WorldWideScience

Sample records for patient treatment planning

  1. Improvements in patient treatment planning systems

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Wessol, D.E.; Nigg, D.W.; Atkinson, C.A.; Babcock, R.; Evans, J.

    1995-01-01

    The Boron Neutron Capture Therapy, Radiation treatment planning environment (BNCT-Rtpe) software system is used to develop treatment planning information. In typical use BNCT-Rtpe consists of three main components: (1) Semi-automated geometric modeling of objects (brain, target, eyes, sinus) derived from MRI, CT, and other medical imaging modalities, (2) Dose computations for these geometric models with rtt-MC, the INEL Monte Carlo radiation transport computer code, and (3) Dose contouring overlaid on medical images as well as generation of other dose displays. We continue to develop a planning system based on three-dimensional image-based reconstructions using Bspline surfaces. Even though this software is in an experimental state, it has been applied for large animal research and for an isolated case of treatment for a human glioma. Radiation transport is based on Monte Carlo, however there will be implementations of faster methods (e.g. diffusion theory) in the future. The important thing for treatment planning is the output which must convey, to the radiologist, the deposition of dose to healthy and target tissue. Many edits are available such that one can obtain contours registered to medical image, dose/volume histograms and most information required for treatment planning and response assessment. Recent work has been to make the process more automatic and easier to use. The interface, now implemented for contouring and reconstruction, utilizes the Xwindowing system and the MOTIF graphical users interface for effective interaction with the planner. Much work still remains before the tool can be applied in a routine clinical setting

  2. Patients with hip prosthesis: radiotherapy treatment planning considerations

    International Nuclear Information System (INIS)

    Ganesh, K.M.; Supe, Sanjay S.

    2000-01-01

    The number of patients with hip prosthesis undergoing radiotherapy for pelvic cancer worldwide is increasing. This might be of importance depending on the materials in the prosthesis and whether any of the treatment fields are involved in the prosthesis. Radiotherapy planning involving the pelvic region of patients having total hip prosthesis has been found to be difficult due to the effect of the prosthesis on the dose distribution. This review is intended to project dosimetric considerations and possible solutions to this uncommon problem

  3. Advance care planning: the impact of Ceiling of Treatment plans in patients with Coordinate My Care.

    Science.gov (United States)

    Broadhurst, Helen Lucy; Droney, Joanne; Callender, Tom; Shaw, Amanda; Riley, Julia

    2018-03-22

    The aim of this evaluation is to describe the components and results of urgent care planning in Coordinate My Care (CMC), a digital clinical service for patients with life-limiting illness, for use if a patient is unable to make or express choices. Ceiling of treatment (CoT) plans were created detailing where the patient would like to receive their care and how aggressive medical interventions should be. A retrospective service evaluation was completed of all CMC records created between December 2015 and September 2016 (n=6854). CMC records were divided into two cohorts: those with a CoT plan and those without. The factors associated with these cohorts were reviewed including age, diagnosis, resuscitation status and preferences for place of death (PPD). Analysis of the non-mandatory free text section was carried out. Two-thirds of patients had recorded decisions about CoT. Regardless of which CoT option was chosen, for most patients, PPD was home or care home. Patients with a CoT plan were more likely to have a documented resuscitation status.Patients with a CoT were more likely to die in their PPD (82%vs71%, OR 1.79, pcare planning. Three facets of urgent care planning identified include PPD, CoT and resuscitation status. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    International Nuclear Information System (INIS)

    Song, Ting; Zhou, Linghong; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Jiang, Steve B; Gu, Xuejun

    2015-01-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control. (paper)

  5. IMRT treatment plans and functional planning with functional lung imaging from 4D-CT for thoracic cancer patients

    Directory of Open Access Journals (Sweden)

    Huang Tzung-Chi

    2013-01-01

    Full Text Available Abstract Background and purpose Currently, the inhomogeneity of the pulmonary function is not considered when treatment plans are generated in thoracic cancer radiotherapy. This study evaluates the dose of treatment plans on highly-functional volumes and performs functional treatment planning by incorporation of ventilation data from 4D-CT. Materials and methods Eleven patients were included in this retrospective study. Ventilation was calculated using 4D-CT. Two treatment plans were generated for each case, the first one without the incorporation of the ventilation and the second with it. The dose of the first plans was overlapped with the ventilation and analyzed. Highly-functional regions were avoided in the second treatment plans. Results For small targets in the first plans (PTV  Conclusion Radiation treatments affect functional lung more seriously in large tumor cases. With compromise of dose to other critical organs, functional treatment planning to reduce dose in highly-functional lung volumes can be achieved

  6. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans.

    Science.gov (United States)

    Wang, Yibing; Breedveld, Sebastiaan; Heijmen, Ben; Petit, Steven F

    2016-06-07

    IMRT planning with commercial Treatment Planning Systems (TPSs) is a trial-and-error process. Consequently, the quality of treatment plans may not be consistent among patients, planners and institutions. Recently, different plan quality assurance (QA) models have been proposed, that could flag and guide improvement of suboptimal treatment plans. However, the performance of these models was validated using plans that were created using the conventional trail-and-error treatment planning process. Consequently, it is challenging to assess and compare quantitatively the accuracy of different treatment planning QA models. Therefore, we created a golden standard dataset of consistently planned Pareto-optimal IMRT plans for 115 prostate patients. Next, the dataset was used to assess the performance of a treatment planning QA model that uses the overlap volume histogram (OVH). 115 prostate IMRT plans were fully automatically planned using our in-house developed TPS Erasmus-iCycle. An existing OVH model was trained on the plans of 58 of the patients. Next it was applied to predict DVHs of the rectum, bladder and anus of the remaining 57 patients. The predictions were compared with the achieved values of the golden standard plans for the rectum D mean, V 65, and V 75, and D mean of the anus and the bladder. For the rectum, the prediction errors (predicted-achieved) were only  -0.2  ±  0.9 Gy (mean  ±  1 SD) for D mean,-1.0  ±  1.6% for V 65, and  -0.4  ±  1.1% for V 75. For D mean of the anus and the bladder, the prediction error was 0.1  ±  1.6 Gy and 4.8  ±  4.1 Gy, respectively. Increasing the training cohort to 114 patients only led to minor improvements. A dataset of consistently planned Pareto-optimal prostate IMRT plans was generated. This dataset can be used to train new, and validate and compare existing treatment planning QA models, and has been made publicly available. The OVH model was highly accurate

  7. Automatic treatment planning implementation using a database of previously treated patients

    International Nuclear Information System (INIS)

    Moore, J A; Evans, K; Yang, W; Herman, J; McNutt, T

    2014-01-01

    Purpose: Using a database of prior treated patients, it is possible to predict the dose to critical structures for future patients. Automatic treatment planning speeds the planning process by generating a good initial plan from predicted dose values. Methods: A SQL relational database of previously approved treatment plans is populated via an automated export from Pinnacle 3 . This script outputs dose and machine information and selected Regions of Interests as well as its associated Dose-Volume Histogram (DVH) and Overlap Volume Histograms (OVHs) with respect to the target structures. Toxicity information is exported from Mosaiq and added to the database for each patient. The SQL query is designed to ask the system for the lowest achievable dose for a specified region of interest (ROI) for each patient with a given volume of that ROI being as close or closer to the target than the current patient. Results: The additional time needed to calculate OVHs is approximately 1.5 minutes for a typical patient. Database lookup of planning objectives takes approximately 4 seconds. The combined additional time is less than that of a typical single plan optimization (2.5 mins). Conclusions: An automatic treatment planning interface has been successfully used by dosimetrists to quickly produce a number of SBRT pancreas treatment plans. The database can be used to compare dose to individual structures with the toxicity experienced and predict toxicities before planning for future patients.

  8. The role of PET/CT in radiation treatment planning for cancer patient treatment

    International Nuclear Information System (INIS)

    2008-10-01

    Positron emission tomography (PET) and, more recently, integrated positron emission tomography/X ray computed tomography (PET/CT) have appeared as significant diagnostic imaging systems in clinical medicine. Accurate recognition of cancers in patients by means of PET scanning with Fluorine-18-fluorodeoxyglucose ( 18 F-FDG) has illustrated a need to determine a mode of therapy to achieve better prognoses. The clinical management of cancer patients has improved dramatically with the introduction of clinical PET. For treatment of cancer patients, on the other hand, radiation therapy (RT) plays an important role as a non-invasive therapy. It is crucial that cancers are encompassed by high dose irradiation, particularly in cases of curative RT. Irradiation should precisely target the entire tumour and aim to minimise the size of microscopic extensions of the cancer, as well as minimize radiation damage to normal tissues. A new imaging technique has therefore been sought to allow precise delineation of the cancer target to be irradiated. Clinical PET, combined with utilization of 18 F-FDG, may have an important role in radiation treatment planning (RTP) in lung cancer. In addition to determining if RT is appropriate and whether therapy will be given with curative or palliative intent, 18 F-FDG-PET is useful for determining therapy ports. It can be used both to limit ports to spare normal tissue and to include additional involved regions. Several studies have shown that PET has an impact on RTP in an important proportion of patients. It is to be hoped that treatment plans that include all the 18 F-FDG-avid lesions or the 18 F-FDG-avid portions of a complex mass will result in more effective local control with less unnecessary tissue being treated. The IAEA has placed emphasis on the issue of application of clinical PET for radiation treatment planning in various cancer patients. Two consultants meetings were held in 2006 and their results are summarized into this IAEA

  9. Concept for individualized patient allocation: ReCompare—remote comparison of particle and photon treatment plans

    International Nuclear Information System (INIS)

    Lühr, Armin; Baumann, Michael; Löck, Steffen; Roth, Klaus; Helmbrecht, Stephan; Jakobi, Annika; Petersen, Jørgen B; Just, Uwe; Krause, Mechthild; Enghardt, Wolfgang

    2014-01-01

    Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility

  10. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    International Nuclear Information System (INIS)

    Alexander, A; DeBlois, F; Stroian, G; Al-Yahya, K; Heath, E; Seuntjens, J

    2007-01-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM R T, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform

  11. Automation of radiation treatment planning. Evaluation of head and neck cancer patient plans created by the Pinnacle"3 scripting and Auto-Planning functions

    International Nuclear Information System (INIS)

    Speer, Stefan; Weiss, Alexander; Bert, Christoph; Klein, Andreas; Kober, Lukas; Yohannes, Indra

    2017-01-01

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle"3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced. (orig.) [de

  12. Automation of radiation treatment planning : Evaluation of head and neck cancer patient plans created by the Pinnacle3 scripting and Auto-Planning functions.

    Science.gov (United States)

    Speer, Stefan; Klein, Andreas; Kober, Lukas; Weiss, Alexander; Yohannes, Indra; Bert, Christoph

    2017-08-01

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle 3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced.

  13. Human applications of the INEL patient treatment planning system

    International Nuclear Information System (INIS)

    Wheeler, F.; Wessol, D.; Atkinson, C.; Nigg, D.

    1995-01-01

    During the past few years, murine and large animal research, as well as human studies have provided data to the point where human clinical trials have been initiated at the BMRR using BPA-F for gliomas and at the Massachusetts Institute of Technology Reactor (MITR) using BPA for melanomas of the extremeties. It is expected that glioma trials using BSH will proceed soon at the Petten High Flux Reactor (HFR) in the Netherlands. The first human glioma epithermal boron neutron capture therapy application was performed at the BMRR in the fall of 1994. This was a collaborative effort by BNL, Beth Israel Manhattan hospital, and INEL. The INEL planning system was chosen to perform dose predictions for this application

  14. Fully automated VMAT treatment planning for advanced-stage NSCLC patients

    International Nuclear Information System (INIS)

    Della Gala, Giuseppe; Dirkx, Maarten L.P.; Hoekstra, Nienke; Fransen, Dennie; Pol, Marjan van de; Heijmen, Ben J.M.; Lanconelli, Nico; Petit, Steven F.

    2017-01-01

    To develop a fully automated procedure for multicriterial volumetric modulated arc therapy (VMAT) treatment planning (autoVMAT) for stage III/IV non-small cell lung cancer (NSCLC) patients treated with curative intent. After configuring the developed autoVMAT system for NSCLC, autoVMAT plans were compared with manually generated clinically delivered intensity-modulated radiotherapy (IMRT) plans for 41 patients. AutoVMAT plans were also compared to manually generated VMAT plans in the absence of time pressure. For 16 patients with reduced planning target volume (PTV) dose prescription in the clinical IMRT plan (to avoid violation of organs at risk tolerances), the potential for dose escalation with autoVMAT was explored. Two physicians evaluated 35/41 autoVMAT plans (85%) as clinically acceptable. Compared to the manually generated IMRT plans, autoVMAT plans showed statistically significant improved PTV coverage (V_9_5_% increased by 1.1% ± 1.1%), higher dose conformity (R_5_0 reduced by 12.2% ± 12.7%), and reduced mean lung, heart, and esophagus doses (reductions of 0.9 Gy ± 1.0 Gy, 1.5 Gy ± 1.8 Gy, 3.6 Gy ± 2.8 Gy, respectively, all p [de

  15. Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning.

    Science.gov (United States)

    Liu, Shi; Wu, Yu; Wooten, H Omar; Green, Olga; Archer, Brent; Li, Harold; Yang, Deshan

    2016-03-08

    A software tool is developed, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance image-guided radiation therapy (MR-IGRT) delivery system. This tool is necessary for managing patient treatment scheduling in our clinic. The predicted treatment delivery time and the assessment of plan complexities could also be useful to aid treatment planning. A patient's total treatment delivery time, not including time required for localization, is modeled as the sum of four components: 1) the treatment initialization time; 2) the total beam-on time; 3) the gantry rotation time; and 4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam-on time can be calculated using both the planned beam-on time and the decay-corrected dose rate. To predict the remain-ing components, we retrospectively analyzed the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, linear regression is applied to predict the gantry rotation time. The MLC motion time is calculated using the leaves delay modeling method and the leaf motion speed. A quantitative analysis was performed to understand the correlation between the total treatment time and the plan complexity. The proposed algorithm is able to predict the ViewRay treatment delivery time with the average prediction error 0.22min or 1.82%, and the maximal prediction error 0.89 min or 7.88%. The analysis has shown the correlation between the plan modulation (PM) factor and the total treatment delivery time, as well as the treatment delivery duty cycle. A possibility has been identified to significantly reduce MLC motion time by optimizing the positions of closed MLC pairs. The accuracy of

  16. Optimization of tomotherapy treatment planning for patients with bilateral hip prostheses.

    Science.gov (United States)

    Chapman, David; Smith, Shaun; Barnett, Rob; Bauman, Glenn; Yartsev, Slav

    2014-02-04

    To determine the effect of different imaging options and the most efficient imaging strategy for treatment planning of patients with hip prostheses. The planning kilovoltage CT (kVCT) and daily megavoltage CT (MVCT) studies for three prostate cancer patients with bilateral hip prostheses were used for creating hybrid kVCT/MVCT image sets. Treatment plans were created for kVCT images alone, hybrid kVCT/MVCT images, and MVCT images alone using the same dose prescription and planning parameters. The resulting dose volume histograms were compared. The orthopedic metal artifact reduction (O-MAR) reconstruction tool for kVCT images and different MVCT options were investigated with a water tank fit with double hip prostheses. Treatment plans were created for all imaging options and calculated dose was compared with the one measured by a pin-point ion chamber. On average for three patients, the D35% for the bladder was 8% higher in plans based on MVCT images and 7% higher in plans based on hybrid images, compared to the plans based on kVCT images alone. Likewise, the D35% for the rectum was 3% higher than the kVCT based plan for both hybrid and MVCT plans. The average difference in planned D99% in the PTV compared to kVCT plans was 0.9% and 0.1% for MVCT and hybrid plans, respectively. For the water tank with hip prostheses phantom, the kVCT plan with O-MAR correction applied showed better agreement between the measured and calculated dose than the original image set, with a difference of -1.9% compared to 3.3%. The measured doses for the MVCT plans were lower than the calculated dose due to image size limitations. The best agreement was for the kVCT/MVCT hybrid plans with the difference between calculated and measured dose around 1%. MVCT image provides better visualization of patient anatomy and hybrid kVCT/MVCT study enables more accurate calculations using updated MVCT relative electron density calibration.

  17. Optimization of tomotherapy treatment planning for patients with bilateral hip prostheses

    International Nuclear Information System (INIS)

    Chapman, David; Smith, Shaun; Barnett, Rob; Bauman, Glenn; Yartsev, Slav

    2014-01-01

    To determine the effect of different imaging options and the most efficient imaging strategy for treatment planning of patients with hip prostheses. The planning kilovoltage CT (kVCT) and daily megavoltage CT (MVCT) studies for three prostate cancer patients with bilateral hip prostheses were used for creating hybrid kVCT/MVCT image sets. Treatment plans were created for kVCT images alone, hybrid kVCT/MVCT images, and MVCT images alone using the same dose prescription and planning parameters. The resulting dose volume histograms were compared. The orthopedic metal artifact reduction (O-MAR) reconstruction tool for kVCT images and different MVCT options were investigated with a water tank fit with double hip prostheses. Treatment plans were created for all imaging options and calculated dose was compared with the one measured by a pin-point ion chamber. On average for three patients, the D 35% for the bladder was 8% higher in plans based on MVCT images and 7% higher in plans based on hybrid images, compared to the plans based on kVCT images alone. Likewise, the D 35% for the rectum was 3% higher than the kVCT based plan for both hybrid and MVCT plans. The average difference in planned D99% in the PTV compared to kVCT plans was 0.9% and 0.1% for MVCT and hybrid plans, respectively. For the water tank with hip prostheses phantom, the kVCT plan with O-MAR correction applied showed better agreement between the measured and calculated dose than the original image set, with a difference of -1.9% compared to 3.3%. The measured doses for the MVCT plans were lower than the calculated dose due to image size limitations. The best agreement was for the kVCT/MVCT hybrid plans with the difference between calculated and measured dose around 1%. MVCT image provides better visualization of patient anatomy and hybrid kVCT/MVCT study enables more accurate calculations using updated MVCT relative electron density calibration

  18. Effect of eliminating administrative radiographs on patient exposure and accuracy of provisional treatment plans

    International Nuclear Information System (INIS)

    Kantor, M.L.; Slome, B.A.

    1987-01-01

    Published reports and recommendations suggest that radiographs are often ordered because of administrative policies during the screening and selection of patients for dental school clinics. This study examined the prescription of radiographs for two groups of patients: those who were radiographically examined according to an administrative policy and those whose radiographic needs were determined by a clinical examination. The provisional treatment needs assessment based on the screening examination was compared to the final treatment plan based on a complete diagnostic workup for both groups of patients to assess the effect of a change in school policy. Clinicians ordered half the number of panoramic radiographs as would have been ordered by administrative policy. There was no significant difference in the agreement between the provisional and final treatment plans under the two policies. These results suggest that dental schools can comply with federal recommendations against administrative radiographs without compromising patient selection

  19. Patient dose simulation in X-ray CT using a radiation treatment-planning system

    International Nuclear Information System (INIS)

    Nakae, Yasuo; Oda, Masahiko; Minamoto, Takahiro

    2003-01-01

    Medical irradiation dosage has been increasing with the development of new radiological equipment and new techniques like interventional radiology. It is fair to say that patient dose has been increased as a result of the development of multi-slice CT. A number of studies on the irradiation dose of CT have been reported, and the computed tomography dose index (CTDI) is now used as a general means of determining CT dose. However, patient dose distribution in the body varies with the patient's constitution, bowel gas in the body, and conditions of exposure. In this study, patient dose was analyzed from the viewpoint of dose distribution, using a radiation treatment-planning computer. Percent depth dose (PDD) and the off-center ratio (OCR) of the CT beam are needed to calculate dose distribution by the planning computer. Therefore, X-ray CT data were measured with various apparatuses, and beam data were sent to the planning computer. Measurement and simulation doses in the elliptical phantom (Mix-Dp: water equivalent material) were collated, and the CT irradiation dose was determined for patient dose simulation. The rotational radiation treatment technique was used to obtain the patient dose distribution of CT, and patient dose was evaluated through simulation of the dose distribution. CT images of the thorax were sent to the planning computer and simulated. The result was that the patient dose distribution of the thorax was obtained for CT examination. (author)

  20. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning

    International Nuclear Information System (INIS)

    Lee, Taewoo; Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.

    2013-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl 2 distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the

  1. Teaching Treatment Planning.

    Science.gov (United States)

    Seligman, Linda

    1993-01-01

    Describes approach to teaching treatment planning that author has used successfully in both seminars and graduate courses. Clarifies nature and importance of systematic treatment planning, then describes context in which treatment planning seems more effectively taught, and concludes with step-by-step plan for teaching treatment planning.…

  2. SU-E-T-619: Planning 131I Thyroid Treatments for Patients Requiring Hemodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, D [Kaiser Permanente, Los Angeles Ca, CA (United States)

    2015-06-15

    Purpose: Treatment of 131I thyroid cancer patients who also require regular hemodialysis (HD) treatments requires consideration of the administered activity and the HD schedule. In this work the red bone marrow is considered the dose limiting organ and the treatment plan optimized the HD schedule with the amount of radioactivity administered. Methods: The ‘Safe’ dose was considered to be 2 Gy (200 rad) to the red bone marrow.1 131Iodine doses of 50 mCi to 100 mCi were modeled and found to require a range of HD schedules. In order to achieve the safe dose to the red marrow, more aggressive HD schedules are required. 100 mCi required an aggressive HD treatment of every 24 hours for at least one week to achieve the ‘safe’ dose and an exposure appropriate for release from the hospital. A more normal schedule of HD beginning at 18 hours then every 48 hours allowed for up to 60 mCi administered dose allowed for a safe dose and expected release after less than one week.2In addition room was equipped with video cameras cameras for monitoring the patient and their vital signs from an adjacent room during HD. In this way the dialysis nurses were able to monitor the patient closely from an adjoining room. Results: Two HD patients were administered adjusted doses of about 50 mCi. The medical and nursing staff were exposed to no more than 4 mR for the entire treatment. The residual Iodine in the patient appeared to be normal after 4 to 6 days when the patient was released. Conclusion: With careful treatment planning 131Iodine treatments can be performed safely for patients needing HD and treatments appear to be as effective as those for patients with normal renal function.

  3. SU-E-T-619: Planning 131I Thyroid Treatments for Patients Requiring Hemodialysis

    International Nuclear Information System (INIS)

    Stroud, D

    2015-01-01

    Purpose: Treatment of 131I thyroid cancer patients who also require regular hemodialysis (HD) treatments requires consideration of the administered activity and the HD schedule. In this work the red bone marrow is considered the dose limiting organ and the treatment plan optimized the HD schedule with the amount of radioactivity administered. Methods: The ‘Safe’ dose was considered to be 2 Gy (200 rad) to the red bone marrow.1 131Iodine doses of 50 mCi to 100 mCi were modeled and found to require a range of HD schedules. In order to achieve the safe dose to the red marrow, more aggressive HD schedules are required. 100 mCi required an aggressive HD treatment of every 24 hours for at least one week to achieve the ‘safe’ dose and an exposure appropriate for release from the hospital. A more normal schedule of HD beginning at 18 hours then every 48 hours allowed for up to 60 mCi administered dose allowed for a safe dose and expected release after less than one week.2In addition room was equipped with video cameras cameras for monitoring the patient and their vital signs from an adjacent room during HD. In this way the dialysis nurses were able to monitor the patient closely from an adjoining room. Results: Two HD patients were administered adjusted doses of about 50 mCi. The medical and nursing staff were exposed to no more than 4 mR for the entire treatment. The residual Iodine in the patient appeared to be normal after 4 to 6 days when the patient was released. Conclusion: With careful treatment planning 131Iodine treatments can be performed safely for patients needing HD and treatments appear to be as effective as those for patients with normal renal function

  4. Patient geometry-driven information retrieval for IMRT treatment plan quality control

    International Nuclear Information System (INIS)

    Wu Binbin; Ricchetti, Francesco; Sanguineti, Giuseppe; Kazhdan, Misha; Simari, Patricio; Chuang Ming; Taylor, Russell; Jacques, Robert; McNutt, Todd

    2009-01-01

    Purpose: Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. Methods: It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. Results: Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D 50 (DVH dose at 50% volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as

  5. Fully automated VMAT treatment planning for advanced-stage NSCLC patients

    Energy Technology Data Exchange (ETDEWEB)

    Della Gala, Giuseppe [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Universita di Bologna, Scuola di Scienze, Alma Mater Studiorum, Bologna (Italy); Dirkx, Maarten L.P.; Hoekstra, Nienke; Fransen, Dennie; Pol, Marjan van de; Heijmen, Ben J.M. [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Lanconelli, Nico [Universita di Bologna, Scuola di Scienze, Alma Mater Studiorum, Bologna (Italy); Petit, Steven F. [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Massachusetts General Hospital - Harvard Medical School, Department of Radiation Oncology, Boston, MA (United States)

    2017-05-15

    To develop a fully automated procedure for multicriterial volumetric modulated arc therapy (VMAT) treatment planning (autoVMAT) for stage III/IV non-small cell lung cancer (NSCLC) patients treated with curative intent. After configuring the developed autoVMAT system for NSCLC, autoVMAT plans were compared with manually generated clinically delivered intensity-modulated radiotherapy (IMRT) plans for 41 patients. AutoVMAT plans were also compared to manually generated VMAT plans in the absence of time pressure. For 16 patients with reduced planning target volume (PTV) dose prescription in the clinical IMRT plan (to avoid violation of organs at risk tolerances), the potential for dose escalation with autoVMAT was explored. Two physicians evaluated 35/41 autoVMAT plans (85%) as clinically acceptable. Compared to the manually generated IMRT plans, autoVMAT plans showed statistically significant improved PTV coverage (V{sub 95%} increased by 1.1% ± 1.1%), higher dose conformity (R{sub 50} reduced by 12.2% ± 12.7%), and reduced mean lung, heart, and esophagus doses (reductions of 0.9 Gy ± 1.0 Gy, 1.5 Gy ± 1.8 Gy, 3.6 Gy ± 2.8 Gy, respectively, all p < 0.001). To render the six remaining autoVMAT plans clinically acceptable, a dosimetrist needed less than 10 min hands-on time for fine-tuning. AutoVMAT plans were also considered equivalent or better than manually optimized VMAT plans. For 6/16 patients, autoVMAT allowed tumor dose escalation of 5-10 Gy. Clinically deliverable, high-quality autoVMAT plans can be generated fully automatically for the vast majority of advanced-stage NSCLC patients. For a subset of patients, autoVMAT allowed for tumor dose escalation. (orig.) [German] Entwicklung einer vollautomatisierten, auf multiplen Kriterien basierenden volumenmodulierten Arc-Therapie-(VMAT-)Behandlungsplanung (autoVMAT) fuer kurativ behandelte Patienten mit nicht-kleinzelligem Bronchialkarzinom (NSCLC) im Stadium III/IV. Nach Konfiguration unseres auto

  6. Automation of radiation treatment planning. Evaluation of head and neck cancer patient plans created by the Pinnacle{sup 3} scripting and Auto-Planning functions

    Energy Technology Data Exchange (ETDEWEB)

    Speer, Stefan; Weiss, Alexander; Bert, Christoph [Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Department of Radiation Oncology, Erlangen (Germany); Klein, Andreas [EKS Engineering GmbH, Fuerth (Germany); Kober, Lukas [Strahlentherapie Tauber-Franken, Bad Mergentheim (Germany); Yohannes, Indra [Rinecker Proton Therapy Center, Munich (Germany)

    2017-08-15

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle{sup 3} treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced. (orig.) [German] Intensitaetsmodulierte Strahlentherapie (IMRT) hat sich als Standard durchgesetzt. Mit IMRT oder volumenmodulierter Arc-Therapie (VMAT) lassen sich

  7. New customized patient repositioning system for use in three dimensional (3D) treatment planning and radiotherapy

    International Nuclear Information System (INIS)

    Kitahara, Toshihiro; Shirato, Hiroki; Nishioka, Takeshi; Nishiyama, Noriaki; Yamaguchi, Megumi; Watanabe, Yoshiharu; Takekawa, Naomitu; Miyasaka, Kazuo

    1997-01-01

    Purpose/Objective: To develop a safe and easy method for customized patient repositioning and immobilization prior to 3-D treatment planning and during precise radiotherapy. Materials and methods: The new material consists of impression material, and covering material to fix and hold the impression. The impression material is composed of numerous effervescent polystyrene beads (3.1 mm in diameter) coated by polymerizing substance, urethane prepolymer. When being wet, the material beads adhere to each other due to polymelization, and it is hardened in 5 to 10 minutes. Within one hour the mold is sufficiently dry to be used for treatment planning utilizing computed tomography(CT). The physical characteristics of the material, the subjective comfort of the patient, the reduction in time required for repositioning in the treatment of the head and neck tumors, and the reduction in patient movement in the treatment of the breast cancers were investigated. Results: During the hardening stage, the maximum temperature of the material was 33 deg. C. Non-toxic CO 2 gas was produced and evaporated from the covering fabric. The mold, with a density of 0.095, was strong enough to endure compression, flexure, and scratching. In the healthy volunteers, no sensitivity to the skin was observed after 12 hours' attachment to the skin. The CT number of the material was less than minus 800, and no build-up effect was demonstrated in megavoltage photon therapy. Various molds were made and used as neck rest adjunctive to thermoplastic face mask, whole body cast, and arm rest (Figure). A questionnaire survey administered to 59 patients with brain, head and neck tumors, and to 18 patients with breast cancers, revealed that subjective comfort was markedly improved (90.9%) of improved (9.1%) by virtue of the new material. In the treatment of head and neck tumors, the mean time and SD for repositioning were 61.1 ± 13.6 seconds with the ready-made neck-rest and 49.4 ± 8.4 seconds with the

  8. CT images and radiotherapy treatment planning of patients with breast cancer: A dataset

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaei

    2017-08-01

    Full Text Available The data presented here were originally collected for the research project “CT-Scan processing and analysis in patient with breast cancer after radiotherapy”. Also, it reported in our study “Prediction of Lung Tissue Damage by Evaluating Clinical and Dosimetric Parameters in Breast Cancer Patients” (Hasanabdali et al., 2016 [1]. This article describes and directly links to 52 subjects referred to Mahdieh Oncology and Radiotherapy Center from February to August 2015. Treatment planning was done for delivering 50 Gy dose to PTV in 25 fractions. the lungs and heart objects were extracted from CT images along with compliance Dose plan. Dose-volume histogram (DVH and Dose-mass histogram (DMH extracted using CT images and dose plan matrix. Moreover, the complete clinical and dosimetric specifications of subjects is attached.

  9. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen; Williamson, Jeffrey F.; Schmidt-Ullrich, Rupert K.

    2005-01-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errors of σ = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with Σ = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for σ = Σ = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D 98 ), clinical target volume (CTV) D 90 , nodes D 90 , cord D 2 , and parotid D 50 and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error σ exceeded 3 mm. Simulated systematic setup errors with Σ = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a Σ = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error

  10. Verification of hyperthermia treatment planning in cervix carcinoma patients using invasive thermometry

    International Nuclear Information System (INIS)

    Haaren Van, P.M.A.; Kok, H.P.; Zum Voerde Sive Voerding, P.J.; Oldenborg, S.; Stalpers, L.J.A.; Crezee, J.; Berg Van den, C.A.T; Leeuw De, A.A.C.

    2005-01-01

    Full text: Hyperthermia treatment planning (HTP) is a useful tool for improvement of clinical hyperthermia treatments. Aim of this study was to determine the correlation between HTP and measurements during hyperthermia treatments. We compared the calculated specific absorption rate (SAR) with clinically measured SAR-values, from ΔT-measurements, in cervix carcinoma patients. General difficulties for such clinical verifications are changes in the anatomy during the different steps and possible movement of the catheters. We used one fixed invasive catheter in the tumor additional to the usual non-invasive catheters in the vagina, bladder and rectum, for insertion of multisensor thermocouple probes. A special CT-scan with the patient in treatment position and the catheters in situ was made for the HTP. We performed these verifications in a total of 11 treatments in 7 patients. The main difficulties for accurate verification were of clinical nature: difficulties arising from the use of gynaecological tampon and the limited number of measurements in tissue. Remaining air in the vagina and sub-optimal tissue contact of the catheters resulted in bad thermal contact between thermocouples and tissue, causing measurement artefacts that are difficult to correlate with calculations. These artefacts are probably not specific for thermocouple measurements, but more general for intraluminal temperature and SAR measurements. (author)

  11. SU-F-T-564: 3 Year Experience of Treatment Plan QualityAssurance for Vero SBRT Patients

    International Nuclear Information System (INIS)

    Su, Z; Li, Z; Mamalui, M

    2016-01-01

    Purpose: To verify treatment plan monitor units from iPlan treatment planning system for Vero Stereotactic Body Radiotherapy (SBRT) treatment using both software-based and (homogeneous and heterogeneous) phantom-based approaches. Methods: Dynamic conformal arcs (DCA) were used for SBRT treatment of oligometastasis patients using Vero linear accelerator. For each plan, Monte Carlo calculated treatment plans MU (prescribed dose to water with 1% variance) is verified first by RadCalc software with 3% difference threshold. Beyond 3% differences, treatment plans were copied onto (homogeneous) Scanditronix phantom for non-lung patients and copied onto (heterogeneous) CIRS phantom for lung patients and the corresponding plan dose was measured using a cc01 ion chamber. The difference between the planed and measured dose was recorded. For the past 3 years, we have treated 180 patients with 315 targets. Out of these patients, 99 targets treatment plan RadCalc calculation exceeded 3% threshold and phantom based measurements were performed with 26 plans using Scanditronix phantom and 73 plans using CIRS phantom. Mean and standard deviation of the dose differences were obtained and presented. Results: For all patient RadCalc calculations, the mean dose difference is 0.76% with a standard deviation of 5.97%. For non-lung patient plan Scanditronix phantom measurements, the mean dose difference is 0.54% with standard deviation of 2.53%; for lung patient plan CIRS phantom measurements, the mean dose difference is −0.04% with a standard deviation of 1.09%; The maximum dose difference is 3.47% for Scanditronix phantom measurements and 3.08% for CIRS phantom measurements. Conclusion: Limitations in secondary MU check software lead to perceived large dose discrepancies for some of the lung patient SBRT treatment plans. Homogeneous and heterogeneous phantoms were used in plan quality assurance for non-lung patients and lung patients, respectively. Phantom based QA showed the relative

  12. SU-F-T-564: 3 Year Experience of Treatment Plan QualityAssurance for Vero SBRT Patients

    Energy Technology Data Exchange (ETDEWEB)

    Su, Z; Li, Z [University of Florida, Jacksonville, FL (United States); Mamalui, M [University of Florida/Radiation Oncology, Jacksonville, FL (United States)

    2016-06-15

    Purpose: To verify treatment plan monitor units from iPlan treatment planning system for Vero Stereotactic Body Radiotherapy (SBRT) treatment using both software-based and (homogeneous and heterogeneous) phantom-based approaches. Methods: Dynamic conformal arcs (DCA) were used for SBRT treatment of oligometastasis patients using Vero linear accelerator. For each plan, Monte Carlo calculated treatment plans MU (prescribed dose to water with 1% variance) is verified first by RadCalc software with 3% difference threshold. Beyond 3% differences, treatment plans were copied onto (homogeneous) Scanditronix phantom for non-lung patients and copied onto (heterogeneous) CIRS phantom for lung patients and the corresponding plan dose was measured using a cc01 ion chamber. The difference between the planed and measured dose was recorded. For the past 3 years, we have treated 180 patients with 315 targets. Out of these patients, 99 targets treatment plan RadCalc calculation exceeded 3% threshold and phantom based measurements were performed with 26 plans using Scanditronix phantom and 73 plans using CIRS phantom. Mean and standard deviation of the dose differences were obtained and presented. Results: For all patient RadCalc calculations, the mean dose difference is 0.76% with a standard deviation of 5.97%. For non-lung patient plan Scanditronix phantom measurements, the mean dose difference is 0.54% with standard deviation of 2.53%; for lung patient plan CIRS phantom measurements, the mean dose difference is −0.04% with a standard deviation of 1.09%; The maximum dose difference is 3.47% for Scanditronix phantom measurements and 3.08% for CIRS phantom measurements. Conclusion: Limitations in secondary MU check software lead to perceived large dose discrepancies for some of the lung patient SBRT treatment plans. Homogeneous and heterogeneous phantoms were used in plan quality assurance for non-lung patients and lung patients, respectively. Phantom based QA showed the relative

  13. Planning of surgical treatment of upper extremity in patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    V. V. Umnov

    2013-01-01

    Full Text Available The purpose - to devise the algorithm of patient examination with spastic hand to determine what the variant of surgical treatment is indicated. The variant of surgical treatment and it's results are depend on the cause of upper extremity deformation. Materials and methods. This study is based on a survey of children with cerebral palsy with lesions of the upper extremity. The main criterion for the selection of patients was the presence of the combined lesion of the upper extremity, where the cause of dysfunction hands are not only fixed contractures, but primary tonic. Was to survey 47 patients with spastic forms of cerebral palsy with the defeat of the upper limb, but the study group included only 26 of them in the ages of 7 to 18 years (average 12,1, as having the clinical picture both types of contractures. We have developed and applied a system of examinations, modeling expected outcome of selective neurotomy motor nerves of the upper limb, which allows to estimate the possible result of such treatment, and clearly differentiate tonic and fixed contracture. Results and conclusions. Based on the results of study we supposed that, using diagnostic blockade motor nerve at the period of planning surgical treatment help us to create temporary reversible model of selective neurotomy motor nerve branches and identify the type of contracture, degree of manifestation and functional perspective.

  14. The role of patient-based treatment planning in peptide receptor radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardiansyah, Deni; Attarwala, Ali Asgar [Heidelberg University, Medical Radiation Physics/Radiation Protection, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Department of Radiation Oncology, Mannheim (Germany); Maass, Christian; Glatting, Gerhard [Heidelberg University, Medical Radiation Physics/Radiation Protection, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Mueller, Berthold [University Hospital, RWTH Aachen University, Klinik fuer Nuklearmedizin, Aachen (Germany); Kletting, Peter [Universitaet Ulm, Klinik fuer Nuklearmedizin, Ulm (Germany); Mottaghy, Felix M. [University Hospital, RWTH Aachen University, Klinik fuer Nuklearmedizin, Aachen (Germany); Maastricht University Medical Center (MUMC+), Department of Nuclear Medicine, Maastricht (Netherlands)

    2016-05-15

    Accurate treatment planning is recommended in peptide-receptor radionuclide therapy (PRRT) to minimize the toxicity to organs at risk while maximizing tumor cell sterilization. The aim of this study was to quantify the effect of different degrees of individualization on the prediction accuracy of individual therapeutic biodistributions in patients with neuroendocrine tumors (NETs). A recently developed physiologically based pharmacokinetic (PBPK) model was fitted to the biokinetic data of 15 patients with NETs after pre-therapeutic injection of {sup 111}In-DTPAOC. Mathematical phantom patients (MPP) were defined using the assumed true (true MPP), mean (MPP 1A) and median (MPP 1B) parameter values of the patient group. Alterations of the degree of individualization were introduced to both mean and median patients by including patient-specific information as a priori knowledge: physical parameters and hematocrit (MPP 2A/2B). Successively, measurable individual biokinetic parameters were added: tumor volume V{sub tu} (MPP 3A/3B), glomerular filtration rate GFR (MPP 4A/4B), and tumor perfusion f{sub tu} (MPP 5A/5B). Furthermore, parameters of MPP 5A/5B and a simulated {sup 68}Ga-DOTATATE PET measurement 60 min p.i. were used together with the population values used as Bayesian parameters (MPP 6A/6B). Therapeutic biodistributions were simulated assuming an infusion of {sup 90}Y-DOTATATE (3.3 GBq) over 30 min to all MPPs. Time-integrated activity coefficients were predicted for all MPPs and compared to the true MPPs for each patient in tumor, kidneys, spleen, liver, remainder, and whole body to obtain the relative differences RD. The large RD values of MPP 1A [RD{sub tumor} = (625 ± 1266)%, RD{sub kidneys} = (11 ± 38)% ], and MPP 1B [RD{sub tumor} = (197 ± 505)%, RD{sub kidneys} = (11 ± 39)% ] demonstrate that individual treatment planning is needed due to large physiological differences between patients. Although addition of individual patient parameters reduced the

  15. Reconciling Patient Safety and Epistemic Humility: An Ethical Use of Opioid Treatment Plans.

    Science.gov (United States)

    Ho, Anita

    2017-05-01

    In this issue of the Hastings Center Report, Joshua Rager and Peter Schwartz suggest using opioid treatment agreements as public health monitoring tools to inform patients about "the requirements entailed by undergoing opioid therapy," rather than as contractual agreements to alter patients' individual behavior or to benefit them directly. Because Rager and Schwartz's argument presents suspected OTA violations as a justification to stop providing opioids yet does not highlight the broader epistemic and systemic context within which clinicians prescribe these medications, their proposal may perpetuate a climate of distrust and stigmatization without correcting systemic factors that may have placed patients and others at risk in the first place. Given the context of epistemic uncertainty regarding opioid safety and efficacy, insufficient training for opioid prescribers, and inadequate patient education, I propose replacing OTAs, which have a narrow focus on patient behaviors, with opioid treatment plans, which would promote mutual, collaborative, and shared decision-making on the most appropriate pain management program. An OTP can be ethically justified as a tool to prevent and treat iatrogenic addiction under a specific paradigm-one that adopts a default position of professional epistemic humility and holds all collaborative parties accountable in chronic pain management. © 2017 The Hastings Center.

  16. Patient-specific three-dimensional printing for pre-surgical planning in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Perica, Elizabeth; Sun, Zhonghua

    2017-12-01

    outcomes indicate that there is minimal value in utilizing the 3D printed models in diagnostic radiology. The potential usefulness of utilizing patient-specific 3D printed liver models as tools in surgical planning and intraoperative guidance for HCC treatment is verified. However, the feasibility of this application is currently challenged by identified limitations in 3D model production, including the cost and time required for model production, and inaccuracies potentially introduced at each stage of model fabrication.

  17. Engagement in Advance Care Planning and Surrogates' Knowledge of Patients' Treatment Goals.

    Science.gov (United States)

    Fried, Terri R; Zenoni, Maria; Iannone, Lynne; O'Leary, John; Fenton, Brenda T

    2017-08-01

    A key objective of advance care planning (ACP) is improving surrogates' knowledge of patients' treatment goals. Little is known about whether ACP outside of a trial accomplishes this. The objective was to examine patient and surrogate reports of ACP engagement and associations with surrogate knowledge of goals. Cohort study SETTING: Primary care in a Veterans Affairs Medical Center. 350 community-dwelling veterans age ≥55 years and the individual they would choose to make medical decisions on their behalf, interviewed separately. Treatment goals were assessed by veterans' ratings of 3 health states: severe physical disability, cognitive disability, and pain, as an acceptable or unacceptable result of treatment for severe illness. Surrogates had knowledge if they correctly predicted all 3 responses. Veterans and surrogates were asked about living will and health care proxy completion and communication about life-sustaining treatment and quality versus quantity of life (QOL). Over 40% of dyads agreed that the veteran had not completed a living will or health care proxy and that there was no QOL communication. For each activity, sizeable proportions (18-34%) disagreed about participation. In dyads who agreed QOL communication had occurred, 30% of surrogates had knowledge, compared to 21% in dyads who agreed communication had not occurred and 15% in dyads who disagreed (P = .01). This relationship persisted in multivariable analysis. Agreement about other ACP activities was not associated with knowledge. Disagreement about ACP participation was common. Agreement about communication regarding QOL was modestly associated with surrogate knowledge of treatment goals. Eliciting surrogates' perspectives is critical to ACP. Even dyads who agree about participation may need additional support for successful engagement. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  18. Recommendations for diagnosis and treatment planning, and treatment during the pregnancy, postpartum and breastfeeding period in patients with antiphospholipid syndrome

    Directory of Open Access Journals (Sweden)

    Lidia Ostanek

    2014-03-01

    Full Text Available The antiphospholipid syndrome (APS is an interdisciplinary condition with a clinical picture in which thrombotic complications and obstetric failures play the most significant role. It has been demonstrated on the basis of multicentre clinical observations that the most common pregnancy-related complications in the course of APS include: recurrent miscarriage in the first trimester of pregnancy, pregnancy loss in the second and third trimester of pregnancy, early preeclampsia and preterm delivery. Any APS female patient planning a pregnancy should be advised about the risk of complications which may occur in the course of pregnancy. The treatment of pregnant APS patients should be conducted by a multidisciplinary team including specialists in rheumatology, obstetrics, and in justified cases also in haematology. The most important element of the pregnant APS patient management is secondary thromboprophylaxis with low dose aspirin and heparins. The introduction of hydroxychloroquine is recommended in patients with systemic lupus erythematosus. The visits should take place every 4 weeks and starting from week 26–28 of pregnancy every 1–2 weeks. The patients should be strictly monitored for signs of preeclampsia and/or thrombosis.

  19. 3D treatment planning systems.

    Science.gov (United States)

    Saw, Cheng B; Li, Sicong

    2018-01-01

    Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. Hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Lagendijk, J.J.W.

    2000-01-01

    The development of hyperthermia, the treatment of tumours with elevated temperatures in the range of 40-44 deg. C with treatment times over 30 min, greatly benefits from the development of hyperthermia treatment planning. This review briefly describes the state of the art in hyperthermia technology, followed by an overview of the developments in hyperthermia treatment planning. It particularly highlights the significant problems encountered with heating realistic tissue volumes and shows how treatment planning can help in designing better heating technology. Hyperthermia treatment planning will ultimately provide information about the actual temperature distributions obtained and thus the tumour control probabilities to be expected. This will improve our understanding of the present clinical results of thermoradiotherapy and thermochemotherapy, and will greatly help both in optimizing clinical heating technology and in designing optimal clinical trials. (author)

  1. Need of patient-specific quality assurance and pre-treatment verification program for special plans in radiotherapy

    International Nuclear Information System (INIS)

    Ravichandran, Ramamoorthy; Bhasi, Saju; Binukumar, J.P.; Davis, C.A.

    2011-01-01

    Accuracy in planned radiation dose delivery in cancer treatments becomes necessary in the advent of complex treatment delivery options with newer technology using medical linear accelerators, which makes patient management very crucial. Treatment outcome in an individual patient therefore depends on the professional involvement of staff and execution accuracy of planned procedure. Therefore, this article has addressed an important problem. International Atomic Energy Agency (IAEA) and International Commission on Radiological Protection (ICRP) reported mis-administrations of radiation dose, the nature of their occurrence and complexity of situations. Lack of adequate quality assurance (QA) program or failure in their routine applications, complacency in attention, lack of knowledge, overconfidence, pressures of time, lack of resources and failures in communication are some of the general human causes of errors. A recent report enumerated misadministration of radiation doses under the heading 'harming instead of healing' delivery of wrong doses in small field treatment plans with stereotactic equipment' was mostly highlighted

  2. Computerized radiation treatment planning

    International Nuclear Information System (INIS)

    Laarse, R. van der.

    1981-01-01

    Following a general introduction, a chain consisting of three computer programs which has been developed for treatment planning of external beam radiotherapy without manual intervention is described. New score functions used for determination of optimal incidence directions are presented and the calculation of the position of the isocentre for each optimum combination of incidence directions is explained. A description of how a set of applicators, covering fields with dimensions of 4 to 20 cm, for the 6 to 20 MeV electron beams of a MEL SL75-20 linear accelerator was developed, is given. A computer program for three dimensional electron beam treatment planning is presented. A microprocessor based treatment planning system for the Selectron remote controlled afterloading system for intracavitary radiotherapy is described. The main differences in treatment planning procedures for external beam therapy with neutrons instead of photons is discussed. A microprocessor based densitometer for plotting isodensity lines in film dosimetry is described. A computer program for dose planning of brachytherapy is presented. Finally a general discussion about the different aspects of computerized treatment planning as presented in this thesis is given. (Auth.)

