shielding materials for the lower-half of the body a resin sheet containing inorganic powders of high specific gravity. Such protective clothings have a frexibility capable of followings after the movement of the upper-half body and easily follow after the movement such as acute bending of the body near the waste in the lower-half body. (Kamimura, M.)

  12. On ethical issues in radiation protection. Radiation protection recommendations and standards seen from an ethical perspective

    International Nuclear Information System (INIS)

    Corbett, R.H.; Persson, L.

    2004-01-01

    International radiation protection recommendations and standards of the ICRP, the IAEA, the European Union and the ILO are surveyed from an ethical perspective. The authors come to the conclusion that the insights of ethical theories provide a number of ways in which current recommendations and standards for radiation protection could improve. (orig.) [de

  13. Radiation exposure and protection during angiography

    Energy Technology Data Exchange (ETDEWEB)

    Biazzi, L; Garbagna, P [Pavia Univ. (Italy)

    1979-05-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recommendations to reduce radiation exposure without prejudicing the exam results.

  14. Trends in Radiation Doses to Patients from Medical X-ray Examinations in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Olga Iacob; Irina Anca Popescu [Institute of Public Health, Iassy (Romania); Mihai Radu Iacob [University ' Al. I. Cuza' Iassy (Romania)

    2006-07-01

    Even if the doses received by patients during 2005 survey are lower than those estimated in the 2000 national survey on diagnostic medical radiation exposure by 27 percent, on average, their values still indicate an urgent need to develop radiation protection and optimization activities for X ray examinations, especially in pediatrics radiology. The increasing attention given in last years to radiation protection for conventional examinations, with development of national patient dosimetry protocols and reference doses, new radiation protection legislation and norms have played a significant part in this substantial reduction in effective doses. (N.C.)

  15. Definitions, qualifications and requirements for radiation protection experts, radiation protection officers and radiation workers: results of the 2 nd EUTERP Workshop

    International Nuclear Information System (INIS)

    Draaisma, Folkert S.; Steen, Jan van der

    2008-01-01

    Full text: In Europe, a common vision for maintaining competence in radiation protection is emerging, focussing on a common denominator for qualification of radiation protection experts (RPEs) and radiation protection officers (RPOs) and for mutual recognition and mobility of these professionals across the European Union. Therefore, the European Commission, D.-G. Transport and Energy, has launched an initiative to establish a European Radiation Protection Training and Education Platform (EUTERP Platform). The objectives of the Platform can be summarised as: to facilitate the trans national access to vocational education and training; to better integrate education and training into occupational radiation protection infrastructures in the Member, Candidate and Associated States of the European Union. The Platform ensures a permanent dialogue between all involved parties by the use of its web site (www.euterp.eu), by issuing newsletters and by organising workshops. The first workshop has been held in Vilnius, 22-24 May 2007, and resulted in 8 recommendations to the European Commission, the IAEA, IRPA and national authorities. The recommendations were, a.o., dealing with: new definitions for the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), which should be used in the revision of both the EURATOM and the International BSS; developing guidance for a methodology to compare the quality of training courses and training material; developing guidance for a standardized methodology of assessing the recognition of RP professionals as a basis for future mutual recognition, based on a description of roles and duties, education, training and work experience; developing guidance for a formal recognition process of the competence of RPEs and RPOs. The second workshop will be held on 23-25 April 2008, again in Vilnius, and will specifically discuss the above-mentioned proposals for new definitions and guidance material. It is expected that the

  16. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    Hort, M.

