WorldWideScience

Sample records for patient-specific respiratory model

  1. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  2. Respiratory gated radiotherapy-pretreatment patient specific quality assurance

    Directory of Open Access Journals (Sweden)

    Rajesh Thiyagarajan

    2016-01-01

    Full Text Available Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany in conjunction with "Real-time position management" (Varian, USA to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA phantom (Computerized Imaging Reference Systems type is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%. Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84% for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.

  3. Patient-Specific Modeling in Tomorrow's Medicine

    CERN Document Server

    2012-01-01

    This book reviews the frontier of research and clinical applications of Patient Specific Modeling, and provides a state-of-the-art update as well as perspectives on future directions in this exciting field. The book is useful for medical physicists, biomedical engineers and other engineers who are interested in the science and technology aspects of Patient Specific Modeling, as well as for radiologists and other medical specialists who wish to be updated about the state of implementation.

  4. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  5. Morphing patient-specific musculoskeletal models

    DEFF Research Database (Denmark)

    Rasmussen, John; Galibarov, Pavel E.; Al-Munajjed, Amir

    the resulting models do indeed represent the patients’ biomechanics. As a particularly challenging case, foot deformities based only on point sets recovered from surface scans are considered as shown in the figure. The preliminary results are promising for the cases of severe flat foot and metatarsalgia while...... other conditions may require CT or MRI data. The method and its theoretical assumptions, advantages and limitations are presented, and several examples will illustrate morphing to patient-specific models. [1] Carbes S; Tørholm S; Rasmussen, J. A Detailed Twenty-six Segments Kinematic Foot model...

  6. Patient-Specific Modeling of Intraventricular Hemodynamics

    Science.gov (United States)

    Vedula, Vijay; Marsden, Alison

    2017-11-01

    Heart disease is the one of the leading causes of death in the world. Apart from malfunctions in electrophysiology and myocardial mechanics, abnormal hemodynamics is a major factor attributed to heart disease across all ages. Computer simulations offer an efficient means to accurately reproduce in vivo flow conditions and also make predictions of post-operative outcomes and disease progression. We present an experimentally validated computational framework for performing patient-specific modeling of intraventricular hemodynamics. Our modeling framework employs the SimVascular open source software to build an anatomic model and employs robust image registration methods to extract ventricular motion from the image data. We then employ a stabilized finite element solver to simulate blood flow in the ventricles, solving the Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) coordinates by prescribing the wall motion extracted during registration. We model the fluid-structure interaction effects of the cardiac valves using an immersed boundary method and discuss the potential application of this methodology in single ventricle physiology and trans-catheter aortic valve replacement (TAVR). This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and partly through NIH NHLBI R01 Grant 5R01HL129727-02.

  7. Patient Specific Modeling of Head-Up Tilt

    DEFF Research Database (Denmark)

    Williams, Nakeya; Wright, Andrew; Mehlsen, Jesper

    2014-01-01

    Short term cardiovascular responses to head-up tilt (HUT) experiments involve complex cardiovascular regulation in order to maintain blood pressure at homeostatic levels. This manuscript presents a patient specific compartmental model developed to predict dynamic changes in heart rate and arterial...

  8. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    Science.gov (United States)

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results

  9. A Patient-Specific Airway Branching Model for Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Nor Salwa Damanhuri

    2014-01-01

    Full Text Available Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps. Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA in patients diagnosed with acute respiratory distress syndrome (ARDS. A scaling factor (α was used to equate the area under the pressure curve (AUC from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median α value of 0.58 (IQR: 0.54–0.63; range: 0.45–0.66 for these ARDS patients. Significantly lower α values were found for individuals with chronic obstructive pulmonary disease (P<0.001. Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific α values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.

  10. Towards patient specific thermal modelling of the prostate

    International Nuclear Information System (INIS)

    Berg, Cornelis A T van den; Kamer, Jeroen B van de; Leeuw, Astrid A C ee; Jeukens, Cecile R L P N; Raaymakers, Bas W; Vulpen, Marco van; Lagendijk, Jan J W

    2006-01-01

    The application of thermal modelling for hyperthermia and thermal ablation is severely hampered by lack of information about perfusion and vasculature. However, recently, with the advent of sophisticated angiography and dynamic contrast enhanced (DCE) imaging techniques, it has become possible to image small vessels and blood perfusion bringing the ultimate goal of patient specific thermal modelling closer within reach. In this study dynamic contrast enhanced multi-slice CT imaging techniques are employed to investigate the feasibility of this concept for regional hyperthermia treatment of the prostate. The results are retrospectively compared with clinical thermometry data of a patient group from an earlier trial. Furthermore, the role of the prostate vasculature in the establishment of the prostate temperature distribution is studied. Quantitative 3D perfusion maps of the prostate were constructed for five patients using a distributed-parameter tracer kinetics model to analyse dynamic CT data. CT angiography was applied to construct a discrete vessel model of the pelvis. Additionally, a discrete vessel model of the prostate vasculature was constructed of a prostate taken from a human corpse. Three thermal modelling schemes with increasing inclusion of the patient specific physiological information were used to simulate the temperature distribution of the prostate during regional hyperthermia. Prostate perfusion was found to be heterogeneous and T3 prostate carcinomas are often characterized by a strongly elevated tumour perfusion (up to 70-80 ml 100 g -1 min -1 ). This elevated tumour perfusion leads to 1-2 deg. C lower tumour temperatures than thermal simulations based on a homogeneous prostate perfusion. Furthermore, the comparison has shown that the simulations with the measured perfusion maps result in consistently lower prostate temperatures than clinically achieved. The simulations with the discrete vessel model indicate that significant pre-heating takes

  11. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    Science.gov (United States)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  12. Patient-specific fibre-based models of muscle wrapping

    Science.gov (United States)

    Kohout, J.; Clapworthy, G. J.; Zhao, Y.; Tao, Y.; Gonzalez-Garcia, G.; Dong, F.; Wei, H.; Kohoutová, E.

    2013-01-01

    In many biomechanical problems, the availability of a suitable model for the wrapping of muscles when undergoing movement is essential for the estimation of forces produced on and by the body during motion. This is an important factor in the Osteoporotic Virtual Physiological Human project which is investigating the likelihood of fracture for osteoporotic patients undertaking a variety of movements. The weakening of their skeletons makes them particularly vulnerable to bone fracture caused by excessive loading being placed on the bones, even in simple everyday tasks. This paper provides an overview of a novel volumetric model that describes muscle wrapping around bones and other muscles during movement, and which includes a consideration of how the orientations of the muscle fibres change during the motion. The method can calculate the form of wrapping of a muscle of medium size and visualize the outcome within tenths of seconds on commodity hardware, while conserving muscle volume. This makes the method suitable not only for educational biomedical software, but also for clinical applications used to identify weak muscles that should be strengthened during rehabilitation or to identify bone stresses in order to estimate the risk of fractures. PMID:24427519

  13. Evaluation of MotionSim XY/4D for patient specific QA of respiratory gated treatment for lung cancer

    International Nuclear Information System (INIS)

    Wen, C.; Ackerly, T.; Lancaster, C.; Bailey, N.

    2011-01-01

    Full text: A commercial system-MotionSim XY/4D(TM) capable of simulating two-dimensional tumour motion and measuring planar dose with diode-matrix was evaluated at the Alfred Hospital, for establishing patient-specific QA programme of respiratory gated treatment of lung cancer. This study presents the investigation of accuracies, limitations and the practical aspects of that system. Planar doses generated on iPlan-TM by mapping clinical beams to a scanned-in water phantom were measured by MotionSim XY/4D-TM with 5 cm water equivalent build-up at normal incidence. The gated delivery using ExacTrac-TM through tracking infrared markers simulating external respiration surrogate was measured simultaneously with Gaf-ChromicR RTQA2 film and MapCHECK 2TM . Dose maps of both non-gated and gated beams with 30% duty cycle were compared with both film and diodes measurements. Differences in dose distribution were analysed with built-in tools in MapCHECK2 TM and the effect of residual motion within the beamenabled window was then assessed. Preliminary results indicate that difference between Gafchromic film and MapCHECK2 measurements of same beam was ignorable. Gated dose delivery to a target at 9 mm maximum motion was in good agreement with planned dose. Complement to measurements suggested in AAPM Report No.9 I I, this QA device can detect any random error and assess the magnitude of residual target motion through analysing differences between planned and delivered doses as gamma function. Although some user-friendliness aspects could be improved, it meets its specification and can be used for routine clinical QA purposes provided calibrations were performed and procedures were followed.

  14. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  15. Development of patient specific cardiovascular models predicting dynamics in response to orthostatic stress challenges

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2013-01-01

    Physiological realistic models of the controlled cardiovascular system are constructed and validated against clinical data. Special attention is paid to the control of blood pressure, cerebral blood flow velocity, and heart rate during postural challenges, including sit-to-stand and head-up tilt....... This study describes development of patient specific models, and how sensitivity analysis and nonlinear optimization methods can be used to predict patient specific characteristics when analyzed using experimental data. Finally, we discuss how a given model can be used to understand physiological changes...

  16. Quality assurance device for four-dimensional IMRT or SBRT and respiratory gating using patient-specific intrafraction motion kernels.

    Science.gov (United States)

    Nelms, Benjamin E; Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A

    2007-09-17

    Emerging technologies such as four-dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity-modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that 1. transformed the kernel into beam-specific two-dimensional (2D) motion "projections," 2. previewed the motion in real time, and 3. drove a recision X-Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's-eye-view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as "target detectors" to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction-to-fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient-customized 4D IMRT/SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's-eye-view motion kernels. This device has been proved to, effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and, integrate with a commercial

  17. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    International Nuclear Information System (INIS)

    Bowen, S R; Nyflot, M J; Meyer, J; Sandison, G A; Herrmann, C; Groh, C M; Wollenweber, S D; Stearns, C W; Kinahan, P E

    2015-01-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [ 18 F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/B mean ) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  18. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study.

    Science.gov (United States)

    Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-05-07

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude

  19. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    Science.gov (United States)

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the

  20. Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties.

    Directory of Open Access Journals (Sweden)

    Daniel M Lombardo

    2016-08-01

    Full Text Available Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF. A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP morphology, action potential duration (APD restitution and conduction velocity (CV restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy.

  1. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  2. Reference respiratory waveforms by minimum jerk model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anetai, Yusuke, E-mail: anetai@radonc.med.osaka-u.ac.jp; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan); Ota, Seiichi [Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)

    2015-09-15

    Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy

  3. Reference respiratory waveforms by minimum jerk model analysis

    International Nuclear Information System (INIS)

    Anetai, Yusuke; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko; Ota, Seiichi

    2015-01-01

    Purpose: CyberKnife"® robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony"® mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife"®. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony"® mode, a tracking laser projection from CyberKnife"® was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy affected by respiratory

  4. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  5. Patient specific actual size 3D printed models for patient education in glioma treatment: first experiences.

    Science.gov (United States)

    van de Belt, Tom H; Nijmeijer, Hugo; Grim, David; Engelen, Lucien Jlpg; Vreeken, Rinaldo; van Gelder, Marleen Mmj; Laan, Mark Ter

    2018-06-02

    Cancer patients need high quality information about the disease stage, treatment options and side effects. High quality information can also improve health literacy, shared decision-making and satisfaction. We created patient-specific 3D models of tumours including surrounding functional areas, and assessed what patients with glioma actually value (or fear) about these models when they are used to educate them about the relation between their tumour and specific brain parts, the surgical procedure, and risks. We carried out an explorative study with adult glioma patients, who underwent functional MRI and DTi as part of the pre-operative work-up. All participants received an actual size 3D model, printed based on fMRI and DTi imaging. Semi-structured interviews were held to identify facilitators and barriers for using the model, and perceived effects. A model was successfully created for all 11 participants. A total of 18 facilitators and 8 barriers were identified. The model improved patients' understanding about their situation, that it was easier to ask questions to their neurosurgeon based on their model and that it supported their decision about the preferred treatment. A perceived barrier for using the 3D model was that it could be emotionally confronting, particularly in an early phase of the disease process. Positive effects were related to psychological domains including coping, learning effects and communication. Patient-specific 3D models are promising and simple tools that could help patients with glioma to better understand their situation, treatment options and risks. They have the potential to improve shared decision-making. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. The technique for 3D printing patient-specific models for auricular reconstruction.

    Science.gov (United States)

    Flores, Roberto L; Liss, Hannah; Raffaelli, Samuel; Humayun, Aiza; Khouri, Kimberly S; Coelho, Paulo G; Witek, Lukasz

    2017-06-01

    Currently, surgeons approach autogenous microtia repair by creating a two-dimensional (2D) tracing of the unaffected ear to approximate a three-dimensional (3D) construct, a difficult process. To address these shortcomings, this study introduces the fabrication of patient-specific, sterilizable 3D printed auricular model for autogenous auricular reconstruction. A high-resolution 3D digital photograph was captured of the patient's unaffected ear and surrounding anatomic structures. The photographs were exported and uploaded into Amira, for transformation into a digital (.stl) model, which was imported into Blender, an open source software platform for digital modification of data. The unaffected auricle as digitally isolated and inverted to render a model for the contralateral side. The depths of the scapha, triangular fossa, and cymba were deepened to accentuate their contours. Extra relief was added to the helical root to further distinguish this structure. The ear was then digitally deconstructed and separated into its individual auricular components for reconstruction. The completed ear and its individual components were 3D printed using polylactic acid filament and sterilized following manufacturer specifications. The sterilized models were brought to the operating room to be utilized by the surgeon. The models allowed for more accurate anatomic measurements compared to 2D tracings, which reduced the degree of estimation required by surgeons. Approximately 20 g of the PLA filament were utilized for the construction of these models, yielding a total material cost of approximately $1. Using the methodology detailed in this report, as well as departmentally available resources (3D digital photography and 3D printing), a sterilizable, patient-specific, and inexpensive 3D auricular model was fabricated to be used intraoperatively. This technique of printing customized-to-patient models for surgeons to use as 'guides' shows great promise. Copyright © 2017 European

  7. Patient-specific in silico models can quantify primary implant stability in elderly human bone.

    Science.gov (United States)

    Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry

    2018-03-01

    Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Pathway index models for construction of patient-specific risk profiles.

    Science.gov (United States)

    Eng, Kevin H; Wang, Sijian; Bradley, William H; Rader, Janet S; Kendziorski, Christina

    2013-04-30

    Statistical methods for variable selection, prediction, and classification have proven extremely useful in moving personalized genomics medicine forward, in particular, leading to a number of genomic-based assays now in clinical use for predicting cancer recurrence. Although invaluable in individual cases, the information provided by these assays is limited. Most often, a patient is classified into one of very few groups (e.g., recur or not), limiting the potential for truly personalized treatment. Furthermore, although these assays provide information on which individuals are at most risk (e.g., those for which recurrence is predicted), they provide no information on the aberrant biological pathways that give rise to the increased risk. We have developed an approach to address these limitations. The approach models a time-to-event outcome as a function of known biological pathways, identifies important genomic aberrations, and provides pathway-based patient-specific assessments of risk. As we demonstrate in a study of ovarian cancer from The Cancer Genome Atlas project, the patient-specific risk profiles are powerful and efficient characterizations useful in addressing a number of questions related to identifying informative patient subtypes and predicting survival. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  10. Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition

    Science.gov (United States)

    Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-11-01

    Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.

  11. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    Science.gov (United States)

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  12. A novel patient-specific model to compute coronary fractional flow reserve.

    Science.gov (United States)

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  13. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions.

    Science.gov (United States)

    Kamangar, Sarfaraz; Badruddin, Irfan Anjum; Govindaraju, Kalimuthu; Nik-Ghazali, N; Badarudin, A; Viswanathan, Girish N; Ahmed, N J Salman; Khan, T M Yunus

    2017-08-01

    The purpose of this study is to investigate the effect of various degrees of percentage stenosis on hemodynamic parameters during the hyperemic flow condition. 3D patient-specific coronary artery models were generated based on the CT scan data using MIMICS-18. Numerical simulation was performed for normal and stenosed coronary artery models of 70, 80 and 90% AS (area stenosis). Pressure, velocity, wall shear stress and fractional flow reserve (FFR) were measured and compared with the normal coronary artery model during the cardiac cycle. The results show that, as the percentage AS increase, the pressure drop increases as compared with the normal coronary artery model. Considerable elevation of velocity was observed as the percentage AS increases. The results also demonstrate a recirculation zone immediate after the stenosis which could lead to further progression of stenosis in the flow-disturbed area. Highest wall shear stress was observed for 90% AS as compared to other models that could result in the rupture of coronary artery. The FFR of 90% AS is found to be considerably low.

  14. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  15. Patient specific dynamic geometric models from sequential volumetric time series image data.

    Science.gov (United States)

    Cameron, B M; Robb, R A

    2004-01-01

    Generating patient specific dynamic models is complicated by the complexity of the motion intrinsic and extrinsic to the anatomic structures being modeled. Using a physics-based sequentially deforming algorithm, an anatomically accurate dynamic four-dimensional model can be created from a sequence of 3-D volumetric time series data sets. While such algorithms may accurately track the cyclic non-linear motion of the heart, they generally fail to accurately track extrinsic structural and non-cyclic motion. To accurately model these motions, we have modified a physics-based deformation algorithm to use a meta-surface defining the temporal and spatial maxima of the anatomic structure as the base reference surface. A mass-spring physics-based deformable model, which can expand or shrink with the local intrinsic motion, is applied to the metasurface, deforming this base reference surface to the volumetric data at each time point. As the meta-surface encompasses the temporal maxima of the structure, any extrinsic motion is inherently encoded into the base reference surface and allows the computation of the time point surfaces to be performed in parallel. The resultant 4-D model can be interactively transformed and viewed from different angles, showing the spatial and temporal motion of the anatomic structure. Using texture maps and per-vertex coloring, additional data such as physiological and/or biomechanical variables (e.g., mapping electrical activation sequences onto contracting myocardial surfaces) can be associated with the dynamic model, producing a 5-D model. For acquisition systems that may capture only limited time series data (e.g., only images at end-diastole/end-systole or inhalation/exhalation), this algorithm can provide useful interpolated surfaces between the time points. Such models help minimize the number of time points required to usefully depict the motion of anatomic structures for quantitative assessment of regional dynamics.

  16. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    Science.gov (United States)

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  17. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  18. Patient-specific model of a scoliotic torso for surgical planning

    Science.gov (United States)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-03-01

    A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

  19. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    Science.gov (United States)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  20. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Directory of Open Access Journals (Sweden)

    Yunlong Huo

    Full Text Available It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60% may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12 patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI. The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2 and decreased OSI (<0.02 to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2. These findings have significant implications for graft adaptation and long-term patency.

  1. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Science.gov (United States)

    Huo, Yunlong; Luo, Tong; Guccione, Julius M; Teague, Shawn D; Tan, Wenchang; Navia, José A; Kassab, Ghassan S

    2013-01-01

    It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG) are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60%) may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12) patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS) and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI). The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2)) and decreased OSI (<0.02) to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2)). These findings have significant implications for graft adaptation and long-term patency.

  2. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    Directory of Open Access Journals (Sweden)

    Alexander Patronis

    2018-04-01

    Full Text Available Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.. We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  3. Inter-fraction variations in respiratory motion models

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J R; Modat, M; Ourselin, S; Hawkes, D J [Centre for Medical Image Computing, University College London (United Kingdom); Hughes, S; Qureshi, A; Ahmad, S; Landau, D B, E-mail: j.mcclelland@cs.ucl.ac.uk [Department of Oncology, Guy' s and St Thomas' s Hospitals NHS Trust, London (United Kingdom)

    2011-01-07

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  4. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology

    International Nuclear Information System (INIS)

    Wake, N.; Chandarana, H.; Huang, W.C.; Taneja, S.S.; Rosenkrantz, A.B.

    2016-01-01

    Highlights: • We examine 3D printing in the context of urologic oncology. • Patient-specific 3D printed kidney and prostate tumor models were created. • 3D printed models extend the current capabilities of conventional 3D visualization. • 3D printed models may be used for surgical planning and intraoperative guidance.

  5. On the use of biomathematical models in patient-specific IMRT dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Heming [UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Tome, Wolfgang A. [Department of Radiation Oncology, Division of Medical Physics, Montefiore Medical Center and Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2013-07-15

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.

  6. On the use of biomathematical models in patient-specific IMRT dose QA

    International Nuclear Information System (INIS)

    Zhen Heming; Nelms, Benjamin E.; Tomé, Wolfgang A.

    2013-01-01

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:ΔTCP and ΔNTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's “robustness” to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types

  7. Estimation of patient-specific imaging dose for real-time tumour monitoring in lung patients during respiratory-gated radiotherapy

    Science.gov (United States)

    Shiinoki, Takehiro; Onizuka, Ryota; Kawahara, Daisuke; Suzuki, Tatsuhiko; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Hanazawa, Hideki; Shibuya, Keiko

    2018-03-01

    Purpose: To quantify the patient-specific imaging dose for real-time tumour monitoring in the lung during respiratory-gated stereotactic body radiotherapy (SBRT) in clinical cases using SyncTraX. Methods and Materials: Ten patients who underwent respiratory-gated SBRT with SyncTraX were enrolled in this study. The imaging procedure for real-time tumour monitoring using SyncTraX was simulated using Monte Carlo. We evaluated the dosimetric effect of a real-time tumour monitoring in a critical organ at risk (OAR) and the planning target volume (PTV) over the course of treatment. The relationship between skin dose and gating efficiency was also investigated. Results: For all patients, the mean D50 to the PTV, ipsilateral lung, liver, heart, spinal cord and skin was 118.3 (21.5–175.9), 31.9 (9.5–75.4), 15.4 (1.1–31.6), 10.1 (1.3–18.1), 25.0 (1.6–101.8), and 3.6 (0.9–7.1) mGy, respectively. The mean D2 was 352.0 (26.5–935.8), 146.4 (27.3–226.7), 90.7 (3.6–255.0), 42.2 (4.8–82.7), 88.0 (15.4–248.5), and 273.5 (98.3–611.6) mGy, respectively. The D2 of the skin dose was found to increase as the gating efficiency decreased. Conclusions: The additional dose to the PTV was at most 1.9% of the prescribed dose over the course of treatment for real-time tumour monitoring. For OARs, we could confirm the high dose region, which may not be susceptible to radiation toxicity. However, to reduce the skin dose from SyncTraX, it is necessary to increase the gating efficiency.

  8. A Centerline Based Model Morphing Algorithm for Patient-Specific Finite Element Modelling of the Left Ventricle.

    Science.gov (United States)

    Behdadfar, S; Navarro, L; Sundnes, J; Maleckar, M; Ross, S; Odland, H H; Avril, S

    2017-09-20

    Hexahedral automatic model generation is a recurrent problem in computer vision and computational biomechanics. It may even become a challenging problem when one wants to develop a patient-specific finite-element (FE) model of the left ventricle (LV), particularly when only low resolution images are available. In the present study, a fast and efficient algorithm is presented and tested to address such a situation. A template FE hexahedral model was created for a LV geometry using a General Electric (GE) ultrasound (US) system. A system of centerline was considered for this LV mesh. Then, the nodes located over the endocardial and epicardial surfaces are respectively projected from this centerline onto the actual endocardial and epicardial surfaces reconstructed from a patient's US data. Finally, the position of the internal nodes is derived by finding the deformations with minimal elastic energy. This approach was applied to eight patients suffering from congestive heart disease. A FE analysis was performed to derive the stress induced in the LV tissue by diastolic blood pressure on each of them. Our model morphing algorithm was applied successfully and the obtained meshes showed only marginal mismatches when compared to the corresponding US geometries. The diastolic FE analyses were successfully performed in seven patients to derive the distribution of principal stresses. The original model morphing algorithm is fast and robust with low computational cost. This low cost model morphing algorithm may be highly beneficial for future patient-specific reduced-order modelling of the LV with potential application to other crucial organs.

  9. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C; Zheng, W [Henry Ford Health System, Detroit, MI (United States); Stehning, C; Weiss, S; Renisch, S [Philips Research Laboratories, Hamburg (Germany)

    2016-06-15

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising from respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for patient-specific

  10. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    radionuclide therapy to obtain normal organ and tumor dose vs. response correlations. Completion of the aims outlined above will make it possible to perform patient-specific dosimetry that incorporates considerations likely to provide robust dose-response relationships. Such an advance will improve targeted radionuclide therapy by making it possible to adopt treatment planning methodologies.

  11. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Science.gov (United States)

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  12. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Directory of Open Access Journals (Sweden)

    Kabilar Gunalan

    Full Text Available Deep brain stimulation (DBS is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports.Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM and predict the response of the hyperdirect pathway to clinical stimulation.Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD. This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution.Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings.Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  13. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  14. A Review on Human Respiratory Modeling.

    Science.gov (United States)

    Ghafarian, Pardis; Jamaati, Hamidreza; Hashemian, Seyed Mohammadreza

    2016-01-01

    Input impedance of the respiratory system is measured by forced oscillation technique (FOT). Multiple prior studies have attempted to match the electromechanical models of the respiratory system to impedance data. Since the mechanical behavior of airways and the respiratory system as a whole are similar to an electrical circuit in a combination of series and parallel formats some theories were introduced according to this issue. It should be noted that, the number of elements used in these models might be less than those required due to the complexity of the pulmonary-chest wall anatomy. Various respiratory models have been proposed based on this idea in order to demonstrate and assess the different parts of respiratory system related to children and adults data. With regard to our knowledge, some of famous respiratory models in related to obstructive, restrictive diseases and also Acute Respiratory Distress Syndrome (ARDS) are reviewed in this article.

  15. Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Zi-Bing Jin

    Full Text Available Retinitis pigmentosa (RP is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.

  16. Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models

    Directory of Open Access Journals (Sweden)

    Qiu Z

    2013-07-01

    Full Text Available Zhifang Qiu,1,2 Steven L Farnsworth,2 Anuja Mishra,1,2 Peter J Hornsby1,21Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA; 2Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USAAbstract: The development of the technology for derivation of induced pluripotent stem (iPS cells from human patients and animal models has opened up new pathways to the better understanding of many human diseases, and has created new opportunities for therapeutic approaches. Here, we consider one important neurological disease, Parkinson's, the development of relevant neural cell lines for studying this disease, and the animal models that are available for testing the survival and function of the cells, following transplantation into the central nervous system. Rapid progress has been made recently in the application of protocols for neuroectoderm differentiation and neural patterning of pluripotent stem cells. These developments have resulted in the ability to produce large numbers of dopaminergic neurons with midbrain characteristics for further study. These cells have been shown to be functional in both rodent and nonhuman primate (NHP models of Parkinson's disease. Patient-specific iPS cells and derived dopaminergic neurons have been developed, in particular from patients with genetic causes of Parkinson's disease. For complete modeling of the disease, it is proposed that the introduction of genetic changes into NHP iPS cells, followed by studying the phenotype of the genetic change in cells transplanted into the NHP as host animal, will yield new insights into disease processes not possible with rodent models alone.Keywords: Parkinson's disease, pluripotent cell differentiation, neural cell lines, dopaminergic neurons, cell transplantation, animal models

  17. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    Science.gov (United States)

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  18. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    Science.gov (United States)

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  19. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Patient-Specific Simulation Models of the Abdominal Aorta With and Without Aneurysms

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand

    to be isotropic, which may allow simpler phenomenological models to capture these effects. There is a pressing need, however, for more detailed histological information coupled with more complete experimental data for the systemic arteries. The second study was aimed at developing computational simulation models...... relations for computational analysis, and evaluation of the material model predictability. The constitutive framework applied is the four fiber family (4FF) model. This model assumes that the wall is a constrained mixture of an amorphous isotropic elastin dominated matrix reinforced by collagen fibers....... The collagen fibers are grouped in four directions of orientation. The purpose of the first study was to investigate whether significant risk factors related to AAA development can be identified from a specific pattern in the material parameters of the 4FF model. Smoking is a leading self-inflicted risk factor...

  2. Patient specific modeling of the HPA axis related to clinical diagnosis of depression

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth; Ottesen, Johnny T.

    2017-01-01

    A novel model of the hypothalamic-pituitary-adrenal axis is presented. The axis is an endocrine system responsible for coping with stress and it is likely to be involved in depression. The dynamics of the system is studied and existence, uniqueness and positivity of the solution and the existence...... of an attracting trapping region are proved. The model is calibrated and compared to data for healthy and depressed subjects. A sensitivity analysis resulting in a set of identifiable physiological parameters is provided. A subset is selected for parameter estimation and a reduced version of the model is stated...... and an approximated version is discussed. The model is physiologically based, thus parameters are representative for gland functions or elimination processes. Hence the model may be used for pointing out pathologies by parameter estimation and hypothesis testing whereby it may be used as an objective and refined...

  3. Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Mehlsen, Jesper; Olufsen, Mette

    2014-01-01

    We consider the inverse and patient specific problem of short term (seconds to minutes) heart rate regulation specified by a system of nonlinear ODEs and corresponding data. We show how a recent method termed the structural correlation method (SCM) can be used for model reduction and for obtaining...... a set of practically identifiable parameters. The structural correlation method includes two steps: sensitivity and correlation analysis. When combined with an optimization step, it is possible to estimate model parameters, enabling the model to fit dynamics observed in data. This method is illustrated...... in detail on a model predicting baroreflex regulation of heart rate and applied to analysis of data from a rat and healthy humans. Numerous mathematical models have been proposed for prediction of baroreflex regulation of heart rate, yet most of these have been designed to provide qualitative predictions...

  4. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.

    Science.gov (United States)

    O'Reilly, Meaghan Anne; Whyne, Cari Marisa

    2008-08-01

    A comparative analysis of parametric and patient-specific finite element (FE) modeling of spinal motion segments. To develop patient-specific FE models of spinal motion segments using mesh-morphing methods applied to a parametric FE model. To compare strain and displacement patterns in parametric and morphed models for both healthy and metastatically involved vertebrae. Parametric FE models may be limited in their ability to fully represent patient-specific geometries and material property distributions. Generation of multiple patient-specific FE models has been limited because of computational expense. Morphing methods have been successfully used to generate multiple specimen-specific FE models of caudal rat vertebrae. FE models of a healthy and a metastatic T6-T8 spinal motion segment were analyzed with and without patient-specific material properties. Parametric and morphed models were compared using a landmark-based morphing algorithm. Morphing of the parametric FE model and including patient-specific material properties both had a strong impact on magnitudes and patterns of vertebral strain and displacement. Small but important geometric differences can be represented through morphing of parametric FE models. The mesh-morphing algorithm developed provides a rapid method for generating patient-specific FE models of spinal motion segments.

  5. Shape determinative slice localization for patient-specific masseter modeling using shape-based interpolation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering (Singapore); Biomedical Imaging Lab., Agency for Science Technology and Research (Singapore); Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering (Singapore); Dept. of Preventive Dentistry, National Univ. of Singapore (Singapore); Ong, S.H. [Dept. of Electrical and Computer Engineering, National Univ. of Singapore (Singapore); Div. of Bioengineering, National Univ. of Singapore (Singapore); Liu, J.; Nowinski, W.L. [Biomedical Imaging Lab., Agency for Science Technology and Research (Singapore); Goh, P.S. [Dept. of Diagnostic Radiology, National Univ. of Singapore (Singapore)

    2007-06-15

    The masseter plays a critical role in the mastication system. A hybrid method to shape-based interpolation is used to build the masseter model from magnetic resonance (MR) data sets. The main contribution here is the localizing of determinative slices in the data sets where clinicians are required to perform manual segmentations in order for an accurate model to be built. Shape-based criteria were used to locate the candidates for determinative slices and fuzzy-c-means (FCM) clustering technique was used to establish the determinative slices. Five masseter models were built in our work and the average overlap indices ({kappa}) achieved is 85.2%. This indicates that there is good agreement between the models and the manual contour tracings. In addition, the time taken, as compared to manually segmenting all the slices, is significantly lesser. (orig.)

  6. Shape determinative slice localization for patient-specific masseter modeling using shape-based interpolation

    International Nuclear Information System (INIS)

    Ng, H.P.; Foong, K.W.C.; Ong, S.H.; Liu, J.; Nowinski, W.L.; Goh, P.S.

    2007-01-01

    The masseter plays a critical role in the mastication system. A hybrid method to shape-based interpolation is used to build the masseter model from magnetic resonance (MR) data sets. The main contribution here is the localizing of determinative slices in the data sets where clinicians are required to perform manual segmentations in order for an accurate model to be built. Shape-based criteria were used to locate the candidates for determinative slices and fuzzy-c-means (FCM) clustering technique was used to establish the determinative slices. Five masseter models were built in our work and the average overlap indices (κ) achieved is 85.2%. This indicates that there is good agreement between the models and the manual contour tracings. In addition, the time taken, as compared to manually segmenting all the slices, is significantly lesser. (orig.)

  7. Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Tanaka

    2015-08-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.

  8. 3D active shape models of human brain structures: application to patient-specific mesh generation

    Science.gov (United States)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  9. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  10. Iterative integral parameter identification of a respiratory mechanics model.

    Science.gov (United States)

    Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey

    2012-07-18

    Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  11. Iterative integral parameter identification of a respiratory mechanics model

    Directory of Open Access Journals (Sweden)

    Schranz Christoph

    2012-07-01

    Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  12. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  13. Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors

    International Nuclear Information System (INIS)

    Herschtal, A; Te Marvelde, L; Mengersen, K; Foroudi, F; Ball, D; Devereux, T; Pham, D; Greer, P B; Pichler, P; Eade, T; Kneebone, A; Bell, L; Caine, H; Hindson, B; Kron, T; Hosseinifard, Z

    2015-01-01

    Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts −19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements. (paper)

  14. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    Science.gov (United States)

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  15. Assessment of CT dose to the fetus and pregnant female patient using patient-specific computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu; Poletti, Pierre-Alexandre; Platon, Alexandra; Becker, Christoph D. [Geneva University Hospital, Department of Medical Imaging and Information Sciences, Geneva (Switzerland); Zaidi, Habib [Geneva University Hospital, Department of Medical Imaging and Information Sciences, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark); Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland)

    2018-03-15

    This work provides detailed estimates of the foetal dose from diagnostic CT imaging of pregnant patients to enable the assessment of the diagnostic benefits considering the associated radiation risks. To produce realistic biological and physical representations of pregnant patients and the embedded foetus, we developed a methodology for construction of patient-specific voxel-based computational phantoms based on existing standardised hybrid computational pregnant female phantoms. We estimated the maternal absorbed dose and foetal organ dose for 30 pregnant patients referred to the emergency unit of Geneva University Hospital for abdominal CT scans. The effective dose to the mother varied from 1.1 mSv to 2.0 mSv with an average of 1.6 mSv, while commercial dose-tracking software reported an average effective dose of 1.9 mSv (range 1.7-2.3 mSv). The foetal dose normalised to CTDI{sub vol} varies between 0.85 and 1.63 with an average of 1.17. The methodology for construction of personalised computational models can be exploited to estimate the patient-specific radiation dose from CT imaging procedures. Likewise, the dosimetric data can be used for assessment of the radiation risks to pregnant patients and the foetus from various CT scanning protocols, thus guiding the decision-making process. (orig.)

