WorldWideScience

Sample records for patient-specific masseter modeling

  1. Shape determinative slice localization for patient-specific masseter modeling using shape-based interpolation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering (Singapore); Biomedical Imaging Lab., Agency for Science Technology and Research (Singapore); Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering (Singapore); Dept. of Preventive Dentistry, National Univ. of Singapore (Singapore); Ong, S.H. [Dept. of Electrical and Computer Engineering, National Univ. of Singapore (Singapore); Div. of Bioengineering, National Univ. of Singapore (Singapore); Liu, J.; Nowinski, W.L. [Biomedical Imaging Lab., Agency for Science Technology and Research (Singapore); Goh, P.S. [Dept. of Diagnostic Radiology, National Univ. of Singapore (Singapore)

    2007-06-15

    The masseter plays a critical role in the mastication system. A hybrid method to shape-based interpolation is used to build the masseter model from magnetic resonance (MR) data sets. The main contribution here is the localizing of determinative slices in the data sets where clinicians are required to perform manual segmentations in order for an accurate model to be built. Shape-based criteria were used to locate the candidates for determinative slices and fuzzy-c-means (FCM) clustering technique was used to establish the determinative slices. Five masseter models were built in our work and the average overlap indices ({kappa}) achieved is 85.2%. This indicates that there is good agreement between the models and the manual contour tracings. In addition, the time taken, as compared to manually segmenting all the slices, is significantly lesser. (orig.)

  2. Shape determinative slice localization for patient-specific masseter modeling using shape-based interpolation

    International Nuclear Information System (INIS)

    Ng, H.P.; Foong, K.W.C.; Ong, S.H.; Liu, J.; Nowinski, W.L.; Goh, P.S.

    2007-01-01

    The masseter plays a critical role in the mastication system. A hybrid method to shape-based interpolation is used to build the masseter model from magnetic resonance (MR) data sets. The main contribution here is the localizing of determinative slices in the data sets where clinicians are required to perform manual segmentations in order for an accurate model to be built. Shape-based criteria were used to locate the candidates for determinative slices and fuzzy-c-means (FCM) clustering technique was used to establish the determinative slices. Five masseter models were built in our work and the average overlap indices (κ) achieved is 85.2%. This indicates that there is good agreement between the models and the manual contour tracings. In addition, the time taken, as compared to manually segmenting all the slices, is significantly lesser. (orig.)

  3. An animal model for human masseter muscle: histochemical characterization of mouse, rat, rabbit, cat, dog, pig, and cow masseter muscle

    DEFF Research Database (Denmark)

    Tuxen, A; Kirkeby, S

    1990-01-01

    The masseter muscle of several animal species was investigated by use of a histochemical method for the demonstration of acid-stable and alkali-stable myosin adenosine triphosphatase (ATPase). The following subdivisions of fiber types were used: Type I fibers show weak ATPase activity at pH 9...... II and I fibers, with type II predominating. Cow masseter muscle consisted mainly of type I fibers, although some cow masseter muscles contained a very small number of type II fibers. Pig masseter muscle had both type I, II, and IM fibers. One of the characteristics of human masseter muscle is type...... IM fibers, which are rarely seen in muscles other than the masticatory muscles. Therefore, pig masseter muscle might be a suitable animal model for experimental studies, such as an investigation of the distribution and diameter of fiber types in the masticatory muscles before and after orthognathic...

  4. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  5. Patient-Specific Modeling in Tomorrow's Medicine

    CERN Document Server

    2012-01-01

    This book reviews the frontier of research and clinical applications of Patient Specific Modeling, and provides a state-of-the-art update as well as perspectives on future directions in this exciting field. The book is useful for medical physicists, biomedical engineers and other engineers who are interested in the science and technology aspects of Patient Specific Modeling, as well as for radiologists and other medical specialists who wish to be updated about the state of implementation.

  6. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  7. Morphing patient-specific musculoskeletal models

    DEFF Research Database (Denmark)

    Rasmussen, John; Galibarov, Pavel E.; Al-Munajjed, Amir

    the resulting models do indeed represent the patients’ biomechanics. As a particularly challenging case, foot deformities based only on point sets recovered from surface scans are considered as shown in the figure. The preliminary results are promising for the cases of severe flat foot and metatarsalgia while...... other conditions may require CT or MRI data. The method and its theoretical assumptions, advantages and limitations are presented, and several examples will illustrate morphing to patient-specific models. [1] Carbes S; Tørholm S; Rasmussen, J. A Detailed Twenty-six Segments Kinematic Foot model...

  8. Patient-Specific Modeling of Intraventricular Hemodynamics

    Science.gov (United States)

    Vedula, Vijay; Marsden, Alison

    2017-11-01

    Heart disease is the one of the leading causes of death in the world. Apart from malfunctions in electrophysiology and myocardial mechanics, abnormal hemodynamics is a major factor attributed to heart disease across all ages. Computer simulations offer an efficient means to accurately reproduce in vivo flow conditions and also make predictions of post-operative outcomes and disease progression. We present an experimentally validated computational framework for performing patient-specific modeling of intraventricular hemodynamics. Our modeling framework employs the SimVascular open source software to build an anatomic model and employs robust image registration methods to extract ventricular motion from the image data. We then employ a stabilized finite element solver to simulate blood flow in the ventricles, solving the Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) coordinates by prescribing the wall motion extracted during registration. We model the fluid-structure interaction effects of the cardiac valves using an immersed boundary method and discuss the potential application of this methodology in single ventricle physiology and trans-catheter aortic valve replacement (TAVR). This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and partly through NIH NHLBI R01 Grant 5R01HL129727-02.

  9. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model.

    Directory of Open Access Journals (Sweden)

    Hazem Akkad

    Full Text Available Critical illness myopathy (CIM is a debilitating common consequence of modern intensive care, characterized by severe muscle wasting, weakness and a decreased myosin/actin (M/A ratio. Limb/trunk muscles are primarily affected by this myopathy while cranial nerve innervated muscles are spared or less affected, but the mechanisms underlying these muscle-specific differences remain unknown. In this time-resolved study, the cranial nerve innervated masseter muscle was studied in a unique experimental rat intensive care unit (ICU model, where animals were exposed to sedation, neuromuscular blockade (NMB, mechanical ventilation, and immobilization for durations varying between 6 h and 14d. Gel electrophoresis, immunoblotting, RT-PCR and morphological staining techniques were used to analyze M/A ratios, myofiber size, synthesis and degradation of myofibrillar proteins, and levels of heat shock proteins (HSPs. Results obtained in the masseter muscle were compared with previous observations in experimental and clinical studies of limb muscles. Significant muscle-specific differences were observed, i.e., in the masseter, the decline in M/A ratio and muscle fiber size was small and delayed. Furthermore, transcriptional regulation of myosin and actin synthesis was maintained, and Akt phosphorylation was only briefly reduced. In studied degradation pathways, only mRNA, but not protein levels of MuRF1, atrogin-1 and the autophagy marker LC3b were activated by the ICU condition. The matrix metalloproteinase MMP-2 was inhibited and protective HSPs were up-regulated early. These results confirm that the cranial nerve innervated masticatory muscles is less affected by the ICU-stress response than limb muscles, in accordance with clinical observation in ICU patients with CIM, supporting the model' credibility as a valid CIM model.

  10. Patient Specific Modeling of Head-Up Tilt

    DEFF Research Database (Denmark)

    Williams, Nakeya; Wright, Andrew; Mehlsen, Jesper

    2014-01-01

    Short term cardiovascular responses to head-up tilt (HUT) experiments involve complex cardiovascular regulation in order to maintain blood pressure at homeostatic levels. This manuscript presents a patient specific compartmental model developed to predict dynamic changes in heart rate and arterial...

  11. Towards patient specific thermal modelling of the prostate

    International Nuclear Information System (INIS)

    Berg, Cornelis A T van den; Kamer, Jeroen B van de; Leeuw, Astrid A C ee; Jeukens, Cecile R L P N; Raaymakers, Bas W; Vulpen, Marco van; Lagendijk, Jan J W

    2006-01-01

    The application of thermal modelling for hyperthermia and thermal ablation is severely hampered by lack of information about perfusion and vasculature. However, recently, with the advent of sophisticated angiography and dynamic contrast enhanced (DCE) imaging techniques, it has become possible to image small vessels and blood perfusion bringing the ultimate goal of patient specific thermal modelling closer within reach. In this study dynamic contrast enhanced multi-slice CT imaging techniques are employed to investigate the feasibility of this concept for regional hyperthermia treatment of the prostate. The results are retrospectively compared with clinical thermometry data of a patient group from an earlier trial. Furthermore, the role of the prostate vasculature in the establishment of the prostate temperature distribution is studied. Quantitative 3D perfusion maps of the prostate were constructed for five patients using a distributed-parameter tracer kinetics model to analyse dynamic CT data. CT angiography was applied to construct a discrete vessel model of the pelvis. Additionally, a discrete vessel model of the prostate vasculature was constructed of a prostate taken from a human corpse. Three thermal modelling schemes with increasing inclusion of the patient specific physiological information were used to simulate the temperature distribution of the prostate during regional hyperthermia. Prostate perfusion was found to be heterogeneous and T3 prostate carcinomas are often characterized by a strongly elevated tumour perfusion (up to 70-80 ml 100 g -1 min -1 ). This elevated tumour perfusion leads to 1-2 deg. C lower tumour temperatures than thermal simulations based on a homogeneous prostate perfusion. Furthermore, the comparison has shown that the simulations with the measured perfusion maps result in consistently lower prostate temperatures than clinically achieved. The simulations with the discrete vessel model indicate that significant pre-heating takes

  12. Patient-specific fibre-based models of muscle wrapping

    Science.gov (United States)

    Kohout, J.; Clapworthy, G. J.; Zhao, Y.; Tao, Y.; Gonzalez-Garcia, G.; Dong, F.; Wei, H.; Kohoutová, E.

    2013-01-01

    In many biomechanical problems, the availability of a suitable model for the wrapping of muscles when undergoing movement is essential for the estimation of forces produced on and by the body during motion. This is an important factor in the Osteoporotic Virtual Physiological Human project which is investigating the likelihood of fracture for osteoporotic patients undertaking a variety of movements. The weakening of their skeletons makes them particularly vulnerable to bone fracture caused by excessive loading being placed on the bones, even in simple everyday tasks. This paper provides an overview of a novel volumetric model that describes muscle wrapping around bones and other muscles during movement, and which includes a consideration of how the orientations of the muscle fibres change during the motion. The method can calculate the form of wrapping of a muscle of medium size and visualize the outcome within tenths of seconds on commodity hardware, while conserving muscle volume. This makes the method suitable not only for educational biomedical software, but also for clinical applications used to identify weak muscles that should be strengthened during rehabilitation or to identify bone stresses in order to estimate the risk of fractures. PMID:24427519

  13. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  14. Development of patient specific cardiovascular models predicting dynamics in response to orthostatic stress challenges

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2013-01-01

    Physiological realistic models of the controlled cardiovascular system are constructed and validated against clinical data. Special attention is paid to the control of blood pressure, cerebral blood flow velocity, and heart rate during postural challenges, including sit-to-stand and head-up tilt....... This study describes development of patient specific models, and how sensitivity analysis and nonlinear optimization methods can be used to predict patient specific characteristics when analyzed using experimental data. Finally, we discuss how a given model can be used to understand physiological changes...

  15. A Patient-Specific Airway Branching Model for Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Nor Salwa Damanhuri

    2014-01-01

    Full Text Available Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps. Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA in patients diagnosed with acute respiratory distress syndrome (ARDS. A scaling factor (α was used to equate the area under the pressure curve (AUC from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median α value of 0.58 (IQR: 0.54–0.63; range: 0.45–0.66 for these ARDS patients. Significantly lower α values were found for individuals with chronic obstructive pulmonary disease (P<0.001. Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific α values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.

  16. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    Science.gov (United States)

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results

  17. Cysticercosis of masseter

    Directory of Open Access Journals (Sweden)

    B Dilip Kumar

    2011-01-01

    Full Text Available Cysticercosis is a parasitic infestation caused by the larval stage of Taenia solium, a cestodic paratise. It is a common disease in developing countries where it is also endemic. The most commonly infested body organs include subcutaneous tissues, brain and skeletal muscles. It is interesting to note that oral lesion of cysticercosis is a rare event. Here we report an isolated lesion of cysticercosis in the masseter muscle.

  18. Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties.

    Directory of Open Access Journals (Sweden)

    Daniel M Lombardo

    2016-08-01

    Full Text Available Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF. A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP morphology, action potential duration (APD restitution and conduction velocity (CV restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy.

  19. Idiopathic masseter muscle hypertrophy.

    Science.gov (United States)

    Kebede, Biruktawit; Megersa, Shimalis

    2011-11-01

    Benign Masseteric Hypertrophy is a relatively uncommon condition that can occur unilaterally or bilaterally. Pain may be a symptom, but most frequently a clinician is consulted for cosmetic reasons. In some cases prominent Exostoses at the angle of the mandible are noted. Although it is tempting to point to Malocclusion, Bruxism, clenching, or Temporomandibular joint disorders, the etiology in the majority of cases is unclear. Diagnosis is based on awareness of the condition, clinical and radiographic findings, and exclusion of more serious Pathology such as Benign and Malignant Parotid Disease, Rhabdomyoma, and Lymphangioma. Treatment usually involves resection of a portion of the Masseter muscle with or without the underlying bone.

  20. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  1. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  2. Patient specific actual size 3D printed models for patient education in glioma treatment: first experiences.

    Science.gov (United States)

    van de Belt, Tom H; Nijmeijer, Hugo; Grim, David; Engelen, Lucien Jlpg; Vreeken, Rinaldo; van Gelder, Marleen Mmj; Laan, Mark Ter

    2018-06-02

    Cancer patients need high quality information about the disease stage, treatment options and side effects. High quality information can also improve health literacy, shared decision-making and satisfaction. We created patient-specific 3D models of tumours including surrounding functional areas, and assessed what patients with glioma actually value (or fear) about these models when they are used to educate them about the relation between their tumour and specific brain parts, the surgical procedure, and risks. We carried out an explorative study with adult glioma patients, who underwent functional MRI and DTi as part of the pre-operative work-up. All participants received an actual size 3D model, printed based on fMRI and DTi imaging. Semi-structured interviews were held to identify facilitators and barriers for using the model, and perceived effects. A model was successfully created for all 11 participants. A total of 18 facilitators and 8 barriers were identified. The model improved patients' understanding about their situation, that it was easier to ask questions to their neurosurgeon based on their model and that it supported their decision about the preferred treatment. A perceived barrier for using the 3D model was that it could be emotionally confronting, particularly in an early phase of the disease process. Positive effects were related to psychological domains including coping, learning effects and communication. Patient-specific 3D models are promising and simple tools that could help patients with glioma to better understand their situation, treatment options and risks. They have the potential to improve shared decision-making. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The technique for 3D printing patient-specific models for auricular reconstruction.

    Science.gov (United States)

    Flores, Roberto L; Liss, Hannah; Raffaelli, Samuel; Humayun, Aiza; Khouri, Kimberly S; Coelho, Paulo G; Witek, Lukasz

    2017-06-01

    Currently, surgeons approach autogenous microtia repair by creating a two-dimensional (2D) tracing of the unaffected ear to approximate a three-dimensional (3D) construct, a difficult process. To address these shortcomings, this study introduces the fabrication of patient-specific, sterilizable 3D printed auricular model for autogenous auricular reconstruction. A high-resolution 3D digital photograph was captured of the patient's unaffected ear and surrounding anatomic structures. The photographs were exported and uploaded into Amira, for transformation into a digital (.stl) model, which was imported into Blender, an open source software platform for digital modification of data. The unaffected auricle as digitally isolated and inverted to render a model for the contralateral side. The depths of the scapha, triangular fossa, and cymba were deepened to accentuate their contours. Extra relief was added to the helical root to further distinguish this structure. The ear was then digitally deconstructed and separated into its individual auricular components for reconstruction. The completed ear and its individual components were 3D printed using polylactic acid filament and sterilized following manufacturer specifications. The sterilized models were brought to the operating room to be utilized by the surgeon. The models allowed for more accurate anatomic measurements compared to 2D tracings, which reduced the degree of estimation required by surgeons. Approximately 20 g of the PLA filament were utilized for the construction of these models, yielding a total material cost of approximately $1. Using the methodology detailed in this report, as well as departmentally available resources (3D digital photography and 3D printing), a sterilizable, patient-specific, and inexpensive 3D auricular model was fabricated to be used intraoperatively. This technique of printing customized-to-patient models for surgeons to use as 'guides' shows great promise. Copyright © 2017 European

  4. Patient-specific in silico models can quantify primary implant stability in elderly human bone.

    Science.gov (United States)

    Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry

    2018-03-01

    Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Pathway index models for construction of patient-specific risk profiles.

    Science.gov (United States)

    Eng, Kevin H; Wang, Sijian; Bradley, William H; Rader, Janet S; Kendziorski, Christina

    2013-04-30

    Statistical methods for variable selection, prediction, and classification have proven extremely useful in moving personalized genomics medicine forward, in particular, leading to a number of genomic-based assays now in clinical use for predicting cancer recurrence. Although invaluable in individual cases, the information provided by these assays is limited. Most often, a patient is classified into one of very few groups (e.g., recur or not), limiting the potential for truly personalized treatment. Furthermore, although these assays provide information on which individuals are at most risk (e.g., those for which recurrence is predicted), they provide no information on the aberrant biological pathways that give rise to the increased risk. We have developed an approach to address these limitations. The approach models a time-to-event outcome as a function of known biological pathways, identifies important genomic aberrations, and provides pathway-based patient-specific assessments of risk. As we demonstrate in a study of ovarian cancer from The Cancer Genome Atlas project, the patient-specific risk profiles are powerful and efficient characterizations useful in addressing a number of questions related to identifying informative patient subtypes and predicting survival. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  7. Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition

    Science.gov (United States)

    Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-11-01

    Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.

  8. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    Science.gov (United States)

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  9. A novel patient-specific model to compute coronary fractional flow reserve.

    Science.gov (United States)

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  10. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions.

    Science.gov (United States)

    Kamangar, Sarfaraz; Badruddin, Irfan Anjum; Govindaraju, Kalimuthu; Nik-Ghazali, N; Badarudin, A; Viswanathan, Girish N; Ahmed, N J Salman; Khan, T M Yunus

    2017-08-01

    The purpose of this study is to investigate the effect of various degrees of percentage stenosis on hemodynamic parameters during the hyperemic flow condition. 3D patient-specific coronary artery models were generated based on the CT scan data using MIMICS-18. Numerical simulation was performed for normal and stenosed coronary artery models of 70, 80 and 90% AS (area stenosis). Pressure, velocity, wall shear stress and fractional flow reserve (FFR) were measured and compared with the normal coronary artery model during the cardiac cycle. The results show that, as the percentage AS increase, the pressure drop increases as compared with the normal coronary artery model. Considerable elevation of velocity was observed as the percentage AS increases. The results also demonstrate a recirculation zone immediate after the stenosis which could lead to further progression of stenosis in the flow-disturbed area. Highest wall shear stress was observed for 90% AS as compared to other models that could result in the rupture of coronary artery. The FFR of 90% AS is found to be considerably low.

  11. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  12. Patient specific dynamic geometric models from sequential volumetric time series image data.

    Science.gov (United States)

    Cameron, B M; Robb, R A

    2004-01-01

    Generating patient specific dynamic models is complicated by the complexity of the motion intrinsic and extrinsic to the anatomic structures being modeled. Using a physics-based sequentially deforming algorithm, an anatomically accurate dynamic four-dimensional model can be created from a sequence of 3-D volumetric time series data sets. While such algorithms may accurately track the cyclic non-linear motion of the heart, they generally fail to accurately track extrinsic structural and non-cyclic motion. To accurately model these motions, we have modified a physics-based deformation algorithm to use a meta-surface defining the temporal and spatial maxima of the anatomic structure as the base reference surface. A mass-spring physics-based deformable model, which can expand or shrink with the local intrinsic motion, is applied to the metasurface, deforming this base reference surface to the volumetric data at each time point. As the meta-surface encompasses the temporal maxima of the structure, any extrinsic motion is inherently encoded into the base reference surface and allows the computation of the time point surfaces to be performed in parallel. The resultant 4-D model can be interactively transformed and viewed from different angles, showing the spatial and temporal motion of the anatomic structure. Using texture maps and per-vertex coloring, additional data such as physiological and/or biomechanical variables (e.g., mapping electrical activation sequences onto contracting myocardial surfaces) can be associated with the dynamic model, producing a 5-D model. For acquisition systems that may capture only limited time series data (e.g., only images at end-diastole/end-systole or inhalation/exhalation), this algorithm can provide useful interpolated surfaces between the time points. Such models help minimize the number of time points required to usefully depict the motion of anatomic structures for quantitative assessment of regional dynamics.

  13. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    Science.gov (United States)

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  14. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  15. Patient-specific model of a scoliotic torso for surgical planning

    Science.gov (United States)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-03-01

    A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

  16. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    Science.gov (United States)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  17. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Directory of Open Access Journals (Sweden)

    Yunlong Huo

    Full Text Available It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60% may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12 patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI. The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2 and decreased OSI (<0.02 to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2. These findings have significant implications for graft adaptation and long-term patency.

  18. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Science.gov (United States)

    Huo, Yunlong; Luo, Tong; Guccione, Julius M; Teague, Shawn D; Tan, Wenchang; Navia, José A; Kassab, Ghassan S

    2013-01-01

    It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG) are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60%) may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12) patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS) and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI). The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2)) and decreased OSI (<0.02) to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2)). These findings have significant implications for graft adaptation and long-term patency.

  19. Compression-induced hyperaemia in the rabbit masseter muscle: a model to investigate vascular mechano-sensitivity of skeletal muscle

    International Nuclear Information System (INIS)

    Turturici, Marco; Roatta, Silvestro

    2013-01-01

    Recent evidence suggests that the mechano-sensitivity of the vascular network may underlie rapid dilatory events in skeletal muscles. Previous investigations have been mostly based either on in vitro or on whole-limb studies, neither preparation allowing one to assess the musculo-vascular specificity under physiological conditions. The aim of this work is to characterize the mechano-sensitivity of an exclusively-muscular vascular bed in vivo. In five anesthetized rabbits, muscle blood flow was continuously monitored in the masseteric artery, bilaterally (n = 10). Hyperaemic responses were evoked by compressive stimuli of different extent (50, 100 and 200 mm Hg) and duration (0.5, 1, 2 and 5 s) exerted by a servo-controlled motor on the masseter muscle. Peak amplitude of the hyperaemic response ranged from 340 ± 30% of baseline (at 50 mm Hg) to 459 ± 57% (at 200 mm Hg) (P < 0.05), did not depend on stimulus duration and exhibited very good reliability (ICC = 0.98) when reassessed at 30 min intervals. The time course of the response depended neither on applied pressure nor on the duration of the stimulus. In conclusion, for its high sensitivity and reliability this technique is adequate to characterize mechano-vascular reactivity and may prove useful in the investigation of the underlying mechanisms, with implications in the control of vascular tone and blood pressure in health and disease. (paper)

  20. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    Directory of Open Access Journals (Sweden)

    Alexander Patronis

    2018-04-01

    Full Text Available Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.. We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  1. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology

    International Nuclear Information System (INIS)

    Wake, N.; Chandarana, H.; Huang, W.C.; Taneja, S.S.; Rosenkrantz, A.B.

    2016-01-01

    Highlights: • We examine 3D printing in the context of urologic oncology. • Patient-specific 3D printed kidney and prostate tumor models were created. • 3D printed models extend the current capabilities of conventional 3D visualization. • 3D printed models may be used for surgical planning and intraoperative guidance.

  2. On the use of biomathematical models in patient-specific IMRT dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Heming [UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Tome, Wolfgang A. [Department of Radiation Oncology, Division of Medical Physics, Montefiore Medical Center and Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2013-07-15

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.

  3. On the use of biomathematical models in patient-specific IMRT dose QA

    International Nuclear Information System (INIS)

    Zhen Heming; Nelms, Benjamin E.; Tomé, Wolfgang A.

    2013-01-01

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:ΔTCP and ΔNTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's “robustness” to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types

  4. A Centerline Based Model Morphing Algorithm for Patient-Specific Finite Element Modelling of the Left Ventricle.

    Science.gov (United States)

    Behdadfar, S; Navarro, L; Sundnes, J; Maleckar, M; Ross, S; Odland, H H; Avril, S

    2017-09-20

    Hexahedral automatic model generation is a recurrent problem in computer vision and computational biomechanics. It may even become a challenging problem when one wants to develop a patient-specific finite-element (FE) model of the left ventricle (LV), particularly when only low resolution images are available. In the present study, a fast and efficient algorithm is presented and tested to address such a situation. A template FE hexahedral model was created for a LV geometry using a General Electric (GE) ultrasound (US) system. A system of centerline was considered for this LV mesh. Then, the nodes located over the endocardial and epicardial surfaces are respectively projected from this centerline onto the actual endocardial and epicardial surfaces reconstructed from a patient's US data. Finally, the position of the internal nodes is derived by finding the deformations with minimal elastic energy. This approach was applied to eight patients suffering from congestive heart disease. A FE analysis was performed to derive the stress induced in the LV tissue by diastolic blood pressure on each of them. Our model morphing algorithm was applied successfully and the obtained meshes showed only marginal mismatches when compared to the corresponding US geometries. The diastolic FE analyses were successfully performed in seven patients to derive the distribution of principal stresses. The original model morphing algorithm is fast and robust with low computational cost. This low cost model morphing algorithm may be highly beneficial for future patient-specific reduced-order modelling of the LV with potential application to other crucial organs.

  5. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    radionuclide therapy to obtain normal organ and tumor dose vs. response correlations. Completion of the aims outlined above will make it possible to perform patient-specific dosimetry that incorporates considerations likely to provide robust dose-response relationships. Such an advance will improve targeted radionuclide therapy by making it possible to adopt treatment planning methodologies.

  6. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Science.gov (United States)

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  7. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Directory of Open Access Journals (Sweden)

    Kabilar Gunalan

    Full Text Available Deep brain stimulation (DBS is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports.Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM and predict the response of the hyperdirect pathway to clinical stimulation.Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD. This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution.Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings.Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  8. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  9. Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Zi-Bing Jin

    Full Text Available Retinitis pigmentosa (RP is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.

  10. Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models

    Directory of Open Access Journals (Sweden)

    Qiu Z

    2013-07-01

    Full Text Available Zhifang Qiu,1,2 Steven L Farnsworth,2 Anuja Mishra,1,2 Peter J Hornsby1,21Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA; 2Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USAAbstract: The development of the technology for derivation of induced pluripotent stem (iPS cells from human patients and animal models has opened up new pathways to the better understanding of many human diseases, and has created new opportunities for therapeutic approaches. Here, we consider one important neurological disease, Parkinson's, the development of relevant neural cell lines for studying this disease, and the animal models that are available for testing the survival and function of the cells, following transplantation into the central nervous system. Rapid progress has been made recently in the application of protocols for neuroectoderm differentiation and neural patterning of pluripotent stem cells. These developments have resulted in the ability to produce large numbers of dopaminergic neurons with midbrain characteristics for further study. These cells have been shown to be functional in both rodent and nonhuman primate (NHP models of Parkinson's disease. Patient-specific iPS cells and derived dopaminergic neurons have been developed, in particular from patients with genetic causes of Parkinson's disease. For complete modeling of the disease, it is proposed that the introduction of genetic changes into NHP iPS cells, followed by studying the phenotype of the genetic change in cells transplanted into the NHP as host animal, will yield new insights into disease processes not possible with rodent models alone.Keywords: Parkinson's disease, pluripotent cell differentiation, neural cell lines, dopaminergic neurons, cell transplantation, animal models

  11. Oral cavity reconstruction with the masseter flap

    NARCIS (Netherlands)

    Mahieu, R.; Russo, S.; Gualtieri, T.; Colletti, G.; Deganello, A.

    The purpose of this report is to highlight how an unusual, outdated, unpopular and overlooked reconstructive method such as the masseter flap can be a reliable, straightforward and effective solution for oral reconstruction in selected cases. We report the transposition of the masseter crossover

  12. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    Science.gov (United States)

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  13. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    Science.gov (United States)

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  14. Anatomical analysis of human masseter using MRI

    International Nuclear Information System (INIS)

    Kitahara, Masaki

    1990-01-01

    To quantitatively elucidate individual variation in human masseter muscle, the cross sectional area of this muscle was measured in situ with MRI apparatus. The results were analyzed against age, body build and laterality in habitual mastication by bivariate correlation analysis. Materials included 52 healthy volunteers (26 males, 26 females). Right and left masseter areas and total cross sectional area of the face were measured in the same horizontal plane, and directly displayed on the console of the MRI apparatus. The areas of masseter muscles were not correlated with age or body build, but were positively correlated with the total cross sectional area of the face in the same horizontal plane. Because the left masseters tended to be larger than right, a method for evaluation of the relative size of each side of the messeters was established. This analysis revealed that the corrected dominance of the masseter corresponded, with high probability, to the habitual laterality in mastication. (author)

  15. Anatomical analysis of human masseter using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kitahara, Masaki (Showa Univ., Tokyo (Japan). School of Medicine)

    1990-10-01

    To quantitatively elucidate individual variation in human masseter muscle, the cross sectional area of this muscle was measured in situ with MRI apparatus. The results were analyzed against age, body build and laterality in habitual mastication by bivariate correlation analysis. Materials included 52 healthy volunteers (26 males, 26 females). Right and left masseter areas and total cross sectional area of the face were measured in the same horizontal plane, and directly displayed on the console of the MRI apparatus. The areas of masseter muscles were not correlated with age or body build, but were positively correlated with the total cross sectional area of the face in the same horizontal plane. Because the left masseters tended to be larger than right, a method for evaluation of the relative size of each side of the messeters was established. This analysis revealed that the corrected dominance of the masseter corresponded, with high probability, to the habitual laterality in mastication. (author).

  16. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Patient-Specific Simulation Models of the Abdominal Aorta With and Without Aneurysms

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand

    to be isotropic, which may allow simpler phenomenological models to capture these effects. There is a pressing need, however, for more detailed histological information coupled with more complete experimental data for the systemic arteries. The second study was aimed at developing computational simulation models...... relations for computational analysis, and evaluation of the material model predictability. The constitutive framework applied is the four fiber family (4FF) model. This model assumes that the wall is a constrained mixture of an amorphous isotropic elastin dominated matrix reinforced by collagen fibers....... The collagen fibers are grouped in four directions of orientation. The purpose of the first study was to investigate whether significant risk factors related to AAA development can be identified from a specific pattern in the material parameters of the 4FF model. Smoking is a leading self-inflicted risk factor...

  19. Patient specific modeling of the HPA axis related to clinical diagnosis of depression

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth; Ottesen, Johnny T.

    2017-01-01

    A novel model of the hypothalamic-pituitary-adrenal axis is presented. The axis is an endocrine system responsible for coping with stress and it is likely to be involved in depression. The dynamics of the system is studied and existence, uniqueness and positivity of the solution and the existence...... of an attracting trapping region are proved. The model is calibrated and compared to data for healthy and depressed subjects. A sensitivity analysis resulting in a set of identifiable physiological parameters is provided. A subset is selected for parameter estimation and a reduced version of the model is stated...... and an approximated version is discussed. The model is physiologically based, thus parameters are representative for gland functions or elimination processes. Hence the model may be used for pointing out pathologies by parameter estimation and hypothesis testing whereby it may be used as an objective and refined...

  20. Masseter function and skeletal malocclusion.

    Science.gov (United States)

    Sciote, J J; Raoul, G; Ferri, J; Close, J; Horton, M J; Rowlerson, A

    2013-04-01

    The aim of this work is to review the relationship between the function of the masseter muscle and the occurrence of malocclusions. An analysis was made of the masseter muscle samples from subjects who underwent mandibular osteotomies. The size and proportion of type-II fibers (fast) decreases as facial height increases. Patients with mandibular asymmetry have more type-II fibers on the side of their deviation. The insulin-like growth factor and myostatin are expressed differently depending on the sex and fiber diameter. These differences in the distribution of fiber types and gene expression of this growth factor may be involved in long-term postoperative stability and require additional investigations. Muscle strength and bone length are two genetically determined factors in facial growth. Myosin 1H (MYOH1) is associated with prognathia in Caucasians. As future objectives, we propose to characterize genetic variations using "Genome Wide Association Studies" data and their relationships with malocclusions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Mehlsen, Jesper; Olufsen, Mette

    2014-01-01

    We consider the inverse and patient specific problem of short term (seconds to minutes) heart rate regulation specified by a system of nonlinear ODEs and corresponding data. We show how a recent method termed the structural correlation method (SCM) can be used for model reduction and for obtaining...... a set of practically identifiable parameters. The structural correlation method includes two steps: sensitivity and correlation analysis. When combined with an optimization step, it is possible to estimate model parameters, enabling the model to fit dynamics observed in data. This method is illustrated...... in detail on a model predicting baroreflex regulation of heart rate and applied to analysis of data from a rat and healthy humans. Numerous mathematical models have been proposed for prediction of baroreflex regulation of heart rate, yet most of these have been designed to provide qualitative predictions...

  2. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.

    Science.gov (United States)

    O'Reilly, Meaghan Anne; Whyne, Cari Marisa

    2008-08-01

    A comparative analysis of parametric and patient-specific finite element (FE) modeling of spinal motion segments. To develop patient-specific FE models of spinal motion segments using mesh-morphing methods applied to a parametric FE model. To compare strain and displacement patterns in parametric and morphed models for both healthy and metastatically involved vertebrae. Parametric FE models may be limited in their ability to fully represent patient-specific geometries and material property distributions. Generation of multiple patient-specific FE models has been limited because of computational expense. Morphing methods have been successfully used to generate multiple specimen-specific FE models of caudal rat vertebrae. FE models of a healthy and a metastatic T6-T8 spinal motion segment were analyzed with and without patient-specific material properties. Parametric and morphed models were compared using a landmark-based morphing algorithm. Morphing of the parametric FE model and including patient-specific material properties both had a strong impact on magnitudes and patterns of vertebral strain and displacement. Small but important geometric differences can be represented through morphing of parametric FE models. The mesh-morphing algorithm developed provides a rapid method for generating patient-specific FE models of spinal motion segments.

  3. Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Tanaka

    2015-08-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.

  4. 3D active shape models of human brain structures: application to patient-specific mesh generation

    Science.gov (United States)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  5. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  6. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  7. Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors

    International Nuclear Information System (INIS)

    Herschtal, A; Te Marvelde, L; Mengersen, K; Foroudi, F; Ball, D; Devereux, T; Pham, D; Greer, P B; Pichler, P; Eade, T; Kneebone, A; Bell, L; Caine, H; Hindson, B; Kron, T; Hosseinifard, Z

    2015-01-01

    Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts −19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements. (paper)

  8. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    Science.gov (United States)

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  9. Assessment of CT dose to the fetus and pregnant female patient using patient-specific computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu; Poletti, Pierre-Alexandre; Platon, Alexandra; Becker, Christoph D. [Geneva University Hospital, Department of Medical Imaging and Information Sciences, Geneva (Switzerland); Zaidi, Habib [Geneva University Hospital, Department of Medical Imaging and Information Sciences, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark); Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland)

    2018-03-15

    This work provides detailed estimates of the foetal dose from diagnostic CT imaging of pregnant patients to enable the assessment of the diagnostic benefits considering the associated radiation risks. To produce realistic biological and physical representations of pregnant patients and the embedded foetus, we developed a methodology for construction of patient-specific voxel-based computational phantoms based on existing standardised hybrid computational pregnant female phantoms. We estimated the maternal absorbed dose and foetal organ dose for 30 pregnant patients referred to the emergency unit of Geneva University Hospital for abdominal CT scans. The effective dose to the mother varied from 1.1 mSv to 2.0 mSv with an average of 1.6 mSv, while commercial dose-tracking software reported an average effective dose of 1.9 mSv (range 1.7-2.3 mSv). The foetal dose normalised to CTDI{sub vol} varies between 0.85 and 1.63 with an average of 1.17. The methodology for construction of personalised computational models can be exploited to estimate the patient-specific radiation dose from CT imaging procedures. Likewise, the dosimetric data can be used for assessment of the radiation risks to pregnant patients and the foetus from various CT scanning protocols, thus guiding the decision-making process. (orig.)

  10. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  11. 3D patient-specific models for left atrium characterization to support ablation in atrial fibrillation patients.

    Science.gov (United States)

    Valinoti, Maddalena; Fabbri, Claudio; Turco, Dario; Mantovan, Roberto; Pasini, Antonio; Corsi, Cristiana

    2018-01-01

    Radiofrequency ablation (RFA) is an important and promising therapy for atrial fibrillation (AF) patients. Optimization of patient selection and the availability of an accurate anatomical guide could improve RFA success rate. In this study we propose a unified, fully automated approach to build a 3D patient-specific left atrium (LA) model including pulmonary veins (PVs) in order to provide an accurate anatomical guide during RFA and without PVs in order to characterize LA volumetry and support patient selection for AF ablation. Magnetic resonance data from twenty-six patients referred for AF RFA were processed applying an edge-based level set approach guided by a phase-based edge detector to obtain the 3D LA model with PVs. An automated technique based on the shape diameter function was designed and applied to remove PVs and compute LA volume. 3D LA models were qualitatively compared with 3D LA surfaces acquired during the ablation procedure. An expert radiologist manually traced the LA on MR images twice. LA surfaces from the automatic approach and manual tracing were compared by mean surface-to-surface distance. In addition, LA volumes were compared with volumes from manual segmentation by linear and Bland-Altman analyses. Qualitative comparison of 3D LA models showed several inaccuracies, in particular PVs reconstruction was not accurate and left atrial appendage was missing in the model obtained during RFA procedure. LA surfaces were very similar (mean surface-to-surface distance: 2.3±0.7mm). LA volumes were in excellent agreement (y=1.03x-1.4, r=0.99, bias=-1.37ml (-1.43%) SD=2.16ml (2.3%), mean percentage difference=1.3%±2.1%). Results showed the proposed 3D patient-specific LA model with PVs is able to better describe LA anatomy compared to models derived from the navigation system, thus potentially improving electrograms and voltage information location and reducing fluoroscopic time during RFA. Quantitative assessment of LA volume derived from our 3D LA

  12. A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation

    Science.gov (United States)

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2017-01-01

    Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316

  13. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    International Nuclear Information System (INIS)

    Neylon, J; Qi, S; Sheng, K; Kupelian, P; Santhanam, A

    2014-01-01

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomy was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R 2 > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real

  14. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    International Nuclear Information System (INIS)

    Schoot, A. J. A. J. van de; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A.; Hoogeman, M. S.; Chai, X.

    2014-01-01

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  15. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    Science.gov (United States)

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  16. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    Energy Technology Data Exchange (ETDEWEB)

    Xiangfei, Chai; Hulshof, Maarten; Bel, Arjan [Department of Radiotherapy, Academic medical Center, University of Amsterdam, 1105 AZ, Amsterdam (Netherlands); Van Herk, Marcel; Betgen, Anja [Department of Radiotherapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, 1066 CX, Amsterdam (Netherlands)

    2012-06-21

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  17. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    International Nuclear Information System (INIS)

    Chai Xiangfei; Hulshof, Maarten; Bel, Arjan; Van Herk, Marcel; Betgen, Anja

    2012-01-01

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  18. Evaluation of normal masseter muscles on ultrasonography

    International Nuclear Information System (INIS)

    Hwang, Hyoung Zoo; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2008-01-01

    To assess the internal echo intensity and morphological variability of masseter muscles on ultrasonography and to establish diagnostic criterion of estimation. Participants consisted of 50 young adults (male 25, female 25) without pathologic conditions and with full natural dentitions. Sonographic examinations were done with real time ultrasound equipment as Logiq 500 (GE Medical Systems, Seoul, Korea) at 3 parts according to lines paralleling with ala-tragus line as reference line. The thickness and area of masseter muscles according to reference line in cross-sectional images were measured at rest and at maximum contraction. The visibility and width of the internal echogenic intensity of the masseter muscles were also assessed and the muscle appearance was classified into 4 types. Data were statistically analyzed by paired t-test and x2-test. 1. When comparing the thickness and area of masseter muscles concerning with gender, there was few significant difference between right and left sides, however, there were significant differences between males and females except for the greatest thickness of left side. 2. The changes of the greatest thickness and the area between rest and maximum contraction showed that the part of the least thickness manifested more increase at maximum contraction. 3. Each part the manifestations of the internal echogenic intensity of the masseter muscles were different depending on the locations. But there was no statistically significance. Changes of muscles thickness with contraction and internal echogenic intensity with locations showed great disparity within the masseter muscles, which will be diagnostic criteria for pathophysiologic and anatomic changes of masseter muscles.

  19. Model-based Vestibular Afferent Stimulation: Modular Workflow for Analyzing Stimulation Scenarios in Patient Specific and Statistical Vestibular Anatomy

    Directory of Open Access Journals (Sweden)

    Michael Handler

    2017-12-01

    Full Text Available Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i the transformation of labeled datasets to a tetrahedra mesh, (ii nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii inclusion of arbitrary electrode designs, (iv simulation of quasistationary potential distributions, and (v analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.

  20. Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach

    Science.gov (United States)

    Di Tomaso, Giulia; Agu, Obiekezie; Pichardo-Almarza, Cesar

    2014-01-01

    The development of a new technology based on patient-specific modelling for personalised healthcare in the case of atherosclerosis is presented. Atherosclerosis is the main cause of death in the world and it has become a burden on clinical services as it manifests itself in many diverse forms, such as coronary artery disease, cerebrovascular disease/stroke and peripheral arterial disease. It is also a multifactorial, chronic and systemic process that lasts for a lifetime, putting enormous financial and clinical pressure on national health systems. In this Letter, the postulate is that the development of new technologies for healthcare using computer simulations can, in the future, be developed as in-silico management and support systems. These new technologies will be based on predictive models (including the integration of observations, theories and predictions across a range of temporal and spatial scales, scientific disciplines, key risk factors and anatomical sub-systems) combined with digital patient data and visualisation tools. Although the problem is extremely complex, a simulation workflow and an exemplar application of this type of technology for clinical use is presented, which is currently being developed by a multidisciplinary team following the requirements and constraints of the Vascular Service Unit at the University College Hospital, London. PMID:26609369

  1. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    Science.gov (United States)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  2. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.

