WorldWideScience

Sample records for patient specific model

  1. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  2. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  3. Patient-Specific Modeling in Tomorrow's Medicine

    CERN Document Server

    2012-01-01

    This book reviews the frontier of research and clinical applications of Patient Specific Modeling, and provides a state-of-the-art update as well as perspectives on future directions in this exciting field. The book is useful for medical physicists, biomedical engineers and other engineers who are interested in the science and technology aspects of Patient Specific Modeling, as well as for radiologists and other medical specialists who wish to be updated about the state of implementation.

  4. A Patient-Specific Airway Branching Model for Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Nor Salwa Damanhuri

    2014-01-01

    Full Text Available Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps. Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA in patients diagnosed with acute respiratory distress syndrome (ARDS. A scaling factor (α was used to equate the area under the pressure curve (AUC from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median α value of 0.58 (IQR: 0.54–0.63; range: 0.45–0.66 for these ARDS patients. Significantly lower α values were found for individuals with chronic obstructive pulmonary disease (P<0.001. Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific α values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.

  5. Morphing patient-specific musculoskeletal models

    DEFF Research Database (Denmark)

    Rasmussen, John; Galibarov, Pavel E.; Al-Munajjed, Amir

    the resulting models do indeed represent the patients’ biomechanics. As a particularly challenging case, foot deformities based only on point sets recovered from surface scans are considered as shown in the figure. The preliminary results are promising for the cases of severe flat foot and metatarsalgia while...... other conditions may require CT or MRI data. The method and its theoretical assumptions, advantages and limitations are presented, and several examples will illustrate morphing to patient-specific models. [1] Carbes S; Tørholm S; Rasmussen, J. A Detailed Twenty-six Segments Kinematic Foot model...

  6. Patient Specific Modeling of Head-Up Tilt

    DEFF Research Database (Denmark)

    Williams, Nakeya; Wright, Andrew; Mehlsen, Jesper

    2014-01-01

    Short term cardiovascular responses to head-up tilt (HUT) experiments involve complex cardiovascular regulation in order to maintain blood pressure at homeostatic levels. This manuscript presents a patient specific compartmental model developed to predict dynamic changes in heart rate and arterial...

  7. Towards patient specific thermal modelling of the prostate

    International Nuclear Information System (INIS)

    Berg, Cornelis A T van den; Kamer, Jeroen B van de; Leeuw, Astrid A C ee; Jeukens, Cecile R L P N; Raaymakers, Bas W; Vulpen, Marco van; Lagendijk, Jan J W

    2006-01-01

    The application of thermal modelling for hyperthermia and thermal ablation is severely hampered by lack of information about perfusion and vasculature. However, recently, with the advent of sophisticated angiography and dynamic contrast enhanced (DCE) imaging techniques, it has become possible to image small vessels and blood perfusion bringing the ultimate goal of patient specific thermal modelling closer within reach. In this study dynamic contrast enhanced multi-slice CT imaging techniques are employed to investigate the feasibility of this concept for regional hyperthermia treatment of the prostate. The results are retrospectively compared with clinical thermometry data of a patient group from an earlier trial. Furthermore, the role of the prostate vasculature in the establishment of the prostate temperature distribution is studied. Quantitative 3D perfusion maps of the prostate were constructed for five patients using a distributed-parameter tracer kinetics model to analyse dynamic CT data. CT angiography was applied to construct a discrete vessel model of the pelvis. Additionally, a discrete vessel model of the prostate vasculature was constructed of a prostate taken from a human corpse. Three thermal modelling schemes with increasing inclusion of the patient specific physiological information were used to simulate the temperature distribution of the prostate during regional hyperthermia. Prostate perfusion was found to be heterogeneous and T3 prostate carcinomas are often characterized by a strongly elevated tumour perfusion (up to 70-80 ml 100 g -1 min -1 ). This elevated tumour perfusion leads to 1-2 deg. C lower tumour temperatures than thermal simulations based on a homogeneous prostate perfusion. Furthermore, the comparison has shown that the simulations with the measured perfusion maps result in consistently lower prostate temperatures than clinically achieved. The simulations with the discrete vessel model indicate that significant pre-heating takes

  8. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  9. Patient specific actual size 3D printed models for patient education in glioma treatment: first experiences.

    Science.gov (United States)

    van de Belt, Tom H; Nijmeijer, Hugo; Grim, David; Engelen, Lucien Jlpg; Vreeken, Rinaldo; van Gelder, Marleen Mmj; Laan, Mark Ter

    2018-06-02

    Cancer patients need high quality information about the disease stage, treatment options and side effects. High quality information can also improve health literacy, shared decision-making and satisfaction. We created patient-specific 3D models of tumours including surrounding functional areas, and assessed what patients with glioma actually value (or fear) about these models when they are used to educate them about the relation between their tumour and specific brain parts, the surgical procedure, and risks. We carried out an explorative study with adult glioma patients, who underwent functional MRI and DTi as part of the pre-operative work-up. All participants received an actual size 3D model, printed based on fMRI and DTi imaging. Semi-structured interviews were held to identify facilitators and barriers for using the model, and perceived effects. A model was successfully created for all 11 participants. A total of 18 facilitators and 8 barriers were identified. The model improved patients' understanding about their situation, that it was easier to ask questions to their neurosurgeon based on their model and that it supported their decision about the preferred treatment. A perceived barrier for using the 3D model was that it could be emotionally confronting, particularly in an early phase of the disease process. Positive effects were related to psychological domains including coping, learning effects and communication. Patient-specific 3D models are promising and simple tools that could help patients with glioma to better understand their situation, treatment options and risks. They have the potential to improve shared decision-making. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    Science.gov (United States)

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results

  11. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  12. Patient-specific model of a scoliotic torso for surgical planning

    Science.gov (United States)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-03-01

    A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

  13. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  14. Patient-Specific Modeling of Intraventricular Hemodynamics

    Science.gov (United States)

    Vedula, Vijay; Marsden, Alison

    2017-11-01

    Heart disease is the one of the leading causes of death in the world. Apart from malfunctions in electrophysiology and myocardial mechanics, abnormal hemodynamics is a major factor attributed to heart disease across all ages. Computer simulations offer an efficient means to accurately reproduce in vivo flow conditions and also make predictions of post-operative outcomes and disease progression. We present an experimentally validated computational framework for performing patient-specific modeling of intraventricular hemodynamics. Our modeling framework employs the SimVascular open source software to build an anatomic model and employs robust image registration methods to extract ventricular motion from the image data. We then employ a stabilized finite element solver to simulate blood flow in the ventricles, solving the Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) coordinates by prescribing the wall motion extracted during registration. We model the fluid-structure interaction effects of the cardiac valves using an immersed boundary method and discuss the potential application of this methodology in single ventricle physiology and trans-catheter aortic valve replacement (TAVR). This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and partly through NIH NHLBI R01 Grant 5R01HL129727-02.

  15. The technique for 3D printing patient-specific models for auricular reconstruction.

    Science.gov (United States)

    Flores, Roberto L; Liss, Hannah; Raffaelli, Samuel; Humayun, Aiza; Khouri, Kimberly S; Coelho, Paulo G; Witek, Lukasz

    2017-06-01

    Currently, surgeons approach autogenous microtia repair by creating a two-dimensional (2D) tracing of the unaffected ear to approximate a three-dimensional (3D) construct, a difficult process. To address these shortcomings, this study introduces the fabrication of patient-specific, sterilizable 3D printed auricular model for autogenous auricular reconstruction. A high-resolution 3D digital photograph was captured of the patient's unaffected ear and surrounding anatomic structures. The photographs were exported and uploaded into Amira, for transformation into a digital (.stl) model, which was imported into Blender, an open source software platform for digital modification of data. The unaffected auricle as digitally isolated and inverted to render a model for the contralateral side. The depths of the scapha, triangular fossa, and cymba were deepened to accentuate their contours. Extra relief was added to the helical root to further distinguish this structure. The ear was then digitally deconstructed and separated into its individual auricular components for reconstruction. The completed ear and its individual components were 3D printed using polylactic acid filament and sterilized following manufacturer specifications. The sterilized models were brought to the operating room to be utilized by the surgeon. The models allowed for more accurate anatomic measurements compared to 2D tracings, which reduced the degree of estimation required by surgeons. Approximately 20 g of the PLA filament were utilized for the construction of these models, yielding a total material cost of approximately $1. Using the methodology detailed in this report, as well as departmentally available resources (3D digital photography and 3D printing), a sterilizable, patient-specific, and inexpensive 3D auricular model was fabricated to be used intraoperatively. This technique of printing customized-to-patient models for surgeons to use as 'guides' shows great promise. Copyright © 2017 European

  16. Development of patient specific cardiovascular models predicting dynamics in response to orthostatic stress challenges

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2013-01-01

    Physiological realistic models of the controlled cardiovascular system are constructed and validated against clinical data. Special attention is paid to the control of blood pressure, cerebral blood flow velocity, and heart rate during postural challenges, including sit-to-stand and head-up tilt....... This study describes development of patient specific models, and how sensitivity analysis and nonlinear optimization methods can be used to predict patient specific characteristics when analyzed using experimental data. Finally, we discuss how a given model can be used to understand physiological changes...

  17. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  18. A Centerline Based Model Morphing Algorithm for Patient-Specific Finite Element Modelling of the Left Ventricle.

    Science.gov (United States)

    Behdadfar, S; Navarro, L; Sundnes, J; Maleckar, M; Ross, S; Odland, H H; Avril, S

    2017-09-20

    Hexahedral automatic model generation is a recurrent problem in computer vision and computational biomechanics. It may even become a challenging problem when one wants to develop a patient-specific finite-element (FE) model of the left ventricle (LV), particularly when only low resolution images are available. In the present study, a fast and efficient algorithm is presented and tested to address such a situation. A template FE hexahedral model was created for a LV geometry using a General Electric (GE) ultrasound (US) system. A system of centerline was considered for this LV mesh. Then, the nodes located over the endocardial and epicardial surfaces are respectively projected from this centerline onto the actual endocardial and epicardial surfaces reconstructed from a patient's US data. Finally, the position of the internal nodes is derived by finding the deformations with minimal elastic energy. This approach was applied to eight patients suffering from congestive heart disease. A FE analysis was performed to derive the stress induced in the LV tissue by diastolic blood pressure on each of them. Our model morphing algorithm was applied successfully and the obtained meshes showed only marginal mismatches when compared to the corresponding US geometries. The diastolic FE analyses were successfully performed in seven patients to derive the distribution of principal stresses. The original model morphing algorithm is fast and robust with low computational cost. This low cost model morphing algorithm may be highly beneficial for future patient-specific reduced-order modelling of the LV with potential application to other crucial organs.

  19. Pathway index models for construction of patient-specific risk profiles.

    Science.gov (United States)

    Eng, Kevin H; Wang, Sijian; Bradley, William H; Rader, Janet S; Kendziorski, Christina

    2013-04-30

    Statistical methods for variable selection, prediction, and classification have proven extremely useful in moving personalized genomics medicine forward, in particular, leading to a number of genomic-based assays now in clinical use for predicting cancer recurrence. Although invaluable in individual cases, the information provided by these assays is limited. Most often, a patient is classified into one of very few groups (e.g., recur or not), limiting the potential for truly personalized treatment. Furthermore, although these assays provide information on which individuals are at most risk (e.g., those for which recurrence is predicted), they provide no information on the aberrant biological pathways that give rise to the increased risk. We have developed an approach to address these limitations. The approach models a time-to-event outcome as a function of known biological pathways, identifies important genomic aberrations, and provides pathway-based patient-specific assessments of risk. As we demonstrate in a study of ovarian cancer from The Cancer Genome Atlas project, the patient-specific risk profiles are powerful and efficient characterizations useful in addressing a number of questions related to identifying informative patient subtypes and predicting survival. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties.

    Directory of Open Access Journals (Sweden)

    Daniel M Lombardo

    2016-08-01

    Full Text Available Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF. A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP morphology, action potential duration (APD restitution and conduction velocity (CV restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy.

  1. 3D patient-specific models for left atrium characterization to support ablation in atrial fibrillation patients.

    Science.gov (United States)

    Valinoti, Maddalena; Fabbri, Claudio; Turco, Dario; Mantovan, Roberto; Pasini, Antonio; Corsi, Cristiana

    2018-01-01

    Radiofrequency ablation (RFA) is an important and promising therapy for atrial fibrillation (AF) patients. Optimization of patient selection and the availability of an accurate anatomical guide could improve RFA success rate. In this study we propose a unified, fully automated approach to build a 3D patient-specific left atrium (LA) model including pulmonary veins (PVs) in order to provide an accurate anatomical guide during RFA and without PVs in order to characterize LA volumetry and support patient selection for AF ablation. Magnetic resonance data from twenty-six patients referred for AF RFA were processed applying an edge-based level set approach guided by a phase-based edge detector to obtain the 3D LA model with PVs. An automated technique based on the shape diameter function was designed and applied to remove PVs and compute LA volume. 3D LA models were qualitatively compared with 3D LA surfaces acquired during the ablation procedure. An expert radiologist manually traced the LA on MR images twice. LA surfaces from the automatic approach and manual tracing were compared by mean surface-to-surface distance. In addition, LA volumes were compared with volumes from manual segmentation by linear and Bland-Altman analyses. Qualitative comparison of 3D LA models showed several inaccuracies, in particular PVs reconstruction was not accurate and left atrial appendage was missing in the model obtained during RFA procedure. LA surfaces were very similar (mean surface-to-surface distance: 2.3±0.7mm). LA volumes were in excellent agreement (y=1.03x-1.4, r=0.99, bias=-1.37ml (-1.43%) SD=2.16ml (2.3%), mean percentage difference=1.3%±2.1%). Results showed the proposed 3D patient-specific LA model with PVs is able to better describe LA anatomy compared to models derived from the navigation system, thus potentially improving electrograms and voltage information location and reducing fluoroscopic time during RFA. Quantitative assessment of LA volume derived from our 3D LA

  2. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  3. Patient-specific workup of adrenal incidentalomas

    Directory of Open Access Journals (Sweden)

    Romy R. de Haan

    Full Text Available Purpose: : To develop a clinical prediction model to predict a clinically relevant adrenal disorder for patients with adrenal incidentaloma. Materials and methods: : This retrospective study is approved by the institutional review board, with waiver of informed consent. Natural language processing is used for filtering of adrenal incidentaloma cases in all thoracic and abdominal CT reports from 2010 till 2012. A total of 635 patients are identified. Stepwise logistic regression is used to construct the prediction model. The model predicts if a patient is at risk for malignancy or hormonal hyperfunction of the adrenal gland at the moment of initial presentation, thus generates a predicted probability for every individual patient. The prediction model is evaluated on its usefulness in clinical practice using decision curve analysis (DCA based on different threshold probabilities. For patients whose predicted probability is lower than the predetermined threshold probability, further workup could be omitted. Results: : A prediction model is successfully developed, with an area under the curve (AUC of 0.78. Results of the DCA indicate that up to 11% of patients with an adrenal incidentaloma can be avoided from unnecessary workup, with a sensitivity of 100% and specificity of 11%. Conclusion: : A prediction model can accurately predict if an adrenal incidentaloma patient is at risk for malignancy or hormonal hyperfunction of the adrenal gland based on initial imaging features and patient demographics. However, with most adrenal incidentalomas labeled as nonfunctional adrenocortical adenomas requiring no further treatment, it is likely that more patients could be omitting from unnecessary diagnostics. Keywords: Adrenal incidentaloma, Patient-specific workup, Prediction model

  4. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.

    Science.gov (United States)

    O'Reilly, Meaghan Anne; Whyne, Cari Marisa

    2008-08-01

    A comparative analysis of parametric and patient-specific finite element (FE) modeling of spinal motion segments. To develop patient-specific FE models of spinal motion segments using mesh-morphing methods applied to a parametric FE model. To compare strain and displacement patterns in parametric and morphed models for both healthy and metastatically involved vertebrae. Parametric FE models may be limited in their ability to fully represent patient-specific geometries and material property distributions. Generation of multiple patient-specific FE models has been limited because of computational expense. Morphing methods have been successfully used to generate multiple specimen-specific FE models of caudal rat vertebrae. FE models of a healthy and a metastatic T6-T8 spinal motion segment were analyzed with and without patient-specific material properties. Parametric and morphed models were compared using a landmark-based morphing algorithm. Morphing of the parametric FE model and including patient-specific material properties both had a strong impact on magnitudes and patterns of vertebral strain and displacement. Small but important geometric differences can be represented through morphing of parametric FE models. The mesh-morphing algorithm developed provides a rapid method for generating patient-specific FE models of spinal motion segments.

  5. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    Science.gov (United States)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  6. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    Science.gov (United States)

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  7. Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution.

    Science.gov (United States)

    Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G

    2017-01-01

    A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.

  8. Assessment of CT dose to the fetus and pregnant female patient using patient-specific computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu; Poletti, Pierre-Alexandre; Platon, Alexandra; Becker, Christoph D. [Geneva University Hospital, Department of Medical Imaging and Information Sciences, Geneva (Switzerland); Zaidi, Habib [Geneva University Hospital, Department of Medical Imaging and Information Sciences, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark); Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland)

    2018-03-15

    This work provides detailed estimates of the foetal dose from diagnostic CT imaging of pregnant patients to enable the assessment of the diagnostic benefits considering the associated radiation risks. To produce realistic biological and physical representations of pregnant patients and the embedded foetus, we developed a methodology for construction of patient-specific voxel-based computational phantoms based on existing standardised hybrid computational pregnant female phantoms. We estimated the maternal absorbed dose and foetal organ dose for 30 pregnant patients referred to the emergency unit of Geneva University Hospital for abdominal CT scans. The effective dose to the mother varied from 1.1 mSv to 2.0 mSv with an average of 1.6 mSv, while commercial dose-tracking software reported an average effective dose of 1.9 mSv (range 1.7-2.3 mSv). The foetal dose normalised to CTDI{sub vol} varies between 0.85 and 1.63 with an average of 1.17. The methodology for construction of personalised computational models can be exploited to estimate the patient-specific radiation dose from CT imaging procedures. Likewise, the dosimetric data can be used for assessment of the radiation risks to pregnant patients and the foetus from various CT scanning protocols, thus guiding the decision-making process. (orig.)

  9. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Science.gov (United States)

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  10. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Directory of Open Access Journals (Sweden)

    Kabilar Gunalan

    Full Text Available Deep brain stimulation (DBS is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports.Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM and predict the response of the hyperdirect pathway to clinical stimulation.Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD. This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution.Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings.Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  11. From Patient-Specific Mathematical Neuro-Oncology to Precision Medicine

    Directory of Open Access Journals (Sweden)

    Anne eBaldock

    2013-04-01

    Full Text Available Gliomas are notoriously aggressive, malignant brain tumors that have variable response to treatment. These patients often have poor prognosis, informed primarily by histopathology. Mathematical neuro-oncology (MNO is a young and burgeoning field that leverages mathematical models to predict and quantify response to therapies. These mathematical models can form the basis of modern precision medicine approaches to tailor therapy in a patient-specific manner. Patient specific models (PSMs can be used to overcome imaging limitations, improve prognostic predictions, stratify patients and assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research in the war on cancer. This review focuses on the growing translation of PSM to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific mathematical neuro-oncology.

  12. Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Zi-Bing Jin

    Full Text Available Retinitis pigmentosa (RP is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.

  13. A novel patient-specific model to compute coronary fractional flow reserve.

    Science.gov (United States)

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  14. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology

    International Nuclear Information System (INIS)

    Wake, N.; Chandarana, H.; Huang, W.C.; Taneja, S.S.; Rosenkrantz, A.B.

    2016-01-01

    Highlights: • We examine 3D printing in the context of urologic oncology. • Patient-specific 3D printed kidney and prostate tumor models were created. • 3D printed models extend the current capabilities of conventional 3D visualization. • 3D printed models may be used for surgical planning and intraoperative guidance.

  15. Patient-specific in silico models can quantify primary implant stability in elderly human bone.

    Science.gov (United States)

    Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry

    2018-03-01

    Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  17. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  18. Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models

    Directory of Open Access Journals (Sweden)

    Qiu Z

    2013-07-01

    Full Text Available Zhifang Qiu,1,2 Steven L Farnsworth,2 Anuja Mishra,1,2 Peter J Hornsby1,21Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA; 2Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USAAbstract: The development of the technology for derivation of induced pluripotent stem (iPS cells from human patients and animal models has opened up new pathways to the better understanding of many human diseases, and has created new opportunities for therapeutic approaches. Here, we consider one important neurological disease, Parkinson's, the development of relevant neural cell lines for studying this disease, and the animal models that are available for testing the survival and function of the cells, following transplantation into the central nervous system. Rapid progress has been made recently in the application of protocols for neuroectoderm differentiation and neural patterning of pluripotent stem cells. These developments have resulted in the ability to produce large numbers of dopaminergic neurons with midbrain characteristics for further study. These cells have been shown to be functional in both rodent and nonhuman primate (NHP models of Parkinson's disease. Patient-specific iPS cells and derived dopaminergic neurons have been developed, in particular from patients with genetic causes of Parkinson's disease. For complete modeling of the disease, it is proposed that the introduction of genetic changes into NHP iPS cells, followed by studying the phenotype of the genetic change in cells transplanted into the NHP as host animal, will yield new insights into disease processes not possible with rodent models alone.Keywords: Parkinson's disease, pluripotent cell differentiation, neural cell lines, dopaminergic neurons, cell transplantation, animal models

  19. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    International Nuclear Information System (INIS)

    Neylon, J; Qi, S; Sheng, K; Kupelian, P; Santhanam, A

    2014-01-01

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomy was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R 2 > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real

  20. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  1. Patient- and cohort-specific dose and risk estimation for abdominopelvic CT: a study based on 100 patients

    Science.gov (United States)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2012-03-01

    The purpose of this work was twofold: (a) to estimate patient- and cohort-specific radiation dose and cancer risk index for abdominopelvic computer tomography (CT) scans; (b) to evaluate the effects of patient anatomical characteristics (size, age, and gender) and CT scanner model on dose and risk conversion coefficients. The study included 100 patient models (42 pediatric models, 58 adult models) and multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which DLP-normalized-effective dose (k factor) and DLP-normalized-risk index values (q factor) were derived. The k factor showed exponential decrease with increasing patient size. For a given gender, q factor showed exponential decrease with both increasing patient size and patient age. The discrepancies in k and q factors across scanners were on average 8% and 15%, respectively. This study demonstrates the feasibility of estimating patient-specific organ dose and cohort-specific effective dose and risk index in abdominopelvic CT requiring only the knowledge of patient size, gender, and age.

  2. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    Science.gov (United States)

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  3. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    Science.gov (United States)

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  4. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    Directory of Open Access Journals (Sweden)

    Alexander Patronis

    2018-04-01

    Full Text Available Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.. We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  5. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    Science.gov (United States)

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  6. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions.

    Science.gov (United States)

    Kamangar, Sarfaraz; Badruddin, Irfan Anjum; Govindaraju, Kalimuthu; Nik-Ghazali, N; Badarudin, A; Viswanathan, Girish N; Ahmed, N J Salman; Khan, T M Yunus

    2017-08-01

    The purpose of this study is to investigate the effect of various degrees of percentage stenosis on hemodynamic parameters during the hyperemic flow condition. 3D patient-specific coronary artery models were generated based on the CT scan data using MIMICS-18. Numerical simulation was performed for normal and stenosed coronary artery models of 70, 80 and 90% AS (area stenosis). Pressure, velocity, wall shear stress and fractional flow reserve (FFR) were measured and compared with the normal coronary artery model during the cardiac cycle. The results show that, as the percentage AS increase, the pressure drop increases as compared with the normal coronary artery model. Considerable elevation of velocity was observed as the percentage AS increases. The results also demonstrate a recirculation zone immediate after the stenosis which could lead to further progression of stenosis in the flow-disturbed area. Highest wall shear stress was observed for 90% AS as compared to other models that could result in the rupture of coronary artery. The FFR of 90% AS is found to be considerably low.

  7. Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.

    Science.gov (United States)

    Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry

    2018-04-01

    Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.

  8. On the use of biomathematical models in patient-specific IMRT dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Heming [UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Tome, Wolfgang A. [Department of Radiation Oncology, Division of Medical Physics, Montefiore Medical Center and Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2013-07-15

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.

  9. On the use of biomathematical models in patient-specific IMRT dose QA

    International Nuclear Information System (INIS)

    Zhen Heming; Nelms, Benjamin E.; Tomé, Wolfgang A.