  16. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  17. New ICRP human respiratory tract model

    International Nuclear Information System (INIS)

    Bailey, M.R.

    1993-01-01

    The new ICRP dosimetric model for the human respiratory tract is based on the premise that the large differences in radiation sensitivity of respiratory tract tissues, and the wide range of doses they receive argue for calculating specific tissue doses rather than average lung doses. The model is also directly applicable to the worldwide population of both workers and the public. The requirement to describe intake, and deposition, clearance and dosimetry in each respiratory tract region, for a wide range of subjects at various levels of exercise necessarily means that the model is more complex than that of ICRP Publication 30. The widespread use of powerful personal computers, and the availability of user-friendly software to implement the model, however, will make it widely and readily accessible when the report is published. (Author)

  18. 3D patient-specific models for left atrium characterization to support ablation in atrial fibrillation patients.

    Science.gov (United States)

    Valinoti, Maddalena; Fabbri, Claudio; Turco, Dario; Mantovan, Roberto; Pasini, Antonio; Corsi, Cristiana

    2018-01-01

    Radiofrequency ablation (RFA) is an important and promising therapy for atrial fibrillation (AF) patients. Optimization of patient selection and the availability of an accurate anatomical guide could improve RFA success rate. In this study we propose a unified, fully automated approach to build a 3D patient-specific left atrium (LA) model including pulmonary veins (PVs) in order to provide an accurate anatomical guide during RFA and without PVs in order to characterize LA volumetry and support patient selection for AF ablation. Magnetic resonance data from twenty-six patients referred for AF RFA were processed applying an edge-based level set approach guided by a phase-based edge detector to obtain the 3D LA model with PVs. An automated technique based on the shape diameter function was designed and applied to remove PVs and compute LA volume. 3D LA models were qualitatively compared with 3D LA surfaces acquired during the ablation procedure. An expert radiologist manually traced the LA on MR images twice. LA surfaces from the automatic approach and manual tracing were compared by mean surface-to-surface distance. In addition, LA volumes were compared with volumes from manual segmentation by linear and Bland-Altman analyses. Qualitative comparison of 3D LA models showed several inaccuracies, in particular PVs reconstruction was not accurate and left atrial appendage was missing in the model obtained during RFA procedure. LA surfaces were very similar (mean surface-to-surface distance: 2.3±0.7mm). LA volumes were in excellent agreement (y=1.03x-1.4, r=0.99, bias=-1.37ml (-1.43%) SD=2.16ml (2.3%), mean percentage difference=1.3%±2.1%). Results showed the proposed 3D patient-specific LA model with PVs is able to better describe LA anatomy compared to models derived from the navigation system, thus potentially improving electrograms and voltage information location and reducing fluoroscopic time during RFA. Quantitative assessment of LA volume derived from our 3D LA

  19. A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation

    Science.gov (United States)

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2017-01-01

    Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316

  20. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    International Nuclear Information System (INIS)

    Neylon, J; Qi, S; Sheng, K; Kupelian, P; Santhanam, A

    2014-01-01

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomy was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R 2 > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real

  1. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    International Nuclear Information System (INIS)

    Schoot, A. J. A. J. van de; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A.; Hoogeman, M. S.; Chai, X.

    2014-01-01

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  2. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    Science.gov (United States)

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  3. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    Energy Technology Data Exchange (ETDEWEB)

    Xiangfei, Chai; Hulshof, Maarten; Bel, Arjan [Department of Radiotherapy, Academic medical Center, University of Amsterdam, 1105 AZ, Amsterdam (Netherlands); Van Herk, Marcel; Betgen, Anja [Department of Radiotherapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, 1066 CX, Amsterdam (Netherlands)

    2012-06-21

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  4. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    International Nuclear Information System (INIS)

    Chai Xiangfei; Hulshof, Maarten; Bel, Arjan; Van Herk, Marcel; Betgen, Anja

    2012-01-01

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  5. Model-based Vestibular Afferent Stimulation: Modular Workflow for Analyzing Stimulation Scenarios in Patient Specific and Statistical Vestibular Anatomy

    Directory of Open Access Journals (Sweden)

    Michael Handler

    2017-12-01

    Full Text Available Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i the transformation of labeled datasets to a tetrahedra mesh, (ii nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii inclusion of arbitrary electrode designs, (iv simulation of quasistationary potential distributions, and (v analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.

  6. Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach

    Science.gov (United States)

    Di Tomaso, Giulia; Agu, Obiekezie; Pichardo-Almarza, Cesar

    2014-01-01

    The development of a new technology based on patient-specific modelling for personalised healthcare in the case of atherosclerosis is presented. Atherosclerosis is the main cause of death in the world and it has become a burden on clinical services as it manifests itself in many diverse forms, such as coronary artery disease, cerebrovascular disease/stroke and peripheral arterial disease. It is also a multifactorial, chronic and systemic process that lasts for a lifetime, putting enormous financial and clinical pressure on national health systems. In this Letter, the postulate is that the development of new technologies for healthcare using computer simulations can, in the future, be developed as in-silico management and support systems. These new technologies will be based on predictive models (including the integration of observations, theories and predictions across a range of temporal and spatial scales, scientific disciplines, key risk factors and anatomical sub-systems) combined with digital patient data and visualisation tools. Although the problem is extremely complex, a simulation workflow and an exemplar application of this type of technology for clinical use is presented, which is currently being developed by a multidisciplinary team following the requirements and constraints of the Vascular Service Unit at the University College Hospital, London. PMID:26609369

  7. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    Science.gov (United States)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  8. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.

    Science.gov (United States)

    Liu, Biyue; Zheng, Jie; Bach, Richard; Tang, Dalin

    2015-01-01

    In literature, the effect of the inflow boundary condition was investigated by examining the impact of the waveform and the shape of the spatial profile of the inlet velocity on the cardiac hemodynamics. However, not much work has been reported on comparing the effect of the different combinations of the inlet/outlet boundary conditions on the quantification of the pressure field and flow distribution patterns in stenotic right coronary arteries. Non-Newtonian models were used to simulate blood flow in a patient-specific stenotic right coronary artery and investigate the influence of different boundary conditions on the phasic variation and the spatial distribution patterns of blood flow. The 3D geometry of a diseased artery segment was reconstructed from a series of IVUS slices. Five different combinations of the inlet and the outlet boundary conditions were tested and compared. The temporal distribution patterns and the magnitudes of the velocity, the wall shear stress (WSS), the pressure, the pressure drop (PD), and the spatial gradient of wall pressure (WPG) were different when boundary conditions were imposed using different pressure/velocity combinations at inlet/outlet. The maximum velocity magnitude in a cardiac cycle at the center of the inlet from models with imposed inlet pressure conditions was about 29% lower than that from models using fully developed inlet velocity data. Due to the fact that models with imposed pressure conditions led to blunt velocity profile, the maximum wall shear stress at inlet in a cardiac cycle from models with imposed inlet pressure conditions was about 29% higher than that from models with imposed inlet velocity boundary conditions. When the inlet boundary was imposed by a velocity waveform, the models with different outlet boundary conditions resulted in different temporal distribution patterns and magnitudes of the phasic variation of pressure. On the other hand, the type of different boundary conditions imposed at the

  9. Primary stability of a cementless acetabular cup in a cohort of patient-specific finite element models.

    Science.gov (United States)

    O'Rourke, Dermot; Al-Dirini, Rami Ma; Taylor, Mark

    2018-03-01

    The primary stability achieved during total hip arthroplasty determines the long-term success of cementless acetabular cups. Pre-clinical finite element testing of cups typically use a model of a single patient and assume the results can be extrapolated to the general population. This study explored the variability in predicted primary stability of a Pinnacle ® cementless acetabular cup in 103 patient-specific finite element models of the hemipelvis and examined the association between patient-related factors and the observed variability. Cups were inserted by displacement-control into the FE models and then a loading configuration simulating a complete level gait cycle was applied. The cohort showed a range of polar gap of 284-1112 μm and 95th percentile composite peak micromotion (CPM) of 18-624 μm. Regression analysis was not conclusive on the relationship between patient-related factors and primary stability. No relationship was found between polar gap and micromotion. However, when the patient-related factors were categorised into quartile groups, trends suggested higher polar gaps occurred in subjects with small and shallow acetabular geometries and cup motion during gait was affected most by low elastic modulus and high bodyweight. The variation in primary stability in the cohort for an acetabular cup with a proven clinical track record may provide benchmark data when evaluating new cup designs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1012-1023, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    Science.gov (United States)

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.

  11. Longitudinal modelling of respiratory symptoms in children

    Science.gov (United States)

    Schlink, Uwe; Fritz, Gisela; Herbarth, Olf; Richter, Matthias

    2002-08-01

    A panel of 277 children, aged 3-7 years, was used to study the association between air pollution (O3, SO2, NO2, and total suspended particles), meteorological factors (global radiation, maximum daytime temperature, daily averages of vapour pressure and air humidity) and respiratory symptoms. For 759 days the symptoms were recorded in a diary and modelling was based on a modification of the method proposed by Korn and Whittemore (Biometrics 35: 795-798, 1979). This approach (1) comprises an extension using environmental parameters at different time scales, (2) addresses the suitability of using the daily fraction of symptomatic individuals to account for inter-individual interactions and (3) enables the most significant weather effects to be identified. The resulting model consisted of (1) an individual specific intercept that takes account of the population's heterogeneity, (2) the individual's health status the day before, (3) a long-term meteorological effect, which may be either the squared temperature or global radiation in interaction with temperature, (4) the short-term effect of sulfur dioxide, and (5) the short-term effect of an 8-h ozone concentration above 60 µg/m3. Using the estimated parameters as input to a simulation study, we checked the quality of the model and demonstrate that the annual cycle of the prevalence of respiratory symptoms is associated to atmospheric covariates. Individuals suffering from allergy have been identified as a group of a particular susceptibility to ozone. The duration of respiratory symptoms appears to be free of scale and follows an exponential distribution function, which confirms that the symptom record of each individual follows a Poisson point-process. This supports the assumption that not only respiratory diseases, but also respiratory symptoms can be considered an independent measure for the health status of a population sample. Since a point process is described by only one parameter (namely the intensity of the

  12. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  13. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    OpenAIRE

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...

  14. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    International Nuclear Information System (INIS)

    Papadimitroulas, Panagiotis; Efthimiou, Nikos; Nikiforidis, George C.; Kagadis, George C.; Loudos, George; Le Maitre, Amandine; Hatt, Mathieu; Tixier, Florent; Visvikis, Dimitris

    2013-01-01

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with

  15. Assessment of CT dose to the fetus and pregnant female patient using patient-specific computational models

    DEFF Research Database (Denmark)

    Xie, Tianwu; Poletti, Pierre-Alexandre; Platon, Alexandra

    2018-01-01

    of pregnant patients and the embedded foetus, we developed a methodology for construction of patient-specific voxel-based computational phantoms based on existing standardised hybrid computational pregnant female phantoms. We estimated the maternal absorbed dose and foetal organ dose for 30 pregnant patients...... for assessment of the radiation risks to pregnant patients and the foetus from various CT scanning protocols, thus guiding the decision-making process. KEY POINTS: • In CT examinations, the absorbed dose is non-uniformly distributed within foetal organs. • This work reports, for the first time, estimates...

  16. Respiratory

    Science.gov (United States)

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  17. Modeling Respiratory Toxicity of Authentic Lunar Dust

    Science.gov (United States)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  18. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Guoyan [Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern (Switzerland)

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction. The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark

  19. Respiratory trace deposition models. Final report

    International Nuclear Information System (INIS)

    Yeh, H.C.

    1980-03-01

    Respiratory tract characteristics of four mammalian species (human, dog, rat and Syrian hamster) were studied, using replica lung casts. An in situ casting techniques was developed for making the casts. Based on an idealized branch model, over 38,000 records of airway segment diameters, lengths, branching angles and gravity angles were obtained from measurements of two humans, two Beagle dogs, two rats and one Syrian hamster. From examination of the trimmed casts and morphometric data, it appeared that the structure of the human airway is closer to a dichotomous structure, whereas for dog, rat and hamster, it is monopodial. Flow velocity in the trachea and major bronchi in living Beagle dogs was measured using an implanted, subminiaturized, heated film anemometer. A physical model was developed to simulate the regional deposition characteristics proposed by the Task Group on Lung Dynamics of the ICRP. Various simulation modules for the nasopharyngeal (NP), tracheobronchial (TB) and pulmonary (P) compartments were designed and tested. Three types of monodisperse aerosols were developed for animal inhalation studies. Fifty Syrian hamsters and 50 rats were exposed to five different sizes of monodisperse fused aluminosilicate particles labeled with 169 Yb. Anatomical lung models were developed for four species (human, Beagle dog, rat and Syrian hamster) that were based on detailed morphometric measurements of replica lung casts. Emphasis was placed on developing a lobar typical-path lung model and on developing a modeling technique which could be applied to various mammalian species. A set of particle deposition equations for deposition caused by inertial impaction, sedimentation, and diffusion were developed. Theoretical models of particle deposition were developed based on these equations and on the anatomical lung models

  20. A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress.

    Science.gov (United States)

    Lee, Kyung Eun; Kim, Gook Tae; Lee, Jeong Sang; Chung, Ju-Hyun; Shin, Eun-Seok; Shim, Eun Bo

    2016-11-01

    As the stenotic severity of a patient increases, fractional flow reserve (FFR) decreases, whereas the maximum wall shear stress (WSSmax) increases. However, the way in which these values can change according to stenotic severity has not previously been investigated. The aim of this study is to devise a virtual stenosis model to investigate variations in the coronary hemodynamic parameters of patients according to stenotic severity. To simulate coronary hemodynamics, a three-dimensional (3D) coronary artery model of computational fluid dynamics is coupled with a lumped parameter model of the coronary micro-vasculature and venous system. To validate the present method, we first simulated 13 patient-specific models of the coronary arteries and compared the results with those obtained clinically. Then, virtually narrowed coronary arterial models derived from the patient-specific cases were simulated to obtain the WSSmax and FFR values. The variations in FFR and WSSmax against the percentage of diameter stenosis in clinical cases were reproducible by the virtual stenosis models. We also found that the simulated FFR values were linearly correlated with the WSSmax values, but the linear slope varied by patient. We implemented 130 additional virtual models of stenosed coronary arteries based on data from 13 patients and obtained statistically meaningful results that were identical to the large-scale clinical studies. And the slope of the correlation line between FFR and WSSmax may help clinicians to design treatment plans for patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Mathematical modeling and validation in physiology applications to the cardiovascular and respiratory systems

    CERN Document Server

    Bachar, Mostafa; Kappel, Franz

    2013-01-01

    This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally.  Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling  examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.

  2. 3D Rapid Prototyping for Otolaryngology—Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling

    Science.gov (United States)

    Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  3. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Science.gov (United States)

    Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  4. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  5. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    International Nuclear Information System (INIS)

    Zheng Guoyan; Schumann, Steffen

    2009-01-01

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  6. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    Science.gov (United States)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  7. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  8. Refinement of MLC modeling improves commercial QA dosimetry system for SRS and SBRT patient-specific QA.

    Science.gov (United States)

    Hillman, Yair; Kim, Josh; Chetty, Indrin; Wen, Ning

    2018-04-01

    Mobius 3D (M3D) provides a volumetric dose verification of the treatment planning system's calculated dose using an independent beam model and a collapsed cone convolution superposition algorithm. However, there is a lack of investigation into M3D's accuracy and effectiveness for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) quality assurance (QA). Here, we collaborated with the vendor to develop a revised M3D beam model for SRS/SBRT cases treated with a 6X flattening filter-free (FFF) beam and high-definition multiple leaf collimator (HDMLC) on an Edge linear accelerator. Eighty SRS/SBRT cases, planned with AAA dose algorithm and validated with Gafchromic film, were compared to M3D dose calculations using 3D gamma analysis with 2%/2 mm gamma criteria and a 10% threshold. A revised beam model was developed by refining the HD-MLC model in M3D to improve small field dose calculation accuracy and beam profile agreement. All cases were reanalyzed using the revised beam model. The impact of heterogeneity corrections for lung cases was investigated by applying lung density overrides to five cases. For the standard and revised beam models, respectively, the mean gamma passing rates were 94.6% [standard deviation (SD): 6.1%] and 98.0% [SD: 1.7%] (for the overall patient), 88.2% [SD: 17.3%] and 93.8% [SD: 6.8%] (for the brain PTV), 71.4% [SD: 18.4%] and 81.5% [SD: 14.3%] (for the lung PTV), 83.3% [SD: 16.7%] and 67.9% [SD: 23.0%] (for the spine PTV), and 78.6% [SD: 14.0%] and 86.8% [SD: 12.5%] (for the PTV of all other sites). The lung PTV mean gamma passing rates improved from 74.1% [SD: 7.5%] to 89.3% [SD: 7.2%] with the lung density overridden. The revised beam model achieved an output factor within 3% of plastic scintillator measurements for 2 × 2 cm 2 MLC field size, but larger discrepancies are still seen for smaller field sizes which necessitate further improvement of the beam model. Special attention needs to be paid to small field

  9. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-01-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  10. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available Charcot-Marie-Tooth disease type 1A (CMT1A, one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs. Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy.

  11. Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution.

    Science.gov (United States)

    Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G

    2017-01-01

    A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.

  12. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  13. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation

    International Nuclear Information System (INIS)

    Schranz, C; Möller, K; Becher, T; Schädler, D; Weiler, N

    2014-01-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (p I ), inspiration and expiration time (t I , t E ) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal p I and adequate t E can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's ‘optimized’ settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end

  14. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    Science.gov (United States)

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  15. A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves' disease

    International Nuclear Information System (INIS)

    Di Martino, F.; Traino, A.C.; Lazzeri, M.; Brill, A.B.; Stabin, M.G.

    2002-01-01

    A fundamental function of the thyroid is to extract iodine from the blood, synthesize it into thyroid hormones, and release it into the circulation under feedback control by pituitary-secreted hormones. This capability of the thyroid, termed as functionality, can in principle be related to the severity of hyperthyroidism in individual patients. In this paper the uptake and release of 131 I by the thyroid following the administration of 131 I therapy for Graves' disease has been theoretically studied. The kinetics of iodine in the thyroid and blood have been evaluated using a two-compartment model. This simplified model appears to be adequate for dosimetry purposes and allows one to correlate levels of increased thyroid functionality (hyperthyroidism) with clinically measurable kinetic parameters. An expression has been derived for the rate of change of thyroid mass following therapy; this has the same form as an empirical relationship described in an earlier work. A method is presented for calculation of the amount of radioiodine activity to be administered to individual patients in order to achieve the desired final functionality of the gland. The activity to be administered is based on measurements of 131 I kinetics after the administration of a 'low-activity' (1850 kBq) tracer for treatment planning. (author)

  16. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Main features of the proposed NCRP respiratory tract model

    International Nuclear Information System (INIS)

    Phalen, R.F.; Fisher, G.L.; Moss, O.R.; Schlesinger, R.B.; Swift, D.L.

    1991-01-01

    The proposed NCRP respiratory tract dosimetry model regions include the naso-oro-pharyngo-laryngeal (NOPL), the tracheobronchial (TB), the pulmonary (P), and the lymph nodes (LN). Input aerosol concentrations are derived from a consideration of particle-size-dependent inspirability. Particle deposition in the respiratory tract is modelled using the mechanisms of inertial impaction, sedimentation and diffusion. The rates of absorption of particles, and transport to the blood, have been derived from clearance data from people and laboratory animals. The effect of body growth on particle deposition is considered. Particle clearance rates are assumed to be independent of age. The proposed respiratory tract model differs significantly from the 1966 Task Group Model in that (1) inspirability is considered; (2) new sub-regions of the respiratory tract are considered; (3) absorption of materials by the blood is treated in a more sophisticated fashion; and (4) body size (and thus age) is taken into account. (author)

  18. Development of a Patient-Specific Multi-Scale Model to Understand Atherosclerosis and Calcification Locations: Comparison with In vivo Data in an Aortic Dissection

    Science.gov (United States)

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2016-01-01

    Vascular calcification results in stiffening of the aorta and is associated with hypertension and atherosclerosis. Atherogenesis is a complex, multifactorial, and systemic process; the result of a number of factors, each operating simultaneously at several spatial and temporal scales. The ability to predict sites of atherogenesis would be of great use to clinicians in order to improve diagnostic and treatment planning. In this paper, we present a mathematical model as a tool to understand why atherosclerotic plaque and calcifications occur in specific locations. This model is then used to analyze vascular calcification and atherosclerotic areas in an aortic dissection patient using a mechanistic, multi-scale modeling approach, coupling patient-specific, fluid-structure interaction simulations with a model of endothelial mechanotransduction. A number of hemodynamic factors based on state-of-the-art literature are used as inputs to the endothelial permeability model, in order to investigate plaque and calcification distributions, which are compared with clinical imaging data. A significantly improved correlation between elevated hydraulic conductivity or volume flux and the presence of calcification and plaques was achieved by using a shear index comprising both mean and oscillatory shear components (HOLMES) and a non-Newtonian viscosity model as inputs, as compared to widely used hemodynamic indicators. The proposed approach shows promise as a predictive tool. The improvements obtained using the combined biomechanical/biochemical modeling approach highlight the benefits of mechanistic modeling as a powerful tool to understand complex phenomena and provides insight into the relative importance of key hemodynamic parameters. PMID:27445834

  19. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    Science.gov (United States)

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Wearable sensors for patient-specific boundary shape estimation to improve the forward model for electrical impedance tomography (EIT) of neonatal lung function.

    Science.gov (United States)

    Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard

    2014-06-01

    Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.

  1. Effects of Intraluminal Thrombus on Patient-Specific Abdominal Aortic Aneurysm Hemodynamics via Stereoscopic Particle Image Velocity and Computational Fluid Dynamics Modeling

    Science.gov (United States)

    Chen, Chia-Yuan; Antón, Raúl; Hung, Ming-yang; Menon, Prahlad; Finol, Ender A.; Pekkan, Kerem

    2014-01-01

    The pathology of the human abdominal aortic aneurysm (AAA) and its relationship to the later complication of intraluminal thrombus (ILT) formation remains unclear. The hemodynamics in the diseased abdominal aorta are hypothesized to be a key contributor to the formation and growth of ILT. The objective of this investigation is to establish a reliable 3D flow visualization method with corresponding validation tests with high confidence in order to provide insight into the basic hemodynamic features for a better understanding of hemodynamics in AAA pathology and seek potential treatment for AAA diseases. A stereoscopic particle image velocity (PIV) experiment was conducted using transparent patient-specific experimental AAA models (with and without ILT) at three axial planes. Results show that before ILT formation, a 3D vortex was generated in the AAA phantom. This geometry-related vortex was not observed after the formation of ILT, indicating its possible role in the subsequent appearance of ILT in this patient. It may indicate that a longer residence time of recirculated blood flow in the aortic lumen due to this vortex caused sufficient shear-induced platelet activation to develop ILT and maintain uniform flow conditions. Additionally, two computational fluid dynamics (CFD) modeling codes (Fluent and an in-house cardiovascular CFD code) were compared with the two-dimensional, three-component velocity stereoscopic PIV data. Results showed that correlation coefficients of the out-of-plane velocity data between PIV and both CFD methods are greater than 0.85, demonstrating good quantitative agreement. The stereoscopic PIV study can be utilized as test case templates for ongoing efforts in cardiovascular CFD solver development. Likewise, it is envisaged that the patient-specific data may provide a benchmark for further studying hemodynamics of actual AAA, ILT, and their convolution effects under physiological conditions for clinical applications. PMID:24316984

  2. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    Energy Technology Data Exchange (ETDEWEB)

    Dhou, S; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Ionascu, D [William Beaumont Hospital, Royal Oak, MI (United States); Lewis, J [University of California at Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  3. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    International Nuclear Information System (INIS)

    Dhou, S; Williams, C; Ionascu, D; Lewis, J

    2016-01-01

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  4. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model.

    Science.gov (United States)

    Choi, In Young; Lim, HoTae; Estrellas, Kenneth; Mula, Jyothi; Cohen, Tatiana V; Zhang, Yuanfan; Donnelly, Christopher J; Richard, Jean-Philippe; Kim, Yong Jun; Kim, Hyesoo; Kazuki, Yasuhiro; Oshimura, Mitsuo; Li, Hongmei Lisa; Hotta, Akitsu; Rothstein, Jeffrey; Maragakis, Nicholas; Wagner, Kathryn R; Lee, Gabsang

    2016-06-07

    Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our "chemical-compound-based" strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological "dual-SMAD" inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form "rescued" multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human "DMD-in-a-dish" model using hiPSC-based disease modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model

    Directory of Open Access Journals (Sweden)

    In Young Choi

    2016-06-01

    Full Text Available Duchenne muscular dystrophy (DMD remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs. Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our “chemical-compound-based” strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological “dual-SMAD” inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form “rescued” multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human “DMD-in-a-dish” model using hiPSC-based disease modeling.

  6. Neural Network Optimization of Ligament Stiffnesses for the Enhanced Predictive Ability of a Patient-Specific, Computational Foot/Ankle Model.

    Science.gov (United States)

    Chande, Ruchi D; Wayne, Jennifer S

    2017-09-01

    Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.

  7. Patient-specific surgical simulation.

    Science.gov (United States)

    Soler, Luc; Marescaux, Jacques

    2008-02-01

    Technological innovations of the twentieth century have provided medicine and surgery with new tools for education and therapy definition. Thus, by combining Medical Imaging and Virtual Reality, patient-specific applications providing preoperative surgical simulation have become possible.

  8. Human respiratory tract model for radiological protection: A revision of the ICRP Dosimetric Model for the Respiratory System

    International Nuclear Information System (INIS)

    Bair, W.J.

    1989-01-01

    In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users

  9. Computational 3-D Model of the Human Respiratory System

    Science.gov (United States)

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  10. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  11. From 4D Medical Images (CT, MRI, and Ultrasound to 4D Structured Mesh Models of the Left Ventricular Endocardium for Patient-Specific Simulations

    Directory of Open Access Journals (Sweden)

    Federico Canè

    2018-01-01

    Full Text Available With cardiovascular disease (CVD remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time with 1-to-1 vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume.

  12. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    published by the UK's ImPACT group for a scan using an equivalent scanner, kVp, collimation, pitch and mAs. The CT source model was shown to calculate both a relative and absolute radiation dose distribution throughout the entire volume in a patient-specific matrix geometry. Results of initial testing are promising and application to patient models was shown to be feasible

  13. 3-D Model of the Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  14. The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model.

    Science.gov (United States)

    Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon Hock

    2015-11-25

    The aim of this study is to provide better insights into the cerebral perfusion patterns and collateral mechanism of the circle of Willis (CoW) under anatomical and pathological variations. In the current study, a patient-specific three-dimensional computational model of the CoW was reconstructed based on the computed tomography (CT) images. The Carreau model was applied to simulate the non-Newtonian property of blood. Flow distributions in five common anatomical variations coexisting with different degrees of stenosis in the right internal carotid artery (RICA) were investigated to obtain detailed flow information. With the development of stenosis in unilateral internal carotid artery (ICA), the cerebral blood supply decreased when the degree of stenosis increased. The blood supply of the ipsilateral middle cerebral artery (MCA) was most affected by the stenosis of ICA. The anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) functioned as the important collateral circulation channels when unilateral stenosis occurred. The blood flow of the anterior circulation and the total cerebral blood flow (CBF) reached to the minimum in the configuration of the contralateral proximal anterior cerebral artery (A1) absence coexisting with unilateral ICA stenosis. Communicating arteries provided important collateral channels in the complete CoW when stenosis in unilateral ICA occurred. The cross-flow in the ACoA is a sensitive indicator of the morphological change of the ICA. The collateral function of the PCoA on the affected side will not be fully activated until a severe stenosis occurred in unilateral ICA. The absence of unilateral A1 coexisting with the stenosis in the contralateral ICA could be the most dangerous configuration in terms of the total cerebral blood supply. The findings of this study would enhance the understanding of the collateral mechanism of the CoW under different anatomical variations.

  15. WE-G-207-06: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Physical Phantom and Clinical Patient Images

    International Nuclear Information System (INIS)

    Dhou, S; Cai, W; Hurwitz, M; Rottmann, J; Myronakis, M; Cifter, F; Berbeco, R; Lewis, J; Williams, C; Mishra, P; Ionascu, D

    2015-01-01

    Purpose: Respiratory-correlated cone-beam CT (4DCBCT) images acquired immediately prior to treatment have the potential to represent patient motion patterns and anatomy during treatment, including both intra- and inter-fractional changes. We develop a method to generate patient-specific motion models based on 4DCBCT images acquired with existing clinical equipment and used to generate time varying volumetric images (3D fluoroscopic images) representing motion during treatment delivery. Methods: Motion models are derived by deformably registering each 4DCBCT phase to a reference phase, and performing principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated by optimizing the resulting PCA coefficients iteratively through comparison of the cone-beam projections simulating kV treatment imaging and digitally reconstructed radiographs generated from the motion model. Patient and physical phantom datasets are used to evaluate the method in terms of tumor localization error compared to manually defined ground truth positions. Results: 4DCBCT-based motion models were derived and used to generate 3D fluoroscopic images at treatment time. For the patient datasets, the average tumor localization error and the 95th percentile were 1.57 and 3.13 respectively in subsets of four patient datasets. For the physical phantom datasets, the average tumor localization error and the 95th percentile were 1.14 and 2.78 respectively in two datasets. 4DCBCT motion models are shown to perform well in the context of generating 3D fluoroscopic images due to their ability to reproduce anatomical changes at treatment time. Conclusion: This study showed the feasibility of deriving 4DCBCT-based motion models and using them to generate 3D fluoroscopic images at treatment time in real clinical settings. 4DCBCT-based motion models were found to account for the 3D non-rigid motion of the patient anatomy during treatment and have the potential

  16. Efficient solvers for coupled models in respiratory mechanics.

    Science.gov (United States)

    Verdugo, Francesc; Roth, Christian J; Yoshihara, Lena; Wall, Wolfgang A

    2017-02-01

    We present efficient preconditioners for one of the most physiologically relevant pulmonary models currently available. Our underlying motivation is to enable the efficient simulation of such a lung model on high-performance computing platforms in order to assess mechanical ventilation strategies and contributing to design more protective patient-specific ventilation treatments. The system of linear equations to be solved using the proposed preconditioners is essentially the monolithic system arising in fluid-structure interaction (FSI) extended by additional algebraic constraints. The introduction of these constraints leads to a saddle point problem that cannot be solved with usual FSI preconditioners available in the literature. The key ingredient in this work is to use the idea of the semi-implicit method for pressure-linked equations (SIMPLE) for getting rid of the saddle point structure, resulting in a standard FSI problem that can be treated with available techniques. The numerical examples show that the resulting preconditioners approach the optimal performance of multigrid methods, even though the lung model is a complex multiphysics problem. Moreover, the preconditioners are robust enough to deal with physiologically relevant simulations involving complex real-world patient-specific lung geometries. The same approach is applicable to other challenging biomedical applications where coupling between flow and tissue deformations is modeled with additional algebraic constraints. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model

    Science.gov (United States)

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    2017-01-01

    Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann–Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P = 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P = 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P = 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or

  18. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.

    Science.gov (United States)

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P= 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P= 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P= 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P= 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic

  19. From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    OpenAIRE

    Canè, Federico; Verhegghe, Benedict; De Beule, Matthieu; Bertrand, Philippe B.; Van der Geest, Rob J.; Segers, Patrick; De Santis, Gianluca

    2018-01-01

    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boun...

  20. Deterministic and stochastic models for middle east respiratory syndrome (MERS)

    Science.gov (United States)

    Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning

    2018-03-01

    World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.

  1. The ICRP task group respiratory tract model - an age-dependent dosimetric model for general application

    International Nuclear Information System (INIS)

    Bailey, M.R.; Birchall, A.