    Science.gov (United States)

    Liu, Biyue; Zheng, Jie; Bach, Richard; Tang, Dalin

    2015-01-01

    In literature, the effect of the inflow boundary condition was investigated by examining the impact of the waveform and the shape of the spatial profile of the inlet velocity on the cardiac hemodynamics. However, not much work has been reported on comparing the effect of the different combinations of the inlet/outlet boundary conditions on the quantification of the pressure field and flow distribution patterns in stenotic right coronary arteries. Non-Newtonian models were used to simulate blood flow in a patient-specific stenotic right coronary artery and investigate the influence of different boundary conditions on the phasic variation and the spatial distribution patterns of blood flow. The 3D geometry of a diseased artery segment was reconstructed from a series of IVUS slices. Five different combinations of the inlet and the outlet boundary conditions were tested and compared. The temporal distribution patterns and the magnitudes of the velocity, the wall shear stress (WSS), the pressure, the pressure drop (PD), and the spatial gradient of wall pressure (WPG) were different when boundary conditions were imposed using different pressure/velocity combinations at inlet/outlet. The maximum velocity magnitude in a cardiac cycle at the center of the inlet from models with imposed inlet pressure conditions was about 29% lower than that from models using fully developed inlet velocity data. Due to the fact that models with imposed pressure conditions led to blunt velocity profile, the maximum wall shear stress at inlet in a cardiac cycle from models with imposed inlet pressure conditions was about 29% higher than that from models with imposed inlet velocity boundary conditions. When the inlet boundary was imposed by a velocity waveform, the models with different outlet boundary conditions resulted in different temporal distribution patterns and magnitudes of the phasic variation of pressure. On the other hand, the type of different boundary conditions imposed at the

  3. Primary stability of a cementless acetabular cup in a cohort of patient-specific finite element models.

    Science.gov (United States)

    O'Rourke, Dermot; Al-Dirini, Rami Ma; Taylor, Mark

    2018-03-01

    The primary stability achieved during total hip arthroplasty determines the long-term success of cementless acetabular cups. Pre-clinical finite element testing of cups typically use a model of a single patient and assume the results can be extrapolated to the general population. This study explored the variability in predicted primary stability of a Pinnacle ® cementless acetabular cup in 103 patient-specific finite element models of the hemipelvis and examined the association between patient-related factors and the observed variability. Cups were inserted by displacement-control into the FE models and then a loading configuration simulating a complete level gait cycle was applied. The cohort showed a range of polar gap of 284-1112 μm and 95th percentile composite peak micromotion (CPM) of 18-624 μm. Regression analysis was not conclusive on the relationship between patient-related factors and primary stability. No relationship was found between polar gap and micromotion. However, when the patient-related factors were categorised into quartile groups, trends suggested higher polar gaps occurred in subjects with small and shallow acetabular geometries and cup motion during gait was affected most by low elastic modulus and high bodyweight. The variation in primary stability in the cohort for an acetabular cup with a proven clinical track record may provide benchmark data when evaluating new cup designs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1012-1023, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    Science.gov (United States)

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.

  5. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  6. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    OpenAIRE

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...

  7. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    International Nuclear Information System (INIS)

    Papadimitroulas, Panagiotis; Efthimiou, Nikos; Nikiforidis, George C.; Kagadis, George C.; Loudos, George; Le Maitre, Amandine; Hatt, Mathieu; Tixier, Florent; Visvikis, Dimitris

    2013-01-01

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with

  8. Assessment of CT dose to the fetus and pregnant female patient using patient-specific computational models

    DEFF Research Database (Denmark)

    Xie, Tianwu; Poletti, Pierre-Alexandre; Platon, Alexandra

    2018-01-01

    of pregnant patients and the embedded foetus, we developed a methodology for construction of patient-specific voxel-based computational phantoms based on existing standardised hybrid computational pregnant female phantoms. We estimated the maternal absorbed dose and foetal organ dose for 30 pregnant patients...... for assessment of the radiation risks to pregnant patients and the foetus from various CT scanning protocols, thus guiding the decision-making process. KEY POINTS: • In CT examinations, the absorbed dose is non-uniformly distributed within foetal organs. • This work reports, for the first time, estimates...

  9. Masseter motor unit recruitment is altered in experimental jaw muscle pain

    NARCIS (Netherlands)

    Minami, I.; Akhter, R.; Albersen, I.; Burger, C.; Whittle, T.; Lobbezoo, F.; Peck, C.C.; Murray, G.M.

    2013-01-01

    Some management strategies for chronic orofacial pain are influenced by models (e.g., Vicious Cycle Theory, Pain Adaptation Model) proposing either excitation or inhibition within a painful muscle. The aim of this study was to determine if experimental painful stimulation of the masseter muscle

  10. Experimentally induced masseter-pain changes masseter but not sternocleidomastoid muscle-related activity during mastication.

    Science.gov (United States)

    Pasinato, Fernanda; Santos-Couto-Paz, Clarissa C; Zeredo, Jorge Luis Lopes; Macedo, Sergio Bruzadelli; Corrêa, Eliane C R

    2016-12-01

    The aim of this study was to verify the effects of induced masseter-muscle pain on the amplitude of muscle activation, symmetry and coactivation of jaw- and neck-muscles during mastication. Twenty-eight male volunteers, mean age±SD 20.6±2.0years, participated in this study. Surface electromyography of the masseter and sternocleidomastoid (SCM) muscles was performed bilaterally during mastication of a gummy candy before and after injections of monosodium glutamate solution and isotonic saline solution. As a result, we observed a decrease in the amplitude of activation of the masseter muscle on the working side (p=0.009; d=0.34) and a reduction in the asymmetry between the working and the balancing side during mastication (p=0.007; d=0.38). No changes were observed either on the craniocervical electromyographic variables. In conclusion, experimentally induced pain reduced the masseter muscle activation on the working side, thereby reducing the physiological masseters' recruitment asymmetry between the two sides during mastication. No effects on SCM activity were detected. These results may partly explain the initial maladaptative changes underlying TMD conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  12. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Guoyan [Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern (Switzerland)

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction. The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark

  13. Masseter motor unit recruitment is altered in experimental jaw muscle pain.

    Science.gov (United States)

    Minami, I; Akhter, R; Albersen, I; Burger, C; Whittle, T; Lobbezoo, F; Peck, C C; Murray, G M

    2013-02-01

    Some management strategies for chronic orofacial pain are influenced by models (e.g., Vicious Cycle Theory, Pain Adaptation Model) proposing either excitation or inhibition within a painful muscle. The aim of this study was to determine if experimental painful stimulation of the masseter muscle resulted in only increases or only decreases in masseter activity. Recordings of single-motor-unit (SMU, basic functional unit of muscle) activity were made from the right masseters of 10 asymptomatic participants during biting trials at the same force level and direction under infusion into the masseter of isotonic saline (no-pain condition), and in another block of biting trials on the same day, with 5% hypertonic saline (pain condition). Of the 36 SMUs studied, 2 SMUs exhibited a significant (p units were present only during the no-pain block and 10 units during the pain block only. The findings suggest that, rather than only excitation or only inhibition within a painful muscle, a re-organization of activity occurs, with increases and decreases occurring within the painful muscle. This suggests the need to re-assess management strategies based on models that propose uniform effects of pain on motor activity.

  14. A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress.

    Science.gov (United States)

    Lee, Kyung Eun; Kim, Gook Tae; Lee, Jeong Sang; Chung, Ju-Hyun; Shin, Eun-Seok; Shim, Eun Bo

    2016-11-01

    As the stenotic severity of a patient increases, fractional flow reserve (FFR) decreases, whereas the maximum wall shear stress (WSSmax) increases. However, the way in which these values can change according to stenotic severity has not previously been investigated. The aim of this study is to devise a virtual stenosis model to investigate variations in the coronary hemodynamic parameters of patients according to stenotic severity. To simulate coronary hemodynamics, a three-dimensional (3D) coronary artery model of computational fluid dynamics is coupled with a lumped parameter model of the coronary micro-vasculature and venous system. To validate the present method, we first simulated 13 patient-specific models of the coronary arteries and compared the results with those obtained clinically. Then, virtually narrowed coronary arterial models derived from the patient-specific cases were simulated to obtain the WSSmax and FFR values. The variations in FFR and WSSmax against the percentage of diameter stenosis in clinical cases were reproducible by the virtual stenosis models. We also found that the simulated FFR values were linearly correlated with the WSSmax values, but the linear slope varied by patient. We implemented 130 additional virtual models of stenosed coronary arteries based on data from 13 patients and obtained statistically meaningful results that were identical to the large-scale clinical studies. And the slope of the correlation line between FFR and WSSmax may help clinicians to design treatment plans for patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Role of TRPV1 and ASIC3 channels in experimental occlusal interference-induced hyperalgesia in rat masseter muscle.

    Science.gov (United States)

    Xu, X X; Cao, Y; Ding, T T; Fu, K Y; Li, Y; Xie, Q F

    2016-04-01

    Masticatory muscle pain may occur following immediate occlusal alteration by dental treatment. The underlying mechanisms are poorly understood. Transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channel-3 (ASIC3) mediate muscle hyperalgesia under various pathologic conditions. We have developed a rat model of experimental occlusal interference (EOI) that consistently induces mechanical hyperalgesia in jaw muscles. Whether TRPV1 and ASIC3 mediate this EOI-induced hyperalgesia is unknown. Rat model of EOI-induced masseter hyperalgesia was established. Real-time polymerase chain reaction, Western blot and retrograde labelling combined with immunofluorescence were performed to evaluate the modulation of TRPV1 and ASIC3 expression in trigeminal ganglia (TGs) and masseter afferents of rats after EOI. The effects of intramuscular administration of TRPV1 and ASIC3 antagonists on the EOI-induced hyperalgesia in masseter muscle were examined. After EOI, gene expressions and protein levels of TRPV1 and ASIC3 in bilateral TGs were up-regulated. The percentage of ASIC3- (but not TRPV1-) positive neurons in masseter afferents increased after EOI. More small-sized and small to medium-sized masseter afferents expressed TRPV1 and ASIC3 separately following EOI. These changes peaked at day 7 and then returned to original status within 10 days after EOI. Intramuscular administration of the TRPV1 antagonist AMG-9810 partially reversed this mechanical hyperalgesia in masseter muscle. No improvement was exhibited after administration of the ASIC3 antagonist APETx2. Co-injection of AMG-9810 and APETx2 enhanced the effect of AMG-9810 administration alone. Peripheral TRPV1 and ASIC3 contribute to the development of the EOI-induced mechanical hyperalgesia in masseter muscle. © 2015 European Pain Federation - EFIC®

  16. 3D Rapid Prototyping for Otolaryngology—Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling

    Science.gov (United States)

    Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  17. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Science.gov (United States)

    Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  18. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  19. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C; Zheng, W [Henry Ford Health System, Detroit, MI (United States); Stehning, C; Weiss, S; Renisch, S [Philips Research Laboratories, Hamburg (Germany)

    2016-06-15

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising from respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for patient-specific

  20. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    International Nuclear Information System (INIS)

    Zheng Guoyan; Schumann, Steffen

    2009-01-01

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  1. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    Science.gov (United States)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  2. Refinement of MLC modeling improves commercial QA dosimetry system for SRS and SBRT patient-specific QA.

    Science.gov (United States)

    Hillman, Yair; Kim, Josh; Chetty, Indrin; Wen, Ning

    2018-04-01

    Mobius 3D (M3D) provides a volumetric dose verification of the treatment planning system's calculated dose using an independent beam model and a collapsed cone convolution superposition algorithm. However, there is a lack of investigation into M3D's accuracy and effectiveness for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) quality assurance (QA). Here, we collaborated with the vendor to develop a revised M3D beam model for SRS/SBRT cases treated with a 6X flattening filter-free (FFF) beam and high-definition multiple leaf collimator (HDMLC) on an Edge linear accelerator. Eighty SRS/SBRT cases, planned with AAA dose algorithm and validated with Gafchromic film, were compared to M3D dose calculations using 3D gamma analysis with 2%/2 mm gamma criteria and a 10% threshold. A revised beam model was developed by refining the HD-MLC model in M3D to improve small field dose calculation accuracy and beam profile agreement. All cases were reanalyzed using the revised beam model. The impact of heterogeneity corrections for lung cases was investigated by applying lung density overrides to five cases. For the standard and revised beam models, respectively, the mean gamma passing rates were 94.6% [standard deviation (SD): 6.1%] and 98.0% [SD: 1.7%] (for the overall patient), 88.2% [SD: 17.3%] and 93.8% [SD: 6.8%] (for the brain PTV), 71.4% [SD: 18.4%] and 81.5% [SD: 14.3%] (for the lung PTV), 83.3% [SD: 16.7%] and 67.9% [SD: 23.0%] (for the spine PTV), and 78.6% [SD: 14.0%] and 86.8% [SD: 12.5%] (for the PTV of all other sites). The lung PTV mean gamma passing rates improved from 74.1% [SD: 7.5%] to 89.3% [SD: 7.2%] with the lung density overridden. The revised beam model achieved an output factor within 3% of plastic scintillator measurements for 2 × 2 cm 2 MLC field size, but larger discrepancies are still seen for smaller field sizes which necessitate further improvement of the beam model. Special attention needs to be paid to small field

  3. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-01-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  4. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available Charcot-Marie-Tooth disease type 1A (CMT1A, one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs. Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy.

  5. Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution.

    Science.gov (United States)

    Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G

    2017-01-01

    A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.

  6. A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves' disease

    International Nuclear Information System (INIS)

    Di Martino, F.; Traino, A.C.; Lazzeri, M.; Brill, A.B.; Stabin, M.G.

    2002-01-01

    A fundamental function of the thyroid is to extract iodine from the blood, synthesize it into thyroid hormones, and release it into the circulation under feedback control by pituitary-secreted hormones. This capability of the thyroid, termed as functionality, can in principle be related to the severity of hyperthyroidism in individual patients. In this paper the uptake and release of 131 I by the thyroid following the administration of 131 I therapy for Graves' disease has been theoretically studied. The kinetics of iodine in the thyroid and blood have been evaluated using a two-compartment model. This simplified model appears to be adequate for dosimetry purposes and allows one to correlate levels of increased thyroid functionality (hyperthyroidism) with clinically measurable kinetic parameters. An expression has been derived for the rate of change of thyroid mass following therapy; this has the same form as an empirical relationship described in an earlier work. A method is presented for calculation of the amount of radioiodine activity to be administered to individual patients in order to achieve the desired final functionality of the gland. The activity to be administered is based on measurements of 131 I kinetics after the administration of a 'low-activity' (1850 kBq) tracer for treatment planning. (author)

  7. Fibrodysplasia ossificans circumscripta of the masseter muscle.

    Science.gov (United States)

    Geist, J R; Bhatti, P; Plezia, R A; Wesley, R K

    1998-05-01

    Fibrodysplasia ossificans circumscripta (FOC) is a lesion characterized by localized calcification of the investing fascia of skeletal muscle. It is often related to repeated trauma and was formerly known as traumatic myositis ossificans. Surgical procedures involving muscles are also believed to be a factor in the origin of the lesion. When FOC develops in the muscles of mastication it can lead to severe trismus. A case is reported of FOC in the left masseter muscle of a 44-year-old man who presented with marked limitation of opening. It was believed that previous fractures of the left maxilla and mandible and/or the subsequent surgical treatments were responsible for the onset of FOC. The radiographic and microscopic features of FOC are discussed in relation to recent theories on the etiology, pathogenesis, and treatment of the lesion.

  8. Hipertrofia benigna do músculo masseter Benign masseter muscle hypertrophy

    Directory of Open Access Journals (Sweden)

    Daniel Zeni Rispoli

    2008-10-01

    Full Text Available A hipertrofia idiopática do músculo masseter (HIM é uma patologia pouco freqüente e de causa desconhecida. Alguns autores correlacionam tal condição com hábitos de mascar gomas, disfunção da articulação temporomandibular (ATM, hipertrofias congênitas e funcionais, e distúrbios emocionais (nervosismo e ansiedade. A maioria dos pacientes queixa-se da alteração estética decorrente da assimetria facial, também chamada "face quadrada", no entanto, sintomas como trismo, protrusão e bruxismo também podem ocorrer. Os objetivos deste estudo foram: relatar um caso de HIM e descrever a sintomatologia e o tratamento realizado. O paciente relatava aumento bilateral na região do ângulo da mandíbula de evolução lenta e progressiva. Negava dor ou desconforto, porém se queixava de otalgia bilateral, trismo noturno e ansiedade. Ao exame físico, observou-se hipertrofia bilateral de masseter sem alterações inflamatórias no local. Foi indicado tratamento cirúrgico com abordagem extra-oral. Exames complementares são indicados na dúvida diagnóstica. A conduta terapêutica varia de conservadora a cirúrgica, sendo que esta depende principalmente da experiência e da habilidade do cirurgião.Idiopathic hypertrophy of the masseter muscle is a rare disorder of unknown cause. Some authors associate it with the habit of chewing gum, temporo-mandibular joint disorder, congenital and functional hypertrophies, and emotional disorders (stress and nervousness. Most patients complain of the cosmetic change caused by facial asymmetry, also called square face, however, symptoms such as trismus, protrusion and bruxism may also occur. The goals of the present investigation were: to report a case of idiopathic masseter hypertrophy, describe its symptoms and treatment. The patient reported bilateral bulging in the region of the mandible angle, of slow and progressive evolution. He did not complain of pain or discomfort, however there was bilateral

  9. Development of a Patient-Specific Multi-Scale Model to Understand Atherosclerosis and Calcification Locations: Comparison with In vivo Data in an Aortic Dissection

    Science.gov (United States)

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2016-01-01

    Vascular calcification results in stiffening of the aorta and is associated with hypertension and atherosclerosis. Atherogenesis is a complex, multifactorial, and systemic process; the result of a number of factors, each operating simultaneously at several spatial and temporal scales. The ability to predict sites of atherogenesis would be of great use to clinicians in order to improve diagnostic and treatment planning. In this paper, we present a mathematical model as a tool to understand why atherosclerotic plaque and calcifications occur in specific locations. This model is then used to analyze vascular calcification and atherosclerotic areas in an aortic dissection patient using a mechanistic, multi-scale modeling approach, coupling patient-specific, fluid-structure interaction simulations with a model of endothelial mechanotransduction. A number of hemodynamic factors based on state-of-the-art literature are used as inputs to the endothelial permeability model, in order to investigate plaque and calcification distributions, which are compared with clinical imaging data. A significantly improved correlation between elevated hydraulic conductivity or volume flux and the presence of calcification and plaques was achieved by using a shear index comprising both mean and oscillatory shear components (HOLMES) and a non-Newtonian viscosity model as inputs, as compared to widely used hemodynamic indicators. The proposed approach shows promise as a predictive tool. The improvements obtained using the combined biomechanical/biochemical modeling approach highlight the benefits of mechanistic modeling as a powerful tool to understand complex phenomena and provides insight into the relative importance of key hemodynamic parameters. PMID:27445834

  10. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    Science.gov (United States)

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Wearable sensors for patient-specific boundary shape estimation to improve the forward model for electrical impedance tomography (EIT) of neonatal lung function.

    Science.gov (United States)

    Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard

    2014-06-01

    Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.

  12. Effects of Intraluminal Thrombus on Patient-Specific Abdominal Aortic Aneurysm Hemodynamics via Stereoscopic Particle Image Velocity and Computational Fluid Dynamics Modeling

    Science.gov (United States)

    Chen, Chia-Yuan; Antón, Raúl; Hung, Ming-yang; Menon, Prahlad; Finol, Ender A.; Pekkan, Kerem

    2014-01-01

    The pathology of the human abdominal aortic aneurysm (AAA) and its relationship to the later complication of intraluminal thrombus (ILT) formation remains unclear. The hemodynamics in the diseased abdominal aorta are hypothesized to be a key contributor to the formation and growth of ILT. The objective of this investigation is to establish a reliable 3D flow visualization method with corresponding validation tests with high confidence in order to provide insight into the basic hemodynamic features for a better understanding of hemodynamics in AAA pathology and seek potential treatment for AAA diseases. A stereoscopic particle image velocity (PIV) experiment was conducted using transparent patient-specific experimental AAA models (with and without ILT) at three axial planes. Results show that before ILT formation, a 3D vortex was generated in the AAA phantom. This geometry-related vortex was not observed after the formation of ILT, indicating its possible role in the subsequent appearance of ILT in this patient. It may indicate that a longer residence time of recirculated blood flow in the aortic lumen due to this vortex caused sufficient shear-induced platelet activation to develop ILT and maintain uniform flow conditions. Additionally, two computational fluid dynamics (CFD) modeling codes (Fluent and an in-house cardiovascular CFD code) were compared with the two-dimensional, three-component velocity stereoscopic PIV data. Results showed that correlation coefficients of the out-of-plane velocity data between PIV and both CFD methods are greater than 0.85, demonstrating good quantitative agreement. The stereoscopic PIV study can be utilized as test case templates for ongoing efforts in cardiovascular CFD solver development. Likewise, it is envisaged that the patient-specific data may provide a benchmark for further studying hemodynamics of actual AAA, ILT, and their convolution effects under physiological conditions for clinical applications. PMID:24316984

  13. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    Energy Technology Data Exchange (ETDEWEB)

    Dhou, S; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Ionascu, D [William Beaumont Hospital, Royal Oak, MI (United States); Lewis, J [University of California at Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  14. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    International Nuclear Information System (INIS)

    Dhou, S; Williams, C; Ionascu, D; Lewis, J

    2016-01-01

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  15. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model.

    Science.gov (United States)

    Choi, In Young; Lim, HoTae; Estrellas, Kenneth; Mula, Jyothi; Cohen, Tatiana V; Zhang, Yuanfan; Donnelly, Christopher J; Richard, Jean-Philippe; Kim, Yong Jun; Kim, Hyesoo; Kazuki, Yasuhiro; Oshimura, Mitsuo; Li, Hongmei Lisa; Hotta, Akitsu; Rothstein, Jeffrey; Maragakis, Nicholas; Wagner, Kathryn R; Lee, Gabsang

    2016-06-07

    Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our "chemical-compound-based" strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological "dual-SMAD" inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form "rescued" multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human "DMD-in-a-dish" model using hiPSC-based disease modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model

    Directory of Open Access Journals (Sweden)

    In Young Choi

    2016-06-01

    Full Text Available Duchenne muscular dystrophy (DMD remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs. Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our “chemical-compound-based” strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological “dual-SMAD” inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form “rescued” multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human “DMD-in-a-dish” model using hiPSC-based disease modeling.

  17. Neural Network Optimization of Ligament Stiffnesses for the Enhanced Predictive Ability of a Patient-Specific, Computational Foot/Ankle Model.

    Science.gov (United States)

    Chande, Ruchi D; Wayne, Jennifer S

    2017-09-01

    Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.

  18. Patient-specific surgical simulation.

    Science.gov (United States)

    Soler, Luc; Marescaux, Jacques

    2008-02-01

    Technological innovations of the twentieth century have provided medicine and surgery with new tools for education and therapy definition. Thus, by combining Medical Imaging and Virtual Reality, patient-specific applications providing preoperative surgical simulation have become possible.

  19. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  20. From 4D Medical Images (CT, MRI, and Ultrasound to 4D Structured Mesh Models of the Left Ventricular Endocardium for Patient-Specific Simulations

    Directory of Open Access Journals (Sweden)

    Federico Canè

    2018-01-01

    Full Text Available With cardiovascular disease (CVD remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time with 1-to-1 vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume.

  1. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    published by the UK's ImPACT group for a scan using an equivalent scanner, kVp, collimation, pitch and mAs. The CT source model was shown to calculate both a relative and absolute radiation dose distribution throughout the entire volume in a patient-specific matrix geometry. Results of initial testing are promising and application to patient models was shown to be feasible

  2. Histological study of rat masseter muscle following experimental occlusal alteration.

    Science.gov (United States)

    Nishide, N; Baba, S; Hori, N; Nishikawa, H

    2001-03-01

    It has been suggested that occlusal interference results in masticatory muscle dysfunction. In our previous study, occlusal interference reduced the rat masseter energy level during masticatory movements. The purpose of this study was to investigate the histological alterations of rat masseter muscles following experimental occlusal alteration with unilateral bite-raising. A total of eight male adult Wistar rats were equally divided into control and experimental groups. The experimental rats wore bite-raising splints on the unilateral upper molar. However, 4 weeks after the operation, the anterior deep masseter muscles were removed and then stained for succinic acid dehydrogenase (SDH), haematoxylin eosin (HE) and myofibrillar ATPase. Most of the muscle fibres in experimental rats remained intact, although partial histological changes were observed, such as extended connective tissue, appearance of inflammatory cells in the muscle fibres and existence of muscle fibres with central nuclei and central cores. Moreover, the fibre area-fibre frequency histograms of experimental muscle indicated a broad pattern than that of controls. These results indicated that occlusal interference caused histological changes in masseter muscles and that this may be related to the fact that the masseter energy level was reduced during masticatory movements in unilateral bite-raised rats.

  3. The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model.

    Science.gov (United States)

    Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon Hock

    2015-11-25

    The aim of this study is to provide better insights into the cerebral perfusion patterns and collateral mechanism of the circle of Willis (CoW) under anatomical and pathological variations. In the current study, a patient-specific three-dimensional computational model of the CoW was reconstructed based on the computed tomography (CT) images. The Carreau model was applied to simulate the non-Newtonian property of blood. Flow distributions in five common anatomical variations coexisting with different degrees of stenosis in the right internal carotid artery (RICA) were investigated to obtain detailed flow information. With the development of stenosis in unilateral internal carotid artery (ICA), the cerebral blood supply decreased when the degree of stenosis increased. The blood supply of the ipsilateral middle cerebral artery (MCA) was most affected by the stenosis of ICA. The anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) functioned as the important collateral circulation channels when unilateral stenosis occurred. The blood flow of the anterior circulation and the total cerebral blood flow (CBF) reached to the minimum in the configuration of the contralateral proximal anterior cerebral artery (A1) absence coexisting with unilateral ICA stenosis. Communicating arteries provided important collateral channels in the complete CoW when stenosis in unilateral ICA occurred. The cross-flow in the ACoA is a sensitive indicator of the morphological change of the ICA. The collateral function of the PCoA on the affected side will not be fully activated until a severe stenosis occurred in unilateral ICA. The absence of unilateral A1 coexisting with the stenosis in the contralateral ICA could be the most dangerous configuration in terms of the total cerebral blood supply. The findings of this study would enhance the understanding of the collateral mechanism of the CoW under different anatomical variations.

  4. APPLICATION OF MRI IN THE DIAGNOSTICS OF M. MASSETER

    Directory of Open Access Journals (Sweden)

    Mariana Dimova-Gabrovska

    2017-06-01

    Full Text Available Magnetic resonance imaging (MRI is a non-invasive diagnostic method which can provide detailed images of organs and structures of the human body. The purpose of this review is to explore and introduce the diagnostic capabilities of MRI in imaging m. masseter in conditions of norm and pathology. The material of the review is information of 20 literary sources selected from 530, found by keywordsfromJanuary to April 2017. The information about MRI imaging of the normal anatomy of m. masseter and the most common findings in muscle - muscle hypertrophy, inflammatory changes, vascular malformations, intramuscular hemangioma, cysticercosis and changes after radiotherapy was analyzed. In conclusion, the diagnostic capabilities of MRI of masseter muscle – both in the conditions of norm and pathology were confirmed. The method is considered to be reliable, objective, non-invasive and accurate.

  5. Masseter muscle thickness in unilateral partial edentulism: An ultrasonographic study

    Directory of Open Access Journals (Sweden)

    S Sathasivasubramanian

    2017-01-01

    Full Text Available Introduction: Teeth and facial muscles play a very important role in occlusal equilibrium and function. Occlusal derangement, seen in unilateral partially edentulous individuals, has an effect on masseter muscle anatomy and function. The present study aims to evaluate masseter muscle thickness in unilateral partial edentulism. Patients and Methods: Institutional ethics committee approval was obtained before the commencement of the study. The study involved patients who routinely visited the Department of Oral Medicine and Radiology, Sri Ramachandra University. The study sample included 27 unilateral edentulous patients (Group E and 30 controls (Group C. The masseter muscle thickness was evaluated using high-resolution ultrasound real-time scanner (linear transducer − 7.5–10 MHz at both relaxed and contracted states. Statistical Analysis Used: The results were analyzed using paired t-test and independent t-test. Duration of edentulism and muscle thickness was assessed using Pearson's correlation coefficient. Results: The study patients' age ranged between 25 and 48 years (mean – 36 years. The comparative evaluation of masseter muscle thickness between the dentulous and edentulous sides of experimental group was statistically significant (P < 0.05. However, no statistically significant difference in masseter muscle thickness was found between the dentulous side of control and experimental groups. The correlation between the duration of partial edentulism and muscle thickness was statistically insignificant. Conclusion: The study proves masseter atrophy in the edentulous side. However, since the difference is found to be marginal with the present sample, a greater sample is necessary to establish and prove the present findings as well as to correlate with the duration of edentulism. Further studies are aimed to assess the muscle morphology after prosthetic rehabilitation.

  6. Effect of lack of later support in the masseter muscle

    International Nuclear Information System (INIS)

    Fernandez Lopez, Otton

    2007-01-01

    One of the main complaints during dental consultation has been pain in the zone of the masseter muscle, especially a lack of rear support. None research has published that reveals what has been the relationship between the rear support and histological alterations in muscle mass. Both topics have treated to relate through a process of tooth wear in laboratory animals and produce a lack of rear support. Cuts of the masseter muscles and specimens were subjected to microscopic study of light and electronic. The conclusion has been that by removing the rear support are produced important changes to histological level. (author) [es

  7. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model

    Science.gov (United States)

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    2017-01-01

    Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann–Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P = 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P = 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P = 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or

  8. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.

    Science.gov (United States)

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P= 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P= 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P= 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P= 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic

  9. Histochemical and functional fibre typing of the rabbit masseter muscle

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Moorman, A. F.; Brugman, P.

    1990-01-01

    The fibre-type distribution of the masseter muscle of the rabbit was studied by means of the myosin-ATPase and succinate dehydrogenase reactions. Six different fibre types were found and these were unequally distributed between and within the anatomical compartments of the muscle. Most of the

  10. The capillary pattern in human masseter muscle during ageing

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Janáček, Jiří; Kubínová, Lucie; Eržen, I.

    2013-01-01

    Roč. 32, č. 3 (2013), s. 135-144 ISSN 1580-3139 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : 3D analysis * capillaries * confocal microscopy * human * masseter * muscle Subject RIV: EA - Cell Biology Impact factor: 0.697, year: 2013

  11. Anatomic MRI study of a small muscle: the masseter

    International Nuclear Information System (INIS)

    Dheyriat, A.; Lissac, M.; Sappey-Marinier, D.; Bonmartin, A.

    1997-01-01

    Magnetic resonance imaging (MRI) provides functional information in an anatomic presentation allowing to distinguish soft tissues with high sensitivity. The goal of this study was to investigate the normal anatomy of the major masticatory muscle, the masseter, both at rest or during contraction by using three dimensional (3D) MRI. Eighteen subjects aged from 19 to 28 years, all in good health, were studied. Several experiments were first realized on phantoms to test the 3D-MRI technique. After reconstruction and segmentation processing, 3D acquisition, enabled obtaining data on the masseter anatomy. The normal anatomical position of the masseter was reported to the skin plan as the mean internal distance (7.9±0.42 mm) and external distance (15.2±0.41 mm). While there was no difference between internal distance, for sex or side, the external distance was significantly (p = 0.02) shorter in male (7.7±0.5 mm) than in female (8.8±0.4 mm) for both sides. The mean volume for all subjects and both sides (20.3±1.1 cm 3 ) did not change significantly between rest and exercise. The masseter volume was significantly (p 3 ) than in female (16.4±3.6 cm 3 ) groups. These physiological references may be useful for further MRI investigations of masticatory system pathologies. (authors)

  12. MOTOR UNIT TERRITORIES AND FIBER TYPES IN RABBIT MASSETER MUSCLE

    NARCIS (Netherlands)

    WEIJS, WA; JUCH, PJW; KWA, SHS; KORFAGE, JAM

    1993-01-01

    The myosin heavy chain (MHC) content and spatial distribution of the fibers of 11 motor units (MUs) of the rabbit masseter muscle were determined. The fibers of single MUs were visualized in whole-muscle serial sections by a negative periodic acid/Schiff reaction for glycogen after they had been

  13. From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    OpenAIRE

    Canè, Federico; Verhegghe, Benedict; De Beule, Matthieu; Bertrand, Philippe B.; Van der Geest, Rob J.; Segers, Patrick; De Santis, Gianluca

    2018-01-01

    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boun...

  14. Masseter muscle tension, chewing ability, and selected parameters of physical fitness in elderly care home residents in Lodz, Poland

    Directory of Open Access Journals (Sweden)

    Gaszynska E

    2014-07-01

    half (45.2% of the subjects. Only 5.8% had a sufficient number of functional natural teeth. Statistically significant correlations were found between palpation of masseter muscle tension and perceived chewing ability, number of present teeth, number of functional teeth, number of posterior tooth pairs, timed up-and-go, hand grip strength, body mass index, BCMI, and activities of daily living. In a multivariate model, after adjusting for age, sex, and education, subjects with higher BCMI, higher hand grip strength, and more present teeth had a significantly higher chance of strong masseter muscle tension.Conclusion: There is a relationship between chewing ability and physical fitness in elderly people. Efficiency of masseter muscles is related to physical fitness in the elderly. Masseter muscle tension examined by palpation can be used in public dentistry as one of the indicators of quality of life. Keywords: physical fitness, chewing ability, masseter muscle tension

  15. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  16. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system

    Directory of Open Access Journals (Sweden)

    N Byrne

    2016-04-01

    Full Text Available Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports. The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015. The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods.

  17. Prolonging the duration of masseter muscle reduction by adjusting the masticatory movements after the treatment of masseter muscle hypertrophy with botulinum toxin type a injection.

    Science.gov (United States)

    Wei, Jiao; Xu, Hua; Dong, Jiasheng; Li, Qingfeng; Dai, Chuanchang

    2015-01-01

    Botulinum toxin type A (BTX-A) is widely used for the clinical treatment of masseteric hypertrophy. Until now, few reports have discussed how to prolong the duration of its effectiveness. This study evaluated that purposely adjusting the masticatory movements is possible of postponing the masseter muscle rehypertrophy. Ninety-eight patients were randomly and equally divided into 2 groups, and 35 U BTX-A per side was injected into the masseters. The thickness and volume of the masticatory muscles were measured by ultrasound and computerized tomography, respectively. Patients in Group 1 were instructed to strengthen their masticatory effort during the denervated atrophic stage of the masseter (the interval was evaluated by real-time ultrasound monitoring), whereas patients in Group 2 were not given this instruction. When the masseter muscle began to recover, patients in both groups were instructed to reduce their chewing. The duration of the masseter muscle rehypertrophy was significantly prolonged in Group 1 patients. The thickness and the volume of the other masticatory muscles were significantly increased in Group 1 but were either slightly decreased or insignificantly different in Group 2. Purposely strengthening masticatory muscle movement during the denervated atrophic stage of the masseter can prolong the duration of masseter rehypertrophy.

  18. Functional compartmentalization of the human superficial masseter muscle.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Guzmán-Venegas

    Full Text Available Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM muscle's motor units using high-density surface electromyography (EMGs at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF were randomly requested. Using a two-dimensional grid (four columns, six electrodes located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001.The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001. The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001. The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF.

  19. Myosin heavy chain expression in rabbit masseter muscle during postnatal development

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Korfage, H. A.; Brugman, P.; Moorman, A. F.

    1992-01-01

    The expression of isoforms of myosin heavy chain (MHC) during postnatal development was studied in the masseter muscle of the rabbit. Evidence is presented that in addition to adult fast and slow myosin, the rabbit masseter contains neonatal and 'cardiac' alpha-MHC. During postnatal growth myosin

  20. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research

    Directory of Open Access Journals (Sweden)

    Arnau Benet

    2015-01-01

    Full Text Available Aim. To evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training. Methods. Two 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated. Results. The 3D aneurysm models were successfully implanted to the cadaveric specimens’ arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation. Conclusion. 3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research.

  2. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.

    Science.gov (United States)

    Taylor, Zeike A; Kirk, Thomas B; Miller, Karol

    2007-10-01

    The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.

  4. Patient-Specific Human Induced Pluripotent Stem Cell Model Assessed with Electrical Pacing Validates S107 as a Potential Therapeutic Agent for Catecholaminergic Polymorphic Ventricular Tachycardia.

    Directory of Open Access Journals (Sweden)

    Kenichi Sasaki

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer a unique opportunity for disease modeling. However, it is not invariably successful to recapitulate the disease phenotype because of the immaturity of hiPSC-derived cardiomyocytes (hiPSC-CMs. The purpose of this study was to establish and analyze iPSC-based model of catecholaminergic polymorphic ventricular tachycardia (CPVT, which is characterized by adrenergically mediated lethal arrhythmias, more precisely using electrical pacing that could promote the development of new pharmacotherapies.We generated hiPSCs from a 37-year-old CPVT patient and differentiated them into cardiomyocytes. Under spontaneous beating conditions, no significant difference was found in the timing irregularity of spontaneous Ca2+ transients between control- and CPVT-hiPSC-CMs. Using Ca2+ imaging at 1 Hz electrical field stimulation, isoproterenol induced an abnormal diastolic Ca2+ increase more frequently in CPVT- than in control-hiPSC-CMs (control 12% vs. CPVT 43%, p<0.05. Action potential recordings of spontaneous beating hiPSC-CMs revealed no significant difference in the frequency of delayed afterdepolarizations (DADs between control and CPVT cells. After isoproterenol application with pacing at 1 Hz, 87.5% of CPVT-hiPSC-CMs developed DADs, compared to 30% of control-hiPSC-CMs (p<0.05. Pre-incubation with 10 μM S107, which stabilizes the closed state of the ryanodine receptor 2, significantly decreased the percentage of CPVT-hiPSC-CMs presenting DADs to 25% (p<0.05.We recapitulated the electrophysiological features of CPVT-derived hiPSC-CMs using electrical pacing. The development of DADs in the presence of isoproterenol was significantly suppressed by S107. Our model provides a promising platform to study disease mechanisms and screen drugs.

  5. Patient-specific puzzle implant preformed with 3D-printed rapid prototype model for combined orbital floor and medial wall fracture.

    Science.gov (United States)

    Kim, Young Chul; Min, Kyung Hyun; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk; Jeong, Woo Shik

    2018-04-01

    The management of combined orbital floor and medial wall fractures involving the inferomedial strut is challenging due to absence of stable cornerstone. In this article, we proposed surgical strategies using customized 3D puzzle implant preformed with Rapid Prototype (RP) skull model. Retrospective review was done in 28 patients diagnosed with combined orbital floor and medial wall fracture. Using preoperative CT scans, original and mirror-imaged RP skull models for each patient were prepared and sterilized. In all patients, porous polyethylene-coated titanium mesh was premolded onto RP skull model in two ways; Customized 3D jigsaw puzzle technique was used in 15 patients with comminuted inferomedial strut, whereas individual 3D implant technique was used in each fracture for 13 patients with intact inferomedial strut. Outcomes including enophthalmos, visual acuity, and presence of diplopia were assessed and orbital volume was measured using OsiriX software preoperatively and postoperatively. Satisfactory results were achieved in both groups in terms of clinical improvements. Of 10 patients with preoperative diplopia, 9 improved in 6 months, except one with persistent symptom who underwent extraocular muscle rupture. 18 patients who had moderate to severe enophthalmos preoperatively improved, and one remained with mild degree. Orbital volume ratio, defined as volumetric ratio between affected and control orbit, decreased from 127.6% to 99.79% (p puzzle and individual reconstruction technique provide accurate restoration of combined orbital floor and medial wall fractures. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease.

    Science.gov (United States)

    Chun, Yong Soon; Chaudhari, Pooja; Jang, Yoon-Young

    2010-12-14

    The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of these cells including disease modeling, drug toxicity screening/drug discovery, gene therapy and cell replacement therapy.

  7. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation.

    Science.gov (United States)

    Lu, G; Huang, L; Zhang, X L; Wang, S Z; Hong, Y; Hu, Z; Geng, D Y

    2011-08-01

    Hemodynamics factors play an important role in the rupture of cerebral aneurysms. The purpose of this study was to evaluate the impact of hemodynamic factors on the rupture of the MANs with 3D reconstruction model CFD simulation. RDSA was performed in 9 pairs of intracranial MANs. Each pair was divided into ruptured and unruptured groups. The hemodynamic factors of the aneurysms and their parent arteries were compared. There was a significant difference in the WSS at peak systole between the regions of the aneurysms and their parent arteries in the ruptured group (ie, 6.49 ± 3.48 Pa versus 8.78 ± 3.57 Pa, P =.015) but not in the unruptured group (ie, 9.80 ± 4.12 Pa versus 10.17 ± 7.48 Pa, P =.678). The proportion of the low WSS area to the whole area of the aneurysms was 12.20 ± 18.08% in the ruptured group and 3.96 ± 6.91% in the unruptured group; the difference between the 2 groups was statistically significant (P =.015). The OSI was 0.0879 ± 0.0764 in the ruptured group, which was significantly higher than that of the unruptured group (ie, 0.0183 ± 0.0191, P =.008). MANs may be a useful disease model to investigate possible causes linked to ruptured aneurysms. The ruptured aneurysms manifested lower WSS compared with their parent arteries, a higher proportion of the low WSS area to the whole area of aneurysm, and higher OSI compared with the unruptured aneurysms.

  8. Patient-specific workup of adrenal incidentalomas

    Directory of Open Access Journals (Sweden)

    Romy R. de Haan

    Full Text Available Purpose: : To develop a clinical prediction model to predict a clinically relevant adrenal disorder for patients with adrenal incidentaloma. Materials and methods: : This retrospective study is approved by the institutional review board, with waiver of informed consent. Natural language processing is used for filtering of adrenal incidentaloma cases in all thoracic and abdominal CT reports from 2010 till 2012. A total of 635 patients are identified. Stepwise logistic regression is used to construct the prediction model. The model predicts if a patient is at risk for malignancy or hormonal hyperfunction of the adrenal gland at the moment of initial presentation, thus generates a predicted probability for every individual patient. The prediction model is evaluated on its usefulness in clinical practice using decision curve analysis (DCA based on different threshold probabilities. For patients whose predicted probability is lower than the predetermined threshold probability, further workup could be omitted. Results: : A prediction model is successfully developed, with an area under the curve (AUC of 0.78. Results of the DCA indicate that up to 11% of patients with an adrenal incidentaloma can be avoided from unnecessary workup, with a sensitivity of 100% and specificity of 11%. Conclusion: : A prediction model can accurately predict if an adrenal incidentaloma patient is at risk for malignancy or hormonal hyperfunction of the adrenal gland based on initial imaging features and patient demographics. However, with most adrenal incidentalomas labeled as nonfunctional adrenocortical adenomas requiring no further treatment, it is likely that more patients could be omitting from unnecessary diagnostics. Keywords: Adrenal incidentaloma, Patient-specific workup, Prediction model

  9. Patient specific modelling in diagnosing depression

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2015-01-01

    Depression is a very common disease. Approximately 10% of people in the Western world experience severe depression during their lifetime and many more experience a mild form of depression. It is commonly believed that depression is caused by malfunctions in the biological system constituted...... by statistical hypothesis testing....