  3. Clinical validation of FDG-PET/CT in the radiation treatment planning for patients with oesophageal cancer

    NARCIS (Netherlands)

    Muijs, Christina T.; Beukema, Jannet C.; Woutersen, Dankert; Mul, Veronique E.; Berveling, Maaike J.; Pruim, Jan; van der Jagt, Eric J.; Hospers, Geke A. P.; Groen, Henk; Plukker, John Th.; Langendijk, Johannes A.

    2014-01-01

    Background: The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Materials and methods: Ninety oesophageal cancer patients,

  4. Does the IMRT technique allow improvement of treatment plans (e.g. lung sparing) for lung cancer patients with small lung volume: a planning study

    International Nuclear Information System (INIS)

    Komosinska, K.; Kepka, L.; Gizynska, M.; Zawadzka, A.

    2008-01-01

    Aim: We evaluated whether intensity-modulated radiation therapy (IMRT) may offer any advantages in comparison with three-dimensional conformal radiotherapy (3D-CRT) for patients with small lung volume (SLV). Methods: Treatment planning was performed for 10 NSCLC patients with the smallest lung volume (mean: 2241 cc) among 200 patients from our database. For each patient 3D-CRT and IMRT plans were prepared. The goal was to deliver 66 Gy/33 fractions, with dose constraints: mean lung dose (MLD) < 20 Gy, V20 < 35%; spinal cord - Dmax < 45 Gy. When the plan could not meet these criteria, total dose was reduced. The 3D-CRT and IMRT plans were compared. We investigated: prescribed dose, coverage and conformity indices, MLD, V5-V65 in the lung. Results: In 4 out of 10 plans, 3D-CRT did not allow 66 Gy to be delivered, because of predicted pulmonary toxicity. These 4 cases included 3 for which we did not reach 66 Gy with IMRT; still, for these 3 plans the total dose was increased by an average of 9 Gy with IMRT in comparison with 3D-CRT. Coverage indices were similar for both techniques. Conformity indices were better for IMRT plans. MLD was lower in five IMRT and two 3D-CRT plans if equal doses were delivered. The decrease in MLD was seen for cases with large PTV and high PTV/lung volume ratio. Lung V5 was lower for all 3D-CRT plans, 47% vs. 57% for IMRT; V15 and above were larger for 3D-CRT Conclusion: In the planning study, IMRT seems to be a promising technique for cases with SLV, especially when associated with large PT V. (authors)

  5. SU-E-P-27: Efficient Process for AccuBoost Planning and Treatment Delivery to Minimize Patient Compression Time

    Energy Technology Data Exchange (ETDEWEB)

    Iftimia, I; Talmadge, M; Halvorsen, P [Lahey Clinic, Burlington, MA (United States)

    2015-06-15

    Purpose: To implement an efficient and robust process for AccuBoost planning and treatment delivery that can be safely performed by a single Physicist while minimizing patient’s total session time. Methods: Following a thorough commissioning and validation process, templates were created in the brachytherapy planning system for each AccuBoost applicator. Tables of individual and total nominal dwell times for each applicator as a function of separation were generated to streamline planning while an Excel-based nomogram provided by the vendor functions as a secondary verification of the treatment parameters. Tables of surface dose as a function of separation and applicator, along with concise guidance documents for applicator selection, are readily available during the planning process. The entire process is described in a set of detailed Standard Operating Procedures which, in addition to the items described above, include a verbal time-out between the primary planner and the individual performing the secondary verification as well as direct visual confirmation of applicator placement using an articulated mirror. Prior to treatment initiation, a final time-out is conducted with the Radiation Oncologist. Chart documentation is finalized after the patient is released from compression following completion of the treatment. Results: With the aforementioned procedures, it has been possible to consistently limit the time required to prepare each treatment such that the patient is typically under compression for less than 10 minutes per orientation prior to the initiation of the treatment, which is particularly important for APBI cases. This process can be overseen by a single physicist assisted by a dosimetrist and has been optimized during the past 16 months, with 180 treatment sessions safely completed to date. Conclusion: This work demonstrates the implementation of an efficient and robust process for real-time-planned AccuBoost treatments that effectively minimizes

  6. SU-E-T-616: Plan Quality Assessment of Both Treatment Planning System Dose and Measurement-Based 3D Reconstructed Dose in the Patient

    International Nuclear Information System (INIS)

    Olch, A

    2015-01-01

    Purpose: Systematic radiotherapy plan quality assessment promotes quality improvement. Software tools can perform this analysis by applying site-specific structure dose metrics. The next step is to similarly evaluate the quality of the dose delivery. This study defines metrics for acceptable doses to targets and normal organs for a particular treatment site and scores each plan accordingly. The input can be the TPS or the measurement-based 3D patient dose. From this analysis, one can determine whether the delivered dose distribution to the patient receives a score which is comparable to the TPS plan score, otherwise replanning may be indicated. Methods: Eleven neuroblastoma patient plans were exported from Eclipse to the Quality Reports program. A scoring algorithm defined a score for each normal and target structure based on dose-volume parameters. Each plan was scored by this algorithm and the percentage of total possible points was obtained. Each plan also underwent IMRT QA measurements with a Mapcheck2 or ArcCheck. These measurements were input into the 3DVH program to compute the patient 3D dose distribution which was analyzed using the same scoring algorithm as the TPS plan. Results: The mean quality score for the TPS plans was 75.37% (std dev=14.15%) compared to 71.95% (std dev=13.45%) for the 3DVH dose distribution. For 3/11 plans, the 3DVH-based quality score was higher than the TPS score, by between 0.5 to 8.4 percentage points. Eight/11 plans scores decreased based on IMRT QA measurements by 1.2 to 18.6 points. Conclusion: Software was used to determine the degree to which the plan quality score differed between the TPS and measurement-based dose. Although the delivery score was generally in good agreement with the planned dose score, there were some that improved while there was one plan whose delivered dose quality was significantly less than planned. This methodology helps evaluate both planned and delivered dose quality. Sun Nuclear Corporation has

  7. SU-E-T-616: Plan Quality Assessment of Both Treatment Planning System Dose and Measurement-Based 3D Reconstructed Dose in the Patient

    Energy Technology Data Exchange (ETDEWEB)

    Olch, A [University of Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Systematic radiotherapy plan quality assessment promotes quality improvement. Software tools can perform this analysis by applying site-specific structure dose metrics. The next step is to similarly evaluate the quality of the dose delivery. This study defines metrics for acceptable doses to targets and normal organs for a particular treatment site and scores each plan accordingly. The input can be the TPS or the measurement-based 3D patient dose. From this analysis, one can determine whether the delivered dose distribution to the patient receives a score which is comparable to the TPS plan score, otherwise replanning may be indicated. Methods: Eleven neuroblastoma patient plans were exported from Eclipse to the Quality Reports program. A scoring algorithm defined a score for each normal and target structure based on dose-volume parameters. Each plan was scored by this algorithm and the percentage of total possible points was obtained. Each plan also underwent IMRT QA measurements with a Mapcheck2 or ArcCheck. These measurements were input into the 3DVH program to compute the patient 3D dose distribution which was analyzed using the same scoring algorithm as the TPS plan. Results: The mean quality score for the TPS plans was 75.37% (std dev=14.15%) compared to 71.95% (std dev=13.45%) for the 3DVH dose distribution. For 3/11 plans, the 3DVH-based quality score was higher than the TPS score, by between 0.5 to 8.4 percentage points. Eight/11 plans scores decreased based on IMRT QA measurements by 1.2 to 18.6 points. Conclusion: Software was used to determine the degree to which the plan quality score differed between the TPS and measurement-based dose. Although the delivery score was generally in good agreement with the planned dose score, there were some that improved while there was one plan whose delivered dose quality was significantly less than planned. This methodology helps evaluate both planned and delivered dose quality. Sun Nuclear Corporation has

  8. Alteration of Occlusal Plane in Orthognathic Surgery: Clinical Features to Help Treatment Planning on Class III Patients

    Directory of Open Access Journals (Sweden)

    Daniel Amaral Alves Marlière

    2018-01-01

    Full Text Available Dentofacial deformities (DFD presenting mainly as Class III malocclusions that require orthognathic surgery as a part of definitive treatment. Class III patients can have obvious signs such as increasing the chin projection and chin throat length, nasolabial folds, reverse overjet, and lack of upper lip support. However, Class III patients can present different facial patterns depending on the angulation of occlusal plane (OP, and only bite correction does not always lead to the improvement of the facial esthetic. We described two Class III patients with different clinical features and inclination of OP and had undergone different treatment planning based on 6 clinical features: (I facial type; (II upper incisor display at rest; (III dental and gingival display on smile; (IV soft tissue support; (V chin projection; and (VI lower lip projection. These patients were submitted to orthognathic surgery with different treatment plannings: a clockwise rotation and counterclockwise rotation of OP according to their facial features. The clinical features and OP inclination helped to define treatment planning by clockwise and counterclockwise rotations of the maxillomandibular complex, and two patients undergone to bimaxillary orthognathic surgery showed harmonic outcomes and stables after 2 years of follow-up.

  9. Role of spiral computed Tomography in the diagnosis and treatment planning of patients with colorectal cancer and peritoneal carcinomatosis

    International Nuclear Information System (INIS)

    Revura, A.P.; Fetsich, T.G.; Milyan, Yu.P.

    2015-01-01

    The results of CT of the abdomen and pelvis in 21 patients with colorectal cancer with peritoneal carcinomatosis were analysed. The study was compared with data obtained at surgical exploration. Location and size of peritoneal implants were evaluated according to peritoneal cancer index. The study shows a lack of sensitivity of single slice spiral CT for peritoneal carcinomatosis detection in patients with colorectal cancer and limited value of the method in planning of surgical treatment

  10. A treatment planning comparison of two different 3D conformal techniques for irradiation of head and neck cancer patients

    International Nuclear Information System (INIS)

    Krstevska, Valentina; Lukarski, Dusko; Petkovska, Sonja

    2010-01-01

    The purpose of this treatment planning study was to compare two different three dimensional conformal irradiation techniques for head and neck cancer patients. For 33 patients with head and neck carcinoma, irradiated according to the classical technique, we computed and evaluated a second irradiation technique in order to optimize the treatment planning protocol. The classical technique, termed 'electron-photon fields', employed two lateral semi-fields (23 fractions) for irradiation of the upper part of the planning target volume that should receive 50 Gy (PTV50) and an anterior and posterior field for the lower part. After the 23rd fraction the lateral fields were reduced from the dorsal side (2 fractions), in order to exclude the spinal cord from them. At the same time the dose to the shielded part of the target volume was delivered with matched electron fields. Finally, after the 25th fraction, the high risk volume was irradiated to the desired dose with plan where the spinal cord was completely shielded. In the new technique, termed 'oblique photon fields', 4 oblique isocentric photon fields were used (25 fractions): two anterior fields that covered the entire target volume that should receive 50 Gy and two posterior fields that covered only half of the target volume in order to shield the spinal cord. Thus, the necessity for using electron fields is eliminated. We kept the plan for irradiation of the high risk planning target volume the same as in the classical technique. The prescribed dose per fraction in all plans was 2 Gy. In both techniques the plans were optimized to the same maximal point dose and the same dose to the spinal cord. The oblique fields plan showed better coverage and homogeneity of the PTV50, except for the patients with positive resection margins receiving postoperative radiotherapy (receiving 66 Gy), where the coverage did not differ significantly. The conformity in both techniques did not differ significantly. The mean dose to the

  11. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Erdi, Yusuf E.; Rosenzweig, Kenneth; Erdi, Alev K.; Macapinlac, Homer A.; Hu, Yu-Chi; Braban, Louise E.; Humm, John L.; Squire, Olivia D.; Chui, Chen-Shou; Larson, Steven M.; Yorke, Ellen D.

    2002-01-01

    Purpose: Many patients with non-small cell lung cancer (NSCLC) receive external beam radiation therapy as part of their treatment. Three-dimensional conformal radiation therapy (3DCRT) commonly uses computed tomography (CT) to accurately delineate the target lesion and normal tissues. Clinical studies, however, indicate that positron emission tomography (PET) has higher sensitivity than CT in detecting and staging of mediastinal metastases. Imaging with fluoro-2-deoxyglucose (FDG) PET in conjunction with CT, therefore, can improve the accuracy of lesion definition. In this pilot study, we investigated the potential benefits of incorporating PET data into the conventional treatment planning of NSCLC. Case-by-case, we prospectively analyzed planning target volume (PTV) and lung toxicity changes for a cohort of patients. Materials and methods: We have included 11 patients in this study. They were immobilized in the treatment position and CT simulation was performed. Following CT simulation, PET scanning was performed in the treatment position using the same body cast that was produced for CT simulation and treatment. The PTV, along with the gross target volume (GTV) and normal organs, was first delineated using the CT data set. The CT and PET transmission images were then registered in the treatment planning system using either manual or automated methods, leading to consequent registration of the CT and emission images. The PTV was then modified using the registered PET emission images. The modified PTV is seen simultaneously on both CT and PET images, allowing the physician to define the PTV utilizing the information from both data sets. Dose-volume histograms (DVHs) for lesion and normal organs were generated using both CT-based and PET+CT-based treatment plans. Results: For all patients, there was a change in PTV outline based on CT images versus CT/PET fused images. In seven out of 11 cases, we found an increase in PTV volume (average increase of 19%) to

  12. The Adjoint Method for The Optimization of Brachytherapy and Radiotherapy Patient Treatment Planning Procedures Using Monte Carlo Calculations

    International Nuclear Information System (INIS)

    Henderson, D.L.; Yoo, S.; Kowalok, M.; Mackie, T.R.; Thomadsen, B.R.

    2001-01-01

    The goal of this project is to investigate the use of the adjoint method, commonly used in the reactor physics community, for the optimization of radiation therapy patient treatment plans. Two different types of radiation therapy are being examined, interstitial brachytherapy and radiotherapy. In brachytherapy radioactive sources are surgically implanted within the diseased organ such as the prostate to treat the cancerous tissue. With radiotherapy, the x-ray source is usually located at a distance of about 1-meter from the patient and focused on the treatment area. For brachytherapy the optimization phase of the treatment plan consists of determining the optimal placement of the radioactive sources, which delivers the prescribed dose to the disease tissue while simultaneously sparing (reducing) the dose to sensitive tissue and organs. For external beam radiation therapy the optimization phase of the treatment plan consists of determining the optimal direction and intensity of beam, which provides complete coverage of the tumor region with the prescribed dose while simultaneously avoiding sensitive tissue areas. For both therapy methods, the optimal treatment plan is one in which the diseased tissue has been treated with the prescribed dose and dose to the sensitive tissue and organs has been kept to a minimum

  13. Analysis of esophageal-sparing treatment plans for patients with high-grade esophagitis.

    Science.gov (United States)

    Niedzielski, Joshua; Bluett, Jaques B; Williamson, Ryan T; Liao, Zhongxing; Gomez, Daniel R; Court, Laurence E

    2013-07-08

    We retrospectively generated IMRT plans for 14 NSCLC patients who had experienced grade 2 or 3 esophagitis (CTCAE version 3.0). We generated 11-beam and reduced esophagus dose plan types to compare changes in the volume and length of esophagus receiving doses of 50, 55, 60, 65, and 70 Gy. Changes in planning target volume (PTV) dose coverage were also compared. If necessary, plans were renormalized to restore 95% PTV coverage. The critical organ doses examined were mean lung dose, mean heart dose, and volume of spinal cord receiving 50 Gy. The effect of interfractional motion was determined by applying a three-dimensional rigid shift to the dose grid. For the esophagus plan, the mean reduction in esophagus V50, V55, V60, V65, and V70 Gy was 2.8, 4.1, 5.9, 7.3, and 9.5 cm(3), respectively, compared with the clinical plan. The mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 2.0, 3.0, 3.8, 4.0, and 4.6 cm, respectively. The mean heart and lung dose decreased 3.0 Gy and 2.4 Gy, respectively. The mean decreases in 90% and 95% PTV coverage were 1.7 Gy and 2.8 Gy, respectively. The normalized plans' mean reduction of esophagus V50, V55, V60, V65, and V70 Gy were 1.6, 2.0, 2.9, 3.9, and 5.5 cm(3), respectively, compared with the clinical plans. The normalized plans' mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 4.9, 5.2, 5.4, 4.9, and 4.8 cm, respectively. The mean reduction in maximum esophagus dose with simulated interfractional motion was 3.0 Gy and 1.4 Gy for the clinical plan type and the esophagus plan type, respectively. In many cases, the esophagus dose can be greatly reduced while maintaining critical structure dose constraints. PTV coverage can be restored by increasing beam output, while still obtaining a dose reduction to the esophagus and maintaining dose constraints.

  14. Completion of treatment planning

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The outline of the lecture included the following topics: entering prescription; plan printout; print and transfer DDR; segment BEV; export to R and V; physician approval; and second check. Considerable attention, analysis and discussion. The summary is as follows: Treatment planning completion is a very responsible process which requires maximum attention; Should be independently checked by the planner, physicist, radiation oncologist and a therapist; Should not be done in a last minute rush; Proper communication between team members; Properly set procedure should prevent propagation of an error by one individual to the treatment: the error should be caught by somebody else. (P.A.)

  15. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Cho, S [KAIST, Yuseong-gu, Daejeon (Korea, Republic of); Cheong, K [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Jung, J [East Carolina University Greenville, NC (United States); Jung, S [Samsung Medical Cener, Gangnam-gu, Seoul (Korea, Republic of); Kim, J [Yonsei Cancer Center, Seoul (Korea, Republic of); Yeo, I [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  16. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    International Nuclear Information System (INIS)

    Lee, H; Cho, S; Cheong, K; Jung, J; Jung, S; Kim, J; Yeo, I

    2016-01-01

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  17. Automatic planning of head and neck treatment plans

    DEFF Research Database (Denmark)

    Hazell, Irene; Bzdusek, Karl; Kumar, Prashant

    2016-01-01

    radiation dose planning (dosimetrist) and potentially improve the overall plan quality. This study evaluates the performance of the Auto-Planning module that has recently become clinically available in the Pinnacle3 radiation therapy treatment planning system. Twenty-six clinically delivered head and neck...... as the previously delivered clinical plans. For all patients, the Auto-Planning tool produced clinically acceptable head and neck treatment plans without any manual intervention, except for the initial target and OAR delineations. The main benefit of the method is the likely improvement in the overall treatment......Treatment planning is time-consuming and the outcome depends on the person performing the optimization. A system that automates treatment planning could potentially reduce the manual time required for optimization and could also pro-vide a method to reduce the variation between persons performing...

  18. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    International Nuclear Information System (INIS)

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-01-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio® treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  19. SU-E-J-70: Feasibility Study of Dynamic Arc and IMRT Treatment Plans Utilizing Vero Treatment Unit and IPlan Planning Computer for SRS/FSRT Brain Cancer Patients

    International Nuclear Information System (INIS)

    Huh, S; Lee, S; Dagan, R; Malyapa, R; Mendenhall, N; Mendenhall, W; Ho, M; Hough, D; Yam, M; Li, Z

    2014-01-01

    Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm with a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets

  20. Treatment planning for image-guided neuro-vascular interventions using patient-specific 3D printed phantoms

    Science.gov (United States)

    Russ, M.; O'Hara, R.; Setlur Nagesh, S. V.; Mokin, M.; Jimenez, C.; Siddiqui, A.; Bednarek, D.; Rudin, S.; Ionita, C.

    2015-03-01

    Minimally invasive endovascular image-guided interventions (EIGIs) are the preferred procedures for treatment of a wide range of vascular disorders. Despite benefits including reduced trauma and recovery time, EIGIs have their own challenges. Remote catheter actuation and challenging anatomical morphology may lead to erroneous endovascular device selections, delays or even complications such as vessel injury. EIGI planning using 3D phantoms would allow interventionists to become familiarized with the patient vessel anatomy by first performing the planned treatment on a phantom under standard operating protocols. In this study the optimal workflow to obtain such phantoms from 3D data for interventionist to practice on prior to an actual procedure was investigated. Patientspecific phantoms and phantoms presenting a wide range of challenging geometries were created. Computed Tomographic Angiography (CTA) data was uploaded into a Vitrea 3D station which allows segmentation and resulting stereo-lithographic files to be exported. The files were uploaded using processing software where preloaded vessel structures were included to create a closed-flow vasculature having structural support. The final file was printed, cleaned, connected to a flow loop and placed in an angiographic room for EIGI practice. Various Circle of Willis and cardiac arterial geometries were used. The phantoms were tested for ischemic stroke treatment, distal catheter navigation, aneurysm stenting and cardiac imaging under angiographic guidance. This method should allow for adjustments to treatment plans to be made before the patient is actually in the procedure room and enabling reduced risk of peri-operative complications or delays.

  1. Interactively exploring optimized treatment plans

    International Nuclear Information System (INIS)

    Rosen, Isaac; Liu, H. Helen; Childress, Nathan; Liao Zhongxing

    2005-01-01

    Purpose: A new paradigm for treatment planning is proposed that embodies the concept of interactively exploring the space of optimized plans. In this approach, treatment planning ignores the details of individual plans and instead presents the physician with clinical summaries of sets of solutions to well-defined clinical goals in which every solution has been optimized in advance by computer algorithms. Methods and materials: Before interactive planning, sets of optimized plans are created for a variety of treatment delivery options and critical structure dose-volume constraints. Then, the dose-volume parameters of the optimized plans are fit to linear functions. These linear functions are used to show in real time how the target dose-volume histogram (DVH) changes as the DVHs of the critical structures are changed interactively. A bitmap of the space of optimized plans is used to restrict the feasible solutions. The physician selects the critical structure dose-volume constraints that give the desired dose to the planning target volume (PTV) and then those constraints are used to create the corresponding optimized plan. Results: The method is demonstrated using prototype software, Treatment Plan Explorer (TPEx), and a clinical example of a patient with a tumor in the right lung. For this example, the delivery options included 4 open beams, 12 open beams, 4 wedged beams, and 12 wedged beams. Beam directions and relative weights were optimized for a range of critical structure dose-volume constraints for the lungs and esophagus. Cord dose was restricted to 45 Gy. Using the interactive interface, the physician explored how the tumor dose changed as critical structure dose-volume constraints were tightened or relaxed and selected the best compromise for each delivery option. The corresponding treatment plans were calculated and compared with the linear parameterization presented to the physician in TPEx. The linear fits were best for the maximum PTV dose and worst

  2. Treatment planning systems

    International Nuclear Information System (INIS)

    Fontenla, D.P.

    2008-01-01

    All aspects of treatment planning in radiotherapy are discussed in detail. Included are, among others, machine data and their acquisition, photon dose calculations and tests thereof, criteria of acceptability, sources of uncertainties, from 2D to 3D and from 3D to IMRT, dosimetric measurements for RTP validation, frequency of QA tests and suggested tolerances for TPS, time and staff requirements, model based segmentation, multi-dimensional radiotherapy (MD C RT), and biological IMRT process. (P.A.)

  3. Rectum separation in patients with cervical cancer for treatment planning in primary chemo-radiation

    International Nuclear Information System (INIS)

    Marnitz, Simone; Budach, Volker; Weißer, Friederike; Burova, Elena; Gebauer, Bernhard; Vercellino, Filiberto Guiseppe; Köhler, Christhardt

    2012-01-01

    To proof feasibility of hydrogel application in patients with advanced cervical cancer undergoing chemo-radiation in order to reduce rectal toxicity from external beam radiation as well as brachytherapy. Under transrectal sonographic guidance five patients with proven cervical cancer underwent hydro gel (20 cc) instillation into the tip of rectovaginal septum adherent to posterior part of the visible cervical tumor. Five days after this procedure all patients underwent T2 weighted transversal and sagittal MRI for brachytherapy planning. MRI protocol included T2 weighted fast spin echo (FSE) imaging in sagittal, coronal and para-axial orientation using an 1.5 Tesla MRI. Separation of anterior rectal wall and cervix was documented. Hydrogel application was uneventful in all patients and no toxicity was reported. Separation ranged from 7 to 26 mm in width (median 10 mm). The length of the separation varied between 18 and 38 mm (median 32 mm). In all patients displacement was seen in the posterior vaginal fornix, and/or at the deepest part of uterine cervix depending on the extension of the cul-de-sac in correlation to the posterior wall of the uterus. In patients with bulky tumor and/or deep (vaginal) extend of peritoneal cavity tumour was seen mainly cranial from the rectovaginal space and therefore above the hydrogeI application. Only in the extra-peritoneal (lower) part of the cervix a good separation could be achieved between the rectum and cervix. Hydrgel instillation in patients with cervial cancer undergoing chemoradiation is safe and feasible. Because of the loose tissue of the cul-de-sac and its intra- and extraperitoneal part, hydrogel instillation of 20 cc did not result in a sufficient separation of the cervix from anterior wall

  4. Budgetary Impact of Telotristat Ethyl, a Novel Treatment for Patients with Carcinoid Syndrome Diarrhea: A US Health Plan Perspective.

    Science.gov (United States)

    Joish, Vijay N; Frech, Feride; Lapuerta, Pablo

    2017-12-01

    Telotristat ethyl (TE) was recently approved for carcinoid syndrome diarrhea (CSD) in patients not adequately controlled with somatostatin analog long-acting release (SSA LAR) therapy alone. A budget impact model was developed to determine the short-term affordability of reimbursing TE in a US health plan. A budget impact model compared health care costs when CSD is managed per current treatment patterns (SSA LAR, reference drug scenario) versus when TE is incorporated in the treatment algorithm (SSA LAR + TE, new drug scenario). Prevalence of CSD, proportion of patients not adequately controlled on SSA LAR, monthly treatment costs (pharmacy and medical), and treatment efficacy were derived from the literature. In the reference drug scenario, an escalated monthly dose of SSA LAR therapy of 40 mg was assumed to treat patients with CSD not adequately controlled on the labeled dose of SSA LAR. In the new drug scenario, TE was added to the maximum labeled monthly dose of SSA LAR therapy of 30 mg. The incremental budget impact was calculated based on an assumed TE market uptake of 28%, 42%, and 55% during Years 1, 2, and 3, respectively. One-way sensitivity analyses were conducted to test model assumptions. A hypothetical health plan of 1 million members was estimated to have 42 prevalent CSD patients of whom 17 would be inadequately controlled on SSA LAR therapy. The monthly medical cost per patient not adequately controlled on SSA LAR in addition to pharmacotherapy was estimated to be $3946 based on the literature. Based on the observed treatment response in a clinical trial of 20% and 44% for the base case reference and new drug scenarios, total per patient per month costs were estimated to be $7563 and $11,205, respectively. Total annual costs in the new drug scenario were estimated to be $2.3 to $2.5 million during the first 3 years. The overall incremental annual costs were estimated to be $154,000 in Year 1, $231,000 in Year 2, and $302,000 in Year 3. This

  5. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    Science.gov (United States)

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. CT-based patient modeling for head and neck hyperthermia treatment planning: Manual versus automatic normal-tissue-segmentation

    International Nuclear Information System (INIS)

    Verhaart, René F.; Fortunati, Valerio; Verduijn, Gerda M.; Walsum, Theo van; Veenland, Jifke F.; Paulides, Margarethus M.

    2014-01-01

    Background and purpose: Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H and N) carcinoma. Hyperthermia treatment planning (HTP) guided H and N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. Material and methods: CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Results: Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Conclusions: Automatically generated 3D patient models can be introduced in the clinic for H and N HTP

  7. Statistical analysis plan for the Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock (ADRENAL) trial

    DEFF Research Database (Denmark)

    Billot, Laurent; Venkatesh, Balasubramanian; Myburgh, John

    2017-01-01

    BACKGROUND: The Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock (ADRENAL) trial, a 3800-patient, multicentre, randomised controlled trial, will be the largest study to date of corticosteroid therapy in patients with septic shock. OBJECTIVE: To describe a statistical...... and statisticians and approved by the ADRENAL management committee. All authors were blind to treatment allocation and to the unblinded data produced during two interim analyses conducted by the Data Safety and Monitoring Committee. The data shells were produced from a previously published protocol. Statistical...... analyses are described in broad detail. Trial outcomes were selected and categorised into primary, secondary and tertiary outcomes, and appropriate statistical comparisons between groups are planned and described in a way that is transparent, available to the public, verifiable and determined before...

  8. Dental treatment planning considerations for patients using cannabis: A case report.

    Science.gov (United States)

    Grafton, Sarah Essek; Huang, Po Ning; Vieira, Alexandre R

    2016-05-01

    There is a deficit in clinical research on the potential risks involved in treating dental patients who use cannabis for either medicinal or recreational purposes. The aim of this case report is to illustrate the need for additional education for oral health care professionals so they can understand the wide variety of available cannabis options and their potential effects on dental treatment. A 27-year-old man sought care at the dental clinic with a nonrestorable molar requiring extraction. During the review of his medical history, the patient reported taking a "dab" of marijuana approximately 5 hours before his appointment. Because of the admission of recent illicit drug use, no treatment was rendered. The patient was offered an appointment the next day but he refused, citing bias in regard to his cannabis use. The number of Americans using marijuana is increasing rapidly. Twenty-three states and the District of Columbia have laws legalizing cannabis to some degree, and Alaska, Colorado, Oregon, and Washington have legalized marijuana for recreational use. This drastic upswing in availability and usage will require dentists to address the possible effects of cannabis on dental practices. It is imperative that dental care providers make clinical decisions based on scientific evidence regarding the pharmacologic and psychological effects of marijuana, not on the societal stigma associated with illegal drug use. Dentists should be familiar with popular delivery systems and understand the differences between various marijuana options. Clinical guidelines may need to be developed to help providers assess the patient's degree of cognitive impairment. Dentists should be able to advise patients on the potential consequences of this habit on their oral health. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  9. SU-E-T-272: Direct Verification of a Treatment Planning System Megavoltage Linac Beam Photon Spectra Models, and Analysis of the Effects On Patient Plans

    Energy Technology Data Exchange (ETDEWEB)

    Leheta, D; Shvydka, D; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2015-06-15

    Purpose: For the photon dose calculation Philips Pinnacle Treatment Planning System (TPS) uses collapsed cone convolution algorithm, which relies on energy spectrum of the beam in computing the scatter component. The spectrum is modeled based on Linac’s standard commissioning data and typically is not independently verified. We explored a methodology of using transmission measurements in combination with regularization data processing to unfold Linac spectra. The measured spectra were compared to those modeled by the TPS, and the effect on patient plans was evaluated. Methods: Transmission measurements were conducted in narrow-beam geometry using a standard Farmer ionization chamber. Two attenuating materials and two build -up caps, having different atomic numbers, served to enhance discrimination between absorption of low and high-energy portions of the spectra, thus improving the accuracy of the results. The data was analyzed using a regularization technique implemented through spreadsheet-based calculations. Results: The unfolded spectra were found to deviate from the TPS beam models. The effect of such deviations on treatment planning was evaluated for patient plans through dose distribution calculations with either TPS modeled or measured energy spectra. The differences were reviewed through comparison of isodose distributions, and quantified based on maximum dose values for critical structures. While in most cases no drastic differences in the calculated doses were observed, plans with deviations of 4 to 8% in the maximum dose values for critical structures were discovered. The anatomical sites with large scatter contributions are the most vulnerable to inaccuracies in the modeled spectrum. Conclusion: An independent check of the TPS model spectrum is highly desirable and should be included as part of commissioning of a new Linac. The effect is particularly important for dose calculations in high heterogeneity regions. The developed approach makes

  10. The role of endorectal coil MRI in patient selection and treatment planning for prostate seed implants

    International Nuclear Information System (INIS)

    Clarke, Daniel H.; Banks, Stephen J.; Wiederhorn, A. Roger; Klousia, John W.; Lissy, Jeanne M.; Miller, Michelle; Able, Arnold M.; Artiles, Carlos; Hindle, William V.; Blair, Deborah N.; Houk, Russell R.; Sheridan, Michael J.

    2002-01-01

    Purpose: To assess the role of endorectal coil magnetic resonance imaging (MRI) staging for patients undergoing seed implantation (SI) with or without external beam radiotherapy (EBRT). Methods and Materials: Between October 1994 and December 1998, 390 patients underwent prostate SI (98% Pd-103, 2% I-125). Seventy-six percent of patients had a prostate serum antigen (PSA) 20. Ten percent of patients had a Gleason score (GS) of 4-5, 54% had GS 6, 29% had GS 7, and 7% had GS ≥ 8. Monotherapy was employed in 46% of patients, and the remaining 54% received combined EBRT and SI. Three hundred twenty-seven were staged by high-resolution phased array pelvic coil, or in most cases, an endorectal coil MRI. The MRI findings were used to guide stage-appropriate treatment recommendations, and to assist in the preplanning and optimization of seed distributions. The criteria utilized to determine MRI-based stage were founded on the reported literature from the University of Pennsylvania. All MRI studies were reviewed by C.A., D.B., or W.H., who were unaware of clinical stage at the time of their review. The biopsy report was available to them as the only clinical correlate. Results: Of the 327 patients staged by MRI, 70% were upstaged from the digital rectal examination-based clinical stage; 26% of T 1 , T 2 patients were upstaged to T 3 . Perineural invasion and the percentage of positive cores predicted for T 3 MRI stage (p 3 intermediate-risk group patients treated by combined therapy with a previous study of T 3 intermediate-risk group treated by radical prostatectomy (RP) at the University of Pennsylvania. Our 36-month PSA FFP was 94% compared with 21% for the previous study's RP patients. Conclusion: MRI is a valuable staging procedure for prostate cancer patients treated by SI. PSA FFP results appear to be improved by MRI staging. MRI T 3 disease can be treated more effectively by SI + EBRT than by RP

  11. Results of the quality control treatments plans in volume arc therapy modulated for thirty treated patients

    International Nuclear Information System (INIS)

    Fenoglietto, P.; Ailleres, N.; Simeon, S.; Santoro, L.; Dubois, J.B.; Azria, D.

    2009-01-01

    The intensity modulated radiotherapy (I.M.R.T.) provided by voluminal arc therapy was implemented at the Val d'Aurelle regional center against cancer in november 2008. In May 2009 more than 30 patients have benefited from this technique in our institution and for each of them, the dosimetry planing has been checked under the accelerator before the treatment. The analysis of these results of measures under accelerators equipped of 120 leave collimators and for optimizations realised with the Rapid-arc computer code from Varian. The issue of a treatment in intensity modulation by voluminal arc therapy gives satisfying results falling within the range of those previously found in conventional I.M.R.T.. Besides, the quality control is faster because of lesser number of beams to verify. (N.C.)

  12. Clinical evaluation of treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Emery, E W [Radiotherapy Department, University College Hospital, London (United Kingdom)

    1966-06-15

    Since the start of radiotherapy, the aim of all radiotherapists has been to treat as many patients who suffer with malignant tumours as possible, so as to give an effective curative dose to the whole tumour, at the same time, doing as little damage as possible to normal tissues. Until 1945, damage to the skin was usually the limiting factor. Since the war, with the rapid development of more powerful X-ray machines and sources of irradiation, we have had at our disposal much more penetrating radiation, allowing us to give effective tumour doses, with little or no damage to the skin. However, with higher tumour doses, there is more likelihood of damage to structures in proximity to the tumour - i.e. bone, nerves, muscle, liver, kidney etc. This has focussed the interest of all radiologists on the need for careful planning, and physicists have worked out with great care the differential absorptions of X-rays on differing tissue, i. e. bone, muscle, fat etc., so that very accurate and correct treatment planning can now be undertaken. This entails a great deal of accurate and complicated work and has had to be done by our physicist colleagues, who may take hours or days to work out a complicated treatment plan. The acceptance of the plan as being the most suitable for a patient is governed by these factors: (a) The dose must be given to the whole tumour area; (b) The nearby structures, i. e. nerves, bowel, kidney etc. must not receive a dose which may cause serious damage; (c) All parts of the tumour must have an effective dose; (d) The integral dose must be such that the patient is not unduly upset. All these factors vary from patient to patient, and thus each plan has to be considered in conjunction with each individual patient so that, although patients have similar tumours, what may be an optimal plan for one may not be for another. Also clinicians themselves vary in their opinions on the size of tumour, general condition of the patient, and the amount of damage

  13. Patient-related quality assurance with different combinations of treatment planning systems, techniques, and machines. A multi-institutional survey

    Energy Technology Data Exchange (ETDEWEB)

    Steiniger, Beatrice; Schwedas, Michael; Weibert, Kirsten; Wiezorek, Tilo [University Hospital Jena, Department of Radiation Oncology, Jena (Germany); Berger, Rene [SRH Hospital Gera, Department of Radiation Oncology, Gera (Germany); Eilzer, Sabine [Martin-Luther-Hospital, Radiation Therapy, Berlin (Germany); Kornhuber, Christine [University Hospital Halle, Department of Radiation Oncology, Halle (Saale) (Germany); Lorenz, Kathleen [Hospital of Chemnitz, Department for Radiation Oncology, Chemnitz (Germany); Peil, Torsten [MVZ Center for Radiation Oncology Halle GmbH, Halle (Saale) (Germany); Reiffenstuhl, Carsten [University Hospital Carl Gustav Carus, Department of Radiation Oncology, Dresden (Germany); Schilz, Johannes [Helios Hospital Erfurt, Department of Radiation Oncology, Erfurt (Germany); Schroeder, Dirk [SRH Central Hospital Suhl, Department of Radiation Oncology, Suhl (Germany); Pensold, Stephanie [Community Hospital Dresden-Friedrichstadt, Department of Radiation Oncology, Dresden (Germany); Walke, Mathias [Otto-von-Guericke University Magdeburg, Department of Radiation Oncology, Magdeburg (Germany); Wolf, Ulrich [University Hospital Leipzig, Department of Radiation Oncology, Leipzig (Germany)

    2017-01-15

    This project compares the different patient-related quality assurance systems for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques currently used in the central Germany area with an independent measuring system. The participating institutions generated 21 treatment plans with different combinations of treatment planning systems (TPS) and linear accelerators (LINAC) for the QUASIMODO (Quality ASsurance of Intensity MODulated radiation Oncology) patient model. The plans were exposed to the ArcCHECK measuring system (Sun Nuclear Corporation, Melbourne, FL, USA). The dose distributions were analyzed using the corresponding software and a point dose measured at the isocenter with an ionization chamber. According to the generally used criteria of a 10 % threshold, 3 % difference, and 3 mm distance, the majority of plans investigated showed a gamma index exceeding 95 %. Only one plan did not fulfill the criteria and three of the plans did not comply with the commonly accepted tolerance level of ±3 % in point dose measurement. Using only one of the two examined methods for patient-related quality assurance is not sufficiently significant in all cases. (orig.) [German] Im Rahmen des Projekts sollten die verschiedenen derzeit im mitteldeutschen Raum eingesetzten patientenbezogenen Qualitaetssicherungssysteme zur intensitaetsmodulierten Radiotherapie (IMRT) und volumenmodulierten Arc-Radiotherapie (VMAT) mit einem unabhaengigen Messsystem verglichen werden. Die teilnehmenden Einrichtungen berechneten insgesamt 21 Bestrahlungsplaene mit verschiedenen Planungssystemen (TPS) und Linearbeschleunigern (LINAC) fuer das Patientenmodell QUASIMODO (Quality ASsurance of Intensity MODulated radiation Oncology), die dann auf das ArcCHECK-Phantom (Sun Nuclear Corporation, Melbourne, FL, USA) uebertragen und abgestrahlt wurden. Zur Auswertung wurde sowohl eine Punktmessung im Isozentrum als auch die Dosisverteilung in der Diodenebene des

  14. Treatment planning source assessment

    International Nuclear Information System (INIS)

    Calzetta Larrieu, O.; Blaumann, H.; Longhino, J.

    2000-01-01

    The reactor RA-6 NCT system was improved during the last year mainly in two aspects: the facility itself getting lower contamination factors and using better measurements techniques to obtain lower uncertainties in its characterization. In this job we show the different steps to get the source to be used in the treatment planning code representing the NCT facility. The first one was to compare the dosimetry in a water phantom between the calculation using the entire facility including core, filter and shields and a surface source at the end of the beam. The second one was to transform this particle by particle source in a distribution one regarding the minimum spatial, energy and angular resolution to get similar results. Finally we compare calculation and experimental values with and without the water phantom to adjust the distribution source. The results are discussed. (author)

  15. Treatment Planning for Ion Beam Therapy

    Science.gov (United States)

    Jäkel, Oliver

    The special aspects of treatment planning for ion beams are outlined in this chapter, starting with positioning and immobilization of the patient, describing imaging and segmentation, definition of treatment parameters, dose calculation and optimization, and, finally, plan assessment, verification, and quality assurance.

  16. Clinical physics for charged particle treatment planning

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Pitluck, S.; Lyman, J.T.

    1981-01-01

    The installation of a computerized tomography (CT) scanner which can be used with the patient in an upright position is described. This technique will enhance precise location of tumor position relative to critical structures for accurate charged particle dose delivery during fixed horizontal beam radiotherapy. Pixel-by-pixel treatment planning programs have been developed to calculate the dose distribution from multi-port charged particle beams. The plan includes CT scans, data interpretation, and dose calculations. The treatment planning computer is discussed. Treatment planning for irradiation of ocular melanomas is described

  17. Skull base chordomas: treatment outcome and prognostic factors in adult patients following conformal treatment with 3D planning and high dose fractionated combined proton and photon radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J E; Hug, E; McManus, P; Adams, J; Efird, J; Liebsch, N J

    1995-07-01

    Purpose: To report treatment outcome and prognostic factors for local recurrence-free survival and overall survival in adult patients with skull base chordomas treated with 3D planning and high dose fractionated combined proton and photon radiation therapy. Methods and Materials: From 1975 through 1993, 132 adult patients with skull base chordomas were treated with fractionated combined proton and photon radiation therapy. Seventy five patients (57%) were male and 57 (43%) female. Age ranged from 19 to 80 years (median 45.5 years). All pathology was verified at MGH by a single pathologist. Ninety six had non-chondroid (NCC) and 36 chondroid chordomas (CC), respectively. Median prescribed dose was 68.7 CGE (CGE, Cobalt Gray-equivalent: proton Gy X RBE 1.1 + photon Gy), ranging from 36 to 79.2 CGE; 95% received {>=} 66.6 CGE. Between 70 and 100% of the dose was given with the 160 MeV proton beam at the Harvard Cyclotron. 3D CT-based treatment planning has been employed in all patients treated since 1980. Median follow-up was 46 months (range 2-158 months). Results: Treatment outcome was evaluated in terms of local recurrence-free survival (LRFS) and disease specific survival (DSS), as well as treatment-related morbidity. Local failure (LF), defined as progressive neurological deficit with definite increase in tumor volume on CT or MRI scan, occurred in 39 patients (29.5%). LF was more common among women than among men:(26(57)) (46%) vs (13(75)) (17%), respectively. Thirty three of the 39 LF were seen in non-chondroid chordoma patients, with 6 occurring in patients with the chondroid variant (34% of NCC and 17% of CC), respectively. Distant metastasis was documented in 8 patients. LRFS was 81 {+-} 5.8%, 59 {+-} 8.3%, and 43 {+-} 10.4%, and DSS was 94 {+-} 3.6%, 80 {+-} 6.7%, and 50 {+-} 10.7% at 36, 60, and 96 months, respectively, for the total group. LRFS and DSS were not significantly different for patients with NCC than those with CC (p > .05). Gender was

  18. Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie

    2013-01-01

    Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (∼2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ∼2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the

  19. Monte Carlo Treatment Planning for Advanced Radiotherapy

    DEFF Research Database (Denmark)

    Cronholm, Rickard

    This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...

  20. MRI integration into treatment planning of head and neck tumors: Can patient immobilization be avoided?

    International Nuclear Information System (INIS)

    Fortunati, Valerio; Verhaart, René F.; Verduijn, Gerda M.; Lugt, Aad van der; Angeloni, Francesco; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; Walsum, Theo van

    2015-01-01

    To assess whether deformable registration between CT and MR images can be used to avoid patient immobilization, we compared registration accuracy in various scenarios, with and without immobilization equipment. Whereas both deformable registration and the use of immobilization equipment improved the registration accuracy, the combination gave the best alignment

  1. MRI integration into treatment planning of head and neck tumors: Can patient immobilization be avoided?

    Science.gov (United States)

    Fortunati, Valerio; Verhaart, René F; Verduijn, Gerda M; van der Lugt, Aad; Angeloni, Francesco; Niessen, Wiro J; Veenland, Jifke F; Paulides, Margarethus M; van Walsum, Theo

    2015-05-01

    To assess whether deformable registration between CT and MR images can be used to avoid patient immobilization, we compared registration accuracy in various scenarios, with and without immobilization equipment. Whereas both deformable registration and the use of immobilization equipment improved the registration accuracy, the combination gave the best alignment. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Determinants of treatment plan implementation in multidisciplinary team meetings for patients with chronic diseases: a mixed-methods study.

    Science.gov (United States)

    Raine, Rosalind; Xanthopoulou, Penny; Wallace, Isla; Nic A' Bháird, Caoimhe; Lanceley, Anne; Clarke, Alex; Livingston, Gill; Prentice, Archie; Ardron, Dave; Harris, Miriam; King, Michael; Michie, Susan; Blazeby, Jane M; Austin-Parsons, Natalie; Gibbs, Simon; Barber, Julie

    2014-10-01

    Multidisciplinary team (MDT) meetings are assumed to produce better decisions and are extensively used to manage chronic disease in the National Health Service (NHS). However, evidence for their effectiveness is mixed. Our objective was to investigate determinants of MDT effectiveness by examining factors influencing the implementation of MDT treatment plans. This is a proxy measure of effectiveness, because it lies on the pathway to improvements in health, and reflects team decision making which has taken account of clinical and non-clinical information. Additionally, this measure can be compared across MDTs for different conditions. We undertook a prospective mixed-methods study of 12 MDTs in London and North Thames. Data were collected by observation of 370 MDT meetings, interviews with 53 MDT members, and from 2654 patient medical records. We examined the influence of patient-related factors (disease, age, sex, deprivation, whether their preferences and other clinical/health behaviours were mentioned) and MDT features (as measured using the 'Team Climate Inventory' and skill mix) on the implementation of MDT treatment plans. The adjusted odds (or likelihood) of implementation was reduced by 25% for each additional professional group represented at the MDT meeting. Implementation was more likely in MDTs with clear goals and processes and a good 'Team Climate' (adjusted OR 1.96; 95% CI 1.15 to 3.31 for a unit increase in Team Climate Inventory (TCI) score). Implementation varied by disease category, with the lowest adjusted odds of implementation in mental health teams. Implementation was also lower for patients living in more deprived areas (adjusted odds of implementation for patients in the most compared with least deprived areas was 0.60, 95% CI 0.39 to 0.91). Greater multidisciplinarity is not necessarily associated with more effective decision making. Explicit goals and procedures are also crucial. Decision implementation should be routinely monitored to

  3. Utility of Megavoltage Fan-Beam CT for Treatment Planning in a Head-And-Neck Cancer Patient with Extensive Dental Fillings Undergoing Helical Tomotherapy

    International Nuclear Information System (INIS)

    Yang, Claus; Liu Tianxiao; Jennelle, Richard L.; Ryu, Janice K.; Vijayakumar, Srinivasan; Purdy, James A.; Chen, Allen M.