    2013-01-01

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:ΔTCP and ΔNTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's “robustness” to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types

  10. Prostate Cancer–Specific Mortality After Radical Prostatectomy for Patients Treated in the Prostate-Specific Antigen Era

    Science.gov (United States)

    Stephenson, Andrew J.; Kattan, Michael W.; Eastham, James A.; Bianco, Fernando J.; Yossepowitch, Ofer; Vickers, Andrew J.; Klein, Eric A.; Wood, David P.; Scardino, Peter T.

    2009-01-01

    Purpose The long-term risk of prostate cancer–specific mortality (PCSM) after radical prostatectomy is poorly defined for patients treated in the era of widespread prostate-specific antigen (PSA) screening. Models that predict the risk of PCSM are needed for patient counseling and clinical trial design. Methods A multi-institutional cohort of 12,677 patients treated with radical prostatectomy between 1987 and 2005 was analyzed for the risk of PCSM. Patient clinical information and treatment outcome was modeled using Fine and Gray competing risk regression analysis to predict PCSM. Results Fifteen-year PCSM and all-cause mortality were 12% and 38%, respectively. The estimated PCSM ranged from 5% to 38% for patients in the lowest and highest quartiles of predicted risk of PSA-defined recurrence, based on a popular nomogram. Biopsy Gleason grade, PSA, and year of surgery were associated with PCSM. A nomogram predicting the 15-year risk of PCSM was developed, and the externally validated concordance index was 0.82. Neither preoperative PSA velocity nor body mass index improved the model's accuracy. Only 4% of contemporary patients had a predicted 15-year PCSM of greater than 5%. Conclusion Few patients will die from prostate cancer within 15 years of radical prostatectomy, despite the presence of adverse clinical features. This favorable prognosis may be related to the effectiveness of radical prostatectomy (with or without secondary therapy) or the low lethality of screen-detected cancers. Given the limited ability to identify contemporary patients at substantially elevated risk of PCSM on the basis of clinical features alone, the need for novel markers specifically associated with the biology of lethal prostate cancer is evident. PMID:19636023

  11. A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress.

    Science.gov (United States)

    Lee, Kyung Eun; Kim, Gook Tae; Lee, Jeong Sang; Chung, Ju-Hyun; Shin, Eun-Seok; Shim, Eun Bo

    2016-11-01

    As the stenotic severity of a patient increases, fractional flow reserve (FFR) decreases, whereas the maximum wall shear stress (WSSmax) increases. However, the way in which these values can change according to stenotic severity has not previously been investigated. The aim of this study is to devise a virtual stenosis model to investigate variations in the coronary hemodynamic parameters of patients according to stenotic severity. To simulate coronary hemodynamics, a three-dimensional (3D) coronary artery model of computational fluid dynamics is coupled with a lumped parameter model of the coronary micro-vasculature and venous system. To validate the present method, we first simulated 13 patient-specific models of the coronary arteries and compared the results with those obtained clinically. Then, virtually narrowed coronary arterial models derived from the patient-specific cases were simulated to obtain the WSSmax and FFR values. The variations in FFR and WSSmax against the percentage of diameter stenosis in clinical cases were reproducible by the virtual stenosis models. We also found that the simulated FFR values were linearly correlated with the WSSmax values, but the linear slope varied by patient. We implemented 130 additional virtual models of stenosed coronary arteries based on data from 13 patients and obtained statistically meaningful results that were identical to the large-scale clinical studies. And the slope of the correlation line between FFR and WSSmax may help clinicians to design treatment plans for patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model

    Directory of Open Access Journals (Sweden)

    In Young Choi

    2016-06-01

    Full Text Available Duchenne muscular dystrophy (DMD remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs. Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our “chemical-compound-based” strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological “dual-SMAD” inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form “rescued” multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human “DMD-in-a-dish” model using hiPSC-based disease modeling.

  13. Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition

    Science.gov (United States)

    Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-11-01

    Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.

  14. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  15. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Science.gov (United States)

    Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  16. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  17. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model.

    Science.gov (United States)

    Choi, In Young; Lim, HoTae; Estrellas, Kenneth; Mula, Jyothi; Cohen, Tatiana V; Zhang, Yuanfan; Donnelly, Christopher J; Richard, Jean-Philippe; Kim, Yong Jun; Kim, Hyesoo; Kazuki, Yasuhiro; Oshimura, Mitsuo; Li, Hongmei Lisa; Hotta, Akitsu; Rothstein, Jeffrey; Maragakis, Nicholas; Wagner, Kathryn R; Lee, Gabsang

    2016-06-07

    Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our "chemical-compound-based" strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological "dual-SMAD" inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form "rescued" multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human "DMD-in-a-dish" model using hiPSC-based disease modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Patient-specific prediction of functional recovery after stroke.

    Science.gov (United States)

    Douiri, Abdel; Grace, Justin; Sarker, Shah-Jalal; Tilling, Kate; McKevitt, Christopher; Wolfe, Charles DA; Rudd, Anthony G

    2017-07-01

    Background and aims Clinical predictive models for stroke recovery could offer the opportunity of targeted early intervention and more specific information for patients and carers. In this study, we developed and validated a patient-specific prognostic model for monitoring recovery after stroke and assessed its clinical utility. Methods Four hundred and ninety-five patients from the population-based South London Stroke Register were included in a substudy between 2002 and 2004. Activities of daily living were assessed using Barthel Index) at one, two, three, four, six, eight, 12, 26, and 52 weeks after stroke. Penalized linear mixed models were developed to predict patients' functional recovery trajectories. An external validation cohort included 1049 newly registered stroke patients between 2005 and 2011. Prediction errors on discrimination and calibration were assessed. The potential clinical utility was evaluated using prognostic accuracy measurements and decision curve analysis. Results Predictive recovery curves showed good accuracy, with root mean squared deviation of 3 Barthel Index points and a R 2 of 83% up to one year after stroke in the external cohort. The negative predictive values of the risk of poor recovery (Barthel Index <8) at three and 12 months were also excellent, 96% (95% CI [93.6-97.4]) and 93% [90.8-95.3], respectively, with a potential clinical utility measured by likelihood ratios (LR+:17 [10.8-26.8] at three months and LR+:11 [6.5-17.2] at 12 months). Decision curve analysis showed an increased clinical benefit, particularly at threshold probabilities of above 5% for predictive risk of poor outcomes. Conclusions A recovery curves tool seems to accurately predict progression of functional recovery in poststroke patients.

  19. Assessment of CT dose to the fetus and pregnant female patient using patient-specific computational models

    DEFF Research Database (Denmark)

    Xie, Tianwu; Poletti, Pierre-Alexandre; Platon, Alexandra

    2018-01-01

    of pregnant patients and the embedded foetus, we developed a methodology for construction of patient-specific voxel-based computational phantoms based on existing standardised hybrid computational pregnant female phantoms. We estimated the maternal absorbed dose and foetal organ dose for 30 pregnant patients...... for assessment of the radiation risks to pregnant patients and the foetus from various CT scanning protocols, thus guiding the decision-making process. KEY POINTS: • In CT examinations, the absorbed dose is non-uniformly distributed within foetal organs. • This work reports, for the first time, estimates...

  20. Patient specific dynamic geometric models from sequential volumetric time series image data.

    Science.gov (United States)

    Cameron, B M; Robb, R A

    2004-01-01

    Generating patient specific dynamic models is complicated by the complexity of the motion intrinsic and extrinsic to the anatomic structures being modeled. Using a physics-based sequentially deforming algorithm, an anatomically accurate dynamic four-dimensional model can be created from a sequence of 3-D volumetric time series data sets. While such algorithms may accurately track the cyclic non-linear motion of the heart, they generally fail to accurately track extrinsic structural and non-cyclic motion. To accurately model these motions, we have modified a physics-based deformation algorithm to use a meta-surface defining the temporal and spatial maxima of the anatomic structure as the base reference surface. A mass-spring physics-based deformable model, which can expand or shrink with the local intrinsic motion, is applied to the metasurface, deforming this base reference surface to the volumetric data at each time point. As the meta-surface encompasses the temporal maxima of the structure, any extrinsic motion is inherently encoded into the base reference surface and allows the computation of the time point surfaces to be performed in parallel. The resultant 4-D model can be interactively transformed and viewed from different angles, showing the spatial and temporal motion of the anatomic structure. Using texture maps and per-vertex coloring, additional data such as physiological and/or biomechanical variables (e.g., mapping electrical activation sequences onto contracting myocardial surfaces) can be associated with the dynamic model, producing a 5-D model. For acquisition systems that may capture only limited time series data (e.g., only images at end-diastole/end-systole or inhalation/exhalation), this algorithm can provide useful interpolated surfaces between the time points. Such models help minimize the number of time points required to usefully depict the motion of anatomic structures for quantitative assessment of regional dynamics.

  1. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    International Nuclear Information System (INIS)

    Song, Ting; Zhou, Linghong; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Jiang, Steve B; Gu, Xuejun

    2015-01-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control. (paper)

  2. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    Energy Technology Data Exchange (ETDEWEB)

    Xiangfei, Chai; Hulshof, Maarten; Bel, Arjan [Department of Radiotherapy, Academic medical Center, University of Amsterdam, 1105 AZ, Amsterdam (Netherlands); Van Herk, Marcel; Betgen, Anja [Department of Radiotherapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, 1066 CX, Amsterdam (Netherlands)

    2012-06-21

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  3. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    International Nuclear Information System (INIS)

    Chai Xiangfei; Hulshof, Maarten; Bel, Arjan; Van Herk, Marcel; Betgen, Anja

    2012-01-01

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  4. Primary stability of a cementless acetabular cup in a cohort of patient-specific finite element models.

    Science.gov (United States)

    O'Rourke, Dermot; Al-Dirini, Rami Ma; Taylor, Mark

    2018-03-01

    The primary stability achieved during total hip arthroplasty determines the long-term success of cementless acetabular cups. Pre-clinical finite element testing of cups typically use a model of a single patient and assume the results can be extrapolated to the general population. This study explored the variability in predicted primary stability of a Pinnacle ® cementless acetabular cup in 103 patient-specific finite element models of the hemipelvis and examined the association between patient-related factors and the observed variability. Cups were inserted by displacement-control into the FE models and then a loading configuration simulating a complete level gait cycle was applied. The cohort showed a range of polar gap of 284-1112 μm and 95th percentile composite peak micromotion (CPM) of 18-624 μm. Regression analysis was not conclusive on the relationship between patient-related factors and primary stability. No relationship was found between polar gap and micromotion. However, when the patient-related factors were categorised into quartile groups, trends suggested higher polar gaps occurred in subjects with small and shallow acetabular geometries and cup motion during gait was affected most by low elastic modulus and high bodyweight. The variation in primary stability in the cohort for an acetabular cup with a proven clinical track record may provide benchmark data when evaluating new cup designs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1012-1023, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  6. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  7. A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation

    Science.gov (United States)

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2017-01-01

    Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316

  8. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  9. 3D Rapid Prototyping for Otolaryngology—Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling

    Science.gov (United States)

    Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  10. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  11. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    International Nuclear Information System (INIS)

    Schoot, A. J. A. J. van de; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A.; Hoogeman, M. S.; Chai, X.

    2014-01-01

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  12. Applications of patient-specific 3D printing in medicine.

    Science.gov (United States)

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal

    Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.

  13. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    Science.gov (United States)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  14. Survival prediction model for postoperative hepatocellular carcinoma patients.

    Science.gov (United States)

    Ren, Zhihui; He, Shasha; Fan, Xiaotang; He, Fangping; Sang, Wei; Bao, Yongxing; Ren, Weixin; Zhao, Jinming; Ji, Xuewen; Wen, Hao

    2017-09-01

    This study is to establish a predictive index (PI) model of 5-year survival rate for patients with hepatocellular carcinoma (HCC) after radical resection and to evaluate its prediction sensitivity, specificity, and accuracy.Patients underwent HCC surgical resection were enrolled and randomly divided into prediction model group (101 patients) and model evaluation group (100 patients). Cox regression model was used for univariate and multivariate survival analysis. A PI model was established based on multivariate analysis and receiver operating characteristic (ROC) curve was drawn accordingly. The area under ROC (AUROC) and PI cutoff value was identified.Multiple Cox regression analysis of prediction model group showed that neutrophil to lymphocyte ratio, histological grade, microvascular invasion, positive resection margin, number of tumor, and postoperative transcatheter arterial chemoembolization treatment were the independent predictors for the 5-year survival rate for HCC patients. The model was PI = 0.377 × NLR + 0.554 × HG + 0.927 × PRM + 0.778 × MVI + 0.740 × NT - 0.831 × transcatheter arterial chemoembolization (TACE). In the prediction model group, AUROC was 0.832 and the PI cutoff value was 3.38. The sensitivity, specificity, and accuracy were 78.0%, 80%, and 79.2%, respectively. In model evaluation group, AUROC was 0.822, and the PI cutoff value was well corresponded to the prediction model group with sensitivity, specificity, and accuracy of 85.0%, 83.3%, and 84.0%, respectively.The PI model can quantify the mortality risk of hepatitis B related HCC with high sensitivity, specificity, and accuracy.

  15. Neural Network Optimization of Ligament Stiffnesses for the Enhanced Predictive Ability of a Patient-Specific, Computational Foot/Ankle Model.

    Science.gov (United States)

    Chande, Ruchi D; Wayne, Jennifer S

    2017-09-01

    Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.

  16. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  17. Fluorescent humanized anti-CEA antibody specifically labels metastatic pancreatic cancer in a patient-derived orthotopic xenograft (PDOX) mouse model

    Science.gov (United States)

    Lwin, Thinzar M.; Miyake, Kentaro; Murakami, Takashi; DeLong, Jonathan C.; Yazaki, Paul J.; Shivley, John E.; Clary, Bryan; Hoffman, Robert M.; Bouvet, Michael

    2018-03-01

    Specific tumor targeting can result in selective labeling of cancer in vivo for surgical navigation. In the present study, we show that the use of an anti-CEA antibody conjugated to the near-infrared (NIR) fluorescent dye, IRDye800CW, can selectively target and label pancreatic cancer and its metastases in a clinically relevant patient derived xenograft mouse model.

  18. Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Tanaka

    2015-08-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.

  19. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  20. Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors

    International Nuclear Information System (INIS)

    Herschtal, A; Te Marvelde, L; Mengersen, K; Foroudi, F; Ball, D; Devereux, T; Pham, D; Greer, P B; Pichler, P; Eade, T; Kneebone, A; Bell, L; Caine, H; Hindson, B; Kron, T; Hosseinifard, Z

    2015-01-01

    Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts −19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements. (paper)

  1. Patient specific 3D printed phantom for IMRT quality assurance

    International Nuclear Information System (INIS)

    Ehler, Eric D; Higgins, Patrick D; Dusenbery, Kathryn E; Barney, Brett M

    2014-01-01

    The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)

  2. Patient-specific fibre-based models of muscle wrapping

    Science.gov (United States)

    Kohout, J.; Clapworthy, G. J.; Zhao, Y.; Tao, Y.; Gonzalez-Garcia, G.; Dong, F.; Wei, H.; Kohoutová, E.

    2013-01-01

    In many biomechanical problems, the availability of a suitable model for the wrapping of muscles when undergoing movement is essential for the estimation of forces produced on and by the body during motion. This is an important factor in the Osteoporotic Virtual Physiological Human project which is investigating the likelihood of fracture for osteoporotic patients undertaking a variety of movements. The weakening of their skeletons makes them particularly vulnerable to bone fracture caused by excessive loading being placed on the bones, even in simple everyday tasks. This paper provides an overview of a novel volumetric model that describes muscle wrapping around bones and other muscles during movement, and which includes a consideration of how the orientations of the muscle fibres change during the motion. The method can calculate the form of wrapping of a muscle of medium size and visualize the outcome within tenths of seconds on commodity hardware, while conserving muscle volume. This makes the method suitable not only for educational biomedical software, but also for clinical applications used to identify weak muscles that should be strengthened during rehabilitation or to identify bone stresses in order to estimate the risk of fractures. PMID:24427519

  3. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Guoyan [Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern (Switzerland)

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction. The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark

  4. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  5. Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Mehlsen, Jesper; Olufsen, Mette

    2014-01-01

    We consider the inverse and patient specific problem of short term (seconds to minutes) heart rate regulation specified by a system of nonlinear ODEs and corresponding data. We show how a recent method termed the structural correlation method (SCM) can be used for model reduction and for obtaining...... a set of practically identifiable parameters. The structural correlation method includes two steps: sensitivity and correlation analysis. When combined with an optimization step, it is possible to estimate model parameters, enabling the model to fit dynamics observed in data. This method is illustrated...... in detail on a model predicting baroreflex regulation of heart rate and applied to analysis of data from a rat and healthy humans. Numerous mathematical models have been proposed for prediction of baroreflex regulation of heart rate, yet most of these have been designed to provide qualitative predictions...

  6. Creating Shape Templates for Patient Specific Biventricular Modeling in Congenital Heart Disease

    Science.gov (United States)

    Gilbert, Kathleen; Farrar, Genevieve; Cowan, Brett R.; Suinesiaputra, Avan; Occleshaw, Christopher; Pontré, Beau; Perry, James; Hegde, Sanjeet; Marsden, Alison; Omens, Jeff; McCulloch, Andrew; Young, Alistair A.

    2018-01-01

    Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices. PMID:26736353

  7. WE-G-207-06: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Physical Phantom and Clinical Patient Images

    International Nuclear Information System (INIS)

    Dhou, S; Cai, W; Hurwitz, M; Rottmann, J; Myronakis, M; Cifter, F; Berbeco, R; Lewis, J; Williams, C; Mishra, P; Ionascu, D

    2015-01-01

    Purpose: Respiratory-correlated cone-beam CT (4DCBCT) images acquired immediately prior to treatment have the potential to represent patient motion patterns and anatomy during treatment, including both intra- and inter-fractional changes. We develop a method to generate patient-specific motion models based on 4DCBCT images acquired with existing clinical equipment and used to generate time varying volumetric images (3D fluoroscopic images) representing motion during treatment delivery. Methods: Motion models are derived by deformably registering each 4DCBCT phase to a reference phase, and performing principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated by optimizing the resulting PCA coefficients iteratively through comparison of the cone-beam projections simulating kV treatment imaging and digitally reconstructed radiographs generated from the motion model. Patient and physical phantom datasets are used to evaluate the method in terms of tumor localization error compared to manually defined ground truth positions. Results: 4DCBCT-based motion models were derived and used to generate 3D fluoroscopic images at treatment time. For the patient datasets, the average tumor localization error and the 95th percentile were 1.57 and 3.13 respectively in subsets of four patient datasets. For the physical phantom datasets, the average tumor localization error and the 95th percentile were 1.14 and 2.78 respectively in two datasets. 4DCBCT motion models are shown to perform well in the context of generating 3D fluoroscopic images due to their ability to reproduce anatomical changes at treatment time. Conclusion: This study showed the feasibility of deriving 4DCBCT-based motion models and using them to generate 3D fluoroscopic images at treatment time in real clinical settings. 4DCBCT-based motion models were found to account for the 3D non-rigid motion of the patient anatomy during treatment and have the potential

  8. Patient-specific surgical simulation.

    Science.gov (United States)

    Soler, Luc; Marescaux, Jacques

    2008-02-01

    Technological innovations of the twentieth century have provided medicine and surgery with new tools for education and therapy definition. Thus, by combining Medical Imaging and Virtual Reality, patient-specific applications providing preoperative surgical simulation have become possible.

  9. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    OpenAIRE

    Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

    2016-01-01

    The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face ...

  10. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements

    Directory of Open Access Journals (Sweden)

    Derek Groen

    2018-06-01

    Full Text Available We present a validation study comparing results from a patient-specific lattice-Boltzmann simulation to transcranial Doppler (TCD velocity measurements in four different planes of the middle cerebral artery (MCA. As part of the study, we compared simulations using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the viability of using downscaled velocities to reduce the required resolution. Simulations with unscaled velocities predict the maximum flow velocity with an error of less than 9%, independent of the rheology model chosen. The accuracy of the simulation predictions worsens considerably when simulations are run at reduced velocity, as is for example the case when inflow velocities from healthy individuals are used on a vascular model of a stroke patient. Our results demonstrate the importance of using directly measured and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude that localized TCD measurements together with predictive simulations can be used to obtain flow estimates with high fidelity over a larger region, and reduce the need for more invasive flow measurement procedures.

  11. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  12. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.

    Science.gov (United States)

    Haberman, Yael; Tickle, Timothy L; Dexheimer, Phillip J; Kim, Mi-Ok; Tang, Dora; Karns, Rebekah; Baldassano, Robert N; Noe, Joshua D; Rosh, Joel; Markowitz, James; Heyman, Melvin B; Griffiths, Anne M; Crandall, Wallace V; Mack, David R; Baker, Susan S; Huttenhower, Curtis; Keljo, David J; Hyams, Jeffrey S; Kugathasan, Subra; Walters, Thomas D; Aronow, Bruce; Xavier, Ramnik J; Gevers, Dirk; Denson, Lee A

    2014-08-01

    Interactions between the host and gut microbial community likely contribute to Crohn disease (CD) pathogenesis; however, direct evidence for these interactions at the onset of disease is lacking. Here, we characterized the global pattern of ileal gene expression and the ileal microbial community in 359 treatment-naive pediatric patients with CD, patients with ulcerative colitis (UC), and control individuals. We identified core gene expression profiles and microbial communities in the affected CD ilea that are preserved in the unaffected ilea of patients with colon-only CD but not present in those with UC or control individuals; therefore, this signature is specific to CD and independent of clinical inflammation. An abnormal increase of antimicrobial dual oxidase (DUOX2) expression was detected in association with an expansion of Proteobacteria in both UC and CD, while expression of lipoprotein APOA1 gene was downregulated and associated with CD-specific alterations in Firmicutes. The increased DUOX2 and decreased APOA1 gene expression signature favored oxidative stress and Th1 polarization and was maximally altered in patients with more severe mucosal injury. A regression model that included APOA1 gene expression and microbial abundance more accurately predicted month 6 steroid-free remission than a model using clinical factors alone. These CD-specific host and microbe profiles identify the ileum as the primary inductive site for all forms of CD and may direct prognostic and therapeutic approaches.

  13. Patient-specific three-dimensional printing for pre-surgical planning in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Perica, Elizabeth; Sun, Zhonghua

    2017-12-01

    Recently, three-dimensional (3D) printing has shown great interest in medicine, and 3D printed models may be rendered as part of the pre-surgical planning process in order to better understand the complexities of an individual's anatomy. The aim of this study is to investigate the feasibility of utilising 3D printed liver models as clinical tools in pre-operative planning for resectable hepatocellular carcinoma (HCC) lesions. High-resolution contrast-enhanced computed tomography (CT) images were acquired and utilized to generate a patient-specific 3D printed liver model. Hepatic structures were segmented and edited to produce a printable model delineating intrahepatic anatomy and a resectable HCC lesion. Quantitative assessment of 3D model accuracy compared measurements of critical anatomical landmarks acquired from the original CT images, standard tessellation language (STL) files, and the 3D printed liver model. Comparative analysis of surveys completed by two radiologists investigated the clinical value of 3D printed liver models in radiology. The application of utilizing 3D printed liver models as tools in surgical planning for resectable HCC lesions was evaluated through kappa analysis of questionnaires completed by two abdominal surgeons. A scaled down multi-material 3D liver model delineating patient-specific hepatic anatomy and pathology was produced, requiring a total production time of 25.25 hours and costing a total of AUD $1,250. A discrepancy was found in the total mean of measurements at each stage of production, with a total mean of 18.28±9.31 mm for measurements acquired from the original CT data, 15.63±8.06 mm for the STL files, and 14.47±7.71 mm for the 3D printed liver model. The 3D liver model did not enhance the radiologists' perception of patient-specific anatomy or pathology. Kappa analysis of the surgeon's responses to survey questions yielded a percentage agreement of 80%, and a κ value of 0.38 (P=0.24) indicating fair agreement. Study

  14. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    Energy Technology Data Exchange (ETDEWEB)

    Dhou, S; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Ionascu, D [William Beaumont Hospital, Royal Oak, MI (United States); Lewis, J [University of California at Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  15. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    International Nuclear Information System (INIS)

    Dhou, S; Williams, C; Ionascu, D; Lewis, J

    2016-01-01

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  16. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  17. Patient-Specific Simulation Models of the Abdominal Aorta With and Without Aneurysms

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand

    to be isotropic, which may allow simpler phenomenological models to capture these effects. There is a pressing need, however, for more detailed histological information coupled with more complete experimental data for the systemic arteries. The second study was aimed at developing computational simulation models...... relations for computational analysis, and evaluation of the material model predictability. The constitutive framework applied is the four fiber family (4FF) model. This model assumes that the wall is a constrained mixture of an amorphous isotropic elastin dominated matrix reinforced by collagen fibers....... The collagen fibers are grouped in four directions of orientation. The purpose of the first study was to investigate whether significant risk factors related to AAA development can be identified from a specific pattern in the material parameters of the 4FF model. Smoking is a leading self-inflicted risk factor...