  10. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  11. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition.

    Directory of Open Access Journals (Sweden)

    Daisuke Umeki

    Full Text Available Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX-induced muscle atrophy and fast-to-slow MHC isoform transition.We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1 expression, Akt/mammalian target of rapamycin (mTOR pathway, and calcineurin pathway and atrophic signaling (Akt/Forkhead box-O (FOXO pathway and myostatin expression in masseter muscle of rats treated with DEX and/or CB.Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth, and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.

  12. Changes of hypertonic saline-induced masseter muscle pain characteristics, by an infusion of the serotonin receptor type 3 antagonist granisetron.

    Science.gov (United States)

    Christidis, Nikolaos; Ioannidou, Kiriaki; Milosevic, Milena; Segerdahl, Märta; Ernberg, Malin

    2008-10-01

    This study aimed to investigate whether granisetron reduces masseter muscle pain and allodynia induced by hypertonic saline. Fifteen healthy women and 15 age-matched healthy men participated in this randomized, placebo-controlled, double-blinded study. They first received bilateral injections of hypertonic saline into the masseter muscles (internal control). The evoked pain intensity and the pressure-pain threshold (PPT) were recorded during 30 minutes. Granisetron was then injected on one side and placebo (normal saline) on the contralateral side. Two minutes thereafter, the hypertonic saline injections were repeated. Pain and PPT were again recorded. The first injection of hypertonic saline induced pain of similar intensity, duration, and pain area on both sides, but with larger pain area in the women (P = .017). The PPT did not change significantly. The second injection of hypertonic saline induced considerably less pain (62.5%), of shorter duration (44.1%), and of smaller area (77.4%) on the side pretreated with granisetron (P = .005). The PPT was increased on the granisetron side in the men (P = .002). The results of this study show that local injection of a single dose of granisetron attenuates masseter muscle pain induced by hypertonic saline. This article presents the changes of hypertonic saline-induced masseter muscle pain characteristics by infusion of granisetron. It appears that the pain-inducing effect in this experimental pain model is partly due to activation of 5-HT3-receptors. Hence, the results indicate that granisetron might offer a new treatment approach for localized myofascial pain.

  13. The role in masseter muscle activities of functionally elicited periodontal afferents from abutment teeth under overdentures.

    Science.gov (United States)

    Mushimoto, E

    1981-09-01

    Five overdenture wearers with a small number of remaining natural teeth were selected to evaluate the effect of the afferent input from periodontal mechanoreceptors on masseter activity in man. As a control, a full denture wearer was included. The subjects were instructed to chew a piece of gum, and/or tap their teeth. Surface EmG from the bilateral masseter muscles were recorded and analysed. When functional pressure was applied, during chewing, to the abutment teeth as well as to mucosa through the denture base, masseter activities were encouraged. Following application of anaesthesia to the periodontal membrane of the abutments, masseter activities were reduced. The duration of the silent period (SP) appearing in the EMG burst following tooth tapping was significantly increased with root support compared to mucosal support only. With topical anaesthesia of the periodontal tissues, SP duration decreased significantly. In conclusion, it has become apparent that the pressure sensibility of abutment teeth bearing functional pressure under an overdenture base is capable of facilitating masseter activity, as one of the sources of oral sensory input during mastication.

  14. WE-G-207-06: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Physical Phantom and Clinical Patient Images

    International Nuclear Information System (INIS)

    Dhou, S; Cai, W; Hurwitz, M; Rottmann, J; Myronakis, M; Cifter, F; Berbeco, R; Lewis, J; Williams, C; Mishra, P; Ionascu, D

    2015-01-01

    Purpose: Respiratory-correlated cone-beam CT (4DCBCT) images acquired immediately prior to treatment have the potential to represent patient motion patterns and anatomy during treatment, including both intra- and inter-fractional changes. We develop a method to generate patient-specific motion models based on 4DCBCT images acquired with existing clinical equipment and used to generate time varying volumetric images (3D fluoroscopic images) representing motion during treatment delivery. Methods: Motion models are derived by deformably registering each 4DCBCT phase to a reference phase, and performing principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated by optimizing the resulting PCA coefficients iteratively through comparison of the cone-beam projections simulating kV treatment imaging and digitally reconstructed radiographs generated from the motion model. Patient and physical phantom datasets are used to evaluate the method in terms of tumor localization error compared to manually defined ground truth positions. Results: 4DCBCT-based motion models were derived and used to generate 3D fluoroscopic images at treatment time. For the patient datasets, the average tumor localization error and the 95th percentile were 1.57 and 3.13 respectively in subsets of four patient datasets. For the physical phantom datasets, the average tumor localization error and the 95th percentile were 1.14 and 2.78 respectively in two datasets. 4DCBCT motion models are shown to perform well in the context of generating 3D fluoroscopic images due to their ability to reproduce anatomical changes at treatment time. Conclusion: This study showed the feasibility of deriving 4DCBCT-based motion models and using them to generate 3D fluoroscopic images at treatment time in real clinical settings. 4DCBCT-based motion models were found to account for the 3D non-rigid motion of the patient anatomy during treatment and have the potential

  15. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  16. An Induced Pluripotent Stem Cell Patient Specific Model of Complement Factor H (Y402H) Polymorphism Displays Characteristic Features of Age-Related Macular Degeneration and Indicates a Beneficial Role for UV Light Exposure.

    Science.gov (United States)

    Hallam, Dean; Collin, Joseph; Bojic, Sanja; Chichagova, Valeria; Buskin, Adriana; Xu, Yaobo; Lafage, Lucia; Otten, Elsje G; Anyfantis, George; Mellough, Carla; Przyborski, Stefan; Alharthi, Sameer; Korolchuk, Viktor; Lotery, Andrew; Saretzki, Gabriele; McKibbin, Martin; Armstrong, Lyle; Steel, David; Kavanagh, David; Lako, Majlinda

    2017-11-01

    Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Patient-specific 3D models created by 3D imaging system or bi-planar imaging coupled with Moiré-Fringe projections: a comparative study of accuracy and reliability on spinal curvatures and vertebral rotation data.

    Science.gov (United States)

    Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier

    2016-10-01

    The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.

  18. Changes in intramuscular cytokine levels during masseter inflammation in male and female rats

    OpenAIRE

    Niu, Katelyn Y.; Ro, Jin Y.

    2010-01-01

    The present study was conducted to examine cytokine profiles in the masseter muscle before and after complete Freund’s adjuvant (CFA)-induced inflammation and possible sex differences in the cytokine levels. Age matched male and female Sprague Dawley rats were injected with CFA in the mid-region of the masseter muscle. Muscle tissue surrounding the injection site was extracted 6 hrs, 1, 3 and 7 days after the injection to measure TNF-α, IL-1β, IL-6 and IL-4 levels with Luminex multi-analyte p...

  19. Macrophages and mast cells in dystrophic masseter muscle: a light and electron microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S; Mikkelsen, H

    1988-01-01

    Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle, the num......Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle...

  20. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  1. Patient-Specific MRI-Based Right Ventricle Models Using Different Zero-Load Diastole and Systole Geometries for Better Cardiac Stress and Strain Calculations and Pulmonary Valve Replacement Surgical Outcome Predictions.

    Directory of Open Access Journals (Sweden)

    Dalin Tang

    Full Text Available Accurate calculation of ventricular stress and strain is critical for cardiovascular investigations. Sarcomere shortening in active contraction leads to change of ventricular zero-stress configurations during the cardiac cycle. A new model using different zero-load diastole and systole geometries was introduced to provide more accurate cardiac stress/strain calculations with potential to predict post pulmonary valve replacement (PVR surgical outcome.Cardiac magnetic resonance (CMR data were obtained from 16 patients with repaired tetralogy of Fallot prior to and 6 months after pulmonary valve replacement (8 male, 8 female, mean age 34.5 years. Patients were divided into Group 1 (n = 8 with better post PVR outcome and Group 2 (n = 8 with worse post PVR outcome based on their change in RV ejection fraction (EF. CMR-based patient-specific computational RV/LV models using one zero-load geometry (1G model and two zero-load geometries (diastole and systole, 2G model were constructed and RV wall thickness, volume, circumferential and longitudinal curvatures, mechanical stress and strain were obtained for analysis. Pairwise T-test and Linear Mixed Effect (LME model were used to determine if the differences from the 1G and 2G models were statistically significant, with the dependence of the pair-wise observations and the patient-slice clustering effects being taken into consideration. For group comparisons, continuous variables (RV volumes, WT, C- and L- curvatures, and stress and strain values were summarized as mean ± SD and compared between the outcome groups by using an unpaired Student t-test. Logistic regression analysis was used to identify potential morphological and mechanical predictors for post PVR surgical outcome.Based on results from the 16 patients, mean begin-ejection stress and strain from the 2G model were 28% and 40% higher than that from the 1G model, respectively. Using the 2G model results, RV EF changes correlated negatively with

  2. Involvement of trigeminal transition zone and laminated subnucleus caudalis in masseter muscle hypersensitivity associated with tooth inflammation.

    Directory of Open Access Journals (Sweden)

    Kohei Shimizu

    Full Text Available A rat model of pulpitis/periapical periodontitis was used to study mechanisms underlying extraterritorial enhancement of masseter response associated with tooth inflammation. Periapical bone loss gradually increased and peaked at 6 weeks after complete Freund's adjuvant (CFA application to the upper molar tooth pulp (M1. On day 3, the number of Fos-immunoreactive (IR cells was significantly larger in M1 CFA rats compared with M1 vehicle (veh rats in the trigeminal subnucleus interpolaris/caudalis transition zone (Vi/Vc. The number of Fos-IR cells was significantly larger in M1 CFA and masseter (Mass capsaicin applied (M1 CFA/Mass cap rats compared with M1 veh/Mass veh rats in the contralateral Vc and Vi/Vc. The number of phosphorylated extracellular signal-regulated kinase (pERK-IR cells was significantly larger in M1 CFA/Mass cap and M1 veh/Mass cap rats compared to Mass-vehicle applied rats with M1 vehicle or CFA in the Vi/Vc. Pulpal CFA application caused significant increase in the number of Fos-IR cells in the Vi/Vc but not Vc on week 6. The number of pERK-IR cells was significantly lager in the rats with capsaicin application to the Mass compared to Mass-vehicle treated rats after pulpal CFA- or vehicle-application. However, capsaicin application to the Mass did not further affect the number of Fos-IR cells in the Vi/Vc in pulpal CFA-applied rats. The digastric electromyographic (d-EMG activity after Mass-capsaicin application was significantly increased on day 3 and lasted longer at 6 weeks after pulpal CFA application, and these increase and duration were significantly attenuated by i.t. PD98059, a MEK1 inhibitor. These findings suggest that Vi/Vc and Vc neuronal excitation is involved in the facilitation of extraterritorial hyperalgesia for Mass primed with periapical periodontitis or acute pulpal-inflammation. Furthermore, phosphorylation of ERK in the Vi/Vc and Vc play pivotal roles in masseter hyperalgesia after pulpitis or

  3. Patient specific 3D printed phantom for IMRT quality assurance

    International Nuclear Information System (INIS)

    Ehler, Eric D; Higgins, Patrick D; Dusenbery, Kathryn E; Barney, Brett M

    2014-01-01

    The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)

  4. CONTRACTION CHARACTERISTICS AND MYOSIN HEAVY-CHAIN COMPOSITION OF RABBIT MASSETER MOTOR UNITS

    NARCIS (Netherlands)

    KWA, SHS; WEIJS, WA; JUCH, PJW

    1. We studied isometric twitch peak force (TPF) and twitch contraction time (TCT) of 249 motor units of the masseter muscle in 41 rabbits after extracellular electrical stimulation of single trigeminal motoneurons in the brain stem. In 41 of these units we determined the amount of tension decrease

  5. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    Science.gov (United States)

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P recruitment was significantly (P recruited MUs and the RMS EMG values decreased significantly (P recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.

  6. Localised task-dependent motor-unit recruitment in the masseter.

    Science.gov (United States)

    Schindler, H J; Hellmann, D; Giannakopoulos, N N; Eiglsperger, U; van Dijk, J P; Lapatki, B G

    2014-07-01

    Localised motor-unit (MU) recruitment in the masseter was analysed in this study. We investigated whether differential activation behaviour, which has already been reported for distant masseter regions, can also be detected in small muscle subvolumes at the level of single MUs. Two bipolar fine-wire electrodes and an intra-oral 3D bite-force transmitter were used to record intra-muscular electromyograms (EMG) resulting from controlled bite-forces of 10 healthy human subjects (mean age 24.1 ± 1.2 years). Two-hundred and seventeen decomposed MUs were organised into localised MU task groups with different (P < 0.001) force-direction-specific behaviour. Proportions of MUs involved in one, two, three or four examined tasks were 46%, 31%, 18% and 5%, respectively. This study provides evidence of the ability of the neuromuscular system to modify the mechanical output of small masseter subvolumes by differential control of adjacent MUs belonging to distinct task groups. Localised differential activation behaviour of the masseter may be the crucial factor enabling highly flexible and efficient adjustment of the muscle activity in response to complex local biomechanical needs, for example, continually varying bite-forces during the demanding masticatory process. © 2014 John Wiley & Sons Ltd.

  7. Recurrent parotid swelling secondary to masseter muscle hypertrophy: a multidisciplinary diagnostic and therapeutic approach.

    Science.gov (United States)

    Capaccio, Pasquale; Gaffuri, Michele; Pignataro, Lorenzo; Assandri, Fausto; Pereira, Pollyanna; Farronato, Giampietro

    2016-11-01

    To present a patient with an atypical recurrent parotid swelling due to masseter muscle hypertrophy and the diagnostic/therapeutic assessment to treat this condition. A patient referring recurrent right facial swelling underwent a complete multidisciplinary assessment of the parotid region that revealed masseter muscle hypertrophy, confirmed by means of clinical (otolaryngological and gnathological evaluation), radiological (utrasonography, dynamic magnetic resonance imaging, and cone beam computed tomography), instrumental (electromyography to evaluate the right masseter muscle function and kinesiography to evaluate maximum right deflection - MaxRDefl and maximum opening - MaxMO) and sialendoscopy assessment where T0 indicates the pre-treatment values. All electromyographic and kinesiographic parameters were evaluated six months after the orthodontic application of a neuromuscular orthosis at T1. At T1, the effectiveness of the orthodontic therapy was demonstrated by the complete resolution of symptoms, and instrumental results documented more efficient muscle activity at rest and during clenching and a better mandibular position. At EMG T1, the resting and post-TENS values were, respectively, 1.2 and 1.8 microV. At kinesiography, MaxRDefl increased from 10.2 (T0) to 10.5 mm (T1); maxMO increased from 41.2 (T0) to 48 mm (T1). The proposed multidisciplinary assessment based on otolaryngological, gnathological, and radiological evaluation may be useful in the case of recurrent parotid swelling secondary to masseter muscle hypertrophy to plan an appropriate management with a removable neuromuscular orthosis.

  8. Masseter Muscle Hypertrophy and Pericardial Effusion in Kocher-Debre-Semelaigne Syndrome Child

    Directory of Open Access Journals (Sweden)

    Taksande AM

    2015-10-01

    Full Text Available Muscular pseudohypertrophy associated with severe congenital hypothyroidism has been described as Kocher Debre Semelaigne syndrome, which is a rare disorder. We report a case of 9year old female child with hypothyroidism, limb muscular pseudo-hypertrophy with involvement of masseter muscle along with pericardial effusion in Kocher-Debré-Semelaigne syndrome.

  9. Clinical significance of isometric bite force versus electrical activity in temporal and masseter muscles

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L; Han, K

    1989-01-01

    significant with respect to unilateral, but not to bilateral force measurements. Only in the masseter muscle was strength of dynamic contractions during chewing significantly correlated to bite force. With the present method it was demonstrated that unilateral bite force is a simple clinical indicator...

  10. Effects of brainstem lesions on the masseter inhibitory reflex. Functional mechanisms of reflex pathways

    NARCIS (Netherlands)

    Ongerboer de Visser, B. W.; Cruccu, G.; Manfredi, M.; Koelman, J. H.

    1990-01-01

    The masseter inhibitory reflex (MIR) was investigated in 16 patients with localized brainstem lesions involving the trigeminal system. The MIR consists of two phases of EMG silence (S1 and S2) evoked by stimulation of the mental nerve during maximal clenching of the teeth. The extent of the lesions

  11. Wearing of complete dentures reduces slow fibre and enhances hybrid fibre fraction in masseter muscle

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Eržen, I.

    2012-01-01

    Roč. 39, č. 8 (2012), s. 608-614 ISSN 0305-182X R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : human masseter * MyHC isoforms * muscle fibre types Subject RIV: FH - Neurology Impact factor: 2.344, year: 2012

  12. The pedicled masseter muscle transfer for smile reconstruction in facial paralysis: repositioning the origin and insertion.

    Science.gov (United States)

    Matic, Damir B; Yoo, John

    2012-08-01

    The pedicled masseter muscle transfer (PMMT) is introduced as a new reconstructive option for dynamic smile restoration in patients with facial paralysis. The masseter muscle is detached from both its origin and insertion and transferred to a new position to imitate the function of the native zygomaticus major muscle. Part one of this study consisted of cadaveric dissections of 4 heads (eight sides) in order to determine whether the masseter muscle could be (a) pedicled solely by its dominant neurovascular bundle and (b) repositioned directly over the native zygomaticus major. The second part of the study consisted of clinical assessments in three patients in order to confirm the applicability of this muscle transfer. Commissure excursion and vector of contraction following PMMT were compared to the non-paralyzed side. In all eight sides, the masseter muscles were successfully isolated on their pedicle and transposed on top of and in-line with the ipsilateral zygomaticus major. The mean length of the masseter and its angle from Frankfurt's horizontal line after transposition compared favorably to the native zygomaticus major muscle. In the clinical cases, the mean commissure movements of the paralyzed and normal sides were 7 mm and 12 mm respectively. The mean angles of commissural movement for the paralyzed and normal sides were 62° and 59° respectively. The PMMT can be used as a dynamic reconstruction for patients with permanent facial paralysis. As we gain experience with the PMMT, it may be possible to use it as a first-line option for patients not eligible for free micro-neurovascular reconstruction. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Update of patient-specific maxillofacial implant.

    Science.gov (United States)

    Owusu, James A; Boahene, Kofi

    2015-08-01

    Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.

  14. In vitro quantification of strain patterns in the craniofacial skeleton due to masseter and temporalis activities.

    Science.gov (United States)

    Maloul, Asmaa; Regev, Eran; Whyne, Cari M; Beek, Marteen; Fialkov, Jeffrey A

    2012-09-01

    Many complications in craniofacial surgery can be attributed to a lack of characterization of facial skeletal strain patterns. This study aimed to delineate human midfacial strain patterns under uniform muscle loading. The left sides of 5 fresh-frozen human cadaveric heads were dissected of all soft tissues except the temporalis and masseter muscles. Tensile forces were applied to the free mandibular ends of the muscles. Maxillary alveolar arches were used to restrain the skulls. Eight strain gauges were bonded to the surface of the midface to measure the strain under single muscle loading conditions (100 N). Maxillary strain gauges revealed a biaxial load state for both muscles. Thin antral bone experienced high maximum principal tensile strains (maximum of 685.5 με) and high minimum principal compressive strains (maximum of -722.44 με). Similar biaxial patterns of lower magnitude were measured on the zygoma (maximum of 208.59 με for maximum principal strains and -78.11 με for minimum principal strains). Results, consistent for all specimens and counter to previously accepted concepts of biomechanical behavior of the midface under masticatory muscle loading, included high strain in the thin maxillary antral wall, rotational bending through the maxilla and zygoma, and a previously underestimated contribution of the temporalis muscle. This experimental model produced repeatable strain patterns quantifying the mechanics of the facial skeleton. These new counterintuitive findings underscore the need for accurate characterization of craniofacial strain patterns to address problems in the current treatment methods and develop robust design criteria.

  15. Applications of patient-specific 3D printing in medicine.

    Science.gov (United States)

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal

    Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.

  16. Tumor Necrosis Factor Alpha Signaling in Trigeminal Ganglion Contributes to Mechanical Hypersensitivity in Masseter Muscle During Temporomandibular Joint Inflammation.

    Science.gov (United States)

    Ito, Reio; Shinoda, Masamichi; Honda, Kuniya; Urata, Kentaro; Lee, Jun; Maruno, Mitsuru; Soma, Kumi; Okada, Shinji; Gionhaku, Nobuhito; Iwata, Koichi

    To determine the involvement of tumor necrosis factor alpha (TNFα) signaling in the trigeminal ganglion (TG) in the mechanical hypersensitivity of the masseter muscle during temporomandibular joint (TMJ) inflammation. A total of 55 male Sprague-Dawley rats were used. Following injection of Complete Freund's Adjuvant into the TMJ, the mechanical sensitivities of the masseter muscle and the overlying facial skin were measured. Satellite glial cell (SGC) activation and TNFα expression in the TG were investigated immunohistochemically, and the effects of their inhibition on the mechanical hypersensitivity of the masseter muscle were also examined. Student t test or two-way repeated-measures analysis of variance followed by Bonferroni multiple comparisons test were used for statistical analyses. P < .05 was considered to reflect statistical significance. Mechanical allodynia in the masseter muscle was induced without any inflammatory cell infiltration in the muscle after TMJ inflammation. SGC activation and an increased number of TNFα-immunoreactive cells were induced in the TG following TMJ inflammation. Intra-TG administration of an inhibitor of SGC activity or of TNFα-neutralizing antibody depressed both the increased number of TG cells encircled by activated SGCs and the mechanical hypersensitivity of the masseter following TMJ inflammation. These findings suggest that persistent masseter hypersensitivity associated with TMJ inflammation was mediated by SGC-TG neuron interactions via TNFα signaling in the TG.

  17. Surgical Resolution of Bilateral Hypertrophy of Masseter Muscle Through Intraoral Approach.

    Science.gov (United States)

    Trento, Guilherme Dos Santos; Benato, Leonardo Silva; Rebellato, Nelson Luis Barbosa; Klüppel, Leandro Eduardo

    2017-06-01

    Masseter muscle hypertrophy is an untypical anomaly with no definite cause and its diagnosis is easily completed through physical examination and imaging examinations. In some cases, patient may report signs and symptoms of well-localizated pain. However, it is generally asymptomatic and patient's chief complaint is about esthetic because of facial asymmetry. In this case, surgery is carefully indicated. The aim of this article is to report a case of a male patient with no painful and functional complaints but an important unease over his facial asymmetry. Patient underwent surgery involving bilateral resection of mandibular angles and unilateral resection of masseter muscle through intraoral approach. Surgical approaches and techniques rely heavily on surgeon. There are few reports in the literature about this anomaly, but those available present several techniques. The surgeon's dexterity and knowledge become extremely important, whereas this procedure is essentiallyesthetic.

  18. Asymmetric activation of temporalis, masseter, and sternocleidomastoid muscles in temporomandibular disorder patients.

    Science.gov (United States)

    Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto

    2008-01-01

    The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.

  19. Influence of chronic stress and oclusal interference on masseter muscle pain in rat.

    Science.gov (United States)

    Simonić-Kocijan, Suncana; Uhac, Ivone; Braut, Vedrana; Kovac, Zoran; Pavicić, Daniela Kovacević; Fugosić, Vesna; Urek, Miranda Muhvić

    2009-09-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant difference of nociceptive behavioral response in chronicaly stressed rats and in the animals with occlusal interference in comparation to the control group were not obtained (p > 0.05). In contrast, nociceptive behavioral response was significantly increased in rats submitted to both of experimental procedures (p occlusal interference and chronic stress influence masseter muscle pain.

  20. Masseter muscle surface electromyography in college students with a high degree of anxiety and temporomandibular disorder

    Directory of Open Access Journals (Sweden)

    Eduarda de Lima Amarante

    Full Text Available ABSTRACT Objective: to compare the electrical activity of masseter muscles, bilaterally, according to the presence or absence of Temporomandibular Disorder (TMD in college students with a high degree of anxiety. Methods: the study was conducted with a randomized sample of 31 Speech Therapy students aged between 17 and 32 years; 61.3% (n = 19 were females and 38.7% (n = 12 were males. They were divided into two groups, Group 1 (G1, comprising 11 students with TMD, and Group 2 (G2, composed of 20 students without TMD. The college students answered the State-Trait Anxiety Inventory (STAI for anxiety investigation, and were evaluated by the protocol Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD for TMD diagnosis. The evaluation of muscular electrical activity took into account the records in the conditions of rest, Sustained Maximum Voluntary Activity (SMVA and habitual chewing (HC. The data were analyzed using the version 22 IBM Statistical Package for Social Sciences (SPSS software. The statistical analysis was performed using Student t test to compare means between groups, considering < 0,05 as the significant p-value. Results: college students, of both groups, presented high levels of anxiety traits. Significant statistical differences were observed on the percentage of electrical activity of right masseter muscle in chewing function, as well as muscle fibers recruitment during chewing, which were higher on the group without TMD. Conclusion: college students with TMD and a high degree of anxiety presented lower means of masseter muscle electromyografic activity during chewing, in most conditions assessed, as compared to volunteers without TMD, except for the left masseter muscle in rest and chewing.

  1. Effect of triiodothyronine on the maxilla and masseter muscles of the rat stomatognathic system

    Directory of Open Access Journals (Sweden)

    M.V. Mariúba

    2011-07-01

    Full Text Available The maxilla and masseter muscles are components of the stomatognathic system involved in chewing, which is frequently affected by physical forces such as gravity, and by dental, orthodontic and orthopedic procedures. Thyroid hormones (TH are known to regulate the expression of genes that control bone mass and the oxidative properties of muscles; however, little is known about the effects of TH on the stomatognathic system. This study investigated this issue by evaluating: i osteoprotegerin (OPG and osteopontine (OPN mRNA expression in the maxilla and ii myoglobin (Mb mRNA and protein expression, as well as fiber composition of the masseter. Male Wistar rats (~250 g were divided into thyroidectomized (Tx and sham-operated (SO groups (N = 24/group treated with T3 or saline (0.9% for 15 days. Thyroidectomy increased OPG (~40% and OPN (~75% mRNA expression, while T3 treatment reduced OPG (~40% and OPN (~75% in Tx, and both (~50% in SO rats. Masseter Mb mRNA expression and fiber type composition remained unchanged, despite the induction of hypo- and hyperthyroidism. However, Mb content was decreased in Tx rats even after T3 treatment. Since OPG and OPN are key proteins involved in the osteoclastogenesis inhibition and bone mineralization, respectively, and that Mb functions as a muscle store of O2 allowing muscles to be more resistant to fatigue, the present data indicate that TH also interfere with maxilla remodeling and the oxidative properties of the masseter, influencing the function of the stomatognathic system, which may require attention during dental, orthodontic and orthopedic procedures in patients with thyroid diseases.

  2. Influence of Chronic Stress and Oclusal Interference on Masseter Muscle Pain in Rat

    OpenAIRE

    Simonić-Kocijan, Sunčana; Uhač, Ivone; Braut, Vedrana; Kovač, Zoran; Kovačević Pavičić, Daniela; Fugošić, Vesna; Muhvić Urek, Miranda

    2009-01-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant dif...

  3. Differential regulation of glutamate receptors in trigeminal ganglia following masseter inflammation

    OpenAIRE

    Lee, Jongseok; Ro, Jin Y.

    2007-01-01

    The present study examined whether N-methyl-D-aspartate receptor (NMDAR) and 5-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits and group I metabotropic glutamate receptors (mGluRs) are constitutively expressed in trigeminal ganglia (TG) using Western blot analysis in male Sprague Dawley rats. We then investigated whether experimental induction of masseter inflammation influences glutamate receptor expressions by comparing the protein levels from naïve rats to th...

  4. Entropy of Masseter Muscle Pain Sensitivity: A New Technique for Pain Assessment.

    Science.gov (United States)

    Castrillon, Eduardo E; Exposto, Fernando G; Sato, Hitoshi; Tanosoto, Tomohiro; Arima, Taro; Baad-Hansen, Lene; Svensson, Peter

    2017-01-01

    To test whether manipulation of mechanical pain sensitivity (MPS) of the masseter muscle is reflected in quantitative measures of entropy. In a randomized, single-blinded, placebo-controlled design, 20 healthy volunteers had glutamate, lidocaine, and isotonic saline injected into the masseter muscle. Self-assessed pain intensity on a numeric rating scale (NRS) was evaluated up to 10 minutes following the injection, and MPS was evaluated after application (at 5 minutes and 30 minutes) of three different forces (0.5 kg, 1 kg, and 2 kg) to 15 different sites of the masseter muscle. Finally, the entropy and center of gravity (COG) of the pain sensitivity scores were calculated. Analysis of variance was used to test differences in means of tested outcomes and Tukey post hoc tests were used to adjust for multiple comparisons. The main findings were: (1) Compared with both lidocaine and isotonic saline, glutamate injections caused an increase in peak, duration, and area under the NRS pain curve (P entropy values (P entropy values when assessed with 0.5 kg and 1.0 kg but not with 2.0 kg of pressure; and (4) COG coordinates revealed differences between the x coordinates for time (P entropy measures. Entropy allows quantification of the diversity of MPS, which may be important in clinical assessment of pain states such as myofascial temporomandibular disorders.

  5. Muscle Fatigue in the Temporal and Masseter Muscles in Patients with Temporomandibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Krzysztof Woźniak

    2015-01-01

    Full Text Available The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD. Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97 participated in this study. Electromyographical (EMG recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany. Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF% revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P<0.0000. The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction.

  6. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  7. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    International Nuclear Information System (INIS)

    Krasin, Matthew J.; Wiese, Kristin M.; Spunt, Sheri L.; Hua, Chia-ho; Daw, Najat; Navid, Fariba; Davidoff, Andrew M.; McGregor, Lisa; Merchant, Thomas E.; Kun, Larry E.; McCrarey, Lola

    2012-01-01

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board−approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by the degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.

  8. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Krasin, Matthew J., E-mail: matthew.krasin@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Wiese, Kristin M. [Department of Rehabilitation Services, St. Jude Children' s Research Hospital, Memphis, TN (United States); Spunt, Sheri L. [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Hua, Chia-ho [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Daw, Najat [Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Navid, Fariba [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Davidoff, Andrew M. [Department of Surgery, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Surgery, University of Tennessee College of Medicine, Memphis, TN (United States); McGregor, Lisa [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN (United States); Merchant, Thomas E.; Kun, Larry E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); McCrarey, Lola [Department of Rehabilitation Services, St. Jude Children' s Research Hospital, Memphis, TN (United States); and others

    2012-01-01

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board-approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by the degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.

  9. A morphological study of the masseter muscle using magnetic resonance imaging in patients with jaw deformities. Cases demonstrating mandibular deviation

    International Nuclear Information System (INIS)

    Higashi, Katsuhiko; Goto, Tazuko K.; Kanda, Shigenobu; Shiratsuchi, Yuji; Nakashima, Akihiko; Horinouchi, Yasufumi

    2006-01-01

    Numerous studies on the cross-sectional area of masticatory muscles, which are correlated to the facial shape, have been reported for normal subjects in previous articles. However to date, there have been no such studies on masseter muscles at jaw-closing and jaw-opening in patients with jaw deformities involving mandibular deviation. The MRI data sets of the masseter muscles at jaw-closing and jaw-opening in 14 female patients with mandibular deviation, who demonstrated a more than 3-mm deviation in the median line in the lower first incisors in comparison to the upper ones, were utilized. The cross-sectional areas from the origin to the insertion at jaw-closing and jaw-opening which were reconstructed perpendicular to the three-dimensional long axis of each masseter muscle, each maximum cross-sectional area (MCSA) and the ratio of the change in MCSA after jaw-opening were analyzed. As a result, a significant difference was observed between the MCSA at jaw-closing and jaw-opening on the same side. However, no difference in MCSA was seen between the deviated and non-deviated side of the mandible. The line chart patterns of the masseter muscles from the origin to the insertion could be classified into four types. Our results suggest that it is important to analyze cross-sectional areas of the masseter muscles in each subject while considering the three-dimensional axis of each muscle. (author)

  10. Influence of glutamate-evoked pain and sustained elevated muscle activity on blood oxygenation in the human masseter muscle.

    Science.gov (United States)

    Suzuki, Shunichi; Arima, Taro; Kitagawa, Yoshimasa; Svensson, Peter; Castrillon, Eduardo

    2017-12-01

    This study aimed to investigate the effect of glutamate-evoked masseter muscle pain on intramuscular oxygenation during rest and sustained elevated muscle activity (SEMA). Seventeen healthy individuals participated in two sessions in which they were injected with glutamate and saline in random order. Each session was divided into three, 10-min periods. During the first (period 1) and the last (period 3) 10-min periods, participants performed five intercalated 1-min bouts of masseter SEMA with 1-min periods of 'rest'. At onset of the second 10-min period, glutamate (0.5 ml, 1 M; Ajinomoto, Tokyo, Japan) or isotonic saline (0.5 ml; 0.9%) was injected into the masseter muscle and the participants kept the muscle relaxed in a resting position for 10 min (period 2). The hemodynamic characteristics of the masseter muscle were recorded simultaneously during the experiment by a laser blood-oxygenation monitor. The results demonstrated that glutamate injections caused significant levels of self-reported pain in the masseter muscle; however, this nociceptive input did not have robust effects on intramuscular oxygenation during rest or SEMA tasks. Interestingly, these findings suggest an uncoupling between acute nociceptive activity and hemodynamic parameters in both resting and low-level active jaw muscles. Further studies are needed to explore the pathophysiological significance of blood-flow changes for persistent jaw-muscle pain conditions. © 2017 Eur J Oral Sci.

  11. From Patient-Specific Mathematical Neuro-Oncology to Precision Medicine

    Directory of Open Access Journals (Sweden)

    Anne eBaldock

    2013-04-01

    Full Text Available Gliomas are notoriously aggressive, malignant brain tumors that have variable response to treatment. These patients often have poor prognosis, informed primarily by histopathology. Mathematical neuro-oncology (MNO is a young and burgeoning field that leverages mathematical models to predict and quantify response to therapies. These mathematical models can form the basis of modern precision medicine approaches to tailor therapy in a patient-specific manner. Patient specific models (PSMs can be used to overcome imaging limitations, improve prognostic predictions, stratify patients and assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research in the war on cancer. This review focuses on the growing translation of PSM to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific mathematical neuro-oncology.

  12. Metabolic changes of masseter muscle in experimental unilateral bite-raised rat determined by 31P-MRS

    International Nuclear Information System (INIS)

    Nishide, Naoto

    1997-01-01

    Occlusal interference is known to alter the functional activity of masticatory muscle, but no alteration of the energy metabolism of masticatory muscle which has gone occlusal interference has been reported. The purpose of this study was to investigate the energy metabolism in rat masseter muscle during masticatory movements following unilateral bite-raising. A bite-raising splint (1 mm) was fixed on the unilateral upper molar of experimental rats, and after 2, 4 and 6 weeks, the rats were anesthetized and masticatory movements were induced by electrical stimulation applied to the masseter muscle (with a biting force of 40 g, a frequency of 5 Hz and a stimulation time of 32 min). 31 P Magnetic Resonance Spectroscopy of the masseter muscle were recorded during a sequence of rest, stimulation and recovery periods, and the resonance signal area ratio of PCr and Pi ((PCr)/(PCr + Pi)) and the muscle pH were determined. After 4 and 6 weeks following the bite-raising, the masseter of the bite-raised side showed a decrease in the (PCr)/(PCr + Pi) ratio compared with a control group during stimulation (p<0.05). Neither the bite-raised side masseter at 2 weeks and the contralateral side at 4 weeks showed any differences compared with the control. The muscle pH during stimulation was similar in both the control and the bite-raised groups of rats. These findings suggest that the occlusal alteration induced by unilateral bite-raising reduces the masseter energy level during mastication. (author)

  13. Metabolic changes of masseter muscle in experimental unilateral bite-raised rat determined by {sup 31}P-MRS

    Energy Technology Data Exchange (ETDEWEB)

    Nishide, Naoto [Kyoto Prefectural Univ. of Medicine (Japan)

    1997-05-01

    Occlusal interference is known to alter the functional activity of masticatory muscle, but no alteration of the energy metabolism of masticatory muscle which has gone occlusal interference has been reported. The purpose of this study was to investigate the energy metabolism in rat masseter muscle during masticatory movements following unilateral bite-raising. A bite-raising splint (1 mm) was fixed on the unilateral upper molar of experimental rats, and after 2, 4 and 6 weeks, the rats were anesthetized and masticatory movements were induced by electrical stimulation applied to the masseter muscle (with a biting force of 40 g, a frequency of 5 Hz and a stimulation time of 32 min). {sup 31}P Magnetic Resonance Spectroscopy of the masseter muscle were recorded during a sequence of rest, stimulation and recovery periods, and the resonance signal area ratio of PCr and Pi ((PCr)/(PCr + Pi)) and the muscle pH were determined. After 4 and 6 weeks following the bite-raising, the masseter of the bite-raised side showed a decrease in the (PCr)/(PCr + Pi) ratio compared with a control group during stimulation (p<0.05). Neither the bite-raised side masseter at 2 weeks and the contralateral side at 4 weeks showed any differences compared with the control. The muscle pH during stimulation was similar in both the control and the bite-raised groups of rats. These findings suggest that the occlusal alteration induced by unilateral bite-raising reduces the masseter energy level during mastication. (author)

  14. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  15. Initial Presentation of Renal Cell Carcinoma as a Metastatic Mass within the Masseter Muscle: A Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Eun; Lee, Han Bee; Cho, Woo Ho; Kim, Jae Hyung; Lee, Ji Hae; Kang, Min Jin [Dept. of Radiology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Kim, Hyun Jung [Dept. of Pathology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2012-02-15

    Renal cell carcinoma (RCC) is often concomitant with distant metastasis, and these metastases are the first sign of an otherwise occult primary. Whereas metastasis of RCC to the head and neck has been reported, metastasis to the masseter muscle, which is composed of skeletal muscle, is quite rare. We now report the case of a 66-year-old man who had a past history of pulmonary tuberculosis, with RCC metastasis of a well-defined intensely enhancing hypervascular mass in the masseter muscle as the initial presentation. We present the imaging findings of this case and a literature review about radiologic differential diagnosis of intramasseteric masses.

  16. A patient-specific model of the biomechanics of hip reduction for neonatal Developmental Dysplasia of the Hip: Investigation of strategies for low to severe grades of Developmental Dysplasia of the Hip.

    Science.gov (United States)

    Huayamave, Victor; Rose, Christopher; Serra, Sheila; Jones, Brendan; Divo, Eduardo; Moslehy, Faissal; Kassab, Alain J; Price, Charles T

    2015-07-16

    A physics-based computational model of neonatal Developmental Dysplasia of the Hip (DDH) following treatment with the Pavlik Harness (PV) was developed to obtain muscle force contribution in order to elucidate biomechanical factors influencing the reduction of dislocated hips. Clinical observation suggests that reduction occurs in deep sleep involving passive muscle action. Consequently, a set of five (5) adductor muscles were identified as mediators of reduction using the PV. A Fung/Hill-type model was used to characterize muscle response. Four grades (1-4) of dislocation were considered, with one (1) being a low subluxation and four (4) a severe dislocation. A three-dimensional model of the pelvis-femur lower limb of a representative 10 week-old female was generated based on CT-scans with the aid of anthropomorphic scaling of anatomical landmarks. The model was calibrated to achieve equilibrium at 90° flexion and 80° abduction. The hip was computationally dislocated according to the grade under investigation, the femur was restrained to move in an envelope consistent with PV restraints, and the dynamic response under passive muscle action and the effect of gravity was resolved. Model results with an anteversion angle of 50° show successful reduction Grades 1-3, while Grade 4 failed to reduce with the PV. These results are consistent with a previous study based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the PV for Grade 4. However our model indicated that it is possible to achieve reduction of Grade 4 dislocation by hyperflexion and the resultant external rotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Genetic response in masseter muscle after orthognathic surgery in comparison with healthy controls - A Microarray study.

    Science.gov (United States)

    Marewski, Maya; Petto, Carola; Schneider, Matthias; Harzer, Winfried

    2017-04-01

    One third of adult patients with orthognathic surgery of a prognathic or retrognathic mandible show relapse. The sagittal split osteotomy of the mandible leads to a displacement of both parts up to 10 mm without any changes of muscle attachment. Changed mandible length needs adaptation of muscle capacity because of changed force to moment ratio. The aim of this Microarray study was to analyze the general genetic response of masseter muscle in patients with retrognathism or prognathism of the mandible six months after surgery in comparison with healthy untreated controls. We found in tissue samples from masseter muscle a reduction of different entities between patients and controls but less in retrognathic than in prognathic patients (274/429). The different entities to controls in prognathia were reduced from 1862 to 1749 but increased in retrognathia from 1070 to 1563. We have to consider that the total amount of different entities to the controls is higher in patients with prognathic mandible (7364) because of their strong genetic controlled development compared with that in patients with retrognathic mandible (4126), which is more environmentally influenced. It can be concluded that function follows form after surgical change with high inheritance. In retrognathic patients the adaptation could be delayed or the capacity of regeneration potential is not sufficient. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    Science.gov (United States)

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P hypnosis, it appears that part of that EMG is of biological origin. © 2015 John Wiley & Sons Ltd.

  19. Objective assessment of actual chewing side by measurement of bilateral masseter muscle electromyography.

    Science.gov (United States)

    Yamasaki, Yo; Kuwatsuru, Rika; Tsukiyama, Yoshihiro; Matsumoto, Hiroshi; Oki, Kyosuke; Koyano, Kiyoshi

    2015-12-01

    The aim of this study was to examine the validity of objective assessment of actual chewing side by measurement of electromyographic (EMG) activity of the bilateral masseter muscles upon chewing test foods. The sample consisted of 19 healthy, dentate individuals. The subjects were asked to chew three types of test foods (peanuts, beef jerky, and chewing gum) for 10 strokes on the right side and then on the left side, and instructed to perform maximum voluntary clenching for 3s, three times. EMG activity from the bilateral masseter muscles was recorded. The data were collected in three different days. The root mean square EMG amplitude obtained from the maximum clenching task was used as the maximum voluntary contraction (MVC). Then, the level of amplitude against the MVC (%MVC) was calculated for the right and left sides on each stroke. The side with the larger %MVC value was judged as the chewing side, and the concordance rates (CRs) for the instructed chewing side (ICS) and the judged chewing side (JCS) were calculated. Intraclass correlation coefficients (ICCs) of the CRs were calculated to evaluate the reproducibility of the method. High CRs between the ICS and JCS for each test food were recognized. There were significant ICCs for beef jerky (R=0.761, Pchewing gum (R=0.785, Pchewing side during mastication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of therapy on masseter activity and chewing kinematics in patients with unilateral posterior crossbite.