    2010-01-01

    The purpose of this study was to demonstrate the potential utility of megavoltage fan-beam computed tomography (MV-FBCT) for treatment planning in a patient undergoing helical tomotherapy for nasopharyngeal carcinoma in the presence of extensive dental artifact. A 28-year-old female with locally advanced nasopharyngeal carcinoma presented for radiation therapy. Due to the extensiveness of the dental artifact present in the oral cavity kV-CT scan acquired at simulation, which made treatment planning impossible on tomotherapy planning system, MV-FBCT imaging was obtained using the HI-ART tomotherapy treatment machine, with the patient in the treatment position, and this information was registered with her original kV-CT scan for the purposes of structure delineation, dose calculation, and treatment planning. To validate the feasibility of the MV-FBCT-generated treatment plan, an electron density CT phantom (model 465, Gammex Inc., Middleton, WI) was scanned using MV-FBCT to obtain CT number to density table. Additionally, both a 'cheese' phantom (which came with the tomotherapy treatment machine) with 2 inserted ion chambers and a generic phantom called Quasar phantom (Modus Medical Devices Inc., London, ON, Canada) with one inserted chamber were used to confirm dosimetric accuracy. The MV-FBCT could be used to clearly visualize anatomy in the region of the dental artifact and provide sufficient soft-tissue contrast to assist in the delineation of normal tissue structures and fat planes. With the elimination of the dental artifact, the MV-FBCT images allowed more accurate dose calculation by the tomotherapy system. It was confirmed that the phantom material density was determined correctly by the tomotherapy MV-FBCT number to density table. The ion chamber measurements agreed with the calculations from the MV-FBCT generated phantom plan within 2%. MV-FBCT may be useful in radiation treatment planning for nasopharyngeal cancer patients in the setting of extensive

  4. Clinical treatment planning in gynecologic cancer

    International Nuclear Information System (INIS)

    Brady, L.W.; Markoe, A.M.; Micaily, B.; Damsker, J.I.; Karlsson, U.L.; Amendola, B.E.

    1987-01-01

    Treatment planning in gynecologic cancer is a complicated and difficult procedure. It requires an adequate preoperative assessment of the true extent of the patient's disease process and oftentimes this can be achieved not only by conventional studies but must employ surgical exploratory techniques in order to truly define the extent of the disease. However, with contemporary sophisticated treatment planning techniques that are now available in most contemporary departments of radiation oncology, radiation therapy is reemerging as an important and major treatment technique in the management of patients with gynecologic cancer

  5. SU-E-T-628: Predicted Risk of Post-Irradiation Cerebral Necrosis in Pediatric Brain Cancer Patients: A Treatment Planning Comparison of Proton Vs. Photon Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, D [Willis Knighton Cancer Center, Shreveport, LA (United States); Zhang, R; Sanders, M [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Newhauser, W [Louisiana State University, Baton Rouge, LA (United States)

    2015-06-15

    Purpose: Post-irradiation cerebral necrosis (PICN) is a severe late effect that can Result from brain cancers treatment using radiation therapy. The purpose of this study was to compare the treatment plans and predicted risk of PICN after volumetric modulated arc therapy (VMAT) to the risk after passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT) in a cohort of pediatric patients. Methods: Thirteen pediatric patients with varying age and sex were selected for this study. A clinical treatment volume (CTV) was constructed for 8 glioma patients and 5 ependymoma patients. Prescribed dose was 54 Gy over 30 fractions to the planning volume. Dosimetric endpoints were compared between VMAT and proton plans. The normal tissue complication probability (NTCP) following VMAT and proton therapy planning was also calculated using PICN as the biological endpoint. Sensitivity tests were performed to determine if predicted risk of PICN was sensitive to positional errors, proton range errors and selection of risk models. Results: Both PSPT and IMPT plans resulted in a significant increase in the maximum dose and reduction in the total brain volume irradiated to low doses compared with the VMAT plans. The average ratios of NTCP between PSPT and VMAT were 0.56 and 0.38 for glioma and ependymoma patients respectively and the average ratios of NTCP between IMPT and VMAT were 0.67 and 0.68 for glioma and ependymoma plans respectively. Sensitivity test revealed that predicted ratios of risk were insensitive to range and positional errors but varied with risk model selection. Conclusion: Both PSPT and IMPT plans resulted in a decrease in the predictive risk of necrosis for the pediatric plans studied in this work. Sensitivity analysis upheld the qualitative findings of the risk models used in this study, however more accurate models that take into account dose and volume are needed.

  6. Impact of 18FDG-PET/CT on biological target volume (BTV) definition for treatment planning for non-small cell lung cancer patients

    International Nuclear Information System (INIS)

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Dean, Geoffrey; Lisbona, Robert; Parker, William; Kaufman, Chris; Podgorsak, Ervin B.

    2007-01-01

    This work represents our effort to test feasibility of FDG-based PET/CT on target volume delineation in radiotherapy treatment planning of NSCLC patients. Different methods have been developed to enable more precise target outlining using PET: Qualitative Visual Method, CTV=2.5 SUV units, linear SUV threshold function method, and CTV=40% Iso of Maximum Uptake Value. We are proposing reconstruction of three biological target volumes: necrotic BTV (same as PTV created by radiation oncologist using CT data), proliferating BTV (based on PET signal to background ratio 1:3) and hypoxic BTV (based on PET signal to background ratio of 1:19). Two IMRT plans were created and compared to the conventional treatment plan: 'conservative' IMRT plan delivers 52.5 Gy to the necrotic BTV and 65 Gy to the hypoxic BTV; 'radical' IMRT plan delivers 30 Gy to necrotic BTV, 52.5 Gy to proliferating BTV and 65 Gy to hypoxic BTV. Use of BTVs in IMRT plans is attractive because it increases dose to targets considered to need higher doses. It reduces considerably dose to heart and spinal cord, organs considered to limit dose escalation approaches in NSCLC treatment. 'Conservative' IMRT approach can be understood as a PET/CT-based concomitant boost to the tumor expressing the highest FDG uptake. 'Radical' plan implies deviation from the traditional uniform dose target coverage approach, with the intention of achieving better surrounding tissue sparing and ultimately allowing for dose escalation protocols relying on biologically based treatment planning

  7. [Power of personal goal sharing--treatment plan using personal goal maps for patients with mental disorders].

    Science.gov (United States)

    Zhao, Yueren

    2011-01-01

    , which help us along the Trust Path. The more patients and staff trust and understand each other the easier it is to climb up the Initial Treatment Path. We need to build up trustful relations so we can share personal goals and make a proper assessment and diagnosis, and talk about the safety, efficacy, cost and suitability of the initial treatment. Secondly, we need to take a rest and make more plans for the Recovery Path. It is on this path that we decide on comprehensive treatment together. We may be able to improve the patient's cognitive functions by using atypical anti-psychotic agents. We can then give them information, instructions and warnings about medicine usage so the patient is able to understand their condition. It is only after the patient can understand these things fully and act positively that we can start to climb the final path, the Achievement Path. We should review the suitability and efficacy of the treatment again, and it is at this stage that the mountain guide steps back and watches the mountain climber take the final steps towards the mountain peak goal. Lastly, the patient will feel elation and a sense of fulfillment and self-pride, and no doubt will be ready to look for the next mountain peak to climb. In order for you to enjoy the benefits at the clinical scene, all you need is a piece of paper, a pen, and a limitless imagination for better personal goal sharing. At Meisei hospital we promote the 'Minotake Team Approach', which calls for flexible management so we hospital staff can help each other as professionals. We treat patients as individuals using words and expressions they understand (such as local dialect and nonmedical terms), and give them access to easy to understand resources such as leaflets delivered by universities or pharmaceutical companies. We ask our staff to act naturally with the patients, and to just do what they can do to help the patients work towards their personal goals.

  8. Improving treatment plan evaluation with automation

    Science.gov (United States)

    Covington, Elizabeth L.; Chen, Xiaoping; Younge, Kelly C.; Lee, Choonik; Matuszak, Martha M.; Kessler, Marc L.; Keranen, Wayne; Acosta, Eduardo; Dougherty, Ashley M.; Filpansick, Stephanie E.

    2016-01-01

    The goal of this work is to evaluate the effectiveness of Plan‐Checker Tool (PCT) which was created to improve first‐time plan quality, reduce patient delays, increase the efficiency of our electronic workflow, and standardize and automate the physics plan review in the treatment planning system (TPS). PCT uses an application programming interface to check and compare data from the TPS and treatment management system (TMS). PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user as part of a plan readiness check for treatment. Prior to and during PCT development, errors identified during the physics review and causes of patient treatment start delays were tracked to prioritize which checks should be automated. Nineteen of 33 checklist items were automated, with data extracted with PCT. There was a 60% reduction in the number of patient delays in the six months after PCT release. PCT was successfully implemented for use on all external beam treatment plans in our clinic. While the number of errors found during the physics check did not decrease, automation of checks increased visibility of errors during the physics check, which led to decreased patient delays. The methods used here can be applied to any TMS and TPS that allows queries of the database. PACS number(s): 87.55.‐x, 87.55.N‐, 87.55.Qr, 87.55.tm, 89.20.Bb PMID:27929478

  9. Improving treatment planning accuracy through multimodality imaging

    International Nuclear Information System (INIS)

    Sailer, Scott L.; Rosenman, Julian G.; Soltys, Mitchel; Cullip, Tim J.; Chen, Jun

    1996-01-01

    Purpose: In clinical practice, physicians are constantly comparing multiple images taken at various times during the patient's treatment course. One goal of such a comparison is to accurately define the gross tumor volume (GTV). The introduction of three-dimensional treatment planning has greatly enhanced the ability to define the GTV, but there are times when the GTV is not visible on the treatment-planning computed tomography (CT) scan. We have modified our treatment-planning software to allow for interactive display of multiple, registered images that enhance the physician's ability to accurately determine the GTV. Methods and Materials: Images are registered using interactive tools developed at the University of North Carolina at Chapel Hill (UNC). Automated methods are also available. Images registered with the treatment-planning CT scan are digitized from film. After a physician has approved the registration, the registered images are made available to the treatment-planning software. Structures and volumes of interest are contoured on all images. In the beam's eye view, wire loop representations of these structures can be visualized from all image types simultaneously. Each registered image can be seamlessly viewed during the treatment-planning process, and all contours from all image types can be seen on any registered image. A beam may, therefore, be designed based on any contour. Results: Nineteen patients have been planned and treated using multimodality imaging from November 1993 through August 1994. All registered images were digitized from film, and many were from outside institutions. Brain has been the most common site (12), but the techniques of registration and image display have also been used for the thorax (4), abdomen (2), and extremity (1). The registered image has been an magnetic resonance (MR) scan in 15 cases and a diagnostic CT scan in 5 cases. In one case, sequential MRs, one before treatment and another after 30 Gy, were used to plan

  10. Fast and fuzzy multi-objective radiotherapy treatment plan generation for head and neck cancer patients with the lexicographic reference point method (LRPM)

    Science.gov (United States)

    van Haveren, Rens; Ogryczak, Włodzimierz; Verduijn, Gerda M.; Keijzer, Marleen; Heijmen, Ben J. M.; Breedveld, Sebastiaan

    2017-06-01

    Previously, we have proposed Erasmus-iCycle, an algorithm for fully automated IMRT plan generation based on prioritised (lexicographic) multi-objective optimisation with the 2-phase ɛ-constraint (2pɛc) method. For each patient, the output of Erasmus-iCycle is a clinically favourable, Pareto optimal plan. The 2pɛc method uses a list of objective functions that are consecutively optimised, following a strict, user-defined prioritisation. The novel lexicographic reference point method (LRPM) is capable of solving multi-objective problems in a single optimisation, using a fuzzy prioritisation of the objectives. Trade-offs are made globally, aiming for large favourable gains for lower prioritised objectives at the cost of only slight degradations for higher prioritised objectives, or vice versa. In this study, the LRPM is validated for 15 head and neck cancer patients receiving bilateral neck irradiation. The generated plans using the LRPM are compared with the plans resulting from the 2pɛc method. Both methods were capable of automatically generating clinically relevant treatment plans for all patients. For some patients, the LRPM allowed large favourable gains in some treatment plan objectives at the cost of only small degradations for the others. Moreover, because of the applied single optimisation instead of multiple optimisations, the LRPM reduced the average computation time from 209.2 to 9.5 min, a speed-up factor of 22 relative to the 2pɛc method.

  11. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  12. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  13. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    DEFF Research Database (Denmark)

    Kornerup, Josefine S.; Brodin, N. P.; Bjork-Eriksson, T.

    2015-01-01

    ) and estimated risk of secondary cancer (SC). RESULTS: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target...... or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. ADVANCES IN KNOWLEDGE: (18)F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11...... patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT....

  14. Method of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Hodes, L.

    1976-01-01

    A technique of radiation therapy treatment planning designed to allow the assignment of dosage limits directly to chosen points in the computer-displayed cross-section of the patient. These dosage limits are used as constraints in a linear programming attempt to solve for beam strengths, minimizing integral dosage. If a feasible plan exists, the optimized plan will be displayed for approval as an isodose pattern. If there is no feasible plan, the operator/therapist can designate some of the point dosage constraints as ''relaxed.'' Linear programming will then optimize for minimum deviation at the relaxed points. This process can be iterated and new points selected until an acceptable plan is realized. In this manner the plan is optimized for uniformity as well as overall low dosage. 6 claims, 6 drawing figures

  15. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    Science.gov (United States)

    Brodin, N P; Björk-Eriksson, T; Birk Christensen, C; Kiil-Berthelsen, A; Aznar, M C; Hollensen, C; Markova, E; Munck af Rosenschöld, P

    2015-01-01

    Objective: To investigate the impact of including fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). Methods: Target volumes were first delineated without and subsequently re-delineated with access to 18F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). Results: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. Conclusion: Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. Advances in knowledge: 18F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT. PMID:25494657

  16. Standardization of prostate brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Ove, Roger; Wallner, Kent; Badiozamani, Kas; Korjsseon, Tammy; Sutlief, Steven

    2001-01-01

    Purpose: Whereas custom-designed plans are the norm for prostate brachytherapy, the relationship between linear prostate dimensions and volume calls into question the routine need for customized treatment planning. With the goal of streamlining the treatment-planning process, we have compared the treatment margins (TMs) achieved with one standard plan applied to patients with a wide range of prostate volumes. Methods and Materials: Preimplant transrectal ultrasound (TRUS) images of 50 unselected University of Washington patients with T1-T2 cancer and a prostate volume between 20 cc and 50 cc were studied. Patients were arbitrarily grouped into categories of 20-30 cc, 30-40 cc, and 40-50 cc. A standard 19-needle plan was devised for patients in the 30- to 40-cc range, using an arbitrary minimum margin of 5 mm around the gross tumor volume (GTV), making use of inverse planning technology to achieve 100% coverage of the target volume with accentuation of dose at the periphery and sparing of the central region. The idealized plan was applied to each patient's TRUS study. The distances (TMs) between the prostatic edge (GTV) and treated volume (TV) were determined perpendicular to the prostatic margin. Results: Averaged over the entire patient group, the ratio of thickness to width was 1.4, whereas the ratio of length to width was 1.3. These values were fairly constant over the range of volumes, emphasizing that the prostate retains its general shape as volume increases. The idealized standard plan was overlaid on the ultrasound images of the 17 patients in the 30- to 40-cc group and the V100, the percentage of target volume receiving 100% or more of the prescription dose, was 98% or greater for 15 of the 17 patients. The lateral and posterior TMs fell within a narrow range, most being within 2 mm of the idealized 5-mm TM. To estimate whether a 10-cc volume-interval stratification was reasonable, the standard plan generated from the 30- to 40-cc prostate model was

  17. 68Ga-PSMA-PET/CT imaging of localized primary prostate cancer patients for intensity modulated radiation therapy treatment planning with integrated boost.

    Science.gov (United States)

    Thomas, Lena; Kantz, Steffi; Hung, Arthur; Monaco, Debra; Gaertner, Florian C; Essler, Markus; Strunk, Holger; Laub, Wolfram; Bundschuh, Ralph A

    2018-07-01

    The purpose of our study was to show the feasibility and potential benefits of using 68 Ga-PSMA-PET/CT imaging for radiation therapy treatment planning of patients with primary prostate cancer using either integrated boost on the PET-positive volume or localized treatment of the PET-positive volume. The potential gain of such an approach, the improvement of tumor control, and reduction of the dose to organs-at-risk at the same time was analyzed using the QUANTEC biological model. Twenty-one prostate cancer patients (70 years average) without previous local therapy received 68 Ga-PSMA-PET/CT imaging. Organs-at-risk and standard prostate target volumes were manually defined on the obtained datasets. A PET active volume (PTV_PET) was segmented with a 40% of the maximum activity uptake in the lesion as threshold followed by manual adaption. Five different treatment plan variations were calculated for each patient. Analysis of derived treatment plans was done according to QUANTEC with in-house developed software. Tumor control probability (TCP) and normal tissue complication probability (NTCP) was calculated for all plan variations. Comparing the conventional plans to the plans with integrated boost and plans just treating the PET-positive tumor volume, we found that TCP increased to (95.2 ± 0.5%) for an integrated boost with 75.6 Gy, (98.1 ± 0.3%) for an integrated boost with 80 Gy, (94.7 ± 0.8%) for treatment of PET-positive volume with 75 Gy, and to (99.4 ± 0.1%) for treating PET-positive volume with 95 Gy (all p PET/CT image information allows for more individualized prostate treatment planning. TCP values of identified active tumor volumes were increased, while rectum and bladder NTCP values either remained the same or were even lower. However, further studies need to clarify the clinical benefit for the patients applying these techniques.

  18. MO-G-304-01: FEATURED PRESENTATION: Expanding the Knowledge Base for Data-Driven Treatment Planning: Incorporating Patient Outcome Models

    International Nuclear Information System (INIS)

    Robertson, SP; Quon, H; Cheng, Z; Moore, JA; Bowers, M; McNutt, TR

    2015-01-01

    Purpose: To extend the capabilities of knowledge-based treatment planning beyond simple dose queries by incorporating validated patient outcome models. Methods: From an analytic, relational database of 684 head and neck cancer patients, 372 patients were identified having dose data for both left and right parotid glands as well as baseline and follow-up xerostomia assessments. For each existing patient, knowledge-based treatment planning was simulated for by querying the dose-volume histograms and geometric shape relationships (overlap volume histograms) for all other patients. Dose predictions were captured at normalized volume thresholds (NVT) of 0%, 10%, 20, 30%, 40%, 50%, and 85% and were compared with the actual achieved doses using the Wilcoxon signed-rank test. Next, a logistic regression model was used to predict the maximum severity of xerostomia up to three months following radiotherapy. Baseline xerostomia scores were subtracted from follow-up assessments and were also included in the model. The relative risks from predicted doses and actual doses were computed and compared. Results: The predicted doses for both parotid glands were significantly less than the achieved doses (p < 0.0001), with differences ranging from 830 cGy ± 1270 cGy (0% NVT) to 1673 cGy ± 1197 cGy (30% NVT). The modelled risk of xerostomia ranged from 54% to 64% for achieved doses and from 33% to 51% for the dose predictions. Relative risks varied from 1.24 to 1.87, with maximum relative risk occurring at 85% NVT. Conclusions: Data-driven generation of treatment planning objectives without consideration of the underlying normal tissue complication probability may Result in inferior plans, even if quality metrics indicate otherwise. Inclusion of complication models in knowledge-based treatment planning is necessary in order to close the feedback loop between radiotherapy treatments and patient outcomes. Future work includes advancing and validating complication models in the context

  19. MO-G-304-01: FEATURED PRESENTATION: Expanding the Knowledge Base for Data-Driven Treatment Planning: Incorporating Patient Outcome Models

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, SP; Quon, H; Cheng, Z; Moore, JA; Bowers, M; McNutt, TR [Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: To extend the capabilities of knowledge-based treatment planning beyond simple dose queries by incorporating validated patient outcome models. Methods: From an analytic, relational database of 684 head and neck cancer patients, 372 patients were identified having dose data for both left and right parotid glands as well as baseline and follow-up xerostomia assessments. For each existing patient, knowledge-based treatment planning was simulated for by querying the dose-volume histograms and geometric shape relationships (overlap volume histograms) for all other patients. Dose predictions were captured at normalized volume thresholds (NVT) of 0%, 10%, 20, 30%, 40%, 50%, and 85% and were compared with the actual achieved doses using the Wilcoxon signed-rank test. Next, a logistic regression model was used to predict the maximum severity of xerostomia up to three months following radiotherapy. Baseline xerostomia scores were subtracted from follow-up assessments and were also included in the model. The relative risks from predicted doses and actual doses were computed and compared. Results: The predicted doses for both parotid glands were significantly less than the achieved doses (p < 0.0001), with differences ranging from 830 cGy ± 1270 cGy (0% NVT) to 1673 cGy ± 1197 cGy (30% NVT). The modelled risk of xerostomia ranged from 54% to 64% for achieved doses and from 33% to 51% for the dose predictions. Relative risks varied from 1.24 to 1.87, with maximum relative risk occurring at 85% NVT. Conclusions: Data-driven generation of treatment planning objectives without consideration of the underlying normal tissue complication probability may Result in inferior plans, even if quality metrics indicate otherwise. Inclusion of complication models in knowledge-based treatment planning is necessary in order to close the feedback loop between radiotherapy treatments and patient outcomes. Future work includes advancing and validating complication models in the context

  20. When does treatment plan optimization require inverse planning?

    International Nuclear Information System (INIS)

    Sherouse, George W.

    1995-01-01

    Increasing maturity of image-based computer-aided design of three-dimensional conformal radiotherapy has recently sparked a great deal of work in the area of treatment plan optimization. Optimization of a conformal photon beam treatment plan is that exercise through which a set of intensity-modulated static beams or arcs is specified such that, when the plan is executed, 1) a region of homogeneous dose is produced in the patient with a shape which geometrically conforms (within a specified tolerance) to the three-dimensional shape of a designated target volume and 2) acceptably low incidental dose is delivered to non-target tissues. Interest in conformal radiotherapy arise from a fundamental assumption that there is significant value to be gained from aggressive customization of the treatment for each individual patient In our efforts to design optimal treatments, however, it is important to remember that, given the biological and economic realities of clinical radiotherapy, mathematical optimization of dose distribution metrics with respect to some minimal constraint set is not a necessary or even sufficient condition for design of a clinically optimal treatment. There is wide variation in the complexity of the clinical situations encountered in practice and there are a number of non-physical criteria to be considered in planning. There is also a complementary variety of computational and engineering means for achieving optimization. To date, the scientific dialogue regarding these techniques has concentrated on development of solutions to worst-case scenarios, largely in the absence of consideration of appropriate matching of solution complexity to problem complexity. It is the aim of this presentation to propose a provisional stratification of treatment planning problems, stratified by relative complexity, and to identify a corresponding stratification of necessary treatment planning techniques. It is asserted that the subset of clinical radiotherapy cases for

  1. SU-E-T-130: Are Proton Gantries Needed? An Analysis of 4332 Patient Proton Gantry Treatment Plans From the Past 10 Years

    International Nuclear Information System (INIS)

    Yan, S; Lu, H; Flanz, J; Depauw, N; Adams, J; Gorissen, BL; Wang, Y; Daartz, J; Bortfeld, T

    2015-01-01

    Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/down for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as

  2. SU-E-T-130: Are Proton Gantries Needed? An Analysis of 4332 Patient Proton Gantry Treatment Plans From the Past 10 Years

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S; Lu, H; Flanz, J; Depauw, N; Adams, J; Gorissen, BL; Wang, Y; Daartz, J; Bortfeld, T [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/down for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as

  3. Quality assurance in dosimetry and treatment planning

    International Nuclear Information System (INIS)

    Cunningham, J.R.

    1984-01-01

    The considerations of tissue response to radiation absorbed dose suggest a need for an accuracy of +/-5% in its delivery. This is very demanding and its regular achievement requires careful quality control. There are three distinct phases to the delivery of the planned treatment: calibration of the radiation beam in a reference situation, calculation of the dose distribution for a patient relative to the reference dose and the delivery of the radiation to the patient as planned. Each has distinctly different quality assurance requirements and must be diligently observed if the desired accuracy is to be achieved

  4. The Würzburg MIH concept: the MIH treatment need index (MIH TNI) : A new index to assess and plan treatment in patients with molar incisior hypomineralisation (MIH).

    Science.gov (United States)

    Steffen, R; Krämer, N; Bekes, K

    2017-10-01

    This was to create a new easy-to-use index for the treatment of MIH. An international MIH working group developed a new MIH index as an epidemiological screening procedure for assessing MIH treatment needs (MIH-TNI), and also for the screening and monitoring of individuals by dental practitioners. The MIH TNI assesses in particular the extent of the destruction of tooth structure in combination with any hypersensitivity occurring in MIH. The MIH-TNI is suggested as a basis for individual dental examinations covering all MIH typical problems or treatment planning. In addition, this index shall be the basis for decision-making in any MIH therapy studies already planned. After the validation of the MIH TNI it may be possible to create a standardised approach for dental treatment for MIH.

  5. SU-F-T-150: Comparing Normal Tissue Irradiated Volumes for Proton Vs. Photon Treatment Plans On Lung Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A; Mohan, R; Liao, Z [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The aim of this work is to compare the “irradiated volume” (IRV) of normal tissues receiving 5, 20, 50, 80 and 90% or higher of the prescription dose with passively scattered proton therapy (PSPT) vs. IMRT of lung cancer patients. The overall goal of this research is to understand the factors affecting outcomes of a randomized PSPT vs. IMRT lung trial. Methods: Thirteen lung cancer patients, selected randomly, were analyzed. Each patient had PSPT and IMRT 74 Gy (RBE) plans meeting the same normal tissue constraints generated. IRVs were created for pairs of IMRT and PSPT plans on each patient. The volume of iGTV, (respiratory motion-incorporated GTV) was subtracted from each IRV to create normal tissue irradiated volume IRVNT. The average of IRVNT DVHs over all patients was also calculated for both modalities and inter-compared as were the selected dose-volume indices. Probability (p value) curves were calculated based on the Wilcoxon matched-paired signed-rank test to determine the dose regions where the statistically significant differences existed. Results: As expected, the average 5, 20 and 50% IRVNT’s for PSPT was found to be significantly smaller than for IMRT (p < 0.001, 0.01, and 0.001 respectively). However, the average 90% IRVNT for PSPT was greater than for IMRT (p = 0.003) presumably due to larger penumbra of protons and the long range of protons in lower density media. The 80% IRVNT for PSPT was also larger but not statistically distinguishable (p = .224). Conclusion: PSPT modality has smaller irradiated volume at lower doses, but larger volume at high doses. A larger cohort of lung patients will be analyzed in the future and IRVNT of patients treated with PSPT and IMRT will be compared to determine if the irradiated volumes (the magnitude of “dose bath”) correlate with outcomes.

  6. The evolution of brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Venselaar, Jack L. M.; Beaulieu, Luc

    2009-01-01

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  7. Treatment planning systems for high precision radiotherapy

    International Nuclear Information System (INIS)

    Deshpande, D.D.

    2008-01-01

    Computerized Treatment Planning System (TPS) play an important role in radiotherapy with the intent to maximize tumor control and minimize normal tissue complications. Treatment planning during earlier days was generally carried out through the manual summations of standard isodose charts on to patient body contours that were generated by direct tracing or lead wire representation, and relied heavily on the careful choices of beam weights and wedging. Since then there had been tremendous advances in field of Radiation Oncology in last few decades. The linear accelerators had evolved from MLC's to IGRT, the techniques like 3DCRT, IMRT has become almost routine affair. The simulation has seen transition from simple 2D film/fluoroscopy localization to CT Simulator with added development in PET, PET- CT and MR imaging. The Networking and advances in computer technology has made it possible to direct transfer of Images, contours to the treatment planning systems

  8. SU-F-T-406: Verification of Total Body Irradiation Commissioned MU Lookup Table Accuracy Using Treatment Planning System for Wide Range of Patient Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D; Chi, P; Tailor, R; Aristophanous, M; Tung, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To verify the accuracy of total body irradiation (TBI) measurement commissioning data using the treatment planning system (TPS) for a wide range of patient separations. Methods: Our institution conducts TBI treatments with an 18MV photon beam at 380cm extended SSD using an AP/PA technique. Currently, the monitor units (MU) per field for patient treatments are determined using a lookup table generated from TMR measurements in a water phantom (75 × 41 × 30.5 cm3). The dose prescribed to an umbilicus midline point at spine level is determined based on patient separation, dose/ field and dose rate/MU. One-dimensional heterogeneous dose calculations from Pinnacle TPS were validated with thermoluminescent dosimeters (TLD) placed in an average adult anthropomorphic phantom and also in-vivo on four patients with large separations. Subsequently, twelve patients with various separations (17–47cm) were retrospectively analyzed. Computed tomography (CT) scans were acquired in the left and right decubitus positions from vertex to knee. A treatment plan for each patient was generated. The ratio of the lookup table MU to the heterogeneous TPS MU was compared. Results: TLD Measurements in the anthropomorphic phantom and large TBI patients agreed with Pinnacle calculated dose within 2.8% and 2%, respectively. The heterogeneous calculation compared to the lookup table agreed within 8.1% (ratio range: 1.014–1.081). A trend of reduced accuracy was observed when patient separation increases. Conclusion: The TPS dose calculation accuracy was confirmed by TLD measurements, showing that Pinnacle can model the extended SSD dose without commissioning a special beam model for the extended SSD geometry. The difference between the lookup table and TPS calculation potentially comes from lack of scatter during commissioning when compared to extreme patient sizes. The observed trend suggests the need for development of a correction factor between the lookup table and TPS dose

  9. Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning.

    Science.gov (United States)

    Chin Snyder, Karen; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J

    2016-11-08

    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans gener-ated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0 ± 1.6 Gy compared to clinical plans, p = 0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy ± 0.8Gy, p = 0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2 ± 0.4Gy, p = 0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2 ± 2.2Gy, p = 0.01) and GI (0.2 ± 0.4, p = 0.01) for the nine

  10. Knowledge-based treatment planning and its potential role in the transition between treatment planning systems.

    Science.gov (United States)

    Masi, Kathryn; Archer, Paul; Jackson, William; Sun, Yilun; Schipper, Matthew; Hamstra, Daniel; Matuszak, Martha

    2017-11-22

    Commissioning a new treatment planning system (TPS) involves many time-consuming tasks. We investigated the role that knowledge-based planning (KBP) can play in aiding a clinic's transition to a new TPS. Sixty clinically treated prostate/prostate bed intensity-modulated radiation therapy (IMRT) plans were exported from an in-house TPS and were used to create a KBP model in a newly implemented commercial application. To determine the benefit that KBP may have in a TPS transition, the model was tested on 2 groups of patients. Group 1 consisted of the first 10 prostate/prostate bed patients treated in the commercial TPS after the transition from the in-house TPS. Group 2 consisted of 10 patients planned in the commercial TPS after 8 months of clinical use. The KBP-generated plan was compared with the clinically used plan in terms of plan quality (ability to meet planning objectives and overall dose metrics) and planning efficiency (time required to generate clinically acceptable plans). The KBP-generated plans provided a significantly improved target coverage (p = 0.01) compared with the clinically used plans for Group 1, but yielded plans of comparable target coverage to the clinically used plans for Group 2. For the organs at risk, the KBP-generated plans produced lower doses, on average, for every normal-tissue objective except for the maximum dose to 0.1 cc of rectum. The time needed for the KBP-generated plans ranged from 6 to 15 minutes compared to 30 to 150 and 15 to 60 minutes for manual planning in Groups 1 and 2, respectively. KBP is a promising tool to aid in the transition to a new TPS. Our study indicates that high-quality treatment plans could have been generated in the newly implemented TPS more efficiently compared with not using KBP. Even after 8 months of the clinical use, KBP still showed an increase in plan quality and planning efficiency compared with manual planning. Copyright © 2017 American Association of Medical Dosimetrists. Published

  11. Treatment planning for patients with dental arch asymmetry caused by loss of a premolar on one side of the mouth

    Directory of Open Access Journals (Sweden)

    Ivanova О.P.

    2013-09-01

    Full Text Available The objective of this study is to determine a selection criterion that is applicable for the treatment of patients with dental arch asymmetry caused by loss of a premolar on one side of the mouth. Material and methods. Fifty-seven patients (first maturity level who had some teeth extracted for orthodontic treatment were included in the study. The patients were divided into basic and control groups. We proposed to shape the extraction socket immediately after the extraction of a permanent tooth. In the basic group the extraction sockets were filled with osteoplastic material. Patients in the control group refused any surgical interventions. Results. According to a given criterion, the correlation between tooth size and dental arch parameters has been determined. When applying this criterion for finding the correlation, the frontal distal diagonal size of the dental arch was multiplied by 1.14 coefficient. The sum of the mesiodistal diameters of seven teeth in the half-arc was subtracted from the obtained value. The value which was equal to 0±1.0mm indicated the correlation between tooth size and dental arch parameters. Conclusion. If there is a correlation between tooth size and dental arch parameters, it is advisable to provide treatment associated with having the post-extraction socket opened and implant therapy performed (most commonly with the use of intraosseous dental implants.

  12. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    International Nuclear Information System (INIS)

    Wild, Esther; Bangert, Mark; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  13. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Oelfke, Uwe [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom and Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

    2015-05-15

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  14. Collision detection and avoidance during treatment planning

    International Nuclear Information System (INIS)

    Humm, John L.; Pizzuto, Domenico; Fleischman, Eric; Mohan, Radhe

    1995-01-01

    Purpose: To develop computer software that assists the planner avoid potential gantry collisions with the patient or patient support assembly during the treatment planning process. Methods and Materials: The approach uses a simulation of the therapy room with a scale model of the treatment machine. Because the dimensions of the machine and patient are known, one can calculate a priori whether any desired therapy field is possible or will result in a collision. To assist the planner, we have developed a graphical interface enabling the accurate visualization of each treatment field configuration with a 'room's eye view' treatment planning window. This enables the planner to be aware of, and alleviate any potential collision hazards. To circumvent blind spots in the graphic representation, an analytical software module precomputes whether each update of the gantry or turntable position is safe. Results: If a collision is detected, the module alerts the planner and suggests collision evasive actions such as either an extended distance treatment or the gantry angle of closest approach. Conclusions: The model enables the planner to experiment with unconventional noncoplanar treatment fields, and immediately test their feasibility

  15. MO-F-CAMPUS-T-04: Development and Evaluation of a Knowledge-Based Model for Treatment Planning of Lung Cancer Patients Using Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K; Kim, J; Reding, A; Fraser, C; Lu, S; Gordon, J; Ajlouni, M; Movsas, B; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: To describe the development of a knowledge-based treatment planning model for lung cancer patients treated with SBRT, and to evaluate the model performance and applicability to different planning techniques and tumor locations. Methods: 105 lung SBRT plans previously treated at our institution were included in the development of the model using Varian’s RapidPlan DVH estimation algorithm. The model was trained with a combination of IMRT, VMAT, and 3D–CRT techniques. Tumor locations encompassed lesions located centrally vs peripherally (43:62), upper vs lower (62:43), and anterior vs posterior lobes (60:45). The model performance was validated with 25 cases independent of the training set, for both IMRT and VMAT. Model generated plans were created with only one optimization and no planner intervention. The original, general model was also divided into four separate models according to tumor location. The model was also applied using different beam templates to further improve workflow. Dose differences to targets and organs-at-risk were evaluated. Results: IMRT and VMAT RapidPlan generated plans were comparable to clinical plans with respect to target coverage and several OARs. Spinal cord dose was lowered in the model-based plans by 1Gy compared to the clinical plans, p=0.008. Splitting the model according to tumor location resulted in insignificant differences in DVH estimation. The peripheral model decreased esophagus dose to the central lesions by 0.5Gy compared to the original model, p=0.025, and the posterior model increased dose to the spinal cord by 1Gy compared to the anterior model, p=0.001. All template beam plans met OAR criteria, with 1Gy increases noted in maximum heart dose for the 9-field plans, p=0.04. Conclusion: A RapidPlan knowledge-based model for lung SBRT produces comparable results to clinical plans, with increased consistency and greater efficiency. The model encompasses both IMRT and VMAT techniques, differing tumor locations

  16. Applications of NTCP calculations to treatment planning

    International Nuclear Information System (INIS)

    Kutcher, G.J.

    1995-01-01

    A fundamental step in the treatment decision process is the evaluation of a treatment plan. Most often treatment plans are judged by tradition using guidelines like target homogeneity and maximum dose to non-target tissues. While such judgments implicitly assume a relationship between dose distribution parameters and patient response, the judgment process is essentially supported by clinical outcomes from previous treatments. With the development of conformal therapy, new and unusual dose distributions and escalated doses are possible, while the clinical consequences are unknown. this situation has instigated attempts to place plan evaluation on a more systematic platform. One such endeavor has centered around attempts to calculate normal tissue complication probability (NTCP) and its sibling, tumor control probability (TCP). This lecture will be composed of two parts. The first will begin with a review of two categories of NTCP models: (1) an 'empirical' approach, based upon a power-law relationship between partial organ tolerance and irradiated volume, and histogram reduction to account for inhomogeneous irradiation: (2) a 'statistical' approach in which local responses are combined according to the underlying tissue architecture. Since both rely upon clinical data - often of limited and questionable validity - we will review some examples from the clinical and biological literature. The second part of the lecture will review clinical applications of biological-index based models: ranking competing treatment plans; design of dose escalation protocols; optimization of treatment plans with intensity modulation. We will also demonstrate how biological indices can be used to derive dose-volume histograms which account for treatment uncertainty

  17. Budgetary impact on a U.S. health plan adopting abiraterone acetate plus prednisone for the treatment of patients with metastatic castration-resistant prostate cancer.

    Science.gov (United States)

    Sorensen, Sonja; Ellis, Lorie; Wu, Ying; Hutchins, Valerie; Linnehan, John E; Senbetta, Mekré

    2013-01-01

    Abiraterone acetate, an androgen biosynthesis inhibitor, received FDA approval in 2011 for metastatic castration-resistant prostate cancer (mCRPC) patients who have received prior chemotherapy containing docetaxel. To estimate the projected budgetary impact of adopting abiraterone for mCRPC patients from a U.S. health plan perspective. A decision analytic model compared mCRPC treatment cost before and after abiraterone acetate adoption based on a hypothetical 1,000,000-member plan. Plan mCRPC prevalence was derived from prostate cancer incidence reported in U.S. epidemiology statistics and disease progression data from published trials. Market shares for comparator mCRPC treatments (prednisone alone; cabazitaxel + prednisone; mitoxantrone + prednisone; docetaxel retreatment + prednisone) were derived from market research simulation. Abiraterone + prednisone uptake (8% - scenario 1 to 55% - scenario 3) was based on assumptions for illustrative purposes. Treatment costs were computed using prescribing information, treatment duration from phase III trials, and drug costs considering common U.S. cost listing and reimbursement schemes. Prevalence and costs of managing treatment-related toxicities were estimated from literature, treatment guidelines, and expert clinical opinion. The model evaluated the perspectives of a commercial payer with no Medicare beneficiaries and a commercial payer with a subset of Medicare beneficiaries. Sensitivity analyses were conducted to assess changing input values. In each modeled scenario, 57 patients with prior docetaxel therapy received treatment for mCRPC. For the commercial perspective, the incremental per-member-per-month (PMPM) cost attributable to abiraterone ranged from $0.0019 in scenario 1 to $0.0133 in scenario 3. For the commercial/Medicare perspective, the incremental PMPM ranged from $0.0026 in scenario 1 to $0.0176 in scenario 3. The average incremental PMPM cost over 3 scenarios is $0.0112. When testing key sensitivity

  18. Treatment planning optimization for linear accelerator radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.

    1998-01-01

    Purpose: Linear accelerator radiosurgery uses multiple arcs delivered through circular collimators to produce a nominally spherical dose distribution. Production of dose distributions that conform to irregular lesions or conformally avoid critical neural structures requires a detailed understanding of the available treatment planning parameters. Methods and Materials: Treatment planning parameters that may be manipulated within a single isocenter to provide conformal avoidance and dose conformation to ellipsoidal lesions include differential arc weighting and gantry start/stop angles. More irregular lesions require the use of multiple isocenters. Iterative manipulation of treatment planning variables can be difficult and computationally expensive, especially if the effects of these manipulations are not well defined. Effects of treatment parameter manipulation are explained and illustrated. This is followed by description of the University of Florida Stereotactic Radiosurgery Treatment Planning Algorithm. This algorithm organizes the manipulations into a practical approach for radiosurgery treatment planning. Results: Iterative treatment planning parameters may be efficiently manipulated to achieve optimal treatment plans by following the University of Florida Treatment Planning Algorithm. The ability to produce conformal stereotactic treatment plans using the algorithm is demonstrated for a variety of clinical presentations. Conclusion: The standard dose distribution produced in linear accelerator radiosurgery is spherical, but manipulation of available treatment planning parameters may result in optimal dose conformation. The University of Florida Treatment Planning Algorithm organizes available treatment parameters to efficiently produce conformal radiosurgery treatment plans

  19. Is the dose distribution distorted in IMRT and RapidArc treatment when patient plans are swapped across beam‐matched machines?

    Science.gov (United States)

    Radha, Chandrasekaran Anu; Subramani, Vendhan; Gunasekaran, Madhan Kumar

    2016-01-01

    The purpose of this study is to evaluate the degree of dose distribution distortion in advanced treatments like IMRT and RapidArc when patient plans are swapped across dosimetrically equivalent so‐called “beam‐matched” machines. For this purpose the entire work is divided into two stages. At forefront stage all basic beam properties of 6 MV X‐rays like PDD, profiles, output factors, TPR20/10 and MLC transmission of two beam‐matched machines — Varian Clinac iX and Varian 600 C/D Unique — are compared and evaluated for differences. At second stage 40 IMRT and RapidArc patient plans from the pool of head and neck (H&N) and pelvis sites are selected for the study. The plans are swapped across the machines for dose recalculation and the DVHs of target and critical organs are evaluated for dose differences. Following this, the accuracy of the beam‐matching at the TPS level for treatments like IMRT and RapidArc are compared. On PDD, profile (central 80%) and output factor comparison between the two machines, a maximum percentage disagreement value of −2.39%,−2.0% and −2.78%, respectively, has been observed. The maximum dose difference observed at volumes in IMRT and RapidArc treatments for H&N dose prescription of 69.3 Gy/33 fractions is 0.88 Gy and 0.82 Gy, respectively. Similarly, for pelvis, with a dose prescription of 50 Gy/25 fractions, a maximum dose difference of 0.55 Gy and 0.53 Gy is observed at volumes in IMRT and RapidArc treatments, respectively. Overall results of the swapped plans between two machines' 6 MV X‐rays are well within the limits of accepted clinical tolerance. PACS number(s): 87.56.bd PMID:27685106

  20. Feature-based plan adaptation for fast treatment planning in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Chen Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a plan adaptation method for fast treatment plan generation in scanned ion beam therapy. Analysis of optimized treatment plans with carbon ions indicates that the particle number modulation of consecutive rasterspots in depth shows little variation throughout target volumes with convex shape. Thus, we extract a depth-modulation curve (DMC) from existing reference plans and adapt it for creation of new plans in similar treatment situations. The proposed method is tested with seven CT serials of prostate patients and three digital phantom datasets generated with the MATLAB code. Plans are generated with a treatment planning software developed by GSI using single-field uniform dose optimization for all the CT datasets to serve as reference plans and ‘gold standard’. The adapted plans are generated based on the DMC derived from the reference plans of the same patient (intra-patient), different patient (inter-patient) and phantoms (phantom-patient). They are compared with the reference plans and a re-positioning strategy. Generally, in 1 min on a standard PC, either a physical plan or a biological plan can be generated with the adaptive method provided that the new target contour is available. In all the cases, the V95 values of the adapted plans can achieve 97% for either physical or biological plans. V107 is always 0 indicating no overdosage, and target dose homogeneity is above 0.98 in all cases. The dose received by the organs at risk is comparable to the optimized plans. The plan adaptation method has the potential for on-line adaptation to deal with inter-fractional motion, as well as fast off-line treatment planning, with either the prescribed physical dose or the RBE-weighted dose. (paper)

  1. SU-E-T-173: Clinical Comparison of Treatment Plans and Fallback Plans for Machine Downtime

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Cancer Therapy and Research Center, San Antonio, TX (United States); Papanikolaou, P [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC (United States); Stathakis, S [Cancer Therapy and Research Center, San Antonio, TX (United States)

    2015-06-15

    Purpose: The purpose of this study was to determine the clinical effectiveness and dosimetric quality of fallback planning in relation to machine downtime. Methods: Plans for a Varian Novalis TX were mimicked, and fallback plans using an Elekta VersaHD machine were generated using a dual arc template. Plans for thirty (n=30) patients of various treatment sites optimized and calculated using RayStation treatment planning system. For each plan, a fall back plan was created and compared to the original plan. A dosimetric evaluation was conducted using the homogeneity index, conformity index, as well as DVH analysis to determine the quality of the fallback plan on a different treatment machine. Fallback plans were optimized for 60 iterations using the imported dose constraints from the original plan DVH to give fallback plans enough opportunity to achieve the dose objectives. Results: The average conformity index and homogeneity index for the NovalisTX plans were 0.76 and 10.3, respectively, while fallback plan values were 0.73 and 11.4. (Homogeneity =1 and conformity=0 for ideal plan) The values to various organs at risk were lower in the fallback plans as compared to the imported plans across most organs at risk. Isodose difference comparisons between plans were also compared and the average dose difference across all plans was 0.12%. Conclusion: The clinical impact of fallback planning is an important aspect to effective treatment of patients. With the complexity of LINACS increasing every year, an option to continue treating during machine downtime remains an essential tool in streamlined treatment execution. Fallback planning allows the clinic to continue to run efficiently should a treatment machine become offline due to maintenance or repair without degrading the quality of the plan all while reducing strain on members of the radiation oncology team.

  2. Use of the functional imaging modalities, f MRI r CBV and PET FDG, alters radiation therapy 3-D treatment planning in patients with malignant gliomas

    International Nuclear Information System (INIS)

    Fitzek, M.; Pardo, F.S.; Busierre, M.; Lev, M.; Fischman, A.; Denny, N.; Hanser, B.; Rosen, B.R.; Smith, A.; Aronen, H.

    1995-01-01

    Background: Malignant gliomas present one of the most difficult challenges to definitive radiation therapy, not only with respect to local control, but also with respect to clinical functional status. While tumor target volume definitions for malignant gliomas are often based on CT and conventional MRI, the functional imaging modalities, echo planar r CBV (regional cerebral blood volume mapping) and 18F-fluorodeoxyglucose PET, are more sensitive modalities for the detection of neovascularization, perhaps one of the earliest signs of glial tumor initiation and progression. Methods: In order to address the clinical utility of functional imaging in radiation therapy 3-D treatment planning, we compared tumor target volume definitions and overall dosimetry in patients either undergoing co-registration of conventional Gadolinium-enhanced MRI, or co-registration of functional imaging modalities, prior to radiation therapy 3-D treatment planning. Fourteen patients were planned using 3-D radiation therapy treatment planning, either with or without inclusion of data on functional imaging. All patients received proton beam, as well as megavoltage x-ray radiation therapy, with the ratio of photon:proton optimized to the individual clinical case at hand. Both PET FDG and f MRI scans were obtained postoperatively pre-radiation, during radiation therapy, one month following completion of radiation therapy, and at three month follow-up intervals. Dose volume histograms were constructed in order to assess dose optimization, not only with respect to tumor, but also with respect to normal tissue tolerance (e.g., motor strip, dominant speech area, brainstem, optic nerves). Results: In 5 of 14 cases, functional imaging modalities, as compared with conventional MRI and CT, contributed additional information that was useful in radiation therapy treatment planning. In general, both fMRI rCBV and PET FDG uptake decreased during the course of radiation therapy. In 1 patient, however, fMRI r

  3. Patient admission planning using Approximate Dynamic Programming

    NARCIS (Netherlands)

    Hulshof, P.J.H.; Mes, Martijn R.K.; Boucherie, Richardus J.; Hans, Elias W.

    2016-01-01

    Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans.

  4. Treatment planning with ion beams

    International Nuclear Information System (INIS)

    Foss, M.H.