  18. Design and manufacturing of patient-specific orthodontic appliances by computer-aided engineering techniques.

    Science.gov (United States)

    Barone, Sandro; Neri, Paolo; Paoli, Alessandro; Razionale, Armando Viviano

    2018-01-01

    Orthodontic treatments are usually performed using fixed brackets or removable oral appliances, which are traditionally made from alginate impressions and wax registrations. Among removable devices, eruption guidance appliances are used for early orthodontic treatments in order to intercept and prevent malocclusion problems. Commercially available eruption guidance appliances, however, are symmetric devices produced using a few standard sizes. For this reason, they are not able to meet all the specific patient's needs since the actual dental anatomies present various geometries and asymmetric conditions. In this article, a computer-aided design-based methodology for the design and manufacturing of a patient-specific eruption guidance appliances is presented. The proposed approach is based on the digitalization of several steps of the overall process: from the digital reconstruction of patients' anatomies to the manufacturing of customized appliances. A finite element model has been developed to evaluate the temporomandibular joint disks stress level caused by using symmetric eruption guidance appliances with different teeth misalignment conditions. The developed model can then be used to guide the design of a patient-specific appliance with the aim at reducing the patient discomfort. At this purpose, two different customization levels are proposed in order to face both arches and single tooth misalignment issues. A low-cost manufacturing process, based on an additive manufacturing technique, is finally presented and discussed.

  19. Estimating patient-specific soft-tissue properties in a TKA knee.

    Science.gov (United States)

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    Science.gov (United States)

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  1. Patient Specific Multiscale Simulations of Blood Flow in Coronary Artery Bypass Surgery

    Science.gov (United States)

    Bangalore Ramachandra, Abhay; Sankaran, Sethuraman; Kahn, Andrew M.; Marsden, Alison L.

    2013-11-01

    Coronary artery bypass surgery is performed to revascularize blocked coronary arteries in roughly 400,000 patients per year in the US.While arterial grafts offer superior patency, vein grafts are used in more than 70% of procedures, as most patients require multiple grafts. Vein graft failure (approx. 50% within 10 years) remains a major clinical issue. Mounting evidence suggests that hemodynamics plays a key role as a mechano-biological stimulus contributing to graft failure. However, quantifying relevant hemodynamic quantities (e.g. wall shear stress) invivo is not possible directly using clinical imaging techniques. We numerically compute graft hemodynamics in a cohort of 3-D patient specific models using a stabilized finite element method. The 3D flow domain is coupled to a 0D lumped parameter circulatory model. Boundary conditions are tuned to match patient specific blood pressures, stroke volumes & heart rates. Results reproduce clinically observed coronary flow waveforms. We quantify differences in multiple hemodynamic quantities between arterial & venous grafts & discuss possible correlations between graft hemodynamics & clinically observed graft failure.Such correlations will provide further insight into mechanisms of graft failure and may lead to improved clinical outcomes.

  2. Patient-Specific Tailored Intervention Improves INR Time in Therapeutic Range and INR Variability in Heart Failure Patients.

    Science.gov (United States)

    Gotsman, Israel; Ezra, Orly; Hirsh Raccah, Bruria; Admon, Dan; Lotan, Chaim; Dekeyser Ganz, Freda

    2017-08-01

    Many patients with heart failure need anticoagulants, including warfarin. Good control is particularly challenging in heart failure patients, with range, thereby increasing the risk of complications. This study aimed to evaluate the effect of a patient-specific tailored intervention on anticoagulation control in patients with heart failure. Patients with heart failure taking warfarin therapy (n = 145) were randomized to either standard care or a 1-time intervention assessing potential risk factors for lability of INR, in which they received patient-specific instructions. Time in therapeutic range (TTR) using Rosendaal's linear model was assessed 3 months before and after the intervention. The patient-tailored intervention significantly increased anticoagulation control. The median TTR levels before intervention were suboptimal in the interventional and control groups (53% vs 45%, P = .14). After intervention the median TTR increased significantly in the interventional group compared with the control group (80% [interquartile range, 62%-93%] vs 44% [29%-61%], P <.0001). The intervention resulted in a significant improvement in the interventional group before versus after intervention (53% vs 80%, P <.0001) but not in the control group (45% vs 44%, P = .95). The percentage of patients with a TTR ≥60%, considered therapeutic, was substantially higher in the interventional group: 79% versus 25% (P <.0001). The INR variability (standard deviation of each patient's INR measurements) decreased significantly in the interventional group, from 0.53 to 0.32 (P <.0001) after intervention but not in the control group. Patient-specific tailored intervention significantly improves anticoagulation therapy in patients with heart failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  4. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.

    Science.gov (United States)

    Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R

    Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  7. SU-E-T-760: Tolerance Design for Site-Specific Range in Proton Patient QA Process Using the Six Sigma Model

    International Nuclear Information System (INIS)

    Lah, J; Shin, D; Kim, G

    2015-01-01

    Purpose: To show how tolerance design and tolerancing approaches can be used to predict and improve the site-specific range in patient QA process in implementing the Six Sigma. Methods: In this study, patient QA plans were selected according to 6 site-treatment groups: head &neck (94 cases), spine (76 cases), lung (89 cases), liver (53 cases), pancreas (55 cases), and prostate (121 cases), treated between 2007 and 2013. We evaluated a model of the Six Sigma that determines allowable deviations in design parameters and process variables in patient-specific QA, where possible, tolerance may be loosened, then customized if it necessary to meet the functional requirements. A Six Sigma problem-solving methodology is known as DMAIC phases, which are used stand for: Define a problem or improvement opportunity, Measure process performance, Analyze the process to determine the root causes of poor performance, Improve the process by fixing root causes, Control the improved process to hold the gains. Results: The process capability for patient-specific range QA is 0.65 with only ±1 mm of tolerance criteria. Our results suggested the tolerance level of ±2–3 mm for prostate and liver cases and ±5 mm for lung cases. We found that customized tolerance between calculated and measured range reduce that patient QA plan failure and almost all sites had failure rates less than 1%. The average QA time also improved from 2 hr to less than 1 hr for all including planning and converting process, depth-dose measurement and evaluation. Conclusion: The objective of tolerance design is to achieve optimization beyond that obtained through QA process improvement and statistical analysis function detailing to implement a Six Sigma capable design

  8. SU-E-T-760: Tolerance Design for Site-Specific Range in Proton Patient QA Process Using the Six Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Lah, J [Myongji Hospital, Goyang, Gyeonggi-do (Korea, Republic of); Shin, D [National Cancer Center, Goyang-si, Gyeonggi-do (Korea, Republic of); Kim, G [University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To show how tolerance design and tolerancing approaches can be used to predict and improve the site-specific range in patient QA process in implementing the Six Sigma. Methods: In this study, patient QA plans were selected according to 6 site-treatment groups: head &neck (94 cases), spine (76 cases), lung (89 cases), liver (53 cases), pancreas (55 cases), and prostate (121 cases), treated between 2007 and 2013. We evaluated a model of the Six Sigma that determines allowable deviations in design parameters and process variables in patient-specific QA, where possible, tolerance may be loosened, then customized if it necessary to meet the functional requirements. A Six Sigma problem-solving methodology is known as DMAIC phases, which are used stand for: Define a problem or improvement opportunity, Measure process performance, Analyze the process to determine the root causes of poor performance, Improve the process by fixing root causes, Control the improved process to hold the gains. Results: The process capability for patient-specific range QA is 0.65 with only ±1 mm of tolerance criteria. Our results suggested the tolerance level of ±2–3 mm for prostate and liver cases and ±5 mm for lung cases. We found that customized tolerance between calculated and measured range reduce that patient QA plan failure and almost all sites had failure rates less than 1%. The average QA time also improved from 2 hr to less than 1 hr for all including planning and converting process, depth-dose measurement and evaluation. Conclusion: The objective of tolerance design is to achieve optimization beyond that obtained through QA process improvement and statistical analysis function detailing to implement a Six Sigma capable design.

  9. Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.

    Science.gov (United States)

    Byham-Gray, Laura D; Parrott, J Scott; Peters, Emily N; Fogerite, Susan Gould; Hand, Rosa K; Ahrens, Sean; Marcus, Andrea Fleisch; Fiutem, Justin J

    2017-03-01

    Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ≥65 years old. After screening for multicollinearity, the best predictive model of mREE ( R 2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability ( R 2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.

  10. Mucorales-Specific T Cells in Patients with Hematologic Malignancies.

    Science.gov (United States)

    Potenza, Leonardo; Vallerini, Daniela; Barozzi, Patrizia; Riva, Giovanni; Gilioli, Andrea; Forghieri, Fabio; Candoni, Anna; Cesaro, Simone; Quadrelli, Chiara; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Codeluppi, Mauro; Mussini, Cristina; Colaci, Elisabetta; Messerotti, Andrea; Paolini, Ambra; Maccaferri, Monica; Fantuzzi, Valeria; Del Giovane, Cinzia; Stefani, Alessandro; Morandi, Uliano; Maffei, Rossana; Marasca, Roberto; Narni, Franco; Fanin, Renato; Comoli, Patrizia; Romani, Luigina; Beauvais, Anne; Viale, Pier Luigi; Latgè, Jean Paul; Lewis, Russell E; Luppi, Mario

    2016-01-01

    Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB) samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3%) of 204 patients, accounting for 32 (5.3%) of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD), showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD): 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD. Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.

  11. Mucorales-Specific T Cells in Patients with Hematologic Malignancies.

    Directory of Open Access Journals (Sweden)

    Leonardo Potenza

    Full Text Available Invasive mucormycosis (IM is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients.By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3% of 204 patients, accounting for 32 (5.3% of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD, showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD: 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD.Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.

  12. Model-based Vestibular Afferent Stimulation: Modular Workflow for Analyzing Stimulation Scenarios in Patient Specific and Statistical Vestibular Anatomy

    Directory of Open Access Journals (Sweden)

    Michael Handler

    2017-12-01

    Full Text Available Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i the transformation of labeled datasets to a tetrahedra mesh, (ii nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii inclusion of arbitrary electrode designs, (iv simulation of quasistationary potential distributions, and (v analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.

  13. The effect of patient-specific factors on radiation-induced regional lung injury

    International Nuclear Information System (INIS)

    Garipagaoglu, Melahat; Munley, Michael T.; Hollis, Donna; Poulson, Jean M.; Bentel, Gunilla C.; Sibley, Gregory; Anscher, Mitchell S.; Fan Ming; Jaszczak, Ronald J.; Coleman, R. Edward; Marks, Lawrence B.

    1999-01-01

    Purpose: To assess the impact of patient-specific factors on radiation (RT)-induced reductions in regional lung perfusion. Methods: Fifty patients (32 lung carcinoma, 7 Hodgkin's disease, 9 breast carcinoma and 2 other thoracic tumors) had pre-RT and ≥24-week post-RT single photon emission computed tomography (SPECT) perfusion images to assess the dose dependence of RT-induced reductions in regional lung perfusion. The SPECT data were analyzed using a normalized and non-normalized approach. Furthermore, two different mathematical methods were used to assess the impact of patient-specific factors on the dose-response curve (DRC). First, DRCs for different patient subgroups were generated and compared. Second, in a more formal statistical approach, individual DRCs for regional lung injury for each patient were fit to a linear-quadratic model (reduction = coefficient 1 x dose + coefficient 2 x dose 2 ). Multiple patient-specific factors including tobacco history, pre-RT diffusion capacity to carbon monoxide (DLCO), transforming growth factor-beta (TGF-β), chemotherapy exposure, disease type, and mean lung dose were explored in a multivariate analysis to assess their impact on the coefficients. Results: None of the variables tested had a consistent impact on the radiation sensitivity of regional lung (i.e., the slope of the DRC). In the formal statistical analysis, there was a suggestion of a slight increase in radiation sensitivity in the dose range >40 Gy for nonsmokers (vs. smokers) and in those receiving chemotherapy (vs. no chemotherapy). However, this finding was very dependent on the specific statistical and normalization method used. Conclusion: Patient-specific factors do not have a dramatic effect on RT-induced reduction in regional lung perfusion. Additional studies are underway to better clarify this issue. We continue to postulate that patient-specific factors will impact on how the summation of regional injury translates into whole organ injury

  14. Development of a Patient-Specific Multi-Scale Model to Understand Atherosclerosis and Calcification Locations: Comparison with In vivo Data in an Aortic Dissection

    Science.gov (United States)

    Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa

    2016-01-01

    Vascular calcification results in stiffening of the aorta and is associated with hypertension and atherosclerosis. Atherogenesis is a complex, multifactorial, and systemic process; the result of a number of factors, each operating simultaneously at several spatial and temporal scales. The ability to predict sites of atherogenesis would be of great use to clinicians in order to improve diagnostic and treatment planning. In this paper, we present a mathematical model as a tool to understand why atherosclerotic plaque and calcifications occur in specific locations. This model is then used to analyze vascular calcification and atherosclerotic areas in an aortic dissection patient using a mechanistic, multi-scale modeling approach, coupling patient-specific, fluid-structure interaction simulations with a model of endothelial mechanotransduction. A number of hemodynamic factors based on state-of-the-art literature are used as inputs to the endothelial permeability model, in order to investigate plaque and calcification distributions, which are compared with clinical imaging data. A significantly improved correlation between elevated hydraulic conductivity or volume flux and the presence of calcification and plaques was achieved by using a shear index comprising both mean and oscillatory shear components (HOLMES) and a non-Newtonian viscosity model as inputs, as compared to widely used hemodynamic indicators. The proposed approach shows promise as a predictive tool. The improvements obtained using the combined biomechanical/biochemical modeling approach highlight the benefits of mechanistic modeling as a powerful tool to understand complex phenomena and provides insight into the relative importance of key hemodynamic parameters. PMID:27445834

  15. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Tasneem P. Sharma

    2017-05-01

    Full Text Available Retinitis pigmentosa (RP is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1 gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.

  16. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    published by the UK's ImPACT group for a scan using an equivalent scanner, kVp, collimation, pitch and mAs. The CT source model was shown to calculate both a relative and absolute radiation dose distribution throughout the entire volume in a patient-specific matrix geometry. Results of initial testing are promising and application to patient models was shown to be feasible

  17. 3D-Printed Patient-Specific ACL Femoral Tunnel Guide from MRI.

    Science.gov (United States)

    Rankin, Iain; Rehman, Haroon; Frame, Mark

    2018-01-01

    Traditional ACL reconstruction with non-anatomic techniques can demonstrate unsatisfactory long-term outcomes with regards instability and the degenerative knee changes observed with these results. Anatomic ACL reconstruction attempts to closely reproduce the patient's individual anatomic characteristics with the aim of restoring knee kinematics, in order to improve patient short and long-term outcomes. We designed an arthroscopic, patient-specific, ACL femoral tunnel guide to aid anatomical placement of the ACL graft within the femoral tunnel. The guide design was based on MRI scan of the subject's uninjured contralateral knee, identifying the femoral footprint and its anatomical position relative to the borders of the femoral articular cartilage. Image processing software was used to create a 3D computer aided design which was subsequently exported to a 3D-printing service. Transparent acrylic based photopolymer, PA220 plastic and 316L stainless steel patient-specific ACL femoral tunnel guides were created; the models produced were accurate with no statistical difference in size and positioning of the center of the ACL femoral footprint guide to MRI ( p =0.344, p =0.189, p =0.233 respectively). The guides aim to provide accurate marking of the starting point of the femoral tunnel in arthroscopic ACL reconstruction. This study serves as a proof of concept for the accurate creation of 3D-printed patient-specific guides for the anatomical placement of the femoral tunnel during ACL reconstruction.

  18. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Directory of Open Access Journals (Sweden)

    Yunlong Huo

    Full Text Available It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60% may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12 patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI. The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2 and decreased OSI (<0.02 to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2. These findings have significant implications for graft adaptation and long-term patency.

  19. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Science.gov (United States)

    Huo, Yunlong; Luo, Tong; Guccione, Julius M; Teague, Shawn D; Tan, Wenchang; Navia, José A; Kassab, Ghassan S

    2013-01-01

    It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG) are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60%) may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12) patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS) and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI). The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2)) and decreased OSI (<0.02) to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2)). These findings have significant implications for graft adaptation and long-term patency.

  20. Bilinear models for inter- and intra-patient variation of the prostate

    International Nuclear Information System (INIS)

    Jeong, Y; Radke, R J; Lovelock, D M

    2010-01-01

    We propose bilinear models for capturing and effectively decoupling the expected shape variations of an organ both across the patient population and within a specific patient. Bilinear models have been successfully introduced in other areas of computer vision, but they have rarely been used in medical imaging applications. Our particular interest is in modeling the shape variation of the prostate for potential use in radiation therapy treatment planning. Using a dataset of 204 prostate shapes contoured from CT imagery of 12 different patients, we build bilinear models and show that they can fit both training and testing shapes accurately. We also show how the bilinear model can adapt to a new patient using only a few example shapes, producing a patient-specific model that also reflects expected content variation learnt from a broader population. Finally, we evaluate the training and testing projection error, adaptation performance and image segmentation accuracy of the bilinear model compared to linear principal component analysis and hierarchical point distribution models with the same number of parameters.

  1. Industry specific financial distress modeling

    Directory of Open Access Journals (Sweden)

    Naz Sayari

    2017-01-01

    Full Text Available This study investigates uncertainty levels of various industries and tries to determine financial ratios having the greatest information content in determining the set of industry characteristics. It then uses these ratios to develop industry specific financial distress models. First, we employ factor analysis to determine the set of ratios that are most informative in specified industries. Second, we use a method based on the concept of entropy to measure the level of uncertainty in industries and also to single out the ratios that best reflect the uncertainty levels in specific industries. Finally, we conduct a logistic regression analysis and derive industry specific financial distress models which can be used to judge the predictive ability of selected financial ratios for each industry. The results show that financial ratios do indeed echo industry characteristics and that information content of specific ratios varies among different industries. Our findings show diverging impact of industry characteristics on companies; and thus the necessity of constructing industry specific financial distress models.

  2. Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach

    Science.gov (United States)

    Di Tomaso, Giulia; Agu, Obiekezie; Pichardo-Almarza, Cesar

    2014-01-01

    The development of a new technology based on patient-specific modelling for personalised healthcare in the case of atherosclerosis is presented. Atherosclerosis is the main cause of death in the world and it has become a burden on clinical services as it manifests itself in many diverse forms, such as coronary artery disease, cerebrovascular disease/stroke and peripheral arterial disease. It is also a multifactorial, chronic and systemic process that lasts for a lifetime, putting enormous financial and clinical pressure on national health systems. In this Letter, the postulate is that the development of new technologies for healthcare using computer simulations can, in the future, be developed as in-silico management and support systems. These new technologies will be based on predictive models (including the integration of observations, theories and predictions across a range of temporal and spatial scales, scientific disciplines, key risk factors and anatomical sub-systems) combined with digital patient data and visualisation tools. Although the problem is extremely complex, a simulation workflow and an exemplar application of this type of technology for clinical use is presented, which is currently being developed by a multidisciplinary team following the requirements and constraints of the Vascular Service Unit at the University College Hospital, London. PMID:26609369

  3. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  4. Disease-specific self-efficacy in spasmodic dysphonia patients.

    Science.gov (United States)

    Hu, Amanda; Isetti, Derek; Hillel, Allen D; Waugh, Patricia; Comstock, Bryan; Meyer, Tanya K

    2013-03-01

    Self-efficacy (SE) is an optimistic self-belief that one can perform a novel task. This concept involves empowerment, self-esteem, and adaptation to a stressful situation. SE is a strong predictor of health behaviors. Our objectives were to study SE in spasmodic dysphonia (SD) and to develop a disease-specific SE-SD scale. Prospective study. Academic hospital. Disease-specific SE-SD items were developed with laryngologists, speech pathologists, and SD patients. These items, General SE Scale, Voice Handicap Index-10 (VHI-10), Consensus Auditory Perceptual Evaluation of Voice (CAPE-V), and Hospital Anxiety and Depression Scale (HADS), were administered to SD patients who presented for botulinum toxin injections. One hundred forty-five SD patients (mean age 59.5 ± 13.6 years) had a general SE score (Cronbach's α = 0.894) of 33.4 ± 5.2 out of 40. This was negatively correlated with HADS-A (r = -0.42, P < 0.001) and HADS-D (r = -0.42, P < .001), but not correlated with VHI-10 (r = -0.098, P = .243) and CAPE-V (r = -0.047, P = .57). Factor analysis selected 8 items from the general SE scale and 5 disease-specific SE-SD items to generate a 13-item disease-specific SE-SD scale (Cronbach's α = 0.907). Disease-specific SE-SD score was 42.1 ± 6.9 out of 52 and was negatively correlated with VHI-10 (r = -0.19, P = .005), HADS-A (r = -0.43, P < .001), and HADS-D (r = -0.57, P < .001), but not correlated with CAPE-V (r = -0.024, P = .60). SD patients established on botulinum toxin injections have high degrees of general and disease-specific SE. Patients with higher SE-SD demonstrate lower vocal handicap and lower levels of anxiety and depression. A 13-item disease-specific SE-SD scale has been developed.

  5. Development of a patient-specific two-compartment anthropomorphic breast phantom

    International Nuclear Information System (INIS)

    Prionas, Nicolas D; Burkett, George W; McKenney, Sarah E; Chen, Lin; Boone, John M; Stern, Robin L

    2012-01-01

    The purpose of this paper is to develop a technique for the construction of a two-compartment anthropomorphic breast phantom specific to an individual patient's pendant breast anatomy. Three-dimensional breast images were acquired on a prototype dedicated breast computed tomography (bCT) scanner as part of an ongoing IRB-approved clinical trial of bCT. The images from the breast of a patient were segmented into adipose and glandular tissue regions and divided into 1.59 mm thick breast sections to correspond to the thickness of polyethylene stock. A computer-controlled water-jet cutting machine was used to cut the outer breast edge and the internal regions corresponding to glandular tissue from the polyethylene. The stack of polyethylene breast segments was encased in a thermoplastic ‘skin’ and filled with water. Water-filled spaces modeled glandular tissue structures and the surrounding polyethylene modeled the adipose tissue compartment. Utility of the phantom was demonstrated by inserting 200 µm microcalcifications as well as by measuring point dose deposition during bCT scanning. Affine registration of the original patient images with bCT images of the phantom showed similar tissue distribution. Linear profiles through the registered images demonstrated a mean coefficient of determination (r 2 ) between grayscale profiles of 0.881. The exponent of the power law describing the anatomical noise power spectrum was identical in the coronal images of the patient's breast and the phantom. Microcalcifications were visualized in the phantom at bCT scanning. The real-time air kerma rate was measured during bCT scanning and fluctuated with breast anatomy. On average, point dose deposition was 7.1% greater than the mean glandular dose. A technique to generate a two-compartment anthropomorphic breast phantom from bCT images has been demonstrated. The phantom is the first, to our knowledge, to accurately model the uncompressed pendant breast and the glandular tissue

  6. Bayesian model to detect phenotype-specific genes for copy number data

    Directory of Open Access Journals (Sweden)

    González Juan R

    2012-06-01

    Full Text Available Abstract Background An important question in genetic studies is to determine those genetic variants, in particular CNVs, that are specific to different groups of individuals. This could help in elucidating differences in disease predisposition and response to pharmaceutical treatments. We propose a Bayesian model designed to analyze thousands of copy number variants (CNVs where only few of them are expected to be associated with a specific phenotype. Results The model is illustrated by analyzing three major human groups belonging to HapMap data. We also show how the model can be used to determine specific CNVs related to response to treatment in patients diagnosed with ovarian cancer. The model is also extended to address the problem of how to adjust for confounding covariates (e.g., population stratification. Through a simulation study, we show that the proposed model outperforms other approaches that are typically used to analyze this data when analyzing common copy-number polymorphisms (CNPs or complex CNVs. We have developed an R package, called bayesGen, that implements the model and estimating algorithms. Conclusions Our proposed model is useful to discover specific genetic variants when different subgroups of individuals are analyzed. The model can address studies with or without control group. By integrating all data in a unique model we can obtain a list of genes that are associated with a given phenotype as well as a different list of genes that are shared among the different subtypes of cases.

  7. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    Science.gov (United States)

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    Directory of Open Access Journals (Sweden)

    Tetsuro Tominaga

    2016-04-01

    Full Text Available The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care.