    Science.gov (United States)

    Piancino, Maria Grazia; Falla, Deborah; Merlo, Andrea; Vallelonga, Teresa; de Biase, Corrado; Dalessandri, Domenico; Debernardi, Cesare

    2016-07-01

    To describe the effects of therapy on masseter activity and chewing kinematic in patients with unilateral posterior crossbite (UPC). Fifty children (age: mean ± SD: 9.1 ± 2.3 years) with UPC (34 on the right side, 16 on the left side) and twenty children (age: 9.5 ± 2.6 years) with normal occlusion were selected for the study. The mandibular motion and the muscular activity during chewing soft and hard boli were simultaneously recorded, before and after correction with function generating bite, after a mean treatment time of 7.3 ± 2.4 months plus the retention time of 5-6 months. The percentage of reverse cycles and the percent difference between ipsilateral and contralateral peaks of the masseter electromyography envelopes were computed. Before therapy, the percentage of reverse cycles during chewing on the crossbite side was greater in patients than in controls (Preverse chewing patterns. The previous altered muscular activation corresponded to the altered kinematics of reverse chewing cycles that might be considered a useful indicator of the severity of the masticatory function involvement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Entropy as a new measure of mechanical pain sensitivity in the masseter muscle

    DEFF Research Database (Denmark)

    Castrillon, Eduardo; Sato, Hitoshi; Tanosoto, Tomohiro

    ENTROPY AS A NEW MEASURE OF MECHANICAL PAIN SENSITIVITY IN THE MASSETER MUSCLE Author Block: E. E. Castrillon1, H. Sato2,3, T. Tanosoto4, T. Arima4, L. Baad-Hansen1, P. Svensson1, 1Clinical Oral Physiology, Århus Univ., Aarhus, Denmark, 2Dept. of Dentistry & Oral Physiology, Sch. of Med., Keio Un...... injections (Pmechanical pain sensitivity that captures new aspects of spatial characteristics and could therefore complement more classical assessments of TMD pain patients.......ENTROPY AS A NEW MEASURE OF MECHANICAL PAIN SENSITIVITY IN THE MASSETER MUSCLE Author Block: E. E. Castrillon1, H. Sato2,3, T. Tanosoto4, T. Arima4, L. Baad-Hansen1, P. Svensson1, 1Clinical Oral Physiology, Århus Univ., Aarhus, Denmark, 2Dept. of Dentistry & Oral Physiology, Sch. of Med., Keio Univ......., Tokyo, Japan, 3Japan Society for the Promotion of Sci., Tokyo, Japan, 4Dept. of Oral Rehabilitation, Graduate Sch. of Dental Med., Hokkaido Univ., Sapporo, Japan : Aim of Investigation: Manual palpation is a psychophysical technique to evaluate mechanical pain sensitivity in craniofacial muscles...

  2. Proton spectroscopy study of the masseter in patients with systemic sclerosis

    International Nuclear Information System (INIS)

    Marcucci, Marcelo; Abdala, Nitamar

    2009-01-01

    Objective: To evaluate metabolite concentration in the masseter of patients with systemic sclerosis, by analyzing creatine, choline, lipid and lactate levels, and correlating them with the presence of mandibular osteolysis. Materials and methods: The sample included 25 individuals, 15 of them with diagnosis of systemic sclerosis, divided into two groups according to the presence (group I) or absence (group II) of osteolysis, and 10 healthy individuals (group III, control). All of them were submitted to proton magnetic resonance spectroscopy with PRESS sequence and 3D acquisition. Results: Metabolite analysis showed that the creatine and lipid levels were the same for the three groups. Patients in group I presented higher levels of choline when compared with group III. On the other hand, lower lactate levels were observed in groups I and II when compared with the healthy individuals. Creatine/lipid and choline/lactate ratios were the same in the three groups. Conclusion: Lower lactate levels were observed in the patients with systemic sclerosis (groups I and II). Choline levels were increased in the patients with mandibular osteolysis (group I). Creatine/choline, lipid/lactate and choline/lipid ratios were different among the three groups. Further studies are necessary to understand the role played by the masseter in the development of mandibular osteolysis. (author)

  3. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  4. Patient-specific prediction of functional recovery after stroke.

    Science.gov (United States)

    Douiri, Abdel; Grace, Justin; Sarker, Shah-Jalal; Tilling, Kate; McKevitt, Christopher; Wolfe, Charles DA; Rudd, Anthony G

    2017-07-01

    Background and aims Clinical predictive models for stroke recovery could offer the opportunity of targeted early intervention and more specific information for patients and carers. In this study, we developed and validated a patient-specific prognostic model for monitoring recovery after stroke and assessed its clinical utility. Methods Four hundred and ninety-five patients from the population-based South London Stroke Register were included in a substudy between 2002 and 2004. Activities of daily living were assessed using Barthel Index) at one, two, three, four, six, eight, 12, 26, and 52 weeks after stroke. Penalized linear mixed models were developed to predict patients' functional recovery trajectories. An external validation cohort included 1049 newly registered stroke patients between 2005 and 2011. Prediction errors on discrimination and calibration were assessed. The potential clinical utility was evaluated using prognostic accuracy measurements and decision curve analysis. Results Predictive recovery curves showed good accuracy, with root mean squared deviation of 3 Barthel Index points and a R 2 of 83% up to one year after stroke in the external cohort. The negative predictive values of the risk of poor recovery (Barthel Index <8) at three and 12 months were also excellent, 96% (95% CI [93.6-97.4]) and 93% [90.8-95.3], respectively, with a potential clinical utility measured by likelihood ratios (LR+:17 [10.8-26.8] at three months and LR+:11 [6.5-17.2] at 12 months). Decision curve analysis showed an increased clinical benefit, particularly at threshold probabilities of above 5% for predictive risk of poor outcomes. Conclusions A recovery curves tool seems to accurately predict progression of functional recovery in poststroke patients.

  5. Three-dimensional CT might be a potential evaluation modality in correction of asymmetrical masseter muscle hypertrophy by botulinum toxin injection.

    Science.gov (United States)

    No, Yeon A; Ahn, Byeong Heon; Kim, Beom Joon; Kim, Myeung Nam; Hong, Chang Kwon

    2016-01-01

    For correction of this asymmetrical hypertrophy, botulinum toxin type A (BTxA) injection is one of convenient treatment modalities. Unfortunately, physical examination of masseter muscle is not enough to estimate the exact volume of muscle hypertrophy difference. Two Koreans, male and female, of bilateral masseter hypertrophy with asymmetricity were evaluated. BTxA (NABOTA(®), Daewoong, Co. Ltd., Seoul, Korea) was injected at master muscle site with total 50 U (25 U at each side) and volume change was evaluated with three-dimensional (3D) CT image analysis. Maximum reduction of masseter hypertrophy was recognized at 2-month follow-up and reduced muscle size started to restore after 3 months. Mean reduction of masseter muscle volume was 36% compared with baseline. More hypertrophied side of masseter muscle presented 42% of volume reduction at 2-month follow-up but less hypertrophied side of masseter muscle showed 30% of volume shrinkage. In conclusion, 3D CT image analysis might be the exact evaluation tool for correction of asymmetrical masseter hypertrophy by botulinum toxin injection.

  6. [Changes of productions of energy metabolism in masseter of rats induced by occlusal interference].

    Science.gov (United States)

    Xu, X X; Cao, Y; Fu, K Y; Xie, Q F

    2017-02-18

    To investigate the effect of occlusal interference on the energy metabolism of masticatory muscle by studying the changes of adenosine triphosphate (ATP), adenosine diphosphate (ADP), inosine monophosphate (IMP), phosphocreatine, creatine, lactate and pH level in masseter muscles of rats after occlusal interference. Fifty male Sprague-Dawley rats were randomly assigned into experimental group (n=40) and control group (n=10). In experimental group, 0.4 mm thick metal crown was cemented to the upper right first molar of the rat, and maintained for 3, 7, 10, 14 d separately (n=10 for each time point). No occlusal interference was applied for control group. Bilateral masseter muscles of all the rats were acquired under general anesthesia. The samples of 5 rats in each group were fully homogenized with 0.4 mol/L perchlorate (10 mL/g). The homogenates were centrifuged, filtered and analyzed for ATP, ADP, IMP, phosphocreatine, creatine and lactate content by high performance liquid chromatography. The other samples in each group were mixed with homogenates containing 5 mmol/L sodium iodoacetate (10 mL/g), then homogenized and measured for pH value by pH meter in thermostatic water bathunder 37 degrees centigrade. Compared with control group, ATP content in bilateral masseter of the rats increased 3 d after occlusal interference [right side:(5.36±0.13) μmol/g,left side:(5.77±0.25) μmol/g] (Pocclusal interference (Pocclusal interference and maintained the low level on 10 and 14 d [right side:(10.70±0.71) μmol/g, (11.57±0.52) μmol/g, (10.74±1.39) μmol/g, left side:(10.05±0.57) μmol/g, (10.75±1.12)μmol/g, (10.61±1.15) μmol/g](Pocclusal interference was observed (P>0.05). Occlusal interference influences the content of energy metabolites in masticatory muscle of rats, which may be related to the pathological process of masticatory muscles induced by occlusal interference, such as muscle pain, dysfunction and altered fiber architecture.

  7. [Experimental occlusal interference induces the expression of protein gene products and substance P in masseter muscles of rats].

    Science.gov (United States)

    Cao, Ye; Li, Kai; Fu, Kai-yuan; Xie, Qiu-fei

    2010-02-18

    To investigate the peripheral mechanism by studying the histological changes of masseter muscles using HE stains and substance P (SP) and protein gene product 9.5 (PGP9.5) immunohistochemical stains. Fifteen male Sprague-Dawley were randomly assigned into occlusal interference group (n=12) and control group (n=3). In occlusal interference group, 0.4 mm thick crowns were bonded to the rats' first molar of the maxillary. In the control group, rats were anesthetized and mouths were forced open for about 5 min but restorations were not applied. 1, 5, 10, and 21 d after 0.4 mm occlusal alteration treatment, mechanical pain thresholds of bilateral masseter muscles were quantitatively measured by modified electronic anesthesiometer in control group and occlusal interference group. The rats were euthanized by transcardiac perfusion after deep anesthetization at different time points. The paraffin sections of masseter muscles were made and processed for HE, SP, and PGP9.5 immunohistochemical staining. Decreased head withdrawal threshold to mechanical pressure was detected in masseter muscles on both sides following occlusal interference. Histological stains of masseter muscles presented intact following occlusal interference, and no inflammatory cells were observed in both sides. Intensely stained PGP9.5 was observed at 1 d in occlusal interference groups and maintained until the end of the experiment. SP expression was the most obviously increased at 5 d in both sides and gradually decreased to the level of control. Experimental occlusal interference-induced masticatory muscle pain is associated with peripheral sensitization of nociceptive neurons rather than muscle damage and inflammation.

  8. [Trigeminal purinergic P2X4 receptor involved in experimental occlusal interference-induced hyperalgesia in rat masseter muscle].

    Science.gov (United States)

    Xu, Xiaoxiang; Cao, Ye; Ding, Tingting; Fu, Kaiyuan; Xie, Qiufei

    2016-03-01

    To explore the expression of purinergic p2X4 receptor (P2X4R) in trigeminal ganglion of rats after occlusal interference. Investigation of peripheral receptor mechanism of occlusal interference-induced masticatory muscle pain will aid the development of drug intervention against this condition. Experimental occlusal interference was established by application of 0.4 mm metal crown to the upper right first molar of male Sprague-Dawley rats. Real-time PCR assay was used to investigate P2X4R mRNA level in trigeminal ganglion in rats with occlusal interference for 3, 7, 10 and 14 days and in control rats without occlusal interference (n=5 in each). Retrograde labelling combining immunofluorescence was performed to evaluate the percentage of P2X4R-positive cells in masseter afferent neurons (n=5 in each group). Graded concentrations of P2XR antagonist TNP-ATP (0.1, 10, 125, 250, 500 μmol/L) or saline (n=5 in each group) was administrated in right masseter and the mechanical sensitivity of bilateral masseters was measured before occlusal interference application, before the injection, and 30 min as well as 60 min after the injection. Compared with control rats (P2X4R mRNA: right side: 1.00±0.26, left side: 0.94± 0.21; percentage of P2X4R-positive masseter afferents: right side: [64.3±6.3]%, left side: [67.7±5.8]%), the level of P2X4R mRNA in bilateral trigeminal ganglia (right side: 5.98±3.56; left side: 5.06±2.88) of rats with occlusal interference for 7 days up-regulated (Pocclusal interference-induced masseter hyperalgesia.

  9. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  10. Sarcopenia as a predictor of mortality in elderly blunt trauma patients: Comparing the masseter to the psoas using computed tomography.

    Science.gov (United States)

    Wallace, James D; Calvo, Richard Y; Lewis, Paul R; Brill, Jason B; Shackford, Steven R; Sise, Michael J; Sise, C Beth; Bansal, Vishal

    2017-01-01

    Sarcopenia, or age-related loss of muscle mass, is measurable by computed tomography (CT). In elderly trauma patients, increased mortality is associated with decreased psoas muscle cross-sectional area (P-Area) on abdominal CT. Fall is the leading cause of injury in the elderly, and head CT is more often obtained. Masseter muscle cross-sectional area (M-Area) is readily measured on head CT. Hypothesizing that M-Area is a satisfactory surrogate for P-Area, we compared the two as markers of sarcopenia and increased mortality in elderly trauma patients. All blunt-injured patients aged 65 years or older admitted to our trauma center during 2010 were included. Two-year postdischarge mortality was identified by matching records to county, state, and national death indices. Bilateral M-Area was measured on admission head CT at 2 cm below the zygomatic arch. Bilateral P-Area was measured on abdominal CT at the fourth vertebral body. Average M-Area and P-Area values were calculated for each patient. Cox proportional hazards models evaluated the relationship of M-Area and P-Area with mortality. Model predictive performance was calculated using concordance statistics. Among 487 patients, 357 with M-Area and 226 with P-Area were identified. Females had smaller M-Area (3.43 cm vs 4.18 cm; p elderly trauma patients, M-Area is an equally valid and more readily available marker of sarcopenia and 2-year mortality than P-Area. Future study should validate M-Area as a metric to identify at-risk patients who may benefit from early intervention. Prognostic study, level III.

  11. Patient-specific hip prostheses designed by surgeons

    Directory of Open Access Journals (Sweden)

    Coigny Florian

    2016-09-01

    Full Text Available Patient-specific bone and joint replacement implants lead to better functional and aesthetic results than conventional methods [1], [2], [3]. But extracting 3D shape information from CT Data and designing individual implants is demanding and requires multiple surgeon-to-engineer interactions. For manufacturing purposes, Additive Manufacturing offers various advantages, especially for low volume manufacturing parts, such as patient specific implants. To ease these new approaches and to avoid surgeon-to-engineer interactions a new design software approach is needed which offers highly automated and user friendly planning steps.

  12. Comment on “Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells”

    Science.gov (United States)

    Bilican, Bilada; Serio, Andrea; Barmada, Sami J.; Nishimura, Agnes Lumi; Sullivan, Gareth J.; Carrasco, Monica; Phatnani, Hemali P.; Puddifoot, Clare A.; Story, David; Fletcher, Judy; Park, In-Hyun; Friedman, Brad A.; Daley, George Q.; Wyllie, David J. A.; Hardingham, Giles E.; Wilmut, Ian; Finkbeiner, Steven; Maniatis, Tom; Shaw, Christopher E.; Chandran, Siddharthan

    2014-01-01

    Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations. PMID:23740897

  13. Comparative data from young men and women on masseter muscle fibres, function and facial morphology

    DEFF Research Database (Denmark)

    Tuxen, A.; Bakke, M.; Pinholt, E. M.

    1999-01-01

    The primary aim was to relate information about masseter muscle fibres and function to aspects of facial morphology in a group of healthy young men. The secondary aim was to investigate possible sex differences using data previously obtained from a comparable group of age-matched, healthy women......, and the tissue examined for myosin ATPase activity. Further, the cross-sectional areas of the different fibre types were measured. In spite of using age-matched healthy men and women with a full complement of teeth, statistically significant sex differences were found among measures related to muscle function...... and some measures of facial morphology. Thus data from men and women should not be pooled uncritically. The greater bite force in men than women corresponded with the greater diameter and cross-sectional area of type II fibres. Further, the males had more anteriorly inclined mandibles and shorter anterior...

  14. Temporalis and masseter muscle activity in patients with anterior open bite and craniomandibular disorders

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L

    1991-01-01

    values, particularly in subjects with muscular affection, but maximal activity increased significantly when biting on the splint. Maximal voluntary contraction was positively correlated to molar contact and negatively to anterior face height, mandibular inclination, vertical jaw relation and gonial angle......Activity in temporalis and masseter muscles, and traits of facial morphology and occlusal stability were studied in 22 patients (19 women, 3 men; 15-45 yr of age) with anterior open bite and symptoms and signs of craniomandibular disorders. Facial morphology was assessed by profile radiographs......, occlusal stability by tooth contacts, and craniomandibular function by clinical and radiological examination. Electromyographic activity was recorded by surface electrodes after primary treatment with a reflex-releasing, stabilizing splint. Maximal voluntary contraction was reduced compared to reference...

  15. Analysis of ion beam teletherapy patient-specific quality assurance.

    Science.gov (United States)

    Liu, Xiaoli; Deng, Yu; Schlegel, Nicki; Huang, Zhijie; Moyers, Michael F

    2018-02-27

    The objective of this study was to evaluate the procedures for patient-specific quality assurance measurements using modulated scanned and energy stacked beams for proton and carbon ion teletherapy. Delivery records from 1734 portal measurements were analyzed using a 3-point pass criteria: more than 22 of 24 chambers in a water phantom (WP) had to have a measured dose difference from the planned portal doses less than or equal to 3%, or the distance from the measurement point location to a point location in the plan having the same dose had to be less than or equal to 3 mm (distance to agreement [DTA]), and the mean dose deviation of all chambers had to be less than 3%. Stratification of results showed some associations between measurement parameters and pass rates. For proton portals, pass rates were high at all measurement depths, but for carbon ion portals, pass rates decreased as a function of increasing measurement depth. Pass rates of both proton and carbon ion portals with 1 WP were slightly lower than those with a second WP. The total pass rates were 97.7% and 91.9% for proton and carbon ion patient portals, respectively. In general, the measured doses exhibited good agreement with the treatment planning system (TPS) calculated doses. When the chamber position was deeper than 150 mm in carbon ion beams, a lower pass rate was observed, which may have been caused by ion chamber array setup uncertainty (lateral and depth) in highly modulated portals or incorrect modeling of scatter by the TPS. These deviations need further investigation. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. A intervenção fonoaudiológica no pós-operatório da hipertrofia benigna do músculo masseter The miofunctional oral intervention in the surgery treatment for the masseter muscle hipertrophy

    Directory of Open Access Journals (Sweden)

    Laura Davison Mangilli

    2006-04-01

    Full Text Available OBJETIVO: descrever a abordagem fonoaudiológica no pós-operatório de pacientes que realizaram correção cirúrgica da hipertrofia do músculo masseter. METODOLOGIA: foram coletados dados referentes à avaliação e ao tratamento fonoaudiológico de 4 prontuários de sujeitos de ambos os gêneros, com faixa etária entre 16 e 24 anos, com hipertrofia benigna do músculo masseter, tratados cirurgicamente. RESULTADOS: as principais queixas pós-cirúrgicas estiveram relacionadas à limitação da abertura da boca, à dor na região da cirurgia, à rigidez muscular e a estalo em região da ATM. A terapia fonoaudiológica baseou-se em orientação quanto à retirada de hábitos deletérios; termoterapia na região do músculo masseter; manipulação da musculatura envolvida extra e intrabucais; alongamento da musculatura facial e cervical; alavanca de abertura forçada de boca e exercícios de órgãos fonoarticulatórios. CONCLUSÕES: a terapia fonoaudiológica apresenta-se como uma possibilidade de complementação ao tratamento cirúrgico, na adequação da amplitude dos movimentos mandibulares, assim como na eliminação dos sintomas presentes no pós-cirúrgico e na conscientização dos hábitos deletérios, que são apontados pela literatura como possíveis fatores desencadeantes.AIM: the aim of this study was to describe miofunctional oral intervention in patients with Masseter muscle hipertrophy treated by surgery. METHODS: the sample consisted of 4 patients, male and female, with ages between 16 and 24 years, with Masseter muscle hipertrophy treated by surgery. RESULTS: the main complains on the postoperative were related to trismus, muscle rigidity, and clicking in the temporomandibular joint. The myofunctional oral therapy was based on orientation in the abnormal habits (bruxism, clenching elimination, hyperthermia induced in the masseter muscle, oral muscles massage, facial and cervical muscles stretching, miofunctional exercises and

  17. Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.

    Science.gov (United States)

    Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry

    2018-04-01

    Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.

  18. Patient specific 3D visualisation of human brain | Baichoo ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Patient specific 3D visualisation of human brain.

  19. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available The accuracy with which a recent elastic surface registration algorithm deforms the complex geometry of a skull is examined. This algorithm is then coupled to a line based algorithm as is frequently used in patient specific feature registration...

  20. Patient specific 3D visualisation of human brain

    African Journals Online (AJOL)

    Nafiisah

    development of powerful new 3D image analysis and visualization algorithms that ... The tool is aimed to provide facility to reconstruct patient-specific 3D ... In this paper we present a review of the ... medical diagnosis, procedures training, pre-operative planning, ..... Body: Handbook of Numerical Analysis, Elsevier, 2004.

  1. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    International Nuclear Information System (INIS)

    Song, Ting; Zhou, Linghong; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Jiang, Steve B; Gu, Xuejun

    2015-01-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control. (paper)

  2. Test imf kursus - Referred Pain and Sensations Evoked by Standardized Palpation of the Masseter Muscle in Healthy Participants

    DEFF Research Database (Denmark)

    Masuda, Manabu; Iida, Takashi; Exposto, Fernando G

    2018-01-01

    , Tukey post hoc, and McNemar's tests with a 5% level of significance. RESULTS: Referred pain/sensations were most commonly evoked with the 2.0-kg stimulus (34.4% of participants; P significant effects of stimulus intensity on NRS...... scores for pain and unpleasantness, as well as for aftersensation (P significant effects on NRS scores for pain and unpleasantness for the 1.0- and 2.0-kg stimuli (P 2.0-kg stimulus (P .... The right masseter muscle was divided into 15 test sites. Mechanical sensitivity of the masseter was assessed with three mechanical stimuli (0.5 kg, 1.0 kg, or 2.0 kg) applied by palpometers to the 15 test sites for 5 seconds each site. Participants scored the perceived intensity of pain and unpleasantness...

  3. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  4. Congenital tri-cavernous hemangiomas of the right buccal region, right accessory parotid gland, and masseter muscle region.

    Science.gov (United States)

    Yang, Tao; Gu, Yongchun; Zhang, Li; Hua, Zequan

    2014-03-01

    We report a rare case of congenital tri-cavernous hemangiomas of the right buccal region, right accessory parotid gland, and masseter muscle region in an adult. The patient, a 25-year-old woman, complained of 3 masses in her right midcheek. Ultrasonographic and computed tomographic findings showed an irregular-shaped mass (multiple calcifications) with a well-defined margin in the masseter muscle region, an ellipse-shaped mass (multiple calcifications) with a well-defined margin in the right buccal region, and a comma-shaped mass (no calcifications) with a well-defined margin separate from the parotid gland in the right accessory parotid gland region. These iconographic findings suggested that the masses were all hemangiomas separately originating from the parotid gland, accessory parotid gland, and masseter muscle. The masses were completely removed through a standard parotid incision without postoperative facial palsy, skin deformity, and difficulty in secreting saliva. Findings from histologic examination of the tumor revealed multiple, thin-walled, and dilated blood vessels, confirming the diagnosis of cavernous hemangiomas. Ultrasonographic and computed tomographic findings were extremely useful in diagnosing the mass/masses as hemangioma before surgery, clarifying relationships between the mass and adjacent structures, and determining the surgical approach to the mass/masses.

  5. Changes in the temporomandibular joint disc and temporal and masseter muscles secondary to bruxism in Turkish patients

    Directory of Open Access Journals (Sweden)

    Hasan Garip

    2018-01-01

    Full Text Available Objectives: To analyze the relationships between temporalis and masseter muscle hypertrophy and temporomandibular joint (TMJ disc displacement in patients with severe bruxism using magnetic resonance imaging (MRI. Methods: This retrospective study included 100 patients with severe bruxism, referred to the Department of Oral and Maxillofacial Surgery, University of Marmara and Istanbul Medipol University, Istanbul, Turkey, between January 2015 and December 2016. Patients underwent TMJ MRI with a 1.5-T system in open and closed mouth positions. The masseter and temporalis muscles were measured in the axial plane when the patient’s mouth was closed. Results: At its thinnest, the disc averaged was 1.11±0.24 mm. At their thickest, the masseter averaged was 13.65±2.19 mm and temporalis muscles was 12.98±2.4 mm. Of the discs, 24% were positioned normally, 74% were positioned anteriorly, and 2% were positioned posteriorly. The temporalis muscle was significantly thicker in patients with normally positioned discs than in those with anteriorly positioned discs (p=0.035. Conclusions: The temporalis muscle was significantly thicker in patients with normally positioned discs than in those with anteriorly positioned discs (p=0.035. Additional studies should be conducted to evaluate the relationships between all masticatory and surrounding muscles and disc movements in patients with bruxism.

  6. Internal emitter dosimetry: are patient-specific calculations necessary?

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The question of whether patient-specific calculations are needed in internal emitter dosimetry arises when radionuclides are used for therapy. In diagnostic procedures the absorbed dose delivered to normal tissue is far below hazardous levels. In internal emitter therapy, the need for patient-specific dosimetry may arise if a large variability in biodistribution, normal tissue toxicity or efficacy is anticipated. Patient-specificity may be accomplished at the level of pharmacokinetics, anatomy/tumor-geometry or both. At the first level, information regarding the biodistribution of a particular radiolabeled agent is obtained and used to determine the maximum activity that may be administered for treatment. The classical example of this is radioiodine therapy for thyroid cancer. In radioiodine therapy, the therapy dose is preceded by a tracer dose of I-131-iodide which is used to measure patient kinetics by imaging and whole-body counting. Absorbed dose estimates obtained from these data are used to constrain the therapy dose to meet safety criteria established in a previously performed dose-response study. The most ambitious approach to patient-specific dosimetry, requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of registered images representing anatomy (CT or MRI). The spatial distribution of absorbed dose or dose-rate may then be obtained by convolution of a point-kernel with the radioactivity distribution or by Monte Carlo calculation. The spatial absorbed dose or dose-rate distribution may be represented as a set of images, as isodose contours, or as dose-volume histograms. The 3-D Monte Carlo approach is, in principle, the most patient-specific; it accounts for patient anatomy and tumor geometry as well as for the spatial distribution of radioactivity. It is also, however, the most logistically and technically demanding. Patients are required to undergo CT or MRI and at least one

  7. The effect of patient-specific factors on radiation-induced regional lung injury

    International Nuclear Information System (INIS)

    Garipagaoglu, Melahat; Munley, Michael T.; Hollis, Donna; Poulson, Jean M.; Bentel, Gunilla C.; Sibley, Gregory; Anscher, Mitchell S.; Fan Ming; Jaszczak, Ronald J.; Coleman, R. Edward; Marks, Lawrence B.

    1999-01-01

    Purpose: To assess the impact of patient-specific factors on radiation (RT)-induced reductions in regional lung perfusion. Methods: Fifty patients (32 lung carcinoma, 7 Hodgkin's disease, 9 breast carcinoma and 2 other thoracic tumors) had pre-RT and ≥24-week post-RT single photon emission computed tomography (SPECT) perfusion images to assess the dose dependence of RT-induced reductions in regional lung perfusion. The SPECT data were analyzed using a normalized and non-normalized approach. Furthermore, two different mathematical methods were used to assess the impact of patient-specific factors on the dose-response curve (DRC). First, DRCs for different patient subgroups were generated and compared. Second, in a more formal statistical approach, individual DRCs for regional lung injury for each patient were fit to a linear-quadratic model (reduction = coefficient 1 x dose + coefficient 2 x dose 2 ). Multiple patient-specific factors including tobacco history, pre-RT diffusion capacity to carbon monoxide (DLCO), transforming growth factor-beta (TGF-β), chemotherapy exposure, disease type, and mean lung dose were explored in a multivariate analysis to assess their impact on the coefficients. Results: None of the variables tested had a consistent impact on the radiation sensitivity of regional lung (i.e., the slope of the DRC). In the formal statistical analysis, there was a suggestion of a slight increase in radiation sensitivity in the dose range >40 Gy for nonsmokers (vs. smokers) and in those receiving chemotherapy (vs. no chemotherapy). However, this finding was very dependent on the specific statistical and normalization method used. Conclusion: Patient-specific factors do not have a dramatic effect on RT-induced reduction in regional lung perfusion. Additional studies are underway to better clarify this issue. We continue to postulate that patient-specific factors will impact on how the summation of regional injury translates into whole organ injury

  8. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.

    Science.gov (United States)

    Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R

    Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Patient specific ankle-foot orthoses using rapid prototyping.

    Science.gov (United States)

    Mavroidis, Constantinos; Ranky, Richard G; Sivak, Mark L; Patritti, Benjamin L; DiPisa, Joseph; Caddle, Alyssa; Gilhooly, Kara; Govoni, Lauren; Sivak, Seth; Lancia, Michael; Drillio, Robert; Bonato, Paolo

    2011-01-12

    Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  10. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  11. SURFACE ELECTROMYOGRAPHY OF MASSETER AND TEMPORAL MUSCLES WITH USE PERCENTAGE WHILE CHEWING ON CANDIDATES FOR GASTROPLASTY.

    Science.gov (United States)

    Santos, Andréa Cavalcante Dos; Silva, Carlos Antonio Bruno da

    Surface electromyography identifies changes in the electrical potential of the muscles during each contraction. The percentage of use is a way to treat values enabling comparison between groups. To analyze the electrical activity and the percentage of use of masseter and temporal muscles during chewing in candidates for gastric bypass. It was used Surface Electromyography Miotool 200,400 (Miotec (r), Porto Alegre/RS, Brazil) integrated with Miograph 2.0 software, involving patients between 20-40 years old. Were included data on electrical activity simultaneously and in pairs of temporal muscle groups and masseter at rest, maximum intercuspation and during the chewing of food previously classified. Were enrolled 39 patients (59 women), mean age 27.1+/-5.7. The percentage of use focused on temporal muscle, in a range of 11-20, female literacy (n=11; 47.82) on the left side and 15 (65.21) on the right-hand side. In the male, nine (56.25) at left and 12 (75.00) on the right-hand side. In masseter, also in the range of 11 to 20, female literacy (n=10; 43.48) on the left side and 11 (47.83) on the right-hand side. In the male, nine (56.25) at left and eight (50.00) on the right-hand side. 40-50% of the sample showed electrical activity in muscles (masseter and temporal) with variable values, and after processing into percentage value, facilitating the comparison of load of used electrical activity between the group, as well as usage percentage was obtained of muscle fibers 11-20% values involving, representing a range that is considered as a reference to the group studied. The gender was not a variable. A eletromiografia de superfície identifica variações dos potenciais elétricos dos músculos durante cada contração realizada. O percentual de uso é uma forma de tratar valores possibilitando comparação entre grupos. Analisar a atividade elétrica e o percentual de uso dos músculos masséteres e temporais durante a mastigação em candidatos à gastroplastia

  12. Sarcoglycan complex in masseter and sternocleidomastoid muscles of baboons: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    G. Cutroneo

    2015-06-01

    Full Text Available The sarcoglycan complex consists of a group of single-pass transmembrane glycoproteins that are essential to maintain the integrity of muscle membranes. Any mutation in each sarcoglycan gene causes a series of recessive autosomal dystrophin-positive muscular dystrophies. Negative fibres for sarcoglycans have never been found in healthy humans and animals. In this study, we have investigated whether the social ranking has an influence on the expression of sarcoglycans in the skeletal muscles of healthy baboons. Biopsies of masseter and sternocleidomastoid muscles were processed for confocal immunohistochemical detection of sarcoglycans. Our findings showed that baboons from different social rankings exhibited different sarcoglycan expression profiles. While in dominant baboons almost all muscles were stained for sarcoglycans, only 55% of muscle fibres showed a significant staining. This different expression pattern is likely to be due to the living conditions of these primates. Sarcoglycans which play a key role in muscle activity by controlling contractile forces may influence the phenotype of muscle fibres, thus determining an adaptation to functional conditions. We hypothesize that this intraspecies variation reflects an epigenetic modification of the muscular protein network that allows baboons to adapt progressively to a different social status.

  13. Schedule-induced masseter EMG in facial pain subjects vs. no-pain controls.

    Science.gov (United States)

    Gramling, S E; Grayson, R L; Sullivan, T N; Schwartz, S

    1997-02-01

    Empirical reports suggest that oral habits (e.g., teeth clenching) may be behavioral mediators linking stress to muscle hyperreactivity and the development of facial pain. Another report suggests that excessive behavioral adjuncts develop in conjunction with fixed-time stimulus presentation. The present study assessed the extent to which the oral habits exhibited by facial pain patients are schedule-induced. Subjects with Temporomandibular Disorder (TMD) symptomatology (n = 15) and pain-free controls (n = 15) participated in a 4-phase experiment (adaptation, baseline, task, recovery) designed to elicit schedule-induced behaviors. Self-report of oral habits and negative affect were recorded after each phase. Objective measures of oral habits were obtained via behavioral observation and masseter EMG recordings. Results revealed that negative arousal significantly increased during the fixed-time (FT) task and was also associated with increased oral habits among the TMD subjects. Moreover, 40% of the TMD subjects and none of the controls exhibited a pattern of EMG elevations in the early part of the inter-stimulus interval that met a strict criteria for scheduled-induced behavior per se. Taken together, these results suggest that the TMD subjects were engaging in schedule-induced oral habits. The adjunctive behavior literature seems to provide a plausible explanation as to how oral habits develop and are maintained in TMD patients, despite their painful consequences.

  14. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  15. Patient-specific three-dimensional printing for pre-surgical planning in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Perica, Elizabeth; Sun, Zhonghua

    2017-12-01

    Recently, three-dimensional (3D) printing has shown great interest in medicine, and 3D printed models may be rendered as part of the pre-surgical planning process in order to better understand the complexities of an individual's anatomy. The aim of this study is to investigate the feasibility of utilising 3D printed liver models as clinical tools in pre-operative planning for resectable hepatocellular carcinoma (HCC) lesions. High-resolution contrast-enhanced computed tomography (CT) images were acquired and utilized to generate a patient-specific 3D printed liver model. Hepatic structures were segmented and edited to produce a printable model delineating intrahepatic anatomy and a resectable HCC lesion. Quantitative assessment of 3D model accuracy compared measurements of critical anatomical landmarks acquired from the original CT images, standard tessellation language (STL) files, and the 3D printed liver model. Comparative analysis of surveys completed by two radiologists investigated the clinical value of 3D printed liver models in radiology. The application of utilizing 3D printed liver models as tools in surgical planning for resectable HCC lesions was evaluated through kappa analysis of questionnaires completed by two abdominal surgeons. A scaled down multi-material 3D liver model delineating patient-specific hepatic anatomy and pathology was produced, requiring a total production time of 25.25 hours and costing a total of AUD $1,250. A discrepancy was found in the total mean of measurements at each stage of production, with a total mean of 18.28±9.31 mm for measurements acquired from the original CT data, 15.63±8.06 mm for the STL files, and 14.47±7.71 mm for the 3D printed liver model. The 3D liver model did not enhance the radiologists' perception of patient-specific anatomy or pathology. Kappa analysis of the surgeon's responses to survey questions yielded a percentage agreement of 80%, and a κ value of 0.38 (P=0.24) indicating fair agreement. Study

  16. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  17. The efficiency of botulinum toxin type A for the treatment of masseter muscle pain in patients with temporomandibular joint dysfunction and tension-type headache.

    Science.gov (United States)

    Pihut, Malgorzata; Ferendiuk, Ewa; Szewczyk, Michal; Kasprzyk, Katarzyna; Wieckiewicz, Mieszko

    2016-01-01

    Temporomandibular joint dysfunction are often accompanied by symptoms of headache such as tension-type headache which is the most frequent spontaneous primary headache. Masseter muscle pain is commonly reported in this group. The purpose of the study was to assess the efficiency of intramuscular botulinum toxin type A injections for treating masseter muscle pain in patients with temporomandibular joint dysfunction and tension-type headache. This prospective outcome study consisted of 42 subjects of both genders aged 19-48 years diagnosed with masseter muscle pain related to temporomandibular joint dysfunction and tension-type headache. The subjects were treated by the intramuscular injection of 21 U (mice units) of botulinum toxin type A (Botox, Allergan) in the area of the greatest cross-section surface of both masseter bellies. Pain intensity was evaluated using visual analogue scale (VAS) and verbal numerical rating scale (VNRS) 1 week before the treatment and 24 weeks after the treatment. The obtained data were analyzed using the Wilcoxon matched pairs test (p ≤ 0,005). The results of this study showed a decrease in the number of referred pain episodes including a decrease in pain in the temporal region bilaterally, a reduction of analgesic drugs intake as well as a decrease in reported values of VAS and VNRS after injections (p = 0,000). The intramuscular botulinum toxin type A injections have been an efficient method of treatment for masseter muscle pain in patients with temporomandibular joint dysfunction and tension-type headache.

  18. Short-Term Sensorimotor Effects of Experimental Occlusal Interferences on the Wake-Time Masseter Muscle Activity of Females with Masticatory Muscle Pain.

    Science.gov (United States)

    Cioffi, Iacopo; Farella, Mauro; Festa, Paola; Martina, Roberto; Palla, Sandro; Michelotti, Ambrosina

    2015-01-01

    To investigate the effects of the application of an acute alteration of the occlusion (ie, interference) on the habitual masseter electromyographic (EMG) activity of females with temporomandibular disorders (TMD)-related muscular pain during wakefulness. Seven female volunteers with masticatory myofascial pain participated in a crossover randomized clinical trial. Gold foils were glued on an occlusal contact area (active occlusal interference, AI) or on the vestibular surface of the same molar (dummy interference, DI) and left for 8 days. The masseter electromyogram was recorded during wakefulness in the natural environment by portable recorders under interference-free, dummy-interference, and active-interference conditions. The number, amplitude, and duration of EMG signal fractions with amplitudes above 10% of the maximum voluntary contraction (activity periods, APs) were computed in all experimental conditions. Muscle pain, headache, and perceived stress were each assessed with a visual analog scale (VAS), and an algometer was used to assess masseter and temporalis pressure pain thresholds. Data were analyzed by means of analysis of variance. The frequency and duration of the recorded APs did not differ significantly between the experimental conditions (P>.05), but a small and significant reduction of the EMG mean amplitude of the APs occurred with AI (P.05). An active occlusal interference in female volunteers with masticatory muscle pain had little influence on the masseter EMG activity pattern during wakefulness and did not affect the pressure tenderness of the masseter and temporalis.

  19. Surgeon Design Interface for Patient-Specific Concentric Tube Robots.

    Science.gov (United States)

    Morimoto, Tania K; Greer, Joseph D; Hsieh, Michael H; Okamura, Allison M

    2016-06-01

    Concentric tube robots have potential for use in a wide variety of surgical procedures due to their small size, dexterity, and ability to move in highly curved paths. Unlike most existing clinical robots, the design of these robots can be developed and manufactured on a patient- and procedure-specific basis. The design of concentric tube robots typically requires significant computation and optimization, and it remains unclear how the surgeon should be involved. We propose to use a virtual reality-based design environment for surgeons to easily and intuitively visualize and design a set of concentric tube robots for a specific patient and procedure. In this paper, we describe a novel patient-specific design process in the context of the virtual reality interface. We also show a resulting concentric tube robot design, created by a pediatric urologist to access a kidney stone in a pediatric patient.

  20. Reliability of patient specific instrumentation in total knee arthroplasty.

    Science.gov (United States)

    Jennart, Harold; Ngo Yamben, Marie-Ange; Kyriakidis, Theofylaktos; Zorman, David

    2015-12-01

    The aim of this study was to compare the precision between Patient Specific Instrumentation (PSI) and Conventional Instrumentation (CI) as determined intra-operatively by a pinless navigation system. Eighty patients were included in this prospective comparative study and they were divided into two homogeneous groups. We defined an original score from 6 to 30 points to evaluate the accuracy of the position of the cutting guides. This score is based on 6 objective criteria. The analysis indicated that PSI was not superior to conventional instrumentation in the overall score (p = 0.949). Moreover, no statistically significant difference was observed for any individual criteria of our score. Level of evidence II.

  1. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  2. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    Science.gov (United States)

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  3. Effect of clenching on T2 and diffusion parameters of the masseter muscle

    Energy Technology Data Exchange (ETDEWEB)

    Chikui, Toru; Kawazu, Toshiyuki; Kami, Yukiko; Yoshiura, Kazunori (Dept. of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu Univ., Fukuoka (Japan)), e-mail: chikui@rad.dent.kyushu-u.ac.jp; Shiraishi, Tomoko; Yuasa, Kenji (Section of Image Diagnosis, Dept. of Diagnostics and General Care, Fukuoka Dental College, Fukuoka (Japan)); Ichihara, Takahiro (Dept. of Radiology, Fukuoka Dental College Medical and Dental Hospital, Fukuoka (Japan)); Hatakenaka, Masamitsu (Dept. of Clinical Radiology, Faculty of Medical Science, Kyushu Univ., Fukuoka (Japan))

    2010-01-15

    Background: Persistent muscle contractions during clenching are considered to be one reason for temporomandibular disorders. However, no report has evaluated the effect of clenching on the masticatory muscles, as measured by magnetic resonance imaging (MRI). Purpose: To investigate whether clenching has an effect on either T2 or the coefficients for diffusion of the masseter muscles (MM), and to evaluate the effect of the distribution of bite force on such indices. Material and Methods: Twenty-three subjects were examined. Bite force was measured by a pressure-sensitive sheet, and the force of the right and the left sides was calculated. MRI was used to evaluate T2, the apparent diffusion coefficient (ADC), and the primary (1), secondary (2), and tertiary eigenvalues (3). These indices on the stronger side of the bite force were compared to those on the weaker side. Thereafter, the indices were compared between at rest and during clenching. Results: There was no significant difference in any of the indices (T2, ADC, 1, 2, and 3) between the side of stronger bite force and the side with weaker. T2 increased by clenching, and the difference was significant in the side with stronger bite force (P = 0.006). ADC, 1, 2, and 3 increased significantly by clenching (P <0.01, P <0.01, P <0.01, and P <0.01, respectively) on both sides. The percentage of change of 2 by clenching was 26.2+-15.7% on the stronger side and 26.9+-18.6% on the weaker side, which was significantly greater than either that of 1 or 3. Conclusion: The coefficients for diffusion of the MM were sensitive to change by clenching, and 2 was the most sensitive. Moreover, the relative distribution of the bite forces had no effect on any of the indices

  4. 3D-Printed Patient-Specific ACL Femoral Tunnel Guide from MRI.