    1985-01-01

    Ions have higher linear energy transfer (LET) near the end of their range and lower LET away from the end of their range. Mixing radiations of different LET complicates treatment planning because radiation kills cells in two statistically independent ways. In some cases, cells are killed by a single-particle, which causes a linear decrease in log survival at low dosage. When the linear decrease is subtracted from the log survival curve, the remaining curve has zero slope at zero dosage. This curve is the log survival curve for cells that are killed only by two or more particles. These two mechanisms are statistically independent. To calculate survival, these two kinds of doses must be accumulated separately. The effect of each accumulated dosage must be read from its survival curve, and the logarithms of the two effects added to get the log survival. Treatment plans for doses of protons, He 3 ions, and He 4 ions suggest that these ions will be useful therapeutic modalities

  5. Radiation Planning Assistant - A Streamlined, Fully Automated Radiotherapy Treatment Planning System

    Science.gov (United States)

    Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, Beth

    2018-01-01

    The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff. PMID:29708544

  6. Supervised pelvic floor muscle training versus attention-control massage treatment in patients with faecal incontinence: Statistical analysis plan for a randomised controlled trial.

    Science.gov (United States)

    Ussing, Anja; Dahn, Inge; Due, Ulla; Sørensen, Michael; Petersen, Janne; Bandholm, Thomas

    2017-12-01

    Faecal incontinence affects approximately 8-9% of the adult population. The condition is surrounded by taboo; it can have a devastating impact on quality of life and lead to major limitations in daily life. Pelvic floor muscle training in combination with information and fibre supplements is recommended as first-line treatment for faecal incontinence. Despite this, the effect of pelvic floor muscle training for faecal incontinence is unclear. No previous trials have investigated the efficacy of supervised pelvic floor muscle training in combination with conservative treatment and compared this to an attention-control massage treatment including conservative treatment. The aim of this trial is to investigate if 16 weeks of supervised pelvic floor muscle training in combination with conservative treatment is superior to attention-control massage treatment and conservative treatment in patients with faecal incontinence. Randomised, controlled, superiority trial with two parallel arms. 100 participants with faecal incontinence will be randomised to either (1) individually supervised pelvic floor muscle training and conservative treatment or (2) attention-control massage treatment and conservative treatment. The primary outcome is participants' rating of symptom changes after 16 weeks of treatment using the Patient Global Impression of Improvement Scale. Secondary outcomes are the Vaizey Incontinence Score, the Fecal Incontinence Severity Index, the Fecal Incontinence Quality of Life Scale, a 14-day bowel diary, anorectal manometry and rectal capacity measurements. Follow-up assessment at 36 months will be conducted. This paper describes and discusses the rationale, the methods and in particular the statistical analysis plan of this trial.

  7. Three-dimensional virtual operations can facilitate complicated surgical planning for the treatment of patients with jaw deformities associated with facial asymmetry: a case report.

    Science.gov (United States)

    Hara, Shingo; Mitsugi, Masaharu; Kanno, Takahiro; Nomachi, Akihiko; Wajima, Takehiko; Tatemoto, Yukihiro

    2013-09-01

    This article describes a case we experienced in which good postsurgical facial profiles were obtained for a patient with jaw deformities associated with facial asymmetry, by implementing surgical planning with SimPlant OMS. Using this method, we conducted LF1 osteotomy, intraoral vertical ramus osteotomy (IVRO), sagittal split ramus osteotomy (SSRO), mandibular constriction and mandibular border genioplasty. Not only did we obtain a class I occlusal relationship, but the complicated surgery also improved the asymmetry of the frontal view, as well as of the profile view, of the patient. The virtual operation using three-dimensional computed tomography (3D-CT) could be especially useful for the treatment of patients with jaw deformities associated with facial asymmetry.

  8. Advantages of three-dimensional treatment planning in radiation therapy

    International Nuclear Information System (INIS)

    Attalla, E.M.; ELSAyed, A.A.; ElGantiry, M.; ElTahher, Z.

    2003-01-01

    This study was designed to demonstrate the feasibility of three-dimensional (3-D) treatment planning in-patients maxilla, breast, bladder, and lung tumors to explore its potential therapeutic advantage over the traditional dimensional (2-D) approach in these diseases. Conventional two-dimensional (2-D) treatment planning was compared to three-dimensional (3-D) treatment planning. In five selected disease sites, plans calculated with both types of treatment planning were compared. The (3-D) treatment planning system used in this work TMS version 5.1 B from helax AB is based on a monte Carlo-based pencil beam model. The other treatment planning system (2-D 0, introduced in this study was the multi data treatment planning system version 2.35. For the volumes of interest; quality of dose distribution concerning homogeneity in the target volume and the isodose distribution in organs at risk, was discussed. Qualitative and quantitative comparisons between the two planning systems were made using dose volume histograms (DVH's) . For comparisons of dose distributions in real-patient cases, differences ranged from 0.8% to 6.4% for 6 MV, while in case of 18 MV photon, it ranged from 1,8% to 6.5% and was within -+3 standard deviations for the dose between the two planning systems.Dose volume histogram (DVH) shows volume reduction of the radiation-related organs at risk 3-D planning

  9. MO-B-BRB-00: Optimizing the Treatment Planning Process

    International Nuclear Information System (INIS)

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  10. MO-B-BRB-00: Optimizing the Treatment Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  11. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M; Suh, T [Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Jenkins, C [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Department of Mechanical Engineering, Stanford University, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.

  12. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    International Nuclear Information System (INIS)

    Lee, M; Suh, T; Han, B; Xing, L; Jenkins, C

    2015-01-01

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery

  13. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Bortfeld, Thomas; Martin, Benjamin C.; Soukup, Martin

    2009-01-01

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be very sensitive to setup errors and range uncertainties. If these errors are not accounted for during treatment planning, the dose distribution realized in the patient may by strongly degraded compared to the planned dose distribution. The authors implemented the probabilistic approach to incorporate uncertainties directly into the optimization of an intensity modulated treatment plan. Following this approach, the dose distribution depends on a set of random variables which parameterize the uncertainty, as does the objective function used to optimize the treatment plan. The authors optimize the expected value of the objective function. They investigate IMPT treatment planning regarding range uncertainties and setup errors. They demonstrate that incorporating these uncertainties into the optimization yields qualitatively different treatment plans compared to conventional plans which do not account for uncertainty. The sensitivity of an IMPT plan depends on the dose contributions of individual beam directions. Roughly speaking, steep dose gradients in beam direction make treatment plans sensitive to range errors. Steep lateral dose gradients make plans sensitive to setup errors. More robust treatment plans are obtained by redistributing dose among different beam directions. This can be achieved by the probabilistic approach. In contrast, the safety margin approach as widely applied in photon therapy fails in IMPT and is neither suitable for handling range variations nor setup errors.

  14. Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning.

    NARCIS (Netherlands)

    Boer, H.D. de; Sornsen de Koste, J.R. van; Senan, S.; Visser, A.G.; Heijmen, B.J.M.

    2001-01-01

    PURPOSE: To determine the magnitude of the errors made in (a) the setup of patients with lung cancer on the simulator relative to their intended setup with respect to the planned treatment beams and (b) in the setup of these patients on the treatment unit. To investigate how the systematic component

  15. Endodontic treatment in geriatric patients

    Directory of Open Access Journals (Sweden)

    Milly Armilya Andang

    2007-11-01

    Full Text Available With the increased number of geriatric population, it is predicted that the need for dental treatment also increases. The needs for esthetic factors and function of geriatric patient are maybe similar to young patient. The number of geriatric patients who refuse dental extraction is increasing if there are still other alternative. They can be more convinced when the clinician said that the dental disease experienced is a focal infection so that the loss of the tooth can be accepted as the best option. But if it is possible, they will prefer endodontic treatment, because they want to keep their teeth according to the treatment plan or based on patient's request, as a less traumatic alternative compared to extraction.Endodontic treatment consideration for geriatric patient is quite similar to younger patients. The technique is also the same, although the problem may be bigger. The problem or obstacle that may arise in endodontic treatment for geriatric patient relates to the visit duration, problems during x-ray, problems in defining root canal location, vertical root fracture, and in some cases, decreased pulp tissue recovery ability. Due to the fact that the challenge is quite big, the success of endodontic treatment in geriatric patients needs to be considered. This paper will explain the endodontic treatment prognosis for geriatric patients.

  16. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  17. 3-D conformal radiation therapy - Part I: Treatment planning

    International Nuclear Information System (INIS)

    Burman, Chandra M.; Mageras, Gikas S.

    1997-01-01

    Objective: In this presentation we will look into the basic components of 3-dimensional conformal treatment planning, and will discuss planning for some selected sites. We will also review some current and future trends in 3-D treatment planning. External beam radiation therapy is one of the arms of cancer treatment. In the recent years 3-D conformal therapy had significant impact on the practice of external beam radiation therapy. Conformal radiation therapy shapes the high-dose volume so as to conform to the target volume while minimizing the dose to the surrounding normal tissues. The advances that have been achieved in conformal therapy are in part due to the development of 3-D treatment planning, which in turn has capitalized on 3-D imaging for tumor and normal tissue localization, as well as on available computational power for the calculation of 3-D dose distributions, visualization of anatomical and dose volumes, and numerical evaluation of treatment plans. In this course we will give an overview of how 3-D conformal treatments are designed and transferred to the patient. Topics will include: 1) description of the major components of a 3-D treatment planning system, 2) techniques for designing treatments, 3) evaluation of treatment plans using dose distribution displays, dose-volume histograms and normal tissue complication probabilities, 4) implementation of treatments using shaped blocks and multileaf collimators, 5) verification of treatment delivery using portal films and electronic portal imaging devices. We will also discuss some current and future trends in 3-D treatment planning, such as field shaping with multileaf collimation, computerized treatment plan optimization, including the use of nonuniform beam profiles (intensity modulation), and incorporating treatment uncertainties due to patient positioning errors and organ motion into treatment planning process

  18. Developing Optimized Treatment Plans for Patients with Dyslipidemia in the Era of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitor Therapeutics.

    Science.gov (United States)

    Underberg, James A; Blaha, Michael J; Jackson, Elizabeth J; Jones, Peter H

    2017-10-01

    This educational content was derived from a live satellite symposium at the American College of Physicians Internal Medicine Meeting 2017 in San Diego, California (online at http://courses.elseviercme.com/acp/702e). This activity will focus on optimized treatment plans for patients with dyslipidemia in the era of proprotein convertase subtilisin/kexin type 9 inhibitor therapeutics. Low-density lipoprotein cholesterol has been identified as an important therapeutic target to prevent the progression of atherosclerotic disease; however, only 1 of every 3 adults with high low-density lipoprotein cholesterol has the condition under control. Expert faculty on this panel will discuss the science of proprotein convertase subtilisin/kexin type 9 inhibitors and aid physicians in the best practices to achieve low-density lipoprotein cholesterol target in their patients. Copyright © 2017. Published by Elsevier Inc.

  19. 71: Three dimensional radiation treatment planning system

    International Nuclear Information System (INIS)

    Purdy, J.A.; Wong, J.W.; Harms, W.B.; Drzymala, R.E.; Emami, B.

    1987-01-01

    A prototype 3-dimensional (3-D) radiation treatment planning (RTP) system has been developed and is in use. The system features a real-time display device and an array processor for computer intensive computations. The dose distribution can be displayed as 2-D isodose distributions superimposed on 2-D gray scale images of the patient's anatomy for any arbitrary plane and as a display of isodose surfaces in 3-D. In addition, dose-volume histograms can be generated. 7 refs.; 2 figs

  20. Radiation therapy treatment planning: CT, MR imaging and three-dimensional planning

    International Nuclear Information System (INIS)

    Lichter, A.S.

    1987-01-01

    The accuracy and sophistication of radiation therapy treatment planning have increased rapidly in the last decade. Currently, CT-based treatment planning is standard throughout the country. Care must be taken when CT is used for treatment planning because of clear differences between diagnostic scans and scans intended for therapeutic management. The use of CT in radiation therapy planning is discussed and illustrated. MR imaging adds another dimension to treatment planning. The ability to use MR imaging directly in treatment planning involves an additional complex set of capabilities from a treatment planning system. The ability to unwarp the geometrically distorted MR image is a first step. Three-dimensional dose calculations are important to display the dose on sagittal and acoronal sections. The ability to integrate the MR and CT images into a unified radiographic image is critical. CT and MR images are two-dimensional representations of a three-dimensional problem. Through sophisticated computer graphics techniques, radiation therapists are now able to integrate a three-dimensional image of the patient into the treatment planning process. This allows the use of noncoplanar treatment plans and a detailed analysis of tumor and normal tissue anatomy; it is the first step toward a fully conformational treatment planning system. These concepts are illustrated and future research goals outlined

  1. Real-time interactive treatment planning

    International Nuclear Information System (INIS)

    Otto, Karl

    2014-01-01

    The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient’s treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ∼2–20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. ‘drag’ a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ∼1–5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT. (paper)

  2. Three-dimensional treatment planning for postoperative radiotherapy in patients with node-positive cervical cancer. Comparison between a conventional and a conformal technique

    Energy Technology Data Exchange (ETDEWEB)

    Olofsen-van Acht, M.J.J.; Quint, S.; Seven, M.; Berg, H.A. van den; Levendag, P.C. [University Hospital Rotterdam (Netherlands). Dept. of Radiation Oncology; Santvoort, J.P.C. van [University Hospital Rotterdam (Netherlands). Subdivision of Clinical Physics; Logmans, A. [University Hospital Rotterdam (Netherlands). Dept. of Gynecologic Oncology

    1999-09-01

    Purpose: Reduction of irradiated small bowel volume, using a conformal three-dimensional treatment planning technique in postoperative radiotherapy of cervical cancer patients. Patients and Methods: Large gynecological treatment fields including the para-aortic nodes were analyzed in 15 patients. A conventional treatment plan with anterior and posterior (AP-PA) parallel opposed fields and a 3D 4-field conformal radiotherapy plan with a central blocking of small bowel were compared for each patient. Dose-volume histograms and dose parameters were established. Because of the tolerance constraints of the small bowel, the cumulative dose applied to the target was 48.6 Gy. Results: The mean Tumor Control Probability (TCP) values for both the conventional and the conformal technique were 0.60 and 0.61, respectively, with ranges of 0.56 to 0.67 and 0.57 to 0.66, respectively. The mean volume receiving 95% or more of the prescribed dose (V95) of the small bowel was 47.6% (32.5 to 66.3%) in the AP-PA technique and 14.9% (7.0 to 22.5%) in the conformal technique (p<0.001), indicating a significant reduction in irradiated volume of small bowel in the higher dose range. The mean Normal Tissue Complication Probability (NTCP) decreased from 0.11 to 0.03 with the conformal plan. In patients who received a pedicled omentoplasty during surgery, the mean V95 for small bowel could be reduced to 8.5% (7.0 to 9.9%). The mean median dose to the kidneys was only slightly elevated in the conformal treatment. Especially the mean dose to the right kidney in conventional vs conformal treatment was 3.3 vs 7.9 Gy. The mean near-minimum dose (D95) to the rectosigmoid decreased from 48.4 to 30.1 Gy in the conformal plan compared to the conventional plan. Conclusion: The small bowel dose can be significantly reduced with 3D treatment planning, particularly if a predicled omentoplasty is performed. This allows dose escalation to the tumor region without unacceptable toxicity for the small bowel

  3. Physical treatment planning by several approaches

    International Nuclear Information System (INIS)

    Burger, G.; Morhart, A.; Wittmann, A.

    1985-01-01

    Neutron isodose planning may be performed by commercial treatment planning systems for photons, providing that certain modifications are applied. All geometry-related corrections such as for nonregular surfaces and oblique incidence remain unchanged. The main modifications concern the tissue-air-ratio, containing essentially the attenuation correction function. We have as a first step applied this modified commercial system to a few regular exposure situations in a homogenious water phantom and compared the generated isodose charts with those derived by direct Monte Carlo calculations of the neutron transport for the corresponding fields. As expected the commercial methods do not incorporate the necessary corrections for the change of scatter conditions in case of oblique incidence or wedged fields. For this reason we developed another approach, based upon the numerical superposition of dose matrices for pencil beams. These matrices were again Monte Carlo calculated. From it build-up functions can be derived by partial radial integration. The isodose charts generated by superposition of pencil beam dose distributions agree much better with directly Monte Carlo calculated ones, than those from the commercial treatment planning system. Based upon these results the method was finally applied to real patients cross sections, as derived from CT or MR-tomography. In the latter case one can even perform a pixelwise attenuation correction, if spin density images are available

  4. Automatic liver contouring for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Li, Dengwang; Kapp, Daniel S; Xing, Lei; Liu, Li

    2015-01-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  5. Advance Care Planning in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Lara Fritz

    2016-11-01

    Full Text Available Despite multimodal treatment with surgery, radiotherapy and chemotherapy, glioblastoma is an incurable disease with a poor prognosis. During the disease course, glioblastoma patients may experience progressive neurological deficits, symptoms of increased intracranial pressure such as drowsiness and headache, incontinence, seizures and progressive cognitive dysfunction. These patients not only have cancer, but also a progressive brain disease. This may seriously interfere with their ability to make their own decisions regarding treatment. It is therefore warranted to involve glioblastoma patients early in the disease trajectory in treatment decision-making on their future care, including the end of life (EOL care, which can be achieved with Advance Care Planning (ACP. Although ACP, by definition, aims at timely involvement of patients and proxies in decision-making on future care, the optimal moment to initiate ACP discussions in the disease trajectory of glioblastoma patients remains controversial. Moreover, the disease-specific content of these ACP discussions needs to be established. In this article, we will first describe the history of patient participation in treatment decision-making, including the shift towards ACP. Secondly, we will describe the possible role of ACP for glioblastoma patients, with the specific aim of treatment of disease-specific symptoms such as somnolence and dysphagia, epileptic seizures, headache, and personality changes, agitation and delirium in the EOL phase, and the importance of timing of ACP discussions in this patient population.

  6. Image registration: An essential part of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Rosenman, Julian G.; Miller, Elizabeth P.; Tracton, Gregg; Cullip, Tim J.

    1998-01-01

    Purpose: We believe that a three-dimensional (3D) registration of nonplanning (diagnostic) imaging data with the planning computed tomography (CT) offers a substantial improvement in tumor target identification for many radiation therapy patients. The purpose of this article is to review and discuss our experience to date. Methods and Materials: We reviewed the charts and treatment planning records of all patients that underwent 3D radiation treatment planning in our department from June 1994 to December 1995, to learn which patients had image registration performed and why it was thought they would benefit from this approach. We also measured how much error would have been introduced into the target definition if the nonplanning imaging data had not been available and only the planning CT had been used. Results: Between June 1994 and December 1995, 106 of 246 (43%) of patients undergoing 3D treatment planning had image registration. Four reasons for performing registration were identified. First, some tumor volumes have better definition on magnetic resonance imaging (MRI) than on CT. Second, a properly contrasted diagnostic CT sometimes can show the tumor target better than can the planning CT. Third, the diagnostic CT or MR may have been preoperative, with the postoperative planning CT no longer showing the tumor. Fourth, the patient may have undergone cytoreductive chemotherapy so that the postchemotherapy planning CT no longer showed the original tumor volume. In patients in whom the planning CT did not show the tumor volume well an analysis was done to determine how the treatment plan was changed with the addition of a better tumor-defining nonplanning CT or MR. We have found that the use of this additional imaging modality changed the tumor location in the treatment plan at least 1.5 cm for half of the patients, and up to 3.0 cm for ((1)/(4)) of the patients. Conclusions: Multimodality and/or sequential imaging can substantially aid in better tumor

  7. Patient Care Planning: An Interdisciplinary Approach

    OpenAIRE

    Prophet, Colleen M.

    1989-01-01

    The INFORMM Patient Care Planning System provides interdepartmental communication and individualized patient care plans based upon current standards of care. This interdisciplinary system facilitates the identification of patient problems and nursing diagnoses as well as patient care orders. The selected nurses' and physicians' orders are integrated and organized by care plan categories in printouts. As a system by-product, Patient Care Planning automatically generates and calculates patient ...

  8. Generating AN Optimum Treatment Plan for External Beam Radiation Therapy.

    Science.gov (United States)

    Kabus, Irwin

    1990-01-01

    The application of linear programming to the generation of an optimum external beam radiation treatment plan is investigated. MPSX, an IBM linear programming software package was used. All data originated from the CAT scan of an actual patient who was treated for a pancreatic malignant tumor before this study began. An examination of several alternatives for representing the cross section of the patient showed that it was sufficient to use a set of strategically placed points in the vital organs and tumor and a grid of points spaced about one half inch apart for the healthy tissue. Optimum treatment plans were generated from objective functions representing various treatment philosophies. The optimum plans were based on allowing for 216 external radiation beams which accounted for wedges of any size. A beam reduction scheme then reduced the number of beams in the optimum plan to a number of beams small enough for implementation. Regardless of the objective function, the linear programming treatment plan preserved about 95% of the patient's right kidney vs. 59% for the plan the hospital actually administered to the patient. The clinician, on the case, found most of the linear programming treatment plans to be superior to the hospital plan. An investigation was made, using parametric linear programming, concerning any possible benefits derived from generating treatment plans based on objective functions made up of convex combinations of two objective functions, however, this proved to have only limited value. This study also found, through dual variable analysis, that there was no benefit gained from relaxing some of the constraints on the healthy regions of the anatomy. This conclusion was supported by the clinician. Finally several schemes were found that, under certain conditions, can further reduce the number of beams in the final linear programming treatment plan.

  9. SU-D-BRD-04: The Impact of Automatic Radiation Therapy Plan Checks in Treatment Planning

    International Nuclear Information System (INIS)

    Gopan, O; Yang, F; Ford, E

    2015-01-01

    Purpose: The physics plan check verifies various aspects of a treatment plan after dosimetrists have finished creating the plan. Some errors in the plan which are caught by the physics check could be caught earlier in the departmental workflow. The purpose of this project was to evaluate a plan checking script that can be run within the treatment planning system (TPS) by the dosimetrists prior to plan approval and export to the record and verify system. Methods: A script was created in the Pinnacle TPS to automatically check 15 aspects of a plan for clinical practice conformity. The script outputs a list of checks which the plan has passed and a list of checks which the plan has failed so that appropriate adjustments can be made. For this study, the script was run on a total of 108 plans: IMRT (46/108), VMAT (35/108) and SBRT (27/108). Results: Of the plans checked by the script, 77/108 (71%) failed at least one of the fifteen checks. IMRT plans resulted in more failed checks (91%) than VMAT (51%) or SBRT (63%), due to the high failure rate of an IMRT-specific check, which checks that no IMRT segment < 5 MU. The dose grid size and couch removal checks caught errors in 10% and 14% of all plans – errors that ultimately may have resulted in harm to the patient. Conclusion: Approximately three-fourths of the plans being examined contain errors that could be caught by dosimetrists running an automated script embedded in the TPS. The results of this study will improve the departmental workflow by cutting down on the number of plans that, due to these types of errors, necessitate re-planning and re-approval of plans, increase dosimetrist and physician workload and, in urgent cases, inconvenience patients by causing treatment delays

  10. Radiotherapy Treatment Planning for Testicular Seminoma

    International Nuclear Information System (INIS)

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-01-01

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 × 1−2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior–posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior–posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  11. Radiotherapy Treatment Planning for Testicular Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, Richard B., E-mail: richardbwilder@yahoo.com [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Efstathiou, Jason A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Beard, Clair J. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States)

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  12. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C; Zheng, W [Henry Ford Health System, Detroit, MI (United States); Stehning, C; Weiss, S; Renisch, S [Philips Research Laboratories, Hamburg (Germany)

    2016-06-15

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising from respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for patient

  13. [Treatment of patients with osteoarthritis].

    Science.gov (United States)

    Vargas Negrín, Francisco; Medina Abellán, María D; Hermosa Hernán, Juan Carlos; de Felipe Medina, Ricardo

    2014-01-01

    The therapeutic management of patients with osteoarthritis aims to decrease pain and inflammation, improve physical function, and to apply safe and effective treatments. A patient-centered approach implies the active participation of the patient in the design of the treatment plan and in timely and informed decision-making at all stages of the disease. The nucleus of treatment is patient education, physical activity and therapeutic exercise, together with weight control in overweight or obese patients. Self-care by the individual and by the family is fundamental in day-to-day patient management. The use of physical therapies, technical aids (walking sticks, etc.) and simple analgesics, opium alkaloids, and antiinflammatory drugs have demonstrated effectiveness in controlling pain, improving physical function and quality of life and their use is clearly indicated in the treatment of osteoarthritis. Conservative surgery and joint replacement is indicated when treatment goals are not achieved in specific patients. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  14. Survivorship and the chronic cancer patient: Patterns in treatment-related effects, follow-up care, and use of survivorship care plans.

    Science.gov (United States)

    Frick, Melissa A; Vachani, Carolyn C; Bach, Christina; Hampshire, Margaret K; Arnold-Korzeniowski, Karen; Metz, James M; Hill-Kayser, Christine E

    2017-11-01

    The survivorship needs of patients living with chronic cancer (CC) and their use of survivorship care plans (SCPs) have been overlooked and underappreciated. A convenience sample of 39,088 SCPs completed for cancer survivors with an Internet-based SCP tool was examined; it included 5847 CC survivors (15%; CC was defined as chronic leukemia and/or recurrent/metastatic cancer of another nature). Patient-reported treatment effects and follow-up care patterns were compared between CC survivors and survivors treated with curative intent (CI). Responses from a follow-up survey regarding SCP satisfaction and use were reviewed. CC survivors had greater odds of experiencing multiple treatment-related effects than survivors treated with CI; these effects included fatigue, cognitive changes, dyspnea, peripheral neuropathy, lymphedema, and erectile dysfunction. Nearly half of CC survivors were managed by an oncologist alone, and they were less likely than CI patients to be comanaged by a primary care provider and an oncologist. Fewer SCPs were generated by health care providers (HCPs) for CC survivors versus CI survivors. A smaller proportion of CC users versus CI users rated their experience and satisfaction with the SCP tool as very good or excellent, and CC users were less likely to share the HCP summary with their health care team. A substantial number of CC survivors, often considered incurable but treatable, seek survivorship support. Tools to facilitate participation, communication, and coordination of care are valuable for these patients, and future iterations of SCPs should be designed to address the particular circumstances of living with CC. Cancer 2017;123:4268-4276. © 2017 American Cancer Society. © 2017 American Cancer Society.

  15. Improvement of internal tumor volumes of non-small cell lung cancer patients for radiation treatment planning using interpolated average CT in PET/CT.

    Directory of Open Access Journals (Sweden)

    Yao-Ching Wang

    Full Text Available Respiratory motion causes uncertainties in tumor edges on either computed tomography (CT or positron emission tomography (PET images and causes misalignment when registering PET and CT images. This phenomenon may cause radiation oncologists to delineate tumor volume inaccurately in radiotherapy treatment planning. The purpose of this study was to analyze radiology applications using interpolated average CT (IACT as attenuation correction (AC to diminish the occurrence of this scenario. Thirteen non-small cell lung cancer patients were recruited for the present comparison study. Each patient had full-inspiration, full-expiration CT images and free breathing PET images by an integrated PET/CT scan. IACT for AC in PET(IACT was used to reduce the PET/CT misalignment. The standardized uptake value (SUV correction with a low radiation dose was applied, and its tumor volume delineation was compared to those from HCT/PET(HCT. The misalignment between the PET(IACT and IACT was reduced when compared to the difference between PET(HCT and HCT. The range of tumor motion was from 4 to 17 mm in the patient cohort. For HCT and PET(HCT, correction was from 72% to 91%, while for IACT and PET(IACT, correction was from 73% to 93% (*p<0.0001. The maximum and minimum differences in SUVmax were 0.18% and 27.27% for PET(HCT and PET(IACT, respectively. The largest percentage differences in the tumor volumes between HCT/PET and IACT/PET were observed in tumors located in the lowest lobe of the lung. Internal tumor volume defined by functional information using IACT/PET(IACT fusion images for lung cancer would reduce the inaccuracy of tumor delineation in radiation therapy planning.

  16. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  17. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    Science.gov (United States)

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  18. WE-B-304-03: Biological Treatment Planning

    International Nuclear Information System (INIS)

    Orton, C.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  19. MO-DE-210-07: Investigation of Treatment Interferences of a Novel Robotic Ultrasound Radiotherapy Guidance System with Clinical VMAT Plans for Liver SBRT Patients

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Stanford University, Palo Alto, CA (United States); Bruder, R; Schweikard, A [University of Luebeck, Luebeck, Schleswig-Holstein (Germany); Schlosser, J [SoniTrack Systems Inc., Mountain View, CA (United States); Hristov, D [Stanford University Cancer Center, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in a prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95% of the

  20. MO-DE-210-07: Investigation of Treatment Interferences of a Novel Robotic Ultrasound Radiotherapy Guidance System with Clinical VMAT Plans for Liver SBRT Patients

    International Nuclear Information System (INIS)

    Gong, R; Bruder, R; Schweikard, A; Schlosser, J; Hristov, D

    2015-01-01

    Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in a prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95% of the

  1. Explicit optimization of plan quality measures in intensity-modulated radiation therapy treatment planning.

    Science.gov (United States)

    Engberg, Lovisa; Forsgren, Anders; Eriksson, Kjell; Hårdemark, Björn

    2017-06-01

    To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach. © 2017 American Association of Physicists in Medicine.

  2. Direct reconstruction and associated uncertainties of 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients

    Science.gov (United States)

    Awunor, O. A.; Dixon, B.; Walker, C.

    2013-05-01

    This paper details a practical method for the direct reconstruction of high dose rate 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of brachytherapy cervix patients. It also details the uncertainties associated with such a process. Eight Nucletron interstitial ring applicators—Ø26 mm (×4), Ø30 mm (×3) and Ø34 mm (×1), and one 60 mm intrauterine tube were used in this study. RTQA2 and XRQA2 gafchromic films were irradiated at pre-programmed dwell positions with three successive 192Ir sources and used to derive the coordinates of the source dwell positions. The source was observed to deviate significantly from its expected position by up to 6.1 mm in all ring sizes. Significant inter applicator differences of up to 2.6 mm were observed between a subset of ring applicators. Also, the measured data were observed to differ significantly from commercially available source path models provided by Nucletron with differences of up to 3.7 mm across all ring applicator sizes. The total expanded uncertainty (k = 2) averaged over all measured dwell positions in the rings was observed to be 1.1 ± 0.1 mm (Ø26 mm and Ø30 mm rings) and 1.0 ± 0.3 mm (Ø34 mm ring) respectively, and when transferred to the treatment planning system, equated to maximum %dose changes of 1.9%, 13.2% and 1.5% at regions representative of the parametrium, lateral fornix and organs at risk respectively.

  3. Patient Treatment File (PTF)

    Data.gov (United States)

    Department of Veterans Affairs — This database is part of the National Medical Information System (NMIS). The Patient Treatment File (PTF) contains a record for each inpatient care episode provided...

  4. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  5. Radiation treatment planning using a microcomputer

    International Nuclear Information System (INIS)

    Lunsqui, A.R.; Calil, S.J.; Rocha, J.R.O.; Alexandre, A.C.

    1990-01-01

    The radiation treatment planning requires a lenght manipulation of data from isodose charts to obtain the best irradiation technique. Over the past 25 years this tedious operation has been replaced by computerized methods. These can reduce the working time by at least 20 times. It is being developed at the Biomedical Engineering Center a software to generate a polychromatic image of dose distribution. By means of a digitizing board, the patient contour and the beam data are transfered to the computer and stored as polinomial and Fourier series respectively. To calculate the dose distribution, the irradiated region is represented by a variable size bidimensional dot matrix. The dose at each point is calculated by correcting and adding the stored data for each beam. An algorithm for color definition according to the dose intensity was developed to display on a computer monitor the resultant matrix. A hard copy can be obtained be means of a six color plotter. (author)

  6. Normalisation: ROI optimal treatment planning - SNDH pattern

    International Nuclear Information System (INIS)

    Shilvat, D.V.; Bhandari, Virendra; Tamane, Chandrashekhar; Pangam, Suresh

    2001-01-01

    Dose precision maximally to the target / ROI (Region of Interest), taking care of tolerance dose of normal tissue is the aim of ideal treatment planning. This goal is achieved with advanced modalities such as, micro MLC, simulator and 3-dimensional treatment planning system. But SNDH PATTERN uses minimum available resources as, ALCYON II Telecobalt unit, CT Scan, MULTIDATA 2-dimensional treatment planning system to their maximum utility and reaches to the required precision, same as that with advance modalities. Among the number of parameters used, 'NORMALISATION TO THE ROI' will achieve the aim of the treatment planning effectively. This is dealing with an example of canal of esophagus modified treatment planning based on SNDH pattern. Results are attractive and self explanatory. By implementing SNDH pattern, the QUALITY INDEX of treatment plan will reach to greater than 90%, with substantial reduction in dose to the vital organs. Aim is to utilize the minimum available resources efficiently to achieve highest possible precision for delivering homogenous dose to ROI while taking care of tolerance dose to vital organs

  7. Radiobiologically based treatment plan evaluation for prostate seed implants

    Directory of Open Access Journals (Sweden)

    Sotirios Stathakis

    2011-07-01

    Full Text Available Purpose: Accurate prostate low dose-rate brachytherapy treatment plan evaluation is important for future care decisions. Presently, an evaluation is based on dosimetric quantifiers for the tumor and organs at risk. However, these do not account for effects of varying dose-rate, tumor repopulation and other biological effects. In this work, incorporation of the biological response is used to obtain more clinically relevant treatment plan evaluation.Material and methods: Eleven patients were evaluated. Each patient received a 145 Gy implant. Iodine-125 seeds were used and the treatment plans were created on the Prowess system. Based on CT images the post-implant plan was created. In the post-plan, the tumor, urethra, bladder and rectum were contoured. The biologically effective dose was used to determine the tumor control probability and the normal tissue complication probabilities for the urethra, bladder, rectum and surrounding tissue. Results: The average tumor control probability and complication probabilities for the urethra, bladder, rectum and surrounding tissue were 99%, 29%, 0%, 12% and 6%, respectively. These measures provide a simpler means for evaluation and since they include radiobiological factors, they provide more reliable estimation of the treatment outcome. Conclusions: The goal of this work was to create more clinically relevant prostate seed-implant evaluation by incorporating radiobiological measures. This resulted in a simpler descriptor of treatment plan quality and was consistent with patient outcomes.

  8. Does inverse-planned intensity-modulated radiation therapy have a role in the treatment of patients with left-sided breast cancer?

    International Nuclear Information System (INIS)

    Stillie, Alison L.; Chua, Boon; Kron, Tomas; Cramb, Jim; Herschtal, Alan; Hornby, Colin; Sullivan, Kelly

    2011-01-01

    The purpose of the study was to determine if multi-field inverse-planned intensity-modulated radiation therapy (IMRT) improves on the sparing of organs at risk (heart, lungs and contralateral breast) when compared with field-in-field forward-planned RT (FiF). The planning CT scans of 10 women with left-sided breast cancer previously treated with whole-breast RT on an inclined breast board with both arms supported above the head were retrieved. The whole breast planning target volume (PTV) was defined by clinical mark-up and contoured on all relevant CT slices as were the organs at risk. For each patient, three plans were generated using FiF, five- and nine-field inverse-planned IMRT, all to a total dose of 50 Gy to the whole breast. Mean and maximum doses to the organs at risk and the homogeneity index (HI) of the whole-breast PTV were compared. The mean heart dose for the FiF plans was 2.63 Gy compared with 4.04 Gy for the five-field and 4.30 Gy for the nine-field IMRT plans, with no significant differences in the HI of the whole-breast PTV in all plans. The FiF plans resulted in a mean contralateral breast dose of 0.58 Gy compared with 0.70 and 2.08 Gy for the five- and nine-field IMRT plans, respectively. FiF resulted in a lower mean heart and contralateral breast dose with comparable HI of the whole-breast PTV in comparison with inverse-planned IMRT using five or nine fields.

  9. Radwaste treatment complex. DRAWMACS planned maintenance system

    International Nuclear Information System (INIS)

    Keel, A.J.

    1992-07-01

    This document describes the operation of the Planned Maintenance System for the Radwaste Treatment Complex. The Planned Maintenance System forms part of the Decommissioning and Radwaste Management Computer System (DRAWMACS). Further detailed information about the data structure of the system is contained in Database Design for the DRAWMACS Planned Maintenance System (AEA-D and R-0285, 2nd issue, 25th February 1992). Information for other components of DRAWMACS is contained in Basic User Guide for the Radwaste Treatment Plant Computer System (AEA-D and R-0019, July 1990). (author)

  10. Inverse treatment planning based on MRI for HDR prostate brachytherapy

    International Nuclear Information System (INIS)

    Citrin, Deborah; Ning, Holly; Guion, Peter; Li Guang; Susil, Robert C.; Miller, Robert W.; Lessard, Etienne; Pouliot, Jean; Xie Huchen; Capala, Jacek; Coleman, C. Norman; Camphausen, Kevin; Menard, Cynthia

    2005-01-01

    Purpose: To develop and optimize a technique for inverse treatment planning based solely on magnetic resonance imaging (MRI) during high-dose-rate brachytherapy for prostate cancer. Methods and materials: Phantom studies were performed to verify the spatial integrity of treatment planning based on MRI. Data were evaluated from 10 patients with clinically localized prostate cancer who had undergone two high-dose-rate prostate brachytherapy boosts under MRI guidance before and after pelvic radiotherapy. Treatment planning MRI scans were systematically evaluated to derive a class solution for inverse planning constraints that would reproducibly result in acceptable target and normal tissue dosimetry. Results: We verified the spatial integrity of MRI for treatment planning. MRI anatomic evaluation revealed no significant displacement of the prostate in the left lateral decubitus position, a mean distance of 14.47 mm from the prostatic apex to the penile bulb, and clear demarcation of the neurovascular bundles on postcontrast imaging. Derivation of a class solution for inverse planning constraints resulted in a mean target volume receiving 100% of the prescribed dose of 95.69%, while maintaining a rectal volume receiving 75% of the prescribed dose of <5% (mean 1.36%) and urethral volume receiving 125% of the prescribed dose of <2% (mean 0.54%). Conclusion: Systematic evaluation of image spatial integrity, delineation uncertainty, and inverse planning constraints in our procedure reduced uncertainty in planning and treatment

  11. Conversion of helical tomotherapy plans to step-and-shoot IMRT plans--Pareto front evaluation of plans from a new treatment planning system.

    Science.gov (United States)

    Petersson, Kristoffer; Ceberg, Crister; Engström, Per; Benedek, Hunor; Nilsson, Per; Knöös, Tommy

    2011-06-01

    The resulting plans from a new type of treatment planning system called SharePlan have been studied. This software allows for the conversion of treatment plans generated in a TomoTherapy system for helical delivery, into plans deliverable on C-arm linear accelerators (linacs), which is of particular interest for clinics with a single TomoTherapy unit. The purpose of this work was to evaluate and compare the plans generated in the SharePlan system with the original TomoTherapy plans and with plans produced in our clinical treatment planning system for intensity-modulated radiation therapy (IMRT) on C-arm linacs. In addition, we have analyzed how the agreement between SharePlan and TomoTherapy plans depends on the number of beams and the total number of segments used in the optimization. Optimized plans were generated for three prostate and three head-and-neck (H&N) cases in the TomoTherapy system, and in our clinical treatment planning systems (TPS) used for IMRT planning with step-and-shoot delivery. The TomoTherapy plans were converted into step-and-shoot IMRT plans in SharePlan. For each case, a large number of Pareto optimal plans were created to compare plans generated in SharePlan with plans generated in the Tomotherapy system and in the clinical TPS. In addition, plans were generated in SharePlan for the three head-and-neck cases to evaluate how the plan quality varied with the number of beams used. Plans were also generated with different number of beams and segments for other patient cases. This allowed for an evaluation of how to minimize the number of required segments in the converted IMRT plans without compromising the agreement between them and the original TomoTherapy plans. The plans made in SharePlan were as good as or better than plans from our clinical system, but they were not as good as the original TomoTherapy plans. This was true for both the head-and-neck and the prostate cases, although the differences between the plans for the latter were

  12. Implementation of BNCT treatment planning procedures

    International Nuclear Information System (INIS)

    Capala, J.; Ma, R.; Diaz, A.Z.; Chanana, A.D.; Coderre, J.A.

    2001-01-01

    Estimation of radiation doses delivered during boron neutron capture therapy (BNCT) requires combining data on spatial distribution of both the thermal neutron fluence and the 10 B concentration, as well as the relative biological effectiveness of various radiation dose components in the tumor and normal tissues. Using the treatment planning system created at Idaho National Engineering and Environmental Laboratory and the procedures we had developed for clinical trials, we were able to optimize the treatment position, safely deliver the prescribed BNCT doses, and carry out retrospective analyses and reviews. In this paper we describe the BNCT treatment planning process and its implementation in the ongoing dose escalation trials at Brookhaven National Laboratory. (author)

  13. Accuracy requirements in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Buzdar, S. A.; Afzal, M.; Nazir, A.; Gadhi, M. A.

    2013-01-01

    Radiation therapy attempts to deliver ionizing radiation to the tumour and can improve the survival chances and/or quality of life of patients. There are chances of errors and uncertainties in the entire process of radiotherapy that may affect the accuracy and precision of treatment management and decrease degree of conformation. All expected inaccuracies, like radiation dose determination, volume calculation, complete evaluation of the full extent of the tumour, biological behaviour of specific tumour types, organ motion during radiotherapy, imaging, biological/molecular uncertainties, sub-clinical diseases, microscopic spread of the disease, uncertainty in normal tissue responses and radiation morbidity need sound appreciation. Conformity can be increased by reduction of such inaccuracies. With the yearly increase in computing speed and advancement in other technologies the future will provide the opportunity to optimize a greater number of variables and reduce the errors in the treatment planning process. In multi-disciplined task of radiotherapy, efforts are needed to overcome the errors and uncertainty, not only by the physicists but also by radiologists, pathologists and oncologists to reduce molecular and biological uncertainties. The radiation therapy physics is advancing towards an optimal goal that is definitely to improve accuracy where necessary and to reduce uncertainty where possible. (author)

  14. 94: Treatment plan optimization for conformal therapy

    International Nuclear Information System (INIS)

    Rosen, I.I.; Lane, R.G.

    1987-01-01

    Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs

  15. Tolerance doses for treatment planning

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD 5 ) or 50% (TD 50 ) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs

  16. Fuzzy logic guided inverse treatment planning

    International Nuclear Information System (INIS)

    Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho

    2003-01-01

    A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved

  17. Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning

    International Nuclear Information System (INIS)

    Nwankwo, Obioma; Mekdash, Hana; Sihono, Dwi Seno Kuncoro; Wenz, Frederik; Glatting, Gerhard

    2015-01-01

    A knowledge-based radiation therapy (KBRT) treatment planning algorithm was recently developed. The purpose of this work is to investigate how plans that are generated with the objective KBRT approach compare to those that rely on the judgment of the experienced planner. Thirty volumetric modulated arc therapy plans were randomly selected from a database of prostate plans that were generated by experienced planners (expert plans). The anatomical data (CT scan and delineation of organs) of these patients and the KBRT algorithm were given to a novice with no prior treatment planning experience. The inexperienced planner used the knowledge-based algorithm to predict the dose that the OARs receive based on their proximity to the treated volume. The population-based OAR constraints were changed to the predicted doses. A KBRT plan was subsequently generated. The KBRT and expert plans were compared for the achieved target coverage and OAR sparing. The target coverages were compared using the Uniformity Index (UI), while 5 dose-volume points (D 10 , D 30, D 50 , D 70 and D 90 ) were used to compare the OARs (bladder and rectum) doses. Wilcoxon matched-pairs signed rank test was used to check for significant differences (p < 0.05) between both datasets. The KBRT and expert plans achieved mean UI values of 1.10 ± 0.03 and 1.10 ± 0.04, respectively. The Wilcoxon test showed no statistically significant difference between both results. The D 90 , D 70, D 50 , D 30 and D 10 values of the two planning strategies, and the Wilcoxon test results suggests that the KBRT plans achieved a statistically significant lower bladder dose (at D 30 ), while the expert plans achieved a statistically significant lower rectal dose (at D 10 and D 30 ). The results of this study show that the KBRT treatment planning approach is a promising method to objectively incorporate patient anatomical variations in radiotherapy treatment planning

  18. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    International Nuclear Information System (INIS)

    Verhaart, René F.; Paulides, Margarethus M.; Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F.; Verduijn, Gerda M.; Lugt, Aad van der

    2014-01-01

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI db ). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T max ) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI db . Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient

  19. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC - Cancer Institute, Groene Hilledijk 301, Rotterdam 3008 AE (Netherlands); Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F. [Biomedical Imaging Group of Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, Dr. Molewaterplein 50/60, Rotterdam 3015 GE (Netherlands); Verduijn, Gerda M. [Department of Radiation Oncology, Erasmus MC - Cancer Institute, Groene Hilledijk 301, Rotterdam 3008 AE (Netherlands); Lugt, Aad van der [Department of Radiology, Erasmus MC, Dr. Molewaterplein 50/60, Rotterdam 3015 GE (Netherlands)

    2014-12-15

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm

  20. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: a comparison of CT and CT-MRI based tissue segmentation on simulated temperature.

    Science.gov (United States)

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-12-01

    In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI

  1. Evaluation of a commercial biologically based IMRT treatment planning system

    International Nuclear Information System (INIS)

    Semenenko, Vladimir A.; Reitz, Bodo; Day, Ellen; Qi, X. Sharon; Miften, Moyed; Li, X. Allen

    2008-01-01

    A new inverse treatment planning system (TPS) for external beam radiation therapy with high energy photons is commercially available that utilizes both dose-volume-based cost functions and a selection of cost functions which are based on biological models. The purpose of this work is to evaluate quality of intensity-modulated radiation therapy (IMRT) plans resulting from the use of biological cost functions in comparison to plans designed using a traditional TPS employing dose-volume-based optimization. Treatment planning was performed independently at two institutions. For six cancer patients, including head and neck (one case from each institution), prostate, brain, liver, and rectal cases, segmental multileaf collimator IMRT plans were designed using biological cost functions and compared with clinically used dose-based plans for the same patients. Dose-volume histograms and dosimetric indices, such as minimum, maximum, and mean dose, were extracted and compared between the two types of treatment plans. Comparisons of the generalized equivalent uniform dose (EUD), a previously proposed plan quality index (fEUD), target conformity and heterogeneity indices, and the number of segments and monitor units were also performed. The most prominent feature of the biologically based plans was better sparing of organs at risk (OARs). When all plans from both institutions were combined, the biologically based plans resulted in smaller EUD values for 26 out of 33 OARs by an average of 5.6 Gy (range 0.24 to 15 Gy). Owing to more efficient beam segmentation and leaf sequencing tools implemented in the biologically based TPS compared to the dose-based TPS, an estimated treatment delivery time was shorter in most (five out of six) cases with some plans showing up to 50% reduction. The biologically based plans were generally characterized by a smaller conformity index, but greater heterogeneity index compared to the dose-based plans. Overall, compared to plans based on dose

  2. Antihyperlipidemic Medication Treatment Patterns and Statin Adherence Among Patients with ASCVD in a Managed Care Plan After Release of the 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol.

    Science.gov (United States)

    Bellows, Brandon K; Olsen, Cody J; Voelker, Jennifer; Wander, Curtis

    2016-08-01

    The American College of Cardiology (ACC) and American Heart Association (AHA) released a new blood cholesterol treatment guideline in November 2013. It is unknown how the new recommendations have affected cholesterol medication use and adherence in a commercial health plan. To evaluate the effect of the 2013 guideline release on antihyperlipidemic treatment patterns and statin adherence in patients with atherosclerotic cardiovascular disease (ASCVD) compared with a historical control group. This study was a historical cohort analysis of adult patients (aged 21-75 years) with clinical ASCVD enrolled in a SelectHealth commercial health plan. Patients were included in the guideline implementation cohort if they had a medical claim with an ICD-9-CM diagnosis of ASCVD in the year before the November 2013 ACC/AHA guideline release. The index date was defined as the first outpatient medical claim with an ICD-9-CM for ASCVD in the first 6 months after the guideline was released. Patients were required to have continuous enrollment for ≥ 1 year before and after the index date. These same criteria were applied to patients exactly 4 years earlier to identify a historical control group. Patients meeting these criteria formed the antihyperlipidemic treatment patterns cohort. Of these, patients who also had ≥1 pharmacy claim for a statin in the 1-year pre- and post-index periods were included in the statin adherence cohort. Antihyperlipidemic treatment patterns were assessed using pharmacy claims for antihyperlipidemic medications in the 1-year pre- and post-index periods. Antihyperlipidemic medication claims were classified as a nonstatin cholesterol medication, low-intensity statin, moderate-intensity statin, or high-intensity statin. To address differences in pre-index antihyperlipidemic medications between the guideline implementation and historical control groups, patients were randomly matched 1:1 based on pre-index classification in a post hoc analysis. Post

  3. Admission planning and patient mix optimisation

    NARCIS (Netherlands)

    Adan, I.J.B.F.; Vissers, J.M.H.; Eijdems, M.; Vissers, J.M.H.; Beech, R.