  9. Patient-specific hip prostheses designed by surgeons

    Directory of Open Access Journals (Sweden)

    Coigny Florian

    2016-09-01

    Full Text Available Patient-specific bone and joint replacement implants lead to better functional and aesthetic results than conventional methods [1], [2], [3]. But extracting 3D shape information from CT Data and designing individual implants is demanding and requires multiple surgeon-to-engineer interactions. For manufacturing purposes, Additive Manufacturing offers various advantages, especially for low volume manufacturing parts, such as patient specific implants. To ease these new approaches and to avoid surgeon-to-engineer interactions a new design software approach is needed which offers highly automated and user friendly planning steps.

  10. Language-specific dysgraphia in Korean stroke patients.

    Science.gov (United States)

    Yoon, Ji Hye; Suh, Mee Kyung; Kim, HyangHee

    2010-12-01

    We investigated how changes in the writing of 14 Korean stroke patients reflect the unique features of the Korean writing system. The Korean writing system, Han-geul, has both linguistic and visuospatial/constructive characteristics. In the visuospatial construction of a syllable, the component consonant(s) and vowel(s) must be arranged from top-to-bottom and/or left-to-right within the form of a square. This syllabic organization, unique to Korean writing, may distinguish dysgraphia in Korean patients from the disorder in other languages, and reveal the effects of stroke on visuospatial/constructive abilities. We compared 2 groups of patients affected by stroke, 1 group with left hemisphere (LH) lesions and the other with right hemisphere (RH) lesions. We instructed them to write from a dictation of 90 monosyllabic stimuli, each presented with a real word cue. Patients had to repeat a target syllable and a word cue, and then to write the target syllable only. Patients with LH and RH lesions produced qualitatively different error patterns. While the LH lesion group produced primarily linguistic errors, visuospatial/constructive errors predominated in the group with RH lesions. With regard to language-specific features, these Korean patients with RH lesions produced diverse visuospatial/constructive errors not commonly observed in dysgraphia of the English language. Language-specific writing errors by Korean stroke patients reflect the unique characteristics of Korean writing, which include the arrangement of strokes and graphemes within a square syllabic form by dimensional and spatial rules. These findings support the notion that the Korean writing system possesses a language-specific nature with both linguistic and visuospatial/constructive processes. Distinctive patterns of dysgraphia in the Korean language also suggest interactivity between linguistic and visuospatial/constructive levels of processing. This study is noteworthy for its systematic description of

  11. Site-Specific Difference of Bone Geometry Indices in Hypoparathyroid Patients

    Directory of Open Access Journals (Sweden)

    Hye-Sun Park

    2017-02-01

    Full Text Available BackgroundHypoparathyroid patients often have a higher bone mineral density (BMD than the general population. However, an increase in BMD does not necessarily correlate with a solid bone microstructure. This study aimed to evaluate the bone microstructure of hypoparathyroid patients by using hip structure analysis (HSA.MethodsNinety-five hypoparathyroid patients >20 years old were enrolled and 31 of them had eligible data for analyzing bone geometry parameters using HSA. And among the control data, we extracted sex-, age-, and body mass index-matched three control subjects to each patient. The BMD data were reviewed retrospectively and the bone geometry parameters of the patients were analyzed by HSA.ResultsThe mean Z-scores of hypoparathyroid patients at the lumbar spine, femoral neck, and total hip were above zero (0.63±1.17, 0.48±1.13, and 0.62±1.10, respectively. The differences in bone geometric parameters were site specific. At the femoral neck and intertrochanter, the cross-sectional area (CSA and cortical thickness (C.th were higher, whereas the buckling ratio (BR was lower than in controls. However, those trends were opposite at the femoral shaft; that is, the CSA and C.th were low and the BR was high.ConclusionOur study shows the site-specific effects of hypoparathyroidism on the bone. Differences in bone components, marrow composition, or modeling based bone formation may explain these findings. However, further studies are warranted to investigate the mechanism, and its relation to fracture risk.

  12. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    International Nuclear Information System (INIS)

    Zheng Guoyan; Schumann, Steffen

    2009-01-01

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  13. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders

    Directory of Open Access Journals (Sweden)

    Kristen J. Brennand

    2015-12-01

    Full Text Available As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.

  14. Internal emitter dosimetry: are patient-specific calculations necessary?

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The question of whether patient-specific calculations are needed in internal emitter dosimetry arises when radionuclides are used for therapy. In diagnostic procedures the absorbed dose delivered to normal tissue is far below hazardous levels. In internal emitter therapy, the need for patient-specific dosimetry may arise if a large variability in biodistribution, normal tissue toxicity or efficacy is anticipated. Patient-specificity may be accomplished at the level of pharmacokinetics, anatomy/tumor-geometry or both. At the first level, information regarding the biodistribution of a particular radiolabeled agent is obtained and used to determine the maximum activity that may be administered for treatment. The classical example of this is radioiodine therapy for thyroid cancer. In radioiodine therapy, the therapy dose is preceded by a tracer dose of I-131-iodide which is used to measure patient kinetics by imaging and whole-body counting. Absorbed dose estimates obtained from these data are used to constrain the therapy dose to meet safety criteria established in a previously performed dose-response study. The most ambitious approach to patient-specific dosimetry, requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of registered images representing anatomy (CT or MRI). The spatial distribution of absorbed dose or dose-rate may then be obtained by convolution of a point-kernel with the radioactivity distribution or by Monte Carlo calculation. The spatial absorbed dose or dose-rate distribution may be represented as a set of images, as isodose contours, or as dose-volume histograms. The 3-D Monte Carlo approach is, in principle, the most patient-specific; it accounts for patient anatomy and tumor geometry as well as for the spatial distribution of radioactivity. It is also, however, the most logistically and technically demanding. Patients are required to undergo CT or MRI and at least one

  15. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  16. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  17. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).

    Science.gov (United States)

    Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P

    2008-11-01

    The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model

  18. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    Science.gov (United States)

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.

  19. Patient specific ankle-foot orthoses using rapid prototyping.

    Science.gov (United States)

    Mavroidis, Constantinos; Ranky, Richard G; Sivak, Mark L; Patritti, Benjamin L; DiPisa, Joseph; Caddle, Alyssa; Gilhooly, Kara; Govoni, Lauren; Sivak, Seth; Lancia, Michael; Drillio, Robert; Bonato, Paolo

    2011-01-12

    Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  20. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    Science.gov (United States)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  1. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing

    Science.gov (United States)

    Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui; Rudin, Stephen

    2014-03-01

    Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.

  2. Effects of Intraluminal Thrombus on Patient-Specific Abdominal Aortic Aneurysm Hemodynamics via Stereoscopic Particle Image Velocity and Computational Fluid Dynamics Modeling

    Science.gov (United States)

    Chen, Chia-Yuan; Antón, Raúl; Hung, Ming-yang; Menon, Prahlad; Finol, Ender A.; Pekkan, Kerem

    2014-01-01

    The pathology of the human abdominal aortic aneurysm (AAA) and its relationship to the later complication of intraluminal thrombus (ILT) formation remains unclear. The hemodynamics in the diseased abdominal aorta are hypothesized to be a key contributor to the formation and growth of ILT. The objective of this investigation is to establish a reliable 3D flow visualization method with corresponding validation tests with high confidence in order to provide insight into the basic hemodynamic features for a better understanding of hemodynamics in AAA pathology and seek potential treatment for AAA diseases. A stereoscopic particle image velocity (PIV) experiment was conducted using transparent patient-specific experimental AAA models (with and without ILT) at three axial planes. Results show that before ILT formation, a 3D vortex was generated in the AAA phantom. This geometry-related vortex was not observed after the formation of ILT, indicating its possible role in the subsequent appearance of ILT in this patient. It may indicate that a longer residence time of recirculated blood flow in the aortic lumen due to this vortex caused sufficient shear-induced platelet activation to develop ILT and maintain uniform flow conditions. Additionally, two computational fluid dynamics (CFD) modeling codes (Fluent and an in-house cardiovascular CFD code) were compared with the two-dimensional, three-component velocity stereoscopic PIV data. Results showed that correlation coefficients of the out-of-plane velocity data between PIV and both CFD methods are greater than 0.85, demonstrating good quantitative agreement. The stereoscopic PIV study can be utilized as test case templates for ongoing efforts in cardiovascular CFD solver development. Likewise, it is envisaged that the patient-specific data may provide a benchmark for further studying hemodynamics of actual AAA, ILT, and their convolution effects under physiological conditions for clinical applications. PMID:24316984

  3. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  4. A Predictive Model for Readmissions Among Medicare Patients in a California Hospital.

    Science.gov (United States)

    Duncan, Ian; Huynh, Nhan

    2017-11-17

    Predictive models for hospital readmission rates are in high demand because of the Centers for Medicare & Medicaid Services (CMS) Hospital Readmission Reduction Program (HRRP). The LACE index is one of the most popular predictive tools among hospitals in the United States. The LACE index is a simple tool with 4 parameters: Length of stay, Acuity of admission, Comorbidity, and Emergency visits in the previous 6 months. The authors applied logistic regression to develop a predictive model for a medium-sized not-for-profit community hospital in California using patient-level data with more specific patient information (including 13 explanatory variables). Specifically, the logistic regression is applied to 2 populations: a general population including all patients and the specific group of patients targeted by the CMS penalty (characterized as ages 65 or older with select conditions). The 2 resulting logistic regression models have a higher sensitivity rate compared to the sensitivity of the LACE index. The C statistic values of the model applied to both populations demonstrate moderate levels of predictive power. The authors also build an economic model to demonstrate the potential financial impact of the use of the model for targeting high-risk patients in a sample hospital and demonstrate that, on balance, whether the hospital gains or loses from reducing readmissions depends on its margin and the extent of its readmission penalties.

  5. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, M.; Balm, A.J.M.; van Alphen, M.J.A.; Smeele, L.E.; Stavness, I.; van der Heijden, F.

    2018-01-01

    Purpose: Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  6. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, Merijn; Balm, Alfons J. M.; van Alphen, Maarten J. A.; Smeele, Ludi E.; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Purpose Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  7. Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method

    Energy Technology Data Exchange (ETDEWEB)

    Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.; Liebsch, Norbert J.; Paganetti, Harald, E-mail: hpaganetti@mgh.harvard.edu

    2017-04-01

    Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-target in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment

  8. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  9. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J [Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847 (United States); George, Rohini [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States)], E-mail: Paul.Keall@stanford.edu

    2008-06-07

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  10. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    International Nuclear Information System (INIS)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J; George, Rohini

    2008-01-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  11. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    Science.gov (United States)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  12. Age-specific mortality among TB patients in Denmark 1998-2010

    DEFF Research Database (Denmark)

    Fløe, Andreas; Løkke, Anders; Ibsen, Rikke

    Objective: To evaluate the age-specific mortality in a national TB cohort, and to estimate relative age-specific mortality compared with matched controls, in a retrospective case-control study. Methods: Using Danish National Patient Registry, we retrospectively identified TB-patients between 1998...... to matched controls. While the difference in survival is substantial among elderly patients, a high relative risk of dying is particularly of concern among young and middle-aged adult TB patients....

  13. Surgeon Design Interface for Patient-Specific Concentric Tube Robots.

    Science.gov (United States)

    Morimoto, Tania K; Greer, Joseph D; Hsieh, Michael H; Okamura, Allison M

    2016-06-01

    Concentric tube robots have potential for use in a wide variety of surgical procedures due to their small size, dexterity, and ability to move in highly curved paths. Unlike most existing clinical robots, the design of these robots can be developed and manufactured on a patient- and procedure-specific basis. The design of concentric tube robots typically requires significant computation and optimization, and it remains unclear how the surgeon should be involved. We propose to use a virtual reality-based design environment for surgeons to easily and intuitively visualize and design a set of concentric tube robots for a specific patient and procedure. In this paper, we describe a novel patient-specific design process in the context of the virtual reality interface. We also show a resulting concentric tube robot design, created by a pediatric urologist to access a kidney stone in a pediatric patient.

  14. CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva.

    Science.gov (United States)

    van Dijk, Lisanne V; Brouwer, Charlotte L; van der Schaaf, Arjen; Burgerhof, Johannes G M; Beukinga, Roelof J; Langendijk, Johannes A; Sijtsema, Nanna M; Steenbakkers, Roel J H M

    2017-02-01

    Current models for the prediction of late patient-rated moderate-to-severe xerostomia (XER 12m ) and sticky saliva (STIC 12m ) after radiotherapy are based on dose-volume parameters and baseline xerostomia (XER base ) or sticky saliva (STIC base ) scores. The purpose is to improve prediction of XER 12m and STIC 12m with patient-specific characteristics, based on CT image biomarkers (IBMs). Planning CT-scans and patient-rated outcome measures were prospectively collected for 249 head and neck cancer patients treated with definitive radiotherapy with or without systemic treatment. The potential IBMs represent geometric, CT intensity and textural characteristics of the parotid and submandibular glands. Lasso regularisation was used to create multivariable logistic regression models, which were internally validated by bootstrapping. The prediction of XER 12m could be improved significantly by adding the IBM "Short Run Emphasis" (SRE), which quantifies heterogeneity of parotid tissue, to a model with mean contra-lateral parotid gland dose and XER base . For STIC 12m , the IBM maximum CT intensity of the submandibular gland was selected in addition to STIC base and mean dose to submandibular glands. Prediction of XER 12m and STIC 12m was improved by including IBMs representing heterogeneity and density of the salivary glands, respectively. These IBMs could guide additional research to the patient-specific response of healthy tissue to radiation dose. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The Danish national passenger modelModel specification and results

    DEFF Research Database (Denmark)

    Rich, Jeppe; Hansen, Christian Overgaard

    2016-01-01

    The paper describes the structure of the new Danish National Passenger model and provides on this basis a general discussion of large-scale model design, cost-damping and model validation. The paper aims at providing three main contributions to the existing literature. Firstly, at the general level......, the paper provides a description of a large-scale forecast model with a discussion of the linkage between population synthesis, demand and assignment. Secondly, the paper gives specific attention to model specification and in particular choice of functional form and cost-damping. Specifically we suggest...... a family of logarithmic spline functions and illustrate how it is applied in the model. Thirdly and finally, we evaluate model sensitivity and performance by evaluating the distance distribution and elasticities. In the paper we present results where the spline-function is compared with more traditional...

  16. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI

    International Nuclear Information System (INIS)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-01-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning. (paper)

  17. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting.

    Science.gov (United States)

    Ryan, Justin R; Almefty, Kaith K; Nakaji, Peter; Frakes, David H

    2016-04-01

    Neurosurgery simulator development is growing as practitioners recognize the need for improved instructional and rehearsal platforms to improve procedural skills and patient care. In addition, changes in practice patterns have decreased the volume of specific cases, such as aneurysm clippings, which reduces the opportunity for operating room experience. The authors developed a hands-on, dimensionally accurate model for aneurysm clipping using patient-derived anatomic data and three-dimensional (3D) printing. Design of the model focused on reproducibility as well as adaptability to new patient geometry. A modular, reproducible, and patient-derived medical simulacrum was developed for medical learners to practice aneurysmal clipping procedures. Various forms of 3D printing were used to develop a geometrically accurate cranium and vascular tree featuring 9 patient-derived aneurysms. 3D printing in conjunction with elastomeric casting was leveraged to achieve a patient-derived brain model with tactile properties not yet available from commercial 3D printing technology. An educational pilot study was performed to gauge simulation efficacy. Through the novel manufacturing process, a patient-derived simulacrum was developed for neurovascular surgical simulation. A follow-up qualitative study suggests potential to enhance current educational programs; assessments support the efficacy of the simulacrum. The proposed aneurysm clipping simulator has the potential to improve learning experiences in surgical environment. 3D printing and elastomeric casting can produce patient-derived models for a dynamic learning environment that add value to surgical training and preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients

    Directory of Open Access Journals (Sweden)

    Meng-Lu Liu

    2016-01-01

    Full Text Available Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS. Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.

  19. A dyadic multiple mediation model of patient and spouse stressors predicting patient dietary and exercise adherence via depression symptoms and diabetes self-efficacy.

    Science.gov (United States)

    Anderson, Jared R; Novak, Joshua R; Johnson, Matthew D; Deitz, Sharon L; Walker, Ann; Wilcox, Allison; Lewis, Virginia L; Robbins, David C

    2016-12-01

    Using dyadic data from 117 married couples in which one partner was diagnosed with Type 2 diabetes, the purpose of this study was to determine whether a number of specific patient and spouse stressors (chronic life stress, diabetes-specific stress, and physical health stress in the form of the number of comorbidities) were associated with Type 2 diabetes patients' dietary and exercise adherence through two potentially modifiable patient and spouse factors-depression symptoms and diabetes self-efficacy. We found that patient and spouse stressors, particularly patient and spouse diabetes stress and the number of patient comorbidities, were related to patient dietary and exercise adherence through patient depression symptoms and both patient and spouse diabetes self-efficacy. These conclusions were strengthened by incorporating a number of relevant control variables in our models and by testing four alternative models which supported our proposed model. These results are important because they provide further evidence of the significant role spouses' play in managing diabetes and they provide diabetes educators and clinicians with specific targets for intervention programming.

  20. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C; Zheng, W [Henry Ford Health System, Detroit, MI (United States); Stehning, C; Weiss, S; Renisch, S [Philips Research Laboratories, Hamburg (Germany)

    2016-06-15

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising from respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for patient-specific

  1. Prediction of individual patient response to chemotherapy by the fluorometric microculture cytotoxicity assay (FMCA) using drug specific cut-off limits and a Bayesian model.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1993-01-01

    The semiautomated fluorometric microculture cytotoxicity assay (FMCA) based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein in microtiter plates, has been used for determination of cytotoxic drug resistance of tumor cells from patients with hematological and solid tumors. In the present study we describe a calibration procedure based on statistically derived cut-off limits and assay-predicted response probabilities using Bayes' theorem. Test results at a specified drug concentration were divided into three categories: low, intermediate or extreme drug resistance (LDR, IDR and EDR, respectively) using the median and median +1 standard deviation as the cut-off limits. When correlated with clinical outcome, LDR samples showed a higher response rate than expected, IDR a lower and EDR samples no response at all. The sensitivity and specificity of the test, using the median as cut-off limit, were 0.92 and 0.69 respectively. By fitting these test characteristics to a statistical model based on Bayes' theorem it is possible to calculate response probabilities for each individual patient taking into consideration not only the test characteristics and the particular assay result, but also the clinical and patient specific characteristics influencing the pre-test probability of response. EDR predicts clinical drug resistance with high specificity and is also observed in tumor types with high response rate.

  2. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-01-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  3. Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression.

    Science.gov (United States)

    Mac Murray, Benjamin C; Futran, Chaim C; Lee, Jeanne; O'Brien, Kevin W; Amiri Moghadam, Amir A; Mosadegh, Bobak; Silberstein, Meredith N; Min, James K; Shepherd, Robert F

    2018-02-01

    We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.

  4. Residual symptoms and specific functional impairments in euthymic patients with bipolar disorder.

    Science.gov (United States)

    Samalin, Ludovic; de Chazeron, Ingrid; Vieta, Eduard; Bellivier, Frank; Llorca, Pierre-Michel

    2016-03-01

    The aims of the present study were to confirm the impact of residual symptoms on overall functioning in a large sample of euthymic patients with bipolar disorder in real-life conditions and to explore the relationship between residual symptoms and specific areas of functional impairment. This was a multicenter, cross-sectional, non-interventional study of euthymic outpatients with bipolar disorder. The Functioning Assessment Short Test was used to assess overall and specific domains of functioning (autonomy, occupational functioning, cognitive functioning, financial issues, interpersonal relationships, and leisure time). Various residual symptoms were assessed (residual mood symptoms, emotional dysregulation, sleep and sexual disorders, stigma, and perceived cognitive impairment). Logistic regression was used to determine the best model of association between functional domains and residual symptoms. Almost half of the 468 patients included (42%) had poor overall functioning. Residual depressive symptoms appeared to have an impact on overall functioning and in nearly all areas of functioning. In addition, specific residual symptoms had significantly more negative effects on some domains of functioning in euthymic patients with bipolar disorder (residual manic symptoms and occupational stigma on autonomy, emotional inhibition on occupational functioning, residual manic symptoms on financial issues, family stigma on interpersonal relationships, and sexual function and occupational stigma on leisure time). Our findings highlight the importance of evaluating overall functioning in clinical practice as well as functional domains. They also indicate that some residuals symptoms in patients with bipolar disorder should be targeted in personalized treatment plans, in order to improve functioning in the domains in which the patient is most impaired. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Specificity of Affective Instability in Patients With Borderline Personality Disorder Compared to Posttraumatic Stress Disorder, Bulimia Nervosa, and Healthy Controls

    Science.gov (United States)

    Santangelo, Philip; Mussgay, Lutz; Sawitzki, Günther; Trull, Timothy J.; Reinhard, Iris; Steil, Regina; Klein, Christoph; Bohus, Martin; Ebner-Priemer, Ulrich W.

    2014-01-01

    Affective instability is a core feature of borderline personality disorder (BPD). The use of advanced assessment methodologies and appropriate statistical analyses has led to consistent findings that indicate a heightened instability in patients with BPD compared with healthy controls. However, few studies have investigated the specificity of affective instability among patients with BPD with regard to relevant clinical control groups. In this study, 43 patients with BPD, 28 patients with posttraumatic stress disorder (PTSD), 20 patients with bulimia nervosa (BN), and 28 healthy controls carried e-diaries for 24 hours and were prompted to rate their momentary affective states approximately every 15 minutes while awake. To quantify instability, we used 3 state-of-the-art indices: multilevel models for squared successive differences (SSDs), multilevel models for probability of acute changes (PACs), and aggregated point-by-point changes (APPCs). Patients with BPD displayed heightened affective instability for emotional valence and distress compared with healthy controls, regardless of the specific instability indices. These results directly replicate earlier studies. However, affective instability did not seem to be specific to patients with BPD. With regard to SSDs, PACs, and APPCs, patients with PTSD or BN showed a similar heightened instability of affect (emotional valence and distress) to that of patients with BPD. Our results give raise to the discussion if affective instability is a transdiagnostic or a disorder-specific mechanism. Current evidence cannot answer this question, but investigating psychopathological mechanisms in everyday life across disorders is a promising approach to enhance validity and specificity of mental health diagnoses. PMID:24661176

  6. Development of an improved approach to radiation treatment therapy using high-definition patient-specific voxel phantoms

    International Nuclear Information System (INIS)

    Ward, R.C.; Ryman, J.C.; Worley, B.A.; Stallings, D.C.

    1998-01-01

    Through an internally funded project at Oak Ridge National Laboratory, a high-resolution phantom was developed based on the National Library of Medicine's Visible Human Data. Special software was written using the interactive data language (IDL) visualization language to automatically segment and classify some of the organs and the skeleton of the Visible Male. A high definition phantom consisting of nine hundred 512 x 512 slices was constructed of the entire torso. Computed tomography (CT) images of a patient's tumor near the spine were scaled and morphed into the phantom model to create a patient-specific phantom. Calculations of dose to the tumor and surrounding tissue were then performed using the patient-specific phantom

  7. Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients.

    Science.gov (United States)

    Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L

    2012-08-07

    Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in

  8. Classification and regression tree (CART model to predict pulmonary tuberculosis in hospitalized patients

    Directory of Open Access Journals (Sweden)

    Aguiar Fabio S

    2012-08-01

    Full Text Available Abstract Background Tuberculosis (TB remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART model was generated and validated. The area under the ROC curve (AUC, sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with

  9. Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Sébastien De Landtsheer

    2018-05-01

    Full Text Available Understanding the functional properties of cells of different origins is a long-standing challenge of personalized medicine. Especially in cancer, the high heterogeneity observed in patients slows down the development of effective cures. The molecular differences between cell types or between healthy and diseased cellular states are usually determined by the wiring of regulatory networks. Understanding these molecular and cellular differences at the systems level would improve patient stratification and facilitate the design of rational intervention strategies. Models of cellular regulatory networks frequently make weak assumptions about the distribution of model parameters across cell types or patients. These assumptions are usually expressed in the form of regularization of the objective function of the optimization problem. We propose a new method of regularization for network models of signaling pathways based on the local density of the inferred parameter values within the parameter space. Our method reduces the complexity of models by creating groups of cell line-specific parameters which can then be optimized together. We demonstrate the use of our method by recovering the correct topology and inferring accurate values of the parameters of a small synthetic model. To show the value of our method in a realistic setting, we re-analyze a recently published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We conclude that our method efficiently reduces model complexity and helps recovering context-specific regulatory information.

  10. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.

    Science.gov (United States)

    Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger

    2018-04-19

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model

  11. Complex Osteotomies of Tibial Plateau Malunions Using Computer-Assisted Planning and Patient-Specific Surgical Guides.