    2009-01-01

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  17. Radiation Protection Research Needs Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davis, Jason [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Hertel, Nolan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abelquist, Eric [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2017-09-01

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  18. International conference to explore ways to improve radiological protection of patients

    International Nuclear Information System (INIS)

    2001-01-01

    The first international conference specifically focused on the radiological protection of patients will be held in Torremolinos (Malaga), Spain, next week, from 26 to 30 March 2001. The conference, formally titled, 'International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy', is being organized by the IAEA, hosted by the Government of Spain and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization. Medical applications of ionizing radiation are accepted world-wide as essential tools for keeping or restoring human health. However, they also represent by far the largest man-made source of radiation exposure. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) estimates that diagnostic medical applications of radiation account for about 95% of the exposure to radiation from man-made sources of radiation and about 12% of total exposure, which includes the exposures received from natural sources. More than 900 participants from 80 countries are expected to attend the conference. They cover a broad spectrum of expertise, including radiologists, nuclear medicine specialists, radiation oncologists, medical physicists, technologists/radiographers, radiological protection officers, equipment manufacturers, experts who develop standards for radiological equipment, hospital administrators and public health officials and representatives of professional societies. In addition, a number of patients who have undergone radiation treatment will represent patients' interests and a patient will chair one of the round table debates. The conclusions of the Conference will be incorporated into the IAEA's programme of work in the field of radiation safety and will be reported to the IAEA General Conference at its next meeting in September 2001

  19. Research into radiation protection. 1994 Programme report. Report on radiation departmental research programme on radiation protection, sponsored by the Federal Ministry for the Environment, Nature Conservation and Reactor Safety, and placed under the administrative and subject competence of the Federal Radiation Protection Office

    International Nuclear Information System (INIS)

    Goedde, R.; Schmitt-Hannig, A.; Thieme, M.

    1994-10-01

    On behalf of the Ministery for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Department Research Programme of the year 1994. (orig.) [de

  20. Research into radiation protection. 1995 Programme report. Report on radiation departmental research programme on radiation protection, sponsored by the Federal Ministry for the Environment, Nature Conservation and Reactor Safety, and placed under the administrative and subject competence of the Federal Radiation Protection Office

    International Nuclear Information System (INIS)

    Thieme, M.; Goedde, R.; Schmitt-Hannig, A.

    1996-01-01

    On behalf of the Ministry for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Department Research Programme of the year 1995. (orig.) [de

  1. Lectures on radiation protection

    International Nuclear Information System (INIS)

    Wachsmann, F.; Consentius, K.

    1981-01-01

    All important subjects of radiation protection are presented in concise form; the explanations may serve as lecture manuscripts. The lectures are divided into 16 to 19 teaching units. Each teaching unit is supplemented by a slide to be projected on a screen while the text is read. This method of visual teaching has already been tried with good results in medicine and medical engineering. Pictures of the slides are given in the text so that the book may also be used for self-studies. The main facts are summarized at the end of each lesson. The finished book will consist of 8 lessons; the first three of these discuss 1. Radiation effects and hazards 2. Dose definitions and units and their role in radiology and radiation protection 3. Dose limits and legal specifications. (orig.) [de

  2. Nuclear Safety and Radiation Protection in Europe - a common approach

    International Nuclear Information System (INIS)

    McGarry, Ann

    2010-01-01

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  3. Radiation Protection Training in Spanish schools of medicine

    International Nuclear Information System (INIS)

    Ruiz-Cruces, R.; Perez Martinez, M.; Vano, E.; Hernandez Armas, J.; Diez de los Rios Delgado, A.

    2003-01-01

    Radiation Protection should be included in the programme of studies necessary to confer a bachelor's degree in Medicine, according to the Directive 97/43 Euratom on medical exposures and the Report RP116 published by the European commission on Education and Training in radiation protection for medical exposures. To analyse the present training programmes in radiation protection at the Medical School in different Spanish Universities. The syllabus and the contents of the subjects including radiation protection issues in 27 Spanish Schools of Medicine have been revised. Radiation protection subjects are obligatory at present, only at the Schools of Medicine from Cantabria and Malaga. There is a group of Schools of Medicine where radiation protection is an optional matter with an extension of 4,5 credits (45 hours). It also exists some topics in radiation protection in subjects dealing with Medical Physics and General Radiology (with a range value from 1 to 10 hours), in 10 Schools of Medicine. A wide dispersion among the contents of different subjects and the hours of training allocated by the different School are found. It should be useful the harmonization of the programmes. (Author)

  4. Quality management in radiation protection

    International Nuclear Information System (INIS)

    Baehrle, H.G.