    2005-01-01

    Admisson planning is an important area of planning hospital operations for elective patients that do not need emergency care. Its purpose is not only to admit patients according to medical priority but also to take into consideration the resource use of admitted patients in order to balance the

  4. MINERVA - a multi-modal radiation treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, C.A. E-mail: cew@enel.gov; Wessol, D.E.; Nigg, D.W.; Cogliati, J.J.; Milvich, M.L.; Frederickson, C.; Perkins, M.; Harkin, G.J

    2004-11-01

    Researchers at the Idaho National Engineering and Environmental Laboratory and Montana State University have undertaken development of MINERVA, a patient-centric, multi-modal, radiation treatment planning system. This system can be used for planning and analyzing several radiotherapy modalities, either singly or combined, using common modality independent image and geometry construction and dose reporting and guiding. It employs an integrated, lightweight plugin architecture to accommodate multi-modal treatment planning using standard interface components. The MINERVA design also facilitates the future integration of improved planning technologies. The code is being developed with the Java Virtual Machine for interoperability. A full computation path has been established for molecular targeted radiotherapy treatment planning, with the associated transport plugin developed by researchers at the Lawrence Livermore National Laboratory. Development of the neutron transport plugin module is proceeding rapidly, with completion expected later this year. Future development efforts will include development of deformable registration methods, improved segmentation methods for patient model definition, and three-dimensional visualization of the patient images, geometry, and dose data. Transport and source plugins will be created for additional treatment modalities, including brachytherapy, external beam proton radiotherapy, and the EGSnrc/BEAMnrc codes for external beam photon and electron radiotherapy.

  5. Margins for treatment planning of proton therapy

    International Nuclear Information System (INIS)

    Thomas, Simon J

    2006-01-01

    For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning

  6. Volumetric Modulated Arc Therapy (VMAT) Treatment Planning for Superficial Tumors

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360 o arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.

  7. Conformal three dimensional radiotherapy treatment planning in Lund

    Energy Technology Data Exchange (ETDEWEB)

    Knoos, T; Nilsson, P [Lund Univ. (Sweden). Dept. of Radiation Physics; Anders, A [Lund Univ. (Sweden). Dept. of Oncology

    1995-12-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam`s eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam`s eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment.

  8. Conformal three dimensional radiotherapy treatment planning in Lund

    International Nuclear Information System (INIS)

    Knoos, T.; Nilsson, P.; Anders, A.

    1995-01-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam's eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam's eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment

  9. SU-D-BRD-03: Improving Plan Quality with Automation of Treatment Plan Checks

    International Nuclear Information System (INIS)

    Covington, E; Younge, K; Chen, X; Lee, C; Matuszak, M; Kessler, M; Acosta, E; Orow, A; Filpansick, S; Moran, J; Keranen, W

    2015-01-01

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One example is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827

  10. SU-D-BRD-03: Improving Plan Quality with Automation of Treatment Plan Checks

    Energy Technology Data Exchange (ETDEWEB)

    Covington, E; Younge, K; Chen, X; Lee, C; Matuszak, M; Kessler, M; Acosta, E; Orow, A; Filpansick, S; Moran, J [University of Michigan Hospital and Health System, Ann Arbor, MI (United States); Keranen, W [Varian Medical Systems, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One example is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827.

  11. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  12. Treatment Planning Systems for BNCT Requirements and Peculiarities

    CERN Document Server

    Daquino, G G

    2003-01-01

    The main requirements and peculiarities expected from the BNCT-oriented treatment planning system (TPS) are summarized in this paper. The TPS is a software, which can be integrated or composed by several auxiliary programs. It plays important roles inside the whole treatment planning of the patient's organ in BNCT. However, the main goal is the simulation of the irradiation, in order to obtain the optimal configuration, in terms of neutron spectrum, patient positioning and dose distribution in the tumour and healthy tissues. The presence of neutrons increases the level of complexity, because much more nuclear reactions need to be monitored and properly calculated during the simulation of the patient's treatment. To this purposes several 3D geometry reconstruction techniques, generally based on the CT scanning data, are implemented and Monte Carlo codes are normally used. The TPSs are expected to show also the results (basically doses and fluences) in a proper format, such as isocurves (or isosurfaces) along t...

  13. Cost-Effective Fuel Treatment Planning

    Science.gov (United States)

    Kreitler, J.; Thompson, M.; Vaillant, N.

    2014-12-01

    The cost of fighting large wildland fires in the western United States has grown dramatically over the past decade. This trend will likely continue with growth of the WUI into fire prone ecosystems, dangerous fuel conditions from decades of fire suppression, and a potentially increasing effect from prolonged drought and climate change. Fuel treatments are often considered the primary pre-fire mechanism to reduce the exposure of values at risk to wildland fire, and a growing suite of fire models and tools are employed to prioritize where treatments could mitigate wildland fire damages. Assessments using the likelihood and consequence of fire are critical because funds are insufficient to reduce risk on all lands needing treatment, therefore prioritization is required to maximize the effectiveness of fuel treatment budgets. Cost-effectiveness, doing the most good per dollar, would seem to be an important fuel treatment metric, yet studies or plans that prioritize fuel treatments using costs or cost-effectiveness measures are absent from the literature. Therefore, to explore the effect of using costs in fuel treatment planning we test four prioritization algorithms designed to reduce risk in a case study examining fuel treatments on the Sisters Ranger District of central Oregon. For benefits we model sediment retention and standing biomass, and measure the effectiveness of each algorithm by comparing the differences among treatment and no treat alternative scenarios. Our objective is to maximize the averted loss of net benefits subject to a representative fuel treatment budget. We model costs across the study landscape using the My Fuel Treatment Planner software, tree list data, local mill prices, and GIS-measured site characteristics. We use fire simulations to generate burn probabilities, and estimate fire intensity as conditional flame length at each pixel. Two prioritization algorithms target treatments based on cost-effectiveness and show improvements over those

  14. Automated radiotherapy treatment plan integrity verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Moore, Kevin L. [Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri 63110 (United States)

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  15. Automated radiotherapy treatment plan integrity verification

    International Nuclear Information System (INIS)

    Yang Deshan; Moore, Kevin L.

    2012-01-01

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  16. Imaging modalities in radiation treatment planning of brain tumors

    International Nuclear Information System (INIS)

    Georgiev, D.

    2009-01-01

    The radiation therapy is a standard treatment after surgery for most of malignant and some of benignant brain tumors. The restriction in acquiring local tumor control is an inability in realization of high dose without causing radiation necrosis in irradiated area and sparing normal tissues. The development of imaging modalities during the last years is responsible for better treatment results and lower early and late toxicity. Essential is the role of image methods not only in the diagnosis and also in the precise anatomical (during last years also functional) localisation, spreading of the tumor, treatment planning process and the effects of the treatment. Target delineation is one of the great geometrical uncertainties in the treatment planning process. Early studies on the use of CT in treatment planning documented that tumor coverage without CT was clearly inadequate in 20% of the patients and marginal in another 27 %. The image fusion of CT, MBI and PET and also the use of contrast materia helps to get over those restrictions. The use of contrast material enhances the signal in 10 % of the patients with glioblastoma multiform and in a higher percentage of the patients with low-grade gliomas

  17. [Patient's Autonomy and Information in Psycho-Oncology: Computer Based Distress Screening for an Interactive Treatment Planning (ePOS-react)].

    Science.gov (United States)

    Schäffeler, Norbert; Sedelmaier, Jana; Möhrer, Hannah; Ziser, Katrin; Ringwald, Johanna; Wickert, Martin; Brucker, Sara; Junne, Florian; Zipfel, Stephan; Teufel, Martin

    2017-07-01

    To identify distressed patients in oncology using screening questionnaires is quite challenging in clinical routine. Up to now there is no evidence based recommendation which instrument is most suitable and how to put a screening to practice. Using computer based screening tools offers the possibility to automatically analyse patient's data, inform psycho-oncological and medical staff about the results, and use reactive questionnaires. Studies on how to empower patients in decision making in psycho-oncology are rare.Methods Women with breast and gynaecological cancer have been consecutively included in this study (n=103) at time of inpatient surgical treatment in a gynaecological clinic. They answered the computer based screening questionnaire (ePOS-react) for routine distress screening at time of admission. At the end of the tool an individual recommendation concerning psycho-oncological treatment is given ( i) psycho-oncological counselling, ii) brief psycho-oncological contact, iii) no treatment suggestion). The informed patients could choose autonomously either the recommended treatment or an individually more favoured alternative possibility. Additionally, a clinical interview (approx. 30 min) based on the "Psychoonkologische Basisdiagnostik (PO-Bado)" has been carried out for a third-party assessment of patients' need for treatment.Results 68.9% followed the treatment recommendation. 22.3% asked for a more "intense" (e. g. counselling instead of recommended brief contact) and 8,7% for a "less intense" intervention than recommended. The accordance of third-party assessment (clinical interview "PO-Bado") and treatment recommendation is about 72.8%. The accordance of third-party assessment and patient's choice (ePOS-react) is about 58.3%. The latter is smaller because 29.1% asked for a brief psycho-oncological contact for whom from the third-party assessment's perspective no indication for treatment has been existent.Discussion A direct response of the

  18. Failure mode and effect analysis oriented to risk-reduction interventions in intraoperative electron radiation therapy: the specific impact of patient transportation, automation, and treatment planning availability.

    Science.gov (United States)

    López-Tarjuelo, Juan; Bouché-Babiloni, Ana; Santos-Serra, Agustín; Morillo-Macías, Virginia; Calvo, Felipe A; Kubyshin, Yuri; Ferrer-Albiach, Carlos

    2014-11-01

    Industrial companies use failure mode and effect analysis (FMEA) to improve quality. Our objective was to describe an FMEA and subsequent interventions for an automated intraoperative electron radiotherapy (IOERT) procedure with computed tomography simulation, pre-planning, and a fixed conventional linear accelerator. A process map, an FMEA, and a fault tree analysis are reported. The equipment considered was the radiance treatment planning system (TPS), the Elekta Precise linac, and TN-502RDM-H metal-oxide-semiconductor-field-effect transistor in vivo dosimeters. Computerized order-entry and treatment-automation were also analyzed. Fifty-seven potential modes and effects were identified and classified into 'treatment cancellation' and 'delivering an unintended dose'. They were graded from 'inconvenience' or 'suboptimal treatment' to 'total cancellation' or 'potentially wrong' or 'very wrong administered dose', although these latter effects were never experienced. Risk priority numbers (RPNs) ranged from 3 to 324 and totaled 4804. After interventions such as double checking, interlocking, automation, and structural changes the final total RPN was reduced to 1320. FMEA is crucial for prioritizing risk-reduction interventions. In a semi-surgical procedure like IOERT double checking has the potential to reduce risk and improve quality. Interlocks and automation should also be implemented to increase the safety of the procedure. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Orthognathic Surgery: Planning and treatment with illustration on six cases

    International Nuclear Information System (INIS)

    AiRuhaimi, K; Nwoku, A. L; Shaikh, H. S

    1991-01-01

    Almost all conferences for plastic and maxillofacial surgery discuss reports on several methods of orthognathic surgery, planning, success results, and complications of the different procedures carried out to correct patient's soft and hard tissues frontal profiles and occlusal discrepancies. Various principles are involved in the diagnosis and treatment of facial deformities. However, the most important consideration, after all, is the final accepted aesthetic and functional requirements and stability of the moved segments. The objective of this paper is to give the basic principles of treatment planning for correcting facial discrepancies, surgical approach to different cases, and the methods to increase stability of the moved segments. Six cases are included to illustrate the different aspects of treatment planning, surgical management, and stabilization methods. (author)

  20. Uncertainties in model-based outcome predictions for treatment planning

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Chao, K.S. Clifford; Markman, Jerry

    2001-01-01

    Purpose: Model-based treatment-plan-specific outcome predictions (such as normal tissue complication probability [NTCP] or the relative reduction in salivary function) are typically presented without reference to underlying uncertainties. We provide a method to assess the reliability of treatment-plan-specific dose-volume outcome model predictions. Methods and Materials: A practical method is proposed for evaluating model prediction based on the original input data together with bootstrap-based estimates of parameter uncertainties. The general framework is applicable to continuous variable predictions (e.g., prediction of long-term salivary function) and dichotomous variable predictions (e.g., tumor control probability [TCP] or NTCP). Using bootstrap resampling, a histogram of the likelihood of alternative parameter values is generated. For a given patient and treatment plan we generate a histogram of alternative model results by computing the model predicted outcome for each parameter set in the bootstrap list. Residual uncertainty ('noise') is accounted for by adding a random component to the computed outcome values. The residual noise distribution is estimated from the original fit between model predictions and patient data. Results: The method is demonstrated using a continuous-endpoint model to predict long-term salivary function for head-and-neck cancer patients. Histograms represent the probabilities for the level of posttreatment salivary function based on the input clinical data, the salivary function model, and the three-dimensional dose distribution. For some patients there is significant uncertainty in the prediction of xerostomia, whereas for other patients the predictions are expected to be more reliable. In contrast, TCP and NTCP endpoints are dichotomous, and parameter uncertainties should be folded directly into the estimated probabilities, thereby improving the accuracy of the estimates. Using bootstrap parameter estimates, competing treatment

  1. 18F-FDG PET/CT for initial staging in breast cancer patients. Is there a relevant impact on treatment planning compared to conventional staging modalities?

    International Nuclear Information System (INIS)

    Krammer, J.; Schnitzer, A.; Kaiser, C.G.; Buesing, K.A.; Schoenberg, S.O.; Wasser, K.; Sperk, E.; Brade, J.; Wasgindt, S.; Suetterlin, M.; Sutton, E.J.

    2015-01-01

    To evaluate the impact of whole-body 18 F-FDG PET/CT on initial staging of breast cancer in comparison to conventional staging modalities. This study included 102 breast cancer patients, 101 patients were eligible for evaluation. Preoperative whole-body staging with PET/CT was performed in patients with clinical stage ≥ T2 tumours or positive local lymph nodes (n = 91). Postoperative PET/CT was performed in patients without these criteria but positive sentinel lymph node biopsy (n = 10). All patients underwent PET/CT and a conventional staging algorithm, which included bone scan, chest X-ray and abdominal ultrasound. PET/CT findings were compared to conventional staging and the impact on therapeutic management was evaluated. PET/CT led to an upgrade of the N or M stage in overall 19 patients (19 %) and newly identified manifestation of breast cancer in two patients (2 %). PET/CT findings caused a change in treatment of 11 patients (11 %). This is within the range of recent studies, all applying conventional inclusion criteria based on the initial T and N status. PET/CT has a relevant impact on initial staging and treatment of breast cancer when compared to conventional modalities. Further studies should assess inclusion criteria beyond the conventional T and N status, e.g. tumour grading and receptor status. (orig.)

  2. Current calibration, treatment, and treatment planning techniques among institutions participating in the Children's Oncology Group

    International Nuclear Information System (INIS)

    Urie, Marcia; FitzGerald, T.J.; Followill, David; Laurie, Fran; Marcus, Robert; Michalski, Jeff

    2003-01-01

    Purpose: To report current technology implementation, radiation therapy physics and treatment planning practices, and results of treatment planning exercises among 261 institutions belonging to the Children's Oncology Group (COG). Methods and Materials: The Radiation Therapy Committee of the newly formed COG mandated that each institution demonstrate basic physics and treatment planning abilities by satisfactorily completing a questionnaire and four treatment planning exercises designed by the Quality Assurance Review Center. The planning cases are (1) a maxillary sinus target volume (for two-dimensional planning), (2) a Hodgkin's disease mantle field (for irregular-field and off-axis dose calculations), (3) a central axis blocked case, and (4) a craniospinal irradiation case. The questionnaire and treatment plans were submitted (as of 1/30/02) by 243 institutions and completed satisfactorily by 233. Data from this questionnaire and analyses of the treatment plans with monitor unit calculations are presented. Results: Of the 243 clinics responding, 54% use multileaf collimators routinely, 94% use asymmetric jaws routinely, and 13% use dynamic wedges. Nearly all institutions calibrate their linear accelerators following American Association of Physicists in Medicine protocols, currently 16% with TG-51 and 81% with TG-21 protocol. Treatment planning systems are relied on very heavily for all calculations, including monitor units. Techniques and results of each of the treatment planning exercises are presented. Conclusions: Together, these data provide a unique compilation of current (2001) radiation therapy practices in institutions treating pediatric patients. Overall, the COG facilities have the equipment and the personnel to perform high-quality radiation therapy. With ongoing quality assurance review, radiation therapy compliance with COG protocols should be high

  3. Radiation treatment planning techniques for lymphoma of the stomach

    International Nuclear Information System (INIS)

    Della Biancia, Cesar; Hunt, Margie; Furhang, Eli; Wu, Elisa; Yahalom, Joachim

    2005-01-01

    Purpose: Involved-field radiation therapy of the stomach is often used in the curative treatment of gastric lymphoma. Yet, the optimal technique to irradiate the stomach with minimal morbidity has not been well established. This study was designed to evaluate treatment planning alternatives for stomach irradiation, including intensity-modulated radiation therapy (IMRT), to determine which approach resulted in improved dose distribution and to identify patient-specific anatomic factors that might influence a treatment planning choice. Methods and Materials: Fifteen patients with lymphoma of the stomach (14 mucosa-associated lymphoid tissue lymphomas and 1 diffuse large B-cell lymphoma) were categorized into 3 types, depending on the geometric relationship between the planning target volume (PTV) and kidneys. AP/PA and 3D conformal radiation therapy (3DCRT) plans were generated for each patient. IMRT was planned for 4 patients with challenging geometric relationship between the PTV and the kidneys to determine whether it was advantageous to use IMRT. Results: For type I patients (no overlap between PTV and kidneys), there was essentially no benefit from using 3DCRT over AP/PA. However, for patients with PTVs in close proximity to the kidneys (type II) or with high degree of overlap (type III), the 4-field 3DCRT plans were superior, reducing the kidney V 15Gy by approximately 90% for type II and 50% for type III patients. For type III, the use of a 3DCRT plan rather than an AP/PA plan decreased the V 15Gy by approximately 65% for the right kidney and 45% for the left kidney. In the selected cases, IMRT led to a further decrease in left kidney dose as well as in mean liver dose. Conclusions: The geometric relationship between the target and kidneys has a significant impact on the selection of the optimum beam arrangement. Using 4-field 3DCRT markedly decreases the kidney dose. The addition of IMRT led to further incremental improvements in the left kidney and liver

  4. Failure mode and effect analysis oriented to risk-reduction interventions in intraoperative electron radiation therapy: The specific impact of patient transportation, automation, and treatment planning availability

    International Nuclear Information System (INIS)

    López-Tarjuelo, Juan; Bouché-Babiloni, Ana; Santos-Serra, Agustín; Morillo-Macías, Virginia; Calvo, Felipe A.; Kubyshin, Yuri

    2014-01-01

    Background and purpose: Industrial companies use failure mode and effect analysis (FMEA) to improve quality. Our objective was to describe an FMEA and subsequent interventions for an automated intraoperative electron radiotherapy (IOERT) procedure with computed tomography simulation, pre-planning, and a fixed conventional linear accelerator. Material and methods: A process map, an FMEA, and a fault tree analysis are reported. The equipment considered was the radiance treatment planning system (TPS), the Elekta Precise linac, and TN-502RDM-H metal–oxide-semiconductor-field-effect transistor in vivo dosimeters. Computerized order-entry and treatment-automation were also analyzed. Results: Fifty-seven potential modes and effects were identified and classified into ‘treatment cancellation’ and ‘delivering an unintended dose’. They were graded from ‘inconvenience’ or ‘suboptimal treatment’ to ‘total cancellation’ or ‘potentially wrong’ or ‘very wrong administered dose’, although these latter effects were never experienced. Risk priority numbers (RPNs) ranged from 3 to 324 and totaled 4804. After interventions such as double checking, interlocking, automation, and structural changes the final total RPN was reduced to 1320. Conclusions: FMEA is crucial for prioritizing risk-reduction interventions. In a semi-surgical procedure like IOERT double checking has the potential to reduce risk and improve quality. Interlocks and automation should also be implemented to increase the safety of the procedure

  5. Upright 3D Treatment Planning Using a Vertical CT

    International Nuclear Information System (INIS)

    Shah, Anand P.; Strauss, Jonathan B.; Kirk, Michael C.; Chen, Sea S.; Kroc, Thomas K.; Zusag, Thomas W.

    2009-01-01

    In this report, we describe a novel technique used to plan and administer external beam radiation therapy to a patient in the upright position. A patient required reirradiation for thymic carcinoma but was unable to tolerate the supine position due to bilateral phrenic nerve injury and paralysis of the diaphragm. Computed tomography (CT) images in the upright position were acquired at the Northern Illinois University Institute for Neutron Therapy at Fermilab. The CT data were imported into a standard 3-dimensional (3D) treatment planning system. Treatment was designed to deliver 24 Gy to the target volume while respecting normal tissue tolerances. A custom chair that locked into the treatment table indexing system was constructed for immobilization, and port films verified the reproducibility of setup. Radiation was administered using mixed photon and electron AP fields

  6. Electron Density Calibration for Radiotherapy Treatment Planning

    International Nuclear Information System (INIS)

    Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Ruiz-Trejo, C.; Celis-Lopez, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, A.

    2006-01-01

    Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density (ρe) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a large range of ρe to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head

  7. Prostate HDR brachytherapy catheter displacement between planning and treatment delivery

    International Nuclear Information System (INIS)

    Whitaker, May; Hruby, George; Lovett, Aimee; Patanjali, Nitya

    2011-01-01

    Background and purpose: HDR brachytherapy is used as a conformal boost for treating prostate cancer. Given the large doses delivered, it is critical that the volume treated matches that planned. Our outpatient protocol comprises two 9 Gy fractions, two weeks apart. We prospectively assessed catheter displacement between CT planning and treatment delivery. Materials and methods: Three fiducial markers and the catheters were implanted under transrectal ultrasound guidance. Metal marker wires were inserted into 4 reference catheters before CT; marker positions relative to each other and to the marker wires were measured from the CT scout. Measurements were repeated immediately prior to treatment delivery using pelvic X-ray with marker wires in the same reference catheters. Measurements from CT scout and film were compared. For displacements of 5 mm or more, indexer positions were adjusted prior to treatment delivery. Results: Results are based on 48 implants, in 25 patients. Median time from planning CT to treatment delivery was 254 min (range 81–367 min). Median catheter displacement was 7.5 mm (range −2.9–23.9 mm), 67% of implants had displacement of 5 mm or greater. Displacements were predominantly caudal. Conclusions: Catheter displacement can occur in the 1–3 h between the planning CT scan and treatment. It is recommended that departments performing HDR prostate brachytherapy verify catheter positions immediately prior to treatment delivery.

  8. CT treatment planning of the liver

    International Nuclear Information System (INIS)

    Lim, M.

    1988-01-01

    The article deals with CT treatment planning of the liver to maximize the dose to the liver but minimize the dose to the right kidney, spinal cord, and bowels. (The left kidney is out of the field due to the oblique angles of the fields.) This is achieved by right kidney shielding reconstruction from multislice CT treatment planning and by the oblique angles of the fields. Without CT, it is not possible to utilize oblique fields to cover the liver. With conventional AP-PA fields, not only is the whole liver treated but also most of the right kidney, half of the left kidney, bowels and spinal cord. Tolerance dose to the kidneys is exceeded if adequate dose is delivered to the liver. Some new computer algorithms display a bird's eye view of the shielding but this paper presents for the first time, a technique for actual shielding reconstruction from multislice CT treatment planning for use by the radiation oncologist when shielding blocks are drawn on the simulator films

  9. [Treatment strategy and planning for pilon fractures].

    Science.gov (United States)

    Mittlmeier, Thomas; Wichelhaus, Alice

    2017-08-01

    Pilon fractures are mainly severe and prognostically serious injuries with a high rate of relevant soft tissue involvement. The adequate decision making and choice of treatment in the early phase of trauma are of paramount importance for the final outcome. This essentially encompasses the management of the soft tissue damage, the surgical planning and the differentiated selection of procedures. Most concepts of staged treatment nowadays offer a wide range of options which are integrated into expert-based algorithms. The aim of the present analysis was to display the strategy variations for the treatment of pilon fractures taking into account the advantages and disadvantages of the corresponding treatment concepts. A staged procedure including primary closed reduction employing ligamentotaxis and fixation of the joints of the hindfoot via tibiocalcaneal metatarsal fixation offers a safe basis for consecutive imaging and the selection of specific approaches for definitive reconstruction. A simultaneous reconstruction and fixation of the fibula during the primary intervention are generally not recommended in order to avoid any limitations for subsequent reconstructive procedures. A time frame for definitive reconstruction covers a period of up to 3 weeks after trauma and allows a detailed planning considering the individual dynamics of the soft tissue situation and any logistic requirements. For the choice of the definitive treatment concept a wide range of procedures and implants are available. There are also valid concepts for primary treatment of defined fracture constellations while primary arthrodesis represents a solution in cases of major destruction of the joint surface. Knowledge of the multiple procedural variations for pilon fracture treatment creates the basis to optimize the treatment modalities and to take into account individual parameters of the fracture.

  10. In Vivo Diode Dosimetry for Imrt Treatments Generated by Pinnacle Treatment Planning System

    International Nuclear Information System (INIS)

    Alaei, Parham; Higgins, Patrick D.; Gerbi, Bruce J.

    2009-01-01

    Dose verification using diodes has been proposed and used for intensity modulated radiation therapy (IMRT) treatments. We have previously evaluated diode response for IMRT deliveries planned with the Eclipse/Helios treatment planning system. The Pinnacle treatment planning system generates plans that are delivered in a different fashion than Eclipse. Whereas the Eclipse-generated segments are delivered in organized progression from one side of each field to the other, Pinnacle-generated segments are delivered in a much more randomized fashion to different areas within the field. This makes diode measurements at a point more challenging because the diode may be exposed fully or partially to multiple small segments during one single field's treatment as opposed to being exposed to very few segments scanning across the diode during an Eclipse-generated delivery. We have evaluated in vivo dosimetry for Pinnacle-generated IMRT plans and characterized the response of the diode to various size segments on phantom. We present results of patient measurements on approximately 300 fields, which show that 76% of measurements agree to within 10% of the treatment-plan generated calculated doses. Of the other 24%, about 11% are within 15% of the calculated dose. Comparison of these with phantom measurements indicates that many of the discrepancies are due to diode positioning on patients and increased diode response at short source-to-surface distances (SSDs), with the remainder attributable to other factors such as segment size and partial irradiation of the diode

  11. Commissioning and quality assurances of the CMS XIO radiotherapy treatment planning system for external beam photons

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Anurupa; Soubhagya; Sudhakar; Shiva; Krishnam Raju, A.; Narayana Murthy, P.

    2008-01-01

    The commissioning of XIO treatment planning system (TPS) was carried out by Computerized Medical Devices, USA for Siemens and Elekta linear accelerators. The Commissioning and quality assurance of the CMS XIO radiotherapy treatment planning system involves many steps, beginning from beam data acquisition and entry into the computerized TPS, through patient data acquisition, to treatment plan generation and the final transfer of data to the treatment machine and quality assurance of TPS

  12. Comparison of step and shoot IMRT treatment plans generated by three inverse treatment planning systems; Comparacion de tratamientos de IMRT estatica generados por tres sistemas de planificacion inversa

    Energy Technology Data Exchange (ETDEWEB)

    Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez leton, P.; Garcia Ruiz-Zorrilla, J.; Minambres Moro, A.

    2011-07-01

    One of the most important issues of intensity modulated radiation therapy (IMRT) treatments using the step-and-shoot technique is the number of segments and monitor units (MU) for treatment delivery. These parameters depend heavily on the inverse optimization module of the treatment planning system (TPS) used. Three commercial treatment planning systems: CMS XiO, iPlan and Prowess Panther have been evaluated. With each of them we have generated a treatment plan for the same group of patients, corresponding to clinical cases. Dosimetric results, MU calculated and number of segments were compared. Prowess treatment planning system generates plans with a number of segments significantly lower than other systems, while MU are less than a half. It implies important reductions in leakage radiation and delivery time. Degradation in the final dose calculation of dose is very small, because it directly optimizes positions of multileaf collimator (MLC). (Author) 13 refs.

  13. Conventional treatment planning optimization using simulated annealing

    International Nuclear Information System (INIS)

    Morrill, S.M.; Langer, M.; Lane, R.G.

    1995-01-01

    Purpose: Simulated annealing (SA) allows for the implementation of realistic biological and clinical cost functions into treatment plan optimization. However, a drawback to the clinical implementation of SA optimization is that large numbers of beams appear in the final solution, some with insignificant weights, preventing the delivery of these optimized plans using conventional (limited to a few coplanar beams) radiation therapy. A preliminary study suggested two promising algorithms for restricting the number of beam weights. The purpose of this investigation was to compare these two algorithms using our current SA algorithm with the aim of producing a algorithm to allow clinically useful radiation therapy treatment planning optimization. Method: Our current SA algorithm, Variable Stepsize Generalized Simulated Annealing (VSGSA) was modified with two algorithms to restrict the number of beam weights in the final solution. The first algorithm selected combinations of a fixed number of beams from the complete solution space at each iterative step of the optimization process. The second reduced the allowed number of beams by a factor of two at periodic steps during the optimization process until only the specified number of beams remained. Results of optimization of beam weights and angles using these algorithms were compared using a standard cadre of abdominal cases. The solution space was defined as a set of 36 custom-shaped open and wedged-filtered fields at 10 deg. increments with a target constant target volume margin of 1.2 cm. For each case a clinically-accepted cost function, minimum tumor dose was maximized subject to a set of normal tissue binary dose-volume constraints. For this study, the optimized plan was restricted to four (4) fields suitable for delivery with conventional therapy equipment. Results: The table gives the mean value of the minimum target dose obtained for each algorithm averaged over 5 different runs and the comparable manual treatment

  14. Development of Consensus Treatment Plans for Juvenile Localized Scleroderma

    Science.gov (United States)

    Li, Suzanne C.; Torok, Kathryn S.; Pope, Elena; Dedeoglu, Fatma; Hong, Sandy; Jacobe, Heidi T.; Rabinovich, C. Egla; Laxer, Ronald M.; Higgins, Gloria C.; Ferguson, Polly J.; Lasky, Andrew; Baszis, Kevin; Becker, Mara; Campillo, Sarah; Cartwright, Victoria; Cidon, Michael; Inman, Christi J; Jerath, Rita; O'Neil, Kathleen M.; Vora, Sheetal; Zeft, Andrew; Wallace, Carol A.; Ilowite, Norman T.; Fuhlbrigge, Robert C

    2013-01-01

    Objective To develop standardized treatment plans, clinical assessments, and response criteria for active, moderate to high severity juvenile localized scleroderma (jLS). Background jLS is a chronic inflammatory skin disorder associated with substantial morbidity and disability. Although a wide range of therapeutic strategies have been reported in the literature, a lack of agreement on treatment specifics and accepted methods for clinical assessment of have made it difficult to compare approaches and identify optimal therapy. Methods A core group of pediatric rheumatologists, dermatologists and a lay advisor was engaged by the Childhood Arthritis and Rheumatology Research Alliance (CARRA) to develop standardized treatment plans and assessment parameters for jLS using consensus methods/nominal group techniques. Recommendations were validated in two face-to-face conferences with a larger group of practitioners with expertise in jLS and with the full membership of CARRA, which encompasses the majority of pediatric rheumatologists in the U.S and Canada. Results Consensus was achieved on standardized treatment plans that reflect the prevailing treatment practices of CARRA members. Standardized clinical assessment methods and provisional treatment response criteria were also developed. Greater than 90% of pediatric rheumatologists responding to a survey (67% of CARRA membership) affirmed the final recommendations and agreed to utilize these consensus plans to treat patients with jLS. Conclusions Using consensus methodology, we have developed standardized treatment plans and assessment methods for jLS. The high level of support among pediatric rheumatologists will support future comparative effectiveness studies and enable the development of evidence-based guidelines for the treatment of jLS. PMID:22505322

  15. Using the computed tomography in comparison to the orthogonal radiography based treatment planning in high dose rate (HDR) brachytherapy in cervical uteri cancer patients; a single institution feasibility study.

    Science.gov (United States)

    Bahadur, Yasir A; El-Sayed, Mohamed E; El-Taher, Zeinab H; Zaza, Khaled O; Moftah, Belal A; Hassouna, Ashraf H; Ghassal, Noor M

    2008-03-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram lpar;DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy+/-1.2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy+/-1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the corresponding p

  16. Using the Computed Tomography in Comparison to the Orthogonal Radiography Based Treatment Planning in High dose Rate (HDR) Brachytherapy in Cervical Uteri Cancer Patients; A Single Institution Feasibility Study

    International Nuclear Information System (INIS)

    BAHADUR, Y.A.; EL-SAYED, M.E.; HASSOUNA, A.H.; EL-TAHER, Z.H.; GHASSAL, N.M.; ZAZA, Kh.O.M.D.; OFTAH, B.A.

    2008-01-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. Aim: To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). Methods: From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram (DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. Results: For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy±l .2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy±1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the

  17. Treatment planning aspects for tumours in the region of parotid

    International Nuclear Information System (INIS)

    Narayanan, S.S.; Saju, Sherly; Deshpande, D.D.; Agarwal, J.P.; Dinshaw, K.A.

    2001-01-01

    The treatment of carcinoma of parotid/external ear needs careful planning in respect of dose to the normal organs surrounding the tumour such as eye(s), pituitary and normal brain. In many centres, generally, manual contours are generated for a two dimensional planning, wherein Anterior-Posterior (A-P) oblique fields (patient in Lateral Position) are planned. However, such a field orientation is not always useful in terms of minimum possible dose to the said normal organs, especially for eye. In this centre, a different field arrangement has been attempted, which helps in dose reduction to the normal structures to a large extent in comparison with the conventional 2D planning method

  18. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-01-01

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  19. 4D Proton treatment planning strategy for mobile lung tumors

    International Nuclear Information System (INIS)

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE R IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE R IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE R IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors

  20. Strategic planning of treatment for hyperthyroid disease

    International Nuclear Information System (INIS)

    Hoeffer, R.

    1994-01-01

    Strategic planning of treatment of hyperthyroid disease must correspond to the pathophysiological mechanism of elevation of thyroid hormone serum concentration, i.e. excess stimulation, autonomous thyroid function, destruction induced hyperthyoroxinemia. In cases of excess stimulation one should go to extremes to save the essentially 'normal' thyroid gland and life-long antithyroid drug treatment confronts with total ablation of the thyroid gland in non remitting disease. Size and quantity of regions of autonomously functioning follicles/cells will be the determinant of therapeutic strategy in cases of autonomous thyroid function. Selective surgery confronts with radioiodine treatment aiming at 'restitutio ad integrum'. In destruction induced hyperthyroxinemia antiintlammatory and symptomatic measures may help to bridge the time to the return of normal hormone concentrations. Based on these considerations a detailed therapeutic strategy for hyperthyroid disease can be designed. (author)

  1. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity

    International Nuclear Information System (INIS)

    Sreenivasa, Geetha; Gellermann, Johanna; Rau, Beate; Nadobny, Jacek; Schlag, Peter; Deuflhard, Peter; Felix, Roland; Wust, Peter

    2003-01-01

    Purpose: The main aim is to prove the clinical practicability of the hyperthermia treatment planning system HyperPlan on a β-test level. Data and observations obtained from clinical hyperthermia are compared with the numeric methods FE (finite element) and FDTD (finite difference time domain), respectively. Methods and Materials: The planning system HyperPlan is built on top of the modular, object-oriented platform for visualization and model generation AMIRA. This system already contains powerful algorithms for image processing, geometric modeling, and three-dimensional graphics display. A number of hyperthermia-specific modules are provided, enabling the creation of three-dimensional tetrahedral patient models suitable for treatment planning. Two numeric methods, FE and FDTD, are implemented in HyperPlan for solving Maxwell's equations. Both methods base their calculations on segmented (contour based) CT or MR image data. A tetrahedral grid is generated from the segmented tissue boundaries, consisting of approximately 80,000 tetrahedrons per patient. The FE method necessitates, primarily, this tetrahedral grid for the calculation of the E-field. The FDTD method, on the other hand, calculates the E-field on a cubical grid, but also requires a tetrahedral grid for correction at electrical interfaces. In both methods, temperature distributions are calculated on the tetrahedral grid by solving the bioheat transfer equation with the FE method. Segmentation, grid generation, E-field, and temperature calculation can be carried out in clinical practice at an acceptable time expenditure of about 1-2 days. Results: All 30 patients we analyzed with cervical, rectal, and prostate carcinoma exhibit a good correlation between the model calculations and the attained clinical data regarding acute toxicity (hot spots), prediction of easy-to-heat or difficult-to-heat patients, and the dependency on various other individual parameters. We could show sufficient agreement between

  2. Automation and Intensity Modulated Radiation Therapy for Individualized High-Quality Tangent Breast Treatment Plans

    International Nuclear Information System (INIS)

    Purdie, Thomas G.; Dinniwell, Robert E.; Fyles, Anthony; Sharpe, Michael B.

    2014-01-01

    Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented

  3. 3-D CT for cardiovascular treatment planning

    International Nuclear Information System (INIS)

    Wildermuth, S.; Leschka, S.; Duru, F.; Alkadhi, H.

    2005-01-01

    The recently developed 64-slice CT scanner together with the use of 2-D and 3-D reconstructions can aid the cardiovascular surgeon and interventional radiologist in visualizing exact geometric relationships to plan and execute complex procedures via minimally invasive or standard approaches.Cardiac 64-slice CT considerably benefits from the high temporal and spatial resolution allowing the reliable depiction of small coronary segments. Similarly, abdominal vascular 64-slice CT became possible within short examination times and allowing an optimal arterial contrast bolus exploitation. We demonstrate four representative cardiac and abdominal examples using the new 64-slice CT technology which reveal the impact of the new scanner generation for cardiovascular treatment planning. (orig.)

  4. Intracavitary radiation treatment planning and dose evaluation

    International Nuclear Information System (INIS)

    Anderson, L.L.; Masterson, M.E.; Nori, D.

    1987-01-01

    Intracavitary radiation therapy with encapsulated radionuclide sources has generally involved, since the advent of afterloading techniques, inserting the sources in tubing previously positioned within a body cavity near the region to be treated. Because of the constraints on source locations relative to the target region, the functions of treatment planning and dose evaluation, usually clearly separable in interstitial brachytherapy, tend to merge in intracavitary therapy. Dose evaluation is typically performed for multiple source-strength configurations in the process of planning and thus may be regarded as complete when a particular configuration has been selected. The input data for each dose evaluation, of course, must include reliable dose distribution information for the source-applicator combinations used. Ultimately, the goal is to discover the source-strength configuration that results in the closest possible approach to the dose distribution desired

  5. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study

    International Nuclear Information System (INIS)

    Weber, Damien C; Miralbell, Raymond; Wang, Hui; Cozzi, Luca; Dipasquale, Giovanna; Khan, Haleem G; Ratib, Osman; Rouzaud, Michel; Vees, Hansjoerg; Zaidi, Habib

    2009-01-01

    A study was performed comparing volumetric modulated arcs (RA) and intensity modulation (with photons, IMRT, or protons, IMPT) radiation therapy (RT) for patients with recurrent prostate cancer after RT. Plans for RA, IMRT and IMPT were optimized for 7 patients. Prescribed dose was 56 Gy in 14 fractions. The recurrent gross tumor volume (GTV) was defined on 18 F-fluorocholine PET/CT scans. Plans aimed to cover at least 95% of the planning target volume with a dose > 50.4 Gy. A maximum dose (D Max ) of 61.6 Gy was allowed to 5% of the GTV. For the urethra, D Max was constrained to 37 Gy. Rectal D Median was < 17 Gy. Results were analyzed using Dose-Volume Histogram and conformity index (CI 90 ) parameters. Tumor coverage (GTV and PTV) was improved with RA (V 95% 92.6 ± 7.9 and 83.7 ± 3.3%), when compared to IMRT (V 95% 88.6 ± 10.8 and 77.2 ± 2.2%). The corresponding values for IMPT were intermediate for the GTV (V 95% 88.9 ± 10.5%) and better for the PTV (V 95% 85.6 ± 5.0%). The percentages of rectal and urethral volumes receiving intermediate doses (35 Gy) were significantly decreased with RA (5.1 ± 3.0 and 38.0 ± 25.3%) and IMPT (3.9 ± 2.7 and 25.1 ± 21.1%), when compared to IMRT (9.8 ± 5.3 and 60.7 ± 41.7%). CI 90 was 1.3 ± 0.1 for photons and 1.6 ± 0.2 for protons. Integral Dose was 1.1 ± 0.5 Gy*cm 3 *10 5 for IMPT and about a factor three higher for all photon's techniques. RA and IMPT showed improvements in conformal avoidance relative to fixed beam IMRT for 7 patients with recurrent prostate cancer. IMPT showed further sparing of organs at risk

  6. An FDTD code for hyperthermia treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Marrocco, G.; Bardati, F. [Rome Univ. Tor Vergata (Italy). Dipt. di Informatica, sistemi e produzione; Tognolatti, P. [L' Aquila Univ. (Italy). Dipt. di Ingegneria Elettrica

    1999-08-01

    Radio-frequency hyperthermia is an anticancer modality based on the heating of tumours by radiating sources. A set of antennas is frequently used to enhance power depositions in tissues. Treatments planning needs electromagnetic field computation within realistic body models. Since several simulation may be required the optimize the antenna-body configuration, the electromagnetic solver should be designed in such a way that new configuration of the antenna set-up can be solved without heavy changes of the basic numerical code. In this paper a numerical investigation on the effects of a segmentation technique will be presented, with reference to an FDTD computation and the heating of a paediatric tumour.

  7. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    International Nuclear Information System (INIS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Jia, Xun; Jiang, Steve; Zhou, Linghong

    2013-01-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose–volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30

  8. A simple planning technique of craniospinal irradiation in the eclipse treatment planning system

    Directory of Open Access Journals (Sweden)

    Hemalatha Athiyaman

    2014-01-01

    Full Text Available A new planning method for Craniospinal Irradiation by Eclipse treatment planning system using Field alignment, Field-in-Field technique was developed. Advantage of this planning method was also studied retrospectively for previously treated five patients of medulloblastoma with variable spine length. Plan consists of half beam blocked parallel opposed cranium, and a single posterior cervicospine field was created by sharing the same isocenter, which obviates divergence matching. Further, a single symmetrical field was created to treat remaining Lumbosacral spine. Matching between a inferior diverging edge of cervicospine field and superior diverging edge of a Lumbosacral field was done using the field alignment option. ′Field alignment′ is specific option in the Eclipse Treatment Planning System, which automatically matches the field edge divergence as per field alignment rule. Multiple segments were applied in both the spine field to manage with hot and cold spots created by varying depth of spinal cord. Plan becomes fully computerized using this field alignment option and multiple segments. Plan evaluation and calculated mean modified Homogeneity Index (1.04 and 0.1 ensured that dose to target volume is homogeneous and critical organ doses were within tolerance. Dose variation at the spinal field junction was verified using ionization chamber array (I′MatriXX for matched, overlapped and gap junction spine fields; the delivered dose distribution confirmed the ideal clinical match, over exposure and under exposure at the junction, respectively. This method is simple to plan, executable in Record and Verify mode and can be adopted for various length of spinal cord with only two isocenter in shorter treatment time.

  9. Treatment of Non-Small Cell Lung Cancer Patients With Proton Beam-Based Stereotactic Body Radiotherapy: Dosimetric Comparison With Photon Plans Highlights Importance of Range Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Panahandeh, Hamid Reza [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Westover, Kenneth [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA (United States); Adams, Judith; Willers, Henning [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States)

    2012-05-01

    Purpose: Proton beam radiotherapy has been proposed for use in stereotactic body radiotherapy (SBRT) for early-stage non-small-cell lung cancer. In the present study, we sought to analyze how the range uncertainties for protons might affect its therapeutic utility for SBRT. Methods and Materials: Ten patients with early-stage non-small-cell lung cancer received SBRT with two to three proton beams. The patients underwent repeat planning for photon SBRT, and the dose distributions to the normal and tumor tissues were compared with the proton plans. The dosimetric comparisons were performed within an operational definition of high- and low-dose regions representing volumes receiving >50% and <50% of the prescription dose, respectively. Results: In high-dose regions, the average volume receiving {>=}95% of the prescription dose was larger for proton than for photon SBRT (i.e., 46.5 cm{sup 3} vs. 33.5 cm{sup 3}; p = .009, respectively). The corresponding conformity indexes were 2.46 and 1.56. For tumors in close proximity to the chest wall, the chest wall volume receiving {>=}30 Gy was 7 cm{sup 3} larger for protons than for photons (p = .06). In low-dose regions, the lung volume receiving {>=}5 Gy and maximum esophagus dose were smaller for protons than for photons (p = .019 and p < .001, respectively). Conclusions: Protons generate larger high-dose regions than photons because of range uncertainties. This can result in nearby healthy organs (e.g., chest wall) receiving close to the prescription dose, at least when two to three beams are used, such as in our study. Therefore, future research should explore the benefit of using more than three beams to reduce the dose to nearby organs. Additionally, clinical subgroups should be identified that will benefit from proton SBRT.

  10. Science-based strategic planning for hazardous fuel treatment.

    Science.gov (United States)

    D.L. Peterson; M.C. Johnson

    2007-01-01

    A scientific foundation coupled with technical support is needed to develop long-term strategic plans for fuel and vegetation treatments on public lands. These plans are developed at several spatial scales and are typically a component of fire management plans and other types of resource management plans. Such plans need to be compatible with national, regional, and...

  11. Treatment outcomes among pulmonary tuberculosis patients at ...

    African Journals Online (AJOL)

    2009-10-05

    Oct 5, 2009 ... in our environment. Keywords: Pulmonary tuberculosis; treatment centers; treatment outcome. Résumé paramètre: Centres de traitement de la tuberculose en Ibadan, Nigeria objectif: Pour évaluer les résultats de traitement et les déterminants de résultat entre la tuberculose patients. design: A plan d'étude ...