    1992-01-01

    The ICRP Task Group on Human Respiratory Tract Models for Radiological Protection has developed a revised dosimetric model for the respiratory tract. Papers outlining the model, and describing each aspect of it were presented at the Third International Workshop on Respiratory Tract Dosimetry (Albuquerque 1-3 July 1990), the Proceedings of which were recently published in Radiation Protection Dosimetry Volume 38 Nos 1-3 (1991). Since the model had not changed substantially since the Workshop at Albuquerque, only a summary of the paper presented at Schloss Elmau is included in these Proceedings. (author)

  2. A 4D global respiratory motion model of the thorax based on CT images: A proof of concept.

    Science.gov (United States)

    Fayad, Hadi; Gilles, Marlene; Pan, Tinsu; Visvikis, Dimitris

    2018-05-17

    Respiratory motion reduces the sensitivity and specificity of medical images especially in the thoracic and abdominal areas. It may affect applications such as cancer diagnostic imaging and/or radiation therapy (RT). Solutions to this issue include modeling of the respiratory motion in order to optimize both diagnostic and therapeutic protocols. Personalized motion modeling required patient-specific four-dimensional (4D) imaging which in the case of 4D computed tomography (4D CT) acquisition is associated with an increased dose. The goal of this work was to develop a global respiratory motion model capable of relating external patient surface motion to internal structure motion without the need for a patient-specific 4D CT acquisition. The proposed global model is based on principal component analysis and can be adjusted to a given patient anatomy using only one or two static CT images in conjunction with a respiratory synchronized patient external surface motion. It is based on the relation between the internal motion described using deformation fields obtained by registering 4D CT images and patient surface maps obtained either from optical imaging devices or extracted from CT image-based patient skin segmentation. 4D CT images of six patients were used to generate the global motion model which was validated by adapting it on four different patients having skin segmented surfaces and two other patients having time of flight camera acquired surfaces. The reproducibility of the proposed model was also assessed on two patients with two 4D CT series acquired within 2 weeks of each other. Profile comparison shows the efficacy of the global respiratory motion model and an improvement while using two CT images in order to adapt the model. This was confirmed by the correlation coefficient with a mean correlation of 0.9 and 0.95 while using one or two CT images respectively and when comparing acquired to model generated 4D CT images. For the four patients with segmented

  3. TU-F-17A-03: An Analytical Respiratory Perturbation Model for Lung Motion Prediction

    International Nuclear Information System (INIS)

    Li, G; Yuan, A; Wei, J

    2014-01-01

    Purpose: Breathing irregularity is common, causing unreliable prediction in tumor motion for correlation-based surrogates. Both tidal volume (TV) and breathing pattern (BP=ΔVthorax/TV, where TV=ΔVthorax+ΔVabdomen) affect lung motion in anterior-posterior and superior-inferior directions. We developed a novel respiratory motion perturbation (RMP) model in analytical form to account for changes in TV and BP in motion prediction from simulation to treatment. Methods: The RMP model is an analytical function of patient-specific anatomic and physiologic parameters. It contains a base-motion trajectory d(x,y,z) derived from a 4-dimensional computed tomography (4DCT) at simulation and a perturbation term Δd(ΔTV,ΔBP) accounting for deviation at treatment from simulation. The perturbation is dependent on tumor-specific location and patient-specific anatomy. Eleven patients with simulation and treatment 4DCT images were used to assess the RMP method in motion prediction from 4DCT1 to 4DCT2, and vice versa. For each patient, ten motion trajectories of corresponding points in the lower lobes were measured in both 4DCTs: one served as the base-motion trajectory and the other as the ground truth for comparison. In total, 220 motion trajectory predictions were assessed. The motion discrepancy between two 4DCTs for each patient served as a control. An established 5D motion model was used for comparison. Results: The average absolute error of RMP model prediction in superior-inferior direction is 1.6±1.8 mm, similar to 1.7±1.6 mm from the 5D model (p=0.98). Some uncertainty is associated with limited spatial resolution (2.5mm slice thickness) and temporal resolution (10-phases). Non-corrected motion discrepancy between two 4DCTs is 2.6±2.7mm, with the maximum of ±20mm, and correction is necessary (p=0.01). Conclusion: The analytical motion model predicts lung motion with accuracy similar to the 5D model. The analytical model is based on physical relationships, requires no

  4. A Novel Parametric Model For The Human Respiratory System

    Directory of Open Access Journals (Sweden)

    Clara Mihaela IONESCU

    2003-12-01

    Full Text Available The purpose of this work is to present some recent results in an ongoing research project between Ghent University and Chess Medical Technology Company Belgium. The overall aim of the project is to provide a fast method for identification of the human respiratory system in order to allow for an instantaneously diagnosis of the patient by the medical staff. A novel parametric model of the human respiratory system as well as the obtained experimental results is presented in this paper. A prototype apparatus developed by the company, based on the forced oscillation technique is used to record experimental data from 4 patients in this paper. Signal processing is based on spectral analysis and is followed by the parametric identification of a non-linear mechanistic model. The parametric model is equivalent to the structure of a simple electrical RLC-circuit, containing a non-linear capacitor. These parameters have a useful and easy-to-interpret physical meaning for the medical staff members.

  5. COPD management as a model for all chronic respiratory conditions: report of the 4th Consensus Conference in Respiratory Medicine.

    Science.gov (United States)

    Nardini, Stefano; De Benedetto, Fernando; Sanguinetti, Claudio M; Bellofiore, Salvatore; Carlone, Stefano; Privitera, Salvatore; Sagliocca, Luciano; Tupputi, Emmanuele; Baccarani, Claudio; Caiffa, Gennaro; Calabrese, Maria Consiglia; Capuozzo, Antonio; Cauchi, Salvatore; Conio, Valentina; Coratella, Giuseppe; Crismancich, Franco; Dal Negro, Roberto W; Dellarole, Franco; Delucchi, Maurizio; Favaretti, Carlo; Forte, Silvia; Gallo, Franca Matilde; Giuliano, Riccardo; Grandi, Marco; Grillo, Antonino; Gualano, Maria Rosaria; Guffanti, Enrico; Locicero, Salvatore; Lombardo, Francesco Paolo; Mantero, Marco; Marasso, Roberto; Martino, Laura; Mastroberardino, Michele; Mereu, Carlo; Messina, Roberto; Neri, Margherita; Novelletto, Bruno Franco; Parente, Paolo; Pasquinucci, Sergio; Pistolesi, Massimo; Polverino, Mario; Posca, Agnese; Richeldi, Luca; Roccia, Fernando; Giustini, Ettore Saffi; Salemi, Michelangelo; Santacroce, Salvatore; Schisano, Mario; Schisano, Matteo; Selvi, Eleonora; Silenzi, Andrea; Soverina, Patrizio; Taranto, Claudio; Ugolini, Marta; Visaggi, Piero; Zanasi, Alessandro

    2017-01-01

    Non-communicable diseases (NCDs) kill 40 million people each year. The management of chronic respiratory NCDs such as chronic obstructive pulmonary disease (COPD) is particularly critical in Italy, where they are widespread and represent a heavy burden on healthcare resources. It is thus important to redefine the role and responsibility of respiratory specialists and their scientific societies, together with that of the whole healthcare system, in order to create a sustainable management of COPD, which could become a model for other chronic respiratory conditions. These issues were divided into four main topics (Training, Organization, Responsibilities, and Sustainability) and discussed at a Consensus Conference promoted by the Research Center of the Italian Respiratory Society held in Rome, Italy, 3-4 November 2016. Regarding training, important inadequacies emerged regarding specialist training - both the duration of practical training courses and teaching about chronic diseases like COPD. A better integration between university and teaching hospitals would improve the quality of specialization. A better organizational integration between hospital and specialists/general practitioners (GPs) in the local community is essential to improve the diagnostic and therapeutic pathways for chronic respiratory patients. Improving the care pathways is the joint responsibility of respiratory specialists, GPs, patients and their caregivers, and the healthcare system. The sustainability of the entire system depends on a better organization of the diagnostic-therapeutic pathways, in which also other stakeholders such as pharmacists and pharmaceutical companies can play an important role.

  6. A viscoelastic model of the correlation between respiratory lung tumour motion and an external abdominal signal

    International Nuclear Information System (INIS)

    Cavan, A.E.; Wilson, P.L.; Meyer, J.; Berbeco, R.I.

    2010-01-01

    Full text: Accuracy of radiotherapy treatment of lung cancer is limited by respiratory induced tumour motion. Compensation for this motion is required to increase treatment efficacy. The lung tumour motion is related to motion of an external abdominal marker, but a reliable model of this correlation is essential. Three viscoelastic systems were developed, in order to determine the best model and analyse its effectiveness on clinical data. Three 1D viscoelastic systems (a spring and dash pot in parallel, series and a combination) were developed and compared using a simulated breathing pattern. The most effective model was applied to 60 clinical data sets (consisting of co-ordinates of tumour and abdominal motion) from multiple treatment fractions of ten patients. The model was optimised for each data set, and efficacy determined by calculating the root mean square (RMS) error between the mo elled position and the actual tumour motion. Upon application to clinical data the parallel configuration achieved an average RMS error of 0.95 mm (superior-inferior direction). The model had patient specific parameters, and displayed good consistency over extended treatment periods. The model ha dled amplitude, frequency and baseline variations of the input signal, and phase shifts between tumour and abdominal motions. This study has shown that a viscoelastic model can be used to cor relate internal lung tumour motion with an external abdominal signal. The ability to handle breathing pattern in'egularities is comparable or better than previous models. Extending the model to a full 3D, pr dictive system could allow clinical implementation for radiotherapy.

  7. Assessing the effects of pharmacological agents on respiratory dynamics using time-series modeling.

    Science.gov (United States)

    Wong, Kin Foon Kevin; Gong, Jen J; Cotten, Joseph F; Solt, Ken; Brown, Emery N

    2013-04-01

    Developing quantitative descriptions of how stimulant and depressant drugs affect the respiratory system is an important focus in medical research. Respiratory variables-respiratory rate, tidal volume, and end tidal carbon dioxide-have prominent temporal dynamics that make it inappropriate to use standard hypothesis-testing methods that assume independent observations to assess the effects of these pharmacological agents. We present a polynomial signal plus autoregressive noise model for analysis of continuously recorded respiratory variables. We use a cyclic descent algorithm to maximize the conditional log likelihood of the parameters and the corrected Akaike's information criterion to choose simultaneously the orders of the polynomial and the autoregressive models. In an analysis of respiratory rates recorded from anesthetized rats before and after administration of the respiratory stimulant methylphenidate, we use the model to construct within-animal z-tests of the drug effect that take account of the time-varying nature of the mean respiratory rate and the serial dependence in rate measurements. We correct for the effect of model lack-of-fit on our inferences by also computing bootstrap confidence intervals for the average difference in respiratory rate pre- and postmethylphenidate treatment. Our time-series modeling quantifies within each animal the substantial increase in mean respiratory rate and respiratory dynamics following methylphenidate administration. This paradigm can be readily adapted to analyze the dynamics of other respiratory variables before and after pharmacologic treatments.

  8. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal

    International Nuclear Information System (INIS)

    Hurwitz, Martina; Williams, Christopher L; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G; Mak, Raymond H; Lewis, John H

    2015-01-01

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes. (paper)

  9. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal

    Science.gov (United States)

    Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.

    2015-01-01

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.

  10. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system

    Directory of Open Access Journals (Sweden)

    N Byrne

    2016-04-01

    Full Text Available Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports. The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015. The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods.

  11. Detection of Severe Respiratory Disease Epidemic Outbreaks by CUSUM-Based Overcrowd-Severe-Respiratory-Disease-Index Model

    Directory of Open Access Journals (Sweden)

    Carlos Polanco

    2013-01-01

    Full Text Available A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008–2010 taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts.

  12. Detection of Severe Respiratory Disease Epidemic Outbreaks by CUSUM-Based Overcrowd-Severe-Respiratory-Disease-Index Model

    Science.gov (United States)

    Castañón-González, Jorge Alberto; Macías, Alejandro E.; Samaniego, José Lino; Buhse, Thomas; Villanueva-Martínez, Sebastián

    2013-01-01

    A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008–2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts. PMID:24069063

  13. Velocity profiles in idealized model of human respiratory tract

    Science.gov (United States)

    Elcner, J.; Jedelsky, J.; Lizal, F.; Jicha, M.

    2013-04-01

    This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  14. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  15. Mathematical modelling of a human external respiratory system

    Science.gov (United States)

    1977-01-01

    A closed system of algebraic and common differential equations solved by computer is investigated. It includes equations which describe the activity pattern of the respiratory center, the phrenic nerve, the thrust produced by the diaphragm as a function of the lung volume and discharge frequency of the phrenic nerve, as well as certain relations of the lung stretch receptors and chemoreceptors on various lung and blood characteristics, equations for lung biomechanics, pulmonary blood flow, alveolar gas exchange and capillary blood composition equations to determine various air and blood flow and gas exchange parameters, and various gas mixing and arterial and venous blood composition equations, to determine other blood, air and gas mixing characteristics. Data are presented by means of graphs and tables, and some advantages of this model over others are demonstrated by test results.

  16. Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD

    Directory of Open Access Journals (Sweden)

    De Backer LA

    2011-11-01

    Full Text Available LA De Backer1, WG Vos2, R Salgado3, JW De Backer2, A Devolder1, SL Verhulst1, R Claes1, PR Germonpré1, WA De Backer11Department of Respiratory Medicine, 2FluidDA, 3Department of Radiology, Antwerp University Hospital, Antwerp, BelgiumBackground: Salbutamol and ipratropium bromide improve lung function in patients with chronic obstructive pulmonary disease (COPD. However, their bronchodilating effect has not yet been compared in the central and distal airways. Functional imaging using computational fluid dynamics offers the possibility of making such a comparison. The objective of this study was to assess the effects of salbutamol and ipratropium bromide on the geometry and computational fluid dynamics-based resistance of the central and distal airways.Methods: Five patients with Global Initiative for Chronic Obstructive Lung Disease Stage III COPD were randomized to a single dose of salbutamol or ipratropium bromide in a crossover manner with a 1-week interval between treatments. Patients underwent lung function testing and a multislice computed tomography scan of the thorax that was used for functional imaging. Two hours after dosing, the patients again underwent lung function tests and repeat computed tomography.Results: Lung function parameters, including forced expiratory volume in 1 second, vital capacity, overall airway resistance, and specific airway resistance, changed significantly after administration of each product. On functional imaging, the bronchodilating effect was greater in the distal airways, with a corresponding drop in airway resistance, compared with the central airways. Salbutamol and ipratropium bromide were equally effective at first glance when looking at lung function tests, but when viewed in more detail with functional imaging, hyporesponsiveness could be shown for salbutamol in one patient. Salbutamol was more effective in the other patients.Conclusion: This pilot study gives an innovative insight into the modes of

  17. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    Science.gov (United States)

    Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.

    2014-02-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation

  19. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    International Nuclear Information System (INIS)

    Wang, Shouyi; Chaovalitwongse, W Art; Bowen, Stephen R; Kinahan, Paul E; Sandison, George A; Grabowski, Thomas J

    2014-01-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV peak ) over lesions of interest. Relative differences in SUV peak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV peak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion

  20. NOTE: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Science.gov (United States)

    Venkat, Raghu B.; Sawant, Amit; Suh, Yelin; George, Rohini; Keall, Paul J.

    2008-06-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery.

  1. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J [Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847 (United States); George, Rohini [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States)], E-mail: Paul.Keall@stanford.edu

    2008-06-07

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  2. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    International Nuclear Information System (INIS)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J; George, Rohini

    2008-01-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  3. Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research

    Directory of Open Access Journals (Sweden)

    Arnau Benet

    2015-01-01

    Full Text Available Aim. To evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training. Methods. Two 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated. Results. The 3D aneurysm models were successfully implanted to the cadaveric specimens’ arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation. Conclusion. 3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research.

  4. Effect of Mouse Strain in a Model of Chemical-induced Respiratory Allergy

    OpenAIRE

    Nishino, Risako; Fukuyama, Tomoki; Watanabe, Yuko; Kurosawa, Yoshimi; Ueda, Hideo; Kosaka, Tadashi

    2014-01-01

    The inhalation of many types of chemicals is a leading cause of allergic respiratory diseases, and effective protocols are needed for the detection of environmental chemical–related respiratory allergies. In our previous studies, we developed a method for detecting environmental chemical–related respiratory allergens by using a long-term sensitization–challenge protocol involving BALB/c mice. In the current study, we sought to improve our model by characterizing strain-associated differences ...

  5. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P., E-mail: andrew.kuprat@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Kabilan, S., E-mail: senthil.kabilan@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Carson, J.P., E-mail: james.carson@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Corley, R.A., E-mail: rick.corley@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Einstein, D.R., E-mail: daniel.einstein@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  6. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Science.gov (United States)

    Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  7. A bidirectional coupling procedure applied to multiscale respiratory modeling

    International Nuclear Information System (INIS)

    Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.

    2013-01-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  8. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.

    Science.gov (United States)

    Taylor, Zeike A; Kirk, Thomas B; Miller, Karol

    2007-10-01

    The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.

  10. Model-based respiratory motion compensation for emission tomography image reconstruction

    International Nuclear Information System (INIS)

    Reyes, M; Malandain, G; Koulibaly, P M; Gonzalez-Ballester, M A; Darcourt, J

    2007-01-01

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data

  11. Patient-Specific Human Induced Pluripotent Stem Cell Model Assessed with Electrical Pacing Validates S107 as a Potential Therapeutic Agent for Catecholaminergic Polymorphic Ventricular Tachycardia.

    Directory of Open Access Journals (Sweden)

    Kenichi Sasaki

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer a unique opportunity for disease modeling. However, it is not invariably successful to recapitulate the disease phenotype because of the immaturity of hiPSC-derived cardiomyocytes (hiPSC-CMs. The purpose of this study was to establish and analyze iPSC-based model of catecholaminergic polymorphic ventricular tachycardia (CPVT, which is characterized by adrenergically mediated lethal arrhythmias, more precisely using electrical pacing that could promote the development of new pharmacotherapies.We generated hiPSCs from a 37-year-old CPVT patient and differentiated them into cardiomyocytes. Under spontaneous beating conditions, no significant difference was found in the timing irregularity of spontaneous Ca2+ transients between control- and CPVT-hiPSC-CMs. Using Ca2+ imaging at 1 Hz electrical field stimulation, isoproterenol induced an abnormal diastolic Ca2+ increase more frequently in CPVT- than in control-hiPSC-CMs (control 12% vs. CPVT 43%, p<0.05. Action potential recordings of spontaneous beating hiPSC-CMs revealed no significant difference in the frequency of delayed afterdepolarizations (DADs between control and CPVT cells. After isoproterenol application with pacing at 1 Hz, 87.5% of CPVT-hiPSC-CMs developed DADs, compared to 30% of control-hiPSC-CMs (p<0.05. Pre-incubation with 10 μM S107, which stabilizes the closed state of the ryanodine receptor 2, significantly decreased the percentage of CPVT-hiPSC-CMs presenting DADs to 25% (p<0.05.We recapitulated the electrophysiological features of CPVT-derived hiPSC-CMs using electrical pacing. The development of DADs in the presence of isoproterenol was significantly suppressed by S107. Our model provides a promising platform to study disease mechanisms and screen drugs.

  12. Patient-specific puzzle implant preformed with 3D-printed rapid prototype model for combined orbital floor and medial wall fracture.

    Science.gov (United States)

    Kim, Young Chul; Min, Kyung Hyun; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk; Jeong, Woo Shik

    2018-04-01

    The management of combined orbital floor and medial wall fractures involving the inferomedial strut is challenging due to absence of stable cornerstone. In this article, we proposed surgical strategies using customized 3D puzzle implant preformed with Rapid Prototype (RP) skull model. Retrospective review was done in 28 patients diagnosed with combined orbital floor and medial wall fracture. Using preoperative CT scans, original and mirror-imaged RP skull models for each patient were prepared and sterilized. In all patients, porous polyethylene-coated titanium mesh was premolded onto RP skull model in two ways; Customized 3D jigsaw puzzle technique was used in 15 patients with comminuted inferomedial strut, whereas individual 3D implant technique was used in each fracture for 13 patients with intact inferomedial strut. Outcomes including enophthalmos, visual acuity, and presence of diplopia were assessed and orbital volume was measured using OsiriX software preoperatively and postoperatively. Satisfactory results were achieved in both groups in terms of clinical improvements. Of 10 patients with preoperative diplopia, 9 improved in 6 months, except one with persistent symptom who underwent extraocular muscle rupture. 18 patients who had moderate to severe enophthalmos preoperatively improved, and one remained with mild degree. Orbital volume ratio, defined as volumetric ratio between affected and control orbit, decreased from 127.6% to 99.79% (p puzzle and individual reconstruction technique provide accurate restoration of combined orbital floor and medial wall fractures. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease.

    Science.gov (United States)

    Chun, Yong Soon; Chaudhari, Pooja; Jang, Yoon-Young

    2010-12-14

    The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of these cells including disease modeling, drug toxicity screening/drug discovery, gene therapy and cell replacement therapy.

  14. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Amy [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Gaebler, Carl P.; Huang, Hailiang; Olek, Devin [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-12-01

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for

  15. Solution of human respiratory tract model for chronic inhalation intake

    International Nuclear Information System (INIS)

    Nadar, Minal Y.; Singh, I.S.; Rao, D.D.; Pradeepkumar, K.S.

    2014-01-01

    For the radiation workers of fuel reprocessing and fuel fabrication plants, inhalation is one of the major routes of intake of internal contamination. In case of routine monitoring which would result in lung activity above detection limit, it is assumed that intake has occurred at the midpoint of monitoring interval so that underestimation introduced by the unknown time of intake is less than a factor of three. In the plants, chronic intakes of 239 Pu are possible if low levels of 239 Pu activities remain undetected. In ICRP-78, the retention values are given as a function of time for continuous chronic inhalation of 239 Pu at 1.71 Bq/day that would result in Committed Effective Dose (CED) of 20 mSv. Retention values (R) are not given for inhalation intake at any other rate. Therefore, Human Respiratory Tract Model (HRTM) is solved for continuous chronic inhalation at 1 Bq/day rate for type M compounds of 239 Pu to estimate R as a function of time. These values will be useful in estimating intake from lung activity measurements in case of chronic intakes

  16. A respiratory model for uranium aluminide based on occupational data

    International Nuclear Information System (INIS)

    Leggett, R W; Eckerman, K F; Jr, J D Boice

    2005-01-01

    As part of an epidemiological study, doses from intake of radionuclides were estimated for workers employed during a 52-year period at the Rocketdyne/Atomics International facility in California. The facility was involved in a variety of research programmes, including nuclear fuel fabrication, spent nuclear fuel decladding, and reactor operation and disassembly. Most of the documented intakes involved inhalation of enriched uranium (U), fission products, or plutonium (Pu). Highest doses were estimated for a group of workers exposed to airborne uranium aluminide (UAl x ) during the fabrication of reactor fuel plates. Much of the exposure to UAl x occurred early in the fuel fabrication programme, before it was recognised that intake and lung retention were being underestimated from urinary data due to an unexpected delayed dissolution of the inhaled material. In workers who had been removed from exposure, the rate of urinary excretion of U increased for a few months, peaked, and then declined at a rate consistent with moderately soluble material. This pattern differs markedly from the monotonically decreasing absorption rates represented by the default absorption types in the Human Respiratory Tract Model (HRTM) of the International Commission on Radiological Protection (ICRP). This paper summarises the findings on the behaviour of UAl x in these workers and describes material-specific parameter values of the HRTM based on this information

  17. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation.

    Science.gov (United States)

    Lu, G; Huang, L; Zhang, X L; Wang, S Z; Hong, Y; Hu, Z; Geng, D Y

    2011-08-01

    Hemodynamics factors play an important role in the rupture of cerebral aneurysms. The purpose of this study was to evaluate the impact of hemodynamic factors on the rupture of the MANs with 3D reconstruction model CFD simulation. RDSA was performed in 9 pairs of intracranial MANs. Each pair was divided into ruptured and unruptured groups. The hemodynamic factors of the aneurysms and their parent arteries were compared. There was a significant difference in the WSS at peak systole between the regions of the aneurysms and their parent arteries in the ruptured group (ie, 6.49 ± 3.48 Pa versus 8.78 ± 3.57 Pa, P =.015) but not in the unruptured group (ie, 9.80 ± 4.12 Pa versus 10.17 ± 7.48 Pa, P =.678). The proportion of the low WSS area to the whole area of the aneurysms was 12.20 ± 18.08% in the ruptured group and 3.96 ± 6.91% in the unruptured group; the difference between the 2 groups was statistically significant (P =.015). The OSI was 0.0879 ± 0.0764 in the ruptured group, which was significantly higher than that of the unruptured group (ie, 0.0183 ± 0.0191, P =.008). MANs may be a useful disease model to investigate possible causes linked to ruptured aneurysms. The ruptured aneurysms manifested lower WSS compared with their parent arteries, a higher proportion of the low WSS area to the whole area of aneurysm, and higher OSI compared with the unruptured aneurysms.

  18. Pharmacologic modeling of primary mitochondrial respiratory chain dysfunction in zebrafish.

    Science.gov (United States)

    Byrnes, James; Ganetzky, Rebecca; Lightfoot, Richard; Tzeng, Michael; Nakamaru-Ogiso, Eiko; Seiler, Christoph; Falk, Marni J

    2017-07-18

    Mitochondrial respiratory chain (RC) disease is a heterogeneous and highly morbid group of energy deficiency disorders for which no proven effective therapies exist. Robust vertebrate animal models of primary RC dysfunction are needed to explore the effects of variation in RC disease subtypes, tissue-specific manifestations, and major pathogenic factors contributing to each disorder, as well as their pre-clinical response to therapeutic candidates. We have developed a series of zebrafish (Danio rerio) models that inhibit, to variable degrees, distinct aspects of RC function, and enable quantification of animal development, survival, behaviors, and organ-level treatment effects as well as effects on mitochondrial biochemistry and physiology. Here, we characterize four pharmacologic inhibitor models of mitochondrial RC dysfunction in early larval zebrafish, including rotenone (complex I inhibitor), azide (complex IV inhibitor), oligomycin (complex V inhibitor), and chloramphenicol (mitochondrial translation inhibitor that leads to multiple RC complex dysfunction). A range of concentrations and exposure times of each RC inhibitor were systematically evaluated on early larval development, animal survival, integrated behaviors (touch and startle responses), organ physiology (brain death, neurologic tone, heart rate), and fluorescence-based analyses of mitochondrial physiology in zebrafish skeletal muscle. Pharmacologic RC inhibitor effects were validated by spectrophotometric analysis of Complex I, II and IV enzyme activities, or relative quantitation of ATP levels in larvae. Outcomes were prioritized that utilize in vivo animal imaging and quantitative behavioral assessments, as may optimally inform the translational potential of pre-clinical drug screens for future clinical study in human mitochondrial disease subjects. The RC complex inhibitors each delayed early embryo development, with short-term exposures of these three agents or chloramphenicol from 5 to 7 days

  19. The influence of a fentanyl and dexmedetomidine combination on external respiratory functions in acute hemorrhage model

    Directory of Open Access Journals (Sweden)

    Nikolay G. Vengerovich

    2017-01-01

    Full Text Available Background. The synthetic opioid analgesic fentanyl is widely used for prophylaxis and therapy of traumatic shock associated with massive bleeding. Its side effects – skeletal muscle rigidity and respiratory center depression – are especially pronounced with repeated administration. It is rational to apply fentanyl in diminished doses in combination with non-opioid analgesics in order to reduce respiratory disturbances risk.Aim. The aim of the work is to justify the influence of opioid analgesic fentanyl and α2 -adrenomimetic dexmedetomidine combination on external respiratory functions in acute hemorrhage model.Materials and methods. Acute loss of 35–40% of circulating blood volume was modeled in experiments on 75 white mongrel male rats. The external respiratory functions (respiratory rate, respiratory volume, breath volume per minute were estimated in animals of 5 groups: 1 – rats without analgesic help (controls; 2–3 – rats receiving a single fentanyl intramuscular injection (ED99 98,96 mcg/kg or fentanyl together with dexme detomidine (ED99 of combination 67,94 mcg/kg 15 min after acute blood loss; 4–5 – rats receiving the same drugs 15 min, 30, 45 and 60 min later.Results. In experimental acute loss of 35–40% of circulating blood volume, 15 min later a secondary acute respiratory failure developed with a drop of respiratory rate, respiratory volume and volume of breath per minute by 30%, 21 and 47% (p < 0,05. The external respiratory functions recoverеd after 4 h mainly due to the increase of respiratory volume. A single intramuscular injection of fentanyl caused respiratory depression 15 min after experimental blood loss which resulted in the decrease of breath volume per minute to 30–61% (p < 0,05 for 90 min. Four intramuscular injections of fentanyl 15 min, 30, 45 and 60 min after hemorrhage caused a severe respiratory dysfunction, accompanied by apnea periods and Biot’s respiration. Respiratory rate was reduced

  20. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines.

    Science.gov (United States)

    ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D

    2015-09-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.

  1. Patient-specific workup of adrenal incidentalomas

    Directory of Open Access Journals (Sweden)

    Romy R. de Haan

    Full Text Available Purpose: : To develop a clinical prediction model to predict a clinically relevant adrenal disorder for patients with adrenal incidentaloma. Materials and methods: : This retrospective study is approved by the institutional review board, with waiver of informed consent. Natural language processing is used for filtering of adrenal incidentaloma cases in all thoracic and abdominal CT reports from 2010 till 2012. A total of 635 patients are identified. Stepwise logistic regression is used to construct the prediction model. The model predicts if a patient is at risk for malignancy or hormonal hyperfunction of the adrenal gland at the moment of initial presentation, thus generates a predicted probability for every individual patient. The prediction model is evaluated on its usefulness in clinical practice using decision curve analysis (DCA based on different threshold probabilities. For patients whose predicted probability is lower than the predetermined threshold probability, further workup could be omitted. Results: : A prediction model is successfully developed, with an area under the curve (AUC of 0.78. Results of the DCA indicate that up to 11% of patients with an adrenal incidentaloma can be avoided from unnecessary workup, with a sensitivity of 100% and specificity of 11%. Conclusion: : A prediction model can accurately predict if an adrenal incidentaloma patient is at risk for malignancy or hormonal hyperfunction of the adrenal gland based on initial imaging features and patient demographics. However, with most adrenal incidentalomas labeled as nonfunctional adrenocortical adenomas requiring no further treatment, it is likely that more patients could be omitting from unnecessary diagnostics. Keywords: Adrenal incidentaloma, Patient-specific workup, Prediction model

  2. LUDEP 1. 0, a personal computer program to implement the new ICRP respiratory tract model

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, N.S.; Birchall, A. (National Radiological Protection Board, Chilton (United Kingdom))

    1994-01-01

    The International Commission on Radiological Protection has recently approved a new model of the human respiratory tract. This model has been designed to represent realistically the deposition and biokinetic behaviour of inhaled radionuclides, and to calculate doses to the respiratory tract. In order to examine the practical application and radiological implications of the new model, a Personal Computer program has been developed. LUDEP 1.0 is a user-friendly program for the IBM-compatible PC which enables the user to calculate doses to the respiratory tract and to other organs. (author).

  3. Patient specific modelling in diagnosing depression

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2015-01-01

    Depression is a very common disease. Approximately 10% of people in the Western world experience severe depression during their lifetime and many more experience a mild form of depression. It is commonly believed that depression is caused by malfunctions in the biological system constituted...... by statistical hypothesis testing....

  4. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    Science.gov (United States)

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  5. The revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract

    International Nuclear Information System (INIS)

    Bair, W.J.

    1992-05-01

    A task group has revised the dosimetric model of the respiratory tract used to calculate annual limits on intake of radionuclides. The revised model can be used to project respiratory tract doses for workers and members of the public from airborne radionuclides and to assess past exposures. Doses calculated for specific extrathoracic and thoracic tissues can be adjusted to account for differences in radiosensitivity and summed to yield two values of dose for the respiratory tract that are applicable to the ICRP tissue weighted dosimetry system

  6. WE-D-303-02: Applications of Volumetric Images Generated with a Respiratory Motion Model Based On An External Surrogate Signal

    International Nuclear Information System (INIS)

    Hurwitz, M; Williams, C; Dhou, S; Lewis, J; Mishra, P

    2015-01-01

    Purpose: Respiratory motion can vary significantly over the course of simulation and treatment. Our goal is to use volumetric images generated with a respiratory motion model to improve the definition of the internal target volume (ITV) and the estimate of delivered dose. Methods: Ten irregular patient breathing patterns spanning 35 seconds each were incorporated into a digital phantom. Ten images over the first five seconds of breathing were used to emulate a 4DCT scan, build the ITV, and generate a patient-specific respiratory motion model which correlated the measured trajectories of markers placed on the patients’ chests with the motion of the internal anatomy. This model was used to generate volumetric images over the subsequent thirty seconds of breathing. The increase in the ITV taking into account the full 35 seconds of breathing was assessed with ground-truth and model-generated images. For one patient, a treatment plan based on the initial ITV was created and the delivered dose was estimated using images from the first five seconds as well as ground-truth and model-generated images from the next 30 seconds. Results: The increase in the ITV ranged from 0.2 cc to 6.9 cc for the ten patients based on ground-truth information. The model predicted this increase in the ITV with an average error of 0.8 cc. The delivered dose to the tumor (D95) changed significantly from 57 Gy to 41 Gy when estimated using 5 seconds and 30 seconds, respectively. The model captured this effect, giving an estimated D95 of 44 Gy. Conclusion: A respiratory motion model generating volumetric images of the internal patient anatomy could be useful in estimating the increase in the ITV due to irregular breathing during simulation and in assessing delivered dose during treatment. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc. and Radiological Society of North America Research Scholar Grant #RSCH1206

  7. Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

    Science.gov (United States)

    Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan

    Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

  8. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  9. Application of the new ICRP respiratory tract model to inhaled plutonium nitrate using experimental biokinetic data

    Energy Technology Data Exchange (ETDEWEB)

    Birchall, A.; Bailey, M.R.; Jarvis, N.S. [National Radiological Protection Board, Chilton (United Kingdom)

    1995-12-31

    This paper describes the new ICRP respiratory tract model with particular reference to inhaled plutonium nitrate. The model is used to determine the absorption rates to blood for plutonium nitrate which when combined with the plutonium excretion functions were used to predict urinary excretion in man. The implications of the new model for radiological protection are discussed. (UK).

  10. A finite state model for respiratory motion analysis in image guided radiation therapy

    International Nuclear Information System (INIS)

    Wu Huanmei; Sharp, Gregory C; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B

    2004-01-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates

  11. A finite state model for respiratory motion analysis in image guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2004-12-07

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  12. High-throughput Gene Expression Analysis In Pigs As Model For Respiratory Infections

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Brogaard, Louise; Schou, Kirstine Klitgaard

    model for disease and inflammation. Pigs are fully susceptible to human influenza, and have been demonstrated to be involved in influenza evolution and ecology. Pigs share many similarities with humans regarding lung physiology and innate immune cell infiltration of the respiratory system and thus seem...... to be an obvious large animal model for respiratory infections. This study aimed at providing a better understanding of the involvement of circulating non-coding RNA and innate immune factors in porcine blood leukocytes during influenza virus infection. By employing the pig as a model we were able to perform...

  13. Validation of statistical models for estimating hospitalization associated with influenza and other respiratory viruses.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available BACKGROUND: Reliable estimates of disease burden associated with respiratory viruses are keys to deployment of preventive strategies such as vaccination and resource allocation. Such estimates are particularly needed in tropical and subtropical regions where some methods commonly used in temperate regions are not applicable. While a number of alternative approaches to assess the influenza associated disease burden have been recently reported, none of these models have been validated with virologically confirmed data. Even fewer methods have been developed for other common respiratory viruses such as respiratory syncytial virus (RSV, parainfluenza and adenovirus. METHODS AND FINDINGS: We had recently conducted a prospective population-based study of virologically confirmed hospitalization for acute respiratory illnesses in persons <18 years residing in Hong Kong Island. Here we used this dataset to validate two commonly used models for estimation of influenza disease burden, namely the rate difference model and Poisson regression model, and also explored the applicability of these models to estimate the disease burden of other respiratory viruses. The Poisson regression models with different link functions all yielded estimates well correlated with the virologically confirmed influenza associated hospitalization, especially in children older than two years. The disease burden estimates for RSV, parainfluenza and adenovirus were less reliable with wide confidence intervals. The rate difference model was not applicable to RSV, parainfluenza and adenovirus and grossly underestimated the true burden of influenza associated hospitalization. CONCLUSION: The Poisson regression model generally produced satisfactory estimates in calculating the disease burden of respiratory viruses in a subtropical region such as Hong Kong.