    Science.gov (United States)

    Fürnstahl, Philipp; Vlachopoulos, Lazaros; Schweizer, Andreas; Fucentese, Sandro F; Koch, Peter P

    2015-08-01

    The accurate reduction of tibial plateau malunions can be challenging without guidance. In this work, we report on a novel technique that combines 3-dimensional computer-assisted planning with patient-specific surgical guides for improving reliability and accuracy of complex intraarticular corrective osteotomies. Preoperative planning based on 3-dimensional bone models was performed to simulate fragment mobilization and reduction in 3 cases. Surgical implementation of the preoperative plan using patient-specific cutting and reduction guides was evaluated; benefits and limitations of the approach were identified and discussed. The preliminary results are encouraging and show that complex, intraarticular corrective osteotomies can be accurately performed with this technique. For selective patients with complex malunions around the tibia plateau, this method might be an attractive option, with the potential to facilitate achieving the most accurate correction possible.

  12. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.

    Science.gov (United States)

    Eskes, Merijn; Balm, Alfons J M; van Alphen, Maarten J A; Smeele, Ludi E; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional movements are necessary to predict remaining functional outcome. We aim to evaluate how volunteer-specific MAPs derived from surface electromyographic (sEMG) signals control a biomechanical face model. Muscle activity of seven facial muscles in six volunteers was measured bilaterally with sEMG. A triple camera set-up recorded 3D lip movement. The generic face model in ArtiSynth was adapted to our needs. We controlled the model using the volunteer-specific MAPs. Three activation strategies were tested: activating all muscles [Formula: see text], selecting the three muscles showing highest muscle activity bilaterally [Formula: see text]-this was calculated by taking the mean of left and right muscles and then selecting the three with highest variance-and activating the muscles considered most relevant per instruction [Formula: see text], bilaterally. The model's lip movement was compared to the actual lip movement performed by the volunteers, using 3D correlation coefficients [Formula: see text]. The correlation coefficient between simulations and measurements with [Formula: see text] resulted in a median [Formula: see text] of 0.77. [Formula: see text] had a median [Formula: see text] of 0.78, whereas with [Formula: see text] the median [Formula: see text] decreased to 0.45. We demonstrated that MAPs derived from noninvasive sEMG measurements can control movement of the lips in a generic finite element face model with a median [Formula: see text] of 0.78. Ultimately, this is important to show the patient-specific residual movement using the patient's own MAPs. When the required treatment tools and personalisation techniques for geometry and anatomy become available, this may

  13. NOTE: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Science.gov (United States)

    Venkat, Raghu B.; Sawant, Amit; Suh, Yelin; George, Rohini; Keall, Paul J.

    2008-06-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery.

  14. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, I.V.B., E-mail: isabelle.lacerda@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Oliveira, M.L.; Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife (Brazil)

    2017-07-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  15. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    International Nuclear Information System (INIS)

    Lacerda, I.V.B.; Vieira, J.W.; Oliveira, M.L.; Lima, F.R.A.

    2017-01-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  16. Vortex dynamics in Patient-Specific Stenotic Tricuspid and Bicuspid Aortic Valves pre- and post- Trans-catheter Aortic Valve Replacement

    Science.gov (United States)

    Hatoum, Hoda; Dasi, Lakshmi Prasad

    2017-11-01

    Understanding blood flow related adverse complications such as leaflet thrombosis post-transcatheter aortic valve implantation (TAVI) requires a deeper understanding of how patient-specific anatomic and hemodynamic factors, and relative valve positioning dictate sinus vortex flow and stasis regions. High resolution time-resolved particle image velocimetry measurements were conducted in compliant and transparent 3D printed patient-specific models of stenotic bicuspid and tricuspid aortic valve roots from patients who underwent TAVI. Using Lagrangian particle tracking analysis of sinus vortex flows and probability distributions of residence time and blood damage indices we show that (a) patient specific modeling provides a more realistic assessment of TAVI flows, (b) TAVI deployment alters sinus flow patterns by significantly decreasing sinus velocity and vorticity, and (c) relative valve positioning can control critical vortex structures that may explain preferential leaflet thrombosis corresponding to separated flow recirculation, secondary to valve jet vectoring relative to the aorta axis. This work provides new methods and understanding of the spatio-temporal aortic sinus vortex dynamics in post TAVI pathology. This study was supported by the Ohio State University DHLRI Trifit Challenge award.

  17. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    Science.gov (United States)

    Almeida, Sandra; Zhang, Zhijun; Coppola, Giovanni; Mao, Wenjie; Futai, Kensuke; Karydas, Anna; Geschwind, Michael D.; Tartaglia, M. Carmela; Gao, Fuying; Gianni, Davide; Sena-Esteves, Miguel; Geschwind, Daniel H.; Miller, Bruce L.; Farese, Robert V.; Gao, Fen-Biao

    2012-01-01

    SUMMARY The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell (iPSC) lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel GRN mutation (PGRN S116X). In neurons and microglia differentiated from PGRN S116X iPSCs, the levels of intracellular and secreted progranulin were reduced, establishing patient-specific cellular models of progranulin haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the PI3K and MAPK pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by progranulin expression. Our findings identify cell-autonomous, reversible defects in patient neurons with progranulin deficiency and provide a new model for studying progranulin-dependent pathogenic mechanisms and testing potential therapies. PMID:23063362

  18. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas.

    Directory of Open Access Journals (Sweden)

    Anne L Baldock

    Full Text Available Malignant gliomas are incurable, primary brain neoplasms noted for their potential to extensively invade brain parenchyma. Current methods of clinical imaging do not elucidate the full extent of brain invasion, making it difficult to predict which, if any, patients are likely to benefit from gross total resection. Our goal was to apply a mathematical modeling approach to estimate the overall tumor invasiveness on a patient-by-patient basis and determine whether gross total resection would improve survival in patients with relatively less invasive gliomas.In 243 patients presenting with contrast-enhancing gliomas, estimates of the relative invasiveness of each patient's tumor, in terms of the ratio of net proliferation rate of the glioma cells to their net dispersal rate, were derived by applying a patient-specific mathematical model to routine pretreatment MR imaging. The effect of varying degrees of extent of resection on overall survival was assessed for cohorts of patients grouped by tumor invasiveness.We demonstrate that patients with more diffuse tumors showed no survival benefit (P = 0.532 from gross total resection over subtotal/biopsy, while those with nodular (less diffuse tumors showed a significant benefit (P = 0.00142 with a striking median survival benefit of over eight months compared to sub-totally resected tumors in the same cohort (an 80% improvement in survival time for GTR only seen for nodular tumors.These results suggest that our patient-specific, model-based estimates of tumor invasiveness have clinical utility in surgical decision making. Quantification of relative invasiveness assessed from routinely obtained pre-operative imaging provides a practical predictor of the benefit of gross total resection.

  19. Mucorales-Specific T Cells in Patients with Hematologic Malignancies

    OpenAIRE

    Potenza, L; Vallerini, D; Barozzi, P; Riva, G; Gilioli, A; Forghieri, F; Candoni, A; Cesaro, S; Quadrelli, C; Maertens, J; Rossi, G; Morselli, M; Codeluppi, M; Mussini, C; Colaci, E

    2016-01-01

    Background Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. Method...

  20. Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

    International Nuclear Information System (INIS)

    Feng, Qianjin; Foskey, Mark; Chen Wufan; Shen Dinggang

    2010-01-01

    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online

  1. Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qianjin; Foskey, Mark; Chen Wufan; Shen Dinggang [Biomedical Engineering College, South Medical University, Guangzhou (China) and Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27510 (United States); Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Biomedical Engineering College, South Medical University, Guangzhou 510510 (China); Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27510 (United States)

    2010-08-15

    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online

  2. Comment on “Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells”

    Science.gov (United States)

    Bilican, Bilada; Serio, Andrea; Barmada, Sami J.; Nishimura, Agnes Lumi; Sullivan, Gareth J.; Carrasco, Monica; Phatnani, Hemali P.; Puddifoot, Clare A.; Story, David; Fletcher, Judy; Park, In-Hyun; Friedman, Brad A.; Daley, George Q.; Wyllie, David J. A.; Hardingham, Giles E.; Wilmut, Ian; Finkbeiner, Steven; Maniatis, Tom; Shaw, Christopher E.; Chandran, Siddharthan

    2014-01-01

    Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations. PMID:23740897

  3. Fluid Structure Interaction simulation of heart prosthesis in patient-specific left-ventricle/aorta anatomies

    Science.gov (United States)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2009-11-01

    In order to test and optimize heart valve prosthesis and enable virtual implantation of other biomedical devices it is essential to develop and validate high-resolution FSI-CFD codes for carrying out simulations in patient-specific geometries. We have developed a powerful numerical methodology for carrying out FSI simulations of cardiovascular flows based on the CURVIB approach (Borazjani, L. Ge, and F. Sotiropoulos, Journal of Computational physics, vol. 227, pp. 7587-7620 2008). We have extended our FSI method to overset grids to handle efficiently more complicated geometries e.g. simulating an MHV implanted in an anatomically realistic aorta and left-ventricle. A compliant, anatomic left-ventricle is modeled using prescribed motion in one domain. The mechanical heart valve is placed inside the second domain i.e. the body-fitted curvilinear mesh of the anatomic aorta. The simulations of an MHV with a left-ventricle model underscore the importance of inflow conditions and ventricular compliance for such simulations and demonstrate the potential of our method as a powerful tool for patient-specific simulations.

  4. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    Directory of Open Access Journals (Sweden)

    Xiaoping Yin

    Full Text Available Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6. The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2. This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.

  5. Development and prospective validation of a model estimating risk of readmission in cancer patients.

    Science.gov (United States)

    Schmidt, Carl R; Hefner, Jennifer; McAlearney, Ann S; Graham, Lisa; Johnson, Kristen; Moffatt-Bruce, Susan; Huerta, Timothy; Pawlik, Timothy M; White, Susan

    2018-02-26

    Hospital readmissions among cancer patients are common. While several models estimating readmission risk exist, models specific for cancer patients are lacking. A logistic regression model estimating risk of unplanned 30-day readmission was developed using inpatient admission data from a 2-year period (n = 18 782) at a tertiary cancer hospital. Readmission risk estimates derived from the model were then calculated prospectively over a 10-month period (n = 8616 admissions) and compared with actual incidence of readmission. There were 2478 (13.2%) unplanned readmissions. Model factors associated with readmission included: emergency department visit within 30 days, >1 admission within 60 days, non-surgical admission, solid malignancy, gastrointestinal cancer, emergency admission, length of stay >5 days, abnormal sodium, hemoglobin, or white blood cell count. The c-statistic for the model was 0.70. During the 10-month prospective evaluation, estimates of readmission from the model were associated with higher actual readmission incidence from 20.7% for the highest risk category to 9.6% for the lowest. An unplanned readmission risk model developed specifically for cancer patients performs well when validated prospectively. The specificity of the model for cancer patients, EMR incorporation, and prospective validation justify use of the model in future studies designed to reduce and prevent readmissions. © 2018 Wiley Periodicals, Inc.

  6. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells.

    Science.gov (United States)

    Garate, Zita; Davis, Brian R; Quintana-Bustamante, Oscar; Segovia, Jose C

    2013-06-01

    Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.

  7. A Baseline Patient Model to Support Testing of Medical Cyber-Physical Systems.

    Science.gov (United States)

    Silva, Lenardo C; Perkusich, Mirko; Almeida, Hyggo O; Perkusich, Angelo; Lima, Mateus A M; Gorgônio, Kyller C

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are currently a trending topic of research. The main challenges are related to the integration and interoperability of connected medical devices, patient safety, physiologic closed-loop control, and the verification and validation of these systems. In this paper, we focus on patient safety and MCPS validation. We present a formal patient model to be used in health care systems validation without jeopardizing the patient's health. To determine the basic patient conditions, our model considers the four main vital signs: heart rate, respiratory rate, blood pressure and body temperature. To generate the vital signs we used regression models based on statistical analysis of a clinical database. Our solution should be used as a starting point for a behavioral patient model and adapted to specific clinical scenarios. We present the modeling process of the baseline patient model and show its evaluation. The conception process may be used to build different patient models. The results show the feasibility of the proposed model as an alternative to the immediate need for clinical trials to test these medical systems.

  8. Model Commissioning Plan and Guide Specifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of Model Commissioning Plan and Guide Specifications are to ensure that the design team applies commissioning concepts to the design and prepares commissioning specifications and a commission plan for inclusion in the bid construction documents.

  9. Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research

    Directory of Open Access Journals (Sweden)

    Arnau Benet

    2015-01-01

    Full Text Available Aim. To evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training. Methods. Two 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated. Results. The 3D aneurysm models were successfully implanted to the cadaveric specimens’ arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation. Conclusion. 3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research.

  10. An approach for activity-based DEVS model specification

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2016-01-01

    Creation of DEVS models has been advanced through Model Driven Architecture and its frameworks. The overarching role of the frameworks has been to help develop model specifications in a disciplined fashion. Frameworks can provide intermediary layers between the higher level mathematical models...... and their corresponding software specifications from both structural and behavioral aspects. Unlike structural modeling, developing models to specify behavior of systems is known to be harder and more complex, particularly when operations with non-trivial control schemes are required. In this paper, we propose specifying...... activity-based behavior modeling of parallel DEVS atomic models. We consider UML activities and actions as fundamental units of behavior modeling, especially in the presence of recent advances in the UML 2.5 specifications. We describe in detail how to approach activity modeling with a set of elemental...

  11. Development of three-dimensional brain arteriovenous malformation model for patient communication and young neurosurgeon education.

    Science.gov (United States)

    Dong, Mengqi; Chen, Guangzhong; Qin, Kun; Ding, Xiaowen; Zhou, Dong; Peng, Chao; Zeng, Shaojian; Deng, Xianming

    2018-01-15

    Rapid prototyping technology is used to fabricate three-dimensional (3D) brain arteriovenous malformation (AVM) models and facilitate presurgical patient communication and medical education for young surgeons. Two intracranial AVM cases were selected for this study. Using 3D CT angiography or 3D rotational angiography images, the brain AVM models were reconstructed on personal computer and the rapid prototyping process was completed using a 3D printer. The size and morphology of the models were compared to brain digital subtraction arteriography of the same patients. 3D brain AVM models were used for preoperative patient communication and young neurosurgeon education. Two brain AVM models were successfully produced. By neurosurgeons' evaluation, the printed models have high fidelity with the actual brain AVM structures of the patients. The patient responded positively toward the brain AVM model specific to himself. Twenty surgical residents from residency programs tested the brain AVM models and provided positive feedback on their usefulness as educational tool and resemblance to real brain AVM structures. Patient-specific 3D printed models of brain AVM can be constructed with high fidelity. 3D printed brain AVM models are proved to be helpful in preoperative patient consultation, surgical planning and resident training.

  12. Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients

    Science.gov (United States)

    Beauvais, Anne; Beau, Remi; Candoni, Anna; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Zanetti, Eleonora; Quadrelli, Chiara; Codeluppi, Mauro; Guaraldi, Giovanni; Pagano, Livio; Caira, Morena; Giovane, Cinzia Del; Maccaferri, Monica; Stefani, Alessandro; Morandi, Uliano; Tazzioli, Giovanni; Girardis, Massimo; Delia, Mario; Specchia, Giorgina; Longo, Giuseppe; Marasca, Roberto; Narni, Franco; Merli, Francesco; Imovilli, Annalisa; Apolone, Giovanni; Carvalho, Agostinho; Comoli, Patrizia; Romani, Luigina; Latgè, Jean Paul; Luppi, Mario

    2013-01-01

    Several studies in mouse model of invasive aspergillosis (IA) and in healthy donors have shown that different Aspergillus antigens may stimulate different adaptive immune responses. However, the occurrence of Aspergillus-specific T cells have not yet been reported in patients with the disease. In patients with IA, we have investigated during the infection: a) whether and how specific T-cell responses to different Aspergillus antigens occur and develop; b) which antigens elicit the highest frequencies of protective immune responses and, c) whether such protective T cells could be expanded ex-vivo. Forty hematologic patients have been studied, including 22 patients with IA and 18 controls. Specific T cells producing IL-10, IFN-γ, IL-4 and IL-17A have been characterized through enzyme linked immunospot and cytokine secretion assays on 88 peripheral blood (PB) samples, by using the following recombinant antigens: GEL1p, CRF1p, PEP1p, SOD1p, α1–3glucan, β1–3glucan, galactomannan. Specific T cells were expanded through short term culture. Aspergillus-specific T cells producing non-protective interleukin-10 (IL-10) and protective interferon-gamma (IFN-γ) have been detected to all the antigens only in IA patients. Lower numbers of specific T cells producing IL-4 and IL-17A have also been shown. Protective T cells targeted predominantly Aspergillus cell wall antigens, tended to increase during the IA course and to be associated with a better clinical outcome. Aspergillus-specific T cells could be successfully generated from the PB of 8 out of 8 patients with IA and included cytotoxic subsets able to lyse Aspergillus hyphae. Aspergillus specific T-cell responses contribute to the clearance of the pathogen in immunosuppressed patients with IA and Aspergillus cell wall antigens are those mainly targeted by protective immune responses. Cytotoxic specific T cells can be expanded from immunosuppressed patients even during the infection by using the above mentioned

  13. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    2012-10-01

    Full Text Available The pathogenic mechanisms of frontotemporal dementia (FTD remain poorly understood. Here we generated multiple induced pluripotent stem cell lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel heterozygous GRN mutation (progranulin [PGRN] S116X. In neurons and microglia differentiated from PGRN S116X induced pluripotent stem cells, the levels of intracellular and secreted PGRN were reduced, establishing patient-specific cellular models of PGRN haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by PGRN expression. Our findings identify cell-autonomous, reversible defects in patient neurons with PGRN deficiency, and provide a compelling model for studying PGRN-dependent pathogenic mechanisms and testing potential therapies.

  14. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  15. Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific patient populations.

    Science.gov (United States)

    Zhang, Kevin; Demner-Fushman, Dina

    2017-07-01

    To develop automated classification methods for eligibility criteria in ClinicalTrials.gov to facilitate patient-trial matching for specific populations such as persons living with HIV or pregnant women. We annotated 891 interventional cancer trials from ClinicalTrials.gov based on their eligibility for human immunodeficiency virus (HIV)-positive patients using their eligibility criteria. These annotations were used to develop classifiers based on regular expressions and machine learning (ML). After evaluating classification of cancer trials for eligibility of HIV-positive patients, we sought to evaluate the generalizability of our approach to more general diseases and conditions. We annotated the eligibility criteria for 1570 of the most recent interventional trials from ClinicalTrials.gov for HIV-positive and pregnancy eligibility, and the classifiers were retrained and reevaluated using these data. On the cancer-HIV dataset, the baseline regex model, the bag-of-words ML classifier, and the ML classifier with named entity recognition (NER) achieved macro-averaged F2 scores of 0.77, 0.87, and 0.87, respectively; the addition of NER did not result in a significant performance improvement. On the general dataset, ML + NER achieved macro-averaged F2 scores of 0.91 and 0.85 for HIV and pregnancy, respectively. The eligibility status of specific patient populations, such as persons living with HIV and pregnant women, for clinical trials is of interest to both patients and clinicians. We show that it is feasible to develop a high-performing, automated trial classification system for eligibility status that can be integrated into consumer-facing search engines as well as patient-trial matching systems. Published by Oxford University Press on behalf of the American Medical Informatics Association 2017. This work is written by US Government employees and is in the public domain in the US.

  16. Generation of patient-specific induced pluripotent stem cells from Leber's hereditary optic neuropathy

    Directory of Open Access Journals (Sweden)

    Huai-En Lu

    2018-04-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited mitochondrial disease caused by homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. In this report, we generated an induced pluripotent stem cell (iPSCs line, TVGH-iPSC-010-09, from the peripheral blood mononuclear cells of a female patient with Leber's hereditary optic neuropathy (LHON by using the Sendai-virus delivery system. The resulting iPSCs retained the disease-causing mitochondrial DNA mutation, expressed pluripotent markers and could differentiate into the three germ layers. We believe LHON patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.

  17. Model-specification uncertainty in future forest pest outbreak.

    Science.gov (United States)

    Boulanger, Yan; Gray, David R; Cooke, Barry J; De Grandpré, Louis

    2016-04-01

    Climate change will modify forest pest outbreak characteristics, although there are disagreements regarding the specifics of these changes. A large part of this variability may be attributed to model specifications. As a case study, we developed a consensus model predicting spruce budworm (SBW, Choristoneura fumiferana [Clem.]) outbreak duration using two different predictor data sets and six different correlative methods. The model was used to project outbreak duration and the uncertainty associated with using different data sets and correlative methods (=model-specification uncertainty) for 2011-2040, 2041-2070 and 2071-2100, according to three forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5). The consensus model showed very high explanatory power and low bias. The model projected a more important northward shift and decrease in outbreak duration under the RCP 8.5 scenario. However, variation in single-model projections increases with time, making future projections highly uncertain. Notably, the magnitude of the shifts in northward expansion, overall outbreak duration and the patterns of outbreaks duration at the southern edge were highly variable according to the predictor data set and correlative method used. We also demonstrated that variation in forcing scenarios contributed only slightly to the uncertainty of model projections compared with the two sources of model-specification uncertainty. Our approach helped to quantify model-specification uncertainty in future forest pest outbreak characteristics. It may contribute to sounder decision-making by acknowledging the limits of the projections and help to identify areas where model-specification uncertainty is high. As such, we further stress that this uncertainty should be strongly considered when making forest management plans, notably by adopting adaptive management strategies so as to reduce future risks. © 2015 Her Majesty the Queen in Right of Canada Global Change Biology © 2015 Published by John

  18. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    International Nuclear Information System (INIS)

    Burfeindt, Matthew J; Zastrow, Earl; Hagness, Susan C; Van Veen, Barry D; Medow, Joshua E

    2011-01-01

    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating-that is, to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT'IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.

  19. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach

    International Nuclear Information System (INIS)

    Rockne, R; Alvord, E C Jr; Swanson, K R; Rockhill, J K; Kalet, I; Hendrickson, K; Mrugala, M; Spence, A M; Lai, A; Cloughesy, T

    2010-01-01

    Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors known as gliomas. They proliferate and invade extensively and yield short life expectancies despite aggressive treatment. Response to treatment is usually measured in terms of the survival of groups of patients treated similarly, but this statistical approach misses the subgroups that may have responded to or may have been injured by treatment. Such statistics offer scant reassurance to individual patients who have suffered through these treatments. Furthermore, current imaging-based treatment response metrics in individual patients ignore patient-specific differences in tumor growth kinetics, which have been shown to vary widely across patients even within the same histological diagnosis and, unfortunately, these metrics have shown only minimal success in predicting patient outcome. We consider nine newly diagnosed GBM patients receiving diagnostic biopsy followed by standard-of-care external beam radiation therapy (XRT). We present and apply a patient-specific, biologically based mathematical model for glioma growth that quantifies response to XRT in individual patients in vivo. The mathematical model uses net rates of proliferation and migration of malignant tumor cells to characterize the tumor's growth and invasion along with the linear-quadratic model for the response to radiation therapy. Using only routinely available pre-treatment MRIs to inform the patient-specific bio-mathematical model simulations, we find that radiation response in these patients, quantified by both clinical and model-generated measures, could have been predicted prior to treatment with high accuracy. Specifically, we find that the net proliferation rate is correlated with the radiation response parameter (r = 0.89, p = 0.0007), resulting in a predictive relationship that is tested with a leave-one-out cross-validation technique. This relationship predicts the tumor size post-therapy to within inter

  20. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    International Nuclear Information System (INIS)

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  1. Development and Analysis of Patient-Based Complete Conducting Airways Models.

    Directory of Open Access Journals (Sweden)

    Rafel Bordas

    Full Text Available The analysis of high-resolution computed tomography (CT images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6-10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD. Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11 and asthmatic (n = 24 CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47. The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01 in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3-5 versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1 (Spearman ρ = -0.65, p < 0.001 and, at low flow rates (0.00017 L/s, FEV1 over forced vital capacity (FEV1

  2. Accounting for standard errors of vision-specific latent trait in regression models.

    Science.gov (United States)

    Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L

    2014-07-11

    To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits

  3. Managing patients with acute and chronic non-specific neck pain

    DEFF Research Database (Denmark)

    Brockhusen, Simon Sidenius; Bussières, André; French, Simon David

    2017-01-01

    was mainly reserved for chronic patients. Danish chiropractors' compliance with guidelines for neck-pain patients was low, but is neither worse nor better than what is seen for other complaints or health disciplines. Our findings suggest a need for active knowledge translation strategies and robust......Background: Non-specific neck pain represents a quarter of all chiropractic patient visits in Denmark. Evidence informed practice can help ensure providers use best available treatment, speed up patient recovery rate and reduce healthcare utilization. It is generally believed that Danish...... chiropractors treat according to best practice, but we do not know if this is true for management of neck-pain. The objective of this study was to investigate how Danish chiropractors treat patients with acute and chronic non-specific neck pain and determine if management is compliant with recent Canadian...