    1997-01-01

    Quality Management in Radiation Protection Quality management (QM) in the field of Radiation Protection was discussed in a previous issue (2/97) using the example of QMS at the Paul Scherrer Institut (PSI). The present article describes the major features involved in the establishment of a functional QMS. Establishment of the QMS lead to a deeper understanding of administrative and operational aspects of the working methods involved. (orig.) [de

  5. Radiation protection for veterinary practices

    International Nuclear Information System (INIS)

    Wheelton, R.; McCaffery, A.

    1993-01-01

    This brief article discusses radiation protection for diagnostic radiography in veterinary practices. It includes aspects such as a radiation protection adviser, personal dosimetry but in particular a Veterinary Monitoring Service, developed by the NRPB, which offers veterinary practitioners the convenience of making simple but essential measurements for themselves using photographic films contained in a 'vet pack' to determine the operating condition of their X-ray machine. (U.K.)

  6. Practical radiation protection for radiography

    International Nuclear Information System (INIS)

    Hubbard, S.K.; Proudfoot, E.A.

    1978-01-01

    Nondestructive Testing Applications and Radiological Engineering at the Hanford Engineering Development Laboratory have developed radiation protection procedures, radiation work procedures, and safe practice procedures to assure safe operation for all radiographic work. The following topics are discussed: training in radiation safety; radiation exposure due to operations at Hanford; safeguards employed in laboratory radiography; field radiographic operations; and problems

  7. Radiation Protection: introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2005-01-01

    The abstract gives an overview and introduction to the activities of SCK-CEN's Radiation Protection department. Main strategic developments and achievements in the field of life sciences, policy supports and medical applications are summarised

  8. What is good radiation protection?; Was ist guter Strahlenschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, B. [Lorenz Consulting, Essen (Germany)

    2016-07-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  9. Radiation protection of patients in X-ray diagnostic techniques

    International Nuclear Information System (INIS)

    Gerhardt, P.

    1975-01-01

    The author states as a result that the care taken by the physician and the technical assistant is the most important factor in reducing the radiation exposure of patients. A fair relation between efficiency and possible unnecessary exposure is provided by careful and conscientious work which has to be based on sound knowledge of the effects of ionizing radiation on the organism and of the possibilities of reducing the doses responsible for these effects. (orig./AK) [de

  10. Rule concerning sanitary protection against ionizing radiations: novelties

    International Nuclear Information System (INIS)

    Bercedo, A.; Carmena, P.; Prieto, J. A.; Rubio, G.; Sollet, E.; Sustacha, D.

    2002-01-01

    Last July the a new legal Rule concerning Sanitary Protection against Ionising Radiation was published, as a transposition of the EU Directive about the Basic Norms related to the sanitary protection of workers and population against the risks resultant of the ionising radiation. The origin of this legislation goes back to the revision of the protection doctrine by the International Commission of Radiation Protection (ICRP) en the year 1990. El scope of the revised Rule is the regulation of the protection of population and workers against ionising radiation, the establishment of the national protection system with its exposition and dose limits and the correspondent penalty regime. It also modifies the maximum radiation dose limits and reinforces the application of the optimisation principle in the use of ionising radiation. In this article, the novelties introduced by the new Rule are commented in detail, ordered by the Titles I to IX in which the Rule is divided. (Author)

  11. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    Biazzi, L.; Garbagna, P.

    1979-01-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results [fr

  12. Radiation protection in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    1978-01-01

    The tasks of radiation protection and nuclear safety to be looked after by the land Baden-Wuerttemberg consist essentially in licensing and control activities carried out by the Federal Government. With regard to radiation protection the focal points of the second medium-term programme of the Laender Government Baden-Wuerttemberg are: 1. the technical development plan 'power plant sites', 2. construction of nuclear power plants in the borderline areas of neighbouring foreign countries, 3. disposal of radioactive waste, 4. pollution protection measures against nuclear power plants, 5. safety measures when dealing with radioactive materials outside nuclear power plants. (GL) [de

  13. Evolution of Radiation Protection System in Kenya

    International Nuclear Information System (INIS)

    Maina, J. A. W.