  14. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    Science.gov (United States)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  15. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    International Nuclear Information System (INIS)

    Ford, N L; Martin, E L; Lewis, J F; Veldhuizen, R A W; Holdsworth, D W; Drangova, M

    2009-01-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  16. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Ford, N L [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Martin, E L; Lewis, J F; Veldhuizen, R A W [Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2 (Canada); Holdsworth, D W; Drangova, M [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada)], E-mail: nlford@ryerson.ca

    2009-04-07

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  17. Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.

    Science.gov (United States)

    Poon, C S

    1991-01-01

    A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.

  18. High-throughput gene expression analysis in pigs as model for respiratory infections

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Brogaard, Louise; Schou, Kirstine Klitgaard

    for disease and inflammation. Pigs are fully susceptible to human influenza, and have been demonstrated to be involved in influenza evolution and ecology. Pigs share many similarities with humans regarding lung physiology and innate immune cell infiltration of the respiratory system and thus seem...... to be an obvious large animal model for respiratory infections. This study aimed at providing a better understanding of the involvement of circulating non-coding RNA and innate immune factors in porcine blood leukocytes during influenza virus infection. By employing the pig as a model we were able to perform...

  19. The Respiratory Impedance in an Asymmetric Model of the Lung Structure

    Directory of Open Access Journals (Sweden)

    Robin De Keyser

    2011-01-01

    Full Text Available This paper presents a model of the respiratory tree as a recurrent, but asymmetric, structure. The intrinsic properties posed by such a system lead to a multi-fractal structure, i.e. a non-integer order model of the total impedance. The fractional order behavior of the asymmetric tree simulated as a dynamic system is assessed by means of Bode plots, on a wide range of frequencies. The results indicate than in a specific frequency range, both the symmetric
    and asymmetric representation of the respiratory tree lead to similar values in the impedance.

  20. Effect of mouse strain in a model of chemical-induced respiratory allergy.

    Science.gov (United States)

    Nishino, Risako; Fukuyama, Tomoki; Watanabe, Yuko; Kurosawa, Yoshimi; Ueda, Hideo; Kosaka, Tadashi

    2014-01-01

    The inhalation of many types of chemicals is a leading cause of allergic respiratory diseases, and effective protocols are needed for the detection of environmental chemical-related respiratory allergies. In our previous studies, we developed a method for detecting environmental chemical-related respiratory allergens by using a long-term sensitization-challenge protocol involving BALB/c mice. In the current study, we sought to improve our model by characterizing strain-associated differences in respiratory allergic reactions to the well-known chemical respiratory allergen glutaraldehyde (GA). According to our protocol, BALB/c, NC/Nga, C3H/HeN, C57BL/6N, and CBA/J mice were sensitized dermally with GA for 3 weeks and then challenged with intratracheal or inhaled GA at 2 weeks after the last sensitization. The day after the final challenge, all mice were euthanized, and total serum IgE levels were assayed. In addition, immunocyte counts, cytokine production, and chemokine levels in the hilar lymph nodes (LNs) and bronchoalveolar lavage fluids (BALF) were also assessed. In conclusion, BALB/c and NC/Nga mice demonstrated markedly increased IgE reactions. Inflammatory cell counts in BALF were increased in the treated groups of all strains, especially BALB/c, NC/Nga, and CBA/J strains. Cytokine levels in LNs were increased in all treated groups except for C3H/HeN and were particularly high in BALB/c and NC/Nga mice. According to our results, we suggest that BALB/c and NC/Nga are highly susceptible to respiratory allergic responses and therefore are good candidates for use in our model for detecting environmental chemical respiratory allergens.

  1. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  2. Respiratory system dynamical mechanical properties: modeling in time and frequency domain.

    Science.gov (United States)

    Carvalho, Alysson Roncally; Zin, Walter Araujo

    2011-06-01

    The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.

  3. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  4. An Induced Pluripotent Stem Cell Patient Specific Model of Complement Factor H (Y402H) Polymorphism Displays Characteristic Features of Age-Related Macular Degeneration and Indicates a Beneficial Role for UV Light Exposure.

    Science.gov (United States)

    Hallam, Dean; Collin, Joseph; Bojic, Sanja; Chichagova, Valeria; Buskin, Adriana; Xu, Yaobo; Lafage, Lucia; Otten, Elsje G; Anyfantis, George; Mellough, Carla; Przyborski, Stefan; Alharthi, Sameer; Korolchuk, Viktor; Lotery, Andrew; Saretzki, Gabriele; McKibbin, Martin; Armstrong, Lyle; Steel, David; Kavanagh, David; Lako, Majlinda

    2017-11-01

    Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Patient-specific 3D models created by 3D imaging system or bi-planar imaging coupled with Moiré-Fringe projections: a comparative study of accuracy and reliability on spinal curvatures and vertebral rotation data.

    Science.gov (United States)

    Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier

    2016-10-01

    The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.

  6. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    Science.gov (United States)

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy

    International Nuclear Information System (INIS)

    McClelland, Jamie R.; Blackall, Jane M.; Tarte, Segolene; Chandler, Adam C.; Hughes, Simon; Ahmad, Shahreen; Landau, David B.; Hawkes, David J.

    2006-01-01

    Respiratory motion causes errors when planning and delivering radiotherapy treatment to lung cancer patients. To reduce these errors, methods of acquiring and using four-dimensional computed tomography (4DCT) datasets have been developed. We have developed a novel method of constructing computational motion models from 4DCT. The motion models attempt to describe an average respiratory cycle, which reduces the effects of variation between different cycles. They require substantially less memory than a 4DCT dataset, are continuous in space and time, and facilitate automatic target propagation and combining of doses over the respiratory cycle. The motion models are constructed from CT data acquired in cine mode while the patient is free breathing (free breathing CT - FBCT). A ''slab'' of data is acquired at each couch position, with 3-4 contiguous slabs being acquired per patient. For each slab a sequence of 20 or 30 volumes was acquired over 20 seconds. A respiratory signal is simultaneously recorded in order to calculate the position in the respiratory cycle for each FBCT. Additionally, a high quality reference CT volume is acquired at breath hold. The reference volume is nonrigidly registered to each of the FBCT volumes. A motion model is then constructed for each slab by temporally fitting the nonrigid registration results. The value of each of the registration parameters is related to the position in the respiratory cycle by fitting an approximating B spline to the registration results. As an approximating function is used, and the data is acquired over several respiratory cycles, the function should model an average respiratory cycle. This can then be used to calculate the value of each degree of freedom at any desired position in the respiratory cycle. The resulting nonrigid transformation will deform the reference volume to predict the contents of the slab at the desired position in the respiratory cycle. The slab model predictions are then concatenated to

  8. A novel swine model of ricin-induced acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Shahaf Katalan

    2017-02-01

    Full Text Available Pulmonary exposure to the plant toxin ricin leads to respiratory insufficiency and death. To date, in-depth study of acute respiratory distress syndrome (ARDS following pulmonary exposure to toxins is hampered by the lack of an appropriate animal model. To this end, we established the pig as a large animal model for the comprehensive study of the multifarious clinical manifestations of pulmonary ricinosis. Here, we report for the first time, the monitoring of barometric whole body plethysmography for pulmonary function tests in non-anesthetized ricin-treated pigs. Up to 30 h post-exposure, as a result of progressing hypoxemia and to prevent carbon dioxide retention, animals exhibited a compensatory response of elevation in minute volume, attributed mainly to a large elevation in respiratory rate with minimal response in tidal volume. This response was followed by decompensation, manifested by a decrease in minute volume and severe hypoxemia, refractory to oxygen treatment. Radiological evaluation revealed evidence of early diffuse bilateral pulmonary infiltrates while hemodynamic parameters remained unchanged, excluding cardiac failure as an explanation for respiratory insufficiency. Ricin-intoxicated pigs suffered from increased lung permeability accompanied by cytokine storming. Histological studies revealed lung tissue insults that accumulated over time and led to diffuse alveolar damage. Charting the decline in PaO2/FiO2 ratio in a mechanically ventilated pig confirmed that ricin-induced respiratory damage complies with the accepted diagnostic criteria for ARDS. The establishment of this animal model of pulmonary ricinosis should help in the pursuit of efficient medical countermeasures specifically tailored to deal with the respiratory deficiencies stemming from ricin-induced ARDS.

  9. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  10. Patient-Specific MRI-Based Right Ventricle Models Using Different Zero-Load Diastole and Systole Geometries for Better Cardiac Stress and Strain Calculations and Pulmonary Valve Replacement Surgical Outcome Predictions.

    Directory of Open Access Journals (Sweden)

    Dalin Tang

    Full Text Available Accurate calculation of ventricular stress and strain is critical for cardiovascular investigations. Sarcomere shortening in active contraction leads to change of ventricular zero-stress configurations during the cardiac cycle. A new model using different zero-load diastole and systole geometries was introduced to provide more accurate cardiac stress/strain calculations with potential to predict post pulmonary valve replacement (PVR surgical outcome.Cardiac magnetic resonance (CMR data were obtained from 16 patients with repaired tetralogy of Fallot prior to and 6 months after pulmonary valve replacement (8 male, 8 female, mean age 34.5 years. Patients were divided into Group 1 (n = 8 with better post PVR outcome and Group 2 (n = 8 with worse post PVR outcome based on their change in RV ejection fraction (EF. CMR-based patient-specific computational RV/LV models using one zero-load geometry (1G model and two zero-load geometries (diastole and systole, 2G model were constructed and RV wall thickness, volume, circumferential and longitudinal curvatures, mechanical stress and strain were obtained for analysis. Pairwise T-test and Linear Mixed Effect (LME model were used to determine if the differences from the 1G and 2G models were statistically significant, with the dependence of the pair-wise observations and the patient-slice clustering effects being taken into consideration. For group comparisons, continuous variables (RV volumes, WT, C- and L- curvatures, and stress and strain values were summarized as mean ± SD and compared between the outcome groups by using an unpaired Student t-test. Logistic regression analysis was used to identify potential morphological and mechanical predictors for post PVR surgical outcome.Based on results from the 16 patients, mean begin-ejection stress and strain from the 2G model were 28% and 40% higher than that from the 1G model, respectively. Using the 2G model results, RV EF changes correlated negatively with

  11. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.

    Science.gov (United States)

    Miyamoto, Tadayoshi; Manabe, Kou; Ueda, Shinya; Nakahara, Hidehiro

    2018-05-01

    What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO 2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying

  12. Evaluation of a model training program for respiratory-protection preparedness at local health departments.

    Science.gov (United States)

    Alfano-Sobsey, Edie; Kennedy, Bobby; Beck, Frank; Combs, Brian; Kady, Wendy; Ramsey, Steven; Stockweather, Allison; Service, Will

    2006-04-01

    Respiratory-protection programs have had limited application in local health departments and have mostly focused on protecting employees against exposure to tuberculosis (TB). The need to provide the public health workforce with effective respiratory protection has, however, been underscored by recent concerns about emerging infectious diseases, bioterrorism attacks, drug-resistant microbes, and environmental exposures to microbial allergens (as in recent hurricane flood waters). Furthermore, OSHA has revoked the TB standard traditionally followed by local health departments, replacing it with a more stringent regulation. The additional OSHA requirements may place increased burdens on health departments with limited resources and time. For these reasons, the North Carolina Office of Public Health Preparedness and Response and industrial hygienists of the Public Health Regional Surveillance Teams have developed a training program to facilitate implementation of respiratory protection programs at local health departments. To date, more than 1,400 North Carolina health department employees have been properly fit-tested for respirator use and have received training in all aspects of respiratory protection. This article gives an overview of the development and evaluation of the program. The training approach presented here can serve as a model that other health departments and organizations can use in implementing similar respiratory-protection programs.

  13. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study

    Directory of Open Access Journals (Sweden)

    Jeanette Janaina Jaber Lucato

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C, a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  14. Biological effects of desert dust in respiratory epithelial cells and a murine model.

    Science.gov (United States)

    Abstract As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States could impact a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sedime...

  15. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  16. Population pharmacodynamic modeling and simulation of the respiratory effect of acetazolamide in decompensated COPD patients.

    Directory of Open Access Journals (Sweden)

    Nicholas Heming

    Full Text Available Chronic obstructive pulmonary disease (COPD patients may develop metabolic alkalosis during weaning from mechanical ventilation. Acetazolamide is one of the treatments used to reverse metabolic alkalosis.619 time-respiratory (minute ventilation, tidal volume and respiratory rate and 207 time-PaCO2 observations were obtained from 68 invasively ventilated COPD patients. We modeled respiratory responses to acetazolamide in mechanically ventilated COPD patients and then simulated the effect of increased amounts of the drug.The effect of acetazolamide on minute ventilation and PaCO2 levels was analyzed using a nonlinear mixed effect model. The effect of different ventilatory modes was assessed on the model. Only slightly increased minute ventilation without decreased PaCO2 levels were observed in response to 250 to 500 mg of acetazolamide administered twice daily. Simulations indicated that higher acetazolamide dosage (>1000 mg daily was required to significantly increase minute ventilation (P0.75 L min(-1 in 60% of the population. The model also predicts that 45% of patients would have a decrease of PaCO2>5 mmHg with doses of 1000 mg per day.Simulations suggest that COPD patients might benefit from the respiratory stimulant effect after the administration of higher doses of acetazolamide.

  17. The application of the sinusoidal model to lung cancer patient respiratory motion

    International Nuclear Information System (INIS)

    George, R.; Vedam, S.S.; Chung, T.D.; Ramakrishnan, V.; Keall, P.J.

    2005-01-01

    Accurate modeling of the respiratory cycle is important to account for the effect of organ motion on dose calculation for lung cancer patients. The aim of this study is to evaluate the accuracy of a respiratory model for lung cancer patients. Lujan et al. [Med. Phys. 26(5), 715-720 (1999)] proposed a model, which became widely used, to describe organ motion due to respiration. This model assumes that the parameters do not vary between and within breathing cycles. In this study, first, the correlation of respiratory motion traces with the model f(t) as a function of the parameter n(n=1,2,3) was undertaken for each breathing cycle from 331 four-minute respiratory traces acquired from 24 lung cancer patients using three breathing types: free breathing, audio instruction, and audio-visual biofeedback. Because cos 2 and cos 4 had similar correlation coefficients, and cos 2 and cos 1 have a trigonometric relationship, for simplicity, the cos 1 value was consequently used for further analysis in which the variations in mean position (z 0 ), amplitude of motion (b) and period (τ) with and without biofeedback or instructions were investigated. For all breathing types, the parameter values, mean position (z 0 ), amplitude of motion (b), and period (τ) exhibited significant cycle-to-cycle variations. Audio-visual biofeedback showed the least variations for all three parameters (z 0 , b, and τ). It was found that mean position (z 0 ) could be approximated with a normal distribution, and the amplitude of motion (b) and period (τ) could be approximated with log normal distributions. The overall probability density function (pdf) of f(t) for each of the three breathing types was fitted with three models: normal, bimodal, and the pdf of a simple harmonic oscillator. It was found that the normal and the bimodal models represented the overall respiratory motion pdfs with correlation values from 0.95 to 0.99, whereas the range of the simple harmonic oscillator pdf correlation

  18. A dynamic population-based model for the development of work-related respiratory health effects among bakery workers.

    NARCIS (Netherlands)

    Warren, N.; Meijster, T.; Heederik, D.; Tielemans, E.

    2009-01-01

    OBJECTIVES: This paper presents a dynamic population-based model for the development of sensitisation and respiratory symptoms in bakery workers. The model simulates a population of individual workers longitudinally and tracks the development of work-related sensitisation and respiratory symptoms in

  19. A dynamic population-based model for the development of work-related respiratory health effects among bakery workers

    NARCIS (Netherlands)

    Warren, N.; Meijster, T.; Heederik, D.; Tielemans, E.

    2009-01-01

    Objectives: This paper presents a dynamic population-based model for the development of sensitisation and respiratory symptoms in bakery workers. The model simulates a population of individual workers longitudinally and tracks the development of work-related sensitisation and respiratory symptoms in

  20. The relation between air pollution and respiratory deaths in Tehran, Iran- using generalized additive models.

    Science.gov (United States)

    Dehghan, Azizallah; Khanjani, Narges; Bahrampour, Abbas; Goudarzi, Gholamreza; Yunesian, Masoud

    2018-03-20

    Some epidemiological evidence has shown a relation between ambient air pollution and adverse health outcomes. The aim of this study was to investigate the effect of air pollution on mortality from respiratory diseases in Tehran, Iran. In this ecological study, air pollution data was inquired from the Tehran Province Environmental Protection Agency and the Tehran Air Quality Control Company. Meteorological data was collected from the Tehran Meteorology Organization and mortality data from the Tehran Cemetery Mortality Registration. Generalized Additive Models (GAM) was used for data analysis with different lags, up to 15 days. A 10-unit increase in all pollutants except CO (1-unit) was used to compute the Relative Risk of deaths. During 2005 until 2014, 37,967 respiratory deaths occurred in Tehran in which 21,913 (57.7%) were male. The strongest relationship between NO 2 and PM 10 and respiratory death was seen on the same day (lag 0), and was respectively (RR = 1.04, 95% CI: 1.02-1.07) and (RR = 1.03, 95% CI: 1.02-1.04). O 3 and PM 2.5 had the strongest relationship with respiratory deaths on lag 2 and 1 respectively, and the RR was equal to 1.03, 95% CI: 1.01-1.05 and 1.06, 95% CI: 1.02-1.10 respectively. NO 2 , O 3 , PM 10 and PM 2.5 also showed significant relations with respiratory deaths in the older age groups. The findings of this study showed that O 3 , NO 2 , PM 10 and PM 2.5 air pollutants were related to respiratory deaths in Tehran. Reducing ambient air pollution can save lives in Tehran.

  1. Patient specific 3D printed phantom for IMRT quality assurance

    International Nuclear Information System (INIS)

    Ehler, Eric D; Higgins, Patrick D; Dusenbery, Kathryn E; Barney, Brett M

    2014-01-01

    The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)

  2. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  3. Bayesian Hierarchical Distributed Lag Models for Summer Ozone Exposure and Cardio-Respiratory Mortality

    OpenAIRE

    Yi Huang; Francesca Dominici; Michelle Bell

    2004-01-01

    In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP ...

  4. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  5. Metabolism of model organic pollutants in canine respiratory tract mucosa slices

    International Nuclear Information System (INIS)

    Thornton-Manning, J.R.; Gerde, P.; Chen, S.T.; Dahl, A.R.

    1994-01-01

    The high incidence of human bronchial tumors has been correlated with the high fractional deposition of inhaled particles in the bronchi. Polycyclic aromatic hydrocarbons (PAHs) are frequently bound to airborne particles due to their low vapor pressures. It is thought that tumorigenicity may result from the release and subsequent bioactivation of these particle-associated organic compounds in the respiratory tract. Previous studies at ITRI examined the clearance of organic toxicants from various regions of the canine respiratory tract. Their results indicated that, while clearance of a highly lipophilic PAH such as benzo(a)pyrene (BaP) from the thin alveolar epithelium took only a few minutes, clearance through the thicker epithelium of the conducting airways took hours. Slower, diffusion-limited clearance results in higher concentrations of lipophilic compounds in the epithelium of the bronchi. Hence, the ability of these tissues to metabolize organic compounds to water-soluble metabolites or reactive intermediates may be extremely important in their clearance from the respiratory tract and the potential susceptibility of this region of the respiratory tract to cancer. The purpose of the present study was to evaluate the ability of bronchial mucosa to metabolize a model organic pulmonary carcinogen, BaP, to reactive and nonreactive metabolites and to evaluate the diffusion of the parent compound and metabolites through the bronchial mucosa

  6. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Mead, A F; Petrov, M; Malik, A S; Mitchell, M A; Childers, M K; Bogan, J R; Seidner, G; Kornegay, J N; Stedman, H H

    2014-04-01

    Ventilatory insufficiency remains the leading cause of death and late stage morbidity in Duchenne muscular dystrophy (DMD). To address critical gaps in our knowledge of the pathobiology of respiratory functional decline, we used an integrative approach to study respiratory mechanics in a translational model of DMD. In studies of individual dogs with the Golden Retriever muscular dystrophy (GRMD) mutation, we found evidence of rapidly progressive loss of ventilatory capacity in association with dramatic morphometric remodeling of the diaphragm. Within the first year of life, the mechanics of breathing at rest, and especially during pharmacological stimulation of respiratory control pathways in the carotid bodies, shift such that the primary role of the diaphragm becomes the passive elastic storage of energy transferred from abdominal wall muscles, thereby permitting the expiratory musculature to share in the generation of inspiratory pressure and flow. In the diaphragm, this physiological shift is associated with the loss of sarcomeres in series (∼ 60%) and an increase in muscle stiffness (∼ 900%) compared with those of the nondystrophic diaphragm, as studied during perfusion ex vivo. In addition to providing much needed endpoint measures for assessing the efficacy of therapeutics, we expect these findings to be a starting point for a more precise understanding of respiratory failure in DMD.

  7. Comparison of old and new ICRP models for respiratory tract dosimetry

    International Nuclear Information System (INIS)

    Boecker, B.B.

    1993-01-01

    This paper examines the historical development and application of respiratory tract dosimetry models by the International Commission for Radiological Protection, ICRP, for health protection from inhaled radioactive aerosols. Three different models are discussed, those that were included in ICRP recommendations published in 1960 and 1979, and the new ICRP Publication 66. Basic features of these models are compared and contrasted. These features include model structure, sites and frequencies of particle deposition, processes and rates of clearance of the deposited material from the respiratory tract, and consideration of the parameters involved in these processes and how various factors can influence these parameters. All three models lead to the calculation of absorbed radiation doses with differing degrees of regional and local specificity. These calculations are achieved using different tools ranging from quick hand calculations to sophisticated computerized modeling approaches. A side-by-side review of these models indicates several important trends in respiratory tract dosimetry models, the most obvious of which is the increased complexity of each new model over the past 30+ years. These increases reflect both the increasing size of the knowledge base derived from studies in laboratory animals and in human subjects and the need for models more broadly applicable for both occupational and environmental exposures. It is likely that future research will be directed to those key aspects of the new model having the largest uncertainties. The detailed design of the new model and its associated software provide excellent means of identifying useful research areas and using the resulting new information in organized and productive ways

  8. Update of patient-specific maxillofacial implant.

    Science.gov (United States)

    Owusu, James A; Boahene, Kofi

    2015-08-01

    Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.

  9. Model for the respiratory modulation of the heart beat-to-beat time interval series

    Science.gov (United States)

    Capurro, Alberto; Diambra, Luis; Malta, C. P.

    2005-09-01

    In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.

  10. A Two-Dimensional Human Minilung System (Model for Respiratory Syncytial Virus Infections

    Directory of Open Access Journals (Sweden)

    Esmeralda Magro-Lopez

    2017-12-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of serious pediatric respiratory diseases that lacks effective vaccine or specific therapeutics. Although our understanding about HRSV biology has dramatically increased during the last decades, the need for adequate models of HRSV infection is compelling. We have generated a two-dimensional minilung from human embryonic stem cells (hESCs. The differentiation protocol yielded at least six types of lung and airway cells, although it is biased toward the generation of distal cells. We show evidence of HRSV replication in lung cells, and the induction of innate and proinflammatory responses, thus supporting its use as a model for the study of HRSV–host interactions.

  11. China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model

    Directory of Open Access Journals (Sweden)

    Qilong Cao

    2017-09-01

    Full Text Available Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.

  12. China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.

    Science.gov (United States)

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-09-18

    Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.

  13. China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model

    Science.gov (United States)

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-01-01

    Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables. PMID:28927016

  14. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.

    LENUS (Irish Health Repository)

    Judge, Eoin P

    2014-09-01

    The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.

  15. Applications of patient-specific 3D printing in medicine.

    Science.gov (United States)

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal

    Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.

  16. Comparison of the respiratory tract models of ICRP and US EPA

    International Nuclear Information System (INIS)

    Wu Tao

    2000-01-01

    An index for the integral characterization of risk is necessary for improving risk management, comparing the effects of various practices on the environment and keeping risk as low as reasonably achievable while allowing economic development. Public health risk has been used as an index to compare and combine the risks from the presence of a variety of contaminants. In 1994, International Commission on Radiological Protection published the Publication 66 'Human Respiratory Tract Model for Radiological Protection'. Meanwhile US EPA published 'Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry'. Basically the concept of Reference Concentration (RfC) is similar to that of DAC used in radiation protection. Both of them are derived from the deposited amount of interested contaminants in the respiratory tract. In an attempt to assess the public health risk by combining the ICRP model and the deposited amount corresponding to values of RfC, the main application, especially the fractional deposition, of the respiratory tract model of US EPA is compared with the new respiratory tract model of ICRP. For normal nose breather, when the AMADs of monodisperse aerosol are 0.5 η m, 1 η m, 2 η m, 3 η m, 5 η m, 7 η m and 10 η m, minute volume is 1.2m 3 /h (20L/mim), the corresponding total fractional depositions calculated by the model of the US EPA are 0.33, 0.50, 0.72, 0.85, 0.95, 0.97 and 0.93. With the same condition, the total fractional deposition calculated by the ICRP model is 0.35, 0.51, 0.70, 0.78, 0.82, 0.81 and 0.77. For polydisperse aerosol with default values of ICRP for occupational and environmental exposures, the fractional depositions calculated by US EPA model are 0.82 and 0.50 while that by ICRP are 0.82 and 0.47. In conclusion, (1) The ICRP model is more accurate than the US EPA model and has a wider application. (2) For monodisperse aerosol, when the AMAD of aerosol is less than 3 η m there is no

  17. Respiratory acidosis

    Science.gov (United States)

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  18. 4D modeling and estimation of respiratory motion for radiation therapy

    CERN Document Server

    Lorenz, Cristian

    2013-01-01

    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  19. NASAL-Geom, a free upper respiratory tract 3D model reconstruction software

    Science.gov (United States)

    Cercos-Pita, J. L.; Cal, I. R.; Duque, D.; de Moreta, G. Sanjuán

    2018-02-01

    The tool NASAL-Geom, a free upper respiratory tract 3D model reconstruction software, is here described. As a free software, researchers and professionals are welcome to obtain, analyze, improve and redistribute it, potentially increasing the rate of development, and reducing at the same time ethical conflicts regarding medical applications which cannot be analyzed. Additionally, the tool has been optimized for the specific task of reading upper respiratory tract Computerized Tomography scans, and producing 3D geometries. The reconstruction process is divided into three stages: preprocessing (including Metal Artifact Reduction, noise removal, and feature enhancement), segmentation (where the nasal cavity is identified), and 3D geometry reconstruction. The tool has been automatized (i.e. no human intervention is required) a critical feature to avoid bias in the reconstructed geometries. The applied methodology is discussed, as well as the program robustness and precision.

  20. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy

    Directory of Open Access Journals (Sweden)

    Petrica-Adrian Panaite

    2013-05-01

    Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1. Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding

  1. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Percival, Justin M; Whitehead, Nicholas P; Adams, Marvin E; Adamo, Candace M; Beavo, Joseph A; Froehner, Stanley C

    2012-09-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO

  2. The respiratory tract deposition model proposed by the ICRP Task Group

    International Nuclear Information System (INIS)

    James, A.C.; Briant, J.K.; Stahlhofen, W.; Rudolf, G.; Gehr, P.

    1990-11-01

    The Task Group has developed a new model of the deposition of inhaled aerosols in each anatomical region of the respiratory tract. The model is used to evaluate the fraction of airborne activity that is deposited in respiratory regions having distinct retention characteristics and clearance pathways: the anterior nares, the extrathoracic airways of the naso- and oropharynx and larynx, the bronchi, the bronchioles, and the alveolated airways of the lung. Drawn from experimental data on total and regional deposition in human subjects, the model is based on extrapolation of these data by means of a detailed theoretical model of aerosol transport and deposition within the lung. The Task Group model applies to all practical conditions, and for aerosol particles and vapors from atomic size up to very coarse aerosols with an activity median aerodynamic diameter of 100 μm. The model is designed to predict regional deposition in different subjects, including adults of either sex, children of various ages, and infants, and also to account for anatomical differences among Caucasian and non-Caucasian subjects. The Task Group model represents aerosol inhalability and regional deposition in different subjects by algebraic expressions of aerosol size, breathing rates, standard lung volumes, and scaling factors for airway dimensions. 35 refs., 13 figs., 2 tabs

  3. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  4. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    Science.gov (United States)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  5. The new ICRP respiratory model for radiation protection (ICRP 66) : applications and comparative evaluations

    International Nuclear Information System (INIS)

    Castellani, C.M.; Luciani, A.

    1996-02-01

    The aim of this report is to present the New ICRP Respiratory Model Tract for Radiological Protection. The model allows considering anatomical and physiological characteristics, giving reference values for children aged 3 months, 1, 5,10, and 15 years for adults; it also takes into account aerosol and gas characteristics. After a general description of the model structure, deposition, clearance and dosimetric models are presented. To compare the new and previous model (ICRP 30), dose coefficients (committed effective dose for unit intake) foe inhalation of radionuclides by workers are calculated considering aerosol granulometries with activity median aerodynamic of 1 and 5 μm, reference values for the respective publications. Dose coefficients and annual limits of intakes concerning respective dose limits (50 and 20 mSv respectively for ICRP 26 and 60) for workers and for members of population in case of dispersion of fission products aerosols, are finally calculated

  6. Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling.

    Science.gov (United States)

    Zieliński, Łukasz P; Smith, Anthony C; Smith, Alexander G; Robinson, Alan J

    2016-11-01

    Mitochondrial respiratory chain dysfunction causes a variety of life-threatening diseases affecting about 1 in 4300 adults. These diseases are genetically heterogeneous, but have the same outcome; reduced activity of mitochondrial respiratory chain complexes causing decreased ATP production and potentially toxic accumulation of metabolites. Severity and tissue specificity of these effects varies between patients by unknown mechanisms and treatment options are limited. So far most research has focused on the complexes themselves, and the impact on overall cellular metabolism is largely unclear. To illustrate how computer modelling can be used to better understand the potential impact of these disorders and inspire new research directions and treatments, we simulated them using a computer model of human cardiomyocyte mitochondrial metabolism containing over 300 characterised reactions and transport steps with experimental parameters taken from the literature. Overall, simulations were consistent with patient symptoms, supporting their biological and medical significance. These simulations predicted: complex I deficiencies could be compensated using multiple pathways; complex II deficiencies had less metabolic flexibility due to impacting both the TCA cycle and the respiratory chain; and complex III and IV deficiencies caused greatest decreases in ATP production with metabolic consequences that parallel hypoxia. Our study demonstrates how results from computer models can be compared to a clinical phenotype and used as a tool for hypothesis generation for subsequent experimental testing. These simulations can enhance understanding of dysfunctional mitochondrial metabolism and suggest new avenues for research into treatment of mitochondrial disease and other areas of mitochondrial dysfunction. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Simulation of The ICRP-30 Dosimetric Model for the Respiratory Tract

    International Nuclear Information System (INIS)

    Giaddui, T.; Atia, M. A.

    2004-01-01

    Matlab was used to write a simulation program (ACID1) to simulate the ICRP-30 dosimetric model for the respiratory tract. The program (a new version of the one presented at the sixth Arab conference held in Cairo 2002) calculates a series of dosimetric quantities for the reference man as a result of the inhalation of any radionuclide. The program also plots the variation of activity with time for all organs and provided with a graphical user interface to make it friendly user. The results obtained by this program was compared with similar results obtained by other source and found to be very close. (Authors)

  8. Respiratory compensation in projection imaging using a magnification and displacement model

    International Nuclear Information System (INIS)

    Crawford, C.R.; King, K.F.; Ritchie, C.J.; Godwin, J.D.

    1996-01-01

    Respiratory motion during the collection of computed tomography (CT) projections generates structured artifacts and a loss of resolution that can render the scans unusable. This motion is problematic in scans of those patients who cannot suspend respiration, such as the very young or incubated patients. In this paper, the authors present an algorithm that can be used to reduce motion artifacts in CT scans caused by respiration. An approximate model for the effect of respiration is that the object cross section under interrogation experiences time-varying magnification and displacement along two axes. Using this model an exact filtered backprojection algorithm is derived for the case of parallel projections. The result is extended to generate an approximate reconstruction formula for fan-beam projections. Computer simulations and scans of phantoms on a commercial CT scanner validate the new reconstruction algorithms for parallel and fan-beam projections. Significant reduction in respiratory artifacts is demonstrated clinically when the motion model is satisfied. The method can be applied to projection data used in CT single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI)

  9. Cardio-respiratory development in bird embryos: new insights from a venerable animal model

    Directory of Open Access Journals (Sweden)

    Warren W. Burggren

    Full Text Available ABSTRACT The avian embryo is a time-honored animal model for understanding vertebrate development. A key area of extensive study using bird embryos centers on developmental phenotypic plasticity of the cardio-respiratory system and how its normal development can be affected by abiotic factors such as temperature and oxygen availability. Through the investigation of the plasticity of development, we gain a better understanding of both the regulation of the developmental process and the embryo's capacity for self-repair. Additionally, experiments with abiotic and biotic stressors during development have helped delineate not just critical windows for avian cardio-respiratory development, but the general characteristics (e.g., timing and dose-dependence of critical windows in all developing vertebrates. Avian embryos are useful in exploring fetal programming, in which early developmental experiences have implications (usually negative later in life. The ability to experimentally manipulate the avian embryo without the interference of maternal behavior or physiology makes it particularly useful in future studies of fetal programming. The bird embryo is also a key participant in studies of transgenerational epigenetics, whether by egg provisioning or effects on the germline that are transmitted to the F1 generation (or beyond. Finally, the avian embryo is heavily exploited in toxicology, in which both toxicological testing of potential consumer products as well as the consequences of exposure to anthropogenic pollutants are routinely carried out in the avian embryo. The avian embryo thus proves useful on numerous experimental fronts as an animal model that is concurrently both of adequate complexity and sufficient simplicity for probing vertebrate cardio-respiratory development.

  10. Effect of the Changes of Respiratory Tract Model on the Uranium Bioassay Data

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Taeeun; Noh, Siwan; Kim, Meeryeong; Lee, Jaiki [Hanyang Univ., Seoul (Korea, Republic of); Lee, Jongil; Kim, Jang Lyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The HRTM, however, was revised based on the recent experimental data in OIR (Occupational Intakes of Radionuclides) draft report of ICRP. The changes of respiratory tract model are predicted to directly affect bioassay data like retention and excretion functions. Lung retention function is especially important to internal exposure assessment for workers related to fuel manufacturing because the place could be contaminated by uranium. In addition, faecel samples are recommended to be used for in-vitro bioassay of uranium because of very slow excretion via urine. More reliable assessments for the workers in fuel manufacturing could be achieved by recalculation of bioassay data for uranium and the comparing study using original and revised HRTM. In this study, therefore, the lung retention and faecal excretion functions for inhalation of UO{sub 2} and U{sub 3}O{sub 8} were recalculated using revised HRTM and the results were compared with those of original HRTM. In this study the lung retention and faecal excretion functions for inhalation of UO{sub 2} and U{sub 3}O{sub 8} were calculated based on original and revised HRTM. The results show that the revised HRTM increases lung retention and uptakes to alimentary tract which cause the more faecal excretion. The results in this study confirm the effect of the changes of respiratory tract model on the uranium bioassay data although the more study is needed to apply to practical fields.