    Science.gov (United States)

    Rankin, Iain; Rehman, Haroon; Frame, Mark

    2018-01-01

    Traditional ACL reconstruction with non-anatomic techniques can demonstrate unsatisfactory long-term outcomes with regards instability and the degenerative knee changes observed with these results. Anatomic ACL reconstruction attempts to closely reproduce the patient's individual anatomic characteristics with the aim of restoring knee kinematics, in order to improve patient short and long-term outcomes. We designed an arthroscopic, patient-specific, ACL femoral tunnel guide to aid anatomical placement of the ACL graft within the femoral tunnel. The guide design was based on MRI scan of the subject's uninjured contralateral knee, identifying the femoral footprint and its anatomical position relative to the borders of the femoral articular cartilage. Image processing software was used to create a 3D computer aided design which was subsequently exported to a 3D-printing service. Transparent acrylic based photopolymer, PA220 plastic and 316L stainless steel patient-specific ACL femoral tunnel guides were created; the models produced were accurate with no statistical difference in size and positioning of the center of the ACL femoral footprint guide to MRI ( p =0.344, p =0.189, p =0.233 respectively). The guides aim to provide accurate marking of the starting point of the femoral tunnel in arthroscopic ACL reconstruction. This study serves as a proof of concept for the accurate creation of 3D-printed patient-specific guides for the anatomical placement of the femoral tunnel during ACL reconstruction.

  5. An electromyographic study on the sequential recruitment of bilateral sternocleidomastoid and masseter muscle activity during gum chewing.

    Science.gov (United States)

    Guo, S-X; Li, B-Y; Zhang, Y; Zhou, L-J; Liu, L; Widmalm, S-E; Wang, M-Q

    2017-08-01

    Mandibular functions are associated with electromyographic activity of the jaw muscles and also the sternocleidomastoid muscle (SCM). The precise spatiotemporal relation of SCM and masticatory muscles activities during chewing is worthy of investigation. To analyse the sequential recruitment of SCM and masseter activities during chewing as indicated by the spatiotemporal locations of their activity peaks. Jaw movements and bilateral surface electromyographic activity of SCM and masseter were recorded during gum chewing in 20 healthy subjects. The timing order was decided by comparing the length of time from the time when the opening started to the time when the surface electromyographic activity reached its peak value. Spatial order was analysed by locating the peak electromyographic activity onto a standard chewing cycle which was created based on 15 unilateral chewing cycles. Paired t-test, one-way ANOVA and Student-Newman-Keuls post-test were used for comparisons. Although the Time to Peak for the balancing side SCM appeared shorter than for the other three tested muscles, most often it did not reach a level of significance. However, the location of the balancing side SCM's peak activity was further from the terminal chewing position (TCP) than the working side SCM and bilateral masseters (P < 0·05). The balancing side SCM activity reached its peak significantly further away from TCP than the other three tested muscles during chewing. Further studies with spatiotemporal variables included should be helpful to understand the roles of the head, neck and jaw muscles in orofacial and cervical dysfunctional problems. © 2017 John Wiley & Sons Ltd.

  6. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders

    Directory of Open Access Journals (Sweden)

    Kristen J. Brennand

    2015-12-01

    Full Text Available As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.

  7. Potential clinical application of masseter and temporal muscle massage treatment using an oral rehabilitation robot in temporomandibular disorder patients with myofascial pain.

    Science.gov (United States)

    Ariji, Yoshiko; Nakayama, Miwa; Nishiyama, Wataru; Ogi, Nobumi; Sakuma, Shigemitsu; Katsumata, Akitoshi; Kurita, Kenichi; Ariji, Eiichiro

    2015-10-01

    To investigate the safety, suitable treatment regimen, and efficacy of masseter and temporal muscle massage treatment using an oral rehabilitation robot. Forty-one temporomandibular disorder (TMD) patients with myofascial pain (8 men, 33 women, median age: 46 years) were enrolled. The safety, suitable massage regimen, and efficacy of this treatment were investigated. Changes in masseter muscle thickness were evaluated on sonograms. No adverse events occurred with any of the treatment sessions. Suitable massage was at pressure of 10 N for 16 minutes. Five sessions were performed every 2 weeks. Total duration of treatment was 9·5 weeks in median. Massage treatment was effective in 70·3% of patients. Masseter muscle thickness decreased with treatment in the therapy-effective group. This study confirmed the safety of massage treatment, and established a suitable regimen. Massage was effective in 70·3% of patients and appeared to have a potential as one of the effective treatments for myofascial pain.

  8. The influence of experimental interfering occlusal contacts on the postural activity of the anterior temporal and masseter muscles in young adults.

    Science.gov (United States)

    Riise, C; Sheikholeslam, A

    1982-09-01

    The effects of an intercuspal occlusal interference on the pattern of postural activity of the anterior temporal and masseter muscles were studied in eleven volunteers with complete, natural dentitions. The results indicate that, in man, there is postural activity in the anterior temporal and sometimes in the masseter muscles. The pattern of postural activity is influenced by the occurrence of an experimental occlusal interference, sometimes as early as 1 h after the insertion. After 48 h there was a significant increase of the activity in the anterior temporal muscles. This increased activity persisted until the interference was removed 1 week later and had almost disappeared 1 week after the removal.

  9. Using an EPID for patient-specific VMAT quality assurance

    International Nuclear Information System (INIS)

    Bakhtiari, M.; Kumaraswamy, L.; Bailey, D. W.; Boer, S. de; Malhotra, H. K.; Podgorsak, M. B.

    2011-01-01

    Purpose: A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). Methods: VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. Results: Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. Conclusions: This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.

  10. Additive manufacturing of patient-specific tubular continuum manipulators

    Science.gov (United States)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  11. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  12. Reproducibility of estimation of blood flow in the human masseter muscle from measurements of 133Xe clearance

    International Nuclear Information System (INIS)

    Monteiro, A.A.; Kopp, S.

    1989-01-01

    The reproducibility of estimations of the masseter intramuscular blood flow (IMBF) was assessed bilaterally within and between clinical sessions. The 133 Xe clearance in nine normal individuals was measured before, during, and immediately after endurance of isometric contraction at an attempted level of 50% of maximum voluntary clenching contraction. An overall low reproducibility of the estimations was found. This result was probably caused by uncertainties about the excact site of intramuscular 133 Xe deposition, errors in assessment of the plots of clearance, and variabilities in the relative contraction levels sustained, especially in the overall muscle effort. In agreement with previous reports concerning other skeletal muscles, the 133 Xe clearance method provided inconsistent estimates of absolute values of IMBF also in this clinical setting. Although there was a high intra-individual variation in the relative level of isometric contraction sustained, the endurance test induced distinct changes in IMBF, among which the estimate of post-endurance hyperemia was the most consistent for each individual. Therefore, measurements of 133 Xe clearance seem to be useful to detect intra-induvidual changes in masseter IMBF resulting from isometric work. 21 refs

  13. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  14. Respiratory gated radiotherapy-pretreatment patient specific quality assurance

    Directory of Open Access Journals (Sweden)

    Rajesh Thiyagarajan

    2016-01-01

    Full Text Available Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany in conjunction with "Real-time position management" (Varian, USA to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA phantom (Computerized Imaging Reference Systems type is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%. Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84% for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.

  15. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements

    Directory of Open Access Journals (Sweden)

    Derek Groen

    2018-06-01

    Full Text Available We present a validation study comparing results from a patient-specific lattice-Boltzmann simulation to transcranial Doppler (TCD velocity measurements in four different planes of the middle cerebral artery (MCA. As part of the study, we compared simulations using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the viability of using downscaled velocities to reduce the required resolution. Simulations with unscaled velocities predict the maximum flow velocity with an error of less than 9%, independent of the rheology model chosen. The accuracy of the simulation predictions worsens considerably when simulations are run at reduced velocity, as is for example the case when inflow velocities from healthy individuals are used on a vascular model of a stroke patient. Our results demonstrate the importance of using directly measured and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude that localized TCD measurements together with predictive simulations can be used to obtain flow estimates with high fidelity over a larger region, and reduce the need for more invasive flow measurement procedures.

  16. Patient-Specific Variations in Biomarkers across Gingivitis and Periodontitis

    Science.gov (United States)

    Nagarajan, Radhakrishnan; Miller, Craig S.; Dawson, Dolph; Al-Sabbagh, Mohanad; Ebersole, Jeffrey L.

    2015-01-01

    This study investigates the use of saliva, as an emerging diagnostic fluid in conjunction with classification techniques to discern biological heterogeneity in clinically labelled gingivitis and periodontitis subjects (80 subjects; 40/group) A battery of classification techniques were investigated as traditional single classifier systems as well as within a novel selective voting ensemble classification approach (SVA) framework. Unlike traditional single classifiers, SVA is shown to reveal patient-specific variations within disease groups, which may be important for identifying proclivity to disease progression or disease stability. Salivary expression profiles of IL-1ß, IL-6, MMP-8, and MIP-1α from 80 patients were analyzed using four classification algorithms (LDA: Linear Discriminant Analysis [LDA], Quadratic Discriminant Analysis [QDA], Naïve Bayes Classifier [NBC] and Support Vector Machines [SVM]) as traditional single classifiers and within the SVA framework (SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM). Our findings demonstrate that performance measures (sensitivity, specificity and accuracy) of traditional classification as single classifier were comparable to that of the SVA counterparts using clinical labels of the samples as ground truth. However, unlike traditional single classifier approaches, the normalized ensemble vote-counts from SVA revealed varying proclivity of the subjects for each of the disease groups. More importantly, the SVA identified a subset of gingivitis and periodontitis samples that demonstrated a biological proclivity commensurate with the other clinical group. This subset was confirmed across SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM. Heatmap visualization of their ensemble sets revealed lack of consensus between these subsets and the rest of the samples within the respective disease groups indicating the unique nature of the patients in these subsets. While the source of variation is not known, the results presented clearly elucidate the

  17. Adaptive grid generation in a patient-specific cerebral aneurysm

    Science.gov (United States)

    Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan

    2013-11-01

    computational time for patient-specific hemodynamics simulations, which are used to help assess the likelihood of aneurysm rupture using CFD calculated flow patterns.

  18. A COMPARATIVE-STUDY OF ELECTROMYOGRAMS OF THE MASSETER, TEMPORALIS, AND ANTERIOR DIGASTRIC MUSCLES OBTAINED BY SURFACE AND INTRAMUSCULAR ELECTRODES - RAW-EMG

    NARCIS (Netherlands)

    KOOLE, P; DEJONGH, HJ; BOERING, G

    Electromyographic activity was synchronously recorded by surface and intramuscular electrodes in the same muscle. The activity of the left masseter, left temporalis, and both bellies of the anterior digastric muscle was studied by this double registration technique. In rest position no

  19. Comparison of clinical marking and ultrasound-guided injection of Botulinum type A toxin into the masseter muscles for treating bruxism and its cosmetic effects.

    Science.gov (United States)

    Quezada-Gaon, Natacha; Wortsman, Ximena; Peñaloza, Osvaldo; Carrasco, Juan Eduardo

    2016-09-01

    Botulinum toxin type A has been used for treating the hypertrophy of the masseter muscles and its cosmetic effects. Ultrasound is increasingly used in dermatology, along with the guidance of mini-invasive procedures. To evaluate the role of ultrasound for guiding the application of Botulinum A toxin in patients with cosmetic alterations due to bruxism, correlate the clinical landmarks with the ultrasound findings, and study the effect on the symptoms, cosmetics, and quality of life. Twenty individuals with bruxism and cosmetic alterations underwent an ultrasound-guided injection of Botulinum toxin type A in each masseter muscle. Clinical and ultrasound marking of the procedure was compared. Clinical and sonographic evaluation was performed at the time of injection and 3 months later. Ten normal individuals underwent ultrasound of the masseter muscles as a control group. Up to 65% of individuals showed anatomical variants of the salivary glands. The method for clinically marking the skin showed a frequently erroneous location of the anterior point (up to 40% of cases) that was proven by ultrasound to be out of the muscle. In 20% of cases, ultrasound showed that the needle should be longer to enter the muscle. After injection, most of the patients demonstrated a decrease of the symptoms and cosmetic and quality of life improvements. Ultrasound can be a potent tool for guiding the injection of Botulinum toxin into the masseter muscles. It may contribute to a more personalized procedure, better cosmetic results, and help to avoid potential complications. © 2016 Wiley Periodicals, Inc.

  20. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray.

    Science.gov (United States)

    Sun, Shuzhen; Qi, Dong; Yang, Yingying; Ji, Ping; Kong, Jingjing; Wu, Qingting

    2016-03-02

    P2X3 receptor plays a role in nociception transmission of orofacial pain in temporomandibular disorder patients. A previous study found that P2X3 receptors in masseter muscle afferent neurons and the trigeminal ganglia were involved in masseter muscle pain induced by inflammation caused by chemical agents or eccentric muscle contraction. In this study, we attempted to investigate changes in P2X3 receptors in the trigeminal subnucleus caudalis (Vc) and midbrain periaqueductal gray (PAG) in relation to the hyperalgesia of masseter muscles induced by occlusal interference. Experimental occlusal interference by crown application was established in 30 rats and another 30 rats were treated as sham controls. On days 1, 3, 7, 14, and 28 after crown application, the mechanical pain threshold was examined by von-Frey filaments. The expression of the P2X3 receptor in Vc and PAG was investigated by immunohistochemistry and quantitative PCR. We found that mechanical pain threshold of bilateral masseter muscles decreased significantly after occlusal interference, which remained for the entire experimental period. The mRNA expression of the P2X3 receptor increased significantly and the number of P2X3R-positive neurons increased markedly in Vc and PAG accordingly. These results indicate that the upregulated expression of P2X3 receptors in Vc and PAG may contribute toward the development of orofacial pain induced by occlusal interference and P2X3 receptors in the PAG may play a key role in the supraspinal antiociception effect.

  1. Effect of mini-implant-supported mandibular overdentures on electromyographic activity of the masseter muscle during chewing of hard and soft food.

    Science.gov (United States)

    Ashmawy, Tarek Mohy; El Talawy, Dina Bahgat; Shaheen, Nasser Hussein

    2014-09-01

    To objectively evaluate the effect of mini-implant- supported mandibular overdentures on electromyographic activity (EMG) of the masseter muscle during chewing of hard and soft foods. Twelve completely edentulous patients (4 females and 8 males) with maladaptive experience of wearing mandibular dentures received new maxillary and mandibular dentures. After 3 months of adaptation, four mini dental implants (MDIs) were inserted in the interforaminal region of the mandible, and the new mandibular dentures were connected to the implants immediately with O/ring attachments. The activity of masseter muscle (EMG) and the duration of chewing cycle were measured during chewing hard (carrot) and soft (gum) foods. The measurements were made 3 months after wearing each of the following prostheses: the new conventional dentures; and the MDI-retained mandibular overdentures. The EMG of masseter muscle increased and the DC decreased with MDI-retained mandibular overdentures when compared to conventional dentures. Hard food (carrot) was associated with increased EMG and decreased DC when compared to soft food (gum) for both conventional dentures and MDI-retained mandibular overdentures. Mini-implant-supported mandibular overdentures are associated with increased activity of masseter muscle and decreased duration of chewing cycle for both hard and soft foods when compared to conventional dentures.

  2. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    Directory of Open Access Journals (Sweden)

    Xiaoping Yin

    Full Text Available Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6. The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2. This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.

  4. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI

    International Nuclear Information System (INIS)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-01-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning. (paper)

  5. Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression.

    Science.gov (United States)

    Mac Murray, Benjamin C; Futran, Chaim C; Lee, Jeanne; O'Brien, Kevin W; Amiri Moghadam, Amir A; Mosadegh, Bobak; Silberstein, Meredith N; Min, James K; Shepherd, Robert F

    2018-02-01

    We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.

  6. Patient Specific Multiscale Simulations of Blood Flow in Coronary Artery Bypass Surgery

    Science.gov (United States)

    Bangalore Ramachandra, Abhay; Sankaran, Sethuraman; Kahn, Andrew M.; Marsden, Alison L.

    2013-11-01

    Coronary artery bypass surgery is performed to revascularize blocked coronary arteries in roughly 400,000 patients per year in the US.While arterial grafts offer superior patency, vein grafts are used in more than 70% of procedures, as most patients require multiple grafts. Vein graft failure (approx. 50% within 10 years) remains a major clinical issue. Mounting evidence suggests that hemodynamics plays a key role as a mechano-biological stimulus contributing to graft failure. However, quantifying relevant hemodynamic quantities (e.g. wall shear stress) invivo is not possible directly using clinical imaging techniques. We numerically compute graft hemodynamics in a cohort of 3-D patient specific models using a stabilized finite element method. The 3D flow domain is coupled to a 0D lumped parameter circulatory model. Boundary conditions are tuned to match patient specific blood pressures, stroke volumes & heart rates. Results reproduce clinically observed coronary flow waveforms. We quantify differences in multiple hemodynamic quantities between arterial & venous grafts & discuss possible correlations between graft hemodynamics & clinically observed graft failure.Such correlations will provide further insight into mechanisms of graft failure and may lead to improved clinical outcomes.

  7. Fluid Structure Interaction simulation of heart prosthesis in patient-specific left-ventricle/aorta anatomies

    Science.gov (United States)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2009-11-01

    In order to test and optimize heart valve prosthesis and enable virtual implantation of other biomedical devices it is essential to develop and validate high-resolution FSI-CFD codes for carrying out simulations in patient-specific geometries. We have developed a powerful numerical methodology for carrying out FSI simulations of cardiovascular flows based on the CURVIB approach (Borazjani, L. Ge, and F. Sotiropoulos, Journal of Computational physics, vol. 227, pp. 7587-7620 2008). We have extended our FSI method to overset grids to handle efficiently more complicated geometries e.g. simulating an MHV implanted in an anatomically realistic aorta and left-ventricle. A compliant, anatomic left-ventricle is modeled using prescribed motion in one domain. The mechanical heart valve is placed inside the second domain i.e. the body-fitted curvilinear mesh of the anatomic aorta. The simulations of an MHV with a left-ventricle model underscore the importance of inflow conditions and ventricular compliance for such simulations and demonstrate the potential of our method as a powerful tool for patient-specific simulations.

  8. An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery.

    Science.gov (United States)

    Kong, Fande; Kheyfets, Vitaly; Finol, Ender; Cai, Xiao-Chuan

    2018-04-01

    Simulation of blood flows in the pulmonary artery provides some insight into certain diseases by examining the relationship between some continuum metrics, eg, the wall shear stress acting on the vascular endothelium, which responds to flow-induced mechanical forces by releasing vasodilators/constrictors. V. Kheyfets, in his previous work, studies numerically a patient-specific pulmonary circulation to show that decreasing wall shear stress is correlated with increasing pulmonary vascular impedance. In this paper, we develop a scalable parallel algorithm based on domain decomposition methods to investigate an unsteady model with patient-specific pulsatile waveforms as the inlet boundary condition. The unsteady model offers tremendously more information about the dynamic behavior of the flow field, but computationally speaking, the simulation is a lot more expensive since a problem which is similar to the steady-state problem has to be solved many times, and therefore, the traditional sequential approach is not suitable anymore. We show computationally that simulations using the proposed parallel approach with up to 10 000 processor cores can be obtained with much reduced compute time. This makes the technology potentially usable for the routine study of the dynamic behavior of blood flows in the pulmonary artery, in particular, the changes of the blood flows and the wall shear stress in the spatial and temporal dimensions. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Design and manufacturing of patient-specific orthodontic appliances by computer-aided engineering techniques.

    Science.gov (United States)

    Barone, Sandro; Neri, Paolo; Paoli, Alessandro; Razionale, Armando Viviano

    2018-01-01

    Orthodontic treatments are usually performed using fixed brackets or removable oral appliances, which are traditionally made from alginate impressions and wax registrations. Among removable devices, eruption guidance appliances are used for early orthodontic treatments in order to intercept and prevent malocclusion problems. Commercially available eruption guidance appliances, however, are symmetric devices produced using a few standard sizes. For this reason, they are not able to meet all the specific patient's needs since the actual dental anatomies present various geometries and asymmetric conditions. In this article, a computer-aided design-based methodology for the design and manufacturing of a patient-specific eruption guidance appliances is presented. The proposed approach is based on the digitalization of several steps of the overall process: from the digital reconstruction of patients' anatomies to the manufacturing of customized appliances. A finite element model has been developed to evaluate the temporomandibular joint disks stress level caused by using symmetric eruption guidance appliances with different teeth misalignment conditions. The developed model can then be used to guide the design of a patient-specific appliance with the aim at reducing the patient discomfort. At this purpose, two different customization levels are proposed in order to face both arches and single tooth misalignment issues. A low-cost manufacturing process, based on an additive manufacturing technique, is finally presented and discussed.

  10. Análise do masseter, por espectroscopia de próton, em pacientes com esclerose sistêmica Proton spectroscopy study of the masseter in patients with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Marcelo Marcucci

    2009-06-01

    Full Text Available OBJETIVO: Avaliar a concentração de metabólitos no masseter em portadores de esclerose sistêmica, analisando os índices de creatina, colina, lipídio e lactato, e relacionar com a presença de osteólise mandibular. MATERIAIS E MÉTODOS: Foram selecionados 25 pacientes, sendo 15 com diagnóstico de esclerose sistêmica e agrupados de acordo com a presença (grupo I ou ausência (grupo II de osteólise, e 10 indivíduos normais (grupo III, controle. Todos foram submetidos a exame de espectroscopia de próton por ressonância magnética, com técnica PRESS e aquisição tridimensional. RESULTADOS: O estudo dos metabólitos dos três grupos apresentou os mesmos valores absolutos de creatina e lipídio. Os pacientes do grupo I apresentaram maior quantidade de colina em relação aos do grupo III. Já os indivíduos dos grupos I e II apresentaram menor quantidade de lactato em relação aos indivíduos normais. Os índices creatina/lipídio e colina/lactato foram os mesmos em todos os grupos. CONCLUSÃO: Observamos menor quantidade de lactato nos pacientes com esclerose sistêmica (grupos I e II. A colina está aumentada nos pacientes com osteólise mandibular (grupo I. Os índices creatina/colina, creatina/lactato, lipídio/lactato e colina/lipídio foram diferentes entre os grupos estudados. Mais estudos são necessários para a compreensão da participação do masseter no desenvolvimento da osteólise mandibular.OBJECTIVE: To evaluate metabolite concentration in the masseter of patients with systemic sclerosis, by analyzing creatine, choline, lipid and lactate levels, and correlating them with the presence of mandibular osteolysis. MATERIALS AND METHODS: The sample included 25 individuals, 15 of them with diagnosis of systemic sclerosis, divided into two groups according to the presence (group I or absence (group II of osteolysis, and 10 healthy individuals (group III, control. All of them were submitted to proton magnetic resonance

  11. Electromyographic evaluation of masseter muscle activity in horses fed (i) different types of roughage and (ii) maize after different hay allocations.

    Science.gov (United States)

    Vervuert, I; Brüssow, N; Bochnia, M; Cuddeford, D; Coenen, M

    2013-06-01

    The aims of this study were to monitor electromyographic (EMG) activity of masseter muscle in healthy horses fed (i) different types of roughage and (ii) maize after different hay allocations. Four horses were offered the following three diets ad libitum: hay, haylage or straw/alfalfa chaff (SAC). In a second trial, four horses were fed cracked maize (CM) and hay in three different orders: (i) CM after a 12-h overnight fast; (ii) CM immediately after restricted hay intake (0.6 kg hay/100 kg BW); or 3) CM after hay intake ad libitum. The activity of the masseter muscle was determined by EMG (IED(®) ), and the following were measured: amplitude (muscle action potential = MAP, maximum voltage) and duration of MAP (s). The intake of hay or haylage was associated with intense masseter muscle activity (MAP: hay, 10 ± 1.7 V; haylage, 11 ± 3.3 V; and duration of MAP: hay, 0.31 ± 0.04 s; haylage, 0.30 ± 0.04 s). Similar intense chewing was measured for SAC (MAP 13 ± 3.8 V), although duration of the chewing cycle was relatively short (0.22 ± 0.03 s, diet p haylage or SAC was associated with intensive masseter muscle activity that was likely to stimulate salivary flow rate. In contrast to roughage, concentrates like CM are consumed rapidly with less intensive masseter muscle activity. This situation is associated with a low salivary flow that may have an adverse effect on gastric function. © 2012 Blackwell Verlag GmbH.

  12. Efficacy of photobiomodulation therapy on masseter thickness and oral health-related quality of life in children with spastic cerebral palsy.

    Science.gov (United States)

    Santos, Maria Teresa Botti Rodrigues; Nascimento, Karla Santos; Carazzato, Simone; Barros, Alina Oliveira; Mendes, Fausto Medeiros; Diniz, Michele Baffi

    2017-08-01

    The study aimed to evaluate the efficacy of photobiomodulation therapy (PBMT) on bilateral masseter muscle thickness and amplitude of mouth opening in children with spastic cerebral palsy (CP), and the impact on their oral health-related quality of life (OHRQOL). Three groups were included: experimental CP group (EG: n = 26 with oral complaints), positive control CP group (PCG: n = 26 without complaints), and negative control group (NCG: n = 26 without CP). In the EG, the masseter muscles on both sides were irradiated with an infrared low-level Ga-Al-As laser (λ = 808 ± 3 nm, 120 mW) using a 3 J/cm 2 energy dose per site, with a 20 s exposure time per site (spot area: 4 mm 2 ; irradiance: 3 W/cm 2 ; energy delivery per point: 2.4 J) six times over six consecutive weeks. Masseter thickness, assessed through ultrasonography, and the amplitude of mouth opening were measured in the EG before and after six applications of PBMT and once in the PCG and NCG. The Parental-Caregiver Perception Questionnaire (P-CPQ) was used to evaluate OHRQOL. ANOVA, chi-square, t tests, and multilevel linear regression were used for statistical analysis. In the EG, the study results revealed average increments of 0.77 (0.08) millimeter in masseter thickness (P < 0.05) and 7.39 (0.58) millimeter for mouth opening (P < 0.05) and reduction in all P-CPQ domains (P < 0.001), except for social well-being. The six applications of PBMT increased masseter thickness and mouth opening amplitude and reduced the impact of spastic CP on OHRQOL.

  13. Estimating patient-specific soft-tissue properties in a TKA knee.

    Science.gov (United States)

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Isolated asymptomatic masseter muscle metastasis as first sign of metastatic disease in a patient with known melanoma

    Directory of Open Access Journals (Sweden)

    Caroline Asirvatham Gjorup

    2016-12-01

    Full Text Available A 65-year-old woman diagnosed with a nodular melanoma on the right shoulder had a PET/CT scan 13 months later demonstrating a FDG-avid mass in the left masseter muscle, which was asymptomatic and not clinically evident. Pathologic analysis confirmed metastasis of melanoma. Further subcutaneous, intramuscular and bone metastases developed and the patient was treated with surgery and immunotherapy. The patient is in complete-remission with no evident metastases seen on PET/CT 2.5 years after treatment with adoptive cell therapy using tumor-infiltrating lymphocytes (TIL therapy. Asymptomatic skeletal muscle metastases identified with PET/CT can have therapeutic and prognostic implications and a PET/CT scan should be performed as a true whole-body scan.

  15. No effect of experimental occlusal interferences on pressure pain thresholds of the masseter and temporalis muscles in healthy women.

    Science.gov (United States)

    Michelotti, A; Farella, M; Steenks, M H; Gallo, L M; Palla, S

    2006-04-01

    It has been suggested that occlusal interferences may lead to pain and tenderness of the masticatory muscles. Tender jaw muscles are more sensitive to pressure pain, as assessed by means of pressure algometry. We tested the effects of occlusal interferences on the pressure pain threshold of the jaw muscles by means of a double-blind randomized crossover experiment carried out on 11 young healthy females. Golden strips were glued either to an occlusal contact area (active interference) or to the vestibular surface of the same tooth (dummy interference) and left for 8 d each. Pressure pain thresholds of the masseter and anterior temporalis muscles were assessed under interference-free, dummy-interference and active-interference conditions. The results indicated that the application of an active occlusal interference, as used in this study, did not influence significantly the pressure pain thresholds of these muscles in healthy individuals.

  16. Influence of experimental interfering occlusal contacts on the activity of the anterior temporal and masseter muscles during mastication.

    Science.gov (United States)

    Riise, C; Sheikholeslam, A

    1984-07-01

    Quantitative electromyography (EMG) was used to study, in eleven volunteers with complete, natural dentitions, the effects of an experimental intercuspal occlusal interference on the pattern of activity of the anterior temporal and masseter muscles during mastication. The results show that a small occlusal interference (about 0.5 mm) in the intercuspal position can change the co-ordination of muscular activity during mastication. In general, there was a prolonged contraction time as well as a reduction of the activity in all the investigated elevators, especially on the side of the interference. Furthermore, after 48 h several subjects preferred to chew unilaterally. After removal of the interference, the pattern of co-ordination of muscular activity returned almost to the pre-experimental pattern within 2 weeks.

  17. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing

    Science.gov (United States)

    Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui; Rudin, Stephen

    2014-03-01

    Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.

  18. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    Science.gov (United States)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  19. Generation of patient-specific induced pluripotent stem cells from Leber's hereditary optic neuropathy

    Directory of Open Access Journals (Sweden)

    Huai-En Lu

    2018-04-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited mitochondrial disease caused by homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. In this report, we generated an induced pluripotent stem cell (iPSCs line, TVGH-iPSC-010-09, from the peripheral blood mononuclear cells of a female patient with Leber's hereditary optic neuropathy (LHON by using the Sendai-virus delivery system. The resulting iPSCs retained the disease-causing mitochondrial DNA mutation, expressed pluripotent markers and could differentiate into the three germ layers. We believe LHON patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.

  20. Are patient specific meshes required for EIT head imaging?

    Science.gov (United States)

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  1. 3D-printed patient-specific applications in orthopedics

    OpenAIRE

    Wong KC

    2016-01-01

    Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal) and three-dimensional (3D) virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform p...

  2. Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.

    Science.gov (United States)

    Kim, Dae-Seung; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Hwang, Soon-Jung; Kim, Seong-Ha; Yi, Won-Jin

    2013-03-01

    Accurate simulation and evaluation of mandibular movement is fundamental for the analysis of functional changes and effects of the mandible and maxilla before and after surgical treatments. We applied principal axes of inertia to the three-dimensional (3D) trajectories generated by patient-specific simulations of TMJ movements for the functional evaluations of mandible movement. Three-dimensional movements of the mandible and the maxilla were tracked based on a patient-specific splint and an optical tracking system. The dental occlusion recorded on the sprint provided synchronization for initial movement in the tracking and the simulation phases. The translation and rotation recorded during movement tracking was applied sequentially to the mandibular model in relation to a fixed maxilla model. The sequential 3D positions of selected landmarks on the mandible were calculated based on the reference coordinate system. The landmarks selected for analysis were bilateral condyles and pogonion points. The moment of inertia tensor was calculated with respect to the 3D trajectory points. Using the unit vectors along the principal axes derived from the tensor matrix, α, β and γ rotations around z-, y- and x-axes were determined to represent the principal directions as principal rotations respectively. The γ direction showed the higher standard deviation, variation of directions, than other directions at all the landmarks. The mandible movement has larger kinematic redundancy in the γ direction than α and β during mouth opening and closing. Principal directions of inertia would be applied to analyzing the changes in angular motion of trajectories introduced by mandibular shape changes from surgical treatments and also to the analysis of the influence of skeletal deformities on mandibular movement asymmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system

    Science.gov (United States)

    Meess, Karen M.; Izzo, Richard L.; Dryjski, Maciej L.; Curl, Richard E.; Harris, Linda M.; Springer, Michael; Siddiqui, Adnan H.; Rudin, Stephen; Ionita, Ciprian N.

    2017-03-01

    Following new trends in precision medicine, Juxatarenal Abdominal Aortic Aneurysm (JAAA) treatment has been enabled by using patient-specific fenestrated endovascular grafts. The X-ray guided procedure requires precise orientation of multiple modular endografts within the arteries confirmed via radiopaque markers. Patient-specific 3D printed phantoms could familiarize physicians with complex procedures and new devices in a risk-free simulation environment to avoid periprocedural complications and improve training. Using the Vascular Modeling Toolkit (VMTK), 3D Data from a CTA imaging of a patient scheduled for Fenestrated EndoVascular Aortic Repair (FEVAR) was segmented to isolate the aortic lumen, thrombus, and calcifications. A stereolithographic mesh (STL) was generated and then modified in Autodesk MeshMixer for fabrication via a Stratasys Eden 260 printer in a flexible photopolymer to simulate arterial compliance. Fluoroscopic guided simulation of the patient-specific FEVAR procedure was performed by interventionists using all demonstration endografts and accessory devices. Analysis compared treatment strategy between the planned procedure, the simulation procedure, and the patient procedure using a derived scoring scheme. Results: With training on the patient-specific 3D printed AAA phantom, the clinical team optimized their procedural strategy. Anatomical landmarks and all devices were visible under x-ray during the simulation mimicking the clinical environment. The actual patient procedure went without complications. Conclusions: With advances in 3D printing, fabrication of patient specific AAA phantoms is possible. Simulation with 3D printed phantoms shows potential to inform clinical interventional procedures in addition to CTA diagnostic imaging.

  4. Atividade eletromiográfica dos músculos temporal anterior e masseter em crianças respiradoras bucais e em respiradoras nasais Electrical Activity of the Anterior Temporal and Masseter Muscles in Mouth and Nasal Breathing Children

    Directory of Open Access Journals (Sweden)

    Aline Ferla

    2008-08-01

    Full Text Available A respiração bucal tem sido estudada por causar sérios efeitos no desenvolvimento do sistema estomatognático. OBJETIVO: Estudar, através da análise eletromiográfica, o padrão de atividade elétrica dos músculos temporal anterior e masseter em crianças com respiração bucal, comparando-os com o de crianças com respiração nasal. MATERIAL E MÉTODO: Foram estudados dois grupos de crianças: 17 respiradoras bucais (RB e 12 respiradoras nasais (RN. As crianças foram submetidas à avaliação eletromiográfica bilateral dos músculos supracitados nas situações de máxima intercuspidação e mastigação habitual. Utilizou-se o eletromiógrafo Myosystem Br-1, com 12 canais de aquisição, amplificação com ganho total de 5938, taxa de aquisição de 4000Hz e filtro passa-faixa de 20-1000Hz. O sinal foi processado em RMS, mensurado em µV e analisado e expresso em %, normalizado. Os dados foram tratados estatisticamente através do Teste t (Student. RESULTADOS: Observou-se que o nível de atividade elétrica do grupo RB foi inferior para todos os músculos e estatisticamente significante somente para o temporal esquerdo; os respiradores bucais apresentaram predomínio de atividade elétrica no lado direito e no músculo temporal durante a mastigação habitual. CONCLUSÃO: A respiração bucal interferiu na atividade elétrica dos músculos estudados nas situações funcionais de máxima intercuspidação e mastigação habitual.Mouth breathing has been associated with severe impact on the development of the stomatognathic system. AIM: This paper aims to analyze the electromyographical findings and patterns of electrical activity of the anterior temporal and masseter muscles in mouth and nasal breathing children. MATERIAL AND METHOD: The patients were divided into two groups: mouth breathers (n=17 and nasal breathers (n=12. The children underwent bilateral electromyographic examination of the anterior temporal and masseter muscles at

  5. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).

    Science.gov (United States)

    Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P

    2008-11-01

    The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model

  6. Influence of experimental interfering occlusal contacts on the activity of the anterior temporal and masseter muscles during submaximal and maximal bite in the intercuspal position.

    Science.gov (United States)

    Sheikholeslam, A; Riise, C

    1983-05-01

    The effects of an intercuspal occlusal interference on the pattern of activity of the anterior temporal and masseter muscles during submaximal and maximal bite, were studied in eleven volunteers with complete, natural dentitions. The results show that, during maximal and submaximal bite an occlusal interference (about 0.5 mm) in the intercuspal position is able to disturb the almost symmetric pattern of muscular activity in the anterior temporal and masseter muscles. Further, the level of muscular activity during maximal bite decreased significantly in all muscles studied. In some subjects, the decrease of muscular activity could still be observed one week after insertion of the interfering contact. After eliminating the interference, the muscular co-ordination pattern improved and the level of muscular activity increased significantly.

  7. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    Science.gov (United States)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  8. Patient Specific Dosimetry based in excreted urine measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barquero, R.; Nunez, C.; Ruiz, A.; Valverde, J.; Basurto, F.

    2006-07-01

    One of the limiting factors in utilising therapeutic radiopharmaceuticals in the I-131 thyroid therapy is the potential hazard to the bone marrow, kidneys, and other internal organs. In this work, by means of daily dose rate measurements at a point in contact of the can with the urine excreted by the patient undergoing radio-iodine therapy, activities and associated absorbed doses in total body are calculated. The urine can is characterised by a geometric and materials model for MC simulation with MCNP. Knowing the conversion factor from activity in urine to dose rate in the measurement point of the can for each filling volume, the urine and patient activity can be obtained at each measurement time. From the fitting of these activities, the time evolution, the effective half life in the patient and the cumulative whole body activity are calculated. The emission characteristics of I-131 are using after to estimate the maximum whole body absorbed dose. The results for 2 hyperthyroidism and 4 carcinoma treatments are presented. The maximum total body absorbed dose are 673 and 149 Gy for the carcinoma and hyperthyroidism. The corresponding range of T1/2 eff is o.2 to 2.5 days (carcinoma) and 5.4 to 6.6 days (hyperthyroidism). (Author)

  9. Development of an improved approach to radiation treatment therapy using high-definition patient-specific voxel phantoms

    International Nuclear Information System (INIS)

    Ward, R.C.; Ryman, J.C.; Worley, B.A.; Stallings, D.C.

    1998-01-01

    Through an internally funded project at Oak Ridge National Laboratory, a high-resolution phantom was developed based on the National Library of Medicine's Visible Human Data. Special software was written using the interactive data language (IDL) visualization language to automatically segment and classify some of the organs and the skeleton of the Visible Male. A high definition phantom consisting of nine hundred 512 x 512 slices was constructed of the entire torso. Computed tomography (CT) images of a patient's tumor near the spine were scaled and morphed into the phantom model to create a patient-specific phantom. Calculations of dose to the tumor and surrounding tissue were then performed using the patient-specific phantom

  10. Complex Osteotomies of Tibial Plateau Malunions Using Computer-Assisted Planning and Patient-Specific Surgical Guides.

    Science.gov (United States)

    Fürnstahl, Philipp; Vlachopoulos, Lazaros; Schweizer, Andreas; Fucentese, Sandro F; Koch, Peter P

    2015-08-01

    The accurate reduction of tibial plateau malunions can be challenging without guidance. In this work, we report on a novel technique that combines 3-dimensional computer-assisted planning with patient-specific surgical guides for improving reliability and accuracy of complex intraarticular corrective osteotomies. Preoperative planning based on 3-dimensional bone models was performed to simulate fragment mobilization and reduction in 3 cases. Surgical implementation of the preoperative plan using patient-specific cutting and reduction guides was evaluated; benefits and limitations of the approach were identified and discussed. The preliminary results are encouraging and show that complex, intraarticular corrective osteotomies can be accurately performed with this technique. For selective patients with complex malunions around the tibia plateau, this method might be an attractive option, with the potential to facilitate achieving the most accurate correction possible.

  11. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Tasneem P. Sharma

    2017-05-01

    Full Text Available Retinitis pigmentosa (RP is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1 gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.

  12. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.

    Science.gov (United States)

    Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C

    2014-02-01

    Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. Copyright © 2013 John Wiley & Sons, Ltd.

  13. The power features of Masseter muscle activity in tension-type and migraine without aura headache during open-close clench cycles

    Directory of Open Access Journals (Sweden)

    Behrouz Alizadeh Savareh

    2017-07-01

    Full Text Available Introduction Different types of headaches and TMJ click influence the masseter muscle activity. The aim of this study was to assess the trend of energy level of the electromyography (EMG activity of the masseter muscle during open-close clench cycles in migraine without aura (MOA and tension-type headache (TTH with or without TMJ click. Methods Twenty-five women with MOA and twenty four women with TTH participated in the study. They matched with 25 healthy subjects, in terms of class of occlusion and prevalence of temporomandibular joint (TMJ with click. The EMG of both masseter muscles were recorded during open-close clench cycles at a rate of 80 cycles per minute for 15 seconds. The mouth opening was restricted to two centimeters by mandibular motion frame. Signal processing steps have been done on the EMG as: noise removing, smoothing, feature extraction, and statistical analyzing. The six statistical parameters of energy computed were mean, Variance, Skewness, Kurtosis, and first and second half energy over all signal energy. Results A three-way ANOVA indicated that during all the cycles, the mean of energy was more and there was a delay in showing the peak of energy in the masseter of the left side with clicked TMJ in MOA group compared to the two other groups, while this pattern occurred inversely in the side with no-clicked TMJ (P < 0.009. The variation of energy was significantly less in MOA group compared to the two other groups in the no-clicked TMJ (P < 0.003. However, the proportion of the first or second part of signal energy to all energy showed that TTH group had less energy in the first part and more energy in the second part in comparison to the two other groups (P < 0.05. Conclusion The study showed different changes in the energy distribution of masseter muscle activity during cycles in MOA and TTH. MOA, in contrast to TTH, had lateralization effect on EMG and interacted with TMJ click.

  14. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    International Nuclear Information System (INIS)

    Burfeindt, Matthew J; Zastrow, Earl; Hagness, Susan C; Van Veen, Barry D; Medow, Joshua E

    2011-01-01

    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating-that is, to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT'IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.

  15. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness

    Directory of Open Access Journals (Sweden)

    S. Voß

    2016-01-01

    Full Text Available Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches—when averaged over the complete aneurysm sac—are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.