    2004-01-01

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and slowed the

  14. Radiation protection. Basic concepts of ICRP

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Hirata, Hideki

    2014-01-01

    The title subject is easily explained. Main international organizations for radiation protection are United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA). The UNSCEAR objectively summarizes and publishes scientific findings; ICRP, an NGO, takes part in recommending the radiological protection from the expertized aspect; and IAEA, a UN autonomy, aims at peaceful usage of atomic power. These organizations support the legal regulation and standard of nations. The purpose of the ICRP recommendation (Pub. 103, 2007) is to contribute to the appropriate protection of radiation hazardous effects, which are assumed to be linearly proportional (the model of linear no-threshold, LNT) that radiation risk exists even at the lowest dose. When a change in the single cell results in hazardous alteration, the causative effects are called stochastic effects, which include the mutation leading to cancer formation and genetic effect in offspring (not observed in man). ICRP says the validity of LNT for the stochastic effects essentially from the protective aspect, although epidemiological data support it at >100 mSv exposure. The deterministic effects are caused by loss of cell itself or of its function, where the threshold is defined to be the dose causing >1% of disorder or death. Radiation protective system against exposure is on the situation (programmed, emergent and natural), category (occupational, public and medical) and 3 principles of justification, optimization and application of dose limit. (T.T.)

  15. Radiation Protection Group

    CERN Document Server

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  16. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  17. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  18. Consequences of the new Slovenian legislation on radiation protection and nuclear safety for radiation protection training

    International Nuclear Information System (INIS)

    Kozelj, M.

    2004-01-01

    The paper presents brief description of the old Slovenian regulations and an overview of the new, harmonised regulations in the field of radiation protection training. The most important novelties were pointed out with possible consequences for the implementation of radiation protection training. Some suggestions on how to overcome transitional problems and how to improve training were also given. (author)

  19. Radiation protection and safety in medical use of ionising radiation in Republic of Bulgaria - Harmonisation of the national legislation with Euratom directives

    International Nuclear Information System (INIS)

    Ingilizova, K.; Vassileva, J.; Rupova, I.; Pavlova, A.

    2005-01-01

    From February 2002 to November 2003 the National Centre of Radiobiology and Radiation Protection conducted a PHARE twinning project 'Radiation Protection and Safety at Medical Use of Ionising Radiation'. The main purposes of the project were the harmonisation of Bulgarian legislation in the field of radiation protection with EC Directives 96/29 and 97/43 Euratom, and the establishment of appropriate institutional infrastructure and administrative framework for their implementation. This paper presents the main results of the project: elaboration of Ordinance for Protection of Individuals from Medical Exposure; performance of a national survey of distribution of patient doses in diagnostic radiology and of administered activities in nuclear medicine and establishment of national reference levels for the most common diagnostic procedures. (authors)

  20. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Sacc, R.A.; Rubiolo, J.; Herrero, F.

    1998-01-01

    Full text: The goal of this paper is to identify the areas in which radiation protection is actually needed and the relative importance of protection measures. A correlation between the different medical applications of the ionizing radiations and the associated risks, mainly due to ignorance, has been a constant throughout the history of mankind. At the beginning, the accidents were originated in research nuclear laboratories working on the atomic bomb, while the incidents occurred in medical areas because of virtual ignorance of the harmful effects on humans. The 60's were characterized by the oil fever, which produced innumerable accidents due to the practice of industrial radiography; in the 70's the use of radiations on medical applications was intensified, to such and extent that a new type of victim appeared: the patient. Unfortunately, during 80's and 90's the number of accidents in different medical practices has increased, projecting the occurred in Zaragoza (Spain) on 1990 with a linear accelerator for radiotherapy treatments. In some developed countries, foreseeing the probability of producing biological effects as a result of different radiology practices, more strict security rules are adopted to guarantee the application of the three principles of the radioprotection: justification, optimization and limitation of individual dose. In this way, in the U.S.A., the Joint Commission on Accreditation of Health Care Organization (JCAHO), favors a vigilance politics in the different departments of Radiodiagnostic and Nuclear Medicine to secure an effective management in security, communications and quality control, in which the medical physicists play an important role. One of the requirements for example is to attach the value of entrance exposition dose in the radiological diagnostic report. So, the doses in the different organs are compared with the tabulated doses. Basically, a quality control programme is designed to minimize the risks for patients

  1. Report on Workshop 'Radiation protection of the 'consumer' of medical irradiation applications'

    International Nuclear Information System (INIS)

    Geus, W.W.A.A.