  11. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    Science.gov (United States)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  12. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  13. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  14. Respiratory Health - Exposure Measurements and Modeling in the Fragrance and Flavour Industry.

    Science.gov (United States)

    Angelini, Eric; Camerini, Gerard; Diop, Malick; Roche, Patrice; Rodi, Thomas; Schippa, Christine; Thomas, Thierry

    2016-01-01

    Although the flavor and fragrance industry is about 150 years old, the use of synthetic materials started more than 100 years ago, and the awareness of the respiratory hazard presented by some flavoring substances emerged only recently. In 2001, the US National Institute of Occupational Safety and Health (NIOSH) identified for the first time inhalation exposure to flavoring substances in the workplace as a possible occupational hazard. As a consequence, manufacturers must comply with a variety of workplace safety requirements, and management has to ensure the improvement of health and safety of the employees exposed to hazardous volatile organic compounds. In this sensitive context, MANE opened its facilities to an intensive measuring campaign with the objective to better estimate the real level of hazardous respiratory exposure of workers. In this study, exposure to 27 hazardous volatile substances were measured during several types of handling operations (weighing-mixing, packaging, reconditioning-transferring), 430 measurement results were generated, and were exploited to propose an improved model derived from the well-known ECETOC-TRA model. The quantification of volatile substances in the working atmosphere involved three main steps: adsorption of the chemicals on a solid support, thermal desorption, followed by analysis by gas chromatography-mass spectrometry. Our approach was to examine experimental measures done in various manufacturing workplaces and to define correction factors to reflect more accurately working conditions and habits. Four correction factors were adjusted in the ECETOC-TRA to integrate important exposure variation factors: exposure duration, percentage of the substance in the composition, presence of collective protective equipment and wearing of personal protective equipment. Verification of the validity of the model is based on the comparison of the values obtained after adaptation of the ECETOC-TRA model, according to various exposure

  15. Respiratory Health – Exposure Measurements and Modeling in the Fragrance and Flavour Industry

    Science.gov (United States)

    Angelini, Eric; Camerini, Gerard; Diop, Malick; Roche, Patrice; Rodi, Thomas; Schippa, Christine; Thomas, Thierry

    2016-01-01

    Although the flavor and fragrance industry is about 150 years old, the use of synthetic materials started more than 100 years ago, and the awareness of the respiratory hazard presented by some flavoring substances emerged only recently. In 2001, the US National Institute of Occupational Safety and Health (NIOSH) identified for the first time inhalation exposure to flavoring substances in the workplace as a possible occupational hazard. As a consequence, manufacturers must comply with a variety of workplace safety requirements, and management has to ensure the improvement of health and safety of the employees exposed to hazardous volatile organic compounds. In this sensitive context, MANE opened its facilities to an intensive measuring campaign with the objective to better estimate the real level of hazardous respiratory exposure of workers. In this study, exposure to 27 hazardous volatile substances were measured during several types of handling operations (weighing-mixing, packaging, reconditioning-transferring), 430 measurement results were generated, and were exploited to propose an improved model derived from the well-known ECETOC-TRA model. The quantification of volatile substances in the working atmosphere involved three main steps: adsorption of the chemicals on a solid support, thermal desorption, followed by analysis by gas chromatography-mass spectrometry. Our approach was to examine experimental measures done in various manufacturing workplaces and to define correction factors to reflect more accurately working conditions and habits. Four correction factors were adjusted in the ECETOC-TRA to integrate important exposure variation factors: exposure duration, percentage of the substance in the composition, presence of collective protective equipment and wearing of personal protective equipment. Verification of the validity of the model is based on the comparison of the values obtained after adaptation of the ECETOC-TRA model, according to various exposure

  16. Respiratory Health - Exposure Measurements and Modeling in the Fragrance and Flavour Industry.

    Directory of Open Access Journals (Sweden)

    Eric Angelini

    Full Text Available Although the flavor and fragrance industry is about 150 years old, the use of synthetic materials started more than 100 years ago, and the awareness of the respiratory hazard presented by some flavoring substances emerged only recently. In 2001, the US National Institute of Occupational Safety and Health (NIOSH identified for the first time inhalation exposure to flavoring substances in the workplace as a possible occupational hazard. As a consequence, manufacturers must comply with a variety of workplace safety requirements, and management has to ensure the improvement of health and safety of the employees exposed to hazardous volatile organic compounds. In this sensitive context, MANE opened its facilities to an intensive measuring campaign with the objective to better estimate the real level of hazardous respiratory exposure of workers. In this study, exposure to 27 hazardous volatile substances were measured during several types of handling operations (weighing-mixing, packaging, reconditioning-transferring, 430 measurement results were generated, and were exploited to propose an improved model derived from the well-known ECETOC-TRA model. The quantification of volatile substances in the working atmosphere involved three main steps: adsorption of the chemicals on a solid support, thermal desorption, followed by analysis by gas chromatography-mass spectrometry. Our approach was to examine experimental measures done in various manufacturing workplaces and to define correction factors to reflect more accurately working conditions and habits. Four correction factors were adjusted in the ECETOC-TRA to integrate important exposure variation factors: exposure duration, percentage of the substance in the composition, presence of collective protective equipment and wearing of personal protective equipment. Verification of the validity of the model is based on the comparison of the values obtained after adaptation of the ECETOC-TRA model, according to

  17. Application of morphological and physiological parameters representative of a sample Brazilian population in the human respiratory tract model

    International Nuclear Information System (INIS)

    Reis, A.A.; Cardoso, J.C.S.; Lourenco, M.C.

    2005-01-01

    Full text: The Human Respiratory Tract Model (HRTM) proposed in ICRP Publication 66 account for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These changing characteristics can influence the rates and the sites of deposition. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The HRTM model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. lt is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends for a reliable evaluation of the regional deposition the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined in ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The respiratory values at different levels of activity for ages varying from

  18. Reassessment of the cardio-respiratory stress response, using the king penguin as a model.

    Science.gov (United States)

    Willener, Astrid S T; Halsey, Lewis G; Strike, Siobhán; Enstipp, Manfred R; Georges, Jean-Yves; Handrich, Yves

    2015-01-01

    Research in to short-term cardio-respiratory changes in animals in reaction to a psychological stressor typically describes increases in rate of oxygen consumption (V̇(O2)) and heart rate. Consequently, the broad consensus is that they represent a fundamental stressor response generalizable across adult species. However, movement levels can also change in the presence of a stressor, yet studies have not accounted for this possible confound on heart rate. Thus the direct effects of psychological stressors on the cardio-respiratory system are not resolved. We used an innovative experimental design employing accelerometers attached to king penguins (Aptenodytes patagonicus) to measure and thus account for movement levels in a sedentary yet free-to-move animal model during a repeated measures stress experiment. As with previous studies on other species, incubating king penguins (N = 6) exhibited significant increases in both V̇(O2) and heart rate when exposed to the stressor. However, movement levels, while still low, also increased in response to the stressor. Once this was accounted for by comparing periods of time during the control and stress conditions when movement levels were similar as recorded by the accelerometers, only V̇(O2) significantly increased; there was no change in heart rate. These findings offer evidence that changing movement levels have an important effect on the measured stress response and that the cardio-respiratory response per se to a psychological stressor (i.e. the response as a result of physiological changes directly attributable to the stressor) is an increase in V̇(O2) without an increase in heart rate.

  19. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Chi; Phalen, R.F. [Univ. of California, Irvine, CA (United States); Chang, I. [Lovelace Inst., Albuquerque, NM (United States)] [and others

    1995-12-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Although this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.

  20. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    International Nuclear Information System (INIS)

    Yeh, Hsu-Chi; Phalen, R.F.; Chang, I.

    1995-01-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Although this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny (∼ 1 nm) to particles larger than 100 μm. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar

  1. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    Science.gov (United States)

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  2. [Etiological analysis and establishment of a discriminant model for lower respiratory tract infections in hospitalized patients].

    Science.gov (United States)

    Chen, Y S; Lin, X H; Li, H R; Hua, Z D; Lin, M Q; Huang, W S; Yu, T; Lyu, H Y; Mao, W P; Liang, Y Q; Peng, X R; Chen, S J; Zheng, H; Lian, S Q; Hu, X L; Yao, X Q

    2017-12-12

    Objective: To analyze the pathogens of lower respiratory tract infection(LRTI) including bacterial, viral and mixed infection, and to establish a discriminant model based on clinical features in order to predict the pathogens. Methods: A total of 243 hospitalized patients with lower respiratory tract infections were enrolled in Fujian Provincial Hospital from April 2012 to September 2015. The clinical data and airway (sputum and/or bronchoalveolar lavage) samples were collected. Microbes were identified by traditional culture (for bacteria), loop-mediated isothermal amplification(LAMP) and gene sequencing (for bacteria and atypical pathogen), or Real-time quantitative polymerase chain reaction (Real-time PCR)for viruses. Finally, a discriminant model was established by using the discriminant analysis methods to help to predict bacterial, viral and mixed infections. Results: Pathogens were detected in 53.9% (131/243) of the 243 cases.Bacteria accounted for 23.5%(57/243, of which 17 cases with the virus, 1 case with Mycoplasma pneumoniae and virus), mainly Pseudomonas Aeruginosa and Klebsiella Pneumonia. Atypical pathogens for 4.9% (12/243, of which 3 cases with the virus, 1 case of bacteria and viruses), all were mycoplasma pneumonia. Viruses for 34.6% (84/243, of which 17 cases of bacteria, 3 cases with Mycoplasma pneumoniae, 1 case with Mycoplasma pneumoniae and bacteria) of the cases, mainly Influenza A virus and Human Cytomegalovirus, and other virus like adenovirus, human parainfluenza virus, respiratory syncytial virus, human metapneumovirus, human boca virus were also detected fewly. Seven parameters including mental status, using antibiotics prior to admission, complications, abnormal breath sounds, neutrophil alkaline phosphatase (NAP) score, pneumonia severity index (PSI) score and CRUB-65 score were enrolled after univariate analysis, and discriminant analysis was used to establish the discriminant model by applying the identified pathogens as the

  3. Evaluation of In-111 neutrophils in a model of the adult respiratory distress syndrome

    International Nuclear Information System (INIS)

    Cooper, J.A.; Solano, S.J.; Bizios, R.; Line, B.R.; Malik, A.B.

    1984-01-01

    Neutrophils (PMNs) have been implicated in the pathogenesis of the adult respiratory distress syndrome. To further define their role, the authors studied the kinetics of In-111 labeled PMNs in a sheep model of acute pulmonary vascular injury. PMNs isolated by Percoll-plasma gradient centrifugation, and labeled with 500 uCi of In-111-oxine. Following i.v. reinfusion of the labeled PMNs, lung activity was monitored with the labeled PMNs, lung activity was monitored with a gamma camera. After a two hour baseline, pulmonary vascular injury secondary to intravascular coagulation was induced by the i.v. infusion of 100 units/kg of thrombin (n=5). Pulmonary time activity curves demonstrated increases in pulmonary PMN activity averaging 14% over baseline following thrombin infusion. A portion of the uptake was transient, lasting about 20 to 30 min., but PMN activity remained above baseline for the remainder of the study. Following the infusion of gamma thrombin, a form of thrombin unable to cleave fibrinogen, increased PMN uptake was not observed. Inhibition of fibrinolysis with tranaxemic acid, reduced the PMN response to thrombin to less than a 3% increase over baseline (n=2). The findings demonstrate that PMNs are involved in acute pulmonary vascular injury, and suggest a potential role for labeled PMNs in the clinical investigation of the adult respiratory distress syndrome

  4. Flipped classroom model improves graduate student performance in cardiovascular, respiratory, and renal physiology.

    Science.gov (United States)

    Tune, Johnathan D; Sturek, Michael; Basile, David P

    2013-12-01

    The purpose of this study was to assess the effectiveness of a traditional lecture-based curriculum versus a modified "flipped classroom" curriculum of cardiovascular, respiratory, and renal physiology delivered to first-year graduate students. Students in both courses were provided the same notes and recorded lectures. Students in the modified flipped classroom were required to watch the prerecorded lectures before class and then attend class, where they received a quiz or homework covering material in each lecture (valued at 25% of the final grade) followed by a question and answer/problem-solving period. In the traditional curriculum, attending lectures was optional and there were no quizzes. Evaluation of effectiveness and student performance was achieved by having students in both courses take the same multiple-choice exams. Within a comparable group of graduate students, participants in the flipped course scored significantly higher (P ≤ 0.05) on the cardiovascular, respiratory, and weighted cumulative sections by an average of >12 percentage points. Exam averages for students in the flipped course also tended to be higher on the renal section by ∼11 percentage points (P = 0.06). Based on our experience and responses obtained in blinded student surveys, we propose that the use of homework and in-class quizzes were critical motivating factors that likely contributed to the increase in student exam performance. Taken together, our findings support that the flipped classroom model is a highly effective means in which to disseminate key physiological concepts to graduate students.

  5. Respiratory alkalosis

    Science.gov (United States)

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  6. Application of morphological and physiological parameters representative of a Brazilian population sample in the respiratory tract model

    International Nuclear Information System (INIS)

    Dos Reis, A. A.; Cardoso, J. C. S.; Lourenco, M. C.

    2007-01-01

    The human respiratory tract model (HRTM) adopted by ICRP in its Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These characteristics are important to determine the fractional deposition. It is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population wherever such information is available. The main purpose of this study is to verify the influence of using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of the ICRP Publication 66 model. (authors)

  7. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2005-09-01

    Full Text Available A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free energy transduction is introduced and analyzed based on a previously published set of data measured on isolated cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the electron transport system, ATP synthesis at F1F0 ATPase, substrate transporters including adenine nucleotide translocase and the phosphate-hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes through the K+/H+ antiporter and passive H+ and K+ permeation. Estimation of 16 adjustable parameter values is based on fitting model simulations to nine independent data curves. The identified model is further validated by comparison to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed data. The resulting validated and verified model provides a foundation for building larger and more complex systems models and investigating complex physiological and pathophysiological interactions in cardiac energetics.

  8. A Biophysical Model of the Mitochondrial Respiratory System and Oxidative Phosphorylation.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free energy transduction is introduced and analyzed based on a previously published set of data measured on isolated cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the electron transport system, ATP synthesis at F(1F(0 ATPase, substrate transporters including adenine nucleotide translocase and the phosphate-hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes through the K/H antiporter and passive H and K permeation. Estimation of 16 adjustable parameter values is based on fitting model simulations to nine independent data curves. The identified model is further validated by comparison to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed data. The resulting validated and verified model provides a foundation for building larger and more complex systems models and investigating complex physiological and pathophysiological interactions in cardiac energetics.

  9. Within-breath arterial PO2 oscillations in an experimental model of acute respiratory distress syndrome.

    Science.gov (United States)

    Williams, E M; Viale, J P; Hamilton, R M; McPeak, H; Sutton, L; Hahn, C E

    2000-09-01

    Tidal ventilation causes within-breath oscillations in alveolar oxygen concentration, with an amplitude which depends on the prevailing ventilator settings. These alveolar oxygen oscillations are transmitted to arterial oxygen tension, PaO2, but with an amplitude which now depends upon the magnitude of venous admixture or true shunt, QS/QT. We investigated the effect of positive end-expiratory pressure (PEEP) on the amplitude of the PaO2 oscillations, using an atelectasis model of shunt. Blood PaO2 was measured on-line with an intravascular PaO2 sensor, which had a 2-4 s response time (10-90%). The magnitude of the time-varying PaO2 oscillation was titrated against applied PEEP while tidal volume, respiratory rate and inspired oxygen concentration were kept constant. The amplitude of the PaO2 oscillation, delta PaO2, and the mean PaO2 value varied with the level of PEEP applied. At zero PEEP, both the amplitude and the mean were at their lowest values. As PEEP was increased to 1.5 kPa, both delta PaO2 and the mean PaO2 increased to a maximum. Thereafter, the mean PaO2 increased but delta PaO2 decreased. Clear oscillations of PaO2 were seen even at the lowest mean PaO2, 9.5 kPa. Conventional respiratory models of venous admixture predict that these PaO2 oscillations will be reduced by the steep part of the oxyhaemoglobin dissociation curve if a constant pulmonary shunt exists throughout the whole respiratory cycle. The facts that the PaO2 oscillations occurred at all mean PaO2 values and that their amplitude increased with increasing PEEP suggest that QS/QT, in the atelectasis model, varies between end-expiration and end-inspiration, having a much lower value during inspiration than during expiration.

  10. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model.

    Directory of Open Access Journals (Sweden)

    Ramy A Fodah

    Full Text Available Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS, CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype was internalized at higher levels than ATCC 43816 (K2 and NTUH-K2044 (K1, consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU while MGH 78578 is relatively avirulent.

  11. From Patient-Specific Mathematical Neuro-Oncology to Precision Medicine

    Directory of Open Access Journals (Sweden)

    Anne eBaldock

    2013-04-01

    Full Text Available Gliomas are notoriously aggressive, malignant brain tumors that have variable response to treatment. These patients often have poor prognosis, informed primarily by histopathology. Mathematical neuro-oncology (MNO is a young and burgeoning field that leverages mathematical models to predict and quantify response to therapies. These mathematical models can form the basis of modern precision medicine approaches to tailor therapy in a patient-specific manner. Patient specific models (PSMs can be used to overcome imaging limitations, improve prognostic predictions, stratify patients and assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research in the war on cancer. This review focuses on the growing translation of PSM to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific mathematical neuro-oncology.

  12. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    Science.gov (United States)

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  13. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  14. Practical application of the new ICRP Human Respiratory Tract Model (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.R.; Guilmette, R.A.; Jarvis, N.S.; Roy, M

    1998-07-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) has been applied to calculate general-purpose dose coefficients using default values of parameters relating to the material and the subjects. The ICRP Task Group on Internal Dosimetry is developing a 'Technical Document' giving guidance on application of the HRTM in situations where using specific information can improve dose assessment. It will include an analysis of the sensitivity of doses and bioassay quantities, lung retention and excretion rates, to relevant parameter values. Guidance will be given on characterising and sampling radioactive aerosols and on determining absorption rates. Examples will be given illustrating application of the HRTM in a wide range of situations. This paper provides a selective summary of the document at its current stage of development, with emphasis on determining absorption rates. (author)

  15. Spatio-temporal and stochastic modelling of severe acute respiratory syndrome

    Directory of Open Access Journals (Sweden)

    Poh-Chin Lai

    2013-11-01

    Full Text Available This study describes the development of a spatio-temporal disease model based on the episodes of severe acute respiratory syndrome (SARS that took place in Hong Kong in 2003. In contrast to conventional, deterministic modelling approaches, the model described here is predominantly spatial. It incorporates stochastic processing of environmental and social variables that interact in space and time to affect the patterns of disease transmission in a community. The model was validated through a comparative assessment between actual and modelled distribution of diseased locations. Our study shows that the inclusion of location-specific characteristics satisfactorily replicates the spatial dynamics of an infectious disease. The Pearson’s correlation coefficients for five trials based on 3-day aggregation of disease counts for 1-3, 4-6 and 7-9 day forecasts were 0.57- 0.95, 0.54-0.86 and 0.57-0.82, respectively, while the correlation based on 5-day aggregation for the 1-5 day forecast was 0.55- 0.94 and 0.58-0.81 for the 6-10 day forecast. The significant and strong relationship between actual results and forecast is encouraging for the potential development of an early warning system for detecting this type of disease outbreaks.

  16. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study.

    Science.gov (United States)

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang; Cao, Yang

    2016-08-16

    To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. A time-series study using regional death registry between 2009 and 2010. 8 districts in a large metropolitan area in Northern China. 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (-1.09 to 4.28 vs -1.08 to 3.93) and the PCs-based model (-2.23 to 4.07 vs -2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, -1.12 to 4.85 versus -1.11 versus 4.83. The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. A patient-specific model of the biomechanics of hip reduction for neonatal Developmental Dysplasia of the Hip: Investigation of strategies for low to severe grades of Developmental Dysplasia of the Hip.

    Science.gov (United States)

    Huayamave, Victor; Rose, Christopher; Serra, Sheila; Jones, Brendan; Divo, Eduardo; Moslehy, Faissal; Kassab, Alain J; Price, Charles T

    2015-07-16

    A physics-based computational model of neonatal Developmental Dysplasia of the Hip (DDH) following treatment with the Pavlik Harness (PV) was developed to obtain muscle force contribution in order to elucidate biomechanical factors influencing the reduction of dislocated hips. Clinical observation suggests that reduction occurs in deep sleep involving passive muscle action. Consequently, a set of five (5) adductor muscles were identified as mediators of reduction using the PV. A Fung/Hill-type model was used to characterize muscle response. Four grades (1-4) of dislocation were considered, with one (1) being a low subluxation and four (4) a severe dislocation. A three-dimensional model of the pelvis-femur lower limb of a representative 10 week-old female was generated based on CT-scans with the aid of anthropomorphic scaling of anatomical landmarks. The model was calibrated to achieve equilibrium at 90° flexion and 80° abduction. The hip was computationally dislocated according to the grade under investigation, the femur was restrained to move in an envelope consistent with PV restraints, and the dynamic response under passive muscle action and the effect of gravity was resolved. Model results with an anteversion angle of 50° show successful reduction Grades 1-3, while Grade 4 failed to reduce with the PV. These results are consistent with a previous study based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the PV for Grade 4. However our model indicated that it is possible to achieve reduction of Grade 4 dislocation by hyperflexion and the resultant external rotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons.

    Science.gov (United States)

    Wang, Yangyang; Rubin, Jonathan E

    2017-12-01

    Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.

  19. A Randomized Placebo Controlled Trial of Ibuprofen for Respiratory Syncytial Virus Infection in a Bovine Model.

    Directory of Open Access Journals (Sweden)

    Paul Walsh

    Full Text Available Respiratory syncytial virus (RSV is the most common cause of bronchiolitis and hospital admission in infants. An analogous disease occurs in cattle and costs US agriculture a billion dollars a year. RSV causes much of its morbidity indirectly via adverse effects of the host response to the virus. RSV is accompanied by elevated prostaglandin E2 (PGE2 which is followed by neutrophil led inflammation in the lung. Ibuprofen is a prototypical non-steroidal anti-inflammatory drug that decreases PGE2 levels by inhibiting cyclooxygenase.We hypothesized that treatment of RSV with ibuprofen would decrease PGE2 levels, modulate the immune response, decrease clinical illness, and decrease the histopathological lung changes in a bovine model of RSV. We further hypothesized that viral replication would be unaffected.We performed a randomized placebo controlled trial of ibuprofen in 16 outbred Holstein calves that we infected with RSV. We measured clinical scores, cyclooxygenase, lipoxygenase and endocannabinoid products in plasma and mediastinal lymph nodes and interleukin (Il-4, Il-13, Il-17 and interferon-γ in mediastinal lymph nodes. RSV shedding was measured daily and nasal Il-6, Il-8 and Il-17 every other day. The calves were necropsied on Day 10 post inoculation and histology performed.One calf in the ibuprofen group required euthanasia on Day 8 of infection for respiratory distress. Clinical scores (p<0.01 and weight gain (p = 0.08 seemed better in the ibuprofen group. Ibuprofen decreased cyclooxygenase, lipoxygenase, and cytochrome P450 products, and increased monoacylglycerols in lung lymph nodes. Ibuprofen modulated the immune response as measured by narrowed range of observed Il-13, Il-17 and IFN-γ gene expression in mediastinal lymph nodes. Lung histology was not different between groups, and viral shedding was increased in calves randomized to ibuprofen.Ibuprofen decreased PGE2, modulated the immune response, and improved clinical outcomes

  20. A Randomized Placebo Controlled Trial of Ibuprofen for Respiratory Syncytial Virus Infection in a Bovine Model

    Science.gov (United States)

    Walsh, Paul; Behrens, Nicole; Carvallo Chaigneau, Francisco R.; McEligot, Heather; Agrawal, Karan; Newman, John W.; Anderson, Mark; Gershwin, Laurel J.

    2016-01-01

    Background Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and hospital admission in infants. An analogous disease occurs in cattle and costs US agriculture a billion dollars a year. RSV causes much of its morbidity indirectly via adverse effects of the host response to the virus. RSV is accompanied by elevated prostaglandin E2 (PGE2) which is followed by neutrophil led inflammation in the lung. Ibuprofen is a prototypical non-steroidal anti-inflammatory drug that decreases PGE2 levels by inhibiting cyclooxygenase. Hypotheses We hypothesized that treatment of RSV with ibuprofen would decrease PGE2 levels, modulate the immune response, decrease clinical illness, and decrease the histopathological lung changes in a bovine model of RSV. We further hypothesized that viral replication would be unaffected. Methods We performed a randomized placebo controlled trial of ibuprofen in 16 outbred Holstein calves that we infected with RSV. We measured clinical scores, cyclooxygenase, lipoxygenase and endocannabinoid products in plasma and mediastinal lymph nodes and interleukin (Il)-4, Il-13, Il-17 and interferon-γ in mediastinal lymph nodes. RSV shedding was measured daily and nasal Il-6, Il-8 and Il-17 every other day. The calves were necropsied on Day 10 post inoculation and histology performed. Results One calf in the ibuprofen group required euthanasia on Day 8 of infection for respiratory distress. Clinical scores (pibuprofen group. Ibuprofen decreased cyclooxygenase, lipoxygenase, and cytochrome P450 products, and increased monoacylglycerols in lung lymph nodes. Ibuprofen modulated the immune response as measured by narrowed range of observed Il-13, Il-17 and IFN-γ gene expression in mediastinal lymph nodes. Lung histology was not different between groups, and viral shedding was increased in calves randomized to ibuprofen. Conclusions Ibuprofen decreased PGE2, modulated the immune response, and improved clinical outcomes. However lung

  1. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  2. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Science.gov (United States)

    Stittelaar, Koert J.; de Waal, Leon; van Amerongen, Geert; Veldhuis Kroeze, Edwin J.B.; Fraaij, Pieter L.A.; van Baalen, Carel A.; van Kampen, Jeroen J.A.; van der Vries, Erhard; Osterhaus, Albert D.M.E.; de Swart, Rik L.

    2016-01-01

    Human respiratory syncytial virus (HRSV) is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo). Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50) administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI). Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies. PMID:27314379

  3. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Directory of Open Access Journals (Sweden)

    Koert J. Stittelaar

    2016-06-01

    Full Text Available Human respiratory syncytial virus (HRSV is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo. Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50 administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI. Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies.

  4. Modeling Associations between Principals' Reported Indoor Environmental Quality and Students' Self-Reported Respiratory Health Outcomes Using GLMM and ZIP Models.

    Science.gov (United States)

    Toyinbo, Oluyemi; Matilainen, Markus; Turunen, Mari; Putus, Tuula; Shaughnessy, Richard; Haverinen-Shaughnessy, Ulla

    2016-03-30

    The aim of this paper was to examine associations between school building characteristics, indoor environmental quality (IEQ), and health responses using questionnaire data from both school principals and students. From 334 randomly sampled schools, 4248 sixth grade students from 297 schools participated in a questionnaire. From these schools, 134 principals returned questionnaires concerning 51 IEQ related questions of their school. Generalized linear mixed models (GLMM) were used to study the associations between IEQ indicators and existence of self-reported upper respiratory symptoms, while hierarchical Zero Inflated Poisson (ZIP)-models were used to model the number of symptoms. Significant associations were established between existence of upper respiratory symptoms and unsatisfactory classroom temperature during the heating season (ORs 1.45 for too hot and cold, and 1.27 for too cold as compared to satisfactory temperature) and dampness or moisture damage during the year 2006-2007 (OR: 1.80 as compared to no moisture damage), respectively. The number of upper respiratory symptoms was significantly associated with inadequate ventilation and dampness or moisture damage. A higher number of missed school days due to respiratory infections were reported in schools with inadequate ventilation (RR: 1.16). The school level IEQ indicator variables described in this paper could explain a relatively large part of the school level variation observed in the self-reported upper respiratory symptoms and missed school days due to respiratory infections among students.

  5. Modeling Associations between Principals’ Reported Indoor Environmental Quality and Students’ Self-Reported Respiratory Health Outcomes Using GLMM and ZIP Models

    Directory of Open Access Journals (Sweden)

    Oluyemi Toyinbo

    2016-03-01

    Full Text Available Background: The aim of this paper was to examine associations between school building characteristics, indoor environmental quality (IEQ, and health responses using questionnaire data from both school principals and students. Methods: From 334 randomly sampled schools, 4248 sixth grade students from 297 schools participated in a questionnaire. From these schools, 134 principals returned questionnaires concerning 51 IEQ related questions of their school. Generalized linear mixed models (GLMM were used to study the associations between IEQ indicators and existence of self-reported upper respiratory symptoms, while hierarchical Zero Inflated Poisson (ZIP—models were used to model the number of symptoms. Results: Significant associations were established between existence of upper respiratory symptoms and unsatisfactory classroom temperature during the heating season (ORs 1.45 for too hot and cold, and 1.27 for too cold as compared to satisfactory temperature and dampness or moisture damage during the year 2006–2007 (OR: 1.80 as compared to no moisture damage, respectively. The number of upper respiratory symptoms was significantly associated with inadequate ventilation and dampness or moisture damage. A higher number of missed school days due to respiratory infections were reported in schools with inadequate ventilation (RR: 1.16. Conclusions: The school level IEQ indicator variables described in this paper could explain a relatively large part of the school level variation observed in the self-reported upper respiratory symptoms and missed school days due to respiratory infections among students.

  6. Modeling Associations between Principals’ Reported Indoor Environmental Quality and Students’ Self-Reported Respiratory Health Outcomes Using GLMM and ZIP Models

    Science.gov (United States)

    Toyinbo, Oluyemi; Matilainen, Markus; Turunen, Mari; Putus, Tuula; Shaughnessy, Richard; Haverinen-Shaughnessy, Ulla

    2016-01-01

    Background: The aim of this paper was to examine associations between school building characteristics, indoor environmental quality (IEQ), and health responses using questionnaire data from both school principals and students. Methods: From 334 randomly sampled schools, 4248 sixth grade students from 297 schools participated in a questionnaire. From these schools, 134 principals returned questionnaires concerning 51 IEQ related questions of their school. Generalized linear mixed models (GLMM) were used to study the associations between IEQ indicators and existence of self-reported upper respiratory symptoms, while hierarchical Zero Inflated Poisson (ZIP)—models were used to model the number of symptoms. Results: Significant associations were established between existence of upper respiratory symptoms and unsatisfactory classroom temperature during the heating season (ORs 1.45 for too hot and cold, and 1.27 for too cold as compared to satisfactory temperature) and dampness or moisture damage during the year 2006–2007 (OR: 1.80 as compared to no moisture damage), respectively. The number of upper respiratory symptoms was significantly associated with inadequate ventilation and dampness or moisture damage. A higher number of missed school days due to respiratory infections were reported in schools with inadequate ventilation (RR: 1.16). Conclusions: The school level IEQ indicator variables described in this paper could explain a relatively large part of the school level variation observed in the self-reported upper respiratory symptoms and missed school days due to respiratory infections among students. PMID:27043595

  7. A mathematical model of transport and regional uptake of radioactive gases in the human respiratory system

    Science.gov (United States)

    Baek, Inseok

    The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.

  8. Patient-specific prediction of functional recovery after stroke.

    Science.gov (United States)

    Douiri, Abdel; Grace, Justin; Sarker, Shah-Jalal; Tilling, Kate; McKevitt, Christopher; Wolfe, Charles DA; Rudd, Anthony G

    2017-07-01

    Background and aims Clinical predictive models for stroke recovery could offer the opportunity of targeted early intervention and more specific information for patients and carers. In this study, we developed and validated a patient-specific prognostic model for monitoring recovery after stroke and assessed its clinical utility. Methods Four hundred and ninety-five patients from the population-based South London Stroke Register were included in a substudy between 2002 and 2004. Activities of daily living were assessed using Barthel Index) at one, two, three, four, six, eight, 12, 26, and 52 weeks after stroke. Penalized linear mixed models were developed to predict patients' functional recovery trajectories. An external validation cohort included 1049 newly registered stroke patients between 2005 and 2011. Prediction errors on discrimination and calibration were assessed. The potential clinical utility was evaluated using prognostic accuracy measurements and decision curve analysis. Results Predictive recovery curves showed good accuracy, with root mean squared deviation of 3 Barthel Index points and a R 2 of 83% up to one year after stroke in the external cohort. The negative predictive values of the risk of poor recovery (Barthel Index <8) at three and 12 months were also excellent, 96% (95% CI [93.6-97.4]) and 93% [90.8-95.3], respectively, with a potential clinical utility measured by likelihood ratios (LR+:17 [10.8-26.8] at three months and LR+:11 [6.5-17.2] at 12 months). Decision curve analysis showed an increased clinical benefit, particularly at threshold probabilities of above 5% for predictive risk of poor outcomes. Conclusions A recovery curves tool seems to accurately predict progression of functional recovery in poststroke patients.

  9. Pediatric Specialty Care Model for Management of Chronic Respiratory Failure: Cost and Savings Implications and Misalignment With Payment Models.

    Science.gov (United States)

    Graham, Robert J; McManus, Michael L; Rodday, Angie Mae; Weidner, Ruth Ann; Parsons, Susan K

    2018-05-01

    To describe program design, costs, and savings implications of a critical care-based care coordination model for medically complex children with chronic respiratory failure. All program activities and resultant clinical outcomes were tracked over 4 years using an adapted version of the Care Coordination Measurement Tool. Patient characteristics, program activity, and acute care resource utilization were prospectively documented in the adapted version of the Care Coordination Measurement Tool and retrospectively cross-validated with hospital billing data. Impact on total costs of care was then estimated based on program outcomes and nationally representative administrative data. Tertiary children's hospital. Critical Care, Anesthesia, Perioperative Extension and Home Ventilation Program enrollees. None. The program provided care for 346 patients and families over the study period. Median age at enrollment was 6 years with more than half deriving secondary respiratory failure from a primary neuromuscular disease. There were 11,960 encounters over the study period, including 1,202 home visits, 673 clinic visits, and 4,970 telephone or telemedicine encounters. Half (n = 5,853) of all encounters involved a physician and 45% included at least one care coordination activity. Overall, we estimated that program interventions were responsible for averting 556 emergency department visits and 107 hospitalizations. Conservative monetization of these alone accounted for annual savings of $1.2-2 million or $407/pt/mo net of program costs. Innovative models, such as extension of critical care services, for high-risk, high-cost patients can result in immediate cost savings. Evaluation of financial implications of comprehensive care for high-risk patients is necessary to complement clinical and patient-centered outcomes for alternative care models. When year-to-year cost variability is high and cost persistence is low, these savings can be estimated from documentation within care

  10. Transmission of Human Respiratory Syncytial Virus in the Immunocompromised Ferret Model

    Science.gov (United States)

    de Waal, Leon; Smits, Saskia L.; Veldhuis Kroeze, Edwin J. B.; van Amerongen, Geert; Pohl, Marie O.; Osterhaus, Albert D. M. E.; Stittelaar, Koert J.