  16. Patient-specific bronchoscopy visualization through BRDF estimation and disocclusion correction.

    Science.gov (United States)

    Chung, Adrian J; Deligianni, Fani; Shah, Pallav; Wells, Athol; Yang, Guang-Zhong

    2006-04-01

    This paper presents an image-based method for virtual bronchoscope with photo-realistic rendering. The technique is based on recovering bidirectional reflectance distribution function (BRDF) parameters in an environment where the choice of viewing positions, directions, and illumination conditions are restricted. Video images of bronchoscopy examinations are combined with patient-specific three-dimensional (3-D) computed tomography data through two-dimensional (2-D)/3-D registration and shading model parameters are then recovered by exploiting the restricted lighting configurations imposed by the bronchoscope. With the proposed technique, the recovered BRDF is used to predict the expected shading intensity, allowing a texture map independent of lighting conditions to be extracted from each video frame. To correct for disocclusion artefacts, statistical texture synthesis was used to recreate the missing areas. New views not present in the original bronchoscopy video are rendered by evaluating the BRDF with different viewing and illumination parameters. This allows free navigation of the acquired 3-D model with enhanced photo-realism. To assess the practical value of the proposed technique, a detailed visual scoring that involves both real and rendered bronchoscope images is conducted.

  17. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance.

    Science.gov (United States)

    Kamomae, Takeshi; Shimizu, Hidetoshi; Nakaya, Takayoshi; Okudaira, Kuniyasu; Aoyama, Takahiro; Oguchi, Hiroshi; Komori, Masataka; Kawamura, Mariko; Ohtakara, Kazuhiro; Monzen, Hajime; Itoh, Yoshiyuki; Naganawa, Shinji

    2017-12-01

    Pretreatment intensity-modulated radiotherapy quality assurance is performed using simple rectangular or cylindrical phantoms; thus, the dosimetric errors caused by complex patient-specific anatomy are absent in the evaluation objects. In this study, we construct a system for generating patient-specific three-dimensional (3D)-printed phantoms for radiotherapy dosimetry. An anthropomorphic head phantom containing the bone and hollow of the paranasal sinus is scanned by computed tomography (CT). Based on surface rendering data, a patient-specific phantom is formed using a fused-deposition-modeling-based 3D printer, with a polylactic acid filament as the printing material. Radiophotoluminescence glass dosimeters can be inserted in the 3D-printed phantom. The phantom shape, CT value, and absorbed doses are compared between the actual and 3D-printed phantoms. The shape difference between the actual and printed phantoms is less than 1 mm except in the bottom surface region. The average CT value of the infill region in the 3D-printed phantom is -6 ± 18 Hounsfield units (HU) and that of the vertical shell region is 126 ± 18 HU. When the same plans were irradiated, the dose differences were generally less than 2%. These results demonstrate the feasibility of the 3D-printed phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study.

    Science.gov (United States)

    Walch, Gilles; Vezeridis, Peter S; Boileau, Pascal; Deransart, Pierric; Chaoui, Jean

    2015-02-01

    Glenoid component positioning is a key factor for success in total shoulder arthroplasty. Three-dimensional (3D) measurements of glenoid retroversion, inclination, and humeral head subluxation are helpful tools for preoperative planning. The purpose of this study was to assess the reliability and precision of a novel surgical method for placing the glenoid component with use of patient-specific templates created by preoperative surgical planning and 3D modeling. A preoperative computed tomography examination of cadaveric scapulae (N = 18) was performed. The glenoid implants were virtually placed, and patient-specific guides were created to direct the guide pin into the desired orientation and position in the glenoid. The 3D orientation and position of the guide pin were evaluated by performing a postoperative computed tomography scan for each scapula. The differences between the preoperative planning and the achieved result were analyzed. The mean error in 3D orientation of the guide pin was 2.39°, the mean entry point position error was 1.05 mm, and the mean inclination angle error was 1.42°. The average error in the version angle was 1.64°. There were no technical difficulties or complications related to use of patient-specific guides for guide pin placement. Quantitative analysis of guide pin positioning demonstrated a good correlation between preoperative planning and the achieved position of the guide pin. This study demonstrates the reliability and precision of preoperative planning software and patient-specific guides for glenoid component placement in total shoulder arthroplasty. Copyright © 2015. Published by Elsevier Inc.

  19. Nurses' Perceptions of Implementing Fall Prevention Interventions to Mitigate Patient-Specific Fall Risk Factors.

    Science.gov (United States)

    Wilson, Deleise S; Montie, Mary; Conlon, Paul; Reynolds, Margaret; Ripley, Robert; Titler, Marita G

    2016-08-01

    Evidence-based (EB) fall prevention interventions to mitigate patient-specific fall risk factors are readily available but not routinely used in practice. Few studies have examined nurses' perceptions about both the use of these EB interventions and implementation strategies designed to promote their adoption. This article reports qualitative findings of nurses' perceptions about use of EB fall prevention interventions to mitigate patient-specific fall risks, and implementation strategies to promote use of these interventions. The findings revealed five major themes: before-study fall prevention practices, use of EB fall prevention interventions tailored to patient-specific fall risk factors, beneficial implementation strategies, overall impact on approach to fall prevention, and challenges These findings are useful to guide nurses' engagement and use of EB fall prevention practices tailored to patient-specific fall risk factors. © The Author(s) 2016.

  20. Splintless orthognathic surgery: a novel technique using patient-specific implants (PSI).

    Science.gov (United States)

    Gander, Thomas; Bredell, Marius; Eliades, Theodore; Rücker, Martin; Essig, Harald

    2015-04-01

    In the past few years, advances in three-dimensional imaging have conducted to breakthrough in the diagnosis, treatment planning and result assessment in orthognathic surgery. Hereby error-prone and time-consuming planning steps, like model surgery and transfer of the face bow, can be eluded. Numerous positioning devices, in order to transfer the three-dimensional treatment plan to the intraoperative site, have been described. Nevertheless the use of positioning devices and intraoperative splints are failure-prone and time-consuming steps, which have to be performed during the operation and during general anesthesia of the patient. We describe a novel time-sparing and failsafe technique using patient-specific implants (PSI) as positioning guides and concurrently as rigid fixation of the maxilla in the planned position. This technique avoids elaborate positioning and removal of manufactured positioning devices and allows maxillary positioning without the use of occlusal splints. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Quantification of hepatic flow distribution using particle tracking for patient specific virtual Fontan surgery

    Science.gov (United States)

    Yang, Weiguang; Vignon-Clementel, Irene; Troianowski, Guillaume; Shadden, Shawn; Mohhan Reddy, V.; Feinstein, Jeffrey; Marsden, Alison

    2010-11-01

    The Fontan surgery is the third and final stage in a palliative series to treat children with single ventricle heart defects. In the extracardiac Fontan procedure, the inferior vena cava (IVC) is connected to the pulmonary arteries via a tube-shaped Gore-tex graft. Clinical observations have shown that the absence of a hepatic factor, carried in the IVC flow, can cause pulmonary arteriovenous malformations. Although it is clear that hepatic flow distribution is an important determinant of Fontan performance, few studies have quantified its relation to Fontan design. In this study, we virtually implanted three types of grafts (T-junction, offset and Y-graft) into 5 patient specific models of the Glenn (stage 2) anatomy. We then performed 3D time-dependent simulations and systematically compared the IVC flow distribution, energy loss, and pressure levels in different surgical designs. A robustness test is performed to evaluate the sensitivity of hepatic distribution to pulmonary flow split. Results show that the Y-graft design effectively improves the IVC flow distribution, compared to traditional designs and that surgical designs could be customized on a patient-by-patient basis.

  2. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    Science.gov (United States)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  3. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    Science.gov (United States)

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  4. Sensitivity analysis of a validated subject-specific finite element model of the human craniofacial skeleton.

    Science.gov (United States)

    Szwedowski, T D; Fialkov, J; Whyne, C M

    2011-01-01

    Developing a more complete understanding of the mechanical response of the craniofacial skeleton (CFS) to physiological loads is fundamental to improving treatment for traumatic injuries, reconstruction due to neoplasia, and deformities. Characterization of the biomechanics of the CFS is challenging due to its highly complex structure and heterogeneity, motivating the utilization of experimentally validated computational models. As such, the objective of this study was to develop, experimentally validate, and parametrically analyse a patient-specific finite element (FE) model of the CFS to elucidate a better understanding of the factors that are of intrinsic importance to the skeletal structural behaviour of the human CFS. An FE model of a cadaveric craniofacial skeleton was created from subject-specific computed tomography data. The model was validated based on bone strain measurements taken under simulated physiological-like loading through the masseter and temporalis muscles (which are responsible for the majority of craniofacial physiologic loading due to mastication). The baseline subject-specific model using locally defined cortical bone thicknesses produced the strongest correlation to the experimental data (r2 = 0.73). Large effects on strain patterns arising from small parametric changes in cortical thickness suggest that the very thin bony structures present in the CFS are crucial to characterizing the local load distribution in the CFS accurately.

  5. NOTE: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Science.gov (United States)

    Venkat, Raghu B.; Sawant, Amit; Suh, Yelin; George, Rohini; Keall, Paul J.

    2008-06-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery.

  6. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J [Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847 (United States); George, Rohini [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States)], E-mail: Paul.Keall@stanford.edu

    2008-06-07

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  7. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    International Nuclear Information System (INIS)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J; George, Rohini

    2008-01-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  8. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation.

    Science.gov (United States)

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-12-15

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  9. Nanomedicine-Based Neuroprotective Strategies in Patient Specific-iPSC and Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Shih-Fan Jang

    2014-03-01

    -based neuroprotective manipulations in patient specific-iPSCs and personalized medicine.

  10. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaodi Qiu

    Full Text Available The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2, and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP. In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT markers compared with human embryonic stem cells (hESCs and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract

  11. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests.Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target. Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT. A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy.The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm.Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis.

  12. Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk

    Energy Technology Data Exchange (ETDEWEB)

    Boghi, Andrea, E-mail: a.boghi@cranfield.ac.uk [School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Russo, Flavia; Gori, Fabio [Department of Mechanical Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)

    2017-09-01

    Highlights: • A mathematical model, describing magnetic nanoparticles in blood flow is proposed. • The model has been validated against MHD channel flow analytical solutions. • Four simulations have been carried out to study the parameters sensitivity. • The results show the limits of magnetic drug delivery applied to hepatic tumor. • Three parameters are deemed responsible for the low performances of the technique. - Abstract: Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley’s profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.

  13. Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk

    International Nuclear Information System (INIS)

    Boghi, Andrea; Russo, Flavia; Gori, Fabio

    2017-01-01

    Highlights: • A mathematical model, describing magnetic nanoparticles in blood flow is proposed. • The model has been validated against MHD channel flow analytical solutions. • Four simulations have been carried out to study the parameters sensitivity. • The results show the limits of magnetic drug delivery applied to hepatic tumor. • Three parameters are deemed responsible for the low performances of the technique. - Abstract: Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley’s profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.

  14. Development and fabrication of patient-specific knee implant using additive manufacturing techniques

    Science.gov (United States)

    Zammit, Robert; Rochman, Arif

    2017-10-01

    Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.

  15. CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva.

    Science.gov (United States)

    van Dijk, Lisanne V; Brouwer, Charlotte L; van der Schaaf, Arjen; Burgerhof, Johannes G M; Beukinga, Roelof J; Langendijk, Johannes A; Sijtsema, Nanna M; Steenbakkers, Roel J H M

    2017-02-01

    Current models for the prediction of late patient-rated moderate-to-severe xerostomia (XER 12m ) and sticky saliva (STIC 12m ) after radiotherapy are based on dose-volume parameters and baseline xerostomia (XER base ) or sticky saliva (STIC base ) scores. The purpose is to improve prediction of XER 12m and STIC 12m with patient-specific characteristics, based on CT image biomarkers (IBMs). Planning CT-scans and patient-rated outcome measures were prospectively collected for 249 head and neck cancer patients treated with definitive radiotherapy with or without systemic treatment. The potential IBMs represent geometric, CT intensity and textural characteristics of the parotid and submandibular glands. Lasso regularisation was used to create multivariable logistic regression models, which were internally validated by bootstrapping. The prediction of XER 12m could be improved significantly by adding the IBM "Short Run Emphasis" (SRE), which quantifies heterogeneity of parotid tissue, to a model with mean contra-lateral parotid gland dose and XER base . For STIC 12m , the IBM maximum CT intensity of the submandibular gland was selected in addition to STIC base and mean dose to submandibular glands. Prediction of XER 12m and STIC 12m was improved by including IBMs representing heterogeneity and density of the salivary glands, respectively. These IBMs could guide additional research to the patient-specific response of healthy tissue to radiation dose. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  17. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis

    Directory of Open Access Journals (Sweden)

    Gattinger Johannes

    2016-09-01

    Full Text Available Aim of this study was to prove the possibility of manufacturing patient specific root analogue two-part (implant and abutment implants by direct metal laser sintering. The two-part implant design enables covered healing of the implant. Therefore, CT-scans of three patients are used for reverse engineering of the implants, abutments and crowns. Patient specific implants are manufactured and measured concerning dimensional accuracy and surface roughness. Impacts of occlusal forces are simulated via FEA and compared to those of standard implants.

  18. Avaliação eletromiográfica do músculo masseter em pessoas com paralisia facial periférica de longa duração Masseter muscle electromyographic assessment in subject with long lasting facial palsy

    Directory of Open Access Journals (Sweden)

    Adriana Rahal

    2007-06-01

    Full Text Available OBJETIVO: verificar a atividade elétrica do músculo masseter em pessoas com paralisia facial periférica de longa duração. MÉTODOS: participaram deste estudo seis sujeitos de ambos os sexos, com paralisia facial há pelo menos doze meses, sem queixas mastigatórias e sem disfunção temporomandibular e com pelo menos seis dentes em cada hemiarcada. Todos preencheram um questionário de anamnese e em seguida foram submetidos à eletromiografia de superfície dos masseteres de ambos os lados. As provas eletromiográficas foram: posição habitual com lábios fechados, apertamento dentário, mastigação habitual e unilateral à direita e à esquerda com uva passa. RESULTADOS: em todas as provas eletromiográficas não foram observadas diferenças significantes (p=0,05 entre os lados com e sem paralisia facial. CONCLUSÃO: observou-se com o presente estudo que a força do músculo masseter não sofre influência da paralisia facial de longa duração.PURPOSE: to check the masseter electrical activity in long lasting facial paralysis patients. METHODS: six subjects, with facial paralysis for over a period of twelve months, males and females, took part in this study. Patients should not show any masticatory complaints or have any diagnoses of temporo-mandibular joint dysfunction, having at least six teeth in each half dental ridge. All subjects filled out a questionnaire regarding oral habits and were assessed by surface electromyography of the masseter muscle of both sides. Electromyographic records were taken with lips closed at rest, teeth tightness, besides usual mastication, and unilateral mastication on both sides with raisins. RESULTS: in all electromyographic tests there were no statistically significant differences (p=0.05 between both sides, with and without facial paralysis. CONCLUSION: it was observed that the strength of the masseter muscle is not under the influence of long lasting facial paralysis.

  19. Patient-specific radiation dose and cancer risk for pediatric chest CT.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P

    2011-06-01

    To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011

  20. Patient-specific FDG dosimetry for adult males, adult females, and very low birth weight infants

    Science.gov (United States)

    Niven, Erin

    Fluorodeoxyglucose is the most commonly used radiopharmaceutical in Positron Emission Tomography, with applications in neurology, cardiology, and oncology. Despite its routine use worldwide, the radiation absorbed dose estimates from FDG have been based primarily on data obtained from two dogs studied in 1977 and 11 adults (most likely males) studied in 1982. In addition, the dose estimates calculated for FDG have been centered on the adult male, with little or no mention of variations in the dose estimates due to sex, age, height, weight, nationality, diet, or pathological condition. Through an extensive investigation into the Medical Internal Radiation Dose schema for calculating absorbed doses, I have developed a simple patient-specific equation; this equation incorporates the parameters necessary for alterations to the mathematical values of the human model to produce an estimate more representative of the individual under consideration. I have used this method to determine the range of absorbed doses to FDG from the collection of a large quantity of biological data obtained in adult males, adult females, and very low birth weight infants. Therefore, a more accurate quantification of the dose to humans from FDG has been completed. My results show that per unit administered activity, the absorbed dose from FDG is higher for infants compared to adults, and the dose for adult women is higher than for adult men. Given an injected activity of approximately 3.7 MBq kg-1, the doses for adult men, adult women, and full-term newborns would be on the order of 5.5, 7.1, and 2.8 mSv, respectively. These absorbed doses are comparable to the doses received from other nuclear medicine procedures.

  1. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants.

    Science.gov (United States)

    Peel, Sean; Bhatia, Satyajeet; Eggbeer, Dominic; Morris, Daniel S; Hayhurst, Caroline

    2017-06-01

    Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge - that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies - on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.

  2. Patient specific instrumentation in total knee arthroplasty: a state of the art

    Science.gov (United States)

    Mattei, Lorenzo; Pellegrino, Pietro; Bistolfi, Alessandro; Castoldi, Filippo

    2016-01-01

    Patient specific instrumentation (PSI) is a modern technique in total knee arthroplasty (TKA) aiming to facilitate the implant of the prosthesis. The customized cutting blocks of the PSI are generated from pre-operative three-dimensional model, using computed tomography (CT) or magnetic resonance imaging (MRI). A correct surgical plan is mandatory for a good surgical implant. The PSI guide takes into account any slight deformities or osteophytes and applies preoperative planning for bone resection, using the pre-determined implant size, position, and rotation. The apparent benefits of this technology are that neutral postoperative alignment is more reproducible, surgical time is decreased, and the entire procedure results more efficient and cost-effective. The use of PSI is indicated when advanced osteoarthritis, severe pain, and limited function/walking ability are present, such as in a standard instrumentation TKA. In addition to that, PSI finds its indication when intra-medullary guides cannot be used. For example, when there is a post-traumatic femoral deformity. Large debates have taken place about this topic during the last years and, at the moment, there is no consensus in literature regarding the accuracy and reliability of PSI as many studies have shown controversial and inconsistent results. Literature does not suggest PSI techniques as a gold standard in TKA, and therefore it cannot be recommended as a standard technique in standard, not complicated primary TKA. Moreover, literature does not underline any improvement in components alignment, surgical time, blood loss or functional outcomes. Nevertheless, many patients who underwent TKA suffered a previous trauma. In case of deformities, like femoral or tibial fractures healed with a malalignment, preoperative planning may result difficult, and some intra-operative technical difficulties can occur, such as the use of intra-medullar rod. In these selected cases, PSIs may be very useful to avoid errors in

  3. Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

    International Nuclear Information System (INIS)

    Feng, Qianjin; Foskey, Mark; Chen Wufan; Shen Dinggang

    2010-01-01

    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online

  4. Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qianjin; Foskey, Mark; Chen Wufan; Shen Dinggang [Biomedical Engineering College, South Medical University, Guangzhou (China) and Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27510 (United States); Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Biomedical Engineering College, South Medical University, Guangzhou 510510 (China); Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27510 (United States)

    2010-08-15

    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online

  5. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD.

    Science.gov (United States)

    Hellmeier, Florian; Nordmeyer, Sarah; Yevtushenko, Pavlo; Bruening, Jan; Berger, Felix; Kuehne, Titus; Goubergrits, Leonid; Kelm, Marcus

    2018-01-01

    Modeling different treatment options before a procedure is performed is a promising approach for surgical decision making and patient care in heart valve disease. This study investigated the hemodynamic impact of different prostheses through patient-specific MRI-based CFD simulations. Ten time-resolved MRI data sets with and without velocity encoding were obtained to reconstruct the aorta and set hemodynamic boundary conditions for simulations. Aortic hemodynamics after virtual valve replacement with a biological and mechanical valve prosthesis were investigated. Wall shear stress (WSS), secondary flow degree (SFD), transvalvular pressure drop (TPD), turbulent kinetic energy (TKE), and normalized flow displacement (NFD) were evaluated to characterize valve-induced hemodynamics. The biological prostheses induced significantly higher WSS (medians: 9.3 vs. 8.6 Pa, P = 0.027) and SFD (means: 0.78 vs. 0.49, P = 0.002) in the ascending aorta, TPD (medians: 11.4 vs. 2.7 mm Hg, P = 0.002), TKE (means: 400 vs. 283 cm 2 /s 2 , P = 0.037), and NFD (means: 0.0994 vs. 0.0607, P = 0.020) than the mechanical prostheses. The differences between the prosthesis types showed great inter-patient variability, however. Given this variability, a patient-specific evaluation is warranted. In conclusion, MRI-based CFD offers an opportunity to assess the interactions between prosthesis and patient-specific boundary conditions, which may help in optimizing surgical decision making and providing additional guidance to clinicians. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer.

    Science.gov (United States)

    Tan, Eddie T W; Ling, Ji Min; Dinesh, Shree Kumar

    2016-05-01

    OBJECT Commercially available, preformed patient-specific cranioplasty implants are anatomically accurate but costly. Acrylic bone cement is a commonly used alternative. However, the manual shaping of the bone cement is difficult and may not lead to a satisfactory implant in some cases. The object of this study was to determine the feasibility of fabricating molds using a commercial low-cost 3D printer for the purpose of producing patient-specific acrylic cranioplasty implants. METHODS Using data from a high-resolution brain CT scan of a patient with a calvarial defect posthemicraniectomy, a skull phantom and a mold were generated with computer software and fabricated with the 3D printer using the fused deposition modeling method. The mold was used as a template to shape the acrylic implant, which was formed via a polymerization reaction. The resulting implant was fitted to the skull phantom and the cranial index of symmetry was determined. RESULTS The skull phantom and mold were successfully fabricated with the 3D printer. The application of acrylic bone cement to the mold was simple and straightforward. The resulting implant did not require further adjustment or drilling prior to being fitted to the skull phantom. The cranial index of symmetry was 96.2% (the cranial index of symmetry is 100% for a perfectly symmetrical skull). CONCLUSIONS This study showed that it is feasible to produce patient-specific acrylic cranioplasty implants with a low-cost 3D printer. Further studies are required to determine applicability in the clinical setting. This promising technique has the potential to bring personalized medicine to more patients around the world.

  7. Patient-Specific Tailored Intervention Improves INR Time in Therapeutic Range and INR Variability in Heart Failure Patients.

    Science.gov (United States)

    Gotsman, Israel; Ezra, Orly; Hirsh Raccah, Bruria; Admon, Dan; Lotan, Chaim; Dekeyser Ganz, Freda

    2017-08-01

    Many patients with heart failure need anticoagulants, including warfarin. Good control is particularly challenging in heart failure patients, with range, thereby increasing the risk of complications. This study aimed to evaluate the effect of a patient-specific tailored intervention on anticoagulation control in patients with heart failure. Patients with heart failure taking warfarin therapy (n = 145) were randomized to either standard care or a 1-time intervention assessing potential risk factors for lability of INR, in which they received patient-specific instructions. Time in therapeutic range (TTR) using Rosendaal's linear model was assessed 3 months before and after the intervention. The patient-tailored intervention significantly increased anticoagulation control. The median TTR levels before intervention were suboptimal in the interventional and control groups (53% vs 45%, P = .14). After intervention the median TTR increased significantly in the interventional group compared with the control group (80% [interquartile range, 62%-93%] vs 44% [29%-61%], P <.0001). The intervention resulted in a significant improvement in the interventional group before versus after intervention (53% vs 80%, P <.0001) but not in the control group (45% vs 44%, P = .95). The percentage of patients with a TTR ≥60%, considered therapeutic, was substantially higher in the interventional group: 79% versus 25% (P <.0001). The INR variability (standard deviation of each patient's INR measurements) decreased significantly in the interventional group, from 0.53 to 0.32 (P <.0001) after intervention but not in the control group. Patient-specific tailored intervention significantly improves anticoagulation therapy in patients with heart failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Patient-specific reconstruction plates are the missing link in computer-assisted mandibular reconstruction: A showcase for technical description.

    Science.gov (United States)

    Cornelius, Carl-Peter; Smolka, Wenko; Giessler, Goetz A; Wilde, Frank; Probst, Florian A

    2015-06-01

    Preoperative planning of mandibular reconstruction has moved from mechanical simulation by dental model casts or stereolithographic models into an almost completely virtual environment. CAD/CAM applications allow a high level of accuracy by providing a custom template-assisted contouring approach for bone flaps. However, the clinical accuracy of CAD reconstruction is limited by the use of prebent reconstruction plates, an analogue step in an otherwise digital workstream. In this paper the integration of computerized, numerically-controlled (CNC) milled, patient-specific mandibular plates (PSMP) within the virtual workflow of computer-assisted mandibular free fibula flap reconstruction is illustrated in a clinical case. Intraoperatively, the bone segments as well as the plate arms showed a very good fit. Postoperative CT imaging demonstrated close approximation of the PSMP and fibular segments, and good alignment of native mandible and fibular segments and intersegmentally. Over a follow-up period of 12 months, there was an uneventful course of healing with good bony consolidation. The virtual design and automated fabrication of patient-specific mandibular reconstruction plates provide the missing link in the virtual workflow of computer-assisted mandibular free fibula flap reconstruction. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Properties of tonic episodes of masseter muscle activity during waking hours and sleep in subjects with and without history of orofacial pain.

    Science.gov (United States)

    Mude, Acing Habibie; Kawakami, Shigehisa; Kato, Seiya; Minagi, Shogo

    2018-04-01

    To provide a scientific data related to the tonic activity of masseter muscle in subjects with and without history of orofacial pain during their normal daily life. Thirty-three subjects were divided into two groups, a pain history group (PHG) and a non-pain history group (non-PHG), based on their responses to the Research Diagnostic Criteria for Temporomandibular Disorders questionnaire. After excluding four subjects with incomplete recordings, full-day masseter muscle surface EMGs of 29 subjects (10 men, 19 women; mean age 24.1 years) were analyzed. Tonic episode (TE) was defined as continuous EMG activity with a duration at least 2s with intensities above twice the baseline noise level. TEs were classified into 6 strength categories (40% of the maximum voluntary clenching (MVC)). The mean duration of activity observed in the non-PHG+2 SD was adopted as a cutoff for identifying sustained TE. During waking hours, the incidence of sustained TEs was significantly higher in the PHG than in the non-PHG (porofacial pain and the intensity range of 7.5-25% MVC would be an important range for future clenching studies. Copyright © 2017. Published by Elsevier Ltd.

  10. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    Science.gov (United States)

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  11. Estimation of left ventricular blood flow parameters: clinical application of patient-specific CFD simulations from 4D echocardiography

    Science.gov (United States)

    Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda

    2017-03-01

    Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex

  12. SU-E-T-159: Evaluation of a Patient Specific QA Tool Based On TG119

    International Nuclear Information System (INIS)

    Ashmeg, S; Zhang, Y; O'Daniel, J; Yin, F; Ren, L

    2014-01-01

    Purpose: To evaluate the accuracy of a 3D patient specific QA tool by analysis of the results produced from associated software in homogenous phantom and heterogonous patient CT. Methods: IMRT and VMAT plans of five test suites introduced by TG119 were created in ECLIPSE on a solid water phantom. The ten plans -of increasing complexity- were delivered to Delta4 to give a 3D measurement. The Delta4's “Anatomy” software uses the measured dose to back-calculate the energy fluence of the delivered beams, which is used for dose calculation in a patient CT using a pencilbeam algorithm. The effect of the modulated beams' complexity on the accuracy of the “Anatomy” calculation was evaluated. Both measured and Anatomy doses were compared to ECLIPSE calculation using 3% - 3mm gamma criteria.We also tested the effect of heterogeneity by analyzing the results of “Anatomy” calculation on a Brain VMAT and a 3D conformal lung cases. Results: In homogenous phantom, the gamma passing rates were found to be as low as 74.75% for a complex plan with high modulation. The mean passing rates were 91.47% ± 6.35% for “Anatomy” calculation and 99.46% ± 0.62% for Delta4 measurements.As for the heterogeneous cases, the rates were 96.54%±3.67% and 83.87%±9.42% for Brain VMAT and 3D lung respectively. This increased error in the lung case could be due to the use of the pencil beam algorithm as opposed to the AAA used by ECLIPSE.Also, gamma analysis showed high discrepancy along the beam edge in the “Anatomy” calculated results. This suggests a poor beam modeling in the penumbra region. Conclusion: The results show various sources of errors in “Anatomy” calculations. These include beam modeling in the penumbra region, complexity of a modulated beam (shown in homogenous phantom and brain cases) and dose calculation algorithms (3D conformal lung case)

  13. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of a patient specific femoral alignment guide for hip resurfacing.

    Science.gov (United States)

    Olsen, Michael; Naudie, Douglas D; Edwards, Max R; Sellan, Michael E; McCalden, Richard W; Schemitsch, Emil H

    2014-03-01

    A novel alternative to conventional instrumentation for femoral component insertion in hip resurfacing is a patient specific, computed tomography based femoral alignment guide. A benchside study using cadaveric femora was performed comparing a custom alignment guide to conventional instrumentation and computer navigation. A clinical series of twenty-five hip resurfacings utilizing a custom alignment guide was conducted by three surgeons experienced in hip resurfacing. Using cadaveric femora, the custom guide was comparable to conventional instrumentation with computer navigation proving superior to both. Clinical femoral component alignment accuracy was 3.7° and measured within ± 5° of plan in 20 of 24 cases. Patient specific femoral alignment guides provide a satisfactory level of accuracy and may be a better alternative to conventional instrumentation for initial femoral guidewire placement in hip resurfacing. Crown Copyright © 2014. All rights reserved.

  15. Conventional patient specific IMRT QA and 3DVH verification of dose distribution for helical tomotherapy

    International Nuclear Information System (INIS)

    Sharma, Prabhat Krishna; Joshi, Kishore; Epili, D.; Gavake, Umesh; Paul, Siji; Reena, Ph.; Jamema, S.V.

    2016-01-01

    In recent years, patient-specific IMRT QA has transitioned from point dose measurements by ion chambers to films to 2D array measurements. 3DVH software has taken this transition a step further by estimating the 3D dose delivered to the patient volume from 2D diode measurements using a planned dose perturbation (PDP) algorithm. This algorithm was developed to determine, if the conventional IMRT QA though sensitive at detecting errors, has any predictive power in detecting dose errors of clinical significance related to dose to the target volume and organs at risk (OAR). The aim of this study is to compare the conventional IMRT patient specific QA and 3DVH dose distribution for patients treated with helical tomotherapy (HT)

  16. Guidelines for patient-specific jawline definition with titanium implants in esthetic, deformity, and malformation surgery

    OpenAIRE

    Mommaerts, Maurice Yves

    2016-01-01

    Context: Asymmetry and unfavorable esthetics of the jawline have become possible to correct in three dimensions using computer aided design and computer aided manufacturing. Aims: The aim of this study was to provide esthetic, technical, and operative guidelines for mandibular angle and border augmentation using patient-specific titanium implants made by selective laser melting. Settings and Design: University hospital - prospective registry. Subjects and Methods: Twelve patients and 17 impla...

  17. Tolerance design of patient-specific range QA using the DMAIC framework in proton therapy.

    Science.gov (United States)

    Rah, Jeong-Eun; Shin, Dongho; Manger, Ryan P; Kim, Tae Hyun; Oh, Do Hoon; Kim, Dae Yong; Kim, Gwe-Ya

    2018-02-01

    To implement the DMAIC (Define-Measure-Analyze-Improve-Control) can be used for customizing the patient-specific QA by designing site-specific range tolerances. The DMAIC framework (process flow diagram, cause and effect, Pareto chart, control chart, and capability analysis) were utilized to determine the steps that need focus for improving the patient-specific QA. The patient-specific range QA plans were selected according to seven treatment site groups, a total of 1437 cases. The process capability index, C pm was used to guide the tolerance design of patient site-specific range. For prostate field, our results suggested that the patient range measurements were capable at the current tolerance level of ±1 mm in clinical proton plans. For other site-specific ranges, we analyzed that the tolerance tends to be overdesigned to insufficient process capability calculated by the patient-specific QA data. The customized tolerances were calculated for treatment sites. Control charts were constructed to simulate the patient QA time before and after the new tolerances were implemented. It is found that the total simulation QA time was decreased on average of approximately 20% after establishing new site-specific range tolerances. We simulated the financial impact of this project. The QA failure for whole process in proton therapy would lead up to approximately 30% increase in total cost. DMAIC framework can be used to provide an effective QA by setting customized tolerances. When tolerance design is customized, the quality is reasonably balanced with time and cost demands. © 2017 American Association of Physicists in Medicine.

  18. A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols.

    Science.gov (United States)

    van den Boom, Rieneke; Manniesing, Rashindra; Oei, Marcel T H; van der Woude, Willem-Jan; Smit, Ewoud J; Laue, Hendrik O A; van Ginneken, Bram; Prokop, Mathias

    2014-07-01

    Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. A patient-specific 4D digital phantom allows for realistic simulation of mean values and

  19. Magnetic resonance imaging of the ear for patient-specific reconstructive surgery.

    Directory of Open Access Journals (Sweden)

    Luc Nimeskern

    Full Text Available INTRODUCTION: Like a fingerprint, ear shape is a unique personal feature that should be reconstructed with a high fidelity during reconstructive surgery. Ear cartilage tissue engineering (TE advantageously offers the possibility to use novel 3D manufacturing techniques to reconstruct the ear, thus allowing for a detailed auricular shape. However it also requires detailed patient-specific images of the 3D cartilage structures of the patient's intact contralateral ear (if available. Therefore the aim of this study was to develop and evaluate an imaging strategy for acquiring patient-specific ear cartilage shape, with sufficient precision and accuracy for use in a clinical setting. METHODS AND MATERIALS: Magnetic resonance imaging (MRI was performed on 14 volunteer and six cadaveric auricles and manually segmented. Reproducibility of cartilage volume (Cg.V, surface (Cg.S and thickness (Cg.Th was assessed, to determine whether raters could repeatedly define the same volume of interest. Additionally, six cadaveric auricles were harvested, scanned and segmented using the same procedure, then dissected and scanned using high resolution micro-CT. Correlation between MR and micro-CT measurements was assessed to determine accuracy. RESULTS: Good inter- and intra-rater reproducibility was observed (precision errors 0.82, but low for Cg.Th (0.95 demonstrated high accuracy. DISCUSSION AND CONCLUSION: This study demonstrated that precision and accuracy of the proposed method was high enough to detect patient-specific variation in ear cartilage geometry. The present study provides a clinical strategy to access the necessary information required for the production of 3D ear scaffolds for TE purposes, including detailed patient-specific shape. Furthermore, the protocol is applicable in daily clinical practice with existing infrastructure.

  20. A comparative study of 1D and 3D hemodynamics in patient-specific hepatic portal vein networks

    Directory of Open Access Journals (Sweden)

    Jonášová A.

    2014-12-01

    Full Text Available The development of software for use in clinical practice is often associated with many requirements and restrictions set not only by the medical doctors, but also by the hospital’s budget. To meet the requirement of reliable software, which is able to provide results within a short time period and with minimal computational demand, a certain measure of modelling simplification is usually inevitable. In case of blood flow simulations carried out in large vascular networks such as the one created by the hepatic portal vein, simplifications are made by necessity. The most often employed simplification includes the approach in the form of dimensional reduction, when the 3D model of a large vascular network is substituted with its 1D counterpart. In this context, a question naturally arises, how this reduction can affect the simulation accuracy and its outcome. In this paper, we try to answer this question by performing a quantitative comparison of 3D and 1D flow models in two patient-specific hepatic portal vein networks. The numerical simulations are carried out under average flow conditions and with the application of the three-element Windkessel model, which is able to approximate the downstream flow resistance of real hepatic tissue. The obtained results show that, although the 1D model can never truly substitute the 3D model, its easy implementation, time-saving model preparation and almost no demands on computer technology dominate as advantages over obvious but moderate modelling errors arising from the performed dimensional reduction.

  1. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas.

    Directory of Open Access Journals (Sweden)

    Anne L Baldock

    Full Text Available Malignant gliomas are incurable, primary brain neoplasms noted for their potential to extensively invade brain parenchyma. Current methods of clinical imaging do not elucidate the full extent of brain invasion, making it difficult to predict which, if any, patients are likely to benefit from gross total resection. Our goal was to apply a mathematical modeling approach to estimate the overall tumor invasiveness on a patient-by-patient basis and determine whether gross total resection would improve survival in patients with relatively less invasive gliomas.In 243 patients presenting with contrast-enhancing gliomas, estimates of the relative invasiveness of each patient's tumor, in terms of the ratio of net proliferation rate of the glioma cells to their net dispersal rate, were derived by applying a patient-specific mathematical model to routine pretreatment MR imaging. The effect of varying degrees of extent of resection on overall survival was assessed for cohorts of patients grouped by tumor invasiveness.We demonstrate that patients with more diffuse tumors showed no survival benefit (P = 0.532 from gross total resection over subtotal/biopsy, while those with nodular (less diffuse tumors showed a significant benefit (P = 0.00142 with a striking median survival benefit of over eight months compared to sub-totally resected tumors in the same cohort (an 80% improvement in survival time for GTR only seen for nodular tumors.These results suggest that our patient-specific, model-based estimates of tumor invasiveness have clinical utility in surgical decision making. Quantification of relative invasiveness assessed from routinely obtained pre-operative imaging provides a practical predictor of the benefit of gross total resection.

  2. SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans

    International Nuclear Information System (INIS)

    Chang, C; Mah, D

    2015-01-01

    Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18 measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA

  3. Numerical methods for polyline-to-point-cloud registration with applications to patient-specific stent reconstruction.

    Science.gov (United States)

    Lin, Claire Yilin; Veneziani, Alessandro; Ruthotto, Lars

    2018-03-01

    We present novel numerical methods for polyline-to-point-cloud registration and their application to patient-specific modeling of deployed coronary artery stents from image data. Patient-specific coronary stent reconstruction is an important challenge in computational hemodynamics and relevant to the design and improvement of the prostheses. It is an invaluable tool in large-scale clinical trials that computationally investigate the effect of new generations of stents on hemodynamics and eventually tissue remodeling. Given a point cloud of strut positions, which can be extracted from images, our stent reconstruction method aims at finding a geometrical transformation that aligns a model of the undeployed stent to the point cloud. Mathematically, we describe the undeployed stent as a polyline, which is a piecewise linear object defined by its vertices and edges. We formulate the nonlinear registration as an optimization problem whose objective function consists of a similarity measure, quantifying the distance between the polyline and the point cloud, and a regularization functional, penalizing undesired transformations. Using projections of points onto the polyline structure, we derive novel distance measures. Our formulation supports most commonly used transformation models including very flexible nonlinear deformations. We also propose 2 regularization approaches ensuring the smoothness of the estimated nonlinear transformation. We demonstrate the potential of our methods using an academic 2D example and a real-life 3D bioabsorbable stent reconstruction problem. Our results show that the registration problem can be solved to sufficient accuracy within seconds using only a few number of Gauss-Newton iterations. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  5. Considerations of anthropometric, tissue volume, and tissue mass scaling for improved patient specificity of skeletal S values

    International Nuclear Information System (INIS)

    Bolch, W.E.; Patton, P.W.; Shah, A.P.; Rajon, D.A.; Jokisch, D.W.

    2002-01-01

    It is generally acknowledged that reference man (70 kg in mass and 170 cm in height) does not adequately represent the stature and physical dimensions of many patients undergoing radionuclide therapy, and thus scaling of radionuclide S values is required for patient specificity. For electron and beta sources uniformly distributed within internal organs, the mean dose from self-irradiation is noted to scale inversely with organ mass, provided no escape of electron energy occurs at the organ boundaries. In the skeleton, this same scaling approach is further assumed to be correct for marrow dosimetry; nevertheless, difficulties in quantitative assessments of marrow mass in specific skeletal regions of the patient make this approach difficult to implement clinically. Instead, scaling of marrow dose is achieved using various anthropometric parameters that presumably scale in the same proportion. In this study, recently developed three-dimensional macrostructural transport models of the femoral head and humeral epiphysis in three individuals (51-year male, 82-year female, and 86-year female) are used to test the abilities of different anthropometric parameters (total body mass, body surface area, etc.) to properly scale radionuclide S values from reference man models. The radionuclides considered are 33 P, 177 Lu, 153 Sm, 186 Re, 89 Sr, 166 Ho, 32 P, 188 Re, and 90 Y localized in either the active marrow or endosteal tissues of the bone trabeculae. S value scaling is additionally conducted in which the 51-year male subject is assigned as the reference individual; scaling parameters are then expanded to include tissue volumes and masses for both active marrow and skeletal spongiosa. The study concludes that, while no single anthropometric parameter emerges as a consistent scaler of reference man S values, lean body mass is indicated as an optimal scaler when the reference S values are based on 3D transport techniques. Furthermore, very exact patient-specific scaling of

  6. Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool

    OpenAIRE

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-01-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and moveme...

  7. Creating Shape Templates for Patient Specific Biventricular Modeling in Congenital Heart Disease

    Science.gov (United States)

    Gilbert, Kathleen; Farrar, Genevieve; Cowan, Brett R.; Suinesiaputra, Avan; Occleshaw, Christopher; Pontré, Beau; Perry, James; Hegde, Sanjeet; Marsden, Alison; Omens, Jeff; McCulloch, Andrew; Young, Alistair A.

    2018-01-01

    Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices. PMID:26736353

  8. New Models for Patient-specific Evaluation of the Effect of Biomaterials on Macrophages

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke)

    2017-01-01

    markdownabstractBiomaterials are often used in many fields of medicine to restore or replace tissue. These biomaterials always elicit a reaction of the immune system, called the foreign body reaction, which can lead to complications in patients and failure of the device. Macrophages are key players

  9. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application

    Directory of Open Access Journals (Sweden)

    Philipp Honigmann

    2018-01-01

    Full Text Available Additive manufacturing (AM is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI are well-established processes in the surgical fields. Polyetheretherketone (PEEK has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design.

  10. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application.

    Science.gov (United States)

    Honigmann, Philipp; Sharma, Neha; Okolo, Brando; Popp, Uwe; Msallem, Bilal; Thieringer, Florian M

    2018-01-01

    Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a "biomimetic" design.

  11. Immediate effects of hamstring stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction.

    Science.gov (United States)

    Espejo-Antúnez, Luis; Castro-Valenzuela, Elisa; Ribeiro, Fernando; Albornoz-Cabello, Manuel; Silva, Anabela; Rodríguez-Mansilla, Juan

    2016-07-01

    To assess the immediate effects of hamstrings stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction and hamstrings shortening. Forty-two participants were randomized to receive the stretching technique (n = 21) or the stretching plus the ischemic compression (n = 21). Outcome measures were: hamstrings extensibility, active mouth opening, pressure pain thresholds and pain intensity. Both interventions improved significantly active mouth opening (group 1: 35.7 ± 6.7 to 39.1 ± 7.6 mm, p Hamstrings stretching induced an acute improvement in hamstrings extensibility, active mouth opening and pain. Moreover, the addition of ischemic compression did not induce further improvements on the assessed parameters. Copyright © 2016. Published by Elsevier Ltd.