  12. Incorporating organ movements in IMRT treatment planning for prostate cancer: Minimizing uncertainties in the inverse planning process

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Oelfke, Uwe

    2005-01-01

    We investigate an off-line strategy to incorporate inter fraction organ movements in IMRT treatment planning. Nowadays, imaging modalities located in the treatment room allow for several CT scans of a patient during the course of treatment. These multiple CT scans can be used to estimate a probability distribution of possible patient geometries. This probability distribution can subsequently be used to calculate the expectation value of the delivered dose distribution. In order to incorporate organ movements into the treatment planning process, it was suggested that inverse planning could be based on that probability distribution of patient geometries instead of a single snapshot. However, it was shown that a straightforward optimization of the expectation value of the dose may be insufficient since the expected dose distribution is related to several uncertainties: first, this probability distribution has to be estimated from only a few images. And second, the distribution is only sparsely sampled over the treatment course due to a finite number of fractions. In order to obtain a robust treatment plan these uncertainties should be considered and minimized in the inverse planning process. In the current paper, we calculate a 3D variance distribution in addition to the expectation value of the dose distribution which are simultaniously optimized. The variance is used as a surrogate to quantify the associated risks of a treatment plan. The feasibility of this approach is demonstrated for clinical data of prostate patients. Different scenarios of dose expectation values and corresponding variances are discussed

  13. Effects of spot parameters in pencil beam scanning treatment planning.

    Science.gov (United States)

    Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2018-01-01

    Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot

  14. A new plan-scoring method using normal tissue complication probability for personalized treatment plan decisions in prostate cancer

    Science.gov (United States)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie; Chang, Kyung Hwan

    2018-01-01

    The aim of this study was to derive a new plan-scoring index using normal tissue complication probabilities to verify different plans in the selection of personalized treatment. Plans for 12 patients treated with tomotherapy were used to compare scoring for ranking. Dosimetric and biological indexes were analyzed for the plans for a clearly distinguishable group ( n = 7) and a similar group ( n = 12), using treatment plan verification software that we developed. The quality factor ( QF) of our support software for treatment decisions was consistent with the final treatment plan for the clearly distinguishable group (average QF = 1.202, 100% match rate, n = 7) and the similar group (average QF = 1.058, 33% match rate, n = 12). Therefore, we propose a normal tissue complication probability (NTCP) based on the plan scoring index for verification of different plans for personalized treatment-plan selection. Scoring using the new QF showed a 100% match rate (average NTCP QF = 1.0420). The NTCP-based new QF scoring method was adequate for obtaining biological verification quality and organ risk saving using the treatment-planning decision-support software we developed for prostate cancer.

  15. Recovery post treatment: plans, barriers and motivators.

    Science.gov (United States)

    Duffy, Paul; Baldwin, Helen

    2013-01-30

    The increasing focus on achieving a sustained recovery from substance use brings with it a need to better understand the factors (recovery capital) that contribute to recovery following treatment. This work examined the factors those in recovery perceive to be barriers to (lack of capital) or facilitators of (presence of capital) sustained recovery post treatment. A purposive sample of 45 participants was recruited from 11 drug treatment services in northern England. Semi-structured qualitative interviews lasting between 30 and 90 minutes were conducted one to three months after participants completed treatment. Interviews examined key themes identified through previous literature but focused on allowing participants to explore their unique recovery journey. Interviews were transcribed and analysed thematically using a combination of deductive and inductive approaches. Participants generally reported high levels of confidence in maintaining their recovery with most planning to remain abstinent. There were indications of high levels of recovery capital. Aftercare engagement was high, often through self referral, with non substance use related activity felt to be particularly positive. Supported housing was critical and concerns were raised about the ability to afford to live independently with financial stability and welfare availability a key concern in general. Employment, often in the substance use treatment field, was a desire. However, it was a long term goal, with substantial risks associated with pursuing this too early. Positive social support was almost exclusively from within the recovery community although the re-building of relationships with family (children in particular) was a key motivator post treatment. Addressing internal factors and underlying issues i.e. 'human capital', provided confidence for continued recovery whilst motivators focused on external factors such as family and maintaining aspects of a 'normal' life i.e. 'social and physical

  16. Recovery post treatment: plans, barriers and motivators

    Directory of Open Access Journals (Sweden)

    Duffy Paul

    2013-01-01

    Full Text Available Abstract Background The increasing focus on achieving a sustained recovery from substance use brings with it a need to better understand the factors (recovery capital that contribute to recovery following treatment. This work examined the factors those in recovery perceive to be barriers to (lack of capital or facilitators of (presence of capital sustained recovery post treatment. Methods A purposive sample of 45 participants was recruited from 11 drug treatment services in northern England. Semi-structured qualitative interviews lasting between 30 and 90 minutes were conducted one to three months after participants completed treatment. Interviews examined key themes identified through previous literature but focused on allowing participants to explore their unique recovery journey. Interviews were transcribed and analysed thematically using a combination of deductive and inductive approaches. Results Participants generally reported high levels of confidence in maintaining their recovery with most planning to remain abstinent. There were indications of high levels of recovery capital. Aftercare engagement was high, often through self referral, with non substance use related activity felt to be particularly positive. Supported housing was critical and concerns were raised about the ability to afford to live independently with financial stability and welfare availability a key concern in general. Employment, often in the substance use treatment field, was a desire. However, it was a long term goal, with substantial risks associated with pursuing this too early. Positive social support was almost exclusively from within the recovery community although the re-building of relationships with family (children in particular was a key motivator post treatment. Conclusions Addressing internal factors and underlying issues i.e. ‘human capital’, provided confidence for continued recovery whilst motivators focused on external factors such as family and

  17. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  18. Constrained treatment planning using sequential beam selection

    International Nuclear Information System (INIS)

    Woudstra, E.; Storchi, P.R.M.

    2000-01-01

    In this paper an algorithm is described for automated treatment plan generation. The algorithm aims at delivery of the prescribed dose to the target volume without violation of constraints for target, organs at risk and the surrounding normal tissue. Pre-calculated dose distributions for all candidate orientations are used as input. Treatment beams are selected in a sequential way. A score function designed for beam selection is used for the simultaneous selection of beam orientations and weights. In order to determine the optimum choice for the orientation and the corresponding weight of each new beam, the score function is first redefined to account for the dose distribution of the previously selected beams. Addition of more beams to the plan is stopped when the target dose is reached or when no additional dose can be delivered without violating a constraint. In the latter case the score function is modified by importance factor changes to enforce better sparing of the organ with the limiting constraint and the algorithm is run again. (author)

  19. Novel tracer for radiation treatment planning

    International Nuclear Information System (INIS)

    Schwarzenboeck, S.; Krause, B.J.; Herrmann, K.; Gaertner, F.; Souvatzoglou, M.; Klaesner, B.

    2011-01-01

    PET and PET/CT with innovative tracers gain increasing importance in diagnosis and therapy management, and radiation treatment planning in radio-oncology besides the widely established FDG. The introduction of [ 18 F]Fluorothymidine ([ 18 F]FLT) as marker of proliferation, [ 18 F]Fluoromisonidazole ([ 18 F]FMISO) and [ 18 F]Fluoroazomycin-Arabinoside ([ 18 F]FAZA) as tracer of hypoxia, [ 18 F]Fluoroethyltyrosine ([ 18 F]FET) and [ 11 C]Methionine for brain tumour imaging, [ 68 Ga]DOTATOC for somatostatin receptor imaging, [ 18 F]FDOPA for dopamine synthesis and radioactively labeled choline derivatives for imaging phospholipid metabolism have opened novel approaches to tumour imaging. Some of these tracers have already been implemented into radio-oncology: Amino acid PET and PET/CT have the potential to optimise radiation treatment planning of brain tumours through accurate delineation of tumour tissue from normal tissue, necrosis and edema. Hypoxia represents a major therapeutic problem in radiation therapy. Hypoxia imaging is very attractive as it may allow to increase the dose in hypoxic tumours potentially allowing for a better tumour control. Advances in hybrid imaging, i.e. the introduction of MR/PET, may also have an impact in radio-oncology through synergies related to the combination of molecular signals of PET and a high soft tissue contrast of MRI as well as functional MRI capabilities. (orig.)

  20. Estimation of second primary cancers risk based on the treatment planning system

    International Nuclear Information System (INIS)

    Jin Chufeng; Sun Guangyao; Liu Hui; Zheng Huaqing; Cheng Mengyun; Li Gui; Wu Yican; FDS Team

    2011-01-01

    Estimates of second primary cancers risk after radiotherapy has become increasingly important for comparative treatment planning. A new method based on the treatment planning system to estimate the risk of second primary cancers was introduced in this paper. Using the Advanced/Accurate Radiotherapy Treatment System(ARTS), a treatment planning system developed by the FDS team,the risk of second primary cancer was estimated over two treatment plans for a patient with pancreatic cancer. Based on the second primary cancer risk, the two plans were compared. It was found that,kidney and gall-bladder had higher risk to develop second primary cancer. A better plan was chosen by the analysis of second primary cancer risk. The results showed that this risk estimation method we developed could be used to evaluate treatment plans. (authors)

  1. Integration of second cancer risk calculations in a radiotherapy treatment planning system

    International Nuclear Information System (INIS)

    Hartmann, M; Schneider, U

    2014-01-01

    Second cancer risk in patients, in particular in children, who were treated with radiotherapy is an important side effect. It should be minimized by selecting an appropriate treatment plan for the patient. The objectives of this study were to integrate a risk model for radiation induced cancer into a treatment planning system which allows to judge different treatment plans with regard to second cancer induction and to quantify the potential reduction in predicted risk. A model for radiation induced cancer including fractionation effects which is valid for doses in the radiotherapy range was integrated into a treatment planning system. From the three-dimensional (3D) dose distribution the 3D-risk equivalent dose (RED) was calculated on an organ specific basis. In addition to RED further risk coefficients like OED (organ equivalent dose), EAR (excess absolute risk) and LAR (lifetime attributable risk) are computed. A risk model for radiation induced cancer was successfully integrated in a treatment planning system. Several risk coefficients can be viewed and used to obtain critical situations were a plan can be optimised. Risk-volume-histograms and organ specific risks were calculated for different treatment plans and were used in combination with NTCP estimates for plan evaluation. It is concluded that the integration of second cancer risk estimates in a commercial treatment planning system is feasible. It can be used in addition to NTCP modelling for optimising treatment plans which result in the lowest possible second cancer risk for a patient.

  2. An investigation into positron emission tomography contouring methods across two treatment planning systems

    International Nuclear Information System (INIS)

    Young, Tony; Som, Seu; Sathiakumar, Chithradevi; Holloway, Lois

    2013-01-01

    Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems

  3. Treatment planning for MLC based robotic radiosurgery for brain metastases: plan comparison with circular fields and suggestions for planning strategies

    Directory of Open Access Journals (Sweden)

    Schmitt Daniela

    2017-09-01

    Full Text Available To evaluate the possible range of application of the new InCise2 MLC for the CyberKnife M6 system in brain radiosurgery, a plan comparison was made for 10 brain metastases sized between 1.5 and 9cm3 in 10 patients treated in a single fraction each. The target volumes consist of a PTV derived by expanding the GTV by 1mm and were chosen to have diversity in the cohort regarding regularity of shape, location and the structures needed to be blocked for beam transmission in the vicinity. For each case, two treatment plans were optimized: one using the MLC and one using the IRIS-collimator providing variable circular fields. Plan re-quirements were: dose prescription to the 70% isodose line (18 or 20Gy, 100% GTV coverage, ≥98% PTV coverage, undisturbed central high dose region (95% of maximum dose and a conformity index as low as possible. Plan com-parison parameters were: conformity index (CI, high-dose gradient index (GIH, low-dose gradient index (GIL, total number of monitor units (MU and expected treatment time (TT. For all cases, clinically acceptable plans could be gen-erated with the following results (mean±SD for CI, GIH, GIL, MU and TT, respectively for the MLC plans: 1.09±0.03, 2.77±0.26, 2.61±0.08, 4514±830MU and 27±5min and for the IRIS plans: 1.05±0.01, 3.00±0.35, 2.46±0.08, 8557±1335MU and 42±7min. In summary, the MLC plans were on average less conformal and had a shallower dose gradient in the low dose region, but a steeper dose gradient in the high dose region. This is accompanied by a smaller vol-ume receiving 10Gy. A plan by plan comparison shows that usage of the MLC can spare about one half of the MUs and one third of treatment time. From these experiences and results suggestions for MLC planning strategy can be de-duced.

  4. Budget Impact Analysis of Afatinib for First-Line Treatment of Patients with Metastatic Non-Small Cell Lung Cancer with Epidermal Growth Factor Receptor Exon 19 Deletions or Exon 21 Substitution Mutations in a U.S. Health Plan.

    Science.gov (United States)

    Graham, Jonathan; Earnshaw, Stephanie; Burslem, Kate; Lim, Jonathan

    2018-06-01

    Afatinib is 1 of 3 tyrosine kinase inhibitors approved in the United States for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions (del19) or exon 21 (L858R) substitution mutations. In clinical trials, afatinib has demonstrated improvement in progression-free survival versus standard chemotherapy and gefitinib. To analyze the impact of increases in afatinib treatment share on the cost and health outcomes in a commercial health plan in the United States. A decision model was developed to evaluate the budget impact of increases in afatinib share for the first-line treatment of patients with metastatic NSCLC with EGFR del19 or L858R substitution mutations over a 5-year time horizon. The model compared the total annual costs for a health plan with 1 million covered lives in a scenario in which afatinib share increased 5 percentage points annually to one in which all treatment shares remained constant over time. The number of patients eligible for treatment was estimated using published incidence data. Therapies included in the model were afatinib, erlotinib, gefitinib, and the chemotherapy doublet, pemetrexed in combination with cisplatin. The mean time spent by patients in progression-free and progressive disease states was based on survival data from clinical trials and a network meta-analysis. Therapy-related costs included monthly drug acquisition and administration costs and costs of managing adverse reactions. Disease management costs were also assessed in the model. Scenario analyses were performed to assess alternative scenarios of afatinib treatment share. Additionally, a one-way sensitivity analysis was performed to test the robustness of the model, given parameter uncertainty. Using the base-case parameter assumptions and a 5-percentage-point annual increase in afatinib treatment share, we estimated the total budget increases in years 1 through 5

  5. A Treatment Planning Analysis of Inverse-Planned and Forward-Planned Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Poon, Ian M; Xia Ping; Weinberg, Vivien; Sultanem, Khalil; Akazawa, Clayton C.; Akazawa, Pamela C.; Verhey, Lynn; Quivey, Jeanne Marie; Lee, Nancy

    2007-01-01

    Purpose: To compare dose-volume histograms of target volumes and organs at risk in 57 patients with nasopharyngeal carcinoma (NPC) with inverse- (IP) or forward-planned (FP) intensity-modulated radiation treatment (IMRT). Methods and Materials: The DVHs of 57 patients with NPC with IMRT with or without chemotherapy were reviewed. Thirty-one patients underwent IP IMRT, and 26 patients underwent FP IMRT. Treatment goals were to prescribe a minimum dose of 66-70 Gy for gross tumor volume and 59.4 Gy for planning target volume to greater than 95% of the volume. Multiple selected end points were used to compare dose-volume histograms of the targets, including minimum, mean, and maximum doses; percentage of target volume receiving less than 90% (1-V90%), less than 95% (1-V95%), and greater than 105% (1-V105%). Dose-volume histograms of organs at risk were evaluated with characteristic end points. Results: Both planning methods provided excellent target coverage with no statistically significant differences found, although a trend was suggested in favor of improved target coverage with IP IMRT in patients with T3/T4 NPC (p = 0.10). Overall, IP IMRT statistically decreased the dose to the parotid gland, temporomandibular joint, brain stem, and spinal cord overall, whereas IP led to a dose decrease to the middle/inner ear in only the T1/T2 subgroup. Conclusions: Use of IP and FP IMRT can lead to good target coverage while maintaining critical structures within tolerance. The IP IMRT selectively spared these critical organs to a greater degree and should be considered the standard of treatment in patients with NPC, particularly those with T3/T4. The FP IMRT is an effective second option in centers with limited IP IMRT capacity. As a modification of conformal techniques, the human/departmental resources to incorporate FP-IMRT should be nominal

  6. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  7. Registration and planning of radiotherapy and proton therapy treatment

    International Nuclear Information System (INIS)

    Bausse, Jerome

    2010-01-01

    Within the frame of an update and renewal project, the Orsay Proton Therapy Centre of the Curie Institute (IPCO) renews its software used for the treatment of patients by proton therapy, a radiotherapy technique which uses proton beams. High energies used in these treatments and the precision provided by proton particle characteristics require a more precise patient positioning than conventional radiotherapy: proton therapy requires a precision of about a millimetre. Thus, markers are placed on the skull which are generally well accepted by patients, but are a problem in the case of paediatric treatment, notably for the youngest children whose skull is still growing. The first objective of this research is thus to use only intrinsic information from X-ray images used when positioning the patient. A second objective is to make the new software (TPS Isogray) perfectly compatible with IPCO requirements by maintaining the strengths of the previous TPS (Treatment Planning System) and being prepared to the implementation of a new installation. After a presentation of the context and state of the art in radiotherapy and patient positioning, the author proposes an overview of 2D registration methods, presents a new method for 2x2D registration, and addresses the problem of 3D registration. Then, after a presentation of proton therapy, the author addresses different specific issues and aspects: the compensator (simulation, calculation, and tests), dose calculation, the 'Pencil-Beam' algorithm, tests, and introduced improvements [fr

  8. A quality assurance index for brachytherapy treatment plan verification

    International Nuclear Information System (INIS)

    Simpson, J.B.; Clarke, J.P.

    2000-01-01

    A method is described which provides an independent verification of a brachytherapy treatment plan. The method is applicable to any common geometric configuration and utilises a simple equation derived from a common form of nonlinear regression. The basis for the index value is the relationship between the treatment time, prescribed dose, source strength and plan geometry. This relationship may be described mathematically as: Total Treatment Time ∝ Prescribed Dose/Source Strength x (a geometric term) with the geometric term incorporating three geometric components, namely the distance from source positions to points of dose normalisation (d), the total length of the dwell positions (L), and the number of source trains or catheters (N). A general equation of the form GF = k (d) -α (L) -β (N) -y is used to describe the plan geometry, where GF is what we have termed the geometric factor, k is a constant of proportionality and the exponents are derived from the non-linear regression process. The resulting index is simple to calculate prior to patient treatment and sensitive enough to identify significant error whilst being robust enough to allow for a normal degree of geometric distortion

  9. Orthodontic treatment plan changed by 3D images

    International Nuclear Information System (INIS)

    Yordanova, G.; Stanimirov, P.

    2014-01-01

    Clinical application of CBCT is most often enforced in dental phenomenon of impacted teeth, hyperodontia, transposition, ankyloses or root resorption and other pathologies in the maxillofacial area. The goal, we put ourselves, is to show how the information from 3D images changes the protocol of the orthodontic treatment. The material, we presented six our clinical cases and the change in the plan of the treatment, which has used after analyzing the information carried on the three planes of CBCT. These cases are casuistic in the orthodontic practice and require individual approach to each of them during their analysis and decision taken. The discussion made by us is in line with reveal of the impacted teeth, where we need to evaluate their vertical depth and mediodistal ratios with the bond structures. At patients with hyperodontia, the assessment is of outmost importance to decide which of the teeth to be extracted and which one to be arranged into the dental arch. The conclusion we make is that diagnostic information is essential for decisions about treatment plan. The exact graphs will lead to better treatment plan and more predictable results. (authors) Key words: CBCT. IMPACTED CANINES. HYPERODONTIA. TRANSPOSITION

  10. Epilepsy Treatment Simplified through Mobile Ketogenic Diet Planning.

    Science.gov (United States)

    Li, Hanzhou; Jauregui, Jeffrey L; Fenton, Cagla; Chee, Claire M; Bergqvist, A G Christina

    2014-07-01

    The Ketogenic Diet (KD) is an effective, alternative treatment for refractory epilepsy. This high fat, low protein and carbohydrate diet mimics the metabolic and hormonal changes that are associated with fasting. To maximize the effectiveness of the KD, each meal is precisely planned, calculated, and weighed to within 0.1 gram for the average three-year duration of treatment. Managing the KD is time-consuming and may deter caretakers and patients from pursuing or continuing this treatment. Thus, we investigated methods of planning KD faster and making the process more portable through mobile applications. Nutritional data was gathered from the United States Department of Agriculture (USDA) Nutrient Database. User selected foods are converted into linear equations with n variables and three constraints: prescribed fat content, prescribed protein content, and prescribed carbohydrate content. Techniques are applied to derive the solutions to the underdetermined system depending on the number of foods chosen. The method was implemented on an iOS device and tested with varieties of foods and different number of foods selected. With each case, the application's constructed meal plan was within 95% precision of the KD requirements. In this study, we attempt to reduce the time needed to calculate a meal by automating the computation of the KD via a linear algebra model. We improve upon previous KD calculators by offering optimal suggestions and incorporating the USDA database. We believe this mobile application will help make the KD and other dietary treatment preparations less time consuming and more convenient.

  11. Treatment of bone metastases with palliative radiotherapy: Patients' treatment preferences

    International Nuclear Information System (INIS)

    Szumacher, Ewa; Llewellyn-Thomas, Hillary; Franssen, Edmee; Chow, Edward; Boer, Gerrit de; Danjoux, Cyril; Hayter, Charles; Barnes, Elizabeth; Andersson, Lourdes

    2005-01-01

    Purpose: To determine the proportion of patients undergoing palliative radiotherapy (RT) for bone pain who would like to participate in the decision-making process, and to determine their choice of palliative RT regimen (2000 cGy in five fractions vs. 800 cGy in one fraction) for painful bone metastases. Methods and Materials: Eligible patients were approached and all patients agreeing to participate provided written informed consent. Patients' decisional preferences were studied using a five-statement preference instrument. A decision board was used to help patients decide their preferred palliative RT regimen. Factors influencing patients' choices were studied using a visual analog scale. Results: A total of 101 patients were enrolled in the study (55 women and 46 men). The preferences for decision-making were as follows: 30 active, 47 collaborative, and 24 passive. Most (55 [76%] of 72) patients favored one fraction of palliative RT (95% confidence interval, 65-86%). Patients were more likely to select the 800 cGy in one fraction because of the convenience of the treatment plan (odds ratio, 1.024; 95% confidence interval, 1.004-1044) but were less likely to choose it because of the chance of bone fracture (odds ratio, 0.973; 95% confidence interval, 0.947-1.000) compared with 2000 cGy in five fractions. Conclusion: Most participating patients preferred to decide either by themselves or with the radiation oncologists which treatment option they preferred. An 800-cGy-in-one-fraction regimen was favored, independent of the treated site. The convenience of the treatment plan and the likelihood of bone fracture were the most important factors influencing patients' choice

  12. A novel implementation of mARC treatment for non-dedicated planning systems using converted IMRT plans

    International Nuclear Information System (INIS)

    Dzierma, Yvonne; Nuesken, Frank; Licht, Norbert; Ruebe, Christian

    2013-01-01

    to agreement. For all plans, the treatment time was noticeably reduced by conversion to mARC. We present the feasibility test for converting IMRT step-and-shoot plans from the RTP-output of any treatment planning system (Philips Pinnacle and Prowess Panther, in our case) into mARC plans. The feasibility and dosimetric equivalence is demonstrated for the examples of a prostate and a head-and-neck patient

  13. Multi-institutional comparison of simulated treatment delivery errors in ssIMRT, manually planned VMAT and autoplan-VMAT plans for nasopharyngeal radiotherapy

    DEFF Research Database (Denmark)

    Pogson, Elise M; Aruguman, Sankar; Hansen, Christian R

    2017-01-01

    PURPOSE: To quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation...... Therapy (mp-ssIMRT)). METHODS: Ten patients were retrospectively planned with VMAT according to three institution's protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced...

  14. MO-B-BRB-03: Systems Engineering Tools for Treatment Planning Process Optimization in Radiation Medicine

    International Nuclear Information System (INIS)

    Kapur, A.

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  15. MO-B-BRB-01: Optimize Treatment Planning Process in Clinical Environment

    International Nuclear Information System (INIS)

    Feng, W.

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  16. MO-B-BRB-02: Maintain the Quality of Treatment Planning for Time-Constraint Cases

    International Nuclear Information System (INIS)

    Chang, J.

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  17. MO-B-BRB-03: Systems Engineering Tools for Treatment Planning Process Optimization in Radiation Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, A. [Long Island Jewish Medical Center (United States)

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  18. MO-B-BRB-01: Optimize Treatment Planning Process in Clinical Environment

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W. [New York Presbyterian Hospital (United States)

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  19. MO-B-BRB-02: Maintain the Quality of Treatment Planning for Time-Constraint Cases

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J. [New York Weill Cornell Medical Ctr (United States)

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  20. Current treatments for patients with Alzheimer disease.

    Science.gov (United States)

    Osborn, Gerald G; Saunders, Amanda Vaughn

    2010-09-01

    There is neither proven effective prevention for Alzheimer disease nor a cure for patients with this disorder. Nevertheless, a spectrum of biopsychosocial therapeutic measures is available for slowing progression of the illness and enhancing quality of life for patients. These measures include a range of educational, psychological, social, and behavioral interventions that remain fundamental to effective care. Also available are a number of pharmacologic treatments, including prescription medications approved by the US Food and Drug Administration for Alzheimer disease, "off-label" uses of medications to manage target symptoms, and controversial complementary therapies. Physicians must make the earliest possible diagnosis to use these treatments most effectively. Physicians' goals should be to educate patients and their caregivers, to plan long-term care options, to maximally manage concurrent illnesses, to slow and ameliorate the most disabling symptoms, and to preserve effective functioning for as long as possible. The authors review the various current treatments for patients with Alzheimer disease.

  1. Treatment modalities for patients with gambling disorder.

    Science.gov (United States)

    Choi, Sam-Wook; Shin, Young-Chul; Kim, Dai-Jin; Choi, Jung-Seok; Kim, Seohee; Kim, Seung-Hyun; Youn, HyunChul

    2017-01-01

    Gambling disorder (GD) is defined as persistent and recurrent problematic gambling behavior leading to clinically significant impairment or distress. The prevalence of GD has been shown to be 1.2-7.1% in the general population. GD can severely impact on personal and vocational wellbeing as well as lead to financial problems, and has been known to be difficult to treat. This review describes the available pharmacotherapy/psychosocial treatments for GD patients, and summarizes data on the effectiveness of these GD treatments. This review refers to newly as well as previously published studies and guidelines. The description of pharmacotherapy mainly focuses on opioid receptor antagonists, selective serotonin reuptake inhibitors, and mood stabilizers. Psychosocial treatments/strategies mainly include cognitive behavioral therapy, motivational interviewing, and Gamblers Anonymous. We also introduce relatively novel treatment modalities. This review can help clinicians to decide treatment plans for their GD patients. In addition, it can be used as a reference for designing future research.

  2. Clinical treatment planning for stereotactic radiotherapy, evaluation by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kairn, T.; Aland, T.; Kenny, J.; Knight, R.T.; Crowe, S.B.; Langton, C.M.; Franich, R.D.; Johnston, P.N.

    2010-01-01

    Full text: This study uses re-evaluates the doses delivered by a series of clinical stereotactic radiotherapy treatments, to test the accuracy of treatment planning predictions for very small radiation fields. Stereotactic radiotherapy treatment plans for meningiomas near the petrous temporal bone and the foramen magnum (incorp rating fields smaller than I c m2) were examined using Monte Carlo simulations. Important differences between treatment planning predictions and Monte Carlo calculations of doses delivered to stereotactic radiotherapy patients are apparent. For example, in one case the Monte Carlo calculation shows that the delivery a planned meningioma treatment would spare the patient's critical structures (eyes, brainstem) more effectively than the treatment plan predicted, and therefore suggests that this patient could safely receive an increased dose to their tumour. Monte Carlo simulations can be used to test the dose predictions made by a conventional treatment planning system, for dosimetrically challenging small fields, and can thereby suggest valuable modifications to clinical treatment plans. This research was funded by the Wesley Research Institute, Australia. The authors wish to thank Andrew Fielding and David Schlect for valuable discussions of aspects of this work. The authors are also grateful to Muhammad Kakakhel, for assisting with the design and calibration of our linear accelerator model, and to the stereotactic radiation therapy team at Premion, who designed the treatment plans. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT, Brisbane, Australia. (author)

  3. Federal Facilities Compliance Act, Draft Site Treatment Plan: Compliance Plan Volume. Part 2, Volume 2

    International Nuclear Information System (INIS)

    1994-01-01

    This document presents the details of the implementation of the Site Treatment Plan developed by Ames Laboratory in compliance with the Federal Facilities Compliance Act. Topics discussed in this document include: implementation of the plan; milestones; annual updates to the plan; inclusion of new waste streams; modifications of the plan; funding considerations; low-level mixed waste treatment plan and schedules; and TRU mixed waste streams

  4. Treatment planning and smile design using composite resin.

    Science.gov (United States)

    Marus, Robert

    2006-05-01

    Recent advances in dental materials and adhesive protocols have expanded the restorative procedures available to today's clinicians. Used in combination with proper treatment planning, these innovations enable dental professionals to provide enhanced aesthetic care that achieves the increasing expectations of their patients. Using a case presentation, this article will document the steps required to harmoniously integrate smile design, material selection, and patient communication that are involved in the provisional of aesthetic dental care. This article discusses the utilization of composite resin as a tool to enhance the patient's smile. Upon reading this article, the reader should: Become familiar with a smile-enhancing technique which can be completed in one office visit. Realize the benefits that intraoral composite mockups offer in terms of prototyping and confirming patient satisfaction.

  5. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots.

    Science.gov (United States)

    Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes

    2017-11-15

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is

  6. [Application of digital design of orthodontic-prosthodontic multidisciplinary treatment plan in esthetic rehabilitation of anterior teeth].

    Science.gov (United States)

    Liu, Y S; Li, Z; Zhao, Y J; Ye, H Q; Zhou, Y Q; Hu, W J; Liu, Y S; Xun, C L; Zhou, Y S

    2018-02-18

    To develop a digital workflow of orthodontic-prosthodontic multidisciplinary treatment plan which can be applied in complicated anterior teeth esthetic rehabilitation, in order to enhance the efficiency of communication between dentists and patients, and improve the predictability of treatment outcome. Twenty patients with the potential needs of orthodontic-prosthodontic multidisciplinary treatment to solve their complicated esthetic problems in anterior teeth were recruited in this study. Digital models of patients' both dental arches and soft tissues were captured using intra oral scanner. Direct prosthodontic (DP) treatment plan and orthodontic-prosthodontic (OP) treatment plan were carried out for each patient. For DP treatment plans, digital wax-up models were directly designed on original digital models using prosthodontic design system. For OP treatment plans, virtual-setups were performed using orthodontic analyze system according to orthodontic and esthetic criteria and imported to prosthodontic design system to finalize the digital wax-up models. These two treatment plans were shown to the patients and demonstrated elaborately. Each patient rated two treatment plans using visual analogue scales and the medians of scores of two treatment plans were analyzed using signed Wilcoxon test. Having taken into consideration various related factors, including time, costs of treatment, each patient chose a specific treatment plan. For the patients chose DP treatment plans, digital wax-up models were exported and printed into resin diagnostic models which would be utilized in the prosthodontic treatment process. For the patients chose OP treatment plans, virtual-setups were used to fabricate aligners or indirect bonding templates and digital wax-up models were also exported and printed into resin diagnostic models for prosthodontic treatment after orthodontic treatment completed. The medians of scores of DP treatment plan and OP treatment plan were calculated and

  7. Radiation therapy tolerance doses for treatment planning

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1987-01-01

    To adequately plan acceptable dose distributions for radiation therapy treatments it is necessary to ensure that normal structures do not receive unacceptable doses. Acceptable doses are generally those that are below a stated tolerance dose for development of some level of complication. To support the work sponsored by the National Cancer Institute, data for the tolerance of normal tissues or organs to low-LET radiation has been compiled from a number of sources. These tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD 5 ) or 50% (TD 50 ) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represent doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same end point. 20 refs., 1 fig., 1 tab

  8. Volume visualization in radiation treatment planning.

    Science.gov (United States)

    Pelizzari, C A; Chen, G T

    2000-12-01

    Radiation treatment planning (RTP), historically an image-intensive discipline and one of the first areas in which 3D information from imaging was clinically applied, has become even more critically dependent on accurate 3D definition of target and non-target structures in recent years with the advent of conformal radiation therapy. In addition to the interactive display of wireframe or shaded surface models of anatomic objects, proposed radiation beams, beam modifying devices, and calculated dose distributions, recently significant use has been made of direct visualization of relevant anatomy from image data. Dedicated systems are commercially available for the purpose of geometrically optimizing beam placement, implementing in virtual reality the functionality of standard radiation therapy simulators. Such "CT simulation" systems rely heavily on 3D visualization and on reprojection of image data to produce simulated radiographs for comparison with either diagnostic-quality radiographs made on a simulator or megavoltage images made using the therapeutic beams themselves. Although calculation and analysis of dose distributions is an important component of radiation treatment design, geometric targeting with optimization based on 3D anatomic information is frequently performed as a separate step independent of dose calculations.

  9. Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites

    International Nuclear Information System (INIS)

    Prabhakar, R.; Julka, P.K.; Rath, G.K.

    2008-01-01

    The aim of the study was to show whether field-in-field (FIF) technique can be used to replace wedge filter in radiation treatment planning. The study was performed in cases where wedges are commonly used in radiotherapy treatment planning. Thirty patients with different malignancies who received radiotherapy were studied. This includes patients with malignancies of brain, head and neck, breast, upper and lower abdomen. All the patients underwent computed tomography scanning and the datasets were transferred to the treatment planning system. Initially, wedge based planning was performed to achieve the best possible dose distribution inside the target volume with multileaf collimators (Plan1). Wedges were removed from a copy of the same plan and FIF plan was generated (Plan2). The two plans were then evaluated and compared for mean dose, maximum dose, median dose, doses to 2% (D 2 ) and 98% (D 9 8) of the target volume, volume receiving greater than 107% of the prescribed dose (V>107%), volume receiving less than 95% of the prescribed dose (V 2 , V>107% and CI for more of the sites with statistically significant reduction in monitor units. FIF results in better dose distribution in terms of homogeneity in most of the sites. It is feasible to replace wedge filter with FIF in radiotherapy treatment planning.

  10. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems

  11. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Stanford University Cancer Center (United States)

    2016-06-15

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems.

  12. Considerations for using data envelopment analysis for the assessment of radiotherapy treatment plan quality.

    Science.gov (United States)

    Simpson, John; Raith, Andrea; Rouse, Paul; Ehrgott, Matthias

    2017-10-09

    Purpose The operations research method of data envelopment analysis (DEA) shows promise for assessing radiotherapy treatment plan quality. The purpose of this paper is to consider the technical requirements for using DEA for plan assessment. Design/methodology/approach In total, 41 prostate treatment plans were retrospectively analysed using the DEA method. The authors investigate the impact of DEA weight restrictions with reference to the ability to differentiate plan performance at a level of clinical significance. Patient geometry influences plan quality and the authors compare differing approaches for managing patient geometry within the DEA method. Findings The input-oriented DEA method is the method of choice when performing plan analysis using the key undesirable plan metrics as the DEA inputs. When considering multiple inputs, it is necessary to constrain the DEA input weights in order to identify potential plan improvements at a level of clinical significance. All tested approaches for the consideration of patient geometry yielded consistent results. Research limitations/implications This work is based on prostate plans and individual recommendations would therefore need to be validated for other treatment sites. Notwithstanding, the method that requires both optimised DEA weights according to clinical significance and appropriate accounting for patient geometric factors is universally applicable. Practical implications DEA can potentially be used during treatment plan development to guide the planning process or alternatively used retrospectively for treatment plan quality audit. Social implications DEA is independent of the planning system platform and therefore has the potential to be used for multi-institutional quality audit. Originality/value To the authors' knowledge, this is the first published examination of the optimal approach in the use of DEA for radiotherapy treatment plan assessment.

  13. MO-D-BRB-01: Pediatric Treatment Planning I: Overview of Planning Strategies and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Olch, A. [Childrens Hospital of LA (United States)

    2015-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child’s brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. For bilateral retinoblastoma for example, an irradiated child has a 40% chance of developing a second cancer by age 50. The dosimetric tradeoffs made during the planning process are complex and require careful consideration for children treated with radiotherapy. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa

  14. Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization

    International Nuclear Information System (INIS)

    Schulze, Derek; Liang, Jian; Yan, Di; Zhang Tiezhi

    2009-01-01

    Purpose: To compare the dosimetric differences of various online IGRT strategies and to predict potential benefits of online re-optimization techniques in prostate cancer radiation treatments. Materials and methods: Nine prostate patients were recruited in this study. Each patient has one treatment planning CT images and 10-treatment day CT images. Five different online IGRT strategies were evaluated which include 3D conformal with bone alignment, 3D conformal re-planning via aperture changes, intensity modulated radiation treatment (IMRT) with bone alignment, IMRT with target alignment and IMRT daily re-optimization. Treatment planning and virtual treatment delivery were performed. The delivered doses were obtained using in-house deformable dose mapping software. The results were analyzed using equivalent uniform dose (EUD). Results: With the same margin, rectum and bladder doses in IMRT plans were about 10% and 5% less than those in CRT plans, respectively. Rectum and bladder doses were reduced as much as 20% if motion margin is reduced by 1 cm. IMRT is more sensitive to organ motion. Large discrepancies of bladder and rectum doses were observed compared to the actual delivered dose with treatment plan predication. The therapeutic ratio can be improved by 14% and 25% for rectum and bladder, respectively, if IMRT online re-planning is employed compared to the IMRT bone alignment approach. The improvement of target alignment approach is similar with 11% and 21% dose reduction to rectum and bladder, respectively. However, underdosing in seminal vesicles was observed on certain patients. Conclusions: Online treatment plan re-optimization may significantly improve therapeutic ratio in prostate cancer treatments mostly due to the reduction of PTV margin. However, for low risk patient with only prostate involved, online target alignment IMRT treatment would achieve similar results as online re-planning. For all IGRT approaches, the delivered organ-at-risk doses may be

  15. Applying Mathematical Models to Surgical Patient Planning

    NARCIS (Netherlands)

    J.M. van Oostrum (Jeroen)

    2009-01-01

    textabstractOn a daily basis surgeons, nurses, and managers face cancellation of surgery, peak demands on wards, and overtime in operating rooms. Moreover, the lack of an integral planning approach for operating rooms, wards, and intensive care units causes low resource utilization and makes patient

  16. MO-C-BRF-01: Pediatric Treatment Planning I: Overview of Planning Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Olch, A [Childrens Hospital of LA, Los Angeles, CA (United States); Hua, C [St. Jude Childrens Research Hospital, Memphis, TN (United States)

    2014-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child's brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. This fact has important implications for the choice of delivery techniques, especially when considering IMRT. For bilateral retinoblastoma for example, an irradiated child has a 50% chance of developing a second cancer by age 50. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa, neuroblastoma, requiring focal

  17. A Comprehensive Comparison of IMRT and VMAT Plan Quality for Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Quan, Enzhuo M.; Li Xiaoqiang; Li Yupeng; Wang Xiaochun; Kudchadker, Rajat J.; Johnson, Jennifer L.; Kuban, Deborah A.; Lee, Andrew K.; Zhang Xiaodong

    2012-01-01

    Purpose: We performed a comprehensive comparative study of the plan quality between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of prostate cancer. Methods and Materials: Eleven patients with prostate cancer treated at our institution were randomly selected for this study. For each patient, a VMAT plan and a series of IMRT plans using an increasing number of beams (8, 12, 16, 20, and 24 beams) were examined. All plans were generated using our in-house–developed automatic inverse planning (AIP) algorithm. An existing eight-beam clinical IMRT plan, which was used to treat the patient, was used as the reference plan. For each patient, all AIP-generated plans were optimized to achieve the same level of planning target volume (PTV) coverage as the reference plan. Plan quality was evaluated by measuring mean dose to and dose–volume statistics of the organs at risk, especially the rectum, from each type of plan. Results: For the same PTV coverage, the AIP-generated VMAT plans had significantly better plan quality in terms of rectum sparing than the eight-beam clinical and AIP-generated IMRT plans (p < 0.0001). However, the differences between the IMRT and VMAT plans in all the dosimetric indices decreased as the number of beams used in IMRT increased. IMRT plan quality was similar or superior to that of VMAT when the number of beams in IMRT was increased to a certain number, which ranged from 12 to 24 for the set of patients studied. The superior VMAT plan quality resulted in approximately 30% more monitor units than the eight-beam IMRT plans, but the delivery time was still less than 3 min. Conclusions: Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating prostate cancer.

  18. Comparative treatment planning study on sequential vs. simultaneous integrated boost in head and neck cancer patients. Differences in dose distributions and potential implications for clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Stromberger, Carmen; Ghadjar, Pirus; Marnitz, Simone; Thieme, Alexander Henry; Jahn, Ulrich; Karaj-Rossbacher, Evis; Budach, Volker [Charite Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany); Raguse, Jan D. [Charite Universitaetsmedizin Berlin, Clinic for Oral and Maxillofacial Surgery, Berlin (Germany); Boettcher, Arne [Charite Universitaetsmedizin Berlin, Otorhinolaryngology, Berlin (Germany); Jamil, Basil [Communal Hospital Frankfurt Oder, Department of Radiation Oncology, Frankfurt/Oder (Germany)

    2016-01-15

    The purpose of this work was to compare sequential (SeqB) versus simultaneous integrated boost (SIB) radiotherapy plans delivered with volumetric modulated arc therapy (VMAT) for patients with locally advanced squamous cell cancer of the head and neck (HNSCC). SeqB and SIB plans using VMAT for 10 HNSCC patients given definitive chemoradiation were generated and analysed for differences in dose distribution, coverage, conformity and homogeneity to the planning target volumes (PTV) 1-3 and sparing of organs at risk (OAR). The mean delineated volumes ± standard deviations were 137.7 ± 44.8, 351.3 ± 83.9 and 895.6 ± 120.5 cm{sup 3} for PTV1-3. The mean volumes encompassed by the corresponding 95 % isodoses were 281 (+ 110 %) ± 73.4, 712.2 (+ 115 %) ± 146.4 and 1381.1 (+ 54 %) ± 217.3 cm{sup 3} with SeqB and 138.2 (+ 7 %) ± 40.1, 380.4 (+ 11 %) ± 91.9 and 1057.3 (+ 21 %) ± 161.4 cm{sup 3} with SIB for PTV1-3, respectively. Both strategies achieved excellent PTV coverage. SeqB provided significantly better coverage of PTV1 and 3, worse conformity for PTV1-3 and a higher mean dose than prescribed (111-115 %) to PTV2 and 3 (p ≤ 0.007). Both strategies provided satisfactory OAR sparing. This study showed significant dosimetric differences with potential clinical relevance between two VMAT boost strategies regarding coverage, conformity and dose to the PTVs. SIB might cause less toxicity. A clinical phase III/IV trial endorsed by the German Head and Neck Clinical Trials Group (IAG-KHT) will evaluate differences in acute/late toxicity as well as in locoregional recurrences between the two boost techniques. (orig.) [German] Vergleich von sequentiellem (SeqB) und simultan-integriertem Boost (SIB) mit moderner volumetrischer Arc-Therapie (VMAT) fuer Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region. Fuer 10 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region und definitiver Radiochemotherapie erfolgte eine VMAT-Planung als SeqB und SIB fuer die

  19. Optimization of rotational radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Tulovsky, Vladimir; Ringor, Michael; Papiez, Lech

    1995-01-01

    Purpose: Rotational therapy treatment planning for rotationally symmetric geometry of tumor and healthy tissue provides an important example of testing various approaches to optimizing dose distributions for therapeutic x-ray irradiations. In this article, dose distribution optimization is formulated as a variational problem. This problem is solved analytically and numerically. Methods and Materials: The classical Lagrange method is used to derive equations and inequalities that give necessary conditions for minimizing the mean-square deviation between the ideal dose distribution and the achievable dose distribution. The solution of the resulting integral equation with Cauchy kernel is used to derive analytical formulas for the minimizing irradiation intensity function. Results: The solutions are evaluated numerically and the graphs of the minimizing intensity functions and the corresponding dose distributions are presented. Conclusions: The optimal solutions obtained using the mean-square criterion lead to significant underdosage in some areas of the tumor volume. Possible solutions to this shortcoming are investigated and medically more appropriate criteria for optimization are proposed for future investigations

  20. Scanned ion beam therapy for prostate carcinoma. Comparison of single plan treatment and daily plan-adapted treatment

    International Nuclear Information System (INIS)

    Hild, Sebastian; Graeff, Christian; Rucinski, Antoni; Zink, Klemens; Habl, Gregor; Durante, Marco; Herfarth, Klaus; Bert, Christoph

    2016-01-01

    Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95 mean = 0.86, range 0.63-0.99) and IGRT (V95 mean = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion. (orig.) [de

  1. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  2. MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT

    International Nuclear Information System (INIS)

    Chen, Lili; Price, Robert A.; Wang Lu; Li Jinsheng; Qin Lihong; McNeeley, Shawn; Ma, C.-M. Charlie; Freedman, Gary M.; Pollack, Alan

    2004-01-01

    Purpose: Magnetic resonance (MR) and computed tomography (CT) image fusion with CT-based dose calculation is the gold standard for prostate treatment planning. MR and CT fusion with CT-based dose calculation has become a routine procedure for intensity-modulated radiation therapy (IMRT) treatment planning at Fox Chase Cancer Center. The use of MRI alone for treatment planning (or MRI simulation) will remove any errors associated with image fusion. Furthermore, it will reduce treatment cost by avoiding redundant CT scans and save patient, staff, and machine time. The purpose of this study is to investigate the dosimetric accuracy of MRI-based treatment planning for prostate IMRT. Methods and materials: A total of 30 IMRT plans for 15 patients were generated using both MRI and CT data. The MRI distortion was corrected using gradient distortion correction (GDC) software provided by the vendor (Philips Medical System, Cleveland, OH). The same internal contours were used for the paired plans. The external contours were drawn separately between CT-based and MR imaging-based plans to evaluate the effect of any residual distortions on dosimetric accuracy. The same energy, beam angles, dose constrains, and optimization parameters were used for dose calculations for each paired plans using a treatment optimization system. The resulting plans were compared in terms of isodose distributions and dose-volume histograms (DVHs). Hybrid phantom plans were generated for both the CT-based plans and the MR-based plans using the same leaf sequences and associated monitor units (MU). The physical phantom was then irradiated using the same leaf sequences to verify the dosimetry accuracy of the treatment plans. Results: Our results show that dose distributions between CT-based and MRI-based plans were equally acceptable based on our clinical criteria. The absolute dose agreement for the planning target volume was within 2% between CT-based and MR-based plans and 3% between measured dose

  3. Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning

    International Nuclear Information System (INIS)

    Matthews, Q; Mestrovic, A; Otto, K

    2014-01-01

    Purpose: To describe and evaluate a novel system for generalized Real-Time Interactive Planning (RTIP) applied to head and neck (H and N) VMAT. Methods: The clinician interactively manipulates dose distributions using DVHs, isodoses, or rate of dose fall-off, which may be subjected to user-defined constraints. Dose is calculated using a fast Achievable Dose Estimate (ADE) algorithm, which simulates the limits of what can be achieved during treatment. After each manipulation contributing fluence elements are modified and the dose distribution updates in effectively real-time. For H and N VMAT planning, structure sets for 11 patients were imported into RTIP. Each dose distribution was interactively modified to minimize OAR dose while constraining target DVHs. The resulting RTIP DVHs were transferred to the Eclipse™ VMAT optimizer, and conventional VMAT optimization was performed. Results: Dose calculation and update times for the ADE algorithm ranged from 2.4 to 22.6 milliseconds, thus facilitating effectively real-time manipulation of dose distributions. For each of the 11 H and N VMAT cases, the RTIP process took ∼2–10 minutes. All RTIP plans exhibited acceptable PTV coverage, mean dose, and max dose. 10 of 11 RTIP plans achieved substantially improved sparing of one or more OARs without compromising dose to targets or other OARs. Importantly, 10 of the 11 RTIP plans required only one or two post-RTIP optimizations. Conclusions: RTIP is a novel system for manipulating and updating achievable dose distributions in real-time. H and N VMAT plans generated using RTIP demonstrate improved OAR sparing and planning efficiency. Disclosures: One author has a commercial interest in the presented materials

  4. Assessment of PlanIQ Feasibility DVH for head and neck treatment planning.

    Science.gov (United States)

    Fried, David V; Chera, Bhishamjit S; Das, Shiva K

    2017-09-01

    Designing a radiation plan that optimally delivers both target coverage and normal tissue sparing is challenging. There are limited tools to determine what is dosimetrically achievable and frequently the experience of the planner/physician is relied upon to make these determinations. PlanIQ software provides a tool that uses target and organ at risk (OAR) geometry to indicate the difficulty of achieving different points for organ dose-volume histograms (DVH). We hypothesized that PlanIQ Feasibility DVH may aid planners in reducing dose to OARs. Clinically delivered head and neck treatments (clinical plan) were re-planned (re-plan) putting high emphasis on maximally sparing the contralateral parotid gland, contralateral submandibular gland, and larynx while maintaining routine clinical dosimetric objectives. The planner was blinded to the results of the clinically delivered plan as well as the Feasibility DVHs from PlanIQ. The re-plan treatments were designed using 3-arc VMAT in Raystation (RaySearch Laboratories, Sweden). The planner was then given the results from the PlanIQ Feasibility DVH analysis and developed an additional plan incorporating this information using 4-arc VMAT (IQ plan). The DVHs across the three treatment plans were compared with what was deemed "impossible" by PlanIQ's Feasibility DVH (Impossible DVH). The impossible DVH (red) is defined as the DVH generated using the minimal dose that any voxel outside the targets must receive given 100% target coverage. The re-plans performed blinded to PlanIQ Feasibilty DVH achieved superior sparing of aforementioned OARs compared to the clinically delivered plans and resulted in discrepancies from the impossible DVHs by an average of 200-700 cGy. Using the PlanIQ Feasibility DVH led to additionalOAR sparing compared to both the re-plans and clinical plans and reduced the discrepancies from the impossible DVHs to an average of approximately 100 cGy. The dose reduction from clinical to re-plan and re-plan to

  5. Comparison of treatments of steep and shoot generated by different inverse planning systems

    International Nuclear Information System (INIS)

    Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Minambres Moro, A.