    2018-01-01

    Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to infection control measures, including isolation of cases, high standards of hand hygiene, cohort nursing, and use of personal protective equipment. No vaccines against HRSV are currently available, and treatment options are largely supportive care and expensive monoclonal antibody or antiviral therapy. The limitations of current animal models for HRSV infection impede the development of new preventive and therapeutic agents, and the assessment of their potential for limiting HRSV transmission, in particular in nosocomial settings. Here, we demonstrate the efficient transmission of HRSV from immunocompromised ferrets to both immunocompromised and immunocompetent contact ferrets, with pathological findings reproducing HRSV pathology in humans. The immunocompromised ferret-HRSV model represents a novel tool for the evaluation of intervention strategies against nosocomial transmission of HRSV. PMID:29301313

  11. Model of human recurrent respiratory papilloma on chicken embryo chorioallantoic membrane for tumor angiogenesis research.

    Science.gov (United States)

    Uloza, Virgilijus; Kuzminienė, Alina; Palubinskienė, Jolita; Balnytė, Ingrida; Ulozienė, Ingrida; Valančiūtė, Angelija

    2017-07-01

    We aimed to develop a chick embryo chorioallantoic membrane (CAM) model of recurrent respiratory papilloma (RPP) and to evaluate its morphological and morphometric characteristics, together with angiogenic features. Fresh RRP tissue samples obtained from 13 patients were implanted in 174 chick embryo CAMs. Morphological, morphometric, and angiogenic changes in the CAM and chorionic epithelium were evaluated up until 7 days after the implantation. Immunohistochemical analysis (34βE12, Ki-67, MMP-9, PCNA, and Sambucus nigra staining) was performed to detect cytokeratins and endothelial cells and to evaluate proliferative capacity of the RRP before and after implantation on the CAM. The implanted RRP tissue samples survived on CAM in 73% of cases while retaining their essential morphologic characteristics and proliferative capacity of the original tumor. Implants induced thickening of both the CAM (241-560%, p=0.001) and the chorionic epithelium (107-151%, p=0.001), while the number of blood vessels (37-85%, p=0.001) in the CAM increased. The results of the present study confirmed that chick embryo CAM is a relevant host for serving as a medium for RRP fresh tissue implantation. The CAM assay demonstrated the specific RRP tumor growth pattern after implantation and provided the first morphological and morphometric characterization of the RRP CAM model that opens new horizons in studying this disease.

  12. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  13. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015 : A systematic review and modelling study

    NARCIS (Netherlands)

    Shi, Ting; McAllister, David A.; O'Brien, Katherine L.; Simoes, Eric A. F.; Madhi, Shabir A.; Gessner, Bradford D.; Polack, Fernando P.; Balsells, Evelyn; Acacio, Sozinho; Aguayo, Claudia; Alassani, Issifou; Ali, Asad; Antonio, Martin; Awasthi, Shally; Awori, Juliet O.; Azziz-Baumgartner, Eduardo; Baggett, Henry C.; Baillie, Vicky L.; Balmaseda, Angel; Barahona, Alfredo; Basnet, Sudha; Bassat, Quique; Basualdo, Wilma; Bigogo, Godfrey; Bont, Louis; Breiman, Robert F.; Brooks, W. Abdullah; Broor, Shobha; Bruce, Nigel; Bruden, Dana; Buchy, Philippe; Campbell, Stuart; Carosone-Link, Phyllis; Chadha, Mandeep; Chipeta, James; Chou, Monidarin; Clara, Wilfrido; Cohen, Cheryl; de Cuellar, Elizabeth; Dang, Duc Anh; Dash-yandag, Budragchaagiin; Deloria-Knoll, Maria; Dherani, Mukesh; Eap, Tekchheng; Ebruke, Bernard E.; Echavarria, Marcela; de Freitas Lázaro Emediato, Carla Cecília; Fasce, Rodrigo A.; Feikin, Daniel R.; Feng, Luzhao; Gentile, Angela; Gordon, Aubree; Goswami, Doli; Goyet, Sophie; Groome, Michelle J; Halasa, Natasha; Hirve, Siddhivinayak; Homaira, Nusrat; Howie, Stephen R.C.; Jara, Jorge; Jroundi, Imane; Kartasasmita, Cissy B.; Khuri-Bulos, Najwa; Kotloff, Karen L.; Krishnan, Anand; Libster, Romina; Lopez, Olga; Lucero, Marilla G.; Lucion, Florencia; Lupisan, Socorro P.; Marcone, Debora N.; McCracken, John P.; Mejia, Mario; Moisi, Jennifer C.; Montgomery, Joel M.; Moore, David P.; Moraleda, Cinta; Moyes, Jocelyn; Munywoki, Patrick; Mutyara, Kuswandewi; Nicol, Mark P.; Nokes, D. James; Nymadawa, Pagbajabyn; da Costa Oliveira, Maria Tereza; Oshitani, Histoshi; Pandey, Nitin; Paranhos-Baccalà, Gláucia; Phillips, Lia N.; Picot, Valentina Sanchez; Rahman, Mustafizur; Rakoto-Andrianarivelo, Mala; Rasmussen, Zeba A.; Rath, Barbara A.; Robinson, Annick; Romero, Candice; Russomando, Graciela; Salimi, Vahid; Sawatwong, Pongpun; Scheltema, Nienke; Schweiger, Brunhilde; Scott, J. Anthony G.; Seidenberg, Phil; Shen, Kunling; Singleton, Rosalyn; Sotomayor, Viviana; Strand, Tor A.; Sutanto, Agustinus; Sylla, Mariam; Tapia, Milagritos D.; Thamthitiwat, Somsak; Thomas, Elizabeth D.; Tokarz, Rafal; Turner, Claudia; Venter, Marietjie; Waicharoen, Sunthareeya; Wang, Jianwei; Watthanaworawit, Wanitda; Yoshida, Lay Myint; Yu, Hongjie; Zar, Heather J.; Campbell, Harry; Nair, Harish

    2017-01-01

    Background: We have previously estimated that respiratory syncytial virus (RSV) was associated with 22% of all episodes of (severe) acute lower respiratory infection (ALRI) resulting in 55 000 to 199 000 deaths in children younger than 5 years in 2005. In the past 5 years, major research activity on

  14. Patient-specific hip prostheses designed by surgeons

    Directory of Open Access Journals (Sweden)

    Coigny Florian

    2016-09-01

    Full Text Available Patient-specific bone and joint replacement implants lead to better functional and aesthetic results than conventional methods [1], [2], [3]. But extracting 3D shape information from CT Data and designing individual implants is demanding and requires multiple surgeon-to-engineer interactions. For manufacturing purposes, Additive Manufacturing offers various advantages, especially for low volume manufacturing parts, such as patient specific implants. To ease these new approaches and to avoid surgeon-to-engineer interactions a new design software approach is needed which offers highly automated and user friendly planning steps.

  15. Comment on “Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells”

    Science.gov (United States)

    Bilican, Bilada; Serio, Andrea; Barmada, Sami J.; Nishimura, Agnes Lumi; Sullivan, Gareth J.; Carrasco, Monica; Phatnani, Hemali P.; Puddifoot, Clare A.; Story, David; Fletcher, Judy; Park, In-Hyun; Friedman, Brad A.; Daley, George Q.; Wyllie, David J. A.; Hardingham, Giles E.; Wilmut, Ian; Finkbeiner, Steven; Maniatis, Tom; Shaw, Christopher E.; Chandran, Siddharthan

    2014-01-01

    Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations. PMID:23740897

  16. Transmission of human respiratory syncytial virus in the immunocompromised ferret model

    NARCIS (Netherlands)

    de Waal, L. (Leon); S.L. Smits (Saskia); E.J.B. Veldhuis Kroeze (Edwin); G. van Amerongen (Geert); Pohl, M.O. (Marie O.); Osterhaus, A.D.M.E. (Albert D. M. E.); K.J. Stittelaar (Koert)

    2018-01-01

    textabstractHuman respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with

  17. Respiratory Failure

    Science.gov (United States)

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  18. Respiratory system

    Science.gov (United States)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  19. Analysis of ion beam teletherapy patient-specific quality assurance.

    Science.gov (United States)

    Liu, Xiaoli; Deng, Yu; Schlegel, Nicki; Huang, Zhijie; Moyers, Michael F

    2018-02-27

    The objective of this study was to evaluate the procedures for patient-specific quality assurance measurements using modulated scanned and energy stacked beams for proton and carbon ion teletherapy. Delivery records from 1734 portal measurements were analyzed using a 3-point pass criteria: more than 22 of 24 chambers in a water phantom (WP) had to have a measured dose difference from the planned portal doses less than or equal to 3%, or the distance from the measurement point location to a point location in the plan having the same dose had to be less than or equal to 3 mm (distance to agreement [DTA]), and the mean dose deviation of all chambers had to be less than 3%. Stratification of results showed some associations between measurement parameters and pass rates. For proton portals, pass rates were high at all measurement depths, but for carbon ion portals, pass rates decreased as a function of increasing measurement depth. Pass rates of both proton and carbon ion portals with 1 WP were slightly lower than those with a second WP. The total pass rates were 97.7% and 91.9% for proton and carbon ion patient portals, respectively. In general, the measured doses exhibited good agreement with the treatment planning system (TPS) calculated doses. When the chamber position was deeper than 150 mm in carbon ion beams, a lower pass rate was observed, which may have been caused by ion chamber array setup uncertainty (lateral and depth) in highly modulated portals or incorrect modeling of scatter by the TPS. These deviations need further investigation. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. A multi-tiered time-series modelling approach to forecasting respiratory syncytial virus incidence at the local level.

    Science.gov (United States)

    Spaeder, M C; Fackler, J C

    2012-04-01

    Respiratory syncytial virus (RSV) is the most common cause of documented viral respiratory infections, and the leading cause of hospitalization, in young children. We performed a retrospective time-series analysis of all patients aged Forecasting models of weekly RSV incidence for the local community, inpatient paediatric hospital and paediatric intensive-care unit (PICU) were created. Ninety-five percent confidence intervals calculated around our models' 2-week forecasts were accurate to ±9·3, ±7·5 and ±1·5 cases/week for the local community, inpatient hospital and PICU, respectively. Our results suggest that time-series models may be useful tools in forecasting the burden of RSV infection at the local and institutional levels, helping communities and institutions to optimize distribution of resources based on the changing burden and severity of illness in their respective communities.

  1. A multiple model approach to respiratory motion prediction for real-time IGRT

    International Nuclear Information System (INIS)

    Putra, Devi; Haas, Olivier C L; Burnham, Keith J; Mills, John A

    2008-01-01

    Respiration induces significant movement of tumours in the vicinity of thoracic and abdominal structures. Real-time image-guided radiotherapy (IGRT) aims to adapt radiation delivery to tumour motion during irradiation. One of the main problems for achieving this objective is the presence of time lag between the acquisition of tumour position and the radiation delivery. Such time lag causes significant beam positioning errors and affects the dose coverage. A method to solve this problem is to employ an algorithm that is able to predict future tumour positions from available tumour position measurements. This paper presents a multiple model approach to respiratory-induced tumour motion prediction using the interacting multiple model (IMM) filter. A combination of two models, constant velocity (CV) and constant acceleration (CA), is used to capture respiratory-induced tumour motion. A Kalman filter is designed for each of the local models and the IMM filter is applied to combine the predictions of these Kalman filters for obtaining the predicted tumour position. The IMM filter, likewise the Kalman filter, is a recursive algorithm that is suitable for real-time applications. In addition, this paper proposes a confidence interval (CI) criterion to evaluate the performance of tumour motion prediction algorithms for IGRT. The proposed CI criterion provides a relevant measure for the prediction performance in terms of clinical applications and can be used to specify the margin to accommodate prediction errors. The prediction performance of the IMM filter has been evaluated using 110 traces of 4-minute free-breathing motion collected from 24 lung-cancer patients. The simulation study was carried out for prediction time 0.1-0.6 s with sampling rates 3, 5 and 10 Hz. It was found that the prediction of the IMM filter was consistently better than the prediction of the Kalman filter with the CV or CA model. There was no significant difference of prediction errors for the

  2. Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.

    Science.gov (United States)

    Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry

    2018-04-01

    Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.

  3. Patient specific 3D visualisation of human brain | Baichoo ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Patient specific 3D visualisation of human brain.

  4. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available The accuracy with which a recent elastic surface registration algorithm deforms the complex geometry of a skull is examined. This algorithm is then coupled to a line based algorithm as is frequently used in patient specific feature registration...

  5. Patient specific 3D visualisation of human brain

    African Journals Online (AJOL)

    Nafiisah

    development of powerful new 3D image analysis and visualization algorithms that ... The tool is aimed to provide facility to reconstruct patient-specific 3D ... In this paper we present a review of the ... medical diagnosis, procedures training, pre-operative planning, ..... Body: Handbook of Numerical Analysis, Elsevier, 2004.

  6. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    International Nuclear Information System (INIS)

    Song, Ting; Zhou, Linghong; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Jiang, Steve B; Gu, Xuejun

    2015-01-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control. (paper)

  7. Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson's disease.

    Science.gov (United States)

    Andrzejewski, Kryspin; Budzińska, Krystyna; Kaczyńska, Katarzyna

    2017-07-01

    Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. Male adult Wistar rats were injected unilaterally with 6-OHDA (20μg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. In Vivo Respiratory-Gated Micro-CT Imaging in Small-Animal Oncology Models

    Directory of Open Access Journals (Sweden)

    Dawn Cavanaugh

    2004-01-01

    Full Text Available Micro-computed tomography (micro-CT is becoming an accepted research tool for the noninvasive examination of laboratory animals such as mice and rats, but to date, in vivo scanning has largely been limited to the evaluation of skeletal tissues. We use a commercially available micro-CT device to perform respiratory gated in vivo acquisitions suitable for thoracic imaging. The instrument is described, along with the scan protocol and animal preparation techniques. Preliminary results confirm that lung tumors as small as 1 mm in diameter are visible in vivo with these methods. Radiation dose was evaluated using several approaches, and was found to be approximately 0.15 Gy for this respiratory-gated micro-CT imaging protocol. The combination of high-resolution CT imaging and respiratory-gated acquisitions appears well-suited to serial in vivo scanning.

  9. Cynomolgus macaque as an animal model for severe acute respiratory syndrome.

    Directory of Open Access Journals (Sweden)

    James V Lawler

    2006-05-01

    Full Text Available The emergence of severe acute respiratory syndrome (SARS in 2002 and 2003 affected global health and caused major economic disruption. Adequate animal models are required to study the underlying pathogenesis of SARS-associated coronavirus (SARS-CoV infection and to develop effective vaccines and therapeutics. We report the first findings of measurable clinical disease in nonhuman primates (NHPs infected with SARS-CoV.In order to characterize clinically relevant parameters of SARS-CoV infection in NHPs, we infected cynomolgus macaques with SARS-CoV in three groups: Group I was infected in the nares and bronchus, group II in the nares and conjunctiva, and group III intravenously. Nonhuman primates in groups I and II developed mild to moderate symptomatic illness. All NHPs demonstrated evidence of viral replication and developed neutralizing antibodies. Chest radiographs from several animals in groups I and II revealed unifocal or multifocal pneumonia that peaked between days 8 and 10 postinfection. Clinical laboratory tests were not significantly changed. Overall, inoculation by a mucosal route produced more prominent disease than did intravenous inoculation. Half of the group I animals were infected with a recombinant infectious clone SARS-CoV derived from the SARS-CoV Urbani strain. This infectious clone produced disease indistinguishable from wild-type Urbani strain.SARS-CoV infection of cynomolgus macaques did not reproduce the severe illness seen in the majority of adult human cases of SARS; however, our results suggest similarities to the milder syndrome of SARS-CoV infection characteristically seen in young children.

  10. Developing a multi-component immune model for evaluating the risk of respiratory illness in athletes.

    Science.gov (United States)

    Gleeson, Maree; Pyne, David B; Elkington, Lisa J; Hall, Sharron T; Attia, John R; Oldmeadow, Christopher; Wood, Lisa G; Callister, Robin

    2017-01-01

    Clinical and laboratory identification of the underlying risk of respiratory illness in athletes has proved problematic. The aim of this study was to determine whether clinical data, combined with immune responses to standardised exercise protocols and genetic cytokine polymorphism status, could identify the risk of respiratory illness (symptoms) in a cohort of highly-trained athletes. Male endurance athletes (n=16; VO2max 66.5 ± 5.1 mL.kg-1.min-1) underwent a clinical evaluation of known risk factors by a physician and comprehensive laboratory analysis of immune responses both at rest and after two cycling ergometer tests: 60 min at 65% VO2max (LONG); and 6 x 3 min intervals at 90% VO2max (INTENSE). Blood tests were performed to determine Epstein Barr virus (EBV) status and DNA was genotyped for a panel of cytokine gene polymorphisms. Saliva was collected for measurement of IgA and detection of EBV DNA. Athletes were then followed for 9 months for self-reported episodes of respiratory illness, with confirmation of the underlying cause by a sports physician. There were no associations with risk of respiratory illness identified for any parameter assessed in the clinical evaluations. The laboratory parameters associated with an increased risk of respiratory illnesses in highly-trained athletes were cytokine gene polymorphisms for the high expression of IL-6 and IFN-ɣ; expression of EBV-DNA in saliva; and low levels of salivary IgA concentration. A genetic risk score was developed for the cumulative number of minor alleles for the cytokines evaluated. Athletes prone to recurrent respiratory illness were more likely to have immune disturbances that allow viral reactivation, and a genetic predisposition to pro-inflammatory cytokine responses to intense exercise. Copyright © 2016 International Society of Exercise and Immunology. All rights reserved.

  11. Two-stage Bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions.

    Science.gov (United States)

    Blangiardo, Marta; Finazzi, Francesco; Cameletti, Michela

    2016-08-01

    Exposure to high levels of air pollutant concentration is known to be associated with respiratory problems which can translate into higher morbidity and mortality rates. The link between air pollution and population health has mainly been assessed considering air quality and hospitalisation or mortality data. However, this approach limits the analysis to individuals characterised by severe conditions. In this paper we evaluate the link between air pollution and respiratory diseases using general practice drug prescriptions for chronic respiratory diseases, which allow to draw conclusions based on the general population. We propose a two-stage statistical approach: in the first stage we specify a space-time model to estimate the monthly NO2 concentration integrating several data sources characterised by different spatio-temporal resolution; in the second stage we link the concentration to the β2-agonists prescribed monthly by general practices in England and we model the prescription rates through a small area approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Flipped Classroom Model Improves Graduate Student Performance in Cardiovascular, Respiratory, and Renal Physiology

    Science.gov (United States)

    Tune, Johnathan D.; Sturek, Michael; Basile, David P.

    2013-01-01

    The purpose of this study was to assess the effectiveness of a traditional lecture-based curriculum versus a modified "flipped classroom" curriculum of cardiovascular, respiratory, and renal physiology delivered to first-year graduate students. Students in both courses were provided the same notes and recorded lectures. Students in the…

  13. A randomized placebo controlled trial of ibuprofen for respiratory syncytial infection in a bovine model study

    Science.gov (United States)

    Background: Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and hospital admission in infants. An analogous disease occurs in cattle and costs US agriculture a billion dollars a year. RSV causes much of its morbidity indirectly via adverse effects of the host response to ...

  14. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling.

    Science.gov (United States)

    Thelen, Brian; French, Nancy H F; Koziol, Benjamin W; Billmire, Michael; Owen, Robert Chris; Johnson, Jeffrey; Ginsberg, Michele; Loboda, Tatiana; Wu, Shiliang

    2013-11-05

    A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a

  15. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  16. Internal emitter dosimetry: are patient-specific calculations necessary?

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The question of whether patient-specific calculations are needed in internal emitter dosimetry arises when radionuclides are used for therapy. In diagnostic procedures the absorbed dose delivered to normal tissue is far below hazardous levels. In internal emitter therapy, the need for patient-specific dosimetry may arise if a large variability in biodistribution, normal tissue toxicity or efficacy is anticipated. Patient-specificity may be accomplished at the level of pharmacokinetics, anatomy/tumor-geometry or both. At the first level, information regarding the biodistribution of a particular radiolabeled agent is obtained and used to determine the maximum activity that may be administered for treatment. The classical example of this is radioiodine therapy for thyroid cancer. In radioiodine therapy, the therapy dose is preceded by a tracer dose of I-131-iodide which is used to measure patient kinetics by imaging and whole-body counting. Absorbed dose estimates obtained from these data are used to constrain the therapy dose to meet safety criteria established in a previously performed dose-response study. The most ambitious approach to patient-specific dosimetry, requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of registered images representing anatomy (CT or MRI). The spatial distribution of absorbed dose or dose-rate may then be obtained by convolution of a point-kernel with the radioactivity distribution or by Monte Carlo calculation. The spatial absorbed dose or dose-rate distribution may be represented as a set of images, as isodose contours, or as dose-volume histograms. The 3-D Monte Carlo approach is, in principle, the most patient-specific; it accounts for patient anatomy and tumor geometry as well as for the spatial distribution of radioactivity. It is also, however, the most logistically and technically demanding. Patients are required to undergo CT or MRI and at least one

  17. Simulation of the respiratory model of tract of Publication 66 of the ICRP and their use in biological analysis

    International Nuclear Information System (INIS)

    Puerta, A.

    2001-01-01

    The International Commission Radiological Protection, ICRP in its publications 67, 68, 69 and 71 provides the loss of systematic activity of the radioactive materials by the routes of excretion and recirculation, as well as effective dose by incorporation unit coefficient, using the model of respiratory tract proposed by the ICRP, in its Publication 66, but it does not provide information on as these models in biological analysis are used. There are some specific studies for inhalation of uranium compounds made by Bertelli and collaborators using the new model of the lung. In this work it have been done a simulation of the model of respiratory tract of ICRP 66 of such form that it can be used in-vitro and in-vivo biological analysis. In order to verify the simulation were used systemic models for adult of planuin, lead, uranium, bismuth and their respective descendants and the comparison with the coefficients of dose provided by the ICRP. Finally, it shows the estimation of the temporary distribution of activity in devices and the excrete of these radionuclides and in addition the model for gases and steam in the conditions is verified that the ICRP proposes

  18. The effect of patient-specific factors on radiation-induced regional lung injury

    International Nuclear Information System (INIS)

    Garipagaoglu, Melahat; Munley, Michael T.; Hollis, Donna; Poulson, Jean M.; Bentel, Gunilla C.; Sibley, Gregory; Anscher, Mitchell S.; Fan Ming; Jaszczak, Ronald J.; Coleman, R. Edward; Marks, Lawrence B.

    1999-01-01

    Purpose: To assess the impact of patient-specific factors on radiation (RT)-induced reductions in regional lung perfusion. Methods: Fifty patients (32 lung carcinoma, 7 Hodgkin's disease, 9 breast carcinoma and 2 other thoracic tumors) had pre-RT and ≥24-week post-RT single photon emission computed tomography (SPECT) perfusion images to assess the dose dependence of RT-induced reductions in regional lung perfusion. The SPECT data were analyzed using a normalized and non-normalized approach. Furthermore, two different mathematical methods were used to assess the impact of patient-specific factors on the dose-response curve (DRC). First, DRCs for different patient subgroups were generated and compared. Second, in a more formal statistical approach, individual DRCs for regional lung injury for each patient were fit to a linear-quadratic model (reduction = coefficient 1 x dose + coefficient 2 x dose 2 ). Multiple patient-specific factors including tobacco history, pre-RT diffusion capacity to carbon monoxide (DLCO), transforming growth factor-beta (TGF-β), chemotherapy exposure, disease type, and mean lung dose were explored in a multivariate analysis to assess their impact on the coefficients. Results: None of the variables tested had a consistent impact on the radiation sensitivity of regional lung (i.e., the slope of the DRC). In the formal statistical analysis, there was a suggestion of a slight increase in radiation sensitivity in the dose range >40 Gy for nonsmokers (vs. smokers) and in those receiving chemotherapy (vs. no chemotherapy). However, this finding was very dependent on the specific statistical and normalization method used. Conclusion: Patient-specific factors do not have a dramatic effect on RT-induced reduction in regional lung perfusion. Additional studies are underway to better clarify this issue. We continue to postulate that patient-specific factors will impact on how the summation of regional injury translates into whole organ injury

  19. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.

    Science.gov (United States)

    Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R

    Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. Modelling of polysomnographic respiratory measurements for artefact detection and signal restoration

    International Nuclear Information System (INIS)

    Rathnayake, S I; Abeyratne, U R; Hukins, C; Duce, B

    2008-01-01

    Polysomnography (PSG), which incorporates measures of sleep with measures of EEG arousal, air flow, respiratory movement and oxygenation, is universally regarded as the reference standard in diagnosing sleep-related respiratory diseases such as obstructive sleep apnoea syndrome. Over 15 channels of physiological signals are measured from a subject undergoing a typical overnight PSG session. The signals often suffer from data losses, interferences and artefacts. In a typical sleep scoring session, artefact-corrupted signal segments are visually detected and removed from further consideration. This is a highly time-consuming process, and subjective judgement is required for the job. During typical sleep scoring sessions, the target is the detection of segments of diagnostic interest, and signal restoration is not utilized for distorted segments. In this paper, we propose a novel framework for artefact detection and signal restoration based on the redundancy among respiratory flow signals. We focus on the air flow (thermistor sensors) and nasal pressure signals which are clinically significant in detecting respiratory disturbances. The method treats the respiratory system and other organs that provide respiratory-related inputs/outputs to it (e.g., cardiovascular, brain) as a possibly nonlinear coupled-dynamical system, and uses the celebrated Takens embedding theorem as the theoretical basis for signal prediction. Nonlinear prediction across time (self-prediction) and signals (cross-prediction) provides us with a mechanism to detect artefacts as unexplained deviations. In addition to detection, the proposed method carries the potential to correct certain classes of artefacts and restore the signal. In this study, we categorize commonly occurring artefacts and distortions in air flow and nasal pressure measurements into several groups and explore the efficacy of the proposed technique in detecting/recovering them. The results we obtained from a database of clinical

  1. Absence of respiratory inflammatory reaction of elemental sulfur using the California Pesticide Illness Database and a mouse model.

    Science.gov (United States)

    Lee, Kiyoung; Smith, Jodi L; Last, Jerold A

    2005-01-01

    Elemental sulfur, a natural substance, is used as a fungicide. Elemental sulfur is the most heavily used agricultural chemical in California. In 2003, annual sulfur usage in California was about 34% of the total weight of pesticide active ingredient used in production agriculture. Even though sulfur is mostly used in dust form, the respiratory health effects of elemental sulfur are not well documented. The purpose of this paper is to address the possible respiratory effect of elemental sulfur using the California Pesticide Illness Database and laboratory experiments with mice. We analyzed the California Pesticide Illness Database between 1991 and 2001. Among 127 reports of definite, probable, and possible illness involving sulfur, 21 cases (16%) were identified as respiratory related. A mouse model was used to examine whether there was an inflammatory or fibrotic response to elemental sulfur. Dust solutions were injected intratracheally into ovalbumin sensitized mice and lung damage was evaluated. Lung inflammatory response was analyzed via total lavage cell counts and differentials, and airway collagen content was analyzed histologically and biochemically. No significant differences from controls were seen in animals exposed to sulfur particles. The findings suggest that acute exposure of elemental sulfur itself may not cause an inflammatory reaction. However, further studies are needed to understand the possible health effects of chronic sulfur exposure and environmental weathering of sulfur dust.

  2. Patient specific ankle-foot orthoses using rapid prototyping.

    Science.gov (United States)

    Mavroidis, Constantinos; Ranky, Richard G; Sivak, Mark L; Patritti, Benjamin L; DiPisa, Joseph; Caddle, Alyssa; Gilhooly, Kara; Govoni, Lauren; Sivak, Seth; Lancia, Michael; Drillio, Robert; Bonato, Paolo

    2011-01-12

    Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  3. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  4. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  5. Patient-specific three-dimensional printing for pre-surgical planning in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Perica, Elizabeth; Sun, Zhonghua

    2017-12-01

    Recently, three-dimensional (3D) printing has shown great interest in medicine, and 3D printed models may be rendered as part of the pre-surgical planning process in order to better understand the complexities of an individual's anatomy. The aim of this study is to investigate the feasibility of utilising 3D printed liver models as clinical tools in pre-operative planning for resectable hepatocellular carcinoma (HCC) lesions. High-resolution contrast-enhanced computed tomography (CT) images were acquired and utilized to generate a patient-specific 3D printed liver model. Hepatic structures were segmented and edited to produce a printable model delineating intrahepatic anatomy and a resectable HCC lesion. Quantitative assessment of 3D model accuracy compared measurements of critical anatomical landmarks acquired from the original CT images, standard tessellation language (STL) files, and the 3D printed liver model. Comparative analysis of surveys completed by two radiologists investigated the clinical value of 3D printed liver models in radiology. The application of utilizing 3D printed liver models as tools in surgical planning for resectable HCC lesions was evaluated through kappa analysis of questionnaires completed by two abdominal surgeons. A scaled down multi-material 3D liver model delineating patient-specific hepatic anatomy and pathology was produced, requiring a total production time of 25.25 hours and costing a total of AUD $1,250. A discrepancy was found in the total mean of measurements at each stage of production, with a total mean of 18.28±9.31 mm for measurements acquired from the original CT data, 15.63±8.06 mm for the STL files, and 14.47±7.71 mm for the 3D printed liver model. The 3D liver model did not enhance the radiologists' perception of patient-specific anatomy or pathology. Kappa analysis of the surgeon's responses to survey questions yielded a percentage agreement of 80%, and a κ value of 0.38 (P=0.24) indicating fair agreement. Study

  6. Biomechanical investigation of different surgical strategies for the treatment of rib fractures using a three-dimensional human respiratory model.

    Science.gov (United States)

    Shih, Kao-Shang; Truong, Thanh An; Hsu, Ching-Chi; Hou, Sheng-Mou

    2017-11-02

    Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.

  7. Ocular Tropism of Respiratory Viruses

    Science.gov (United States)

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  8. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.

    Science.gov (United States)

    Hong, S-M; Jung, B-H; Ruan, D

    2011-03-21

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively

  9. Respiratory system model for quasistatic pulmonary pressure-volume (P-V) curve: inflation-deflation loop analyses.

    Science.gov (United States)

    Amini, R; Narusawa, U

    2008-06-01

    A respiratory system model (RSM) is developed for the deflation process of a quasistatic pressure-volume (P-V) curve, following the model for the inflation process reported earlier. In the RSM of both the inflation and the deflation limb, a respiratory system consists of a large population of basic alveolar elements, each consisting of a piston-spring-cylinder subsystem. A normal distribution of the basic elements is derived from Boltzmann statistical model with the alveolar closing (opening) pressure as the distribution parameter for the deflation (inflation) process. An error minimization by the method of least squares applied to existing P-V loop data from two different data sources confirms that a simultaneous inflation-deflation analysis is required for an accurate determination of RSM parameters. Commonly used terms such as lower inflection point, upper inflection point, and compliance are examined based on the P-V equations, on the distribution function, as well as on the geometric and physical properties of the basic alveolar element.

  10. Estimating intratidal nonlinearity of respiratory system mechanics: a model study using the enhanced gliding-SLICE method

    International Nuclear Information System (INIS)

    Schumann, Stefan; Burcza, Boris; Guttmann, Josef; Haberthür, Christoph; Lichtwarck-Aschoff, Michael

    2009-01-01

    In the clinical situation and in most research work, the analysis of respiratory system mechanics is limited to the estimation of single-value compliances during static or quasi-static conditions. In contrast, our SLICE method analyses intratidal nonlinearity under the dynamic conditions of mechanical ventilation by calculating compliance and resistance for six conjoined volume portions (slices) of the pressure–volume loop by multiple linear regression analysis. With the gliding-SLICE method we present a new approach to determine continuous intratidal nonlinear compliance. The performance of the gliding-SLICE method was tested both in computer simulations and in a physical model of the lung, both simulating different intratidal compliance profiles. Compared to the original SLICE method, the gliding-SLICE method resulted in smaller errors when calculating the compliance or pressure course (all p 2 O s L −1 to 0.8 ± 0.3 cmH 2 O s L −1 (mathematical model) and from 7.2 ± 3.9 cmH 2 O s L −1 to 0.4 ± 0.2 cmH 2 O s L −1 (physical model) (all p < 0.001). We conclude that the new gliding-SLICE method allows detailed assessment of intratidal nonlinear respiratory system mechanics without discontinuity error

  11. Viscoelastic Model for Lung Parenchyma for Multi-Scale Modeling of Respiratory System, Phase II: Dodecahedral Micro-Model

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Alan D.; Einstein, Daniel R.; Carson, James P.; Jacob, Rick E.

    2012-03-01

    In the first year of this contractual effort a hypo-elastic constitutive model was developed and shown to have great potential in modeling the elastic response of parenchyma. This model resides at the macroscopic level of the continuum. In this, the second year of our support, an isotropic dodecahedron is employed as an alveolar model. This is a microscopic model for parenchyma. A hopeful outcome is that the linkage between these two scales of modeling will be a source of insight and inspiration that will aid us in the final year's activity: creating a viscoelastic model for parenchyma.