  12. Towards an in-plane methodology to track breast lesions using mammograms and patient-specific finite-element simulations

    Science.gov (United States)

    Lapuebla-Ferri, Andrés; Cegoñino-Banzo, José; Jiménez-Mocholí, Antonio-José; Pérez del Palomar, Amaya

    2017-11-01

    In breast cancer screening or diagnosis, it is usual to combine different images in order to locate a lesion as accurately as possible. These images are generated using a single or several imaging techniques. As x-ray-based mammography is widely used, a breast lesion is located in the same plane of the image (mammogram), but tracking it across mammograms corresponding to different views is a challenging task for medical physicians. Accordingly, simulation tools and methodologies that use patient-specific numerical models can facilitate the task of fusing information from different images. Additionally, these tools need to be as straightforward as possible to facilitate their translation to the clinical area. This paper presents a patient-specific, finite-element-based and semi-automated simulation methodology to track breast lesions across mammograms. A realistic three-dimensional computer model of a patient’s breast was generated from magnetic resonance imaging to simulate mammographic compressions in cranio-caudal (CC, head-to-toe) and medio-lateral oblique (MLO, shoulder-to-opposite hip) directions. For each compression being simulated, a virtual mammogram was obtained and posteriorly superimposed to the corresponding real mammogram, by sharing the nipple as a common feature. Two-dimensional rigid-body transformations were applied, and the error distance measured between the centroids of the tumors previously located on each image was 3.84 mm and 2.41 mm for CC and MLO compression, respectively. Considering that the scope of this work is to conceive a methodology translatable to clinical practice, the results indicate that it could be helpful in supporting the tracking of breast lesions.

  13. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    Science.gov (United States)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  14. Patient-specific quality assurance for intracranial cases in robotic radiosurgery system.

    Science.gov (United States)

    Koksal, Canan; Akbas, Ugur; Donmez Kesen, Nazmiye; Okutan, Murat; Bilge, Hatice; Kemikler, Gonul

    2018-01-01

    The purpose of this study was to perform pretreatment patient-specific quality assurance (QA) for intracranial irradiation using CyberKnife with an ion chamber. Twenty-five intracranial plans created using the ray-tracing algorithm were used for this study. Computed tomography (CT) images of the water-equivalent RW3 slab phantom with PinPoint ionization chamber were acquired with 1-mm slice thickness and transferred to the MultiPlan treatment planning system (TPS). Four gold fiducial markers embedded into two different plates were used to tracking during the irradiation. Intracranial plans were transferred to CT images of the RW3 phantom. The isodose curves and sensitive volume of ion chamber were overlapped. Point dose measurements were performed three times and the mean point doses were calculated for each plan. The mean doses measured by the PinPoint ion chamber were compared with those of the calculated by MultiPlan TPS in the sensitive volume of PinPoint. The mean percentage difference (MPD) in point dose measurements was -2.44±1.97 for 25 plans. The maximum and minimum percentage differences between the measured and calculated absolute point doses were -7.14 and 0.23, respectively. The MPD was -1.70±1.90 for 12 plans using a fixed collimator and -3.11±1.86 for 13 plans using an IRIS cone. Point dose measurement is a reliable and functional method for pre-treatment patient-specific QA in intracranial CyberKnife plans. Point dose verification should be performed to correct any possible errors prior to patient treatment. It is recommended for use in patient-specific QA process in the CyberKnife plans.

  15. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors

    International Nuclear Information System (INIS)

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter

    2010-01-01

    Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets (±1 mm in two banks, ±0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  16. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter [Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2, Canada and Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada) and Department of Oncology, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada)

    2010-07-15

    Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets ({+-}1 mm in two banks, {+-}0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  17. A Patient Specific Biomechanical Analysis of Custom Root Analogue Implant Designs on Alveolar Bone Stress: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    David Anssari Moin

    2016-01-01

    Full Text Available Objectives. The aim of this study was to analyse by means of FEA the influence of 5 custom RAI designs on stress distribution of peri-implant bone and to evaluate the impact on microdisplacement for a specific patient case. Materials and Methods. A 3D surface model of a RAI for the upper right canine was constructed from the cone beam computed tomography data of one patient. Subsequently, five (targeted press-fit design modification FE models with five congruent bone models were designed: “Standard,” “Prism,” “Fins,” “Plug,” and “Bulbs,” respectively. Preprocessor software was applied to mesh the models. Two loads were applied: an oblique force (300 N and a vertical force (150 N. Analysis was performed to evaluate stress distributions and deformed contact separation at the peri-implant region. Results. The lowest von Mises stress levels were numerically observed for the Plug design. The lowest levels of contact separation were measured in the Fins model followed by the Bulbs design. Conclusions. Within the limitations of the applied methodology, adding targeted press-fit geometry to the RAI standard design will have a positive effect on stress distribution, lower concentration of bone stress, and will provide a better primary stability for this patient specific case.

  18. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  19. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    International Nuclear Information System (INIS)

    Alexander, A; DeBlois, F; Stroian, G; Al-Yahya, K; Heath, E; Seuntjens, J

    2007-01-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM R T, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform

  20. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  1. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis.

    Science.gov (United States)

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo

    2018-01-01

    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Just-in-time Design and Additive Manufacture of Patient-specific Medical Implants

    Science.gov (United States)

    Shidid, Darpan; Leary, Martin; Choong, Peter; Brandt, Milan

    Recent advances in medical imaging and manufacturing science have enabled the design and production of complex, patient-specific orthopaedic implants. Additive Manufacture (AM) generates three-dimensional structures layer by layer, and is not subject to the constraints associated with traditional manufacturing methods. AM provides significant opportunities for the design of novel geometries and complex lattice structures with enhanced functional performance. However, the design and manufacture of patient-specific AM implant structures requires unique expertise in handling various optimization platforms. Furthermore, the design process for complex structures is computationally intensive. The primary aim of this research is to enable the just-in-time customisation of AM prosthesis; whereby AM implant design and manufacture be completed within the time constraints of a single surgical procedure, while minimising prosthesis mass and optimising the lattice structure to match the stiffness of the surrounding bone tissue. In this research, a design approach using raw CT scan data is applied to the AM manufacture of femoral prosthesis. Using the proposed just-in-time concept, the mass of the prosthesis was rapidly designed and manufactured while satisfying the associated structural requirements. Compressive testing of lattice structures manufactured using proposed method shows that the load carrying capacity of the resected composite bone can be recovered by up to 85% and the compressive stiffness of the AM prosthesis is statistically indistinguishable from the stiffness of the initial bone.

  3. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, I.V.B., E-mail: isabelle.lacerda@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Oliveira, M.L.; Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife (Brazil)

    2017-07-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  4. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    International Nuclear Information System (INIS)

    Lacerda, I.V.B.; Vieira, J.W.; Oliveira, M.L.; Lima, F.R.A.

    2017-01-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  5. Vortex dynamics in Patient-Specific Stenotic Tricuspid and Bicuspid Aortic Valves pre- and post- Trans-catheter Aortic Valve Replacement

    Science.gov (United States)

    Hatoum, Hoda; Dasi, Lakshmi Prasad

    2017-11-01

    Understanding blood flow related adverse complications such as leaflet thrombosis post-transcatheter aortic valve implantation (TAVI) requires a deeper understanding of how patient-specific anatomic and hemodynamic factors, and relative valve positioning dictate sinus vortex flow and stasis regions. High resolution time-resolved particle image velocimetry measurements were conducted in compliant and transparent 3D printed patient-specific models of stenotic bicuspid and tricuspid aortic valve roots from patients who underwent TAVI. Using Lagrangian particle tracking analysis of sinus vortex flows and probability distributions of residence time and blood damage indices we show that (a) patient specific modeling provides a more realistic assessment of TAVI flows, (b) TAVI deployment alters sinus flow patterns by significantly decreasing sinus velocity and vorticity, and (c) relative valve positioning can control critical vortex structures that may explain preferential leaflet thrombosis corresponding to separated flow recirculation, secondary to valve jet vectoring relative to the aorta axis. This work provides new methods and understanding of the spatio-temporal aortic sinus vortex dynamics in post TAVI pathology. This study was supported by the Ohio State University DHLRI Trifit Challenge award.

  6. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments

    Science.gov (United States)

    Lau, Ivan Wen Wen; Liu, Dongting; Xu, Lei; Fan, Zhanming

    2018-01-01

    Objective Current diagnostic assessment tools remain suboptimal in demonstrating complex morphology of congenital heart disease (CHD). This limitation has posed several challenges in preoperative planning, communication in medical practice, and medical education. This study aims to investigate the dimensional accuracy and the clinical value of 3D printed model of CHD in the above three areas. Methods Using cardiac computed tomography angiography (CCTA) data, a patient-specific 3D model of a 20-month-old boy with double outlet right ventricle was printed in Tango Plus material. Pearson correlation coefficient was used to evaluate correlation of the quantitative measurements taken at analogous anatomical locations between the CCTA images pre- and post-3D printing. Qualitative analysis was conducted by distributing surveys to six health professionals (two radiologists, two cardiologists and two cardiac surgeons) and three medical academics to assess the clinical value of the 3D printed model in these three areas. Results Excellent correlation (r = 0.99) was noted in the measurements between CCTA and 3D printed model, with a mean difference of 0.23 mm. Four out of six health professionals found the model to be useful in facilitating preoperative planning, while all of them thought that the model would be invaluable in enhancing patient-doctor communication. All three medical academics found the model to be helpful in teaching, and thought that the students will be able to learn the pathology quicker with better understanding. Conclusion The complex cardiac anatomy can be accurately replicated in flexible material using 3D printing technology. 3D printed heart models could serve as an excellent tool in facilitating preoperative planning, communication in medical practice, and medical education, although further studies with inclusion of more clinical cases are needed. PMID:29561912

  7. Real-time surgery simulation of intracranial aneurysm clipping with patient-specific geometries and haptic feedback

    Science.gov (United States)

    Fenz, Wolfgang; Dirnberger, Johannes

    2015-03-01

    Providing suitable training for aspiring neurosurgeons is becoming more and more problematic. The increasing popularity of the endovascular treatment of intracranial aneurysms leads to a lack of simple surgical situations for clipping operations, leaving mainly the complex cases, which present even experienced surgeons with a challenge. To alleviate this situation, we have developed a training simulator with haptic interaction allowing trainees to practice virtual clipping surgeries on real patient-specific vessel geometries. By using specialized finite element (FEM) algorithms (fast finite element method, matrix condensation) combined with GPU acceleration, we can achieve the necessary frame rate for smooth real-time interaction with the detailed models needed for a realistic simulation of the vessel wall deformation caused by the clamping with surgical clips. Vessel wall geometries for typical training scenarios were obtained from 3D-reconstructed medical image data, while for the instruments (clipping forceps, various types of clips, suction tubes) we use models provided by manufacturer Aesculap AG. Collisions between vessel and instruments have to be continuously detected and transformed into corresponding boundary conditions and feedback forces, calculated using a contact plane method. After a training, the achieved result can be assessed based on various criteria, including a simulation of the residual blood flow into the aneurysm. Rigid models of the surgical access and surrounding brain tissue, plus coupling a real forceps to the haptic input device further increase the realism of the simulation.

  8. A patient specific finite element simulation of intramedullary nailing to predict the displacement of the distal locking hole.

    Science.gov (United States)

    Mortazavi, Javad; Farahmand, Farzam; Behzadipour, Saeed; Yeganeh, Ali; Aghighi, Mohammad

    2018-05-01

    Distal locking is a challenging subtask of intramedullary nailing fracture fixation due to the nail deformation that makes the proximally mounted targeting systems ineffective. A patient specific finite element model was developed, based on the QCT data of a cadaveric femur, to predict the position of the distal hole of the nail postoperatively. The mechanical interactions of femur and nail (of two sizes) during nail insertion was simulated using ABAQUS in two steps of dynamic pushing and static equilibrium, for the intact and distally fractured bone. Experiments were also performed on the same specimen to validate the simulation results. A good agreement was found between the model predictions and the experimental observations. There was a three-point contact pattern between the nail and medullary canal, only on the proximal fragment of the fractured bone. The nail deflection was much larger in the sagittal plane and increased for the larger diameter nail, as well as for more distally fractured or intact femur. The altered position of the distal hole was predicted by the model with an acceptable error (mean: 0.95; max: 1.5 mm, in different tests) to be used as the compensatory information for fine tuning of proximally mounted targeting systems. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Improvements on a patient-specific dose estimation system in nuclear medicine examination

    International Nuclear Information System (INIS)

    Chuang, K. S.; Lu, J. C.; Lin, H. H.; Dong, S. L.; Yang, H. J.; Shih, C. T.; Lin, C. H.; Yao, W. J.; Ni, Y. C.; Jan, M. L.; Chang, S. J.

    2014-01-01

    The purpose of this paper is to develop a patient-specific dose estimation system in nuclear medicine examination. A dose deposition routine to store the deposited energy of the photons during their flights was embedded in the widely used SimSET Monte Carlo code and a user-friendly interface for reading PET and CT images was developed. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The ratios of S value for 99m Tc, 18 F and 131 I computed by this system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which were comparable to that obtained from MCNPX2.6 code (0.88-1.22). Our system developed provides opportunity for tumor dose estimation which cannot be known from the MIRD. The radiation dose can provide useful information in the amount of radioisotopes to be administered in radioimmunotherapy. (authors)

  10. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants.

    Science.gov (United States)

    Costa, João B; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L

    2017-11-01

    The pursuit for the "perfect" biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy

    Directory of Open Access Journals (Sweden)

    X. Ronald. Zhu

    2015-04-01

    Full Text Available An intensity-modulated proton therapy (IMPT patient-specific quality assurance (PSQA program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR system in the QA mode and the accelerator control system (ACS in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS. The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.

  12. Disease-in-a-dish: the contribution of patient-specific induced pluripotent stem cell technology to regenerative rehabilitation.

    Science.gov (United States)

    Mack, David L; Guan, Xuan; Wagoner, Ashley; Walker, Stephen J; Childers, Martin K

    2014-11-01

    Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.

  13. Computational study to investigate effect of tonometer geometry and patient-specific variability on radial artery tonometry.

    Science.gov (United States)

    Singh, Pranjal; Choudhury, Mohammed Ikbal; Roy, Sitikantha; Prasad, Anamika

    2017-06-14

    Tonometry-based devices are valuable method for vascular function assessment and for measurement of blood pressure. However current design and calibration methods rely on simple models, neglecting key geometrical features, and anthropometric and property variability among patients. Understanding impact of these influences on tonometer measurement is thus essential for improving outcomes of current devices, and for proposing improved design. Towards this goal, we present a realistic computational model for tissue-device interaction using complete wrist section with hyperelastic material and frictional contact. Three different tonometry geometries were considered including a new design, and patient-specific influences incorporated via anthropometric and age-dependent tissue stiffness variations. The results indicated that the new design showed stable surface contact stress with minimum influence of the parameters analyzed. The computational predictions were validated with experimental data from a prototype based on the new design. Finally, we showed that the underlying mechanics of vascular unloading in tonometry to be fundamentally different from that of oscillatory method. Due to directional loading in tonometry, pulse amplitude maxima was observed to occur at a significantly lower compression level (around 31%) than previously reported, which can impact blood pressure calibration approaches based on maximum pulse pressure recordings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluative Measurement Properties of the Patient-Specific Functional Scale for Primary Shoulder Complaints in Physical Therapy Practice

    NARCIS (Netherlands)

    Koehorst, Marije L. S.; van Trijffel, Emiel; Lindeboom, Robert

    2014-01-01

    STUDY DESIGN: Clinical measurement, longitudinal. OBJECTIVES: To assess the test-retest reliability, construct validity, and responsiveness of the Patient-Specific Functional Scale (PSFS) in patients with a primary shoulder complaint. BACKGROUND: Health measurement outcomes have become increasingly

  15. Relação da espessura e da atividade elétrica do músculo masseter com a força de mordida: um estudo morfológico e eletrofisiológico

    Directory of Open Access Journals (Sweden)

    Jabson Herber Profiro de Oliveira

    Full Text Available RESUMO: Objetivo: estudar a relação da espessura e da atividade elétrica do músculo masseter com a força de mordida. Métodos: participaram do estudo 17 adultos jovens (21,3 ( 1,4 anos, sendo 7 do gênero feminino e 10 do gênero masculino, saudáveis e clinicamente assintomáticos, quanto a disfunções temporomandibulares. Foi efetuada a medida da espessura do músculo masseter unilateralmente, durante o repouso e contração voluntária máxima. Também foi quantificada a força de mordida para cada lado com um transdutor de força posicionado na região do primeiro molar e simultaneamente avaliou-se atividade elétrica do masseter durante a mordida unilateral. A análise foi baseada na comparação das amostras, sendo utilizados o test t, Wilcoxon, Mann-Whitney e regressão linear multivariada. Resultado: a espessura do músculo masseter foi maior nos homens, tanto no repouso quanto em contração. Observou-se uma simetria entre os lados com os músculos em repouso e em contração. A frequência mediana do sinal eletromiográfico, para o músculo masseter em contração voluntária máxima, não apresentou diferença estatisticamente significante intra-indivíduos e na comparação entre os gêneros. Foi encontrada maior força de mordida nos indivíduos do gênero masculino. Não foi encontrado um modelo de regressão linear multivariada entre as variáveis estudadas. Conclusão: neste estudo, não foi possível encontrar um modelo linear com as variáveis estudadas.

  16. Patient-specific prescriber feedback can increase the rate of osteoporosis screening and treatment: results from two national interventions.

    Science.gov (United States)

    Kalisch Ellett, Lisa M; Pratt, N L; Sluggett, J K; Ramsay, E N; Kerr, M; LeBlanc, V T; Barratt, J D; Roughead, E E

    2017-12-01

    Osteoporosis interventions targeting older Australians and clinicians were conducted in 2008 and 2011 as part of a national quality improvement program underpinned by behavioural theory and stakeholder engagement. Uptake of bone mineral density (BMD) tests among targeted men and women increased after both interventions and sustained increases in osteoporosis treatment were observed among men targeted in 2008. Educational interventions incorporating patient-specific prescriber feedback have improved osteoporosis screening and treatment among at-risk patients in clinical trials but have not been evaluated nationally. This study assessed uptake of BMD testing and osteoporosis medicines following two national Australian quality improvement initiatives targeting women (70-79 years) and men (75-85 years) at risk of osteoporosis. Administrative health claims data were used to determine monthly rates of BMD testing and initiation of osteoporosis medicines in the 9-months post-intervention among targeted men and women compared to older cohorts of men and women. Log binomial regression models were used to assess differences between groups. In 2008 91,794 patients were targeted and 52,427 were targeted in 2011. There was a twofold increase in BMD testing after each intervention among targeted patients compared to controls (p theory and stakeholder engagement that target both primary care clinicians and patients can improve osteoporosis screening and management at the national level.

  17. Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS insertion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Maoqing Fu

    Full Text Available BACKGROUND: With the properties of three-column fixation and anterior-approach-only procedure, anterior transpedicular screw (ATPS is ideal for severe multilevel traumatic cervical instabilities. However, the accurate insertion of ATPS remains challenging. Here we constructed a patient-specific biocompatible drill template and evaluated its accuracy in assisting ATPS insertion. METHODS: After ethical approval, 24 formalin-preserved cervical vertebrae (C2-C7 were CT scanned. 3D reconstruction models of cervical vertebra were obtained with 2-mm-diameter virtual pin tracts at the central pedicles. The 3D models were used for rapid prototyping (RP printing. A 2-mm-diameter Kirschner wire was then inserted into the pin tract of the RP model before polymethylmethacrylate was used to construct the patient-specific biocompatible drill template. After removal of the anterior soft tissue, a 2-mm-diameter Kirschner wire was inserted into the cervical pedicle with the assistance of drill template. Cadaveric cervical spines with pin tracts were subsequently scanned using the same CT scanner. A 3D reconstruction was performed of the scanned spines to get 3D models of the vertebrae containing the actual pin tracts. The deviations were calculated between 3D models with virtual and actual pin tracts at the middle point of the cervical pedicle. 3D models of 3.5 mm-diameter screws were used in simulated insertion to grade the screw positions. FINDINGS: The patient-specific biocompatible drill template was constructed to assist ATPS insertion successfully. There were no significant differences between medial/lateral deviations (P = 0.797 or between superior/inferior deviations (P = 0.741. The absolute deviation values were 0.82±0.75 mm and 1.10±0.96 mm in axial and sagittal planes, respectively. In the simulated insertion, the screws in non-critical position were 44/48 (91.7%. CONCLUSIONS: The patient-specific drill template is biocompatible, easy

  18. Induced radioactivity in a patient-specific collimator used in proton therapy

    CERN Document Server

    Silari, M; Mauro, Egidio; Silari, Marco

    2010-01-01

    This paper discusses the activation of a patient-specific collimator, calculating dose rates, total activities and activities per unit mass of the mixture of radionuclides generated by proton irradiation in the energy range 100-250 MeV. Monte Carlo simulations were first performed for a generic case, using an approximate geometry and on the basis of assumptions on beam intensity and irradiation profile. A collimator used for a prostate cancer treatment was obtained from the MD Anderson Cancer Center (MDACC), Houston, USA, from which a number of samples were cut and analyzed by gamma spectrometry. The results of the gamma spectrometry are compared with the results of Monte Carlo simulations performed using geometrical and irradiation data specific to the unit. The assumptions made for the simulations and their impact on the results are discussed. Dose rate measurements performed in a low-background area at CERN and routine radiation protection measurements at the MDACC are also reported. It is shown that it sh...

  19. Reconstruction with a patient-specific titanium implant after a wide anterior chest wall resection

    Science.gov (United States)

    Turna, Akif; Kavakli, Kuthan; Sapmaz, Ersin; Arslan, Hakan; Caylak, Hasan; Gokce, Hasan Suat; Demirkaya, Ahmet

    2014-01-01

    The reconstruction of full-thickness chest wall defects is a challenging problem for thoracic surgeons, particularly after a wide resection of the chest wall that includes the sternum. The location and the size of the defect play a major role when selecting the method of reconstruction, while acceptable cosmetic and functional results remain the primary goal. Improvements in preoperative imaging techniques and reconstruction materials have an important role when planning and performing a wide chest wall resection with a low morbidity rate. In this report, we describe the reconstruction of a wide anterior chest wall defect with a patient-specific custom-made titanium implant. An infected mammary tumour recurrence in a 62-year old female, located at the anterior chest wall including the sternum, was resected, followed by a large custom-made titanium implant. Latissimus dorsi flap and split-thickness graft were also used for covering the implant successfully. A titanium custom-made chest wall implant could be a viable alternative for patients who had large chest wall tumours. PMID:24227881

  20. Patient-specific lean body mass can be estimated from limited-coverage computed tomography images.

    Science.gov (United States)

    Devriese, Joke; Beels, Laurence; Maes, Alex; van de Wiele, Christophe; Pottel, Hans

    2018-06-01

    In PET/CT, quantitative evaluation of tumour metabolic activity is possible through standardized uptake values, usually normalized for body weight (BW) or lean body mass (LBM). Patient-specific LBM can be estimated from whole-body (WB) CT images. As most clinical indications only warrant PET/CT examinations covering head to midthigh, the aim of this study was to develop a simple and reliable method to estimate LBM from limited-coverage (LC) CT images and test its validity. Head-to-toe PET/CT examinations were retrospectively retrieved and semiautomatically segmented into tissue types based on thresholding of CT Hounsfield units. LC was obtained by omitting image slices. Image segmentation was validated on the WB CT examinations by comparing CT-estimated BW with actual BW, and LBM estimated from LC images were compared with LBM estimated from WB images. A direct method and an indirect method were developed and validated on an independent data set. Comparing LBM estimated from LC examinations with estimates from WB examinations (LBMWB) showed a significant but limited bias of 1.2 kg (direct method) and nonsignificant bias of 0.05 kg (indirect method). This study demonstrates that LBM can be estimated from LC CT images with no significant difference from LBMWB.

  1. Precision Oncology Medicine: The Clinical Relevance of Patient-Specific Biomarkers Used to Optimize Cancer Treatment.

    Science.gov (United States)

    Schmidt, Keith T; Chau, Cindy H; Price, Douglas K; Figg, William D

    2016-12-01

    Precision medicine in oncology is the result of an increasing awareness of patient-specific clinical features coupled with the development of genomic-based diagnostics and targeted therapeutics. Companion diagnostics designed for specific drug-target pairs were the first to widely utilize clinically applicable tumor biomarkers (eg, HER2, EGFR), directing treatment for patients whose tumors exhibit a mutation susceptible to an FDA-approved targeted therapy (eg, trastuzumab, erlotinib). Clinically relevant germline mutations in drug-metabolizing enzymes and transporters (eg, TPMT, DPYD) have been shown to impact drug response, providing a rationale for individualized dosing to optimize treatment. The use of multigene expression-based assays to analyze an array of prognostic biomarkers has been shown to help direct treatment decisions, especially in breast cancer (eg, Oncotype DX). More recently, the use of next-generation sequencing to detect many potential "actionable" cancer molecular alterations is further shifting the 1 gene-1 drug paradigm toward a more comprehensive, multigene approach. Currently, many clinical trials (eg, NCI-MATCH, NCI-MPACT) are assessing novel diagnostic tools with a combination of different targeted therapeutics while also examining tumor biomarkers that were previously unexplored in a variety of cancer histologies. Results from ongoing trials such as the NCI-MATCH will help determine the clinical utility and future development of the precision-medicine approach. © 2016, The American College of Clinical Pharmacology.

  2. Measuring the relative extent of pulmonary infiltrates by hierarchical classification of patient-specific image features

    Science.gov (United States)

    Tsevas, S.; Iakovidis, D. K.

    2011-11-01

    Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

  3. Generating patient specific pseudo-CT of the head from MR using atlas-based regression

    International Nuclear Information System (INIS)

    Sjölund, J; Forsberg, D; Andersson, M; Knutsson, H

    2015-01-01

    Radiotherapy planning and attenuation correction of PET images require simulation of radiation transport. The necessary physical properties are typically derived from computed tomography (CT) images, but in some cases, including stereotactic neurosurgery and combined PET/MR imaging, only magnetic resonance (MR) images are available. With these applications in mind, we describe how a realistic, patient-specific, pseudo-CT of the head can be derived from anatomical MR images. We refer to the method as atlas-based regression, because of its similarity to atlas-based segmentation. Given a target MR and an atlas database comprising MR and CT pairs, atlas-based regression works by registering each atlas MR to the target MR, applying the resulting displacement fields to the corresponding atlas CTs and, finally, fusing the deformed atlas CTs into a single pseudo-CT. We use a deformable registration algorithm known as the Morphon and augment it with a certainty mask that allows a tailoring of the influence certain regions are allowed to have on the registration. Moreover, we propose a novel method of fusion, wherein the collection of deformed CTs is iteratively registered to their joint mean and find that the resulting mean CT becomes more similar to the target CT. However, the voxelwise median provided even better results; at least as good as earlier work that required special MR imaging techniques. This makes atlas-based regression a good candidate for clinical use. (paper)

  4. Evaluation of a patient-specific Monte Carlo software for CT dosimetry

    International Nuclear Information System (INIS)

    Myronakis, M.; Perisinakis, K.; Tzedakis, A.; Gourtsoyianni, S.; Damilakis, J.

    2009-01-01

    The aim was to validate the ImpactMC computed tomography (CT) dosimetry software that allows patient-specific dose determination. Measured values of head- and body-weighted CT dose index (CTDIw) were compared with corresponding values derived using ImpactMC software. A physical anthropomorphic phantom simulating the average adult was employed to study the effect of exposure parameters used to produce the input image set on a normalised dose output and the relationship between exposure parameters selected for simulation on the dose output. The difference between CTDIw values obtained through measurements and simulations were found to be up to 12.8 and 18.3% for head and body phantoms, respectively. Exposure parameters of the image set used as input were found to have a minor impact on the normalised dose output. Simulations confirmed the expected linear relationship between dose and tube load and the power law relationship between dose and tube potential. Results demonstrate that ImpactMC may be capable of providing reliable CT dose estimates. (authors)

  5. Guidelines for patient-specific jawline definition with titanium implants in esthetic, deformity, and malformation surgery.

    Science.gov (United States)

    Mommaerts, Maurice Yves

    2016-01-01

    Asymmetry and unfavorable esthetics of the jawline have become possible to correct in three dimensions using computer aided design and computer aided manufacturing. The aim of this study was to provide esthetic, technical, and operative guidelines for mandibular angle and border augmentation using patient-specific titanium implants made by selective laser melting. University hospital - prospective registry. Twelve patients and 17 implantation sites were documented and prospectively registered. Malformational, deformational, and purely esthetic indications were encountered. Descriptive. Patient satisfaction was high, probably because the patients had input into the planned dimensions and shape. A serious infection with implant removal occurred in one patient who had six previous surgeries at the same sites. Technical and surgical guidelines were developed including splitting implants into two segments when the mental nerve was at risk, using a three-dimensional (3D) puzzle connection, providing at least two screw holes per segment, using scaffolds at the bony contact side, using a "satin" finish at the periosteal side, referring to anatomical structures where possible, making provisions for transbuccal and transoral fixation, using a high vestibular incision, and using a double-layer closure. Esthetic guidelines are discussed but could not be upgraded. Mirroring techniques and 3D print accuracy up to 0.1 mm allow precise planning of jaw angle implants. Patients are pleased when given preoperative renderings for their consideration. Infections can be managed using technical and operative recommendations and careful patient selection.

  6. Institutional Patient-specific IMRT QA Does Not Predict Unacceptable Plan Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F., E-mail: sfkry@mdanderson.org [Imaging and Radiation Oncology Core at Houston, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Molineu, Andrea [Imaging and Radiation Oncology Core at Houston, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kerns, James R.; Faught, Austin M.; Huang, Jessie Y.; Pulliam, Kiley B.; Tonigan, Jackie [Imaging and Radiation Oncology Core at Houston, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, Texas (United States); Alvarez, Paola [Imaging and Radiation Oncology Core at Houston, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Stingo, Francesco [The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, Texas (United States); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Followill, David S. [Imaging and Radiation Oncology Core at Houston, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, Texas (United States)

    2014-12-01

    Purpose: To determine whether in-house patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) results predict Imaging and Radiation Oncology Core (IROC)-Houston phantom results. Methods and Materials: IROC Houston's IMRT head and neck phantoms have been irradiated by numerous institutions as part of clinical trial credentialing. We retrospectively compared these phantom results with those of in-house IMRT QA (following the institution's clinical process) for 855 irradiations performed between 2003 and 2013. The sensitivity and specificity of IMRT QA to detect unacceptable or acceptable plans were determined relative to the IROC Houston phantom results. Additional analyses evaluated specific IMRT QA dosimeters and analysis methods. Results: IMRT QA universally showed poor sensitivity relative to the head and neck phantom, that is, poor ability to predict a failing IROC Houston phantom result. Depending on how the IMRT QA results were interpreted, overall sensitivity ranged from 2% to 18%. For different IMRT QA methods, sensitivity ranged from 3% to 54%. Although the observed sensitivity was particularly poor at clinical thresholds (eg 3% dose difference or 90% of pixels passing gamma), receiver operator characteristic analysis indicated that no threshold showed good sensitivity and specificity for the devices evaluated. Conclusions: IMRT QA is not a reasonable replacement for a credentialing phantom. Moreover, the particularly poor agreement between IMRT QA and the IROC Houston phantoms highlights surprising inconsistency in the QA process.

  7. Recent advancements in medical simulation: patient-specific virtual reality simulation.

    Science.gov (United States)

    Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E

    2012-07-01

    Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.

  8. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    Science.gov (United States)

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  9. Institutional Patient-specific IMRT QA Does Not Predict Unacceptable Plan Delivery

    International Nuclear Information System (INIS)

    Kry, Stephen F.; Molineu, Andrea; Kerns, James R.; Faught, Austin M.; Huang, Jessie Y.; Pulliam, Kiley B.; Tonigan, Jackie; Alvarez, Paola; Stingo, Francesco; Followill, David S.

    2014-01-01

    Purpose: To determine whether in-house patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) results predict Imaging and Radiation Oncology Core (IROC)-Houston phantom results. Methods and Materials: IROC Houston's IMRT head and neck phantoms have been irradiated by numerous institutions as part of clinical trial credentialing. We retrospectively compared these phantom results with those of in-house IMRT QA (following the institution's clinical process) for 855 irradiations performed between 2003 and 2013. The sensitivity and specificity of IMRT QA to detect unacceptable or acceptable plans were determined relative to the IROC Houston phantom results. Additional analyses evaluated specific IMRT QA dosimeters and analysis methods. Results: IMRT QA universally showed poor sensitivity relative to the head and neck phantom, that is, poor ability to predict a failing IROC Houston phantom result. Depending on how the IMRT QA results were interpreted, overall sensitivity ranged from 2% to 18%. For different IMRT QA methods, sensitivity ranged from 3% to 54%. Although the observed sensitivity was particularly poor at clinical thresholds (eg 3% dose difference or 90% of pixels passing gamma), receiver operator characteristic analysis indicated that no threshold showed good sensitivity and specificity for the devices evaluated. Conclusions: IMRT QA is not a reasonable replacement for a credentialing phantom. Moreover, the particularly poor agreement between IMRT QA and the IROC Houston phantoms highlights surprising inconsistency in the QA process

  10. Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review

    International Nuclear Information System (INIS)

    Chalkia, M.T.; Stefanoyiannis, A.P.; Chatziioannou, S.N.; Efstathopoulos, E.P.; Round, W.H.; Nikiforidis, G.C.

    2015-01-01

    Neuroendocrine tumours (NETs) belong to a relatively rare class of neoplasms. Nonetheless, their prevalence has increased significantly during the last decades. Peptide receptor radionuclide therapy (PRRT) is a relatively new treatment approach for inoperable or metastasised NETs. The therapeutic effect is based on the binding of radiolabelled somatostatin analogue peptides with NETs’ somatostatin receptors, resulting in internal irradiation of tumours. Pre-therapeutic patient-specific dosimetry is essential to ensure that a treatment course has high levels of safety and efficacy. This paper reviews the methods applied for PRRT dosimetry, as well as the dosimetric results presented in the literature. Focus is given on data concerning the therapeutic somatostatin analogue radiopeptides 111 In-[DTPA o , D -Phe 1 ]-octreotide ( 111 In-DTPA-octreotide), 90 Y-[DOTA o ,Tyr 3 ]-octreotide ( 90 Y-DOTATOC) and 177 Lu-[DOTA o ,Tyr 3 ,Thr 8 ]-octreotide ( 177 Lu-DOTATATE). Following the Medical Internal Radiation Dose (MIRD) Committee formalism, dosimetric analysis demonstrates large interpatient variability in tumour and organ uptake, with kidneys and bone marrow being the critical organs. The results are dependent on the image acquisition and processing protocol, as well as the dosimetric imaging radiopharmaceutical.

  11. Total knee arthroplasty using patient-specific blocks after prior femoral fracture without hardware removal

    Directory of Open Access Journals (Sweden)

    Raju Vaishya

    2018-01-01

    Full Text Available Background: The options to perform total knee arthroplasty (TKA with retained hardware in femur are mainly – removal of hardware, use of extramedullary guide, or computer-assisted surgery. Patient-specific blocks (PSBs have been introduced with many potential advantages, but their use in retained hardware has not been adequately explored. The purpose of the present study was to outline and assess the usefulness of the PSBs in performing TKA in patients with retained femoral hardware. Materials and Materials and Methods: Nine patients with retained femoral hardware underwent TKA using PSBs. All the surgeries were performed by the same surgeon using same implants. Nine cases (7 males and 2 females out of total of 120 primary TKA had retained hardware. The average age of the patients was 60.55 years. The retained hardware were 6 patients with nails, 2 with plates and one patient had screws. Out of the nine cases, only one patient needed removal of a screw which was hindering placement of pin for the PSB. Results: All the patients had significant improvement in their Knee Society Score (KSS which improved from 47.0 to postoperative KSS of 86.77 (P < 0.00. The mechanical axis was significantly improved (P < 0.03 after surgery. No patient required blood transfusion and the average tourniquet time was 41 min. Conclusion: TKA using PSBs is useful and can be used in patients with retained hardware with good functional and radiological outcome.

  12. Patient specific quality assurance of IMRT: quantitative approach using film dosimetry and optimization

    International Nuclear Information System (INIS)

    Shin, Kyung Hwan; Park, Sung Yong; Park, Dong Hyun

    2005-01-01

    Film dosimetry an a part of patient specific intensity modulated radiation therapy quality assurance (IMRT QA) was performed to develop a new optimization method of film isocenter offset and to then suggest new quantitative criteria for film dosimetry. Film dosimetry was performed on 14 IMRT patients with head and neck cancers. An optimization method for obtaining the local minimum was developed to adjust for the error in the film isocenter offset, which is the largest part of the systemic errors. The adjust value of the film isocenter offset under optimization was 1 mm in 12 patients, while only two patients showed 2 mm translation. The means of absolute average dose difference before and after optimization were 2.36 and 1.56%, respectively, and the mean radios over a 5% tolerance were 9.67 and 2.88%. After optimization, the differences in the dose decreased dramatically. A low dose range cutoff (L-Cutoff) had been suggested for clinical application. New quantitative criteria of a ratio of over a 5%, but less than 10% tolerance, and for an absolute average dose difference less than 3% have been suggested for the verification of film dosimetry. The new optimization method was effective in adjusting for the film dosimetry error, and the newly quantitative criteria suggested in this research are believed to be sufficiently accurate and clinically useful

  13. Feasibility study of patient-specific surgical templates for the fixation of pedicle screws.

    Science.gov (United States)

    Salako, F; Aubin, C-E; Fortin, C; Labelle, H

    2002-01-01

    Surgery for scoliosis, as well as other posterior spinal surgeries, frequently uses pedicle screws to fix an instrumentation on the spine. Misplacement of a screw can lead to intra- and post-operative complications. The objective of this study is to design patient-specific surgical templates to guide the drilling operation. From the CT-scan of a vertebra, the optimal drilling direction and limit angles are computed from an inverse projection of the pedicle limits. The first template design uses a surface-to-surface registration method and was constructed in a CAD system by subtracting the vertebra from a rectangular prism and a cylinder with the optimal orientation. This template and the vertebra were built using rapid prototyping. The second design uses a point-to-surface registration method and has 6 adjustable screws to adjust the orientation and length of the drilling support device. A mechanism was designed to hold it in place on the spinal process. A virtual prototype was build with CATIA software. During the operation, the surgeon places either template on patient's vertebra until a perfect match is obtained before drilling. The second design seems better than the first one because it can be reused on different vertebra and is less sensible to registration errors. The next step is to build the second design and make experimental and simulations tests to evaluate the benefits of this template during a scoliosis operation.

  14. Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk

    Science.gov (United States)

    Boghi, Andrea; Russo, Flavia; Gori, Fabio

    2017-09-01

    Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.

  15. The Effect of Femoral Cutting Guide Design Improvements for Patient-Specific Instruments

    Directory of Open Access Journals (Sweden)

    Oh-Ryong Kwon

    2015-01-01

    Full Text Available Although the application of patient-specific instruments (PSI for total knee arthroplasty (TKA increases the cost of the surgical procedure, PSI may reduce operative time and improve implant alignment, which could reduce the number of revision surgeries. We report our experience with TKA using PSI techniques in 120 patients from March to December 2014. PSI for TKA were created from data provided by computed tomography (CT scans or magnetic resonance imaging (MRI; which imaging technology is more reliable for the PSI technique remains unclear. In the first 20 patients, the accuracy of bone resection and PSI stability were compared between CT and MRI scans with presurgical results as a reference; MRI produced better results. In the second and third groups, each with 50 patients, the results of bone resection and stability were compared in MRI scans with respect to the quality of scanning due to motion artifacts and experienced know-how in PSI design, respectively. The optimized femoral cutting guide design for PSI showed the closest outcomes in bone resection and PSI stability with presurgical data. It is expected that this design could be a reasonable guideline in PSI.

  16. High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery.

    Science.gov (United States)

    Chan, Sonny; Li, Peter; Locketz, Garrett; Salisbury, Kenneth; Blevins, Nikolas H

    2016-12-01

    Medical imaging techniques provide a wealth of information for surgical preparation, but it is still often the case that surgeons are examining three-dimensional pre-operative image data as a series of two-dimensional images. With recent advances in visual computing and interactive technologies, there is much opportunity to provide surgeons an ability to actively manipulate and interpret digital image data in a surgically meaningful way. This article describes the design and initial evaluation of a virtual surgical environment that supports patient-specific simulation of temporal bone surgery using pre-operative medical image data. Computational methods are presented that enable six degree-of-freedom haptic feedback during manipulation, and that simulate virtual dissection according to the mechanical principles of orthogonal cutting and abrasive wear. A highly efficient direct volume renderer simultaneously provides high-fidelity visual feedback during surgical manipulation of the virtual anatomy. The resulting virtual surgical environment was assessed by evaluating its ability to replicate findings in the operating room, using pre-operative imaging of the same patient. Correspondences between surgical exposure, anatomical features, and the locations of pathology were readily observed when comparing intra-operative video with the simulation, indicating the predictive ability of the virtual surgical environment.

  17. Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft.

    LENUS (Irish Health Repository)

    Molony, David S

    2009-01-01

    BACKGROUND: Abdominal aortic aneurysms (AAA) are local dilatations of the infrarenal aorta. If left untreated they may rupture and lead to death. One form of treatment is the minimally invasive insertion of a stent-graft into the aneurysm. Despite this effective treatment aneurysms may occasionally continue to expand and this may eventually result in post-operative rupture of the aneurysm. Fluid-structure interaction (FSI) is a particularly useful tool for investigating aneurysm biomechanics as both the wall stresses and fluid forces can be examined. METHODS: Pre-op, Post-op and Follow-up models were reconstructed from CT scans of a single patient and FSI simulations were performed on each model. The FSI approach involved coupling Abaqus and Fluent via a third-party software - MpCCI. Aneurysm wall stress and compliance were investigated as well as the drag force acting on the stent-graft. RESULTS: Aneurysm wall stress was reduced from 0.38 MPa before surgery to a value of 0.03 MPa after insertion of the stent-graft. Higher stresses were seen in the aneurysm neck and iliac legs post-operatively. The compliance of the aneurysm was also reduced post-operatively. The peak Post-op axial drag force was found to be 4.85 N. This increased to 6.37 N in the Follow-up model. CONCLUSION: In a patient-specific case peak aneurysm wall stress was reduced by 92%. Such a reduction in aneurysm wall stress may lead to shrinkage of the aneurysm over time. Hence, post-operative stress patterns may help in determining the likelihood of aneurysm shrinkage post EVAR. Post-operative remodelling of the aneurysm may lead to increased drag forces.