    1989-01-01

    The Main division Radioactivity and Applications of Radiation of the Dutch Department of Welfare, Public Health and Culture has organized a 'workshop' on the protection of the patient ( or consumer) in medical applications of radiation. The EG guideline of september 3rd 1984 'In behalf of assessment of fundamental measures with regard to radiation protection of persons who are examined or treated medically' and the advice of the National Council for Public Health brought out thereabout in april 1988, served as background of the contributions and discussions presented in this collection. (H.W.). Refs.; figs.; tabs

  2. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Costa Silva, L.H. da; Rosa, R.

    1991-11-01

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  3. Problems of radiation protection optimization

    International Nuclear Information System (INIS)

    Morkunas, G.

    2003-01-01

    One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)

  4. Radiation protection and environmental protection

    International Nuclear Information System (INIS)

    Xie Zi; Dong Liucan; Zhang Yongxing

    1994-01-01

    A collection of short papers is presented which review aspects of research in radiation and environmental protection carried out by the Chinese Institute of Atomic Energy in 1991. The topics covered are: the analysis of Po 210 in the gaseous effluent of coal-fired boilers; the determination of natural radionuclide levels in various industrial waste slags and management countermeasures; assessment of the collective radiation dose from natural sources for the Chinese population travelling by water; the preliminary environmental impact report for the multipurpose heavy water research reactor constructed by China for the Islamic Republic of Algeria. (UK)

  5. Radiation protection, public policies and education

    International Nuclear Information System (INIS)

    Alves, Simone F.; Jacomino, Vanusa M.F.; Barreto, Alberto A.

    2011-01-01

    The objective of this paper is to inform about the aspects of radiation protection public policies concerning the public spheres and the ordinary population. It is known that information has been considered a very important good in several knowledge areas. However, the efficiency of their transmission mechanisms should be periodically evaluated, checking existing critical and stagnation points. Nuclear area can be mentioned as a historically typical case, where the public policies assume relevant importance as tool for promotion, control and education of the population in general. Considering the polemic nature of such subject, it is clear that there is a need for conducting the construction of educational contents taking in account the educator training necessities. The addressing of radiation protection aspects applied to nuclear techniques conducts, for example, to the awareness on the benefits of radiation and its industrial and medical applications, which are established considering the worldwide adopted basic principles of radiation protection. Such questions, concerned with (or related to) public policies, establish a link between radiation protection and education, themes explored in this article to provide a better view of the current Brazilian scenario. (author)

  6. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1978-01-01

    The bases for developing quantitative assessment of exposure risks in the human being, and the several problems that accompany the assessment and introduction of the risk of exposure to high and low LET radiation into radiation protection, will be evaluated. The extension of the pioneering radiation protection philosophies to the control of other hazardous agents that cannot be eliminated from the environment will be discussed, as will the serious misunderstandings and misuse of concepts and facts that have inevitably surrounded the application to one agent alone, of the protection philosophy that must in time be applied to a broad spectrum of potentially hazardous agents. (orig.) [de

  7. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  8. Radiation protection program for early detection of breast cancer in a mammography facility

    International Nuclear Information System (INIS)

    Mariana, Villagomez Casimiro; Cesar, Ruiz Trejo; Ruby, Espejo Fonseca

    2014-01-01

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1–4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)– presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied

  9. Radiation protection program for early detection of breast cancer in a mammography facility

    Energy Technology Data Exchange (ETDEWEB)

    Mariana, Villagomez Casimiro, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx; Cesar, Ruiz Trejo, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx [Instituto de Física, UNAM. Cd. Universitaria, CP 04510 (Mexico); Ruby, Espejo Fonseca [Instituto de Enfermedades de la Mama FUCAM-AC, CP 04980 (Mexico)

    2014-11-07

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1–4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)– presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.