  12. Simulation of respiratory motion during IMRT dose delivery

    International Nuclear Information System (INIS)

    Mohn, Silje; Wasboe, Ellen

    2011-01-01

    Background. When intensity modulated radiation therapy (IMRT) is realised with dynamic multi-leaf collimators (MLC) and given under respiratory motion, dosimetric errors may occur. These errors are a consequence of the dose blurring and the interplay between the organ motion and the leaf motion. In the present study, a model for evaluating these dosimetric effects for patient-specific cases has been developed and tested. Material and methods. In the purpose written software, three dimensional (3D) dose distributions can be calculated both with and without a generated breathing cycle. To validate the presented model and illustrate its application, periodic breathing cycles were generated, where the starting phase was set randomly for each field during the calculations. Respiration in the anterior-posterior (AP), superior-inferior (SI) and left-right (LR) direction was tested and verified. To illustrate the application of the presented model, two 5-fields IMRT plans with different complexity were calculated with a 2 cm peak-to-peak motion in the AP direction for one fraction and for 25 fractions. Results. The results showed that the calculation method is of good accuracy, in particular for IMRT plans consisting of several fields, where 97% of the pixels within the body fulfilled a tolerance set to 4% dose difference and 4 mm distance to agreement (DTA). For the two IMRT plans with different complexity, pronounced respiratory induced dose errors, which increased with increasing complexity, were found for both one fraction and 25 fractions, but due to the random stating phase the interplay effect was considerably reduced for the plans consisting of 25 fractions. This illustrates how the dosimetric effects will vary depending on the dose plan and on the number of fractions investigated. Conclusion. For patient specific cases, the model can with good accuracy calculate 3D dose distributions both with and without respiratory motion, and evaluate the dosimetric effects

  13. Climate change and respiratory disease: European Respiratory Society position statement.

    Science.gov (United States)

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  14. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion.

    Science.gov (United States)

    Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Pelosi, Paolo; Silva, Pedro L; de Abreu, Marcelo Gama; Rocco, Patricia R M

    2017-01-01

    Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV ( n = 6/group) [tidal volume (V T ) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH 2 O, fraction of inspired oxygen (FiO 2 ) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated V T values ( n = 1200; mean V T = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH 2 0/ml and 2.0 ± 0.8 cmH 2 0/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9-33.1] and VV 5.4% [3.1-8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and

  15. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Patricia R. M. Rocco

    2017-05-01

    Full Text Available Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1 ischemia-reperfusion (IR, in which the left pulmonary hilum was completely occluded and released after 30 min; and (2 Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured and right (contralateral lungs from 6 animals per group were removed, and served as non-ventilated group (NV for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group [tidal volume (VT = 6 mL/kg, positive end-expiratory pressure (PEEP = 2 cmH2O, fraction of inspired oxygen (FiO2 = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg, with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final, respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively. In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular

  16. The AIMAR recommendations for early diagnosis of chronic obstructive respiratory disease based on the WHO/GARD model*.

    Science.gov (United States)

    Nardini, Stefano; Annesi-Maesano, Isabella; Del Donno, Mario; Delucchi, Maurizio; Bettoncelli, Germano; Lamberti, Vincenzo; Patera, Carlo; Polverino, Mario; Russo, Antonio; Santoriello, Carlo; Soverina, Patrizio

    2014-01-01

    to the Italian context; the document of the Agency for Regional Healthcare Services (AGE.NA.S) is a more suited compendium for consultation, and the recent joint statement on integrated COPD management of the three major Italian scientific Associations in the respiratory area together with the contribution of a Society of General Medicine deals prevalently with some critical issues (appropriateness of diagnosis, pharmacological treatment, rehabilitation, continuing care); also the document "Care Continuity: Chronic Obstructive Pulmonary Disease (COPD)" of the Global Alliance against chronic Respiratory Diseases (GARD)-Italy does not treat in depth the issue of early diagnosis. The present document - produced by the AIMAR (Interdisciplinary Association for Research in Lung Disease) Task Force for early diagnosis of chronic respiratory disease based on the WHO/GARD model and on available evidence and expertise -after a general examination of the main epidemiologic aspects, proposes to integrate the above-mentioned existing documents. In particular: a) it formally indicates on the basis of the available evidence the modalities and the instruments necessary for carrying out secondary prevention at the primary care level (a pro-active,'case-finding'approach; assessment of the individual's level of risk of COPD; use of short questionnaires for an initial screening based on symptoms; use of simple spirometry for the second level of screening); b) it identifies possible ways of including these activities within primary care practice; c) it places early diagnosis within the "systemic", consequential management of chronic respiratory diseases, which will be briefly described with the aid of schemes taken from the Italian and international reference documents.

  17. Surgeon Design Interface for Patient-Specific Concentric Tube Robots.

    Science.gov (United States)

    Morimoto, Tania K; Greer, Joseph D; Hsieh, Michael H; Okamura, Allison M

    2016-06-01

    Concentric tube robots have potential for use in a wide variety of surgical procedures due to their small size, dexterity, and ability to move in highly curved paths. Unlike most existing clinical robots, the design of these robots can be developed and manufactured on a patient- and procedure-specific basis. The design of concentric tube robots typically requires significant computation and optimization, and it remains unclear how the surgeon should be involved. We propose to use a virtual reality-based design environment for surgeons to easily and intuitively visualize and design a set of concentric tube robots for a specific patient and procedure. In this paper, we describe a novel patient-specific design process in the context of the virtual reality interface. We also show a resulting concentric tube robot design, created by a pediatric urologist to access a kidney stone in a pediatric patient.

  18. Reliability of patient specific instrumentation in total knee arthroplasty.

    Science.gov (United States)

    Jennart, Harold; Ngo Yamben, Marie-Ange; Kyriakidis, Theofylaktos; Zorman, David

    2015-12-01

    The aim of this study was to compare the precision between Patient Specific Instrumentation (PSI) and Conventional Instrumentation (CI) as determined intra-operatively by a pinless navigation system. Eighty patients were included in this prospective comparative study and they were divided into two homogeneous groups. We defined an original score from 6 to 30 points to evaluate the accuracy of the position of the cutting guides. This score is based on 6 objective criteria. The analysis indicated that PSI was not superior to conventional instrumentation in the overall score (p = 0.949). Moreover, no statistically significant difference was observed for any individual criteria of our score. Level of evidence II.

  19. Deposition and retention models for internal dosimetry of the human respiratory tract

    Energy Technology Data Exchange (ETDEWEB)

    1966-01-01

    A general overview of particulate deposition and clearance, particularly as related to radionuclides, but generally applicable is described. The respiratory system is divided into naso-pharynx (N-P) and tracheobronchial (T-B) (together constituting anatomical dead space and ciliated, mucus-covered portion) and pulmonary (caudally from respiratory bronchioles). N-P deposition (N) is expressed by: N = 0.62 + 0.475log(aerodynamic diameter)/sup 2/(inhalation, liters/min). T-B deposition calculated from anatomical and physical data (affected by hygroscopicity, especially for low-MW and low-density particles). Clearance mechanisms include: (1) a very rapid phase (minutes) for particles deposited on ciliated epithelium; (2) a rapid phase consisting of the slower elements of ciliary clearance and the rapidly recruitable phagocytes (transitional character of this phase makes it difficult to estimate half-time, 24 hr); (3) a slower alveolar phase dependent on properties of dust; (4) elimination via lymph. (3) and (4) have similar kinetics, but (3) is via T-B and GI.

  20. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  1. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS coronavirus

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    2017-06-01

    Full Text Available Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV, which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV, associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  2. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model.

    Science.gov (United States)

    Stinson, Elizabeth; Smith, Le'Kneitah P; Cole, Kelly Stefano; Barry, Eileen M; Reed, Douglas S

    2016-10-01

    Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. 3D-Printed Patient-Specific ACL Femoral Tunnel Guide from MRI.

    Science.gov (United States)

    Rankin, Iain; Rehman, Haroon; Frame, Mark

    2018-01-01

    Traditional ACL reconstruction with non-anatomic techniques can demonstrate unsatisfactory long-term outcomes with regards instability and the degenerative knee changes observed with these results. Anatomic ACL reconstruction attempts to closely reproduce the patient's individual anatomic characteristics with the aim of restoring knee kinematics, in order to improve patient short and long-term outcomes. We designed an arthroscopic, patient-specific, ACL femoral tunnel guide to aid anatomical placement of the ACL graft within the femoral tunnel. The guide design was based on MRI scan of the subject's uninjured contralateral knee, identifying the femoral footprint and its anatomical position relative to the borders of the femoral articular cartilage. Image processing software was used to create a 3D computer aided design which was subsequently exported to a 3D-printing service. Transparent acrylic based photopolymer, PA220 plastic and 316L stainless steel patient-specific ACL femoral tunnel guides were created; the models produced were accurate with no statistical difference in size and positioning of the center of the ACL femoral footprint guide to MRI ( p =0.344, p =0.189, p =0.233 respectively). The guides aim to provide accurate marking of the starting point of the femoral tunnel in arthroscopic ACL reconstruction. This study serves as a proof of concept for the accurate creation of 3D-printed patient-specific guides for the anatomical placement of the femoral tunnel during ACL reconstruction.

  4. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders

    Directory of Open Access Journals (Sweden)

    Kristen J. Brennand

    2015-12-01

    Full Text Available As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.

  5. Impact of Cardiopulmonary Bypass on Respiratory Mucociliary Function in an Experimental Porcine Model.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sánchez-Véliz

    Full Text Available The impact of cardiac surgery using cardiopulmonary bypass (CPB on the respiratory mucociliary function is unknown. This study evaluated the effects of CPB and interruption of mechanical ventilation on the respiratory mucociliary system.Twenty-two pigs were randomly assigned to the control (n = 10 or CPB group (n = 12. After the induction of anesthesia, a tracheostomy was performed, and tracheal tissue samples were excised (T0 from both groups. All animals underwent thoracotomy. In the CPB group, an aorto-bicaval CPB was installed and maintained for 90 minutes. During the CPB, mechanical ventilation was interrupted, and the tracheal tube was disconnected. A second tracheal tissue sample was obtained 180 minutes after the tracheostomy (T180. Mucus samples were collected from the trachea using a bronchoscope at T0, T90 and T180. Ciliary beat frequency (CBF and in situ mucociliary transport (MCT were studied in ex vivo tracheal epithelium. Mucus viscosity (MV was assessed using a cone-plate viscometer. Qualitative tracheal histological analysis was performed at T180 tissue samples.CBF decreased in the CPB group (13.1 ± 1.9 Hz vs. 11.1 ± 2.1 Hz, p < 0.05 but not in the control group (13.1 ± 1 Hz vs. 13 ± 2.9 Hz. At T90, viscosity was increased in the CPB group compared to the control (p < 0.05. No significant differences were observed in in situ MCT. Tracheal histology in the CPB group showed areas of ciliated epithelium loss, submucosal edema and infiltration of inflammatory cells.CPB acutely contributed to alterations in tracheal mucocilliary function.

  6. Reproducibility of image quality for moving objects using respiratory-gated computed tomography. A study using a phantom model

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Ishida, Masaya; Terunuma, Toshiyuki

    2012-01-01

    To investigate the reproducibility of computed tomography (CT) imaging quality in respiratory-gated radiation treatment planning is essential in radiotherapy of movable tumors. Seven series of regular and six series of irregular respiratory motions were performed using a thorax dynamic phantom. For the regular respiratory motions, the respiratory cycle was changed from 2.5 to 4 s and the amplitude was changed from 4 to 10 mm. For the irregular respiratory motions, a cycle of 2.5 to 4 or an amplitude of 4 to 10 mm was added to the base data (id est (i.e.) 3.5-s cycle, 6-mm amplitude) every three cycles. Images of the object were acquired six times using respiratory-gated data acquisition. The volume of the object was calculated and the reproducibility of the volume was decided based on the variety. The registered image of the object was added and the reproducibility of the shape was decided based on the degree of overlap of objects. The variety in the volumes and shapes differed significantly as the respiratory cycle changed according to regular respiratory motions. In irregular respiratory motion, shape reproducibility was further inferior, and the percentage of overlap among the six images was 35.26% in the 2.5- and 3.5-s cycle mixed group. Amplitude changes did not produce significant differences in the variety of the volumes and shapes. Respiratory cycle changes reduced the reproducibility of the image quality in respiratory-gated CT. (author)

  7. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome.

    Science.gov (United States)

    Hagawane, T N; Gaikwad, R V; Kshirsagar, N A

    2016-05-01

    Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest x-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  8. Innovative characteristics of the new dosimetric model for the human respiratory tract studied by the ICRP appointed Task Group of Committee 2

    CERN Document Server

    Melandri, C; Tarroni, G

    1991-01-01

    In 1984, the ICRP appointed a Task Group of Committee 2 to review and revise, as necessary, the current lung dosimetric model. On the basis of the knowledge acquired during the past 20 years, the Task Group's approach has been to review, in depth, the morphology and physiology of the human respiratory tract, inspirability of aerosols and regional deposition of inhaled particles as functions of aerosol size and breathing parameters, clearance of deposited materials, nature and specific sites of damage to the respiratory system caused by inhaled radioactive substances. In the proposed model, clearance from the three regions of the respiratory tract (extrathoracic ET, fast-clearing thoracic T sub f and slow-clearing thoracic T sub s , comprising lymph nodes) is described in terms of competition between the mechanical processes moving particles, which do not depend on the substances, and those of absorption into the blood, determined solely by the material. A Task Group report will also include models for calcula...

  9. An experimental infection model for reproduction of calf pneumonia with bovine respiratory syncytial virus (BRSV) based on one combined exposure of calves

    DEFF Research Database (Denmark)

    Tjørnehøj, Kirsten; Uttenthal, Åse; Viuff, B.

    2003-01-01

    Bovine respiratory syncytial virus (BRSV) has been recognised as an important pathogen in calf pneumonia for 30 years, but surprisingly few effective infection models for studies of the immune response and the pathogenesis in the natural host have been established. We present a reproducible...... disease. This model is a valuable tool for the study of the pathogenesis of BRSV and for vaccine efficacy studies....

  10. Using an EPID for patient-specific VMAT quality assurance

    International Nuclear Information System (INIS)

    Bakhtiari, M.; Kumaraswamy, L.; Bailey, D. W.; Boer, S. de; Malhotra, H. K.; Podgorsak, M. B.

    2011-01-01

    Purpose: A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). Methods: VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. Results: Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. Conclusions: This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.

  11. Additive manufacturing of patient-specific tubular continuum manipulators

    Science.gov (United States)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  12. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K [Tohoku University School of Medicine, Sendai, Miyagi (Japan); Kida, S [Tohoku University Hospital, Sendai City, Miyagi (Japan); Kishi, K; Sato, K [Tohoku University Hospital, Sendai, Miyagi (Japan); Dobashi, S; Takeda, K [Tohoku University, Sendai, Miyagi (Japan)

    2015-06-15

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  13. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    International Nuclear Information System (INIS)

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K; Kida, S; Kishi, K; Sato, K; Dobashi, S; Takeda, K

    2015-01-01

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  14. Application of the physiological and morphological parameters of the brazilian population sample to the mathematical model of the human respiratory tract

    International Nuclear Information System (INIS)

    Reis, Arlene Alves dos

    2005-01-01

    The Human Respiratory Tract Model proposed by the ICRP Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. It is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of the ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined by the ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The results suggest a significant variation in fractional deposition when Brazilian parameters are applied in the model. (author)

  15. Prospective validation of a prognostic model for respiratory syncytial virus bronchiolitis in late preterm infants: a multicenter birth cohort study.

    Directory of Open Access Journals (Sweden)

    Maarten O Blanken

    Full Text Available This study aimed to update and validate a prediction rule for respiratory syncytial virus (RSV hospitalization in preterm infants 33-35 weeks gestational age (WGA.The RISK study consisted of 2 multicenter prospective birth cohorts in 41 hospitals. Risk factors were assessed at birth among healthy preterm infants 33-35 WGA. All hospitalizations for respiratory tract infection were screened for proven RSV infection by immunofluorescence or polymerase chain reaction. Multivariate logistic regression analysis was used to update an existing prediction model in the derivation cohort (n = 1,227. In the validation cohort (n = 1,194, predicted versus actual RSV hospitalization rates were compared to determine validity of the model.RSV hospitalization risk in both cohorts was comparable (5.7% versus 4.9%. In the derivation cohort, a prediction rule to determine probability of RSV hospitalization was developed using 4 predictors: family atopy (OR 1.9; 95%CI, 1.1-3.2, birth period (OR 2.6; 1.6-4.2, breastfeeding (OR 1.7; 1.0-2.7 and siblings or daycare attendance (OR 4.7; 1.7-13.1. The model showed good discrimination (c-statistic 0.703; 0.64-0.76, 0.702 after bootstrapping. External validation showed good discrimination and calibration (c-statistic 0.678; 0.61-0.74.Our prospectively validated prediction rule identifies infants at increased RSV hospitalization risk, who may benefit from targeted preventive interventions. This prediction rule can facilitate country-specific, cost-effective use of RSV prophylaxis in late preterm infants.

  16. A stochastic model to determine the economic value of changing diagnostic test characteristics for identification of cattle for treatment of bovine respiratory disease.

    Science.gov (United States)

    Theurer, M E; White, B J; Larson, R L; Schroeder, T C

    2015-03-01

    Bovine respiratory disease is an economically important syndrome in the beef industry, and diagnostic accuracy is important for optimal disease management. The objective of this study was to determine whether improving diagnostic sensitivity or specificity was of greater economic value at varied levels of respiratory disease prevalence by using Monte Carlo simulation. Existing literature was used to populate model distributions of published sensitivity, specificity, and performance (ADG, carcass weight, yield grade, quality grade, and mortality risk) differences among calves based on clinical respiratory disease status. Data from multiple cattle feeding operations were used to generate true ranges of respiratory disease prevalence and associated mortality. Input variables were combined into a single model that calculated estimated net returns for animals by diagnostic category (true positive, false positive, false negative, and true negative) based on the prevalence, sensitivity, and specificity for each iteration. Net returns for each diagnostic category were multiplied by the proportion of animals in each diagnostic category to determine group profitability. Apparent prevalence was categorized into low (increasing specificity created more rapid, positive change in net returns than increasing sensitivity. Improvement of diagnostic specificity, perhaps through a confirmatory test interpreted in series or pen-level diagnostics, can increase diagnostic value more than improving sensitivity. Mortality risk was the primary driver for net returns. The results from this study are important for determining future research priorities to analyze diagnostic techniques for bovine respiratory disease and provide a novel way for modeling diagnostic tests.

  17. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  18. Measuring the relative extent of pulmonary infiltrates by hierarchical classification of patient-specific image features

    Science.gov (United States)

    Tsevas, S.; Iakovidis, D. K.

    2011-11-01

    Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

  19. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  20. Arteriovenous extracorporeal lung assist allows for maximization of oscillatory frequencies: a large-animal model of respiratory distress

    Directory of Open Access Journals (Sweden)

    Kranke Peter

    2008-11-01

    Full Text Available Abstract Background Although the minimization of the applied tidal volume (VT during high-frequency oscillatory ventilation (HFOV reduces the risk of alveolar shear stress, it can also result in insufficient CO2-elimination with severe respiratory acidosis. We hypothesized that in a model of acute respiratory distress (ARDS the application of high oscillatory frequencies requires the combination of HFOV with arteriovenous extracorporeal lung assist (av-ECLA in order to maintain or reestablish normocapnia. Methods After induction of ARDS in eight female pigs (56.5 ± 4.4 kg, a recruitment manoeuvre was performed and intratracheal mean airway pressure (mPaw was adjusted 3 cmH2O above the lower inflection point (Plow of the pressure-volume curve. All animals were ventilated with oscillatory frequencies ranging from 3–15 Hz. The pressure amplitude was fixed at 60 cmH2O. At each frequency gas exchange and hemodynamic measurements were obtained with a clamped and de-clamped av-ECLA. Whenever the av-ECLA was de-clamped, the oxygen sweep gas flow through the membrane lung was adjusted aiming at normocapnia. Results Lung recruitment and adjustment of the mPaw above Plow resulted in a significant improvement of oxygenation (p Conclusion In this animal model of ARDS, maximization of oscillatory frequencies with subsequent minimization of VT leads to hypercapnia that can only be reversed by adding av-ECLA. When combined with a recruitment strategy, these high frequencies do not impair oxygenation

  1. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements

    Directory of Open Access Journals (Sweden)

    Derek Groen

    2018-06-01

    Full Text Available We present a validation study comparing results from a patient-specific lattice-Boltzmann simulation to transcranial Doppler (TCD velocity measurements in four different planes of the middle cerebral artery (MCA. As part of the study, we compared simulations using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the viability of using downscaled velocities to reduce the required resolution. Simulations with unscaled velocities predict the maximum flow velocity with an error of less than 9%, independent of the rheology model chosen. The accuracy of the simulation predictions worsens considerably when simulations are run at reduced velocity, as is for example the case when inflow velocities from healthy individuals are used on a vascular model of a stroke patient. Our results demonstrate the importance of using directly measured and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude that localized TCD measurements together with predictive simulations can be used to obtain flow estimates with high fidelity over a larger region, and reduce the need for more invasive flow measurement procedures.

  2. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    Science.gov (United States)

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management

    International Nuclear Information System (INIS)

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-01-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities

  4. Patient-Specific Variations in Biomarkers across Gingivitis and Periodontitis

    Science.gov (United States)

    Nagarajan, Radhakrishnan; Miller, Craig S.; Dawson, Dolph; Al-Sabbagh, Mohanad; Ebersole, Jeffrey L.

    2015-01-01

    This study investigates the use of saliva, as an emerging diagnostic fluid in conjunction with classification techniques to discern biological heterogeneity in clinically labelled gingivitis and periodontitis subjects (80 subjects; 40/group) A battery of classification techniques were investigated as traditional single classifier systems as well as within a novel selective voting ensemble classification approach (SVA) framework. Unlike traditional single classifiers, SVA is shown to reveal patient-specific variations within disease groups, which may be important for identifying proclivity to disease progression or disease stability. Salivary expression profiles of IL-1ß, IL-6, MMP-8, and MIP-1α from 80 patients were analyzed using four classification algorithms (LDA: Linear Discriminant Analysis [LDA], Quadratic Discriminant Analysis [QDA], Naïve Bayes Classifier [NBC] and Support Vector Machines [SVM]) as traditional single classifiers and within the SVA framework (SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM). Our findings demonstrate that performance measures (sensitivity, specificity and accuracy) of traditional classification as single classifier were comparable to that of the SVA counterparts using clinical labels of the samples as ground truth. However, unlike traditional single classifier approaches, the normalized ensemble vote-counts from SVA revealed varying proclivity of the subjects for each of the disease groups. More importantly, the SVA identified a subset of gingivitis and periodontitis samples that demonstrated a biological proclivity commensurate with the other clinical group. This subset was confirmed across SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM. Heatmap visualization of their ensemble sets revealed lack of consensus between these subsets and the rest of the samples within the respective disease groups indicating the unique nature of the patients in these subsets. While the source of variation is not known, the results presented clearly elucidate the

  5. Adaptive grid generation in a patient-specific cerebral aneurysm

    Science.gov (United States)

    Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan

    2013-11-01

    computational time for patient-specific hemodynamics simulations, which are used to help assess the likelihood of aneurysm rupture using CFD calculated flow patterns.

  6. Respiratory Home Health Care

    Science.gov (United States)

    ... Us Home > Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at ...

  7. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    Directory of Open Access Journals (Sweden)

    Xiaoping Yin

    Full Text Available Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6. The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2. This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.

  9. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI

    International Nuclear Information System (INIS)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-01-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning. (paper)

  10. Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression.

    Science.gov (United States)

    Mac Murray, Benjamin C; Futran, Chaim C; Lee, Jeanne; O'Brien, Kevin W; Amiri Moghadam, Amir A; Mosadegh, Bobak; Silberstein, Meredith N; Min, James K; Shepherd, Robert F

    2018-02-01

    We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.

  11. Patient Specific Multiscale Simulations of Blood Flow in Coronary Artery Bypass Surgery

    Science.gov (United States)

    Bangalore Ramachandra, Abhay; Sankaran, Sethuraman; Kahn, Andrew M.; Marsden, Alison L.

    2013-11-01

    Coronary artery bypass surgery is performed to revascularize blocked coronary arteries in roughly 400,000 patients per year in the US.While arterial grafts offer superior patency, vein grafts are used in more than 70% of procedures, as most patients require multiple grafts. Vein graft failure (approx. 50% within 10 years) remains a major clinical issue. Mounting evidence suggests that hemodynamics plays a key role as a mechano-biological stimulus contributing to graft failure. However, quantifying relevant hemodynamic quantities (e.g. wall shear stress) invivo is not possible directly using clinical imaging techniques. We numerically compute graft hemodynamics in a cohort of 3-D patient specific models using a stabilized finite element method. The 3D flow domain is coupled to a 0D lumped parameter circulatory model. Boundary conditions are tuned to match patient specific blood pressures, stroke volumes & heart rates. Results reproduce clinically observed coronary flow waveforms. We quantify differences in multiple hemodynamic quantities between arterial & venous grafts & discuss possible correlations between graft hemodynamics & clinically observed graft failure.Such correlations will provide further insight into mechanisms of graft failure and may lead to improved clinical outcomes.

  12. Fluid Structure Interaction simulation of heart prosthesis in patient-specific left-ventricle/aorta anatomies

    Science.gov (United States)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2009-11-01

    In order to test and optimize heart valve prosthesis and enable virtual implantation of other biomedical devices it is essential to develop and validate high-resolution FSI-CFD codes for carrying out simulations in patient-specific geometries. We have developed a powerful numerical methodology for carrying out FSI simulations of cardiovascular flows based on the CURVIB approach (Borazjani, L. Ge, and F. Sotiropoulos, Journal of Computational physics, vol. 227, pp. 7587-7620 2008). We have extended our FSI method to overset grids to handle efficiently more complicated geometries e.g. simulating an MHV implanted in an anatomically realistic aorta and left-ventricle. A compliant, anatomic left-ventricle is modeled using prescribed motion in one domain. The mechanical heart valve is placed inside the second domain i.e. the body-fitted curvilinear mesh of the anatomic aorta. The simulations of an MHV with a left-ventricle model underscore the importance of inflow conditions and ventricular compliance for such simulations and demonstrate the potential of our method as a powerful tool for patient-specific simulations.

  13. An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery.

    Science.gov (United States)

    Kong, Fande; Kheyfets, Vitaly; Finol, Ender; Cai, Xiao-Chuan

    2018-04-01

    Simulation of blood flows in the pulmonary artery provides some insight into certain diseases by examining the relationship between some continuum metrics, eg, the wall shear stress acting on the vascular endothelium, which responds to flow-induced mechanical forces by releasing vasodilators/constrictors. V. Kheyfets, in his previous work, studies numerically a patient-specific pulmonary circulation to show that decreasing wall shear stress is correlated with increasing pulmonary vascular impedance. In this paper, we develop a scalable parallel algorithm based on domain decomposition methods to investigate an unsteady model with patient-specific pulsatile waveforms as the inlet boundary condition. The unsteady model offers tremendously more information about the dynamic behavior of the flow field, but computationally speaking, the simulation is a lot more expensive since a problem which is similar to the steady-state problem has to be solved many times, and therefore, the traditional sequential approach is not suitable anymore. We show computationally that simulations using the proposed parallel approach with up to 10 000 processor cores can be obtained with much reduced compute time. This makes the technology potentially usable for the routine study of the dynamic behavior of blood flows in the pulmonary artery, in particular, the changes of the blood flows and the wall shear stress in the spatial and temporal dimensions. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Design and manufacturing of patient-specific orthodontic appliances by computer-aided engineering techniques.

    Science.gov (United States)

    Barone, Sandro; Neri, Paolo; Paoli, Alessandro; Razionale, Armando Viviano

    2018-01-01

    Orthodontic treatments are usually performed using fixed brackets or removable oral appliances, which are traditionally made from alginate impressions and wax registrations. Among removable devices, eruption guidance appliances are used for early orthodontic treatments in order to intercept and prevent malocclusion problems. Commercially available eruption guidance appliances, however, are symmetric devices produced using a few standard sizes. For this reason, they are not able to meet all the specific patient's needs since the actual dental anatomies present various geometries and asymmetric conditions. In this article, a computer-aided design-based methodology for the design and manufacturing of a patient-specific eruption guidance appliances is presented. The proposed approach is based on the digitalization of several steps of the overall process: from the digital reconstruction of patients' anatomies to the manufacturing of customized appliances. A finite element model has been developed to evaluate the temporomandibular joint disks stress level caused by using symmetric eruption guidance appliances with different teeth misalignment conditions. The developed model can then be used to guide the design of a patient-specific appliance with the aim at reducing the patient discomfort. At this purpose, two different customization levels are proposed in order to face both arches and single tooth misalignment issues. A low-cost manufacturing process, based on an additive manufacturing technique, is finally presented and discussed.

  15. A Model of the Costs of Community and Nosocomial Pediatric Respiratory Syncytial Virus Infections in Canadian Hospitals

    Directory of Open Access Journals (Sweden)

    Philip Jacobs

    2013-01-01

    Full Text Available BACKGROUND: Approximately one in 10 hospitalized patients will acquire a nosocomial infection (NI after admission to hospital, of which 71% are due to respiratory viruses, including the respiratory syncytial virus (RSV. NIs are concerning and lead to prolonged hospitalizations. The economics of NIs are typically described in generalized terms and specific cost data are lacking.

  16. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    Directory of Open Access Journals (Sweden)

    Nava Pat

    2011-03-01

    Full Text Available Abstract Background Is Impulse Oscillometry System (IOS a valuable tool to measure respiratory system function in Children? Asthma (A is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC and augmented RIC (aRIC models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B and post- bronchodilation (post-B conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H and Small Airway-Impaired (SAI. The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp and peripheral resistance (Rp tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle" showed good correlations. Conclusions What are the most useful IOS and model parameters? In

  17. External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection

    DEFF Research Database (Denmark)

    Schierenberg, Alwin; Minnaard, Margaretha C; Hopstaken, Rogier M

    2016-01-01

    BACKGROUND: Pneumonia remains difficult to diagnose in primary care. Prediction models based on signs and symptoms (S&S) serve to minimize the diagnostic uncertainty. External validation of these models is essential before implementation into routine practice. In this study all published S&S mode...... discriminative accuracy coupled with reasonable to good calibration across the IPD of different study populations. This model is therefore the main candidate for primary care use....

  18. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    T N Hagawane

    2016-01-01

    Results: It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6 levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. Interpretation & conclusions: The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  19. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Chen, H; Zhen, X; Zhou, L; Gu, X

    2016-01-01

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yield the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation

  20. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Zhen, X; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yield the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation

  1. A Combined Tissue Kinetics and Dosimetric Model of Respiratory Tissue Exposed to Radiation. Final Technical Report

    International Nuclear Information System (INIS)

    John R. Ford

    2005-01-01

    Existing dosimetric models of the radiation response of tissues are essentially static. Consideration of changes in the cell populations over time has not been addressed realistically. For a single acute dose this is not a concern, but for modeling chronic exposures or fractionated acute exposures, the natural turnover and progression of cells could have a significant impact on a variety of endpoints. This proposal addresses the shortcomings of current methods by combining current dose-based calculation techniques with information on the cell turnover for a model tissue. The proposed model will examine effects at the single-cell level for an exposure of a section of human bronchiole. The cell model will be combined with Monte Carlo calculations of doses to cells and cell nuclei due to varying dose-rates of different radiation qualities. Predictions from the model of effects on survival, apoptosis rates, and changes in the number of cycling and differentiating cells will be tested experimentally. The availability of dynamic dosimetric models of tissues at the single-cell level will be useful for analysis of low-level radiation exposures and in the development of new radiotherapy protocols

  2. A Combined Tissue Kinetics and Dosimetric Model of Respiratory Tissue Exposed to Radiation

    Energy Technology Data Exchange (ETDEWEB)

    John R. Ford

    2005-11-01

    Existing dosimetric models of the radiation response of tissues are essentially static. Consideration of changes in the cell populations over time has not been addressed realistically. For a single acute dose this is not a concern, but for modeling chronic exposures or fractionated acute exposures, the natural turnover and progression of cells could have a significant impact on a variety of endpoints. This proposal addresses the shortcomings of current methods by combining current dose-based calculation techniques with information on the cell turnover for a model tissue. The proposed model will examine effects at the single-cell level for an exposure of a section of human bronchiole. The cell model will be combined with Monte Carlo calculations of doses to cells and cell nuclei due to varying dose-rates of different radiation qualities. Predictions from the model of effects on survival, apoptosis rates, and changes in the number of cycling and differentiating cells will be tested experimentally. The availability of dynamic dosimetric models of tissues at the single-cell level will be useful for analysis of low-level radiation exposures and in the development of new radiotherapy protocols.

  3. Innovative characteristics of the new dosimetric model for the human respiratory tract studied by the ICRP appointed Task Group of Committee 2

    International Nuclear Information System (INIS)

    Melandri, C.; Battisti, P.; Tarroni, G.

    1991-02-01

    In 1984, the ICRP appointed a Task Group of Committee 2 to review and revise, as necessary, the current lung dosimetric model. On the basis of the knowledge acquired during the past 20 years, the Task Group's approach has been to review, in depth, the morphology and physiology of the human respiratory tract, inspirability of aerosols and regional deposition of inhaled particles as functions of aerosol size and breathing parameters, clearance of deposited materials, nature and specific sites of damage to the respiratory system caused by inhaled radioactive substances. In the proposed model, clearance from the three regions of the respiratory tract (extrathoracic ET, fast-clearing thoracic T f and slow-clearing thoracic T s , comprising lymph nodes) is described in terms of competition between the mechanical processes moving particles, which do not depend on the substances, and those of absorption into the blood, determined solely by the material. A Task Group report will also include models for calculating radiation doses to tissues of the respiratory system following inhalation of α, β and γ emitting particulate and gaseous radionuclides. (author)

  4. MATHEMATICAL MODEL FOR AEROSOL DEPOSITION IN THE RESPIRATORY TRACT OF THE GUINEA PIG

    Science.gov (United States)

    Laboratory animals are used as surrogates in inhalation exposure studies for: 1) risk assessments of air pollutants; and, (2) evaluations of pharmacologic drugs. erein, a mathematical model is presented which identifies factors affecting the regional distribution of inhaled aeros...

  5. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    International Nuclear Information System (INIS)

    Malinowski, Kathleen T.; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D'Souza, Warren D.