    2011-01-01

    The problem of IMRT treatments with the technique Steep and Shoot or static is the number of segments and monitor units used in the treatment. These parameters depend largely on the inverse planning system which determines treatment. Are evaluated three commercial planning systems, with each one performing clinical dosimetry for the same series of patients. Dosimetric results are compared, UM calculated and number of segments.

  6. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  7. Dosimetry audit of radiotherapy treatment planning systems

    International Nuclear Information System (INIS)

    Bulski, Wojciech; Chelminski, Krzysztof; Rostkowska, Joanna

    2015-01-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. (authors)

  8. Dosimetry audit of radiotherapy treatment planning systems.

    Science.gov (United States)

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Evaluation of an automated knowledge based treatment planning system for head and neck

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Norton, Ian; Studer, Gabriela; Guckenberger, Matthias

    2015-01-01

    This study evaluated an automated inverse treatment planning algorithm, Pinnacle Auto-Planning (AP), and compared automatically generated plans with historical plans in a large cohort of head and neck cancer patients. Fifty consecutive patients treated with volumetric modulated arc therapy (Eclipse, Varian Medical System, Palo Alto, CA) for head and neck were re-planned with AP version 9.10. Only one single cycle of plan optimization using one single template was allowed for AP. The dose to the planning target volumes (PTV’s; 3–4 dose levels), the organs at risk (OAR’s) and the effective working time for planning was evaluated. Additionally, two experienced radiation oncologists blind-reviewed and ranked 10 plans. Dose coverage and dose homogeneity of the PTV were significantly improved with AP, however manually optimized plans showed significantly improved dose conformity. The mean dose to the parotid glands, oral mucosa, swallowing muscles, dorsal neck tissue and maximal dose to the spinal cord were significantly reduced with AP. In 64 % of the plans, the mean dose to any OAR (spinal cord excluded) was reduced by >20 % with AP in comparison to the manually optimized plans. In 12 % of the plans, the manually optimized plans showed reduced doses by >20 % in at least one OAR. The experienced radiation oncologists preferred the AP plan and the clinical plan in 80 and 20 % of the cases, respectively. The average effective working time was 3.8 min ± 1.1 min in comparison to 48.5 min ± 6.0 min using AP compared to the manually optimized plans, respectively. The evaluated automated planning algorithm achieved highly consistent and significantly improved treatment plans with potentially clinically relevant OAR sparing by >20 % in 64 % of the cases. The effective working time was substantially reduced with Auto-Planning

  10. Impact of database quality in knowledge-based treatment planning for prostate cancer.

    Science.gov (United States)

    Wall, Phillip D H; Carver, Robert L; Fontenot, Jonas D

    2018-03-13

    This article investigates dose-volume prediction improvements in a common knowledge-based planning (KBP) method using a Pareto plan database compared with using a conventional, clinical plan database. Two plan databases were created using retrospective, anonymized data of 124 volumetric modulated arc therapy (VMAT) prostate cancer patients. The clinical plan database (CPD) contained planning data from each patient's clinically treated VMAT plan, which were manually optimized by various planners. The multicriteria optimization database (MCOD) contained Pareto-optimal plan data from VMAT plans created using a standardized multicriteria optimization protocol. Overlap volume histograms, incorporating fractional organ at risk volumes only within the treatment fields, were computed for each patient and used to match new patient anatomy to similar database patients. For each database patient, CPD and MCOD KBP predictions were generated for D 10 , D 30 , D 50 , D 65 , and D 80 of the bladder and rectum in a leave-one-out manner. Prediction achievability was evaluated through a replanning study on a subset of 31 randomly selected database patients using the best KBP predictions, regardless of plan database origin, as planning goals. MCOD predictions were significantly lower than CPD predictions for all 5 bladder dose-volumes and rectum D 50 (P = .004) and D 65 (P databases affects the performance and achievability of dose-volume predictions from a common knowledge-based planning approach for prostate cancer. Bladder and rectum dose-volume predictions derived from a database of standardized Pareto-optimal plans were compared with those derived from clinical plans manually designed by various planners. Dose-volume predictions from the Pareto plan database were significantly lower overall than those from the clinical plan database, without compromising achievability. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Target volume delineation and treatment planning for particle therapy a practical guide

    CERN Document Server

    Leeman, Jonathan E; Cahlon, Oren; Sine, Kevin; Jiang, Guoliang; Lu, Jiade J; Both, Stefan

    2018-01-01

    This handbook is designed to enable radiation oncologists to treat patients appropriately and confidently by means of particle therapy. The orientation and purpose are entirely practical, in that the focus is on the physics essentials of delivery and treatment planning , illustration of the clinical target volume (CTV) and associated treatment planning for each major malignancy when using particle therapy, proton therapy in particular. Disease-specific chapters provide guidelines and concise knowledge on CTV selection and delineation and identify aspects that require the exercise of caution during treatment planning. The treatment planning techniques unique to proton therapy for each disease site are clearly described, covering beam orientation, matching/patching field techniques, robustness planning, robustness plan evaluation, etc. The published data on the use of particle therapy for a given disease site are also concisely reported. In addition to fully meeting the needs of radiation oncologists, this "kn...

  12. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 06: Patient-specific QA Procedure for Gated VMAT SABR Treatments using 10x Beam in Flattening-Filter Free Mode

    Energy Technology Data Exchange (ETDEWEB)

    Mestrovic, Ante; Chitsazzadeh, Shadi; Wells, Derek M.; Gray, Stephen [University of Calgary, Tom Baker Cancer Centre, Tom Baker Cancer Centre (Canada)

    2016-08-15

    Purpose: To develop a highly sensitive patient specific QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: A platform was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside the ArcCheck. The Quasar phantom controller uses a patient-specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. With this system the ion chamber is used to QA the correct phase of the gated delivery and the ArcCheck diodes are used to QA the overall dose distribution. This novel approach requires a single plan delivery for a complete QA of a gated plan. The sensitivity of the gating QA procedure was investigated with respect to the following parameters: PTV size, exhale duration, baseline drift, gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns is currently undergoing to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.

  13. An Approach for Practical Multiobjective IMRT Treatment Planning

    International Nuclear Information System (INIS)

    Craft, David; Halabi, Tarek; Shih, Helen A.; Bortfeld, Thomas

    2007-01-01

    Purpose: To introduce and demonstrate a practical multiobjective treatment planning procedure for intensity-modulated radiation therapy (IMRT) planning. Methods and Materials: The creation of a database of Pareto optimal treatment plans proceeds in two steps. The first step solves an optimization problem that finds a single treatment plan which is close to a set of clinical aspirations. This plan provides an example of what is feasible, and is then used to determine mutually satisfiable hard constraints for the subsequent generation of the plan database. All optimizations are done using linear programming. Results: The two-step procedure is applied to a brain, a prostate, and a lung case. The plan databases created allow for the selection of a final treatment plan based on the observed tradeoffs between the various organs involved. Conclusions: The proposed method reduces the human iteration time common in IMRT treatment planning. Additionally, the database of plans, when properly viewed, allows the decision maker to make an informed final plan selection

  14. Volume rendering in treatment planning for moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, Alexander [GSI-Biophysics, Darmstadt (Germany); Massachusetts General Hospital, Boston (United States); Wolfgang, John A.; Chen, George T.Y. [Massachusetts General Hospital, Boston (United States)

    2009-07-01

    Advances in computer technologies have facilitated the development of tools for 3-dimensional visualization of CT-data sets with volume rendering. The company Fovia has introduced a high definition volume rendering engine (HDVR trademark by Fovia Inc., Palo Alto, USA) that is capable of representing large CT data sets with high user interactivity even on standard PCs. Fovia provides a software development kit (SDK) that offers control of all the features of the rendering engine. We extended the SDK by functionalities specific to the task of treatment planning for moving tumors. This included navigation of the patient's anatomy in beam's eye view, fast point-and-click measurement of lung tumor trajectories as well as estimation of range perturbations due to motion by calculation of (differential) water equivalent path lengths for protons and carbon ions on 4D-CT data sets. We present patient examples to demonstrate the advantages and disadvantages of volume rendered images as compared to standard 2-dimensional axial plane images. Furthermore, we show an example of a range perturbation analysis. We conclude that volume rendering is a powerful technique for the representation and analysis of large time resolved data sets in treatment planning.

  15. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions

    Directory of Open Access Journals (Sweden)

    Karlsson Mikael

    2010-06-01

    Full Text Available Abstract Background Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI as a complement to computed tomography (CT in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data. Methods MR and CT data were collected retrospectively for 40 patients with prostate, lung, head and neck, or brain cancers. Comparisons were made between calculations on CT data with and without inhomogeneity corrections and on MRI or CT data with bulk density assignments. The bulk densities were assigned using manual segmentation of tissue, bone, lung, and air cavities. Results The deviations between calculations on CT data with inhomogeneity correction and on bulk density assigned MR data were small. The maximum difference in the number of monitor units required to reach the prescribed dose was 1.6%. This result also includes effects of possible geometrical distortions. Conclusions The dose calculation accuracy at the investigated treatment sites is not significantly compromised when using MRI data when adequate bulk density assignments are made. With respect to treatment planning, MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation.

  16. 3-Dimentional radiotherapy versus conventional treatment plans for gastric cancer

    Directory of Open Access Journals (Sweden)

    Aghili M

    2010-11-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: The current standard of adjuvant management for gastric cancer after curative resection based on the results of intergroup 0116 is concurrent chemoradiation. Current guidelines for designing these challenging fields still include two-dimensional simulation with simple AP-PA parallel opposed design. However, the implementation of radiotherapy (RT remains a concern. Our objective was to compare three-dimensional (3D techniques to the more commonly used AP-PA technique."n"nMethods: A total of 24 patients with stages II-IV adenocarcinoma of the stomach were treated with adjuvant postoperative chemoradiation with simple AP-PA technique, using Cobalt-60. Total radiation dose was 50.4Gy. Landmark-based fields were simulated to assess PTV coverage. For each patient, three additional radiotherapy treatment plans were generated using three-dimensional (3D technique. The four treatment plans were then compared for target volume coverage and dose to normal tissues (liver, spinal cord, kidneys using dose volume histogram (DVH analysis."n"nResults: The three-dimensional planning techniques provided 10% superior PTV coverage compared to conventional AP-PA fields (p<0.001. Comparative DVHs for the right kidney, left kidney

  17. Novel hyperthermia applicator system allows adaptive treatment planning: Preliminary clinical results in tumour-bearing animals.

    Science.gov (United States)

    Dressel, S; Gosselin, M-C; Capstick, M H; Carrasco, E; Weyland, M S; Scheidegger, S; Neufeld, E; Kuster, N; Bodis, S; Rohrer Bley, C

    2017-09-11

    Hyperthermia (HT) as an adjuvant to radiation therapy (RT) is a multimodality treatment method to enhance therapeutic efficacy in different tumours. High demands are placed on the hardware and treatment planning software to guarantee adequately planned and applied HT treatments. The aim of this prospective study was to determine the effectiveness and safety of the novel HT system in tumour-bearing dogs and cats in terms of local response and toxicity as well as to compare planned with actual achieved data during heating. A novel applicator with a flexible number of elements and integrated closed-loop temperature feedback control system, and a tool for patient-specific treatment planning were used in a combined thermoradiotherapy protocol. Good agreement between predictions from planning and clinical outcome was found in 7 of 8 cases. Effective HT treatments were planned and verified with the novel system and provided improved quality of life in all but 1 patient. This individualized treatment planning and controlled heat exposure allows adaptive, flexible and safe HT treatments in palliatively treated animal patients. © 2017 John Wiley & Sons Ltd.

  18. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  19. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.

    2016-05-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal

  20. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Blanco Kiely, Janid Patricia; White, Benjamin M.

    2016-01-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer

  1. Efficient photon treatment planning by the use of Swiss Monte Carlo Plan

    International Nuclear Information System (INIS)

    Fix, M K; Manser, P; Frei, D; Volken, W; Mini, R; Born, E J

    2007-01-01

    Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) usually can only be performed using a cumbersome multi-step procedure where many user interactions are needed. Automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new GUI-based photon MC environment has been developed resulting in a very flexible framework, namely the Swiss Monte Carlo Plan (SMCP). Appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment the MC particle transport has been divided into different parts: source, beam modifiers, and patient. The source part includes: Phase space-source, source models, and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory, hence no files are used as interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, three patient cases are shown. Thereby, comparisons between MC

  2. [Virtual Planning of Prosthetic Treatment of the Orbit].

    Science.gov (United States)

    Veit, Johannes A; Thierauf, Julia; Egner, Kornelius; Wiggenhauser, Paul Severin; Friedrich, Daniel; Greve, Jens; Schuler, Patrick J; Hoffmann, Thomas K; Schramm, Alexander

    2017-06-01

    Optimal positioning of bone-anchored implants in the treatment of patients with orbital prosthesis is challenging. The definition of implant axis as well as the positioning of the implants is important to prevent failures in prosthetic rehabilitation in these patients. We performed virtual planning of enossal implants at a base of a standard fan beam CT scan using the software CoDiagnostiX™ (DentalWings, Montréal, Canada). By 3D-printing a surgical guide for drilling and implant insertion was manufactured (Med-610™, Stratasys, Rehovot, Israel). An orbital exenteration was performed in a patient after shrinkage of the eyelids 20 years after enucleation and radiation of the orbit due to rhabdomyosarcoma. 4 Vistafix-3 implants (Cochlear™, Cochlea, Centennial, USA) were primarily inserted after resection with the help of the 3D-surgical guide. Prosthetic rehabilitation could be achieved as preplanned to a predictable result. The individual prosthesis of the orbit showed good functional and esthetic outcome. The virtual 3D-planning of endosseous implants for prosthetic orbital and periorbital reconstruction is easy to use and facilitates optimal placement of implants especially in posttherapeutically altered anatomic situations. © Georg Thieme Verlag KG Stuttgart · New York.

  3. 2: Local area networks as a multiprocessor treatment planning system

    International Nuclear Information System (INIS)

    Neblett, D.L.; Hogan, S.E.

    1987-01-01

    The creation of a local area network (LAN) of interconnected computers provides an environment of multi computer processors that adds a new dimension to treatment planning. A LAN system provides the opportunity to have two or more computers working on the plan in parallel. With high speed interprocessor transfer, events such as the time consuming task of correcting several individual beams for contours and inhomogeneities can be performed simultaneously; thus, effectively creating a parallel multiprocessor treatment planning system

  4. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Martinez, Patrick Thomas [Los Alamos National Laboratory; Garcia, Terrence Kerwin [Los Alamos National Laboratory

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  5. Diagnosis, treatment planning, and full-mouth rehabilitation in a case of amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Mayuri Naik

    2018-01-01

    Full Text Available Amelogenesis imperfecta is a genetic condition affecting the teeth resulting in aberrations of the structure and clinical appearance of enamel. The treatment of amelogenesis imperfecta involves a multidisciplinary treatment approach requiring a comprehensive examination, diagnosis, and effective treatment planning strategy along with satisfaction of patient-related factors. The clinical case described here involves judicious involvement of different disciplines to formulate a treatment plan best suitable to confirm with the patient's needs and expectations, at the same time maintaining the integrity and harmony of associated hard and soft tissues.

  6. The use of implant retained mandibular prostheses in the oral rehabilitation of head and neck cancer patients. A review and rationale for treatment planning

    NARCIS (Netherlands)

    Schoen, PJ; Reintsema, H; Raghoebar, GM; Vissink, A; Roodenburg, JLN

    2004-01-01

    Surgical treatment of malignancies in the oral cavity (tongue, floor of the mouth, alveolus, buccal sulcus, oropharynx) often results in an unfavourable anatomic situation for prosthodontic rehabilitation. The outcome is a severe disturbance of oral functioning despite the improved surgical

  7. [Integral treatment for bedridden patients].

    Science.gov (United States)

    García-Verdugo, M Fernanda Arroyo; Garrido Hernández, M Teresa; Rosell Palomo, Ricardo

    2007-05-01

    Spinal cord injuries are one of the traumatic injuries which produce the greatest number of patients who are bedridden or incapacitated. Physical effects acquire such importance that one can not forget to attend to aspects as basic as hygiene, correct posture during their bedridden stay or the daily task to transfer patients to the various support elements they need to utilize. Nursing care for patients suffering spinal cord injuries comprise the fundamental axis on which a correct recuperation rotates. At the same time, proper treatment care will lead to a future improvement in a patient's quality of life.

  8. An evaluation of patient's decisions regarding dental prosthetic treatment

    Directory of Open Access Journals (Sweden)

    Nupur D Shrirao

    2016-01-01

    Full Text Available Introduction: For fabricating dental prostheses that meet patients' demands and have good longevity and function, appropriate treatment planning and decision-making are required. Therefore, not only technical skills and clinical judgment of the dentist are needed, but also patients' attitude toward treatment plays a critical role in posttreatment satisfaction. Aim: The aim of this study is to investigate the factors affecting decision-making and the selection of dental prosthesis by the patients. Materials and Methods: A cross-sectional survey to determine patients' attitudes about replacement of teeth was conducted. This survey was performed with the help of a prevalidated questionnaire, which contained the demographic data of every patient, whether or not they accept the treatment plan proposed by the dentist, and a close-ended multiple choice question stating the reasons cited by them if they decline the proposed treatment plan. Results: The data were subjected to statistical analysis by Chi-square test at a significance level of P< 0.05. A relationship between the demographical information such as age, gender, educational status, marital status, and monthly income of each patient and the single best reason opted by them to not undergo the proposed treatment plan was established. Conclusions: In the sample of population studied, most of the patients declined the proposed treatment plan and accepted the alternate one. High expenditure is the most common reason for this rejection.

  9. The Trimeric Model: A New Model of Periodontal Treatment Planning

    Science.gov (United States)

    Tarakji, Bassel

    2014-01-01

    Treatment of periodontal disease is a complex and multidisciplinary procedure, requiring periodontal, surgical, restorative, and orthodontic treatment modalities. Several authors attempted to formulate models for periodontal treatment that orders the treatment steps in a logical and easy to remember manner. In this article, we discuss two models of periodontal treatment planning from two of the most well-known textbook in the specialty of periodontics internationally. Then modify them to arrive at a new model of periodontal treatment planning, The Trimeric Model. Adding restorative and orthodontic interrelationships with periodontal treatment allows us to expand this model into the Extended Trimeric Model of periodontal treatment planning. These models will provide a logical framework and a clear order of the treatment of periodontal disease for general practitioners and periodontists alike. PMID:25177662

  10. Evaluation and scoring of radiotherapy treatment plans using an artificial neural network

    International Nuclear Information System (INIS)

    Willoughby, Twyla R.; Starkschall, George; Janjan, Nora A.; Rosen, Isaac I.

    1996-01-01

    Purpose: The objective of this work was to demonstrate the feasibility of using an artificial neural network to predict the clinical evaluation of radiotherapy treatment plans. Methods and Materials: Approximately 150 treatment plans were developed for 16 patients who received external-beam radiotherapy for soft-tissue sarcomas of the lower extremity. Plans were assigned a figure of merit by a radiation oncologist using a five-point rating scale. Plan scoring was performed by a single physician to ensure consistency in rating. Dose-volume information extracted from a training set of 511 treatment plans on 14 patients was correlated to the physician-generated figure of merit using an artificial neural network. The neural network was tested with a test set of 19 treatment plans on two patients whose plans were not used in the training of the neural net. Results: Physician scoring of treatment plans was consistent to within one point on the rating scale 88% of the time. The neural net reproduced the physician scores in the training set to within one point approximately 90% of the time. It reproduced the physician scores in the test set to within one point approximately 83% of the time. Conclusions: An artificial neural network can be trained to generate a score for a treatment plan that can be correlated to a clinically-based figure of merit. The accuracy of the neural net in scoring plans compares well with the reproducibility of the clinical scoring. The system of radiotherapy treatment plan evaluation using an artificial neural network demonstrates promise as a method for generating a clinically relevant figure of merit

  11. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    Science.gov (United States)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  12. SU-E-T-337: Treatment Planning Study of Craniospinal Irradiation with Spot Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Tasson, A; Beltran, C; Laack, N; Childs, S; Tryggestad, E; Whitaker, T

    2014-01-01

    Purpose: To develop a treatment planning technique that achieves optimal robustness against systematic position and range uncertainties, and interfield position errors for craniospinal irradiation (CSI) using spot scanning proton radiotherapy. Methods: Eighteen CSI patients who had previously been treated using photon radiation were used for this study. Eight patients were less than 10 years old. The prescription dose was 23.4Gy in 1.8Gy fractions. Two different field arrangement types were investigated: 1 posterior field per isocenter and 2 posterior oblique fields per isocenter. For each field type, two delivery configurations were used: 5cm bolus attached to the treatment table and a 4.5cm range shifter located inside the nozzle. The target for each plan was the whole brain and thecal sac. For children under the age of 10, all plan types were repeated with an additional dose of 21Gy prescribed to the vertebral bodies. Treatment fields were matched by stepping down the dose in 10% increments over 9cm. Robustness against 3% and 3mm uncertainties, as well as a 3mm inter-field error was analyzed. Dose coverage of the target and critical structure sparing for each plan type will be considered. Ease of planning and treatment delivery was also considered for each plan type. Results: The mean dose volume histograms show that the bolus plan with posterior beams gave the best overall plan, and all proton plans were comparable to or better than the photon plans. The plan type that was the most robust against the imposed uncertainties was also the bolus plan with posterior beams. This is also the plan configuration that is the easiest to deliver and plan. Conclusion: The bolus plan with posterior beams achieved optimal robustness against systematic position and range uncertainties, as well as inter-field position errors

  13. An efficient framework for photon Monte Carlo treatment planning

    International Nuclear Information System (INIS)

    Fix, Michael K; Manser, Peter; Frei, Daniel; Volken, Werner; Mini, Roberto; Born, Ernst J

    2007-01-01

    Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby

  14. The Impact of Colleague Peer Review on the Radiotherapy Treatment Planning Process in the Radical Treatment of Lung Cancer.

    Science.gov (United States)

    Rooney, K P; McAleese, J; Crockett, C; Harney, J; Eakin, R L; Young, V A L; Dunn, M A; Johnston, R E; Hanna, G G

    2015-09-01

    Modern radiotherapy uses techniques to reliably identify tumour and reduce target volume margins. However, this can potentially lead to an increased risk of geographic miss. One source of error is the accuracy of target volume delineation (TVD). Colleague peer review (CPR) of all curative-intent lung cancer plans has been mandatory in our institution since May 2013. At least two clinical oncologists review plans, checking treatment paradigm, TVD, prescription dose tumour and critical organ tolerances. We report the impact of CPR in our institution. Radiotherapy treatment plans of all patients receiving radical radiotherapy were presented at weekly CPR meetings after their target volumes were reviewed and signed off by the treating consultant. All cases and any resultant change to TVD (including organs at risk) or treatment intent were recorded in our prospective CPR database. The impact of CPR over a 13 month period from May 2013 to June 2014 is reported. One hundred and twenty-two patients (63% non-small cell lung carcinoma, 17% small cell lung carcinoma and 20% 'clinical diagnosis') were analysed. On average, 3.2 cases were discussed per meeting (range 1-8). CPR resulted in a change in treatment paradigm in 3% (one patient proceeded to induction chemotherapy, two patients had high-dose palliative radiotherapy). Twenty-one (17%) had a change in TVD and one (1%) patient had a change in dose prescription. In total, 6% of patients had plan adjustment after review of dose volume histogram. The introduction of CPR in our centre has resulted in a change in a component of the treatment plan for 27% of patients receiving curative-intent lung radiotherapy. We recommend CPR as a mandatory quality assurance step in the planning process of all radical lung plans. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Detention and positioning system for patient Treatment with conventional radiotherapy

    International Nuclear Information System (INIS)

    Hueso Bernad, Nuria; Tirado Porcar, Miriam; Del Castillo Arres, M. Jose; Broseta Tormos, M. Mercedes; Franch Martinez, Silvia; Suarez Dieguez, Raquel; Roures Ramos, M.Teresa

    2009-01-01

    The first step in what we call in radiotherapy S imulation and Planning o f radiation, is the correct choice of patient position and methods to use for this position is maintained along both the simulation and planning as the radiation treatment. The choice of position is directly linked to the choice of immobilizer to be used. (Author)

  16. SU-F-T-617: Remotely Pre-Planned Stereotactic Ablative Radiation Therapy: Validation of Treatment Plan Quality

    International Nuclear Information System (INIS)

    Juang, T; Bush, K; Loo, B; Gensheimer, M

    2016-01-01

    Purpose: We propose a workflow to improve access to stereotactic ablative radiation therapy (SABR) for rural patients. When implemented, a separate trip to the central facility for simulation can be eliminated. Two elements are required: (1) Fabrication of custom immobilization devices to match positioning on prior diagnostic CT (dxCT). (2) Remote radiation pre-planning on dxCT, with transfer of contours/plan to simulation CT (simCT) and initiation of treatment same-day or next day. In this retrospective study, we validated part 2 of the workflow using patients already treated with SABR for upper lobe lung tumors. Methods: Target/normal structures were contoured on dxCT; a plan was created and approved by the physician. Structures were transferred to simCT using deformable image registration and the plan was re-optimized on simCT. Plan quality was evaluated through comparison to gold-standard structures contoured on simCT and a gold-standard plan based on these structures. Workflow-generated plan quality in this study represents a worst-case scenario as these patients were not treated using custom immobilization to match dxCT position as would be done when the workflow is implemented clinically. Results: 5/6 plans created through the pre-planning workflow were clinically acceptable. For all six plans, the gold-standard GTV received full prescription dose, along with median PTV V95%=95.2% and median PTV D95%=95.4%. Median GTV DSC=0.80, indicating high degree of similarity between the deformed and gold-standard GTV contours despite small GTV sizes (mean=3.0cc). One outlier (DSC=0.49) resulted in inadequate PTV coverage (V95%=62.9%) in the workflow plan; in clinical practice, this mismatch between deformed/gold-standard GTV would be revised by the physician after deformable registration. For all patients, normal tissue doses were comparable to the gold-standard plan and well within constraints. Conclusion: Pre-planning SABR cases on diagnostic imaging generated

  17. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a (60)Co Magnetic Resonance Image Guidance Radiation Therapy System

    DEFF Research Database (Denmark)

    Wooten, H Omar; Green, Olga; Yang, Min

    2015-01-01

    : The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup...

  18. Virtual reality image applications for treatment planning in prosthodontic dentistry.

    Science.gov (United States)

    Ogawa, Takumi; Ikawa, Tomoko; Shigeta, Yuko; Kasama, Shintaro; Ando, Eriko; Fukushima, Shunji; Hattori, Asaki; Suzuki, Naoki

    2011-01-01

    For successful occlusal reconstruction, the prosthodontists must take several points into consideration, such as those involving issues with functional and morphological findings and aesthetics. They then must unify this information into a coherent treatment plan. In this present study we focused on prosthodontic treatment and investigated how treatment planning and simulation could be applied to two cases. The personal occlusion condition can be reproduced on the virtual articulator in VR space. In addition, various simulations can be performed that involve prosthetesis design.

  19. Basic considerations in simulated treatment planning for the Stanford Medical Pion Generator (SMPG)

    International Nuclear Information System (INIS)

    Pistenma, D.A.; Li, G.C.; Bagshaw, M.A.

    1977-01-01

    Recent interest in charged heavy particle irradiation is based upon expected improved local tumor control rates because of the greater precision in dose localization and the increased biological effectiveness of the high linear energy transfer ionization of particle beams in their stopping regions (Bragg peaks). A novel 60 beam cylindrical geometry pion spectrometer designed for a hospital-based pion therapy facility has been constructed at Stanford. In conjunction with the development and testing of the SMPG a program of simulated treatment planning is being conducted. This paper presents basic considerations in treatment planning for pions and other charged heavy particles. It also presents the status of simulated treatment planning calculations for the SMPG including a discussion of the principle of irradiation of hypothetical tumor volumes illustrated by examples of simplified treatment plans incorporating tissue density inhomogeneity corrections. Also presented are considerations for realistic simulated treatment planning calculations using computerized tomographic scan cross sections of actual patients and a conceptual plan for an integrated treatment planning and patient treatment system for the SMPG

  20. TU-H-209-00: Planning and Delivering HDR APBI Treatments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Learnings Objectives: Although brachytherapy is the oldest form of radiation therapy, the rapid advancement of the methods of dose calculation, treatment planning and treatment delivery pushes us to keep updating our knowledge and experience to new procedures all the time. Our purpose is to present the newest applicators used in Accelerated Partial Breast Irradiation (APBI) and the techniques of using them for a maximum effective treatment. Our objective will be to get the user familiar with the Savi, Contura and ML Mammosite from the detailed description and measurements to cavity eval and choice or size, to acceptance tests and use of each. At the end of the session the attendants will be able to assist at the scanning of the patient for the first treatment, decide on the proper localization and immobilization devices, import the scans in the treatment planning system, perform the structure segmentation, reconstruct the catheters and develop a treatment plan using inverse planning (IPSA) or volume optimization. The attendant should be able to evaluate the quality of a treatment plan according to the ABS protocols and B39 after this session. Our goal is that all the attendants to gain knowledge of all the quality assurance procedures required to be performed prior to a treatment, at the beginning of a treatment day, weekly, monthly and annualy on the remote afterloader, the treatment planning system and the secondary check system. We will provide tips for a consistent treatment delivery of the 10 fractions in a BID (twice daily) regimen.

  1. MO-D-BRB-02: Pediatric Treatment Planning II: Applications of Proton Beams for Pediatric Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Childrens Research Hospital (United States)

    2015-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child’s brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. For bilateral retinoblastoma for example, an irradiated child has a 40% chance of developing a second cancer by age 50. The dosimetric tradeoffs made during the planning process are complex and require careful consideration for children treated with radiotherapy. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa

  2. Volume definition system for treatment planning

    International Nuclear Information System (INIS)

    Alakuijala, Jyrki; Pekkarinen, Ari; Puurunen, Harri

    1997-01-01

    Purpose: Volume definition is a difficult and time consuming task in 3D treatment planning. We have studied a systems approach for constructing an efficient and reliable set of tools for volume definition. Our intent is to automate body outline, air cavities and bone volume definition and accelerate definition of other anatomical structures. An additional focus is on assisting in definition of CTV and PTV. The primary goals of this work are to cut down the time used in contouring and to improve the accuracy of volume definition. Methods: We used the following tool categories: manual, semi-automatic, automatic, structure management, target volume definition, and visualization tools. The manual tools include mouse contouring tools with contour editing possibilities and painting tools with a scaleable circular brush and an intelligent brush. The intelligent brush adapts its shape to CT value boundaries. The semi-automatic tools consist of edge point chaining, classical 3D region growing of single segment and competitive volume growing of multiple segments. We tuned the volume growing function to take into account both local and global region image values, local volume homogeneity, and distance. Heuristic seeding followed with competitive volume growing finds the body outline, couch and air automatically. The structure management tool stores ICD-O coded structures in a database. The codes have predefined volume growing parameters and thus are able to accommodate the volume growing dissimilarity function for different volume types. The target definition tools include elliptical 3D automargin for CTV to PTV transformation and target volume interpolation and extrapolation by distance transform. Both the CTV and the PTV can overlap with anatomical structures. Visualization tools show the volumes as contours or color wash overlaid on an image and displays voxel rendering or translucent triangle mesh rendering in 3D. Results: The competitive volume growing speeds up the

  3. [Hepatitis C treatment in special patient groups].

    Science.gov (United States)

    Berenguer, Marina; Jorquera, Francisco; Ángel Serra, Miguel; Sola, Ricard; Castellano, Gregorio

    2014-07-01

    The treatment plan for chronic hepatitis C in special populations varies according to comorbidity and the current evidence on treatment. In patients with hepatitis C virus and HIV coinfection, the results of dual therapy (pegylated interferon plus ribavirin) are poor. In patients with genotype 1 infection, triple therapy (dual therapy plus boceprevir or telaprevir) has doubled the response rate, but protease inhibitors can interact with some antiretroviral drugs and provoke more adverse effects. These disadvantages are avoided by the new, second-generation, direct-acting antiviral agents. In patients who are candidates for liver transplantation or are already liver transplant recipients, the optimal therapeutic option at present is to combine the new antiviral agents, with or without ribavirin and without interferon. The treatment of patients under hemodialysis due to chronic renal disease continues to be dual therapy (often with reduced doses of pegylated interferon and ribavirin), since there is still insufficient information on triple therapy and the new antiviral agents. In mixed cryoglobulinemia, despite the scarcity of experience, triple therapy seems to be superior to dual therapy and may be used as rescue therapy in non-responders to dual therapy. However, a decision must always be made on whether antiviral treatment should be used concomitantly or after immunosuppressive therapy. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  4. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  5. Manpower Planning for Wastewater Treatment Plants.

    Science.gov (United States)

    Davies, J. Kenneth; And Others

    This document discusses the components necessary in the development of a forecasting process by which manpower needs can be determined and the development of action programs by which the projected needs may be satisfied. The primary focus of this manual is directed at that person in a state agency who has the responsibility for planning the…

  6. Treatment plan ranking using physical and biological indices

    International Nuclear Information System (INIS)

    Ebert, M. A.; University of Western Asutralia, WA

    2001-01-01

    Full text: The ranking of dose distributions is of importance in several areas such as i) comparing rival treatment plans, ii) comparing iterations in an optimisation routine, and iii) dose-assessment of clinical trial data. This study aimed to investigate the influence of choice of objective function in ranking tumour dose distributions. A series of physical (mean, maximum, minimum, standard deviation of dose) dose-volume histogram (DVH) reduction indices and biologically-based (tumour-control probability - TCP; equivalent uniform dose -EUD) indices were used to rank a series of hypothetical DVHs, as well as DVHs obtained from a series of 18 prostate patients. The distribution in ranking and change in distribution with change in indice parameters were investigated. It is found that not only is the ranking of DVHs dependent on the actual model used to perform the DVH reduction, it is also found to depend on the inherent characteristics of each model (i.e., selected parameters). The adjacent figure shows an example where the 18 prostate patients are ranked (grey-scale from black to white) by EUD when an α value of 0.8 Gy -1 is used in the model. The change of ranking as α varies is evident. Conclusion: This study has shown that the characteristics of the model selected in plan optimisation or DVH ranking will have an impact on the ranking obtained. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  7. Assessments for high dose radionuclide therapy treatment planning

    International Nuclear Information System (INIS)

    Fisher, D.R.

    2003-01-01

    Advances in the biotechnology of cell specific targeting of cancer and the increased number of clinical trials involving treatment of cancer patients with radiolabelled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high dose radionuclide therapy procedures. Optimised radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be the lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential timepoints using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organ tissues of concern, for the whole body and sometimes for selected tumours. Patient specific factors often require that dose estimates be customised for each patient. In the United States, the Food and Drug Administration regulates the experimental use of investigational new drugs and requires 'reasonable calculation of radiation absorbed dose to the whole body and to critical organs' using the methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high dose studies shows that some are conducted with minimal dosimetry, that the marrow dose is difficult to establish and is subject to large uncertainties. Despite the general availability of software, internal dosimetry methods often seem to be inconsistent from one clinical centre to another. (author)

  8. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning.

    Science.gov (United States)

    Good, David; Lo, Joseph; Lee, W Robert; Wu, Q Jackie; Yin, Fang-Fang; Das, Shiva K

    2013-09-01

    Intensity modulated radiation therapy (IMRT) treatment planning can have wide variation among different treatment centers. We propose a system to leverage the IMRT planning experience of larger institutions to automatically create high-quality plans for outside clinics. We explore feasibility by generating plans for patient datasets from an outside institution by adapting plans from our institution. A knowledge database was created from 132 IMRT treatment plans for prostate cancer at our institution. The outside institution, a community hospital, provided the datasets for 55 prostate cancer cases, including their original treatment plans. For each "query" case from the outside institution, a similar "match" case was identified in the knowledge database, and the match case's plan parameters were then adapted and optimized to the query case by use of a semiautomated approach that required no expert planning knowledge. The plans generated with this knowledge-based approach were compared with the original treatment plans at several dose cutpoints. Compared with the original plan, the knowledge-based plan had a significantly more homogeneous dose to the planning target volume and a significantly lower maximum dose. The volumes of the rectum, bladder, and femoral heads above all cutpoints were nominally lower for the knowledge-based plan; the reductions were significantly lower for the rectum. In 40% of cases, the knowledge-based plan had overall superior (lower) dose-volume histograms for rectum and bladder; in 54% of cases, the comparison was equivocal; in 6% of cases, the knowledge-based plan was inferior for both bladder and rectum. Knowledge-based planning was superior or equivalent to the original plan in 95% of cases. The knowledge-based approach shows promise for homogenizing plan quality by transferring planning expertise from more experienced to less experienced institutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A patient-specific planning target volume used in 'plan of the day' adaptation for interfractional motion mitigation

    International Nuclear Information System (INIS)

    Chen, Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a patient-specific planning target volume (PTV) to deal with interfractional variations, and test its feasibility in a retrospective treatment-planning study. Instead of using one planning image only, multiple scans are taken on different days. The target and organs at risk (OARs) are delineated on each images. The proposed PTV is generated from a union of those target contours on the planning images, excluding voxels of the OARs, and is denoted the PTV 'GP-OAR' (global prostate-organs at risk). The study is performed using 'plan of the day' adaptive workflow, which selects a daily plan from a library of plans based on a similarity comparison between the daily scan and planning images. The daily plans optimized for GP-OAR volumes are compared with those optimized for PTVs generated from a single prostate contour (PTV SP). Four CT serials of prostate cancer patient datasets are included in the test, and in total 28 fractions are simulated. The results show that the daily chosen GP-OAR plans provide excellent target coverage, with V95 values of the prostate mostly >95%. In addition, dose delivered to the OARs as calculated from applying daily chosen GP-OAR plans is slightly increased but comparable to that calculated from applying daily SP plans. In general, the PTV GP-OARs are able to cover possible target variations while keeping dose delivered to the OARs at a similar level to that of the PTV SPs. (author)

  10. Fully Automated Volumetric Modulated Arc Therapy Plan Generation for Prostate Cancer Patients

    International Nuclear Information System (INIS)

    Voet, Peter W.J.; Dirkx, Maarten L.P.; Breedveld, Sebastiaan; Al-Mamgani, Abrahim; Incrocci, Luca; Heijmen, Ben J.M.

    2014-01-01

    Purpose: To develop and evaluate fully automated volumetric modulated arc therapy (VMAT) treatment planning for prostate cancer patients, avoiding manual trial-and-error tweaking of plan parameters by dosimetrists. Methods and Materials: A system was developed for fully automated generation of VMAT plans with our commercial clinical treatment planning system (TPS), linked to the in-house developed Erasmus-iCycle multicriterial optimizer for preoptimization. For 30 randomly selected patients, automatically generated VMAT plans (VMAT auto ) were compared with VMAT plans generated manually by 1 expert dosimetrist in the absence of time pressure (VMAT man ). For all treatment plans, planning target volume (PTV) coverage and sparing of organs-at-risk were quantified. Results: All generated plans were clinically acceptable and had similar PTV coverage (V 95%  > 99%). For VMAT auto and VMAT man plans, the organ-at-risk sparing was similar as well, although only the former plans were generated without any planning workload. Conclusions: Fully automated generation of high-quality VMAT plans for prostate cancer patients is feasible and has recently been implemented in our clinic

  11. Adaptive brachytherapy of cervical cancer, comparison of conventional point A and CT based individual treatment planning

    International Nuclear Information System (INIS)

    Wanderaas, Anne D.; Langdal, Ingrid; Danielsen, Signe; Frykholm, Gunilla; Marthinsen, Anne B. L; Sundset, Marit

    2012-01-01

    Background. Locally advanced cervical cancer is commonly treated with external radiation therapy combined with local brachytherapy. The brachytherapy is traditionally given based on standard dose planning with prescription of dose to point A. Dosimetric aspects when changing from former standard treatment to individualized treatment plans based on computed tomography (CT) images are here investigated. Material and methods. Brachytherapy data from 19 patients with a total of 72 individual treatment fractions were retrospectively reviewed. Standard library plans were analyzed with respect to doses to organs at risk (OARs), and the result was compared to corresponding delivered individualized plans. The theoretical potential of further optimization based on prescription to target volumes was investigated. The treatments were performed with a Fletcher applicator. Results. For standard treatment planning, the tolerance dose limits were exceeded in the bladder, rectum and sigmoid in 26%, 4% and 15% of the plans, respectively. This was observed most often for the smallest target volumes. The individualized planning of the delivered treatment gave the possibility of controlling the dose to critical organs to below certain limits. The dose was still prescribed to point A. An increase in target dose coverage was achieved when additional individual optimization was performed, while still keeping the dose to the OARs below predefined limits. Relatively low average target coverage, especially for the largest volumes was however seen. Conclusion. The individualized delivered treatment plans ensured that doses to OARs were within acceptable limits. This was not the case in 42% of the corresponding standard plans. Further optimized treatment plans were found to give an overall better dose coverage. In lack of MR capacity, it may be favorable to use CT for planning due to possible protection of OARs. The CT based target volumes were, however, not equivalent to the volumes described

  12. Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit

    OpenAIRE

    Rutonjski Laza; Petrović Borislava; Baucal Milutin; Teodorović Milan; Čudić Ozren; Gershkevitsh Eduard; Izewska Joanna

    2012-01-01

    Abstract Background Independent external audits play an important role in quality assurance programme in radiation oncology. The audit supported by the IAEA in Serbia was designed to review the whole chain of activities in 3D conformal radiotherapy (3D-CRT) workflow, from patient data acquisition to treatment planning and dose delivery. The audit was based on the IAEA recommendations and focused on dosimetry part of the treatment planning and delivery processes. Methods The audit was conducte...

  13. Automated treatment planning engine for prostate seed implant brachytherapy

    International Nuclear Information System (INIS)

    Yu Yan; Zhang, J.B.Y.; Brasacchio, Ralph A.; Okunieff, Paul G.; Rubens, Deborah J.; Strang, John G.; Soni, Arvind; Messing, Edward M.

    1999-01-01

    Purpose: To develop a computer-intelligent planning engine for automated treatment planning and optimization of ultrasound- and template-guided prostate seed implants. Methods and Materials: The genetic algorithm was modified to reflect the 2D nature of the implantation template. A multi-objective decision scheme was used to rank competing solutions, taking into account dose uniformity and conformity to the planning target volume (PTV), dose-sparing of the urethra and the rectum, and the sensitivity of the resulting dosimetry to seed misplacement. Optimized treatment plans were evaluated using selected dosimetric quantifiers, dose-volume histogram (DVH), and sensitivity analysis based on simulated seed placement errors. These dosimetric planning components were integrated into the Prostate Implant Planning Engine for Radiotherapy (PIPER). Results: PIPER has been used to produce a variety of plans for prostate seed implants. In general, maximization of the minimum peripheral dose (mPD) for given implanted total source strength tended to produce peripherally weighted seed patterns. Minimization of the urethral dose further reduced the loading in the central region of the PTV. Isodose conformity to the PTV was achieved when the set of objectives did not reflect seed positioning uncertainties; the corresponding optimal plan generally required fewer seeds and higher source strength per seed compared to the manual planning experience. When seed placement uncertainties were introduced into the set of treatment planning objectives, the optimal plan tended to reach a compromise between the preplanned outcome and the likelihood of retaining the preferred outcome after implantation. The reduction in the volatility of such seed configurations optimized under uncertainty was verified by sensitivity studies. Conclusion: An automated treatment planning engine incorporating real-time sensitivity analysis was found to be a useful tool in dosimetric planning for prostate

  14. Proposed Site Treatment Plan (PSTP). STP reference document

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare a plan describing the development of treatment capacities and technologies for treating mixed waste (hazardous/radioactive waste). DOE decided to prepare its site treatment plan in a three phased approach. The first phase, called the Conceptual Site Treatment Plan (CSTP), was issued in October 1993. At the Savannah River Site (SRS) the CSTP described mixed waste streams generated at SRS and listed treatment scenarios for each waste stream utilizing an onsite, offsite DOE, and offsite or onsite commercial or vendor treatment option. The CSTP is followed by the Draft Site Treatment Plan (DSTP), due to be issued in August 1994. The DSTP, the current activity., will narrow the options discussed in the CSTP to a preferred treatment option, if possible, and will include waste streams proposed to be shipped to SRS from other DOE facilities as well as waste streams SRS may send offsite for treatment. The SRS DSTP process has been designed to address treatment options for each of the site's mixed waste streams. The SRS Proposed Site Treatment Plan (PSTP) is due to be issued in February 1995. The compliance order would be derived from the PSTP

  15. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  16. A semiautomatic tool for prostate segmentation in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Schulz, Jörn; Skrøvseth, Stein Olav; Tømmerås, Veronika Kristine; Marienhagen, Kirsten; Godtliebsen, Fred

    2014-01-01

    Delineation of the target volume is a time-consuming task in radiotherapy treatment planning, yet essential for a successful treatment of cancers such as prostate cancer. To facilitate the delineation procedure, the paper proposes an intuitive approach for 3D modeling of the prostate by slice-wise best fitting ellipses. The proposed estimate is initialized by the definition of a few control points in a new patient. The method is not restricted to particular image modalities but assumes a smooth shape with elliptic cross sections of the object. A training data set of 23 patients was used to calculate a prior shape model. The mean shape model was evaluated based on the manual contour of 10 test patients. The patient records of training and test data are based on axial T1-weighted 3D fast-field echo (FFE) sequences. The manual contours were considered as the reference model. Volume overlap (Vo), accuracy (Ac) (both ratio, range 0-1, optimal value 1) and Hausdorff distance (HD) (mm, optimal value 0) were calculated as evaluation parameters. The median and median absolute deviation (MAD) between manual delineation and deformed mean best fitting ellipses (MBFE) was Vo (0.9 ± 0.02), Ac (0.81 ± 0.03) and HD (4.05 ± 1.3)mm and between manual delineation and best fitting ellipses (BFE) was Vo (0.96 ± 0.01), Ac (0.92 ± 0.01) and HD (1.6 ± 0.27)mm. Additional results show a moderate improvement of the MBFE results after Monte Carlo Markov Chain (MCMC) method. The results emphasize the potential of the proposed method of modeling the prostate by best fitting ellipses. It shows the robustness and reproducibility of the model. A small sample test on 8 patients suggest possible time saving using the model

  17. Treatment planning in severe scoliosis: the role of MRI

    Energy Technology Data Exchange (ETDEWEB)

    Freund, M. [Dept. of Clinical Radiology, Univ. of Muenster (Germany); Dept. of Neuroradiology, Univ. of Heidelberg Medical School (Germany); Haehnel, S.; Sartor, K. [Dept. of Neuroradiology, Univ. of Heidelberg Medical School (Germany); Thomsen, M. [Dept. of Orthopaedic Surgery, University of Heidelberg, Medical School (Germany)

    2001-06-01

    The use of magnetic resonance imaging (MRI) in the preoperative investigation of children with idiopathic scoliosis is controversial. Syringomyelia and other intraspinal lesions may be risk factors for neurological injury during surgical correction. Our purpose was to investigate whether pathology of the neuraxis is associated with scoliosis and to detect lesions which may threaten neurological sequelae during distraction and instrumented correction. We obtained T1- and T2-weighted images of 40 children (28 girls, 12 boys), mean age 12.7 years with severe idiopathic scoliosis (Cobb angle 50-70 ) obtained in coronal, sagittal and axial planes from the posterior cranial fossa to the sacrum, and these were assessed by two neuroradiologists and an orthopaedic surgeon prior to further treatment planning. Abnormalities of the neuraxis were found in 24 patients (60 %); five (12 %) had two or more lesions. No abnormalities of the neuraxis were found in 16 patients (40 %). There were 15 patients (38 %) with intraspinal abnormalities who deteriorated clinically and nine (22 %) who showed no clinical changes. We transferred 16 patients (40 %) from the orthopaedic to the neurosurgical department for further assessment. Our results suggest that one should investigate the neuraxis with MRI before contemplating orthopaedic surgical correction of severe idiopathic scoliosis, because the findings may lead to a change of procedure. (orig.)