  4. Cause-specific mortality in HPV+ and HPV- oropharyngeal cancer patients

    DEFF Research Database (Denmark)

    Nørregaard, Cecilie; Grønhøj, Christian; Jensen, David

    2018-01-01

    Identifying the causes of death in head and neck cancer patients can optimize follow-up and therapeutic strategies, but studies in oropharyngeal squamous cell carcinoma (OPSCC) patients stratified by HPV status are lacking. We report cause-specific mortality in a population-based cohort of patients...... with OPSCC. Patients who had been diagnosed with OPSCC (n = 1541) between 2000 and 2014 in eastern Denmark were included in the study. Causes of death were collected through medical files and the Danish National Cause of Death registry. Deaths were grouped as (1) primary oropharyngeal cancer, (2) secondary...... malignancies, (3) cardiovascular and pulmonary disease, or (4) other/unspecified. The cumulative incidence of death and specific causes of death were determined using risk analysis. At follow-up, 723 (47.5%) patients had died. The median time to and cause of death were determined: oropharyngeal cancer (n = 432...

  5. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    Science.gov (United States)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  6. Course of training in Specific internal dosimetry for the patient

    International Nuclear Information System (INIS)

    Rojo, A.M.; Michelin, S.C.; Gomez P, I.M.

    2006-01-01

    In this work the experience obtained in a course organized in Argentina to qualify professionals in the radiopharmaceutical dosimetry using the methodology MIRD and the patient's images is presented. The motivation to carry out it was based on the continuous development of new radiopharmaceuticals with therapeutic purposes that makes necessary the knowledge of the distribution of the absorbed dose to be able to establish the dose-response relationship. The main objective was the study of the biokinetic model and those techniques available that starting from images can contribute information of specific parameters of the patient to calculate with more accuracy the doses in the tumor and in different organs. In the design of the program of this course it was considered to approach the different focuses for the calculation of specific dose of the patient and includes the following topics: the patient's radiological protection, new concepts in damages by radiations (bystander effect), methodology for the internal dosimetry by radiopharmaceuticals, dosimetric systems (MIRD/ICRP), revision of the physical phantoms, design of kinetic studies, compartmental models, calculation tools and the demonstration of the programs SAAM and OLINDA; calculation of activity starting from the patient's images (planar and SPECT). Principles of the gamma camera: the dispersed radiation, calculation of the activity with planar images, the attenuation, correction of the dispersed radiation, collimation problems. SPECT: the common method of reconstruction, basic principles, method of filtered over head projection and iterative methods (MLEM/OSEM), measurement of the attenuation maps, problems of the penetration in the collimator (I-131, I-123), effects of partial volume, incorporation of corrections in an iterative reconstruction. Dosimetry in bone marrow, discussion of study cases of new radiopharmaceuticals. Internal dosimetry in small scale for electrons and photons. Perspectives of the

  7. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A 3-stage model of patient-centered communication for addressing cancer patients' emotional distress.

    Science.gov (United States)

    Dean, Marleah; Street, Richard L

    2014-02-01

    To describe pathways through which clinicians can more effectively respond to patients' emotions in ways that contribute to betterment of the patient's health and well-being. A representative review of literature on managing emotions in clinical consultations was conducted. A three-stage, conceptual model for assisting clinicians to more effectively address the challenges of recognizing, exploring, and managing cancer patients' emotional distress in the clinical encounter was developed. To enhance and enact recognition of patients' emotions, clinicians can engage in mindfulness, self-situational awareness, active listening, and facilitative communication. To enact exploration, clinicians can acknowledge and validate emotions and provide empathy. Finally, clinicians can provide information empathetically, identify therapeutic resources, and give referrals and interventions as needed to help lessen patients' emotional distress. This model serves as a framework for future research examining pathways that link clinicians' emotional cue recognition to patient-centered responses exploring a patient's emotional distress to therapeutic actions that contribute to improved psychological and emotional health. Specific communicative and cognitive strategies are presented that can help clinicians better recognize a patient's emotional distress and respond in ways that have therapeutic value. Published by Elsevier Ireland Ltd.

  9. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.

    Science.gov (United States)

    Liu, Biyue; Zheng, Jie; Bach, Richard; Tang, Dalin

    2015-01-01

    In literature, the effect of the inflow boundary condition was investigated by examining the impact of the waveform and the shape of the spatial profile of the inlet velocity on the cardiac hemodynamics. However, not much work has been reported on comparing the effect of the different combinations of the inlet/outlet boundary conditions on the quantification of the pressure field and flow distribution patterns in stenotic right coronary arteries. Non-Newtonian models were used to simulate blood flow in a patient-specific stenotic right coronary artery and investigate the influence of different boundary conditions on the phasic variation and the spatial distribution patterns of blood flow. The 3D geometry of a diseased artery segment was reconstructed from a series of IVUS slices. Five different combinations of the inlet and the outlet boundary conditions were tested and compared. The temporal distribution patterns and the magnitudes of the velocity, the wall shear stress (WSS), the pressure, the pressure drop (PD), and the spatial gradient of wall pressure (WPG) were different when boundary conditions were imposed using different pressure/velocity combinations at inlet/outlet. The maximum velocity magnitude in a cardiac cycle at the center of the inlet from models with imposed inlet pressure conditions was about 29% lower than that from models using fully developed inlet velocity data. Due to the fact that models with imposed pressure conditions led to blunt velocity profile, the maximum wall shear stress at inlet in a cardiac cycle from models with imposed inlet pressure conditions was about 29% higher than that from models with imposed inlet velocity boundary conditions. When the inlet boundary was imposed by a velocity waveform, the models with different outlet boundary conditions resulted in different temporal distribution patterns and magnitudes of the phasic variation of pressure. On the other hand, the type of different boundary conditions imposed at the

  10. Erythroid-specific transcriptional changes in PBMCs from pulmonary hypertension patients.

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    Full Text Available Gene expression profiling of peripheral blood mononuclear cells (PBMCs is a powerful tool for the identification of surrogate markers involved in disease processes. The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells.The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH, 19 patients with systemic sclerosis without pulmonary hypertension (SSc, 42 scleroderma-associated pulmonary arterial hypertensio patients (SSc-PAH, and 8 patients with SSc complicated by interstitial lung disease and pulmonary hypertension (SSc-PH-ILD were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Multiple gene expression signatures were identified which could distinguish various disease groups from controls. One of these signatures, specific for erythrocyte maturation, is enriched specifically in patients with PH. This association was validated in multiple published datasets. The erythropoiesis signature was strongly correlated with hemodynamic measures of increasing disease severity in IPAH patients. No significant correlation of the same type was noted for SSc-PAH patients, this despite a clear signature enrichment within this group overall. These findings suggest an association of the erythropoiesis signature in PBMCs from patients with PH with a variable presentation among different subtypes of disease.In PH, the expansion of immature red blood cell precursors may constitute a response to the increasingly hypoxic conditions prevalent in this syndrome. A correlation of this erythrocyte signature with more severe hypertension cases may provide an important biomarker of disease progression.

  11. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    OpenAIRE

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...

  12. Wearable sensors for patient-specific boundary shape estimation to improve the forward model for electrical impedance tomography (EIT) of neonatal lung function.

    Science.gov (United States)

    Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard

    2014-06-01

    Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.

  13. Gender-specific differences in cancer-specific survival after radical cystectomy for patients with urothelial carcinoma of the urinary bladder in pathologic tumor stage T4a.

    Science.gov (United States)

    May, Matthias; Bastian, Patrick J; Brookman-May, Sabine; Fritsche, Hans-Martin; Tilki, Derya; Otto, Wolfgang; Bolenz, Christian; Gilfrich, Christian; Trojan, Lutz; Herrmann, Edwin; Moritz, Rudolf; Tiemann, Arne; Müller, Stefan C; Ellinger, Jörg; Buchner, Alexander; Stief, Christian G; Wieland, Wolf F; Höfner, Thomas; Hohenfellner, Markus; Haferkamp, Axel; Roigas, Jan; Zacharias, Mario; Nuhn, Philipp; Burger, Maximilian

    2013-10-01

    Bladder cancer (UCB) staged pT4a show heterogeneous outcome after radical cystectomy (RC). No risk model has been established to date. Despite gender-specific differences, no comparative studies exist for this tumor stage. Cancer-specific survival (CSS) of 245 UCB patients without neoadjuvant chemotherapy staged pT4a, pN0-2, M0 after RC were analyzed in a retrospective multi-center study. Seventeen patients were excluded from further analysis due to carcinoma in situ (CIS) of the prostatic urethra and/or positive surgical margins. Average follow-up period was 30 months (IQR: 14-45). The influence of different clinical and histopathologic variables on CSS was determined through uni- and multivariate Cox regression analyses. Two risk groups were generated using factors with independent effect in multivariate models. Internal validity of the prediction model was evaluated by bootstrapping. Eighty-four percent of the patients (n = 192) were male; 72% (n = 165) showed lymphovascular invasion (LVI). The 5-year CSS rate was 31%, and significantly different between male and female (35% vs. 15%, P = 0.003). Multivariate Cox regression modeling, female gender (HR = 1.83, P = 0.008), LVI (HR = 1.92, P = 0.005), and absence of adjuvant chemotherapy (HR = 0.61, P = 0.020) significantly worsened CSS. Two risk groups were generated using these 3 criteria, which differed significantly between each other in CSS (5-year-CSS: 46% vs. 12%, P < 0.001). The c-index value of the risk model was 0.61 (95% CI: 0.53-0.68, P < 0.001). Prognosis in UCB staged pT4a is heterogeneous. Female gender and LVI are adverse factors. Adjuvant chemotherapy seems to improve outcome. The present analysis establishes the first risk model for this demanding tumor stage. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A failure-type specific risk prediction tool for selection of head-and-neck cancer patients for experimental treatments

    DEFF Research Database (Denmark)

    Håkansson, Katrin; Rasmussen, Jacob H.; Rasmussen, Gregers B.

    2017-01-01

    : Retrospective data for 560HNSCC patients were used to generate a multi-endpoint model, combining three cause-specific Cox models (LRF, DM and death with no evidence of disease (death NED)). The model was used to generate risk profiles of patients eligible for/included in a de-intensification study (RTOG 1016...... variables (tumor subsite, T stage, N stage, smoking status, age and performance status) and one additional variable (tumor volume). The treatment failure discrimination ability of the developed model was superior of that of UICC staging, 8(th) edition (AUCLRF=72.7% vs 64.2%, p....8%, pde-intensification study had>20% risk of tumor relapse. Conversely, 9 of the 15 dose escalation trial participants had LRF risks

  15. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaodi Qiu

    Full Text Available The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2, and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP. In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT markers compared with human embryonic stem cells (hESCs and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract

  16. Comparison of serum prostate specific antigen levels and bone scintigraphy in patients with prostate carcinoma

    International Nuclear Information System (INIS)

    Bielickaite, J.; Zadeikaite, R.; Jurkiene, N. and others

    2003-01-01

    The aim of this study was to analyze the levels of serum prostate specific antigen in patients with and without bone metastases detected by means of bone scintigraphy and to determine the highest prostate specific antigen level in patients without bone metastases. The 50 patients consecutively diagnosed of prostate cancer between 1999 and 2001 in our institution made up the study population. Prostate specific antigen plasmatic levels were determined and bone scintigraphy was performed (whole body study after 99mTc-methyl-diphosphonate administration) in all the patients. In patients with positive bone scans (n=23), the mean prostate specific antigen level was 71.4±35.2 ng/ml and was significantly (p<0.00005) higher than in 14 patients with negative bone scans (mean prostate specific antigen level was 10.1±10.5 ng/ml). Suspicious lesions were found in 13 patients and their mean prostate specific antigen level was 8.5±7.7 ng/ml. Regarding prostate specific antigen levels, no statistically significant differences were found between patients with suspicious lessons and normal bone scans. The highest determined prostate specific antigen level in patients without bone metastases was 18 ng/ml. The bone scintigraphy should be performed in all patients with prostate specific antigen level above 18 ng/ml, but it is of limited value in patients with prostate specific antigen level below 18 ng/ml. (author)

  17. Predicting Cumulative Incidence Probability: Marginal and Cause-Specific Modelling

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2005-01-01

    cumulative incidence probability; cause-specific hazards; subdistribution hazard; binomial modelling......cumulative incidence probability; cause-specific hazards; subdistribution hazard; binomial modelling...

  18. An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery.

    Science.gov (United States)

    Kong, Fande; Kheyfets, Vitaly; Finol, Ender; Cai, Xiao-Chuan

    2018-04-01

    Simulation of blood flows in the pulmonary artery provides some insight into certain diseases by examining the relationship between some continuum metrics, eg, the wall shear stress acting on the vascular endothelium, which responds to flow-induced mechanical forces by releasing vasodilators/constrictors. V. Kheyfets, in his previous work, studies numerically a patient-specific pulmonary circulation to show that decreasing wall shear stress is correlated with increasing pulmonary vascular impedance. In this paper, we develop a scalable parallel algorithm based on domain decomposition methods to investigate an unsteady model with patient-specific pulsatile waveforms as the inlet boundary condition. The unsteady model offers tremendously more information about the dynamic behavior of the flow field, but computationally speaking, the simulation is a lot more expensive since a problem which is similar to the steady-state problem has to be solved many times, and therefore, the traditional sequential approach is not suitable anymore. We show computationally that simulations using the proposed parallel approach with up to 10 000 processor cores can be obtained with much reduced compute time. This makes the technology potentially usable for the routine study of the dynamic behavior of blood flows in the pulmonary artery, in particular, the changes of the blood flows and the wall shear stress in the spatial and temporal dimensions. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Patients' mental models and adherence to outpatient physical therapy home exercise programs.

    Science.gov (United States)

    Rizzo, Jon

    2015-05-01

    Within physical therapy, patient adherence usually relates to attending appointments, following advice, and/or undertaking prescribed exercise. Similar to findings for general medical adherence, patient adherence to physical therapy home exercise programs (HEP) is estimated between 35 and 72%. Adherence to HEPs is a multifactorial and poorly understood phenomenon, with no consensus regarding a common theoretical framework that best guides empirical or clinical efforts. Mental models, a construct used to explain behavior and decision-making in the social sciences, may serve as this framework. Mental models comprise an individual's tacit thoughts about how the world works. They include assumptions about new experiences and expectations for the future based on implicit comparisons between current and past experiences. Mental models play an important role in decision-making and guiding actions. This professional theoretical article discusses empirical research demonstrating relationships among mental models, prior experience, and adherence decisions in medical and physical therapy contexts. Specific issues related to mental models and physical therapy patient adherence are discussed, including the importance of articulation of patients' mental models, assessment of patients' mental models that relate to exercise program adherence, discrepancy between patient and provider mental models, and revision of patients' mental models in ways that enhance adherence. The article concludes with practical implications for physical therapists and recommendations for further research to better understand the role of mental models in physical therapy patient adherence behavior.

  20. Cost-effectiveness of specific subcutaneous immunotherapy in patients with allergic rhinitis and allergic asthma.

    Science.gov (United States)

    Brüggenjürgen, Bernd; Reinhold, Thomas; Brehler, Randolf; Laake, Eckard; Wiese, Günther; Machate, Ulrich; Willich, Stefan N

    2008-09-01

    Specific immunotherapy is the only potentially curative treatment in patients with allergic rhinitis and allergic asthma. Health economic evaluations on this treatment, particularly in a German context, are sparse. To evaluate the cost-effectiveness of specific subcutaneous immunotherapy (SCIT) in addition to symptomatic treatment (ST) compared with ST alone in a German health care setting. The analysis was performed as a health economic model calculation based on Markov models. In addition, we performed a concomitant expert board composed of allergy experts in pediatrics, dermatology, pneumology, and otolaryngology. The primary perspective of the study was societal. Additional sensitivity analyses were performed to prove our results for robustness. The SCIT and ST combination was associated with annual cost savings of Euro140 per patient. After 10 years of disease duration, SCIT and ST reach the breakeven point. The overall incremental cost-effectiveness ratio (ICER) was Euro-19,787 per quality-adjusted life-year (QALY), with a range that depended on patient age (adults, Euro-22,196; adolescents, Euro-14,747; children, Euro-12,750). From a third-party payer's perspective, SCIT was associated with slightly additional costs. Thus, the resulting ICER was Euro8,308 per QALY for all patients. Additional SCIT was associated with improved medical outcomes and cost savings compared with symptomatic treatment alone according to a societal perspective. Taking a European accepted ICER threshold of up to Euro50,000 per QALY into account, additional SCIT is considered clearly cost-effective compared with routine care in Germany. The degree of cost-effectiveness is strongly affected by costs related to SCIT and the target population receiving such treatment.

  1. Estimation of left ventricular blood flow parameters: clinical application of patient-specific CFD simulations from 4D echocardiography

    Science.gov (United States)

    Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda

    2017-03-01

    Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex

  2. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available Charcot-Marie-Tooth disease type 1A (CMT1A, one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs. Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy.

  3. The virtual craniofacial patient: 3D jaw modeling and animation.

    Science.gov (United States)

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  4. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education.

    Science.gov (United States)

    Bernhard, Jean-Christophe; Isotani, Shuji; Matsugasumi, Toru; Duddalwar, Vinay; Hung, Andrew J; Suer, Evren; Baco, Eduard; Satkunasivam, Raj; Djaladat, Hooman; Metcalfe, Charles; Hu, Brian; Wong, Kelvin; Park, Daniel; Nguyen, Mike; Hwang, Darryl; Bazargani, Soroush T; de Castro Abreu, Andre Luis; Aron, Monish; Ukimura, Osamu; Gill, Inderbir S

    2016-03-01

    To assess the impact of 3D printed models of renal tumor on patient's understanding of their conditions. Patient understanding of their medical condition and treatment satisfaction has gained increasing attention in medicine. Novel technologies such as additive manufacturing [also termed three-dimensional (3D) printing] may play a role in patient education. A prospective pilot study was conducted, and seven patients with a primary diagnosis of kidney tumor who were being considered for partial nephrectomy were included after informed consent. All patients underwent four-phase multi-detector computerized tomography (MDCT) scanning from which renal volume data were extracted to create life-size patient-specific 3D printed models. Patient knowledge and understanding were evaluated before and after 3D model presentation. Patients' satisfaction with their specific 3D printed model was also assessed through a visual scale. After viewing their personal 3D kidney model, patients demonstrated an improvement in understanding of basic kidney physiology by 16.7 % (p = 0.018), kidney anatomy by 50 % (p = 0.026), tumor characteristics by 39.3 % (p = 0.068) and the planned surgical procedure by 44.6 % (p = 0.026). Presented herein is the initial clinical experience with 3D printing to facilitate patient's pre-surgical understanding of their kidney tumor and surgery.

  5. Patient-Specific Dosimetry of Pretargeted Radioimmunotherapy Using CC49 Fusion Protein in Patients with Gastrointestinal Malignancies

    International Nuclear Information System (INIS)

    Shen, Shang; Forero, Andres; LoBuglio, Albert F.; Breitz, H.; Khazaeli, M. B.; Fisher, Darrell R.; Wang, W. Q.; Meredith, Ruby F.

    2005-01-01

    Patient-Specific Dosimetry of Pretargeted Radioimmunotherapy Using CC49 Fusion Protein in Patients with Gastrointestinal Malignancies. Shen S, Forero A, Lobuglio AF, Breitz H, Khazaeli MB, Fisher DR, Wang W, Meredith RF. Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, and Radioisotopes Program at Pacific Northwest National Laboratory, Richland, Washington. Pretargeted radioimmunotherapy (RIT) using CC49 fusion protein, comprised of CC49-(scFv)(4) and streptavidin, in conjunction with (90)Y/(111)In-DOTA-biotin (DOTA = dodecanetetraacetic acid) provides a new opportunity to improve efficacy by increasing the tumor-to-normal tissue dose ratio. To our knowledge, the patient-specific dosimetry of pretargeted (90)Y/(111)In-DOTA-biotin after CC49 fusion protein in patients has not been reported previously. METHODS: Nine patients received 3-step pretargeted RIT: (a) 160 mg/m(2) of CC49 fusion protein, (b) synthetic clearing agent (sCA) at 48 or 72 h later, and (c) (90)Y/(111)In-DOTA-biotin 24 h after the sCA administration. Sequential whole-body (111)In images were acquired immediately and at 2-144 h after injection of (90)Y/(111)In-DOTA-biotin. Geometric-mean quantification with background and attenuation correction was used for liver and lung dosimetry. Effective point source quantification was used for spleen, kidneys, and tumors. Organ and tumor (90)Y doses were calculated based on (111)In imaging data and the MIRD formalism using patient-specific organ masses determined from CT images. Patient-specific marrow doses were determined based on radioactivity concentration in the blood. RESULTS: The (90)Y/(111)In-DOTA-biotin had a rapid plasma clearance, which was biphasic with <10% residual at 8 h. Organ masses ranged from 1,263 to 3,855 g for liver, 95 to 1,009 g for spleen, and 309 to 578 g for kidneys. The patient-specific mean (90)Y dose (cGy/37 MBq, or rad/mCi) was 0.53 (0.32-0.78) to whole body

  6. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    International Nuclear Information System (INIS)

    Papadimitroulas, Panagiotis; Efthimiou, Nikos; Nikiforidis, George C.; Kagadis, George C.; Loudos, George; Le Maitre, Amandine; Hatt, Mathieu; Tixier, Florent; Visvikis, Dimitris

    2013-01-01

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with

  7. Splintless orthognathic surgery: a novel technique using patient-specific implants (PSI).

    Science.gov (United States)

    Gander, Thomas; Bredell, Marius; Eliades, Theodore; Rücker, Martin; Essig, Harald

    2015-04-01

    In the past few years, advances in three-dimensional imaging have conducted to breakthrough in the diagnosis, treatment planning and result assessment in orthognathic surgery. Hereby error-prone and time-consuming planning steps, like model surgery and transfer of the face bow, can be eluded. Numerous positioning devices, in order to transfer the three-dimensional treatment plan to the intraoperative site, have been described. Nevertheless the use of positioning devices and intraoperative splints are failure-prone and time-consuming steps, which have to be performed during the operation and during general anesthesia of the patient. We describe a novel time-sparing and failsafe technique using patient-specific implants (PSI) as positioning guides and concurrently as rigid fixation of the maxilla in the planned position. This technique avoids elaborate positioning and removal of manufactured positioning devices and allows maxillary positioning without the use of occlusal splints. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, K; Corwin, D [Northwestern University, Chicago, IL (United States); Rockne, R

    2014-06-15

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  9. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    International Nuclear Information System (INIS)

    Swanson, K; Corwin, D; Rockne, R

    2014-01-01

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  10. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The role of Patient Health Engagement Model (PHE-model in affecting patient activation and medication adherence: A structural equation model.

    Directory of Open Access Journals (Sweden)

    Guendalina Graffigna

    Full Text Available Increasing bodies of scientific research today examines the factors and interventions affecting patients' ability to self-manage and adhere to treatment. Patient activation is considered the most reliable indicator of patients' ability to manage health autonomously. Only a few studies have tried to assess the role of psychosocial factors in promoting patient activation. A more systematic modeling of the psychosocial factors explaining the variance of patient activation is needed.To test the hypothesized effect of patient activation on medication adherence; to test the the hypothesized effects of positive emotions and of the quality of the patient/doctor relationship on patient activation; and to test the hypothesized mediating effect of Patient Health Engagement (PHE-model in this pathway.This cross-sectional study involved 352 Italian-speaking adult chronic patients. The survey included measures of i patient activation (Patient Activation Measure 13 -short form; ii Patient Health Engagement model (Patient Health Engagement Scale; iii patient adherence (4 item-Morinsky Medication Adherence Scale; iv the quality of the patients' emotional feelings (Manikin Self Assessment Scale; v the quality of the patient/doctor relationship (Health Care Climate Questionnaire. Structural equation modeling was used to test the hypotheses proposed.According to the theoretical model we hypothesized, research results confirmed that patients' activation significantly affects their reported medication adherence. Moreover, psychosocial factors, such as the patients' quality of the emotional feelings and the quality of the patient/doctor relationship were demonstrated to be factors affecting the level of patient activation. Finally, the mediation effect of the Patient Health Engagement model was confirmed by the analysis.Consistently with the results of previous studies, these findings demonstrate that the Patient Health Engagement Model is a critical factor in

  12. The role of Patient Health Engagement Model (PHE-model) in affecting patient activation and medication adherence: A structural equation model.