    2012-01-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor–surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor–surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor–surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3–3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  6. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Kathleen T. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); McAvoy, Thomas J. [Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); Department of Chemical and Biomolecular Engineering and Institute of Systems Research, University of Maryland, College Park, MD (United States); George, Rohini [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Dieterich, Sonja [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); D' Souza, Warren D., E-mail: wdsou001@umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States)

    2012-04-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  7. A probit- log- skew-normal mixture model for repeated measures data with excess zeros, with application to a cohort study of paediatric respiratory symptoms

    Directory of Open Access Journals (Sweden)

    Johnston Neil W

    2010-06-01

    Full Text Available Abstract Background A zero-inflated continuous outcome is characterized by occurrence of "excess" zeros that more than a single distribution can explain, with the positive observations forming a skewed distribution. Mixture models are employed for regression analysis of zero-inflated data. Moreover, for repeated measures zero-inflated data the clustering structure should also be modeled for an adequate analysis. Methods Diary of Asthma and Viral Infections Study (DAVIS was a one year (2004 cohort study conducted at McMaster University to monitor viral infection and respiratory symptoms in children aged 5-11 years with and without asthma. Respiratory symptoms were recorded daily using either an Internet or paper-based diary. Changes in symptoms were assessed by study staff and led to collection of nasal fluid specimens for virological testing. The study objectives included investigating the response of respiratory symptoms to respiratory viral infection in children with and without asthma over a one year period. Due to sparse data daily respiratory symptom scores were aggregated into weekly average scores. More than 70% of the weekly average scores were zero, with the positive scores forming a skewed distribution. We propose a random effects probit/log-skew-normal mixture model to analyze the DAVIS data. The model parameters were estimated using a maximum marginal likelihood approach. A simulation study was conducted to assess the performance of the proposed mixture model if the underlying distribution of the positive response is different from log-skew normal. Results Viral infection status was highly significant in both probit and log-skew normal model components respectively. The probability of being symptom free was much lower for the week a child was viral positive relative to the week she/he was viral negative. The severity of the symptoms was also greater for the week a child was viral positive. The probability of being symptom free was

  8. Estimating patient-specific soft-tissue properties in a TKA knee.

    Science.gov (United States)

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning

    International Nuclear Information System (INIS)

    Morris, E.D.; Glide-Hurst, C.; Klahr, P.

    2016-01-01

    Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveform exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient-specific

  10. MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.D.; Glide-Hurst, C. [Henry Ford Health System, Detroit, MI (United States); Wayne State University, Detroit, MI (United States); Klahr, P. [Philips Healthcare, Cleveland, Ohio (United States)

    2016-06-15

    Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveform exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient-specific

  11. Effects of zinc and "health belief model" education on upper respiratory infections in hajj travelers: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Mahmoudian S.A

    2007-09-01

    Full Text Available Background: The common cold is the most prevalent sickness and an important cause of absence from job. Furthermore, it often disturbs travel, including the practice of hajj, causing the use of many inappropriate drugs by these travelers. The health belief model is a psychological model that attempts to explain and predict health behaviors. The purpose of this study was to determine the effects of zinc and health belief model based educational intervention on the behavior of hajj travelers with regard to viral upper respiratory tract infections (URTI.Methods: This double-blinded randomized controlled trial was performed among hajj travelers in 2005. Preventive measures were randomly allocated to four groups: 1- education + zinc sulfate. 2- education + placebo. 3- zinc sulfate only 4- placebo only. Data regarding incidence and duration of URTIs, background disorders, vaccination and health behaviors for cold were gathered by questionnaire by physicians and finally analyzed by SPSS 11.5 software using chi-square, t-test and independent samples t-test.Results: A total of 646 travelers were studied. The incidence of common cold in groups receiving zinc were significantly less than that for those receiving the placebo. (P=0.05. However, incidence was statistically the same for those who received education versus those who did not. Use of handkerchief was the most prevalent behavior and use of mask was the least prevalent behavior. Mean duration of symptoms was less in those receiving zinc and education (3.7 days comparing to those who received placebo and education (5.6 days.  Conclusions: This study showed that zinc consumption can decrease the incidence and duration of the common cold. Health belief model based education could promote some preventive behaviors although most people do not take advantage of them. We recommend the use of zinc by those attending hajj.

  12. A state-based probabilistic model for tumor respiratory motion prediction

    International Nuclear Information System (INIS)

    Kalet, Alan; Sandison, George; Schmitz, Ruth; Wu Huanmei

    2010-01-01

    This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more

  13. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing

    Science.gov (United States)

    Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui; Rudin, Stephen

    2014-03-01

    Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.

  14. Modeling Respiratory Gas Dynamics in the Aviator’s Breathing System. Volume 2. Appendices

    Science.gov (United States)

    1994-05-01

    Rideout, at at. Dfference-Differentlat Equations for Fluid C... Flow in Distensible Tubes. IEEE Transactions on Bio-Medlcat C... Enginhering. Vot INE-14...McGraw-Hill; 1970; Chapter 13: 433-450. 12. Astrand, PO; Saltin, B. Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol...1802-1814; 1986. 233. Linehan, JH; Haworth, ST; Nelin, LD; Krenz, GS; Dawson, CA. A Simple Distensible Vessel Model for Interpreting Pulmonary

  15. Targeting the Mitochondrial Respiratory Chain of Cryptococcus through Antifungal Chemosensitization: A Model for Control of Non-Fermentative Pathogens

    Directory of Open Access Journals (Sweden)

    Kathleen L. Chan

    2013-07-01

    Full Text Available Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain (MRC inhibition compared to species of Candida. This higher sensitivity results from the inability of Cryptococcus to generate cellular energy through fermentation. To heighten disruption of cellular MRC, octyl gallate (OG or 2,3-dihydroxybenzaldehyde (2,3-DHBA, phenolic compounds inhibiting mitochondrial functions, were selected as chemosensitizers to pyraclostrobin (PCS; an inhibitor of complex III of MRC. The cryptococci were more susceptible to the chemosensitization (i.e., PCS + OG or 2,3-DHBA than the Candida with all Cryptococcus strains tested being sensitive to this chemosensitization. Alternatively, only few of the Candida strains showed sensitivity. OG possessed higher chemosensitizing potency than 2,3-DHBA, where the concentration of OG required with the drug to achieve chemosensitizing synergism was much lower than that required of 2,3-DHBA. Bioassays with gene deletion mutants of the model yeast Saccharomyces cerevisiae showed that OG or 2,3-DHBA affect different cellular targets. These assays revealed mitochondrial superoxide dismutase or glutathione homeostasis plays a relatively greater role in fungal tolerance to 2,3-DHBA or OG, respectively. These findings show that application of chemosensitizing compounds that augment MRC debilitation is a promising strategy to antifungal control against yeast pathogens.

  16. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox - an animal model of smallpox.

    Science.gov (United States)

    Parker, Scott; Chen, Nanhai G; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E; Schriewer, Jill; Mark Buller, R

    2012-04-01

    The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analog of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is four or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection - thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A Markov computer simulation model of the economics of neuromuscular blockade in patients with acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Chow John L

    2006-03-01

    Full Text Available Abstract Background Management of acute respiratory distress syndrome (ARDS in the intensive care unit (ICU is clinically challenging and costly. Neuromuscular blocking agents may facilitate mechanical ventilation and improve oxygenation, but may result in prolonged recovery of neuromuscular function and acute quadriplegic myopathy syndrome (AQMS. The goal of this study was to address a hypothetical question via computer modeling: Would a reduction in intubation time of 6 hours and/or a reduction in the incidence of AQMS from 25% to 21%, provide enough benefit to justify a drug with an additional expenditure of $267 (the difference in acquisition cost between a generic and brand name neuromuscular blocker? Methods The base case was a 55 year-old man in the ICU with ARDS who receives neuromuscular blockade for 3.5 days. A Markov model was designed with hypothetical patients in 1 of 6 mutually exclusive health states: ICU-intubated, ICU-extubated, hospital ward, long-term care, home, or death, over a period of 6 months. The net monetary benefit was computed. Results Our computer simulation modeling predicted the mean cost for ARDS patients receiving standard care for 6 months to be $62,238 (5% – 95% percentiles $42,259 – $83,766, with an overall 6-month mortality of 39%. Assuming a ceiling ratio of $35,000, even if a drug (that cost $267 more hypothetically reduced AQMS from 25% to 21% and decreased intubation time by 6 hours, the net monetary benefit would only equal $137. Conclusion ARDS patients receiving a neuromuscular blocker have a high mortality, and unpredictable outcome, which results in large variability in costs per case. If a patient dies, there is no benefit to any drug that reduces ventilation time or AQMS incidence. A prospective, randomized pharmacoeconomic study of neuromuscular blockers in the ICU to asses AQMS or intubation times is impractical because of the highly variable clinical course of patients with ARDS.

  18. A model of metabolism and clearance of organic compounds from the respiratory tract

    International Nuclear Information System (INIS)

    Gerde, P.; Dahl, A.R.

    1994-01-01

    In cases where inhalants induce toxicity in the airway epithelium, the mechanism of absorption is an important determinant of target dose. Absorption of organic solutes in the lungs occurs mainly by two consecutive mechanisms; molecular diffusion drives the chemicals into the tissues, and blood perfusion of the tissues removes the chemicals into the systemic circulation. Solutes having lipophilicities ranging from equally soluble in lipids and water to moderately more lipid-soluble are limited by the perfusion during clearance from the lungs. The perfusion-limited solute enters the blood circulation from all regions of the lungs within minutes and is distributed to other organs via the systemic circulation. In contrast, clearance of highly lipophilic toxicants, such as benzo(a)pyrene, from the lungs is diffusion-limited. The limiting process refers to the slowest transport mechanism of either perfusion or diffusion. Because of the short distance from the surface of the alveolar region to the capillary network, diffusion-limited clearance of highly lipophilic solutes occurs within minutes. In the thicker epithelium of the conducting airways, however, clearance may take hours. The purpose of the current modeling effort was to encompass both mechanisms of clearance in a single model in order to explore the influence of toxicant lipophilicity and local metabolism on the dosimetry at the airway portal-of-entry

  19. Development of a risk-prediction model for Middle East respiratory syndrome coronavirus infection in dialysis patients.

    Science.gov (United States)

    Ahmed, Anwar E; Alshukairi, Abeer N; Al-Jahdali, Hamdan; Alaqeel, Mody; Siddiq, Salma S; Alsaab, Hanan A; Sakr, Ezzeldin A; Alyahya, Hamed A; Alandonisi, Munzir M; Subedar, Alaa T; Aloudah, Nouf M; Baharoon, Salim; Alsalamah, Majid A; Al Johani, Sameera; Alghamdi, Mohammed G

    2018-04-14

    Introduction The Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause transmission clusters and high mortality in hemodialysis facilities. We attempted to develop a risk-prediction model to assess the early risk of MERS-CoV infection in dialysis patients. Methods This two-center retrospective cohort study included 104 dialysis patients who were suspected of MERS-CoV infection and diagnosed with rRT-PCR between September 2012 and June 2016 at King Fahd General Hospital in Jeddah and King Abdulaziz Medical City in Riyadh. We retrieved data on demographic, clinical, and radiological findings, and laboratory indices of each patient. Findings A risk-prediction model to assess early risk for MERS-CoV in dialysis patients has been developed. Independent predictors of MERS-CoV infection were identified, including chest pain (OR = 24.194; P = 0.011), leukopenia (OR = 6.080; P = 0.049), and elevated aspartate aminotransferase (AST) (OR = 11.179; P = 0.013). The adequacy of this prediction model was good (P = 0.728), with a high predictive utility (area under curve [AUC] = 76.99%; 95% CI: 67.05% to 86.38%). The prediction of the model had optimism-corrected bootstrap resampling AUC of 71.79%. The Youden index yielded a value of 0.439 or greater as the best cut-off for high risk of MERS infection. Discussion This risk-prediction model in dialysis patients appears to depend markedly on chest pain, leukopenia, and elevated AST. The model accurately predicts the high risk of MERS-CoV infection in dialysis patients. This could be clinically useful in applying timely intervention and control measures to prevent clusters of infections in dialysis facilities or other health care settings. The predictive utility of the model warrants further validation in external samples and prospective studies. © 2018 International Society for Hemodialysis.

  20. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    Science.gov (United States)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  1. Generation of patient-specific induced pluripotent stem cells from Leber's hereditary optic neuropathy

    Directory of Open Access Journals (Sweden)

    Huai-En Lu

    2018-04-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited mitochondrial disease caused by homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. In this report, we generated an induced pluripotent stem cell (iPSCs line, TVGH-iPSC-010-09, from the peripheral blood mononuclear cells of a female patient with Leber's hereditary optic neuropathy (LHON by using the Sendai-virus delivery system. The resulting iPSCs retained the disease-causing mitochondrial DNA mutation, expressed pluripotent markers and could differentiate into the three germ layers. We believe LHON patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.

  2. Are patient specific meshes required for EIT head imaging?

    Science.gov (United States)

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  3. 3D-printed patient-specific applications in orthopedics

    OpenAIRE

    Wong KC

    2016-01-01

    Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal) and three-dimensional (3D) virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform p...

  4. Model of pulmonary fluid traffic homeostasis based on respiratory cycle pressure, bidirectional bronchiolo-pulmonar shunting and water evaporation.

    Science.gov (United States)

    Kurbel, Sven; Kurbel, Beatrica; Gulam, Danijela; Spajić, Borislav

    2010-06-01

    The main puzzle of the pulmonary circulation is how the alveolar spaces remain dry over a wide range of pulmonary vascular pressures and blood flows. Although normal hydrostatic pressure in pulmonary capillaries is probably always below 10 mmHg, well bellow plasma colloid pressure of 25 mmHg, most textbooks state that some fluid filtration through capillary walls does occur, while the increased lymph drainage prevents alveolar fluid accumulation. The lack of a measurable pressure drop along pulmonary capillaries makes the classic description of Starling forces unsuitable to the low pressure, low resistance pulmonary circulation. Here presented model of pulmonary fluid traffic describes lungs as a matrix of small vascular units, each consisting of alveoli whose capillaries are anastomotically linked to the bronchiolar capillaries perfused by a single bronchiolar arteriole. It proposes that filtration and absorption in pulmonary and in bronchiolar capillaries happen as alternating periods of low and of increased perfusion pressures. The model is based on three levels of filtration control: short filtration phases due to respiratory cycle of the whole lung are modulated by bidirectional bronchiolo-pulmonar shunting independently in each small vascular unit, while fluid evaporation from alveolar groups further tunes local filtration. These mechanisms are used to describe a self-sustaining regulator that allows optimal fluid traffic in different settings. The proposed concept is used to describe development of pulmonary edema in several clinical entities (exercise in wet or dry climate, left heart failure, people who rapidly move to high altitudes, acute cyanide and carbon monoxide poisoning, large pulmonary embolisms). .

  5. Influence of arousal threshold and depth of sleep on respiratory stability in man: analysis using a mathematical model.

    Science.gov (United States)

    Longobardo, G S; Evangelisti, C J; Cherniack, N S

    2009-12-01

    We examined the effect of arousals (shifts from sleep to wakefulness) on breathing during sleep using a mathematical model. The model consisted of a description of the fluid dynamics and mechanical properties of the upper airways and lungs, as well as a controller sensitive to arterial and brain changes in CO(2), changes in arterial oxygen, and a neural input, alertness. The body was divided into multiple gas store compartments connected by the circulation. Cardiac output was constant, and cerebral blood flows were sensitive to changes in O(2) and CO(2) levels. Arousal was considered to occur instantaneously when afferent respiratory chemical and neural stimulation reached a threshold value, while sleep occurred when stimulation fell below that value. In the case of rigid and nearly incompressible upper airways, lowering arousal threshold decreased the stability of breathing and led to the occurrence of repeated apnoeas. In more compressible upper airways, to maintain stability, increasing arousal thresholds and decreasing elasticity were linked approximately linearly, until at low elastances arousal thresholds had no effect on stability. Increased controller gain promoted instability. The architecture of apnoeas during unstable sleep changed with the arousal threshold and decreases in elasticity. With rigid airways, apnoeas were central. With lower elastances, apnoeas were mixed even with higher arousal thresholds. With very low elastances and still higher arousal thresholds, sleep consisted totally of obstructed apnoeas. Cycle lengths shortened as the sleep architecture changed from mixed apnoeas to total obstruction. Deeper sleep also tended to promote instability by increasing plant gain. These instabilities could be countered by arousal threshold increases which were tied to deeper sleep or accumulated aroused time, or by decreased controller gains.

  6. Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.

    Science.gov (United States)

    Kim, Dae-Seung; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Hwang, Soon-Jung; Kim, Seong-Ha; Yi, Won-Jin

    2013-03-01

    Accurate simulation and evaluation of mandibular movement is fundamental for the analysis of functional changes and effects of the mandible and maxilla before and after surgical treatments. We applied principal axes of inertia to the three-dimensional (3D) trajectories generated by patient-specific simulations of TMJ movements for the functional evaluations of mandible movement. Three-dimensional movements of the mandible and the maxilla were tracked based on a patient-specific splint and an optical tracking system. The dental occlusion recorded on the sprint provided synchronization for initial movement in the tracking and the simulation phases. The translation and rotation recorded during movement tracking was applied sequentially to the mandibular model in relation to a fixed maxilla model. The sequential 3D positions of selected landmarks on the mandible were calculated based on the reference coordinate system. The landmarks selected for analysis were bilateral condyles and pogonion points. The moment of inertia tensor was calculated with respect to the 3D trajectory points. Using the unit vectors along the principal axes derived from the tensor matrix, α, β and γ rotations around z-, y- and x-axes were determined to represent the principal directions as principal rotations respectively. The γ direction showed the higher standard deviation, variation of directions, than other directions at all the landmarks. The mandible movement has larger kinematic redundancy in the γ direction than α and β during mouth opening and closing. Principal directions of inertia would be applied to analyzing the changes in angular motion of trajectories introduced by mandibular shape changes from surgical treatments and also to the analysis of the influence of skeletal deformities on mandibular movement asymmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system

    Science.gov (United States)

    Meess, Karen M.; Izzo, Richard L.; Dryjski, Maciej L.; Curl, Richard E.; Harris, Linda M.; Springer, Michael; Siddiqui, Adnan H.; Rudin, Stephen; Ionita, Ciprian N.

    2017-03-01

    Following new trends in precision medicine, Juxatarenal Abdominal Aortic Aneurysm (JAAA) treatment has been enabled by using patient-specific fenestrated endovascular grafts. The X-ray guided procedure requires precise orientation of multiple modular endografts within the arteries confirmed via radiopaque markers. Patient-specific 3D printed phantoms could familiarize physicians with complex procedures and new devices in a risk-free simulation environment to avoid periprocedural complications and improve training. Using the Vascular Modeling Toolkit (VMTK), 3D Data from a CTA imaging of a patient scheduled for Fenestrated EndoVascular Aortic Repair (FEVAR) was segmented to isolate the aortic lumen, thrombus, and calcifications. A stereolithographic mesh (STL) was generated and then modified in Autodesk MeshMixer for fabrication via a Stratasys Eden 260 printer in a flexible photopolymer to simulate arterial compliance. Fluoroscopic guided simulation of the patient-specific FEVAR procedure was performed by interventionists using all demonstration endografts and accessory devices. Analysis compared treatment strategy between the planned procedure, the simulation procedure, and the patient procedure using a derived scoring scheme. Results: With training on the patient-specific 3D printed AAA phantom, the clinical team optimized their procedural strategy. Anatomical landmarks and all devices were visible under x-ray during the simulation mimicking the clinical environment. The actual patient procedure went without complications. Conclusions: With advances in 3D printing, fabrication of patient specific AAA phantoms is possible. Simulation with 3D printed phantoms shows potential to inform clinical interventional procedures in addition to CTA diagnostic imaging.

  8. Implementation of the ICRP 66 respiratory tract model: example of occupational exposure to uranium oxides formed in a new laser enrichment process

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Henge-Napoli, M.H.; Hodgson, A.; Stradling, G.N.; Birchall, A.

    1996-01-01

    A new uranium enrichment facility using laser isotopic separation generates aerosols consisting of U metal + UO 2 : with traces of UPON. Results of lung absorption to blood showed that the U metal + UO 2 transportability was appreciably greater than for other industrial forms of UO 2 . Taking into account the new ICRP human respiratory tract model, the data were used as a basis for assessing the dose coefficient, for the dust sampled at the workplace. (author)

  9. Lungs and Respiratory System

    Science.gov (United States)

    ... Videos for Educators Search English Español Lungs and Respiratory System KidsHealth / For Parents / Lungs and Respiratory System ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't ...

  10. Neonatal respiratory distress syndrome

    Science.gov (United States)

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... improves slowly after that. Some infants with severe respiratory distress syndrome will die. This most often occurs ...

  11. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).

    Science.gov (United States)

    Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P

    2008-11-01

    The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model

  12. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    Science.gov (United States)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  13. Patient Specific Dosimetry based in excreted urine measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barquero, R.; Nunez, C.; Ruiz, A.; Valverde, J.; Basurto, F.

    2006-07-01

    One of the limiting factors in utilising therapeutic radiopharmaceuticals in the I-131 thyroid therapy is the potential hazard to the bone marrow, kidneys, and other internal organs. In this work, by means of daily dose rate measurements at a point in contact of the can with the urine excreted by the patient undergoing radio-iodine therapy, activities and associated absorbed doses in total body are calculated. The urine can is characterised by a geometric and materials model for MC simulation with MCNP. Knowing the conversion factor from activity in urine to dose rate in the measurement point of the can for each filling volume, the urine and patient activity can be obtained at each measurement time. From the fitting of these activities, the time evolution, the effective half life in the patient and the cumulative whole body activity are calculated. The emission characteristics of I-131 are using after to estimate the maximum whole body absorbed dose. The results for 2 hyperthyroidism and 4 carcinoma treatments are presented. The maximum total body absorbed dose are 673 and 149 Gy for the carcinoma and hyperthyroidism. The corresponding range of T1/2 eff is o.2 to 2.5 days (carcinoma) and 5.4 to 6.6 days (hyperthyroidism). (Author)

  14. Effects of formalin-inactivated respiratory syncytial virus (FI-RSV in the perinatal lamb model of RSV.

    Directory of Open Access Journals (Sweden)

    Rachel J Derscheid

    Full Text Available Respiratory syncytial virus (RSV is the most frequent cause of bronchiolitis in infants and children worldwide. There are currently no licensed vaccines or effective antivirals. The lack of a vaccine is partly due to increased caution following the aftermath of a failed clinical trial of a formalin-inactivated RSV vaccine (FI-RSV conducted in the 1960's that led to enhanced disease, necessitating hospitalization of 80% of vaccine recipients and resulting in two fatalities. Perinatal lamb lungs are similar in size, structure and physiology to those of human infants and are susceptible to human strains of RSV that induce similar lesions as those observed in infected human infants. We sought to determine if perinatal lambs immunized with FI-RSV would develop key features of vaccine-enhanced disease. This was tested in colostrum-deprived lambs immunized at 3-5 days of age with FI-RSV followed two weeks later by RSV infection. The FI-RSV-vaccinated lambs exhibited several key features of RSV vaccine-enhanced disease, including reduced RSV titers in bronchoalveolar lavage fluid and lung, and increased infiltration of peribronchiolar and perivascular lymphocytes compared to lambs either undergoing an acute RSV infection or naïve controls; all features of RSV vaccine-enhanced disease. These results represent a first step proof-of-principle demonstration that the lamb can develop altered responses to RSV following FI-RSV vaccination. The lamb model may be useful for future mechanistic studies as well as the assessment of RSV vaccines designed for infants.

  15. Surfactant disaturated-phosphatidylcholine kinetics in acute respiratory distress syndrome by stable isotopes and a two compartment model

    Directory of Open Access Journals (Sweden)

    Cogo Paola E

    2007-02-01

    Full Text Available Abstract Background In patients with acute respiratory distress syndrome (ARDS, it is well known that only part of the lungs is aerated and surfactant function is impaired, but the extent of lung damage and changes in surfactant turnover remain unclear. The objective of the study was to evaluate surfactant disaturated-phosphatidylcholine turnover in patients with ARDS using stable isotopes. Methods We studied 12 patients with ARDS and 7 subjects with normal lungs. After the tracheal instillation of a trace dose of 13C-dipalmitoyl-phosphatidylcholine, we measured the 13C enrichment over time of palmitate residues of disaturated-phosphatidylcholine isolated from tracheal aspirates. Data were interpreted using a model with two compartments, alveoli and lung tissue, and kinetic parameters were derived assuming that, in controls, alveolar macrophages may degrade between 5 and 50% of disaturated-phosphatidylcholine, the rest being lost from tissue. In ARDS we assumed that 5–100% of disaturated-phosphatidylcholine is degraded in the alveolar space, due to release of hydrolytic enzymes. Some of the kinetic parameters were uniquely determined, while others were identified as lower and upper bounds. Results In ARDS, the alveolar pool of disaturated-phosphatidylcholine was significantly lower than in controls (0.16 ± 0.04 vs. 1.31 ± 0.40 mg/kg, p de novo synthesis of disaturated-phosphatidylcholine were also significantly lower, while mean resident time in lung tissue was significantly higher in ARDS than in controls. Recycling was 16.2 ± 3.5 in ARDS and 31.9 ± 7.3 in controls (p = 0.08. Conclusion In ARDS the alveolar pool of surfactant is reduced and disaturated-phosphatidylcholine turnover is altered.

  16. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hara, Naomi; Morata, Saori

    2016-01-01

    control ratio was also significantly increased. Maximal Protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired...... C57BL/6 mice were analyzed at either 6 hours or 24 hours. ROS-production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS...

  17. Analysis and modeling of ensemble recordings from respiratory pre-motor neurons indicate changes in functional network architecture after acute hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto F Galán

    2010-09-01

    Full Text Available We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We compared firing rates and neuronal synchronization among these neurons before and after a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after stimulation, in part due to a transient slowing of the respiratory pattern. However, the median interspike interval did not change, suggesting that the firing threshold of the neurons was not affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike trains revealed that, both before and after brief hypoxia, up to 45 % (but typically less than 5 % of coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony resulted from common synaptic input to the pre-motor population, an example of stochastic synchronization. After brief hypoxia most pairs were less synchronized, although some were more, suggesting that the respiratory network was “rewired” transiently after the stimulus. To investigate this hypothesis, we created a simple computational model with feed-forward divergent connections along the inspiratory pathway. Assuming that 1 the number of divergent projections was not the same for all presynaptic cells, but rather spanned a wide range and 2 that the stimulus increased inhibition at the top of the network; this model reproduced the reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation observed in our experimental data.

  18. Dysrhythmias of the respiratory oscillator

    Science.gov (United States)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  19. Prospective validation of a prognostic model for respiratory syncytial virus bronchiolitis in late preterm infants: a multicenter birth cohort study

    NARCIS (Netherlands)

    Blanken, M.O.; Koffijberg, H.; Nibbelke, E.E.; Rovers, M.M.; Bont, L.; Liem, K.D.; et al.,

    2013-01-01

    OBJECTIVES: This study aimed to update and validate a prediction rule for respiratory syncytial virus (RSV) hospitalization in preterm infants 33-35 weeks gestational age (WGA). STUDY DESIGN: The RISK study consisted of 2 multicenter prospective birth cohorts in 41 hospitals. Risk factors were

  20. Development of an improved approach to radiation treatment therapy using high-definition patient-specific voxel phantoms

    International Nuclear Information System (INIS)

    Ward, R.C.; Ryman, J.C.; Worley, B.A.; Stallings, D.C.

    1998-01-01

    Through an internally funded project at Oak Ridge National Laboratory, a high-resolution phantom was developed based on the National Library of Medicine's Visible Human Data. Special software was written using the interactive data language (IDL) visualization language to automatically segment and classify some of the organs and the skeleton of the Visible Male. A high definition phantom consisting of nine hundred 512 x 512 slices was constructed of the entire torso. Computed tomography (CT) images of a patient's tumor near the spine were scaled and morphed into the phantom model to create a patient-specific phantom. Calculations of dose to the tumor and surrounding tissue were then performed using the patient-specific phantom

  1. Complex Osteotomies of Tibial Plateau Malunions Using Computer-Assisted Planning and Patient-Specific Surgical Guides.

    Science.gov (United States)

    Fürnstahl, Philipp; Vlachopoulos, Lazaros; Schweizer, Andreas; Fucentese, Sandro F; Koch, Peter P

    2015-08-01

    The accurate reduction of tibial plateau malunions can be challenging without guidance. In this work, we report on a novel technique that combines 3-dimensional computer-assisted planning with patient-specific surgical guides for improving reliability and accuracy of complex intraarticular corrective osteotomies. Preoperative planning based on 3-dimensional bone models was performed to simulate fragment mobilization and reduction in 3 cases. Surgical implementation of the preoperative plan using patient-specific cutting and reduction guides was evaluated; benefits and limitations of the approach were identified and discussed. The preliminary results are encouraging and show that complex, intraarticular corrective osteotomies can be accurately performed with this technique. For selective patients with complex malunions around the tibia plateau, this method might be an attractive option, with the potential to facilitate achieving the most accurate correction possible.

  2. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Tasneem P. Sharma

    2017-05-01

    Full Text Available Retinitis pigmentosa (RP is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1 gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.

  3. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.

    Science.gov (United States)

    Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C

    2014-02-01

    Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  5. Adjuvant activity of ambient particulate matter of different sites, sizes, and seasons in a respiratory allergy mouse model

    International Nuclear Information System (INIS)

    Steerenberg, P.A.; Withagen, C.E.T.; Dalen, W.J. van; Dormans, J.A.M.A.; Cassee, F.R.; Heisterkamp, S.H.; Loveren, H. van

    2004-01-01

    In the framework of an EU project entitled, 'Respiratory Allergy and Inflammation due to Ambient Particles (RAIAP)', various ambient particulate matter samples were tested for their adjuvant potency in an animal allergy model to ovalbumin. Coarse (2.5-10 μm) and fine (0.15-2.5 μm) particles were collected during the spring, summer, and winter in Rome, Oslo, Lodz, and Amsterdam. Coarse and fine particles were also collected near a seaside location in the Netherlands, where prevailing winds are westerly. These latter particles served as a control, with a minimum contribution by traffic. Ottawa dust (EHC-93) was used as a standard reference sample. Immunoglobulins (IgE, IgG 1 , and IgG 2a ), histopathological changes in the lung, cytokines, and the number of cells and their differentiation in lung lavages were used as effect parameters to study the adjuvant potency of these particles. The particles (3 mg/ml) were mixed with ovalbumin (0.4 mg/ml) and intranasally administered during the sensitization or the challenge phase. Intranasal administration of ovalbumin only induced very little antibody response, but introduced a minor inflammatory response in the lung or BAL during the sensitization and challenge phase. On the contrary, after coexposure to EHC-93 and ovalbumin, a major increase was found in immunoglobulin levels specific for ovalbumin, and a major inflammatory response in lung and BAL was induced. Coexposure to ovalbumin with 4 out of 12 collected PM samples (3 mg/ml) resulted in an increase of mainly IgE and IgG 1 . The histopathological changes consisted of a small to severe peribronchial and perivascular inflammatory response, a hypertrophy of bronchiolar mucous cells and an increase in eosinophils and neutrophils in the BAL. Statistical evaluation of the above-mentioned parameters showed associations with PM x (coarse and fine), site, season, season x PM x , season x site and PM x x site. In addition, adjuvant activity of the PM x can be ranked as Lodz

  6. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Mami; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Yamada, Masahiro; Ueki, Nami; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan and Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, Nantan, Kyoto 622-0041 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Hyogo 650-0047, Japan and Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Kobe, Hyogo 650-0047 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan)

    2012-10-15

    Purpose: To perform dynamic tumor tracking irradiation with the Vero4DRT (MHI-TM2000), a correlation model [four dimensional (4D) model] between the displacement of infrared markers on the abdominal wall and the three-dimensional position of a tumor indicated by a minimum of three implanted gold markers is required. However, the gold markers cannot be detected successfully on fluoroscopic images under the following situations: (1) overlapping of the gold markers; and (2) a low intensity ratio of the gold marker to its surroundings. In the present study, the authors proposed a method to readily determine the optimal x-ray monitoring angle for creating a 4D model utilizing computed tomography (CT) images. Methods: The Vero4DRT mounting two orthogonal kV x-ray imaging subsystems can separately rotate the gantry along an O-shaped guide-lane and the O-ring along its vertical axis. The optimal x-ray monitoring angle was determined on CT images by minimizing the root-sum-square of water equivalent path lengths (WEPLs) on the orthogonal lines passing all of the gold markers while rotating the O-ring and the gantry. The x-ray monitoring angles at which the distances between the gold markers were within 5 mm at the isocenter level were excluded to prevent false detection of the gold markers in consideration of respiratory motions. First, the relationship between the WEPLs (unit: mm) and the intensity ratios of the gold markers was examined to assess the validity of our proposed method. Second, our proposed method was applied to the 4D-CT images at the end-expiration phase for 11 lung cancer patients who had four to five gold markers. To prove the necessity of the x-ray monitoring angle optimization, the intensity ratios of the least visible markers (minimum intensity ratios) that were estimated from the WEPLs were compared under the following conditions: the optimal x-ray monitoring angle and the angles used for setup verification. Additionally, the intra- and

  7. Effect of Air Pollution on the Emergency Admissions of Cardiovascular and Respiratory Patients, Using the Air Quality Model: A Study in Tehran, 2005-2014

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2016-04-01

    Full Text Available Background: Air pollution is one of the most important factors threatening the health of citizens. It increases the prevalence of cardiovascular and respiratory diseases as well as emergency admissions to hospitals in the polluted metropolitan cities. The present study was conducted using Air Quality (AirQ model and aimed to investigate the effects of air pollution on the number of emergency cardiovascular and respiratory patients admissions in Tehran hospitals during 2005-2014. Materials and Methods: This was cross-sectional study. First, the needed hourly information was received from the Bureau of Air Quality Control, and the Environmental Protection Agency of Tehran City. Then, the information was validated according to WHO criteria, and the statistical indicators and the stages required to quantify the harmful effects of air pollutants were calculated by using appropriate application. Results: According to the results, the number of cases admitted to the emergency ward of hospitals due to heart diseases (by exposure to particulate matter during the years 2005 to 2014 were respectively 1797, 1280, 1766, 1980, 2132, 2703, 2389, 2594, 2158, and 2291 cases, totaling 20990 persons, and for respiratory diseases (due to exposure to particulate matter during the same years were respectively 4643, 3301, 4650, 5117, 5511, 6999, 6180, 6452, 5577, and 5922 cases, totaling 54352 people. Also, the number of cases admitted to the emergency wards of hospitals due to chronic obstructive pulmonary disease caused by exposure to emissions of pollutants such as sulfur dioxide, nitrogen dioxide, and ozone were respectively, 1806, 2454, and 2941 cases. Conclusion: Air pollution in Tehran increases the load of emergency visits to hospitals and increases the risk of respiratory and heart diseases. Therefore, measures to reduce and control air pollution and to prepare, equip, and mobilize hospitals, particularly emergency wards, are among important priorities that

  8. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    International Nuclear Information System (INIS)

    Burfeindt, Matthew J; Zastrow, Earl; Hagness, Susan C; Van Veen, Barry D; Medow, Joshua E

    2011-01-01

    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating-that is, to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT'IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.

  9. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness

    Directory of Open Access Journals (Sweden)

    S. Voß

    2016-01-01

    Full Text Available Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches—when averaged over the complete aneurysm sac—are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.