  10. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    International Nuclear Information System (INIS)

    Han, Eun Ok; Kwon, Deok Mun; Dong, Kyung Rae; Han, Seung Moo

    2010-01-01

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment

  11. A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok; Kwon, Deok Mun [Daegu Health College, Daegu (Korea, Republic of); Dong, Kyung Rae [Gwangju Health College University, Gwangju (Korea, Republic of); Han, Seung Moo [Kyung Hee University, Seoul (Korea, Republic of)

    2010-12-15

    This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task , self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy and medical clinics have characteristics protective environment.

  12. Discussion on several problems in evolution of radiation protection system

    International Nuclear Information System (INIS)

    Ziqiang, P.

    2004-01-01

    As viewed from the standpoint of radiation protection practice, it is necessary that the current system of radiological protection should be made more simple and coherent. The human-based protective measures alone are far from having met the requirements of environmental protection in many circumstances. Protecting the environment from ionising radiation would be implicated in radiation protection. Collective dose is an useful indicator, of which applicable extent should be defined. Using such an quantity could help improve radiation protection level, but applicable conditions should be indicated, temporal or spatial. Natural radiation is the largest contributor to the radiation exposure of human. Occupational exposure from natural radiation should be controlled, for occupations such as underground miners and air crew. Controlling both man-made and natural radiation exposure of pregnant women and children needs to be enhanced, especially radiological diagnosis and treatment. China radiation protection community, as a whole, is paying considerable attention to the ICRP's new Recommendations. Prof. Clarke's article 'A Report on Progress towards New Recommendations', a communication from the International Commission on Radiological Protection, has been translated into Chinese and published on Radiation Protection, the Official Journal of China Radiation Protection Society with a view of intensifying awareness of the new Recommendations within more radiation protection workers and people concerned. In addition, a special meeting was convened in early 2002 to address the comments on the new Recommendations. (author)

  13. Analysis of population inquiry on practices for ultraviolet radiation protection.

    Science.gov (United States)

    Celaj, Stela; Deng, Jie; Murphy, Brendan L

    2017-10-15

    UV radiation exposure is one of the key modifiable risk factors for skin cancer. Hence, patient education regarding skin protection and sunscreen use is of tremendous importance to public health. To better understand patient practices regarding skin protection in a population level, we looked into the Internet search behavior of the US-based population. We investigated patient inquires on the United States Food and Drug Administration (FDA) announcements regarding sunscreen use by quantifying search terms such as "broad spectrum sunscreen", "sunscreen" and "sunblock" with Google Trends, a novel methodology for understanding internet search practices. Our findings show that "broad spectrum sunscreen" searches were significantly increased post 2011 FDA announcements, which suggest increased public awareness regarding the importance of broad spectrum protection. It is encouraging these preliminary results indicate that skin protection practices are being increasingly investigated by the general public and may serve as a novel approach for identifying areas of improvement regarding patient education on the reduction of the risk for skin cancer.

  14. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  15. Medical Ethics and Protection from Excessive Radiation

    International Nuclear Information System (INIS)

    Ruzicka, I.

    1998-01-01

    Among artificial sources of ionic radiation people are most often exposed to those emanating from X-ray diagnostic equipment. However, responsible usage of X-ray diagnostic methods may considerably reduce the general exposure to radiation. A research on rational access to X-ray diagnostic methods conducted at the X-ray Cabinet of the Tresnjevka Health Center was followed by a control survey eight years later of the rational methods applied, which showed that the number of unnecessary diagnostic examining was reduced for 34 % and the diagnostic indications were 10-40 $ more precise. The results therefore proved that radiation problems were reduced accordingly. The measures applied consisted of additional training organized for health care workers and a better education of the population. The basic element was then the awareness of both health care workers and the patients that excessive radiation should be avoided. The condition for achieving this lies in the moral responsibility of protecting the patients' health. A radiologist, being the person that promotes and carries out this moral responsibility, should organize and hold continual additional training of medical doctors, as well as education for the patients, and apply modern equipment. The basis of such an approach should be established by implementing medical ethics at all medical schools and faculties, together with the promotion of a wider intellectual and moral integrity of each medical doctor. (author)