    Science.gov (United States)

    Graffigna, Guendalina; Barello, Serena; Bonanomi, Andrea

    2017-01-01

    Increasing bodies of scientific research today examines the factors and interventions affecting patients' ability to self-manage and adhere to treatment. Patient activation is considered the most reliable indicator of patients' ability to manage health autonomously. Only a few studies have tried to assess the role of psychosocial factors in promoting patient activation. A more systematic modeling of the psychosocial factors explaining the variance of patient activation is needed. To test the hypothesized effect of patient activation on medication adherence; to test the the hypothesized effects of positive emotions and of the quality of the patient/doctor relationship on patient activation; and to test the hypothesized mediating effect of Patient Health Engagement (PHE-model) in this pathway. This cross-sectional study involved 352 Italian-speaking adult chronic patients. The survey included measures of i) patient activation (Patient Activation Measure 13 -short form); ii) Patient Health Engagement model (Patient Health Engagement Scale); iii) patient adherence (4 item-Morinsky Medication Adherence Scale); iv) the quality of the patients' emotional feelings (Manikin Self Assessment Scale); v) the quality of the patient/doctor relationship (Health Care Climate Questionnaire). Structural equation modeling was used to test the hypotheses proposed. According to the theoretical model we hypothesized, research results confirmed that patients' activation significantly affects their reported medication adherence. Moreover, psychosocial factors, such as the patients' quality of the emotional feelings and the quality of the patient/doctor relationship were demonstrated to be factors affecting the level of patient activation. Finally, the mediation effect of the Patient Health Engagement model was confirmed by the analysis. Consistently with the results of previous studies, these findings demonstrate that the Patient Health Engagement Model is a critical factor in enhancing

  13. Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS insertion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Maoqing Fu

    Full Text Available BACKGROUND: With the properties of three-column fixation and anterior-approach-only procedure, anterior transpedicular screw (ATPS is ideal for severe multilevel traumatic cervical instabilities. However, the accurate insertion of ATPS remains challenging. Here we constructed a patient-specific biocompatible drill template and evaluated its accuracy in assisting ATPS insertion. METHODS: After ethical approval, 24 formalin-preserved cervical vertebrae (C2-C7 were CT scanned. 3D reconstruction models of cervical vertebra were obtained with 2-mm-diameter virtual pin tracts at the central pedicles. The 3D models were used for rapid prototyping (RP printing. A 2-mm-diameter Kirschner wire was then inserted into the pin tract of the RP model before polymethylmethacrylate was used to construct the patient-specific biocompatible drill template. After removal of the anterior soft tissue, a 2-mm-diameter Kirschner wire was inserted into the cervical pedicle with the assistance of drill template. Cadaveric cervical spines with pin tracts were subsequently scanned using the same CT scanner. A 3D reconstruction was performed of the scanned spines to get 3D models of the vertebrae containing the actual pin tracts. The deviations were calculated between 3D models with virtual and actual pin tracts at the middle point of the cervical pedicle. 3D models of 3.5 mm-diameter screws were used in simulated insertion to grade the screw positions. FINDINGS: The patient-specific biocompatible drill template was constructed to assist ATPS insertion successfully. There were no significant differences between medial/lateral deviations (P = 0.797 or between superior/inferior deviations (P = 0.741. The absolute deviation values were 0.82±0.75 mm and 1.10±0.96 mm in axial and sagittal planes, respectively. In the simulated insertion, the screws in non-critical position were 44/48 (91.7%. CONCLUSIONS: The patient-specific drill template is biocompatible, easy

  14. A Patient Specific Biomechanical Analysis of Custom Root Analogue Implant Designs on Alveolar Bone Stress: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    David Anssari Moin

    2016-01-01

    Full Text Available Objectives. The aim of this study was to analyse by means of FEA the influence of 5 custom RAI designs on stress distribution of peri-implant bone and to evaluate the impact on microdisplacement for a specific patient case. Materials and Methods. A 3D surface model of a RAI for the upper right canine was constructed from the cone beam computed tomography data of one patient. Subsequently, five (targeted press-fit design modification FE models with five congruent bone models were designed: “Standard,” “Prism,” “Fins,” “Plug,” and “Bulbs,” respectively. Preprocessor software was applied to mesh the models. Two loads were applied: an oblique force (300 N and a vertical force (150 N. Analysis was performed to evaluate stress distributions and deformed contact separation at the peri-implant region. Results. The lowest von Mises stress levels were numerically observed for the Plug design. The lowest levels of contact separation were measured in the Fins model followed by the Bulbs design. Conclusions. Within the limitations of the applied methodology, adding targeted press-fit geometry to the RAI standard design will have a positive effect on stress distribution, lower concentration of bone stress, and will provide a better primary stability for this patient specific case.

  15. Development and validation of multivariable predictive model for thromboembolic events in lymphoma patients.

    Science.gov (United States)

    Antic, Darko; Milic, Natasa; Nikolovski, Srdjan; Todorovic, Milena; Bila, Jelena; Djurdjevic, Predrag; Andjelic, Bosko; Djurasinovic, Vladislava; Sretenovic, Aleksandra; Vukovic, Vojin; Jelicic, Jelena; Hayman, Suzanne; Mihaljevic, Biljana

    2016-10-01

    Lymphoma patients are at increased risk of thromboembolic events but thromboprophylaxis in these patients is largely underused. We sought to develop and validate a simple model, based on individual clinical and laboratory patient characteristics that would designate lymphoma patients at risk for thromboembolic event. The study population included 1,820 lymphoma patients who were treated in the Lymphoma Departments at the Clinics of Hematology, Clinical Center of Serbia and Clinical Center Kragujevac. The model was developed using data from a derivation cohort (n = 1,236), and further assessed in the validation cohort (n = 584). Sixty-five patients (5.3%) in the derivation cohort and 34 (5.8%) patients in the validation cohort developed thromboembolic events. The variables independently associated with risk for thromboembolism were: previous venous and/or arterial events, mediastinal involvement, BMI>30 kg/m(2) , reduced mobility, extranodal localization, development of neutropenia and hemoglobin level 3). For patients classified at risk (intermediate and high-risk scores), the model produced negative predictive value of 98.5%, positive predictive value of 25.1%, sensitivity of 75.4%, and specificity of 87.5%. A high-risk score had positive predictive value of 65.2%. The diagnostic performance measures retained similar values in the validation cohort. Developed prognostic Thrombosis Lymphoma - ThroLy score is more specific for lymphoma patients than any other available score targeting thrombosis in cancer patients. Am. J. Hematol. 91:1014-1019, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. HPV specific testing: a requirement for oropharyngeal squamous cell carcinoma patients.

    Science.gov (United States)

    Robinson, Max; Schache, Andrew; Sloan, Philip; Thavaraj, Selvam

    2012-07-01

    Human papillomavirus (HPV) testing is now recommended as part of the work up for patients with oropharyngeal squamous cell carcinoma (OPSCC) and those patients with cervical lymph node metastasis of unknown origin. The laboratory testing strategy should accurately assess the presence or absence of oncogenic HPV infection in routinely collected tumour samples that are subject to standard fixation protocols, alcohol-fixed cytological preparations and formalin-fixed tissue samples. The HPV status should correlate with biologically relevant outcome measures such as overall, disease-specific and disease-free survival. Whilst increased expression of p16 by immunohistochemistry is considered to be a surrogate marker of oncogenic HPV infection and is a validated independent prognostic biomarker, only HPV specific tests provide definitive evidence of the aetiological agent. We provide an overview of HPV testing in OPSCC, justifying the use of HPV specific tests. We examine the analytical accuracy of HPV specific tests against the 'reference' test--high risk HPV mRNA in fresh tissue--and contrast this with the performance of p16 immunohistochemistry as a stand alone test. We highlight the added value of HPV specific tests in prognostication, clinical trial design, and population-based disease surveillance. We consider that HPV specific testing is the starting point for developing increasingly informative biomarker panels in the context of 'stratified medicine'. We briefly frame test information in the context of disclosure of HPV status to patients. We conclude that only a testing strategy that includes HPV specific tests can deliver more effective care for patients with OPSCC. The international head and neck oncology community should work together to clearly define the minimum requirements for assigning a diagnosis of HPV-related OPSCC in order to ensure consistent reporting of this emerging and increasingly prevalent disease.

  17. Mesh-morphing algorithms for specimen-specific finite element modeling.

    Science.gov (United States)

    Sigal, Ian A; Hardisty, Michael R; Whyne, Cari M

    2008-01-01

    Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Here we present two algorithms for morphing, automated wrapping (AW) and manual landmarks (ML), and demonstrate their use to prepare specimen-specific models of caudal rat vertebrae. We evaluate the algorithms by measuring the distance between target and morphed geometries and by comparing response to axial loading simulated with finite element (FE) methods. First a traditional reconstruction process based on microCT was used to obtain two natural specimen-specific FE models. Next, the two morphing algorithms were used to compute mappings from the surface of one model, the source, to the other, the target, and to use this mapping to morph the source mesh to produce a target mesh. The microCT images were then used to assign element-specific material properties. In AW the mappings were obtained by wrapping the source and target surfaces with an auxiliary triangulated surface. In ML, landmarks were manually placed on corresponding locations on the surfaces of both source and target. Both morphing algorithms were successful in reproducing the shape of the target vertebra with a median distance between natural and morphed models of 18.8 and 32.2 microm, respectively, for AW and ML. Whereas AW-morphing produced a surface more closely resembling that of the target, ML guaranteed correspondence of the landmark locations between source and target. Morphing preserved the quality of the mesh producing models suitable for FE simulation. Moreover, there were only minor differences between natural and morphed models in predictions of deformation, strain and stress. We therefore conclude that

  18. Patient-centered care requires a patient-oriented workflow model.

    Science.gov (United States)

    Ozkaynak, Mustafa; Brennan, Patricia Flatley; Hanauer, David A; Johnson, Sharon; Aarts, Jos; Zheng, Kai; Haque, Saira N

    2013-06-01

    Effective design of health information technology (HIT) for patient-centered care requires consideration of workflow from the patient's perspective, termed 'patient-oriented workflow.' This approach organizes the building blocks of work around the patients who are moving through the care system. Patient-oriented workflow complements the more familiar clinician-oriented workflow approaches, and offers several advantages, including the ability to capture simultaneous, cooperative work, which is essential in care delivery. Patient-oriented workflow models can also provide an understanding of healthcare work taking place in various formal and informal health settings in an integrated manner. We present two cases demonstrating the potential value of patient-oriented workflow models. Significant theoretical, methodological, and practical challenges must be met to ensure adoption of patient-oriented workflow models. Patient-oriented workflow models define meaningful system boundaries and can lead to HIT implementations that are more consistent with cooperative work and its emergent features.

  19. Disease-Specific Mortality of Differentiated Thyroid Cancer Patients in Korea: A Multicenter Cohort Study

    Directory of Open Access Journals (Sweden)

    Min Ji Jeon

    2017-11-01

    Full Text Available BackgroundLittle is known regarding disease-specific mortality of differentiated thyroid cancer (DTC patients and its risk factors in Korea.MethodsWe retrospectively reviewed a large multi-center cohort of thyroid cancer from six Korean hospitals and included 8,058 DTC patients who underwent initial surgery between 1996 and 2005.ResultsMean age of patients at diagnosis was 46.2±12.3 years; 87% were females. Most patients had papillary thyroid cancer (PTC; 97% and underwent total thyroidectomy (85%. Mean size of the primary tumor was 1.6±1.0 cm. Approximately 40% of patients had cervical lymph node (LN metastases and 1.3% had synchronous distant metastases. During 11.3 years of follow-up, 150 disease-specific mortalities (1.9% occurred; the 10-year disease-specific survival (DSS rate was 98%. According to the year of diagnosis, the number of disease-specific mortality was not different. However, the rate of disease-specific mortality decreased during the study period (from 7.7% to 0.7%. Older age (≥45 years at diagnosis, male, follicular thyroid cancer (FTC versus PTC, larger tumor size (>2 cm, presence of extrathyroidal extension (ETE, lateral cervical LN metastasis, distant metastasis and tumor node metastasis (TNM stage were independent risk factors of disease-specific mortality of DTC patients.ConclusionThe rate of disease-specific mortality of Korean DTC patients was 1.9%; the 10-year DSS rate was 98% during 1996 to 2005. Older age at diagnosis, male, FTC, larger tumor size, presence of ETE, lateral cervical LN metastasis, distant metastasis, and TNM stages were significant risk factors of disease-specific mortality of Korean DTC patients.

  20. Patient specific 3D visualisation of human brain

    African Journals Online (AJOL)

    Nafiisah

    development of powerful new 3D image analysis and visualization algorithms that ... The tool is aimed to provide facility to reconstruct patient-specific 3D ... In this paper we present a review of the ... medical diagnosis, procedures training, pre-operative planning, ..... Body: Handbook of Numerical Analysis, Elsevier, 2004.

  1. Specifics of nursing care for a patient with nutritional stoma.

    OpenAIRE

    MUSILOVÁ, Klára

    2017-01-01

    Main goal of the thesis was to map out the specifics of nursing care for a patient with a nutritious stoma. Three research questions have been identified in connection to this goal. First research question was focused on mapping out the nursing care for a patient prior applying the nutritious stoma. Second research question was focusing on nursing care for a patient while the nutritious stoma is being applied, and the last third question researches the nursing care for a patient after applyin...

  2. Psychiatric in-patients' experience of being secluded in a specific ...

    African Journals Online (AJOL)

    This qualitative, explorative, descriptive and contextual study was undertaken to explore and describe the experiences of psychiatric in-patients who are secluded in a specific hospital in Lesotho. Evidence about the rationale and appropriate use of seclusion as well as promotion of mental health in secluded patients has ...

  3. MODEL OF TEACHING PROFESSION SPECIFIC BILATERAL TRANSLATION

    Directory of Open Access Journals (Sweden)

    Yana Fabrychna

    2017-03-01

    Full Text Available The article deals with the author’s interpretation of the process of teaching profession specific bilateral translation to student teacher of English in the Master’s program. The goal of the model of teaching profession specific bilateral translation development is to determine the logical sequence of educational activities of the teacher as the organizer of the educational process and students as its members. English and Ukrainian texts on methods of foreign languages and cultures teaching are defined as the object of study. Learning activities aimed at the development of student teachers of English profession specific competence in bilateral translation and Translation Proficiency Language Portfolio for Student Teachers of English are suggested as teaching tools. The realization of the model of teaching profession specific bilateral translation to student teachers of English in the Master’s program is suggested within the module topics of the academic discipline «Practice of English as the first foreign language»: Globalization; Localization; Education; Work; The role of new communication technologies in personal and professional development. We believe that the amount of time needed for efficient functioning of the model is 48 academic hours, which was determined by calculating the total number of academic hours allotted for the academic discipline «Practice of English as the first foreign language» in Ukrainian universities. Peculiarities of the model realization as well as learning goals and content of class activities and home self-study work of students are outlined.

  4. Risks of all-cause and site-specific fractures among hospitalized patients with COPD

    OpenAIRE

    Liao, Kuang-Ming; Liang, Fu-Wen; Li, Chung-Yi

    2016-01-01

    Abstract Patients with chronic obstructive pulmonary disease (COPD) have a high prevalence of osteoporosis. The clinical sequel of osteoporosis is fracture. Patients with COPD who experience a fracture also have increased morbidity and mortality. Currently, the types of all-cause and site-specific fracture among patients with COPD are unknown. Thus, we elucidated the all-cause and site-specific fractures among patients with COPD. A retrospective, population-based, cohort study was conducted u...

  5. Use of the Graded Prognostic Assessment (GPA) score in patients with brain metastases from primary tumours not represented in the diagnosis-specific GPA studies

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, C. [Nordland Hospital, Bodoe (Norway). Dept. of Oncology and Palliative Medicine; Tromsoe Univ. (Norway). Inst. of Clinical Medicine; Andratschke, N.H. [University Hospital Rostock (Germany). Dept. of Radiation Oncology; Geinitz, H. [Klinikum rechts der Isar der Technischen Univ. Muenchen (Germany). Dept. of Radiation Oncology; Grosu, A.L. [University Hospital Freiburg (Germany). Dept. of Radiation Oncology

    2012-08-15

    Background and purpose: Assessment of prognostic factors might influence treatment decisions in patients with brain metastases. Based on large studies, the diagnosis-specific graded prognostic assessment (GPA) score is a useful tool. However, patients with unknown or rare primary tumours are not represented in this model. A pragmatic approach might be use of the first GPA version which is not limited to specific primary tumours. Patients and methods: This retrospective analysis examines for the first time whether the GPA is a valid score in patients not eligible for the diagnosis-specific GPA. It includes 71 patients with unknown primary tumour, bladder cancer, ovarian cancer, thyroid cancer or other uncommon primaries. Survival was evaluated in uni- and multivariate tests. Results: The GPA significantly predicted survival. Moreover, improved survival was seen in patients treated with surgical resection or radiosurgery (SRS) for brain metastases. The older recursive partitioning analysis (RPA) score was significant in univariate analysis. However, the multivariate model with RPA, GPA and surgery or SRS versus none showed that only GPA and type of treatment were independent predictors of survival. Conclusion: Ideally, cooperative research efforts would lead to development of diagnosis-specific scores also for patients with rare or unknown primary tumours. In the meantime, a pragmatic approach of using the general GPA score appears reasonable. (orig.)

  6. Use of the Graded Prognostic Assessment (GPA) score in patients with brain metastases from primary tumours not represented in the diagnosis-specific GPA studies

    International Nuclear Information System (INIS)

    Nieder, C.; Tromsoe Univ.; Andratschke, N.H.; Geinitz, H.; Grosu, A.L.

    2012-01-01

    Background and purpose: Assessment of prognostic factors might influence treatment decisions in patients with brain metastases. Based on large studies, the diagnosis-specific graded prognostic assessment (GPA) score is a useful tool. However, patients with unknown or rare primary tumours are not represented in this model. A pragmatic approach might be use of the first GPA version which is not limited to specific primary tumours. Patients and methods: This retrospective analysis examines for the first time whether the GPA is a valid score in patients not eligible for the diagnosis-specific GPA. It includes 71 patients with unknown primary tumour, bladder cancer, ovarian cancer, thyroid cancer or other uncommon primaries. Survival was evaluated in uni- and multivariate tests. Results: The GPA significantly predicted survival. Moreover, improved survival was seen in patients treated with surgical resection or radiosurgery (SRS) for brain metastases. The older recursive partitioning analysis (RPA) score was significant in univariate analysis. However, the multivariate model with RPA, GPA and surgery or SRS versus none showed that only GPA and type of treatment were independent predictors of survival. Conclusion: Ideally, cooperative research efforts would lead to development of diagnosis-specific scores also for patients with rare or unknown primary tumours. In the meantime, a pragmatic approach of using the general GPA score appears reasonable. (orig.)

  7. Characterization of cat dander-specific T lymphocytes from atopic patients

    NARCIS (Netherlands)

    van Neerven, R. J.; van de Pol, M. M.; van Milligen, F. J.; Jansen, H. M.; Aalberse, R. C.; Kapsenberg, M. L.

    1994-01-01

    Fel d I, the major cat dander allergen, is recognized by serum IgE of more than 80% of all cat-allergic patients. Because IgE synthesis by B lymphocytes is under the control of T lymphocytes, we studied the specificity and lymphokine production profiles of cat dander-specific T lymphocytes.

  8. Tolerance design of patient-specific range QA using the DMAIC framework in proton therapy.

    Science.gov (United States)

    Rah, Jeong-Eun; Shin, Dongho; Manger, Ryan P; Kim, Tae Hyun; Oh, Do Hoon; Kim, Dae Yong; Kim, Gwe-Ya

    2018-02-01

    To implement the DMAIC (Define-Measure-Analyze-Improve-Control) can be used for customizing the patient-specific QA by designing site-specific range tolerances. The DMAIC framework (process flow diagram, cause and effect, Pareto chart, control chart, and capability analysis) were utilized to determine the steps that need focus for improving the patient-specific QA. The patient-specific range QA plans were selected according to seven treatment site groups, a total of 1437 cases. The process capability index, C pm was used to guide the tolerance design of patient site-specific range. For prostate field, our results suggested that the patient range measurements were capable at the current tolerance level of ±1 mm in clinical proton plans. For other site-specific ranges, we analyzed that the tolerance tends to be overdesigned to insufficient process capability calculated by the patient-specific QA data. The customized tolerances were calculated for treatment sites. Control charts were constructed to simulate the patient QA time before and after the new tolerances were implemented. It is found that the total simulation QA time was decreased on average of approximately 20% after establishing new site-specific range tolerances. We simulated the financial impact of this project. The QA failure for whole process in proton therapy would lead up to approximately 30% increase in total cost. DMAIC framework can be used to provide an effective QA by setting customized tolerances. When tolerance design is customized, the quality is reasonably balanced with time and cost demands. © 2017 American Association of Physicists in Medicine.

  9. 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system

    Science.gov (United States)

    Meess, Karen M.; Izzo, Richard L.; Dryjski, Maciej L.; Curl, Richard E.; Harris, Linda M.; Springer, Michael; Siddiqui, Adnan H.; Rudin, Stephen; Ionita, Ciprian N.

    2017-03-01

    Following new trends in precision medicine, Juxatarenal Abdominal Aortic Aneurysm (JAAA) treatment has been enabled by using patient-specific fenestrated endovascular grafts. The X-ray guided procedure requires precise orientation of multiple modular endografts within the arteries confirmed via radiopaque markers. Patient-specific 3D printed phantoms could familiarize physicians with complex procedures and new devices in a risk-free simulation environment to avoid periprocedural complications and improve training. Using the Vascular Modeling Toolkit (VMTK), 3D Data from a CTA imaging of a patient scheduled for Fenestrated EndoVascular Aortic Repair (FEVAR) was segmented to isolate the aortic lumen, thrombus, and calcifications. A stereolithographic mesh (STL) was generated and then modified in Autodesk MeshMixer for fabrication via a Stratasys Eden 260 printer in a flexible photopolymer to simulate arterial compliance. Fluoroscopic guided simulation of the patient-specific FEVAR procedure was performed by interventionists using all demonstration endografts and accessory devices. Analysis compared treatment strategy between the planned procedure, the simulation procedure, and the patient procedure using a derived scoring scheme. Results: With training on the patient-specific 3D printed AAA phantom, the clinical team optimized their procedural strategy. Anatomical landmarks and all devices were visible under x-ray during the simulation mimicking the clinical environment. The actual patient procedure went without complications. Conclusions: With advances in 3D printing, fabrication of patient specific AAA phantoms is possible. Simulation with 3D printed phantoms shows potential to inform clinical interventional procedures in addition to CTA diagnostic imaging.

  10. Specific insomnia symptoms and self-efficacy explain CPAP compliance in a sample of OSAS patients.

    Science.gov (United States)

    Philip, Pierre; Bioulac, Stéphanie; Altena, Elemarije; Morin, Charles M; Ghorayeb, Imad; Coste, Olivier; Monteyrol, Pierre-Jean; Micoulaud-Franchi, Jean-Arthur

    2018-01-01

    This study explores the association between specific insomnia symptoms (sleep onset, sleep maintenance and early morning awakenings symptoms) and self-efficacy (perceived self-confidence in the ability to use CPAP) with CPAP compliance in French patients with obstructive sleep apnea syndrome (OSAS). We performed a retrospective, cross-sectional analysis of CPAP compliance in a cohort of 404 patients diagnosed with OSAS. Patients completed mailed questionnaires on sleepiness (ESS), insomnia (ISI) and self-efficacy in sleep apnea (SEMSA). Linear regression modeling analyses were performed to explore the impact of measured variables on the number of hours of CPAP use. Of the initial pool of 404 patients, 288 returned the questionnaires (71% response rate). Their mean age was 63.16±12.73 yrs, 31% were females, mean BMI was 30.39±6.31 kg/m2, mean daily CPAP use was 6.19±2.03 h, mean number of years of use was 6.58±6.03 yrs, and mean initial AHI before CPAP use was 34.61±20.71 /h. Age (pCPAP use. We found that specific insomnia symptoms and self-efficacy were associated with CPAP compliance. Our findings underline the need to demonstrate that interventions that reduce insomnia symptoms and improve self-efficacy will increase CPAP compliance.