  18. Feasibility of replacing patient specific cutouts with a computer-controlled electron multileaf collimator

    International Nuclear Information System (INIS)

    Eldib, Ahmed; Jin Lihui; Li Jinsheng; Ma, C-M Charlie

    2013-01-01

    A motorized electron multileaf collimator (eMLC) was developed as an add-on device to the Varian linac for delivery of advanced electron beam therapy. It has previously been shown that electron beams collimated by an eMLC have very similar penumbra to those collimated by applicators and cutouts. Thus, manufacturing patient specific cutouts would no longer be necessary, resulting in the reduction of time taken in the cutout fabrication process. Moreover, cutout construction involves handling of toxic materials and exposure to toxic fumes that are usually generated during the process, while the eMLC will be a pollution-free device. However, undulation of the isodose lines is expected due to the finite size of the eMLC. Hence, the provided planned target volume (PTV) shape will not exactly follow the beam's-eye-view of the PTV, but instead will make a stepped approximation to the PTV shape. This may be a problem when the field edge is close to a critical structure. Therefore, in this study the capability of the eMLC to achieve the same clinical outcome as an applicator/cutout combination was investigated based on real patient computed tomographies (CTs). An in-house Monte Carlo based treatment planning system was used for dose calculation using ten patient CTs. For each patient, two plans were generated; one with electron beams collimated using the applicator/cutout combination; and the other plan with beams collimated by the eMLC. Treatment plan quality was compared for each patient based on dose distribution and dose–volume histogram. In order to determine the optimal position of the leaves, the impact of the different leaf positioning strategies was investigated. All plans with both eMLC and cutouts were generated such that 100% of the target volume receives at least 90% of the prescribed dose. Then the percentage difference in dose between both delivery techniques was calculated for all the cases. The difference in the dose received by 10% of the volume of the

  19. Feasibility of replacing patient specific cutouts with a computer-controlled electron multileaf collimator

    Science.gov (United States)

    Eldib, Ahmed; Jin, Lihui; Li, Jinsheng; Ma, C.-M. Charlie

    2013-08-01

    A motorized electron multileaf collimator (eMLC) was developed as an add-on device to the Varian linac for delivery of advanced electron beam therapy. It has previously been shown that electron beams collimated by an eMLC have very similar penumbra to those collimated by applicators and cutouts. Thus, manufacturing patient specific cutouts would no longer be necessary, resulting in the reduction of time taken in the cutout fabrication process. Moreover, cutout construction involves handling of toxic materials and exposure to toxic fumes that are usually generated during the process, while the eMLC will be a pollution-free device. However, undulation of the isodose lines is expected due to the finite size of the eMLC. Hence, the provided planned target volume (PTV) shape will not exactly follow the beam's-eye-view of the PTV, but instead will make a stepped approximation to the PTV shape. This may be a problem when the field edge is close to a critical structure. Therefore, in this study the capability of the eMLC to achieve the same clinical outcome as an applicator/cutout combination was investigated based on real patient computed tomographies (CTs). An in-house Monte Carlo based treatment planning system was used for dose calculation using ten patient CTs. For each patient, two plans were generated; one with electron beams collimated using the applicator/cutout combination; and the other plan with beams collimated by the eMLC. Treatment plan quality was compared for each patient based on dose distribution and dose-volume histogram. In order to determine the optimal position of the leaves, the impact of the different leaf positioning strategies was investigated. All plans with both eMLC and cutouts were generated such that 100% of the target volume receives at least 90% of the prescribed dose. Then the percentage difference in dose between both delivery techniques was calculated for all the cases. The difference in the dose received by 10% of the volume of the

  20. The patient-specific functional scale: psychometrics, clinimetrics, and application as a clinical outcome measure.

    Science.gov (United States)

    Horn, Katyana Kowalchuk; Jennings, Sophie; Richardson, Gillian; Vliet, Ditte Van; Hefford, Cheryl; Abbott, J Haxby

    2012-01-01

    Systematic review of the literature. To summarize peer-reviewed literature on the reliability, validity, and responsiveness of the Patient-Specific Functional Scale (PSFS), and to identify its use as an outcome measure. Searches were performed of several electronic databases from 1995 to May 2010. Studies included were published articles containing (1) primary research investigating the psychometric and clinimetrics of the PSFS or (2) the implementation of the PSFS as an outcome measure. We assessed the methodological quality of studies included in the first category. Two hundred forty-two articles published from 1994 to May 2010 were identified. Of these, 66 met the inclusion criteria for this review, with 13 reporting the measurement properties of the PSFS, 55 implementing the PSFS as an outcome measure, and 2 doing both of the above. The PSFS was reported to be valid, reliable, and responsive in populations with knee dysfunction, cervical radiculopathy, acute low back pain, mechanical low back pain, and neck dysfunction. The PSFS was found to be reliable and responsive in populations with chronic low back pain. The PSFS was also reported to be valid, reliable, or responsive in individuals with a limited number of acute, subacute, and chronic conditions. This review found that the PSFS is also being used as an outcome measure in many other conditions, despite a lack of published evidence supporting its validity in these conditions. Although the use of the PSFS as an outcome measure is increasing in physiotherapy practice, there are gaps in the research literature regarding its validity, reliability, and responsiveness in many health conditions.

  1. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    International Nuclear Information System (INIS)

    Li, Guangjun; Wu, Kui; Peng, Guang; Zhang, Yingjie; Bai, Sen

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS

  2. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangjun [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wu, Kui [Department of Radiotherapy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province (China); Peng, Guang; Zhang, Yingjie [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Bai, Sen, E-mail: baisen@scu.edu.cn [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.

  3. SU-E-T-149: Brachytherapy Patient Specific Quality Assurance for a HDR Vaginal Cylinder Case

    Energy Technology Data Exchange (ETDEWEB)

    Barbiere, J; Napoli, J; Ndlovu, A [Hackensack Univ Medical Center, Hackensack, NJ (United States)

    2015-06-15

    Purpose: Commonly Ir-192 HDR treatment planning system commissioning is only based on a single absolute measurement of source activity supplemented by tabulated parameters for multiple factors without independent verification that the planned distribution corresponds to the actual delivered dose. The purpose on this work is to present a methodology using Gafchromic film with a statistically valid calibration curve that can be used to validate clinical HDR vaginal cylinder cases by comparing the calculated plan dose distribution in a plane with the corresponding measured planar dose. Methods: A vaginal cylinder plan was created with Oncentra treatment planning system. The 3D dose matrix was exported to a Varian Eclipse work station for convenient extraction of a 2D coronal dose plane corresponding to the film position. The plan was delivered with a sheet of Gafchromic EBT3 film positioned 1mm from the catheter using an Ir-192 Nucletron HDR source. The film was then digitized with an Epson 10000 XL color scanner. Film analysis is performed with MatLab imaging toolbox. A density to dose calibration curve was created using TG43 formalism for a single dwell position exposure at over 100 points for statistical accuracy. The plan and measured film dose planes were registered using a known dwell position relative to four film marks. The plan delivered 500 cGy to points 2 cm from the sources. Results: The distance to agreement of the 500 cGy isodose between the plan and film measurement laterally was 0.5 mm but can be as much as 1.5 mm superior and inferior. The difference between the computed plan dose and film measurement was calculated per pixel. The greatest errors up to 50 cGy are near the apex. Conclusion: The methodology presented will be useful to implement more comprehensive quality assurance to verify patient-specific dose distributions.

  4. CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens.

    Science.gov (United States)

    Bais, Preeti; Namburi, Sandeep; Gatti, Daniel M; Zhang, Xinyu; Chuang, Jeffrey H

    2017-10-01

    We present CloudNeo, a cloud-based computational workflow for identifying patient-specific tumor neoantigens from next generation sequencing data. Tumor-specific mutant peptides can be detected by the immune system through their interactions with the human leukocyte antigen complex, and neoantigen presence has recently been shown to correlate with anti T-cell immunity and efficacy of checkpoint inhibitor therapy. However computing capabilities to identify neoantigens from genomic sequencing data are a limiting factor for understanding their role. This challenge has grown as cancer datasets become increasingly abundant, making them cumbersome to store and analyze on local servers. Our cloud-based pipeline provides scalable computation capabilities for neoantigen identification while eliminating the need to invest in local infrastructure for data transfer, storage or compute. The pipeline is a Common Workflow Language (CWL) implementation of human leukocyte antigen (HLA) typing using Polysolver or HLAminer combined with custom scripts for mutant peptide identification and NetMHCpan for neoantigen prediction. We have demonstrated the efficacy of these pipelines on Amazon cloud instances through the Seven Bridges Genomics implementation of the NCI Cancer Genomics Cloud, which provides graphical interfaces for running and editing, infrastructure for workflow sharing and version tracking, and access to TCGA data. The CWL implementation is at: https://github.com/TheJacksonLaboratory/CloudNeo. For users who have obtained licenses for all internal software, integrated versions in CWL and on the Seven Bridges Cancer Genomics Cloud platform (https://cgc.sbgenomics.com/, recommended version) can be obtained by contacting the authors. jeff.chuang@jax.org. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. Results of patient specific quality assurance for patients undergoing stereotactic ablative radiotherapy for lung lesions

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Clements, Natalie; Cramb, Jim; Wanigaratne, Derrick M.; Chesson, Brent; Aarons, Yolanda; Siva, Shankar; Ball, David; Kron, Tomas

    2014-01-01

    Hypofractionated image guided radiotherapy of extracranial targets has become increasingly popular as a treatment modality for inoperable patients with one or more small lesions, often referred to as stereotactic ablative body radiotherapy (SABR). This report details the results of the physical quality assurance (QA) program used for the first 33 lung cancer SABR radiotherapy 3D conformal treatment plans in our centre. SABR involves one or few fractions of high radiation dose delivered in many small fields or arcs with tight margins to mobile targets often delivered through heterogeneous media with non-coplanar beams. We have conducted patient-specific QA similar to the more common intensity modulated radiotherapy QA with particular reference to motion management. Individual patient QA was performed in a Perspex phantom using point dose verification with an ionisation chamber and radiochromic film for verification of the dose distribution both with static and moving detectors to verify motion management strategies. While individual beams could vary by up to 7 %, the total dose in the target was found to be within ±2 % of the prescribed dose for all 33 plans. Film measurements showed qualitative and quantitative agreement between planned and measured isodose line shapes and dimensions. The QA process highlighted the need to account for couch transmission and demonstrated that the ITV construction was appropriate for the treatment technique used. QA is essential for complex radiotherapy deliveries such as SABR. We found individual patient QA helpful in setting up the technique and understanding potential weaknesses in SABR workflow, thus providing confidence in SABR delivery.

  6. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans.

    Science.gov (United States)

    Li, Guangjun; Wu, Kui; Peng, Guang; Zhang, Yingjie; Bai, Sen

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS. Copyright © 2014 American Association of Medical Dosimetrists. Published by

  7. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    Science.gov (United States)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  8. Statistical process control analysis for patient-specific IMRT and VMAT QA.

    Science.gov (United States)

    Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd

    2013-05-01

    This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.

  9. Craniofacial reconstruction using patient-specific implants polyether ether ketone with computer-assisted planning.

    Science.gov (United States)

    Manrique, Oscar J; Lalezarzadeh, Frank; Dayan, Erez; Shin, Joseph; Buchbinder, Daniel; Smith, Mark

    2015-05-01

    Reconstruction of bony craniofacial defects requires precise understanding of the anatomic relationships. The ideal reconstructive technique should be fast as well as economical, with minimal donor-site morbidity, and provide a lasting and aesthetically pleasing result. There are some circumstances in which a patient's own tissue is not sufficient to reconstruct defects. The development of sophisticated software has facilitated the manufacturing of patient-specific implants (PSIs). The aim of this study was to analyze the utility of polyether ether ketone (PEEK) PSIs for craniofacial reconstruction. We performed a retrospective chart review from July 2009 to July 2013 in patients who underwent craniofacial reconstruction using PEEK-PSIs using a virtual process based on computer-aided design and computer-aided manufacturing. A total of 6 patients were identified. The mean age was 46 years (16-68 y). Operative indications included cancer (n = 4), congenital deformities (n = 1), and infection (n = 1). The mean surgical time was 3.7 hours and the mean hospital stay was 1.5 days. The mean surface area of the defect was 93.4 ± 43.26 cm(2), the mean implant cost was $8493 ± $837.95, and the mean time required to manufacture the implants was 2 weeks. No major or minor complications were seen during the 4-year follow-up. We found PEEK implants to be useful in the reconstruction of complex calvarial defects, demonstrating a low complication rate, good outcomes, and high patient satisfaction in this small series of patients. Polyether ether ketone implants show promising potential and warrant further study to better establish the role of this technology in cranial reconstruction.

  10. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    Science.gov (United States)

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  11. Catching errors with patient-specific pretreatment machine log file analysis.

    Science.gov (United States)

    Rangaraj, Dharanipathy; Zhu, Mingyao; Yang, Deshan; Palaniswaamy, Geethpriya; Yaddanapudi, Sridhar; Wooten, Omar H; Brame, Scott; Mutic, Sasa

    2013-01-01

    A robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian. Using an in-house developed computer program called "Dynalog QA," we automatically compare the beam delivery parameters in the log files that are generated during pretreatment point dose verification measurements, with the treatment plan to determine any discrepancies in IMRT deliveries. Fluence maps are constructed and compared between the delivered and planned beams. Since clinical introduction in June 2009, 912 machine log file analyses QA were performed by the end of 2010. Among these, 14 errors causing dosimetric deviation were detected and required further investigation and intervention. These errors were the result of human operating mistakes, flawed treatment planning, and data modification during plan file transfer. Minor errors were also reported in 174 other log file analyses, some of which stemmed from false positives and unreliable results; the origins of these are discussed herein. It has been demonstrated that the machine log file analysis is a robust, efficient, and reliable QA process capable of detecting errors originating from human mistakes, flawed planning, and data transfer problems. The possibility of detecting these errors is low using point and planar dosimetric measurements. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  12. Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases

    Science.gov (United States)

    Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku

    2015-03-01

    Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.

  13. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis.

    Science.gov (United States)

    Gabr, Refaat E; Pednekar, Amol S; Govindarajan, Koushik A; Sun, Xiaojun; Riascos, Roy F; Ramírez, María G; Hasan, Khader M; Lincoln, John A; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2017-08-01

    To improve the conspicuity of white matter lesions (WMLs) in multiple sclerosis (MS) using patient-specific optimization of single-slab 3D fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Sixteen MS patients were enrolled in a prospective 3.0T MRI study. FLAIR inversion time and echo time were automatically optimized for each patient during the same scan session based on measurements of the relative proton density and relaxation times of the brain tissues. The optimization criterion was to maximize the contrast between gray matter (GM) and white matter (WM), while suppressing cerebrospinal fluid. This criterion also helps increase the contrast between WMLs and WM. The performance of the patient-specific 3D FLAIR protocol relative to the fixed-parameter protocol was assessed both qualitatively and quantitatively. Patient-specific optimization achieved a statistically significant 41% increase in the GM-WM contrast ratio (P < 0.05) and 32% increase in the WML-WM contrast ratio (P < 0.01) compared with fixed-parameter FLAIR. The increase in WML-WM contrast ratio correlated strongly with echo time (P < 10 -11 ). Two experienced neuroradiologists indicated substantially higher lesion conspicuity on the patient-specific FLAIR images over conventional FLAIR in 3-4 cases (intrarater correlation coefficient ICC = 0.72). In no case was the image quality of patient-specific FLAIR considered inferior to conventional FLAIR by any of the raters (ICC = 0.32). Changes in proton density and relaxation times render fixed-parameter FLAIR suboptimal in terms of lesion contrast. Patient-specific optimization of 3D FLAIR increases lesion conspicuity without scan time penalty, and has potential to enhance the detection of subtle and small lesions in MS. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:557-564. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Outcome and safety analysis of 3D printed patient specific pedicle screw jigs for complex spinal deformities: A comparative study.

    Science.gov (United States)

    Garg, Bhavuk; Gupta, Manish; Singh, Menaka; Kalyanasundaram, Dinesh

    2018-05-03

    Spinal deformities are very challenging to treat and have a great risk of neurological complications due to hardware placement during corrective surgery. Various techniques have been introduced to ensure safe and accurate placement of pedicle screws. Patient-specific screw guides with pre-drawn and pre-validated trajectory seems to be an attractive option. We have focused on developing 3D printing technique for complex spinal deformities in India. This study also aimed to compare the placement of pedicle screw with 3D printing and free hand technique. This is a retrospective comparative clinical study at an academic institutional setting. A total of 20 patients were enrolled during the study, 10 were operated with the help of 3D printing (group 1) and 10 were operated with freehand technique (group 2). Group 1 included 6 congenital, 3 adolescent idiopathic scoliosis (AIS), one post tubercular kyphosis and Group 2 included 5 congenital, 4 AIS and one post tubercular kyphosis patient. Primary outcomes were measured in terms of screw violation and secondary outcome were measured in terms of Surgical time, Blood loss, Radiation exposure (no. of shoots required) and complications. MIMICS v18.0 Software was used for 3D reconstruction from CT scan images of all the patients. 3-Matic software was used to create drill guide. 3-D printer from Stratasys Mojo ABS P 430 model material cartilage (a thermoplastic material) was used for printing of vertebrae model and jigs. Two sample test of proportion was used to compare correctly and wrongly pedicle screw placement with 3D printing and freehand technique. T-test with equal variance was used for operating surgical time and blood loss. This work was carried out by collaboration of Orthopaedics Department, All India Institute of Medical Sciences (AIIMS), New Delhi and Biomedical Engineering Department, Indian Institute of Technology (IIT) Delhi. This project received the grant of USD 60000 from Department of Biotechnology (DBT

  15. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    International Nuclear Information System (INIS)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In

    2017-01-01

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device

  16. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    International Nuclear Information System (INIS)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-01-01

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use

  17. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

  18. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.

  19. SU-F-T-272: Patient Specific Quality Assurance of Prostate VMAT Plans with Portal Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Darko, J; Osei, E [Grand River Cancer Centre @ Grand River Hospital, Kitchener, ON (Canada); University of Waterloo, Waterloo, ON (Canada); Kiciak, A [University of Waterloo, Waterloo, ON (Canada); Badu, S; Grigorov, G; Fleck, A [Grand River Cancer Centre @ Grand River Hospital, Kitchener, ON (Canada)

    2016-06-15

    Purpose: To evaluate the effectiveness of using the Portal Dosimetry (PD) method for patient specific quality assurance of prostate VMAT plans. Methods: As per institutional protocol all VMAT plans were measured using the Varian Portal Dosimetry (PD) method. A gamma evaluation criterion of 3%-3mm with a minimum area gamma pass rate (gamma <1) of 95% is used clinically for all plans. We retrospectively evaluated the portal dosimetry results for 170 prostate patients treated with VMAT technique. Three sets of criterions were adopted for re-evaluating the measurements; 3%-3mm, 2%-2mm and 1%-1mm. For all criterions two areas, Field+1cm and MLC-CIAO were analysed.To ascertain the effectiveness of the portal dosimetry technique in determining the delivery accuracy of prostate VMAT plans, 10 patients previously measured with portal dosimetry, were randomly selected and their measurements repeated using the ArcCHECK method. The same criterion used in the analysis of PD was used for the ArcCHECK measurements. Results: All patient plans reviewed met the institutional criteria for Area Gamma pass rate. Overall, the gamma pass rate (gamma <1) decreases for 3%-3mm, 2%-2mm and 1%-1mm criterion. For each criterion the pass rate was significantly reduced when the MLC-CIAO was used instead of FIELD+1cm. There was noticeable change in sensitivity for MLC-CIAO with 2%-2mm criteria and much more significant reduction at 1%-1mm. Comparable results were obtained for the ArcCHECK measurements. Although differences were observed between the clockwise verses the counter clockwise plans in both the PD and ArcCHECK measurements, this was not deemed to be statistically significant. Conclusion: This work demonstrates that Portal Dosimetry technique can be effectively used for quality assurance of VMAT plans. Results obtained show similar sensitivity compared to ArcCheck. To reveal certain delivery inaccuracies, the use of a combination of criterions may provide an effective way in improving

  20. SU-F-T-558: ArcCheck for Patient Specific QA in Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Ramachandran, P; Tajaldeen, A; Esen, N; Geso, M; Taylor, D; Wanigaratne, D; Roozen, K; Kron, T

    2016-01-01

    Purpose: Stereotactic Ablative Radiotherapy (SABR) is one of the most preferred treatment techniques for early stage lung cancer. This technique has been extended to other treatment sites like Spine, Liver, Scapula, Sternum etc., This has resulted in increased physics QA time on machine. In this study, we’ve tested the feasibility of using ArcCheck as an alternative method to replace film dosimetry. Methods: Twelve patients with varied diagnosis of Lung, Liver, scapula, sternum and Spine undergoing SABR were selected for this study. Pre-treatment QA was performed for all the patients which include ionization chamber and film dosimetry. The required gamma criteria for each SABR plan to pass QA and proceed to treatment is 95% (3%,1mm). In addition to this routine process, the treatment plans were exported on to an ArcCheck phantom. The planned and measured dose from the ArcCheck device were compared using four different gamma criteria: 2%,2 mm, 3%,2 mm, 3%,1 mm and 3%, 3 mm. In addition to this, we’ve also introduced errors to gantry, collimator and couch angle to assess sensitivity of the ArcCheck with potential delivery errors. Results: The ArcCheck mean passing rates for all twelve cases were 76.1%±9.7% for gamma criteria 3%,1 mm, 89.5%±5.3% for 2%,2 mm, 92.6%±4.2% for 3%,2 mm, and 97.6%±2.4% for 3%,3 mm gamma criteria. When SABR spine cases are excluded, we observe ArcCheck passing rates higher than 95% for all the studied cases with 3%, 3mm, and ArcCheck results in acceptable agreement with the film gamma results. Conclusion: Our ArcCheck results at 3%, 3 mm were found to correlate well with our non-SABR spine routine patient specific QA results (3%,1 mm). We observed significant reduction in QA time on using ArcCheck for SABR QA. This study shows that ArcCheck could replace film dosimetry for all sites except SABR spine.

  1. SU-F-T-558: ArcCheck for Patient Specific QA in Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, P [Peter MacCallum Cancer Centre, Melbourne (Australia); RMIT University, Bundoora (Australia); Tajaldeen, A; Esen, N; Geso, M [RMIT University, Bundoora (Australia); Taylor, D; Wanigaratne, D; Roozen, K; Kron, T [Peter MacCallum Cancer Centre, Melbourne (Australia)

    2016-06-15

    Purpose: Stereotactic Ablative Radiotherapy (SABR) is one of the most preferred treatment techniques for early stage lung cancer. This technique has been extended to other treatment sites like Spine, Liver, Scapula, Sternum etc., This has resulted in increased physics QA time on machine. In this study, we’ve tested the feasibility of using ArcCheck as an alternative method to replace film dosimetry. Methods: Twelve patients with varied diagnosis of Lung, Liver, scapula, sternum and Spine undergoing SABR were selected for this study. Pre-treatment QA was performed for all the patients which include ionization chamber and film dosimetry. The required gamma criteria for each SABR plan to pass QA and proceed to treatment is 95% (3%,1mm). In addition to this routine process, the treatment plans were exported on to an ArcCheck phantom. The planned and measured dose from the ArcCheck device were compared using four different gamma criteria: 2%,2 mm, 3%,2 mm, 3%,1 mm and 3%, 3 mm. In addition to this, we’ve also introduced errors to gantry, collimator and couch angle to assess sensitivity of the ArcCheck with potential delivery errors. Results: The ArcCheck mean passing rates for all twelve cases were 76.1%±9.7% for gamma criteria 3%,1 mm, 89.5%±5.3% for 2%,2 mm, 92.6%±4.2% for 3%,2 mm, and 97.6%±2.4% for 3%,3 mm gamma criteria. When SABR spine cases are excluded, we observe ArcCheck passing rates higher than 95% for all the studied cases with 3%, 3mm, and ArcCheck results in acceptable agreement with the film gamma results. Conclusion: Our ArcCheck results at 3%, 3 mm were found to correlate well with our non-SABR spine routine patient specific QA results (3%,1 mm). We observed significant reduction in QA time on using ArcCheck for SABR QA. This study shows that ArcCheck could replace film dosimetry for all sites except SABR spine.

  2. Patient specific anatomy: the new area of anatomy based on computer science illustrated on liver.

    Science.gov (United States)

    Soler, Luc; Mutter, Didier; Pessaux, Patrick; Marescaux, Jacques

    2015-01-01

    Over the past century, medical imaging has brought a new revolution: internal anatomy of a patient could be seen without any invasive technique. This revolution has highlighted the two main limits of current anatomy: the anatomical description is physician dependent, and the average anatomy is more and more frequently insufficient to describe anatomical variations. These drawbacks can sometimes be so important that they create mistakes but they can be overcome through the use of 3D patient-specific surgical anatomy. In this article, we propose to illustrate such improvement of standard anatomy on liver. We first propose a general scheme allowing to easily compare the four main liver anatomical descriptions by Takasaki, Goldsmith and Woodburne, Bismuth and Couinaud. From this general scheme we propose four rules to apply in order to correct these initial anatomical definitions. Application of these rules allows to correct usual vascular topological mistakes of standard anatomy. We finally validate such correction on a database of 20 clinical cases compared to the 111 clinical cases of a Couinaud article. Out of the 20 images of the database, we note a revealing difference in 14 cases (70%) on at least one important branch of the portal network. Only six cases (30%) do not present a revealing difference between both labellings. We also show that the right portal fissure location on our 20 cases defined between segment V and VI of our anatomical definition is well correlated with the real position described by Couinaud on 111 cases, knowing that the theoretical position was only found in 46 cases out of 111, i.e., 41.44% of cases with the non-corrected Couinaud definition. We have proposed a new anatomical segmentation of the liver based on four main rules to apply in order to correct topological errors of the four main standard segmentations. Our validation clearly illustrates that this new definition corrects the large amount of mistakes created by the current

  3. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    International Nuclear Information System (INIS)

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-01-01

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle 3 ™ format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 ± 0.59 mm and 0.05 ± 0.31°, indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5° were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 ± 0.21%, 0.99 ± 0.59%, and 1.18 ± 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There is a strong correlation between total integral

  4. Proof of Concept Study for the Design, Manufacturing, and Testing of a Patient-Specific Shape Memory Device for Treatment of Unicoronal Craniosynostosis.

    Science.gov (United States)

    Borghi, Alessandro; Rodgers, Will; Schievano, Silvia; Ponniah, Allan; Jeelani, Owase; Dunaway, David

    2018-01-01

    Treatment of unicoronal craniosynostosis is a surgically challenging problem, due to the involvement of coronal suture and cranial base, with complex asymmetries of the calvarium and orbit. Several techniques for correction have been described, including surgical bony remodeling, early strip craniotomy with orthotic helmet remodeling and distraction. Current distraction devices provide unidirectional forces and have had very limited success. Nitinol is a shape memory alloy that can be programmed to the shape of a patient-specific anatomy by means of thermal treatment.In this work, a methodology to produce a nitinol patient-specific distractor is presented: computer tomography images of a 16-month-old patient with unicoronal craniosynostosis were processed to create a 3-dimensional model of his skull and define the ideal shape postsurgery. A mesh was produced from a nitinol sheet, formed to the ideal skull shape and heat treated to be malleable at room temperature. The mesh was afterward deformed to be attached to a rapid prototyped plastic skull, replica of the patient initial anatomy. The mesh/skull construct was placed in hot water to activate the mesh shape memory property: the deformed plastic skull was computed tomography scanned for comparison of its shape with the initial anatomy and with the desired shape, showing that the nitinol mesh had been able to distract the plastic skull to a shape close to the desired one.The shape-memory properties of nitinol allow for the design and production of patient-specific devices able to deliver complex, preprogrammable shape changes.

  5. Advanced 3D Mesh Manipulation in Stereolithographic Files and Post-Print Processing for the Manufacturing of Patient-Specific Vascular Flow Phantoms.

    Science.gov (United States)

    O'Hara, Ryan P; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N

    2016-02-27

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  6. Estudo eletromiográfico do músculo masseter durante o apertamento dentário e mastigação habitual em adultos com oclusão dentária normal Electromyographic study of the masseter muscle during maximal voluntary clenching and habitual chewing in adults with normal occlusion

    Directory of Open Access Journals (Sweden)

    Adriana Rahal

    2009-01-01

    Full Text Available OBJETIVO: Analisar a diferença entre os lados na atividade eletromiográfica do masseter em indivíduos adultos com oclusão dentária normal. MÉTODOS: Foram avaliados 30 indivíduos saudáveis entre 21 e 30 anos e realizou-se eletromiografia de superfície nos músculos masseteres direito e esquerdo, durante apertamento em máxima intercuspidação e mastigação habitual com uva passa. Foram computados os valores médios dos três apertamentos dentários e dos 15 segundos da mastigação habitual para cada indivíduo. Foram considerados para a análise: o lado de maior valor e o de menor valor eletromiográfico. RESULTADOS: Durante o apertamento dentário, a diferença média entre os dois lados foi de 20,0 microvolts (μV com intervalo de confiança (95% entre 14,0 e 26,0 μV e durante a mastigação habitual, a diferença média entre os dois lados foi de 10,3 μV com intervalo de confiança (95% entre 6,7 e 13,8 μV. CONCLUSÃO: Houve diferença estatisticamente significante entre os lados, com relação entre eles de 24% para o apertamento dentário e de 27% para a mastigação habitual, em indiv duos adultos saudáveis.PURPOSE: To analyze the difference between both sides of the face during the electromyographic activity of the masseter muscle in adults with normal occlusion. METHODS: Thirty healthy individuals with ages ranging from 21 to 30 years old were selected. Surface electromyography was performed on right and left masseter muscles during maximal voluntary clenching and habitual chewing with raisins. The mean values of three teeth clenching and fifteen seconds of habitual chewing were calculated for each subject. The analysis considered the sides with higher and lower electromyographic activity. RESULTS: During maximal voluntary clenching, the mean difference between sides was 20.0 microvolts (μV, with confidence interval (95% between 14.0 and 26.0 μV. During habitual chewing, the mean difference between sides was 10.3

  7. The reproducibility and responsiveness of a patient-specific approach: a new instrument in evaluation of treatment of temporomandibular disorders

    NARCIS (Netherlands)

    Rollman, A.; Naeije, M.; Visscher, C.M.

    2010-01-01

    AIMS: To evaluate the choice of activities on the Patient Specific Approach (PSA) in a sample of temporomandibular disorder (TMD) patients and to determine the clinimetric properties of the visual analog scale (VAS) scores of the PSA, in terms of reproducibility and responsiveness. METHODS: At

  8. 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees.

    Science.gov (United States)

    Liew, Yaoren; Beveridge, Erin; Demetriades, Andreas K; Hughes, Mark A

    2015-01-01

    We report the use of three-dimensional or 3D printed, patient-specific anatomy as a tool to improve informed patient consent and patient understanding in a case of posterior lumbar fixation. Next, we discuss its utility as an educational tool to enhance imaging interpretation by neurosurgery trainees.

  9. Patient-specific distal radius locking plate for fixation and accurate 3D positioning in corrective osteotomy.

    Science.gov (United States)

    Dobbe, J G G; Vroemen, J C; Strackee, S D; Streekstra, G J

    2014-11-01

    Preoperative three-dimensional planning methods have been described extensively. However, transferring the virtual plan to the patient is often challenging. In this report, we describe the management of a severely malunited distal radius fracture using a patient-specific plate for accurate spatial positioning and fixation. Twenty months postoperatively the patient shows almost painless reconstruction and a nearly normal range of motion.

  10. TH-A-BRC-03: AAPM TG218: Measurement Methods and Tolerance Levels for Patient-Specific IMRT Verification QA

    Energy Technology Data Exchange (ETDEWEB)

    Miften, M. [University of Colorado School of Medicine (United States)

    2016-06-15

    of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.

  11. TH-A-BRC-03: AAPM TG218: Measurement Methods and Tolerance Levels for Patient-Specific IMRT Verification QA

    International Nuclear Information System (INIS)

    Miften, M.

    2016-01-01

    of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.

  12. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene

    2003-10-01

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of {sup 131}I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other

  13. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    International Nuclear Information System (INIS)

    Swanson, K; Corwin, D; Rockne, R

    2014-01-01

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  14. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, K; Corwin, D [Northwestern University, Chicago, IL (United States); Rockne, R

    2014-06-15

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  15. Applying machine learning to predict patient-specific current CD 4 ...

    African Journals Online (AJOL)

    This work shows the application of machine learning to predict current CD4 cell count of an HIV-positive patient using genome sequences, viral load and time. A regression model predicting actual CD4 cell counts and a classification model predicting if a patient's CD4 cell count is less than 200 was built using a support ...

  16. Outcome in patient-specific PEEK cranioplasty : a two-center cohort study of 40 implants

    NARCIS (Netherlands)

    Jonkergouw, J.; van de Vijfeijken, S.E.C.M.; Nout, E.; Theys, T.; Van de Casteele, E.; Folkersma, H.; Depauw, P.R.A.M.; Becking, A.G.

    2016-01-01

    Objective: The best material choice for cranioplasty following craniectomy remains a subject to discussion. Complication rates after cranioplasty tend to be high. Computer-assisted 3-dimensional modelling of polyetheretherketone (PEEK) was recently introduced for cranial reconstruction. The aim of

  17. Verification of Accuracy of CyberKnife Tumor-tracking Radiation Therapy Using Patient-specific Lung Phantoms

    International Nuclear Information System (INIS)

    Jung, Jinhong; Song, Si Yeol; Yoon, Sang Min; Kwak, Jungwon; Yoon, KyoungJun; Choi, Wonsik; Jeong, Seong-Yun; Choi, Eun Kyung; Cho, Byungchul

    2015-01-01

    Purpose: To investigate the accuracy of the CyberKnife Xsight Lung Tracking System (XLTS) compared with that of a fiducial-based target tracking system (FTTS) using patient-specific lung phantoms. Methods and Materials: Three-dimensional printing technology was used to make individualized lung phantoms that closely mimicked the lung anatomy of actual patients. Based on planning computed tomographic data from 6 lung cancer patients who underwent stereotactic ablative radiation therapy using the CyberKnife, the volume above a certain Hounsfield unit (HU) was assigned as the structure to be filled uniformly with polylactic acid material by a 3-dimensional printer (3D Edison, Lokit, Korea). We evaluated the discrepancies between the measured and modeled target positions, representing the total tracking error, using 3 log files that were generated during each treatment for both the FTTS and the XLTS. We also analyzed the γ index between the film dose measured under the FTTS and XLTS. Results: The overall mean values and standard deviations of total tracking errors for the FTTS were 0.36 ± 0.39 mm, 0.15 ± 0.64 mm, and 0.15 ± 0.62 mm for the craniocaudal (CC), left–right (LR), and anteroposterior (AP) components, respectively. Those for the XLTS were 0.38 ± 0.54 mm, 0.13 ± 0.18 mm, and 0.14 ± 0.37 mm for the CC, LR, and AP components, respectively. The average of γ passing rates was 100% for the criteria of 3%, 3 mm; 99.6% for the criteria of 2%, 2 mm; and 86.8% for the criteria of 1%, 1 mm. Conclusions: The XLTS has segmentation accuracy comparable with that of the FTTS and small total tracking errors

  18. Determining the Cost-Savings Threshold and Alignment Accuracy of Patient-Specific Instrumentation in Total Ankle Replacements.

    Science.gov (United States)

    Hamid, Kamran S; Matson, Andrew P; Nwachukwu, Benedict U; Scott, Daniel J; Mather, Richard C; DeOrio, James K

    2017-01-01

    Traditional intraoperative referencing for total ankle replacements (TARs) involves multiple steps and fluoroscopic guidance to determine mechanical alignment. Recent adoption of patient-specific instrumentation (PSI) allows for referencing to be determined preoperatively, resulting in less steps and potentially decreased operative time. We hypothesized that usage of PSI would result in decreased operating room time that would offset the additional cost of PSI compared with standard referencing (SR). In addition, we aimed to compare postoperative radiographic alignment between PSI and SR. Between August 2014 and September 2015, 87 patients undergoing TAR were enrolled in a prospectively collected TAR database. Patients were divided into cohorts based on PSI vs SR, and operative times were reviewed. Radiographic alignment parameters were retrospectively measured at 6 weeks postoperatively. Time-driven activity-based costing (TDABC) was used to derive direct costs. Cost vs operative time-savings were examined via 2-way sensitivity analysis to determine cost-saving thresholds for PSI applicable to a range of institution types. Cost-saving thresholds defined the price of PSI below which PSI would be cost-saving. A total of 35 PSI and 52 SR cases were evaluated with no significant differences identified in patient characteristics. Operative time from incision to completion of casting in cases without adjunct procedures was 127 minutes with PSI and 161 minutes with SR ( P cost-savings threshold range at our institution of $863 below which PSI pricing would provide net cost-savings. Two-way sensitivity analysis generated a globally applicable cost-savings threshold model based on institution-specific costs and surgeon-specific time-savings. This study demonstrated equivalent postoperative TAR alignment with PSI and SR referencing systems but with a significant decrease in operative time with PSI. Based on TDABC and associated sensitivity analysis, a cost-savings threshold

  19. Verification of Accuracy of CyberKnife Tumor-tracking Radiation Therapy Using Patient-specific Lung Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jinhong [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul (Korea, Republic of); Song, Si Yeol, E-mail: coocoori@gmail.com [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Sang Min; Kwak, Jungwon; Yoon, KyoungJun [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Wonsik [Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung (Korea, Republic of); Jeong, Seong-Yun [Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Kyung; Cho, Byungchul [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-07-15

    Purpose: To investigate the accuracy of the CyberKnife Xsight Lung Tracking System (XLTS) compared with that of a fiducial-based target tracking system (FTTS) using patient-specific lung phantoms. Methods and Materials: Three-dimensional printing technology was used to make individualized lung phantoms that closely mimicked the lung anatomy of actual patients. Based on planning computed tomographic data from 6 lung cancer patients who underwent stereotactic ablative radiation therapy using the CyberKnife, the volume above a certain Hounsfield unit (HU) was assigned as the structure to be filled uniformly with polylactic acid material by a 3-dimensional printer (3D Edison, Lokit, Korea). We evaluated the discrepancies between the measured and modeled target positions, representing the total tracking error, using 3 log files that were generated during each treatment for both the FTTS and the XLTS. We also analyzed the γ index between the film dose measured under the FTTS and XLTS. Results: The overall mean values and standard deviations of total tracking errors for the FTTS were 0.36 ± 0.39 mm, 0.15 ± 0.64 mm, and 0.15 ± 0.62 mm for the craniocaudal (CC), left–right (LR), and anteroposterior (AP) components, respectively. Those for the XLTS were 0.38 ± 0.54 mm, 0.13 ± 0.18 mm, and 0.14 ± 0.37 mm for the CC, LR, and AP components, respectively. The average of γ passing rates was 100% for the criteria of 3%, 3 mm; 99.6% for the criteria of 2%, 2 mm; and 86.8% for the criteria of 1%, 1 mm. Conclusions: The XLTS has segmentation accuracy comparable with that of the FTTS and small total tracking errors.

  20. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  1. Clinical accuracy of a patient-specific femoral osteotomy guide in minimally-invasive posterior hip arthroplasty.

    Science.gov (United States)

    Schneider, Adrian K; Pierrepont, Jim W; Hawdon, Gabrielle; McMahon, Stephen

    2018-04-01

    Patient specific guides can be a valuable tool in improving the precision of planned femoral neck osteotomies, especially in minimally invasive hip surgery, where bony landmarks are often inaccessible. The aim of our study was to validate the accuracy of a novel patient specific femoral osteotomy guide for THR through a minimally invasive posterior approach, the direct superior approach (DSA). As part of our routine preoperative planning 30 patients underwent low dose CT scans of their arthritic hip. 3D printed patient specific femoral neck osteotomy guides were then produced. Intraoperatively, having cleared all soft tissue from the postero-lateral neck of the enlocated hip, the guide was placed and pinned onto the posterolateral femoral neck. The osteotomy was performed using an oscillating saw and the uncemented hip components were implanted as per routine. Postoperatively, the achieved level of the osteotomy at the medial calcar was compared with the planned level of resection using a 3D/2D matching analysis (Mimics X-ray module, Materialise, Belgium). A total of 30 patients undergoing uncemented Trinity™ acetabular and TriFit TS™ femoral component arthroplasty (Corin, UK) were included in our analysis. All but one of our analysed osteotomies were found to be within 3 mm from the planned height of osteotomy. In one patient the level of osteotomy deviated 5 mm below the planned level of resection. Preoperative planning and the use of patient specific osteotomy guides provides an accurate method of performing femoral neck osteotomies in minimally invasive hip arthroplasty using the direct superior approach. IV (Case series).

  2. SU-E-CAMPUS-T-04: Statistical Process Control for Patient-Specific QA in Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    LAH, J [Myongji Hospital, Goyangsi, Gyeonggi-do (Korea, Republic of); SHIN, D [National Cancer Center, Goyangsi, Gyeonggi-do (Korea, Republic of); Kim, G [UCSD Medical Center, La Jolla, CA (United States)

    2014-06-15

    Purpose: To evaluate and improve the reliability of proton QA process, to provide an optimal customized level using the statistical process control (SPC) methodology. The aim is then to suggest the suitable guidelines for patient-specific QA process. Methods: We investigated the constancy of the dose output and range to see whether it was within the tolerance level of daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to suggest the suitable guidelines for patient-specific QA in proton beam by using process capability indices. In this study, patient QA plans were classified into 6 treatment sites: head and neck (41 cases), spinal cord (29 cases), lung (28 cases), liver (30 cases), pancreas (26 cases), and prostate (24 cases). Results: The deviations for the dose output and range of daily QA process were ±0.84% and ±019%, respectively. Our results show that the patient-specific range measurements are capable at a specification limit of ±2% in all treatment sites except spinal cord cases. In spinal cord cases, comparison of process capability indices (Cp, Cpm, Cpk ≥1, but Cpmk ≤1) indicated that the process is capable, but not centered, the process mean deviates from its target value. The UCL (upper control limit), CL (center line) and LCL (lower control limit) for spinal cord cases were 1.37%, −0.27% and −1.89%, respectively. On the other hands, the range differences in prostate cases were good agreement between calculated and measured values. The UCL, CL and LCL for prostate cases were 0.57%, −0.11% and −0.78%, respectively. Conclusion: SPC methodology has potential as a useful tool to customize an optimal tolerance levels and to suggest the suitable guidelines for patient-specific QA in clinical proton beam.

  3. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting.

    Science.gov (United States)

    Ryan, Justin R; Almefty, Kaith K; Nakaji, Peter; Frakes, David H

    2016-04-01

    Neurosurgery simulator development is growing as practitioners recognize the need for improved instructional and rehearsal platforms to improve procedural skills and patient care. In addition, changes in practice patterns have decreased the volume of specific cases, such as aneurysm clippings, which reduces the opportunity for operating room experience. The authors developed a hands-on, dimensionally accurate model for aneurysm clipping using patient-derived anatomic data and three-dimensional (3D) printing. Design of the