  18. Treatment planning for a small animal using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chow, James C. L.; Leung, Michael K. K.

    2007-01-01

    The development of a small animal model for radiotherapy research requires a complete setup of customized imaging equipment, irradiators, and planning software that matches the sizes of the subjects. The purpose of this study is to develop and demonstrate the use of a flexible in-house research environment for treatment planning on small animals. The software package, called DOSCTP, provides a user-friendly platform for DICOM computed tomography-based Monte Carlo dose calculation using the EGSnrcMP-based DOSXYZnrc code. Validation of the treatment planning was performed by comparing the dose distributions for simple photon beam geometries calculated through the Pinnacle3 treatment planning system and measurements. A treatment plan for a mouse based on a CT image set by a 360-deg photon arc is demonstrated. It is shown that it is possible to create 3D conformal treatment plans for small animals with consideration of inhomogeneities using small photon beam field sizes in the diameter range of 0.5-5 cm, with conformal dose covering the target volume while sparing the surrounding critical tissue. It is also found that Monte Carlo simulation is suitable to carry out treatment planning dose calculation for small animal anatomy with voxel size about one order of magnitude smaller than that of the human

  19. Treatment planning of implants in posterior quadrants.

    Science.gov (United States)

    Jivraj, S; Chee, W

    2006-07-08

    Differences in anatomy and biomechanics make treatment of posterior quadrants with dental implants substantially different to that of anterior areas. Without implants, when posterior teeth were lost, treatment options included a long span fixed partial denture or a removable prosthesis, especially when no terminal abutment was available. Today, with the use of implants, options are available that allow preservation of unrestored teeth.(1) When teeth are missing, implant supported restorations can be considered the treatment of choice from the perspective of occlusal support, preservation of adjacent teeth and avoidance of a removable partial denture.

  20. Maximizing dosimetric benefits of IMRT in the treatment of localized prostate cancer through multicriteria optimization planning

    International Nuclear Information System (INIS)

    Wala, Jeremiah; Craft, David; Paly, Jon; Zietman, Anthony; Efstathiou, Jason

    2013-01-01

    We examine the quality of plans created using multicriteria optimization (MCO) treatment planning in intensity-modulated radiation therapy (IMRT) in treatment of localized prostate cancer. Nine random cases of patients receiving IMRT to the prostate were selected. Each case was associated with a clinically approved plan created using Corvus. The cases were replanned using MCO-based planning in RayStation. Dose-volume histogram data from both planning systems were presented to 2 radiation oncologists in a blinded evaluation, and were compared at a number of dose-volume points. Both physicians rated all 9 MCO plans as superior to the clinically approved plans (p −5 ). Target coverage was equivalent (p = 0.81). Maximum doses to the prostate and bladder and the V50 and V70 to the anterior rectum were reduced in all MCO plans (p<0.05). Treatment planning time with MCO took approximately 60 minutes per case. MCO-based planning for prostate IMRT is efficient and produces high-quality plans with good target homogeneity and sparing of the anterior rectum, bladder, and femoral heads, without sacrificing target coverage

  1. Maximizing dosimetric benefits of IMRT in the treatment of localized prostate cancer through multicriteria optimization planning

    Energy Technology Data Exchange (ETDEWEB)

    Wala, Jeremiah; Craft, David [Harvard Medical School, Boston, MA (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Paly, Jon [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Zietman, Anthony [Harvard Medical School, Boston, MA (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Efstathiou, Jason, E-mail: jefstathiou@partners.org [Harvard Medical School, Boston, MA (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2013-10-01

    We examine the quality of plans created using multicriteria optimization (MCO) treatment planning in intensity-modulated radiation therapy (IMRT) in treatment of localized prostate cancer. Nine random cases of patients receiving IMRT to the prostate were selected. Each case was associated with a clinically approved plan created using Corvus. The cases were replanned using MCO-based planning in RayStation. Dose-volume histogram data from both planning systems were presented to 2 radiation oncologists in a blinded evaluation, and were compared at a number of dose-volume points. Both physicians rated all 9 MCO plans as superior to the clinically approved plans (p<10{sup −5}). Target coverage was equivalent (p = 0.81). Maximum doses to the prostate and bladder and the V50 and V70 to the anterior rectum were reduced in all MCO plans (p<0.05). Treatment planning time with MCO took approximately 60 minutes per case. MCO-based planning for prostate IMRT is efficient and produces high-quality plans with good target homogeneity and sparing of the anterior rectum, bladder, and femoral heads, without sacrificing target coverage.

  2. Treatment planning evaluation of non-coplanar techniques for conformal radiotherapy of the prostate

    International Nuclear Information System (INIS)

    Bedford, James L.; Henrys, Anthony J.; Dearnaley, David P.; Khoo, Vincent S.

    2005-01-01

    Background and purpose: To evaluate the benefit of using non-coplanar treatment plans for irradiation of two different clinical treatment volumes: prostate only (PO) and the prostate plus seminal vesicles (PSV). Material and methods: An inverse planning algorithm was used to produce three-field, four-field, five-field and six-field non-coplanar treatment plans without intensity-modulation in ten patients. These were compared against a three-field coplanar plan. A dose of 74 Gy was prescribed to the isocentre. Plans were compared using the minimum dose to the planning target volume (PTV), maximum dose to the small bowel, and irradiated volumes of rectum, bladder and femoral head. Biological indices were also evaluated. Results: For the PO group, volume of rectum irradiated to 60 Gy (V 60 ) was 22.5±3.7% for the coplanar plan, and 21.5±5.3% for the five-field non-coplanar plan, which was the most beneficial (p=0.3). For the PSV group, the five-field non-coplanar plan was again the most beneficial. Rectal V 60 was in this case reduced from 41.5±10.4% for the coplanar plan to 35.2±9.3% for the non-coplanar plan (p=0.02). Conclusions: The use of non-coplanar beams in conformal prostate radiotherapy provides a small increase in rectal sparing, more significantly with PSV volumes than for PO volumes

  3. Optimal partial-arcs in VMAT treatment planning

    International Nuclear Information System (INIS)

    Wala, Jeremiah; Salari, Ehsan; Chen Wei; Craft, David

    2012-01-01

    We present a method for improving the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial-arc with the lowest treatment time. The complete algorithm is called pmerge. Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 s. Treatment times using full arcs with vmerge are 211, 357 and 178 s. The mean doses to the critical structures for the vmerge and pmerge plans are kept within 5% of those in the initial plan, and the target volume covered by the prescription isodose is maintained above 98% for the pmerge and vmerge plans. Additionally, we find that the angular distribution of fluence in the initial plans is predictive of the start and end angles of the optimal partial-arc. We conclude that VMAT delivery efficiency can be improved by employing partial-arcs without compromising dose quality, and that partial-arcs are most applicable to cases with non-centralized targets. (paper)

  4. Development of an autonomous treatment planning strategy for radiation therapy with effective use of population-based prior data.

    Science.gov (United States)

    Wang, Huan; Dong, Peng; Liu, Hongcheng; Xing, Lei

    2017-02-01

    Current treatment planning remains a costly and labor intensive procedure and requires multiple trial-and-error adjustments of system parameters such as the weighting factors and prescriptions. The purpose of this work is to develop an autonomous treatment planning strategy with effective use of prior knowledge and in a clinically realistic treatment planning platform to facilitate radiation therapy workflow. Our technique consists of three major components: (i) a clinical treatment planning system (TPS); (ii) a formulation of decision-function constructed using an assemble of prior treatment plans; (iii) a plan evaluator or decision-function and an outer-loop optimization independent of the clinical TPS to assess the TPS-generated plan and to drive the search toward a solution optimizing the decision-function. Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines for querying and interacting with the TPS. These subroutines are called back in the outer-loop optimization program to navigate the plan selection process through the solution space iteratively. The utility of the approach is demonstrated by using clinical prostate and head-and-neck cases. An autonomous treatment planning technique with effective use of an assemble of prior treatment plans is developed to automatically maneuver the clinical treatment planning process in the platform of a commercial TPS. The process mimics the decision-making process of a human planner and provides a clinically sensible treatment plan automatically, thus reducing/eliminating the tedious manual trial-and-errors of treatment planning. It is found that the prostate and head-and-neck treatment plans generated using the approach compare favorably with that used for the patients' actual treatments. Clinical inverse treatment planning process can be automated effectively with the guidance of an assemble of prior treatment plans. The approach has the potential to

  5. Specification and acceptance testing of radiotherapy treatment planning systems

    International Nuclear Information System (INIS)

    2007-04-01

    Quality assurance (QA) in the radiation therapy treatment planning process is essential to ensure accurate dose delivery to the patient and to minimize the possibility of accidental exposure. The computerized radiotherapy treatment planning systems (RTPSs) are now widely available in industrialized and developing countries and it is of special importance to support hospitals in Member States in developing procedures for acceptance testing, commissioning and QA of their RTPSs. Responding to these needs, a group of experts developed an IAEA publication with such recommendations, which was published in 2004 as IAEA Technical Reports Series No. 430. This report provides a general framework and describes a large number of tests and procedures that should be considered by the users of new RTPSs. However, small hospitals with limited resources or large hospitals with high patient load and limited staff are not always able to perform complete characterization, validation and software testing of algorithms used in RTPSs. Therefore, the IAEA proposed more specific guidelines that provide a step-by-step recommendation for users at hospitals or cancer centres how to implement acceptance and commissioning procedures for newly purchased RTPSs. The current publication was developed in the framework of the Coordinated Research Project on Development of Procedures for Quality Assurance for Dosimetry Calculations in Radiotherapy and uses the International Electrotechnical Commission (IEC) standard IEC 62083, Requirements for the Safety of Radiotherapy Treatment Planning Systems as its basis. The report addresses the procedures for specification and acceptance testing of RTPSs to be used by both manufacturers and users at the hospitals. Recommendations are provided for specific tests to be performed at the manufacturing facility known as type tests, and for acceptance tests to be performed at the hospital known as site tests. The purpose of acceptance testing is to demonstrate to the

  6. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  7. Describing treatment effects to patients.

    Science.gov (United States)

    Moxey, Annette; O'Connell, Dianne; McGettigan, Patricia; Henry, David

    2003-11-01

    To examine the impact of different presentations of equivalent information (framing) on treatment decisions faced by patients. A systematic review of the published literature was conducted. English language publications allocating participants to different frames were retrieved using electronic and bibliographic searches. Two reviewers examined each article for inclusion, and assessed methodological quality. Study characteristics were tabulated and where possible, relative risks (RR; 95% confidence intervals) were calculated to estimate intervention effects. Thirty-seven articles, yielding 40 experimental studies, were included. Studies examined treatment (N = 24), immunization (N = 5), or health behavior scenarios (N = 11). Overall, active treatments were preferred when outcomes were described in terms of relative rather than absolute risk reductions or number needed to treat. Surgery was preferred to other treatments when treatment efficacy was presented in a positive frame (survival) rather than a negative frame (mortality) (relative risk [RR] = 1.51, 95% confidence interval [CI], 1.39 to 1.64). Framing effects were less obvious for immunization and health behavior scenarios. Those with little interest in the behavior at baseline were influenced by framing, particularly when information was presented as gains. In studies judged to be of good methodological quality and/or examining actual decisions, the framing effect, although still evident, was less convincing compared to the results of all included studies. Framing effects varied with the type of scenario, responder characteristics, scenario manipulations, and study quality. When describing treatment effects to patients, expressing the information in more than one way may present a balanced view to patients and enable them to make informed decisions.

  8. Towards biology-oriented treatment planning in hadrontherapy

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2006-01-01

    Roč. 122, 1-4 (2006), s. 480-482 ISSN 0144-8420 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : treatment planning * hadron radiotherapy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.446, year: 2006

  9. 300 Area waste acid treatment system closure plan. Revision 1

    International Nuclear Information System (INIS)

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan

  10. 300 Area waste acid treatment system closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  11. Telemedicine in radiotherapy treatment planning: requirements and applications

    International Nuclear Information System (INIS)

    Olsen, D.R.; Bruland, O.S.; Davis, B.J.

    2000-01-01

    Telemedicine facilitates decentralized radiotherapy services by allowing remote treatment planning and quality assurance of treatment delivery. A prerequisite is digital storage of relevant data and an efficient and reliable telecommunication system between satellite units and the main radiotherapy clinic. The requirements of a telemedicine system in radiotherapy is influenced by the level of support needed. In this paper we differentiate between three categories of telemedicine support in radiotherapy. Level 1 features video conferencing and display of radiotherapy images and dose plans. Level 2 involves replication of selected data from the radiotherapy database - facilitating remote treatment planning and evaluation. Level 3 includes real-time, remote operations, e.g. target volume delineation and treatment planning performed by the team at the satellite unit under supervision and guidance from more experienced colleagues at the main clinic. (author)

  12. The influence of cephalometrics on orthodontic treatment planning

    NARCIS (Netherlands)

    Nijkamp, P.G.; Habets, L.L.M.H.; Aartman, I.H.A.; Zentner, A.

    2008-01-01

    SUMMARY Since its introduction, cephalometrics, i.e. cephalometric radiography and analysis, has been used for orthodontic treatment planning. However, the effectiveness of this diagnostic method remains questionable. A randomized crossover study was designed to assess the infl uence of

  13. Evaluation of isocenter reproducibility in telemedicine of 3D-radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Hirota, Saeko; Tsujino, Kayoko; Kimura, Kouji; Takada, Yoshiki; Hishikawa, Yoshio; Kono, Michio; Soejima, Toshinori; Kodama, Akihisa

    2000-01-01

    To evaluate the utility in telemedicine of Three-Dimensional Radiotherapy Treatment Planning (tele-3D-RTP) and to examine the accuracy of isocenter reproducibility in its offline trial. CT data of phantoms and patients in the satellite hospital were transferred to our hospital via floppy-disk and 3D-radiotherapy plans were generated by 3D-RTP computer in our hospital. Profile data of CT and treatment beams in the satellite hospital were pre-installed into the computer. Tele-3D-RTPs were performed in 3 phantom plans and 14 clinical plans for 13 patients. Planned isocenters were well reproduced, especially in the immobilized head and neck/brain tumor cases, whose 3D-vector of aberration was 1.96±1.38 (SD) mm. This teletherapy system is well applicable for practical use and can provides cost-reduction through sharing the resources of expensive equipment and radiation oncologists. (author)

  14. Evaluation of isocenter reproducibility in telemedicine of 3D-radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Saeko; Tsujino, Kayoko; Kimura, Kouji; Takada, Yoshiki; Hishikawa, Yoshio; Kono, Michio [Hyogo Medical Center for Adults, Akashi (Japan); Soejima, Toshinori; Kodama, Akihisa

    2000-09-01

    To evaluate the utility in telemedicine of Three-Dimensional Radiotherapy Treatment Planning (tele-3D-RTP) and to examine the accuracy of isocenter reproducibility in its offline trial. CT data of phantoms and patients in the satellite hospital were transferred to our hospital via floppy-disk and 3D-radiotherapy plans were generated by 3D-RTP computer in our hospital. Profile data of CT and treatment beams in the satellite hospital were pre-installed into the computer. Tele-3D-RTPs were performed in 3 phantom plans and 14 clinical plans for 13 patients. Planned isocenters were well reproduced, especially in the immobilized head and neck/brain tumor cases, whose 3D-vector of aberration was 1.96{+-}1.38 (SD) mm. This teletherapy system is well applicable for practical use and can provides cost-reduction through sharing the resources of expensive equipment and radiation oncologists. (author)

  15. Evaluation of a software module for adaptive treatment planning and re-irradiation.

    Science.gov (United States)

    Richter, Anne; Weick, Stefan; Krieger, Thomas; Exner, Florian; Kellner, Sonja; Polat, Bülent; Flentje, Michael

    2017-12-28

    The aim of this work is to validate the Dynamic Planning Module in terms of usability and acceptance in the treatment planning workflow. The Dynamic Planning Module was used for decision making whether a plan adaptation was necessary within one course of radiation therapy. The Module was also used for patients scheduled for re-irradiation to estimate the dose in the pretreated region and calculate the accumulated dose to critical organs at risk. During one year, 370 patients were scheduled for plan adaptation or re-irradiation. All patient cases were classified according to their treated body region. For a sub-group of 20 patients treated with RT for lung cancer, the dosimetric effect of plan adaptation during the main treatment course was evaluated in detail. Changes in tumor volume, frequency of re-planning and the time interval between treatment start and plan adaptation were assessed. The Dynamic Planning Tool was used in 20% of treated patients per year for both approaches nearly equally (42% plan adaptation and 58% re-irradiation). Most cases were assessed for the thoracic body region (51%) followed by pelvis (21%) and head and neck cases (10%). The sub-group evaluation showed that unintended plan adaptation was performed in 38% of the scheduled cases. A median time span between first day of treatment and necessity of adaptation of 17 days (range 4-35 days) was observed. PTV changed by 12 ± 12% on average (maximum change 42%). PTV decreased in 18 of 20 cases due to tumor shrinkage and increased in 2 of 20 cases. Re-planning resulted in a reduction of the mean lung dose of the ipsilateral side in 15 of 20 cases. The experience of one year showed high acceptance of the Dynamic Planning Module in our department for both physicians and medical physicists. The re-planning can potentially reduce the accumulated dose to the organs at risk and ensure a better target volume coverage. In the re-irradiation situation, the Dynamic Planning Tool was used to

  16. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system

    International Nuclear Information System (INIS)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-01-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact treatment couch in a Varian Clinac 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta XiO treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  17. Comparison of CT-based 3D treatment planning with simulator planning of pelvic irradiation of primary cervical carcinoma

    International Nuclear Information System (INIS)

    Knocke, T.H.; Pokrajac, B.; Fellner, C.; Poetter, R.

    1999-01-01

    In a prospective study on 20 subsequent patients with primary cervical carcinoma in Stages I to III simulator planning of a 4-field box-technique was performed. After defining the planning target volume (PTV) in the 3D planning system the field configuration of the simulator planning was transmitted. The resulting plan was compared to a second one based on the defined PTV and evaluated regarding a possible geographical miss and encompassment of the PTV by the treated volume (ICRU). Volumes of open and shaped portals were calculated for both techniques. Planning by simulation resulted in 1 geographical miss and in 10 more cases the encompassment of the PTV by the treated volume was inadequate. For a PTV of mean 1 729 cm 3 the mean volume defined by simulation was 3 120 cm 3 for the open portals and 2 702 cm 3 for the shaped portals. The volume reduction by blocks was 13,4% (mean). With CT-based 3D treatment planning the volume of the open portals was 3,3% (mean) enlarged to 3 224 cm 3 . The resulting mean volume of the shaped portals was 2 458 ccm. The reduction compared to the open portals was 23,8% (mean). The treated volumes were 244 cm 3 or 9% (mean) smaller compared to simulator planning. The 'treated volume/planning target volume ratio' was decreased from 1.59 to 1.42. (orig.) [de

  18. "SABER": A new software tool for radiotherapy treatment plan evaluation.

    Science.gov (United States)

    Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay

    2010-11-01

    Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined

  19. Value of CT scanning in radiation therapy treatment planning: a prospective study

    International Nuclear Information System (INIS)

    Goitein, M.; Wittenberg, J.; Mendiondo, M.; Doucette, J.; Friedberg, C.; Ferrucci, J.; Gunderson, L.; Linggood, R.; Shipley, W.U.; Fineberg, H.V.

    1979-01-01

    We report the results of a prospective study in which we assessed the value of computed tomography (CT) scanning in planning radiation therapy for 77 patients. First, conventional studies were performed, treatment fields were designed and simulated and, where appropriate, computer generated treatment plans drawn up. Then a CT scan was performed to delineate the location of the tumor and adjacent uninvolved tissues. The treatment goals and plans were reevaluated and changed when necessary. Forty of the 77 patients (52%) had their treatment changed as a result of the CT scan. Of these, four (5%) had a change of treatment modality. Thirty-two patients (42%) had changes in the radiotherapy technique because of inadequate tumor coverage (in 24 patients (31%) part of the tumor was outside one or more of the fields and in the other 8 patients (10%) the tumor coverage was marginal). Field changes resulting only from considerations of normal tissue coverage were made for 4 of these patients (5%). In total, normal tissue coverage was affected in 36 patients (47%). When the significance of these changes was evaluated, CT scanning was judged to be of major value for 28 of the 77 patients (36%) and of minor value in a further 12 patients

  20. Computational Dosimetry and Treatment Planning Considerations for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nigg, David Waler

    2003-01-01

    Specialized treatment planning software systems are generally required for neutron capture therapy (NCT) research and clinical applications. The standard simplifying approximations that work well for treatment planning computations in the case of many other modalities are usually not appropriate for application to neutron transport. One generally must obtain an explicit three-dimensional numerical solution of the governing transport equation, with energy-dependent neutron scattering completely taken into account. Treatment planning systems that have been successfully introduced for NCT applications over the past 15 years rely on the Monte Carlo stochastic simulation method for the necessary computations, primarily because of the geometric complexity of human anatomy. However, historically, there has also been interest in the application of deterministic methods, and there have been some practical developments in this area. Most recently, interest has turned toward the creation of treatment planning software that is not limited to any specific therapy modality, with NCT as only one of several applications. A key issue with NCT treatment planning has to do with boron quantification, and whether improved information concerning the spatial biodistribution of boron can be effectively used to improve the treatment planning process. Validation and benchmarking of computations for NCT are also of current developmental interest. Various institutions have their own procedures, but standard validation models are not yet in wide use

  1. Improved Beam Angle Arrangement in Intensity Modulated Proton Therapy Treatment Planning for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Cao, Wenhua; Lim, Gino J.; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: This study investigates potential gains of an improved beam angle arrangement compared to a conventional fixed gantry setup in intensity modulated proton therapy (IMPT) treatment for localized prostate cancer patients based on a proof of principle study. Materials and Methods: Three patients with localized prostate cancer retrospectively selected from our institution were studied. For each patient, IMPT plans were designed using two, three and four beam angles, respectively, obtained from a beam angle optimization algorithm. Those plans were then compared with ones using two lateral parallel-opposed beams according to the conventional planning protocol for localized prostate cancer adopted at our institution. Results: IMPT plans with two optimized angles achieved significant improvements in rectum sparing and moderate improvements in bladder sparing against those with two lateral angles. Plans with three optimized angles further improved rectum sparing significantly over those two-angle plans, whereas four-angle plans found no advantage over three-angle plans. A possible three-beam class solution for localized prostate patients was suggested and demonstrated with preserved dosimetric benefits because individually optimized three-angle solutions were found sharing a very similar pattern. Conclusions: This study has demonstrated the potential of using an improved beam angle arrangement to better exploit the theoretical dosimetric benefits of proton therapy and provided insights of selecting quality beam angles for localized prostate cancer treatment

  2. WE-F-BRB-00: New Developments in Knowledge-Based Treatment Planning and Automation

    International Nuclear Information System (INIS)

    2015-01-01

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, it is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented

  3. WE-F-BRB-00: New Developments in Knowledge-Based Treatment Planning and Automation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, it is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented.

  4. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  5. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  6. Influence of planning time and treatment complexity on radiation therapy errors.

    Science.gov (United States)

    Gensheimer, Michael F; Zeng, Jing; Carlson, Joshua; Spady, Phil; Jordan, Loucille; Kane, Gabrielle; Ford, Eric C

    2016-01-01

    Radiation treatment planning is a complex process with potential for error. We hypothesized that shorter time from simulation to treatment would result in rushed work and higher incidence of errors. We examined treatment planning factors predictive for near-miss events. Treatments delivered from March 2012 through October 2014 were analyzed. Near-miss events were prospectively recorded and coded for severity on a 0 to 4 scale; only grade 3-4 (potentially severe/critical) events were studied in this report. For 4 treatment types (3-dimensional conformal, intensity modulated radiation therapy, stereotactic body radiation therapy [SBRT], neutron), logistic regression was performed to test influence of treatment planning time and clinical variables on near-miss events. There were 2257 treatment courses during the study period, with 322 grade 3-4 near-miss events. SBRT treatments had more frequent events than the other 3 treatment types (18% vs 11%, P = .04). For the 3-dimensional conformal group (1354 treatments), univariate analysis showed several factors predictive of near-miss events: longer time from simulation to first treatment (P = .01), treatment of primary site versus metastasis (P < .001), longer treatment course (P < .001), and pediatric versus adult patient (P = .002). However, on multivariate regression only pediatric versus adult patient remained predictive of events (P = 0.02). For the intensity modulated radiation therapy, SBRT, and neutron groups, time between simulation and first treatment was not found to be predictive of near-miss events on univariate or multivariate regression. When controlling for treatment technique and other clinical factors, there was no relationship between time spent in radiation treatment planning and near-miss events. SBRT and pediatric treatments were more error-prone, indicating that clinical and technical complexity of treatments should be taken into account when targeting safety interventions. Copyright © 2015 American

  7. Sodium-Bearing Waste Treatment, Applied Technology Plan

    International Nuclear Information System (INIS)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-01-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology

  8. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  9. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  10. Feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in lung cancer treatment planning

    International Nuclear Information System (INIS)

    Xiao Jianghong; Zhang Hong; Gong Youling; Fu Yuchuan; Tang Bin; Wang Shichao; Jiang Qingfeng; Li Ping

    2010-01-01

    Background and purpose: To investigate the feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in 3-dimensional conformal radiotherapy (3D-CRT), stereotactic body radiation therapy (SBRT) and intensity-modulated radiotherapy (IMRT) treatment planning for lung cancers, respectively. Materials and methods: Twelve patients with bulky lung tumors and 14 patients with small lung tumors were retrospectively analyzed. Each patient took two sets of CT in the same position with active breathing control (ABC) technique before and after intravenous contrast agent (CA) injections. Bulky tumors were planned with 3D-CRT, while SBRT plans were generated for patients with small tumors based on CT scans with intravenous CA. In addition, IMRT plans were generated for patients with bulky tumors to continue on a planning study. All plans were copied and replaced on the scans without intravenous CA. The radiation doses calculated from the two sets of CTs were compared with regard to planning volumes (PTV), the organ at-risk (OAR) and the lungs using Wilcoxon's signed rank test. Results: In comparisons for 3D-CRT plans, CT scans with intravenous CA reduced the mean dose and the maximum dose of PTV with significant differences (p 95 ) for targets, respectively (p < 0.05). There was no statistical significance for lung parameters between two sets of scans in SBRT plans and IMRT plans. Conclusions: The enhanced CT scans can be used for both target delineation and treatment planning in 3D-CRT. The dose difference caused by intravenous CA is small. But for SBRT and IMRT, the minimum irradiation dose in targets may be estimated to be increased up to 2.71% while the maximum dose may be estimated to be decreased up to 1.36%. However, the difference in dose distribution in most cases were found to be clinical tolerable.

  11. SU-E-T-151: Breathing Synchronized Delivery (BSD) Planning for RapicArc Treatment

    International Nuclear Information System (INIS)

    Lu, W; Chen, M; Jiang, S

    2015-01-01

    Purpose: To propose a workflow for breathing synchronized delivery (BSD) planning for RapicArc treatment. Methods: The workflow includes three stages: screening/simulation, planning, and delivery. In the screening/simulation stage, a 4D CT with the corresponding breathing pattern is acquired for each of the selected patients, who are able to follow their own breathing pattern. In the planning stage, one breathing phase is chosen as the reference, and contours are delineated on the reference image. Deformation maps to other phases are performed along with contour propagation. Based on the control points of the initial 3D plan for the reference phase and the respiration trace, the correlation with respiration phases, the leaf sequence and gantry angles is determined. The beamlet matrices are calculated with the corresponding breathing phase and deformed to the reference phase. Using the 4D dose evaluation tool and the original 3D plan DVHs criteria, the leaf sequence is further optimized to meet the planning objectives and the machine constraints. In the delivery stage, the patients are instructed to follow the programmed breathing patterns of their own, and all other parts are the same as the conventional Rapid-Arc delivery. Results: Our plan analysis is based on comparison of the 3D plan with a static target (SD), 3D plan with motion delivery (MD), and the BSD plan. Cyclic motion of range 0 cm to 3 cm was simulated for phantoms and lung CT. The gain of the BSD plan over MD is significant and concordant for both simulation and lung 4DCT, indicating the benefits of 4D planning. Conclusion: Our study shows that the BSD plan can approach the SD plan quality. However, such BSD scheme relies on the patient being able to follow the same breathing curve that is used in the planning stage during radiation delivery. Funded by Varian Medical Systems

  12. Dose prescription and treatment planning based on FMISO-PET hypoxia

    International Nuclear Information System (INIS)

    Toma-Dasu, Iuliana; Antonovic, Laura; Uhrdin, Johan; Dasu, Alexandru; Nuyts, Sandra; Dirix, Piet; Haustermans, Karin; Brahme, Anders

    2012-01-01

    Purpose. The study presents the implementation of a novel method for incorporating hypoxia information from PET-CT imaging into treatment planning and estimates the efficiency of various optimization approaches. Its focuses on the feasibility of optimizing treatment plans based on the non-linear conversion of PET hypoxia images into radiosensitivity maps from the uptake properties of the tracers used. Material and methods. PET hypoxia images of seven head-and-neck cancer patients were used to determine optimal dose distributions needed to counteract the radiation resistance associated with tumor hypoxia assuming various scenarios regarding the evolution of the hypoxic compartment during the treatment. A research planning system for advanced studies has been used to optimize IMRT plans based on hypoxia information from patient PET images. These resulting plans were compared in terms of target coverage for the same fulfilled constraints regarding the organs at risk. Results. The results of a planning study indicated the clinical feasibility of the proposed method for treatment planning based on PET hypoxia. Antihypoxic strategies would lead to small improvements in all the patients, but higher effects are expected for the fraction of patients with hypoxic tumors. For these, individualization of the treatment based on hypoxia PET imaging could lead to improved treatment outcome while creating the premises for limiting the irradiation of the surrounding normal tissues. Conclusions. The proposed approach offers the possibility of improved treatment results as it takes into consideration the heterogeneity and the dynamics of the hypoxic regions. It also provides early identification of the clinical cases that might benefit from dose escalation as well as the cases that could benefit from other counter-hypoxic measures

  13. Menopause: developing a rational treatment plan.

    Science.gov (United States)

    Vitiello, Danielle; Naftolin, Frederick; Naftoilin, Frederick; Taylor, Hugh S

    2007-12-01

    In recent years, growing importance has been afforded to assisting women in coping with the menopausal transition. Menopause is a normal stage of development and a woman's attitude toward this transition embodies biological, psychological and social influences. An enlarging body of conflicting data concerning menopausal hormone therapy (MHT) demands reassessment of established paradigms of disease prevention and menopausal health. Currently, a woman's decision to participate in or abstain from menopausal HT is personal. It involves not only consideration of risk stratification of potential harm and benefit, but also involves her expectations and attitudes toward perceived physical and emotional changes associated with this change. Through the use of extensive patient history, quality-of-life questionnaires and powerful biological profiling, we may be able to develop a rational approach to menopausal HT that safely guides our patients through this transition.

  14. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte

  15. On treatment of uncertainty in system planning

    International Nuclear Information System (INIS)

    Flage, R.; Aven, T.

    2009-01-01

    In system planning and operation considerable efforts and resources are spent to reduce uncertainties, as a part of project management, uncertainty management and safety management. The basic idea seems to be that uncertainties are purely negative and should be reduced. In this paper we challenge this way of thinking, using a common industry practice as an example. In accordance with this industry practice, three uncertainty interval categories are used: ±40% intervals for the feasibility phase, ±30% intervals for the concept development phase and ±20% intervals for the engineering phase. The problem is that such a regime could easily lead to a conservative management regime encouraging the use of existing methods and tools, as new activities and novel solutions and arrangements necessarily mean increased uncertainties. In the paper we suggest an alternative approach based on uncertainty and risk descriptions, but having no predefined uncertainty reduction structures. The approach makes use of risk assessments and economic optimisation tools such as the expected net present value, but acknowledges the need for broad risk management processes which extend beyond the analyses. Different concerns need to be balanced, including economic aspects, uncertainties and risk, and practicability

  16. Role of whole-body 64-slice multidetector computed tomography in treatment planning for multiple myeloma.

    Science.gov (United States)

    Razek, Ahmed Abdel Khalek Abdel; Ezzat, Amany; Azmy, Emad; Tharwat, Nehal

    2013-08-01

    The authors evaluated the role of whole-body 64-slice multidetector computed tomography (WB-MDCT) in treatment planning for multiple myeloma. This was a prospective study of 28 consecutive patients with multiple myeloma (19 men, nine women; age range, 51-73 years; mean age, 60 years) who underwent WB-MDCT and conventional radiography (CR) of the skeleton. The images were interpreted for the presence of bony lesions, medullary lesions, fractures and extraosseous lesions. We evaluated any changes in treatment planning as a result of WB-MDCT findings. WB-MDCT was superior to CR for detecting bony lesions (p=0.001), especially of the spine (p=0.001) and thoracic cage (p=0.006). WB-MDCT upstaged 14 patients, with a significant difference in staging (p=0.002) between WB-MDCT and CR. Medullary involvement either focal (n=6) or diffuse (n=3) had a positive correlation with the overall score (r=0.790) and stage (r=0.618) of disease. Spine fractures were better detected at WB-MDCT (n=4) than at CR (n=2). Extraosseous soft tissue lesions (n=7) were detected only at WB-MDCT. Findings detected at the WB-MDCT led to changes in the patient's treatment plan in 39% of cases. Upstaging of seven patients (25%) altered the medical treatment plan, and four of 28 (14%) patients required additional radiotherapy (7%) and vertebroplasty (7%). We conclude that WB-MDCT has an impact on treatment planning and prognosis in patients with multiple myeloma, as it has high rate of detecting cortical and medullary bone lesions, spinal fracture and extraosseous lesions. This information may alter treatment planning in multiple myeloma due to disease upstaging and detection of spine fracture and extraosseous spinal lesions.

  17. In situ gas treatment technology demonstration test plan

    International Nuclear Information System (INIS)

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  18. Technical Note: Improving the VMERGE treatment planning algorithm for rotational radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gaddy, Melissa R., E-mail: mrgaddy@ncsu.edu; Papp, Dávid, E-mail: dpapp@ncsu.edu [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205 (United States)

    2016-07-15

    Purpose: The authors revisit the VMERGE treatment planning algorithm by Craft et al. [“Multicriteria VMAT optimization,” Med. Phys. 39, 686–696 (2012)] for arc therapy planning and propose two changes to the method that are aimed at improving the achieved trade-off between treatment time and plan quality at little additional planning time cost, while retaining other desirable properties of the original algorithm. Methods: The original VMERGE algorithm first computes an “ideal,” high quality but also highly time consuming treatment plan that irradiates the patient from all possible angles in a fine angular grid with a highly modulated beam and then makes this plan deliverable within practical treatment time by an iterative fluence map merging and sequencing algorithm. We propose two changes to this method. First, we regularize the ideal plan obtained in the first step by adding an explicit constraint on treatment time. Second, we propose a different merging criterion that comprises of identifying and merging adjacent maps whose merging results in the least degradation of radiation dose. Results: The effect of both suggested modifications is evaluated individually and jointly on clinical prostate and paraspinal cases. Details of the two cases are reported. Conclusions: In the authors’ computational study they found that both proposed modifications, especially the regularization, yield noticeably improved treatment plans for the same treatment times than what can be obtained using the original VMERGE method. The resulting plans match the quality of 20-beam step-and-shoot IMRT plans with a delivery time of approximately 2 min.

  19. Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.

    Science.gov (United States)

    Hargrave, Catriona; Mason, Nicole; Guidi, Robyn; Miller, Julie-Anne; Becker, Jillian; Moores, Matthew; Mengersen, Kerrie; Poulsen, Michael; Harden, Fiona

    2016-03-01

    Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.

  20. Migration check tool: automatic plan verification following treatment management systems upgrade and database migration.

    Science.gov (United States)

    Hadley, Scott W; White, Dale; Chen, Xiaoping; Moran, Jean M; Keranen, Wayne M

    2013-11-04

    Software upgrades of the treatment management system (TMS) sometimes require that all data be migrated from one version of the database to another. It is necessary to verify that the data are correctly migrated to assure patient safety. It is impossible to verify by hand the thousands of parameters that go into each patient's radiation therapy treatment plan. Repeating pretreatment QA is costly, time-consuming, and may be inadequate in detecting errors that are introduced during the migration. In this work we investigate the use of an automatic Plan Comparison Tool to verify that plan data have been correctly migrated to a new version of a TMS database from an older version. We developed software to query and compare treatment plans between different versions of the TMS. The same plan in the two TMS systems are translated into an XML schema. A plan comparison module takes the two XML schemas as input and reports any differences in parameters between the two versions of the same plan by applying a schema mapping. A console application is used to query the database to obtain a list of active or in-preparation plans to be tested. It then runs in batch mode to compare all the plans, and a report of success or failure of the comparison is saved for review. This software tool was used as part of software upgrade and database migration from Varian's Aria 8.9 to Aria 11 TMS. Parameters were compared for 358 treatment plans in 89 minutes. This direct comparison of all plan parameters in the migrated TMS against the previous TMS surpasses current QA methods that relied on repeating pretreatment QA measurements or labor-intensive and fallible hand comparisons.

  1. Patient performance–based plan parameter optimization for prostate cancer in tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yuan Jie; Lee, Suk, E-mail: sukmp@korea.ac.kr; Chang, Kyung Hwan; Shim, Jang Bo; Kim, Kwang Hyeon; Park, Young Je; Kim, Chul Yong

    2015-01-01

    The purpose of this study is to evaluate the influence of treatment-planning parameters on the quality of treatment plans in tomotherapy and to find the optimized planning parameter combinations when treating patients with prostate cancer under different performances. A total of 3 patients with prostate cancer with Eastern Cooperative Oncology Group (ECOG) performance status of 2 or 3 were included in this study. For each patient, 27 treatment plans were created using a combination of planning parameters (field width of 1, 2.5, and 5 cm; pitch of 0.172, 0.287, and 0.43; and modulation factor of 1.8, 3, and 3.5). Then, plans were analyzed using several dosimetrical indices: the prescription isodose to target volume (PITV) ratio, homogeneity index (HI), conformity index (CI), target coverage index (TCI), modified dose HI (MHI), conformity number (CN), and quality factor (QF). Furthermore, dose-volume histogram of critical structures and critical organ scoring index (COSI) were used to analyze organs at risk (OAR) sparing. Interestingly, treatment plans with a field width of 1 cm showed more favorable results than others in the planning target volume (PTV) and OAR indices. However, the treatment time of the 1-cm field width was 3 times longer than that of plans with a field width of 5 cm. There was no substantial decrease in treatment time when the pitch was increased from 0.172 to 0.43, but the PTV indices were slightly compromised. As expected, field width had the most significant influence on all of the indices including PTV, OAR, and treatment time. For the patients with good performance who can tolerate a longer treatment time, we suggest a field width of 1 cm, pitch of 0.172, and modulation factor of 1.8; for the patients with poor performance status, field width of 5 cm, pitch of 0.287, and a modulation factor of 3.5 should be considered.

  2. Evaluation of IMRT plans of prostate carcinoma from four treatment planning systems based on Monte Carlo

    International Nuclear Information System (INIS)

    Chi Zifeng; Han Chun; Liu Dan; Cao Yankun; Li Runxiao

    2011-01-01

    Objective: With the Monte Carlo method to recalculate the IMRT dose distributions from four TPS to provide a platform for independent comparison and evaluation of the plan quality.These results will help make a clinical decision as which TPS will be used for prostate IMRT planning. Methods: Eleven prostate cancer cases were planned with the Corvus, Xio, Pinnacle and Eclipse TPS. The plans were recalculated by Monte Carlo using leaf sequences and MUs for individual plans. Dose-volume-histograms and isodose distributions were compared. Other quantities such as D min (the minimum dose received by 99% of CTV/PTV), D max (the maximum dose received by 1% of CTV/PTV), V 110% , V 105% , V 95% (the volume of CTV/PTV receiving 110%, 105%, 95% of the prescription dose), the volume of rectum and bladder receiving >65 Gy and >40 Gy, and the volume of femur receiving >50 Gy were evaluated. Total segments and MUs were also compared. Results: The Monte Carlo results agreed with the dose distributions from the TPS to within 3%/3 mm. The Xio, Pinnacle and Eclipse plans show less target dose heterogeneity and lower V 65 and V 40 for the rectum and bladder compared to the Corvus plans. The PTV D min is about 2 Gy lower for Xio plans than others while the Corvus plans have slightly lower female head V 50 (0.03% and 0.58%) than others. The Corvus plans require significantly most segments (187.8) and MUs (1264.7) to deliver and the Pinnacle plans require fewest segments (82.4) and MUs (703.6). Conclusions: We have tested an independent Monte Carlo dose calculation system for dose reconstruction and plan evaluation. This system provides a platform for the fair comparison and evaluation of treatment plans to facilitate clinical decision making in selecting a TPS and beam delivery system for particular treatment sites. (authors)

  3. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  4. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  5. Proton therapy of uveal melanomas. Intercomparison of MRI-based and conventional treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Marnitz, S.; Hinkelbein, W. [Dept. of Radiooncology, Charite Univ. Medicine, Berlin (Germany); Cordini, D.; Heufelder, J.; Simiantonakis, I.; Kluge, H. [Eye Tumor Therapy, Hahn-Meitner Inst., Berlin (Germany); Bendl, R. [Dept. of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Lemke, A.J. [Dept. of Diagnostic Radiology, Charite Univ. Medicine, Berlin (Germany); Bechrakis, N.E.; Foerster, M.H. [Dept. of Ophthalmology, Charite Univ. Medicine, Berlin (Germany)

    2006-07-15

    Background and purpose: proton therapy for uveal melanoma provides high-conformal dose application to the target volume and, thus, an optimal saving of the organs at risk nearby. Treatment planning is done with the model-based treatment-planning system eyeplan. Tumor reconstruction is based only on a fundus composite, which often leads to an overestimation of the clinical target volume (CTV). The purpose was to exploit MRI on trial in a proton therapy-planning system by using the novel image-based treatment-planning system octopus. Patients and methods: ten patients with uveal melanomas received both a high-resolution planning CT and MRI of the eye. MR examinations were made with an eye coil. Eyeplan requires eye geometry data for modeling, and tantalum marker clips for submillimeter positioning and additional information from ultrasound and 3-D imaging. By contrast, octopus provides the full integration of 3-D imaging (e.g., CT, MRI). CTVs were delineated in each slice. For all patients, CTVs (eyeplan vs. octopus) were compared intraindividually. Results: octopus planning led to a mean reduction of the target volume by a factor of 1.7 (T1-weighted [T1w]) and 2.2 (T2w) without compromising safety. The corresponding field size could be scaled down on average by a factor of 1.2 (T1w) and 1.4 (T2w), respectively. Conclusion: compared with the conventional eyeplan, MRI-based treatment planning of ocular tumors with octopus could be a powerful tool for reducing the CTV and, consequently, the treatment volume and the field size. This might be translated into a better patient compliance during treatment and a decreased late toxicity. (orig.)

  6. Proton therapy of uveal melanomas. Intercomparison of MRI-based and conventional treatment planning

    International Nuclear Information System (INIS)

    Marnitz, S.; Hinkelbein, W.; Cordini, D.; Heufelder, J.; Simiantonakis, I.; Kluge, H.; Bendl, R.; Lemke, A.J.; Bechrakis, N.E.; Foerster, M.H.

    2006-01-01

    Background and purpose: proton therapy for uveal melanoma provides high-conformal dose application to the target volume and, thus, an optimal saving of the organs at risk nearby. Treatment planning is done with the model-based treatment-planning system eyeplan. Tumor reconstruction is based only on a fundus composite, which often leads to an overestimation of the clinical target volume (CTV). The purpose was to exploit MRI on trial in a proton therapy-planning system by using the novel image-based treatment-planning system octopus. Patients and methods: ten patients with uveal melanomas received both a high-resolution planning CT and MRI of the eye. MR examinations were made with an eye coil. Eyeplan requires eye geometry data for modeling, and tantalum marker clips for submillimeter positioning and additional information from ultrasound and 3-D imaging. By contrast, octopus provides the full integration of 3-D imaging (e.g., CT, MRI). CTVs were delineated in each slice. For all patients, CTVs (eyeplan vs. octopus) were compared intraindividually. Results: octopus planning led to a mean reduction of the target volume by a factor of 1.7 (T1-weighted [T1w]) and 2.2 (T2w) without compromising safety. The corresponding field size could be scaled down on average by a factor of 1.2 (T1w) and 1.4 (T2w), respectively. Conclusion: compared with the conventional eyeplan, MRI-based treatment planning of ocular tumors with octopus could be a powerful tool for reducing the CTV and, consequently, the treatment volume and the field size. This might be translated into a better patient compliance during treatment and a decreased late toxicity. (orig.)

  7. Treatment planning: implant-supported partial overdentures.

    Science.gov (United States)

    Chee, Winston W L

    2005-04-01

    When multiple anterior teeth are missing, many options of replacement are available. Traditionally, the choice was between a fixed or removable prostheses. Today, with the predictability of dental implants, the options of tooth replacement range from removable partial dentures to implant-supported fixed prostheses. The choice of which restoration that will best provide occlusion and esthetics depends on multiple factors including the number and location of missing teeth, the residual ridge form in relation to the replacement teeth, the relationship of the maxillary and mandibular anterior teeth, the condition of teeth adjacent to the edentulous span, the amount of bone available for implant placement, the patients "smile line" and display of teeth, lip support, and financial constraints. When there is minimal loss of the ridge contour, restorations that emerge from the ridge are the most functional and esthetic restorations, adhesive-type fixed partial dentures, conventional fixed partial dentures, and implant-supported restorations can be indicated with the choice of restoration dependent on a risk benefit and cost benefit analysis. When there is a loss of ridge contour due to residual ridge resorption or trauma, the decision becomes more complex as not only does the tooth structure need to be replaced, the ridge form also has to be replaced. (Figures 1 and 2). This can be assessed clinically as illustrated by Figures 1 and 2 where a dis crepancy in arch form and ridge form in relation to the adjacent teeth and/or opposing arch can be observed. Other considerations are lip support and display of the teeth when smiling. This article presents a case and rationale for implant-supported par tial overdentures. Many authors have written on the merits of com plete overdentures. The complete overdenture has proven to be an improvement over conventional complete prostheses with respect to chewing efficiency, patient comfort and satisfaction. In partial edentulism, the

  8. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin [Department of Radiation Oncology, Peggy and Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (United States)

    2012-10-23

    This study