  16. Organization of radiation protection in German nuclear power stations

    International Nuclear Information System (INIS)

    1989-01-01

    Using the operating handbooks of the nuclear power stations in West Germany, an examination was carried out of how far the existing organisational structure for radiation protection fulfils the requirements for protection and whether a standardisation of the organisation would provide improvements for the protection of the personnel and for the practicability of the radiation protection organisation. In particular, the parts 'Personnel operating organisation', 'Radiation protection order' and 'Maintenance order' of the operating handbook were evaluated and an audit was made of the radiation protection organisation. In general, the result of the assessment is that the organisation of radiation protection does not contradict the orders, guidelines and regulations in any of the nuclear power stations examined. Corresponding to the possibilities of regulating details of the radiation protection organisation within the undertaking, the target of 'protection of the personnel against radioactive irradiation' is achieved by the various organisation structures which are largely equal to the given example. (orig./HP) [de

  17. Radiation protection and safety guide no. GRPB-G-1: qualification and certification of radiation protection personnel

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    A number of accidents with radiation sources are invariably due to human factors. The achievement and maintenance of proficiency in protection and safety in working with radiation devices is a necessary prerequisite. This guide specifies the national scheme and minimum requirements for qualification and certification of radiation protection personnel. The objective is to ensure adequate level of skilled personnel by continuous upgrading of knowledge and skill of personnel. The following sectors are covered by this guide: medicine, industry, research and training, nuclear facility operations, miscellaneous activities

  18. Establishments of scientific radiation protection management program

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1988-01-01

    Some aspects for establishing the radiation protection management program have been discussed. Radiation protection management program includes: definite aims of management, complete data register, strict supervision system, and scientific management methodology

  19. Chemical protection from high LET radiation

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Matsushita, Satoru; Kanai, Tatsuaki; Ohara, Hiroshi

    1992-01-01

    Radioprotection by WR151327 from high LET fast neutrons was investigated and compared with that from low LET radiation. Radiation damage in bone marrow, intestine, skin and leg length were all protected by a pretreatment with 400 mg/kg WR151327. Most prominent protection was observed for bone marrow, which gave a Dose Modifying Factor (DMF) of 2.2 against γ rays. Identical protection was observed between early and late radiation damage. WR151327 protected fast neutrons less efficiently than γ rays; 40% for bone marrow and 80% for skin leg. Pathological findings indicated that hyperplastic change in both dermis and epidermis associated with late skin shrinkage. Laser doppler flow-metry showed a good relationship between reduction of blood flow and late skin shrinkage. Irradiation of skin by heavy particle Carbon-12 indicated that skin shrinkage was modified by unirradiated surrounding normal tissues, which proposed a significant role of 'Volume Effect' in radiation damage. Tumor tissues were less protected by WR151327 than normal tissues. Dependence of radioprotection by WR151327 on tissue oxygen concentration is a probable reason to explain the difference between normal and tumor tissues. (author)

  20. Radiation protection of people in contact with patient treated with metabolic radiotherapy using iodine-131 in nuclear medicine - case of the Laboratoire des Radio-Isotopes(LRI) Anpandrianomby

    International Nuclear Information System (INIS)

    RAMAROJAONA, H.

    2008-01-01

    In the aim to propose recommendations for radiation protection of those in contact with patients, simulations were performed for restricting the radiation hazards to the family and the members of the public coming into contact with a patient treated with 131 Iode for a thyroid pathology. The simulated dose constraint was 0,3 mSv for the family. According to the regulation in radiation protection in Madagascar, annual dose limit for the public is 1mSv and 20 mSv for the workers. Several contact patterns were tested: contact to the workers, daily visits, public transports, return to work, sleeping with partner and close contact with children. The recommendations duration was evaluated both as a function of the administered activity (out-patient) or the residual activity (discharged inpatient) by measuring the dose rate at 1 m distance from the patient. [fr