  11. Continuous quality improvement: a shared governance model that maximizes agent-specific knowledge.

    Science.gov (United States)

    Burkoski, Vanessa; Yoon, Jennifer

    2013-01-01

    Motivate, Innovate, Celebrate: an innovative shared governance model through the establishment of continuous quality improvement (CQI) councils was implemented across the London Health Sciences Centre (LHSC). The model leverages agent-specific knowledge at the point of care and provides a structure aimed at building human resources capacity and sustaining enhancements to quality and safe care delivery. Interprofessional and cross-functional teams work through the CQI councils to identify, formulate, execute and evaluate CQI initiatives. In addition to a structure that facilitates collaboration, accountability and ownership, a corporate CQI Steering Committee provides the forum for scaling up and spreading this model. Point-of-care staff, clinical management and educators were trained in LEAN methodology and patient experience-based design to ensure sufficient knowledge and resources to support the implementation.

  12. Sri Lankan FRAX model and country-specific intervention thresholds.

    Science.gov (United States)

    Lekamwasam, Sarath

    2013-01-01

    There is a wide variation in fracture probabilities estimated by Asian FRAX models, although the outputs of South Asian models are concordant. Clinicians can choose either fixed or age-specific intervention thresholds when making treatment decisions in postmenopausal women. Cost-effectiveness of such approach, however, needs to be addressed. This study examined suitable fracture probability intervention thresholds (ITs) for Sri Lanka, based on the Sri Lankan FRAX model. Fracture probabilities were estimated using all Asian FRAX models for a postmenopausal woman of BMI 25 kg/m² and has no clinical risk factors apart from a fragility fracture, and they were compared. Age-specific ITs were estimated based on the Sri Lankan FRAX model using the method followed by the National Osteoporosis Guideline Group in the UK. Using the age-specific ITs as the reference standard, suitable fixed ITs were also estimated. Fracture probabilities estimated by different Asian FRAX models varied widely. Japanese and Taiwan models showed higher fracture probabilities while Chinese, Philippine, and Indonesian models gave lower fracture probabilities. Output of remaining FRAX models were generally similar. Age-specific ITs of major osteoporotic fracture probabilities (MOFP) based on the Sri Lankan FRAX model varied from 2.6 to 18% between 50 and 90 years. ITs of hip fracture probabilities (HFP) varied from 0.4 to 6.5% between 50 and 90 years. In finding fixed ITs, MOFP of 11% and HFP of 3.5% gave the lowest misclassification and highest agreement. Sri Lankan FRAX model behaves similar to other Asian FRAX models such as Indian, Singapore-Indian, Thai, and South Korean. Clinicians may use either the fixed or age-specific ITs in making therapeutic decisions in postmenopausal women. The economical aspects of such decisions, however, need to be considered.

  13. Diagnosing perforated appendicitis in pediatric patients: a new model.

    Science.gov (United States)

    van den Bogaard, Veerle A B; Euser, Sjoerd M; van der Ploeg, Tjeerd; de Korte, Niels; Sanders, Dave G M; de Winter, Derek; Vergroesen, Diederik; van Groningen, Krijn; de Winter, Peter

    2016-03-01

    Studies have investigated sensitivity and specificity of symptoms and tests for diagnosing appendicitis in children. Less is known with regard to the predictive value of these symptoms and tests with respect to the severity of appendicitis. The aim of this study was to determine the predictive value of patient's characteristics and tests for discriminating between perforated and nonperforated appendicitis in children. Pediatric patients who underwent an appendectomy at Spaarne Hospital Hoofddorp, the Netherlands, between January 1, 2009 and December 31, 2013, were included. Baseline patient's characteristics, history, physical examination, laboratory data and results of ultrasounds were collected. Univariate and multivariate logistic regressions were used to determine predictors of perforation. In total, 375 patients were included in this study of which 97 children (25.9%) had significant signs of perforation. Univariate analysis showed that age, duration of complaints, temperature, vomiting, CRP, WBC, different findings on ultrasound and the diameter of the appendix were good predictors of a perforated appendicitis. The final multivariate prediction model included temperature, CRP, clearly visible appendix and free fluids on ultrasound and diameter of the appendix and resulted in an area under the curve (AUC) of 0.91 showing sensitivity and specificity of respectively 85.2% and 81.2%. This prediction model can be used for identification of 'high-risk' children for a perforated appendicitis and might be helpful to prevent complications and longer hospitalization by bringing these children to theater earlier. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A Proposal for a Flexible Trend Specification in DSGE Models

    Directory of Open Access Journals (Sweden)

    Slanicay Martin

    2016-06-01

    Full Text Available In this paper I propose a flexible trend specification for estimating DSGE models on log differences. I demonstrate this flexible trend specification on a New Keynesian DSGE model of two economies, which I consequently estimate on data from the Czech economy and the euro area, using Bayesian techniques. The advantage of the trend specification proposed is that the trend component and the cyclical component are modelled jointly in a single model. The proposed trend specification is flexible in the sense that smoothness of the trend can be easily modified by different calibration of some of the trend parameters. The results suggest that this method is capable of finding a very reasonable trend in the data. Moreover, comparison of forecast performance reveals that the proposed specification offers more reliable forecasts than the original variant of the model.

  15. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.

    Science.gov (United States)

    Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook

    2012-03-31

    The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.

  16. Prediction of thrombophilia in patients with unexplained recurrent pregnancy loss using a statistical model.

    Science.gov (United States)

    Wang, Tongfei; Kang, Xiaomin; He, Liying; Liu, Zhilan; Xu, Haijing; Zhao, Aimin

    2017-09-01

    To establish a statistical model to predict thrombophilia in patients with unexplained recurrent pregnancy loss (URPL). A retrospective case-control study was conducted at Ren Ji Hospital, Shanghai, China, from March 2014 to October 2016. The levels of D-dimer (DD), fibrinogen degradation products (FDP), activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), fibrinogen (Fg), and platelet aggregation in response to arachidonic acid (AA) and adenosine diphosphate (ADP) were collected. Receiver operating characteristic curve analysis was used to analyze data from 158 UPRL patients (≥3 previous first trimester pregnancy losses with unexplained etiology) and 131 non-RPL patients (no history of recurrent pregnancy loss). A logistic regression model (LRM) was built and the model was externally validated in another group of patients. The LRM included AA, DD, FDP, TT, APTT, and PT. The overall accuracy of the LRM was 80.9%, with sensitivity and specificity of 78.5% and 78.3%, respectively. The diagnostic threshold of the possibility of the LRM was 0.6492, with a sensitivity of 78.5% and a specificity of 78.3%. Subsequently, the LRM was validated with an overall accuracy of 83.6%. The LRM is a valuable model for prediction of thrombophilia in URPL patients. © 2017 International Federation of Gynecology and Obstetrics.

  17. Frequency and specificity of red blood cell alloimmunization in chilean transfused patients.

    Science.gov (United States)

    Caamaño, José; Musante, Evangelina; Contreras, Margarita; Ulloa, Hernán; Reyes, Carolina; Inaipil, Verónica; Saavedra, Nicolás; Guzmán, Neftalí

    2015-01-01

    Alloimmunization is an adverse effect of blood transfusions. In Chile, alloimmunization frequency is not established, and for this reason the aim of this study was to investigate the prevalence and specificity of red blood cell (RBC) alloantibodies in Chilean transfused subjects. Records from 4,716 multi-transfused patients were analyzed. In these patients, antibody screening was carried out prior to cross-matching with a commercially available two-cell panel by the microcolum gel test, and samples with a positive screen were analyzed for the specificity of the alloantibody with a 16-cell identification panel. The incidence of RBC alloimmunization in transfused patients was 1.02% (48/4,716) with a higher prevalence in women (40/48). We detected 52 antibodies, the most frequent specificities identified were anti-E (30.8%), anti-K (26.9%), anti-D (7.7%), and anti-Fy(a) (5.8%). The highest incidence of alloantibodies was observed in cancer and gastroenterology patients. The data demonstrated a low alloimmunization frequency in Chilean transfused patients, principally associated with antibodies anti-E, anti-K, anti-D, and anti-Fy(a).

  18. Specific efficacy expectations mediate exercise compliance in patients with COPD.

    Science.gov (United States)

    Kaplan, R M; Atkins, C J; Reinsch, S

    1984-01-01

    Social learning theory has generated two different approaches for the assessment of expectancies. Bandura argues that expectancies are specific and do not generalize. Therefore, he prefers measures of specific efficacy expectations. Others endorse the role of generalized expectancies measured by locus of control scales. The present study examines specific versus generalized expectancies as mediators of changes in exercise behavior among 60 older adult patients with Chronic Obstructive Pulmonary Disease. The patients were given a prescription to increase exercise and randomly assigned to experimental groups or control groups. All groups received attention but only experimental groups received training to increase their exercise. After 3 months, groups given specific training for compliance with walking significantly increased their activity in comparison to the control group receiving only attention. These changes were mediated by changes in perceived efficacy for walking, with efficacy expectations for other behaviors changing as a function of their similarity to walking. A generalized health locus of control expectancy measure was less clearly associated with behavior change. The results are interpreted as supporting Bandura's version of social theory.

  19. Domain Specific Language for Modeling Waste Management Systems

    DEFF Research Database (Denmark)

    Zarrin, Bahram

    environmental technologies i.e. solid waste management systems. Flow-based programming is used to support concurrent execution of the processes, and provides a model-integration language for composing processes from homogeneous or heterogeneous domains. And a domain-specific language is used to define atomic......In order to develop sustainable waste management systems with considering life cycle perspective, scientists and domain experts in environmental science require readily applicable tools for modeling and evaluating the life cycle impacts of the waste management systems. Practice has proved...... a domain specific language for modeling of waste-management systems on the basis of our framework. We evaluate the language by providing a set of case studies. The contributions of this thesis are; addressing separation of concerns in Flow-based programming and providing the formal specification of its...

  20. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants.

    Science.gov (United States)

    Peel, Sean; Bhatia, Satyajeet; Eggbeer, Dominic; Morris, Daniel S; Hayhurst, Caroline

    2017-06-01

    Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge - that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies - on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.

  1. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD.

    Science.gov (United States)

    Hellmeier, Florian; Nordmeyer, Sarah; Yevtushenko, Pavlo; Bruening, Jan; Berger, Felix; Kuehne, Titus; Goubergrits, Leonid; Kelm, Marcus

    2018-01-01

    Modeling different treatment options before a procedure is performed is a promising approach for surgical decision making and patient care in heart valve disease. This study investigated the hemodynamic impact of different prostheses through patient-specific MRI-based CFD simulations. Ten time-resolved MRI data sets with and without velocity encoding were obtained to reconstruct the aorta and set hemodynamic boundary conditions for simulations. Aortic hemodynamics after virtual valve replacement with a biological and mechanical valve prosthesis were investigated. Wall shear stress (WSS), secondary flow degree (SFD), transvalvular pressure drop (TPD), turbulent kinetic energy (TKE), and normalized flow displacement (NFD) were evaluated to characterize valve-induced hemodynamics. The biological prostheses induced significantly higher WSS (medians: 9.3 vs. 8.6 Pa, P = 0.027) and SFD (means: 0.78 vs. 0.49, P = 0.002) in the ascending aorta, TPD (medians: 11.4 vs. 2.7 mm Hg, P = 0.002), TKE (means: 400 vs. 283 cm 2 /s 2 , P = 0.037), and NFD (means: 0.0994 vs. 0.0607, P = 0.020) than the mechanical prostheses. The differences between the prosthesis types showed great inter-patient variability, however. Given this variability, a patient-specific evaluation is warranted. In conclusion, MRI-based CFD offers an opportunity to assess the interactions between prosthesis and patient-specific boundary conditions, which may help in optimizing surgical decision making and providing additional guidance to clinicians. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Empirical Models of Demand for Out-Patient Physician Services and Their Relevance to the Assessment of Patient Payment Policies: A Critical Review of the Literature

    Directory of Open Access Journals (Sweden)

    Olga Skriabikova

    2010-06-01

    Full Text Available This paper reviews the existing empirical micro-level models of demand for out-patient physician services where the size of patient payment is included either directly as an independent variable (when a flat-rate co-payment fee or indirectly as a level of deductibles and/or co-insurance defined by the insurance coverage. The paper also discusses the relevance of these models for the assessment of patient payment policies. For this purpose, a systematic literature review is carried out. In total, 46 relevant publications were identified. These publications are classified into categories based on their general approach to demand modeling, specifications of data collection, data analysis, and main empirical findings. The analysis indicates a rising research interest in the empirical micro-level models of demand for out-patient physician services that incorporate the size of patient payment. Overall, the size of patient payments, consumer socio-economic and demographic features, and quality of services provided emerge as important determinants of demand for out-patient physician services. However, there is a great variety in the modeling approaches and inconsistencies in the findings regarding the impact of price on demand for out-patient physician services. Hitherto, the empirical research fails to offer policy-makers a clear strategy on how to develop a country-specific model of demand for out-patient physician services suitable for the assessment of patient payment policies in their countries. In particular, theoretically important factors, such as provider behavior, consumer attitudes, experience and culture, and informal patient payments, are not considered. Although we recognize that it is difficult to measure these factors and to incorporate them in the demand models, it is apparent that there is a gap in research for the construction of effective patient payment schemes.

  3. Empirical models of demand for out-patient physician services and their relevance to the assessment of patient payment policies: a critical review of the literature.

    Science.gov (United States)

    Skriabikova, Olga; Pavlova, Milena; Groot, Wim

    2010-06-01

    This paper reviews the existing empirical micro-level models of demand for out-patient physician services where the size of patient payment is included either directly as an independent variable (when a flat-rate co-payment fee) or indirectly as a level of deductibles and/or co-insurance defined by the insurance coverage. The paper also discusses the relevance of these models for the assessment of patient payment policies. For this purpose, a systematic literature review is carried out. In total, 46 relevant publications were identified. These publications are classified into categories based on their general approach to demand modeling, specifications of data collection, data analysis, and main empirical findings. The analysis indicates a rising research interest in the empirical micro-level models of demand for out-patient physician services that incorporate the size of patient payment. Overall, the size of patient payments, consumer socio-economic and demographic features, and quality of services provided emerge as important determinants of demand for out-patient physician services. However, there is a great variety in the modeling approaches and inconsistencies in the findings regarding the impact of price on demand for out-patient physician services. Hitherto, the empirical research fails to offer policy-makers a clear strategy on how to develop a country-specific model of demand for out-patient physician services suitable for the assessment of patient payment policies in their countries. In particular, theoretically important factors, such as provider behavior, consumer attitudes, experience and culture, and informal patient payments, are not considered. Although we recognize that it is difficult to measure these factors and to incorporate them in the demand models, it is apparent that there is a gap in research for the construction of effective patient payment schemes.

  4. Sensitivity analysis of a validated subject-specific finite element model of the human craniofacial skeleton.

    Science.gov (United States)

    Szwedowski, T D; Fialkov, J; Whyne, C M

    2011-01-01

    Developing a more complete understanding of the mechanical response of the craniofacial skeleton (CFS) to physiological loads is fundamental to improving treatment for traumatic injuries, reconstruction due to neoplasia, and deformities. Characterization of the biomechanics of the CFS is challenging due to its highly complex structure and heterogeneity, motivating the utilization of experimentally validated computational models. As such, the objective of this study was to develop, experimentally validate, and parametrically analyse a patient-specific finite element (FE) model of the CFS to elucidate a better understanding of the factors that are of intrinsic importance to the skeletal structural behaviour of the human CFS. An FE model of a cadaveric craniofacial skeleton was created from subject-specific computed tomography data. The model was validated based on bone strain measurements taken under simulated physiological-like loading through the masseter and temporalis muscles (which are responsible for the majority of craniofacial physiologic loading due to mastication). The baseline subject-specific model using locally defined cortical bone thicknesses produced the strongest correlation to the experimental data (r2 = 0.73). Large effects on strain patterns arising from small parametric changes in cortical thickness suggest that the very thin bony structures present in the CFS are crucial to characterizing the local load distribution in the CFS accurately.

  5. The self-aware diabetic patient software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2013-11-01

    This work presents a self-aware diabetic patient software agent for representing a human diabetic patient. To develop a 24h, stochastic and self-aware patient agent, we extend the original seminal work of Ackerman et al. [1] in creating a mathematical model of human blood glucose levels in three aspects. (1) We incorporate the stochastic and unpredictable effects of daily living. (2) The Ackerman model is extended into the period of night-time. (3) Patients' awareness of their own conditions is incorporated. Simulation results are quantitatively assessed to demonstrate the effectiveness of lifestyle management, such as adjusting the amount of food consumed, meal schedule, intensity of exercise and level of medication. In this work we show through the simulation that the average blood glucose can be reduced by as much as 51% due to careful lifestyle management. Self monitoring blood glucose is also quantitatively evaluated. The simulation results show that the average blood glucose is further dropped by 25% with the assistance of blood glucose samples. In addition, the blood glucose is perfectly controlled in the target range during the simulation period as a result of joint efforts of lifestyle management and self monitoring blood glucose. This study focuses on demonstrating how human patients' behavior, specifically lifestyle and self monitoring of blood glucose, affects blood glucose controls on a daily basis. This work does not focus on the insulin-glucose interaction of an individual human patient. Our conclusion is that this self-aware patient agent model is capable of adequately representing diabetic patients and of evaluating their dynamic behaviors. It can also be incorporated into a multi-agent system by introducing other healthcare components so that more interesting insights such as the healthcare quality, cost and performance can be observed. © 2013 Published by Elsevier Ltd.

  6. SPECIFIC FEATURES OF ANESTHESIA IN PATIENTS WITH MYASTHENIA GRAVIS.

    Science.gov (United States)

    Spasojevic, Ivana; Hajdukovic, Danica; Komarcevic, Milena; Petrovic, Stanislava; Jovanovic, Jelena; Ciric, Aleksandra

    2016-09-01

    Myasthenia gravis is an autoimmune disease caused by antibodies leading to the destruction of nicotinic acetylcholine receptors on the neuromuscular junction. It is characterized by muscle weakness that gets aggravated with physical activity and improves at rest. Myasthenia Gravis Foundation of America made the clinical classification of Myasthenia gravis which is still in use today. "Tensilon test" is still the gold standard for the diagnosis of Myasthenia gravis. In addition to this test repeated muscular stimulation can be used as well as the analysis of specific autoantibodies. Treatment of Myasthenia Gravis. In conservative treatment of Mysthenia gravis anticholinesterases, immunosuppressants and plasmapheresis can be used. If conservative treatment does not lead to the desired remission, surgical treatment is indicated. The most accepted indication for thymectomy is the presence of thymoma with generalized form of Myasthenia gravis in adults. How to Distinguish Myasthenic From Cholinergic Crisis.'The following is important to make a difference between these two crises: knowledge of the events that preceded the crisis, the size of pupils as well as the presence of muscarinic signs and tensilon test. Specific Features of Anesthesia in Patients with Myasthienia Gravis. Mechanism of the disease development is the reason'for the increased sensitivity or resistance of these patients to certain types of drugs used in anesthesia. Protocol of Perioperative Anesthesia in Patients with Myasthenia Gravis. Based on 35 years of experience in the surgical treatment of patients with Myasthenia gravis anesthesiologists at the Department of Thoracic Surgery, Institute for Pulmonary Diseases of Vojvodina. made the protocol of anesthesia and perioperative treatment for these patients. Anesthesiologists may have to deal with a patient with myasthenia gravis in different types of surgical interventions. The protocol for anesthesia and perioperative management of these patients

  7. Specification and Aggregation Errors in Environmentally Extended Input-Output Models

    NARCIS (Netherlands)

    Bouwmeester, Maaike C.; Oosterhaven, Jan

    This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result

  8. Patient-specific puzzle implant preformed with 3D-printed rapid prototype model for combined orbital floor and medial wall fracture.

    Science.gov (United States)

    Kim, Young Chul; Min, Kyung Hyun; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk; Jeong, Woo Shik

    2018-04-01

    The management of combined orbital floor and medial wall fractures involving the inferomedial strut is challenging due to absence of stable cornerstone. In this article, we proposed surgical strategies using customized 3D puzzle implant preformed with Rapid Prototype (RP) skull model. Retrospective review was done in 28 patients diagnosed with combined orbital floor and medial wall fracture. Using preoperative CT scans, original and mirror-imaged RP skull models for each patient were prepared and sterilized. In all patients, porous polyethylene-coated titanium mesh was premolded onto RP skull model in two ways; Customized 3D jigsaw puzzle technique was used in 15 patients with comminuted inferomedial strut, whereas individual 3D implant technique was used in each fracture for 13 patients with intact inferomedial strut. Outcomes including enophthalmos, visual acuity, and presence of diplopia were assessed and orbital volume was measured using OsiriX software preoperatively and postoperatively. Satisfactory results were achieved in both groups in terms of clinical improvements. Of 10 patients with preoperative diplopia, 9 improved in 6 months, except one with persistent symptom who underwent extraocular muscle rupture. 18 patients who had moderate to severe enophthalmos preoperatively improved, and one remained with mild degree. Orbital volume ratio, defined as volumetric ratio between affected and control orbit, decreased from 127.6% to 99.79% (p puzzle and individual reconstruction technique provide accurate restoration of combined orbital floor and medial wall fractures. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Patient loyalty model.

    Science.gov (United States)

    Sumaedi, Sik; Bakti, I Gede Mahatma Yuda; Rakhmawati, Tri; Astrini, Nidya Judhi; Yarmen, Medi; Widianti, Tri

    2015-07-06

    This study aims to investigate the simultaneous effect of subjective norm, perceived behavioral control and trust on patient loyalty. The empirical data were collected through survey. The respondents of the survey are 157 patients of a health-care service institution in Bogor, Indonesia. Multiple regressions analysis was performed to test the conceptual model and the proposed hypotheses. The findings showed that subjective norm and trust influence patient loyalty positively. However, this research also found that perceived behavioral control does not influence patient loyalty significantly. The survey was only conducted at one health-care service institution in Bogor, Indonesia. In addition, convenience sampling method was used. These conditions may cause that the research results can not be generalized to the other contexts. Therefore, replication research is needed to test the stability of the findings in the other contexts. Health-care service institutions need to pay attention to trust and subjective norm to establish patient loyalty. This study is believed to be the first to develop and test patient loyalty model that includes subjective norm, perceived behavioral control and trust.

  10. Magnetic resonance imaging of the ear for patient-specific reconstructive surgery.

    Directory of Open Access Journals (Sweden)

    Luc Nimeskern

    Full Text Available INTRODUCTION: Like a fingerprint, ear shape is a unique personal feature that should be reconstructed with a high fidelity during reconstructive surgery. Ear cartilage tissue engineering (TE advantageously offers the possibility to use novel 3D manufacturing techniques to reconstruct the ear, thus allowing for a detailed auricular shape. However it also requires detailed patient-specific images of the 3D cartilage structures of the patient's intact contralateral ear (if available. Therefore the aim of this study was to develop and evaluate an imaging strategy for acquiring patient-specific ear cartilage shape, with sufficient precision and accuracy for use in a clinical setting. METHODS AND MATERIALS: Magnetic resonance imaging (MRI was performed on 14 volunteer and six cadaveric auricles and manually segmented. Reproducibility of cartilage volume (Cg.V, surface (Cg.S and thickness (Cg.Th was assessed, to determine whether raters could repeatedly define the same volume of interest. Additionally, six cadaveric auricles were harvested, scanned and segmented using the same procedure, then dissected and scanned using high resolution micro-CT. Correlation between MR and micro-CT measurements was assessed to determine accuracy. RESULTS: Good inter- and intra-rater reproducibility was observed (precision errors 0.82, but low for Cg.Th (0.95 demonstrated high accuracy. DISCUSSION AND CONCLUSION: This study demonstrated that precision and accuracy of the proposed method was high enough to detect patient-specific variation in ear cartilage geometry. The present study provides a clinical strategy to access the necessary information required for the production of 3D ear scaffolds for TE purposes, including detailed patient-specific shape. Furthermore, the protocol is applicable in daily clinical practice with existing infrastructure.

  11. Patient-specific radiation dose and cancer risk for pediatric chest CT.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P

    2011-06-01

    To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011

  12. Algebraic Specifications, Higher-order Types and Set-theoretic Models

    DEFF Research Database (Denmark)

    Kirchner, Hélène; Mosses, Peter David

    2001-01-01

    , and power-sets. This paper presents a simple framework for algebraic specifications with higher-order types and set-theoretic models. It may be regarded as the basis for a Horn-clause approximation to the Z framework, and has the advantage of being amenable to prototyping and automated reasoning. Standard......In most algebraic  specification frameworks, the type system is restricted to sorts, subsorts, and first-order function types. This is in marked contrast to the so-called model-oriented frameworks, which provide higer-order types, interpreted set-theoretically as Cartesian products, function spaces...... set-theoretic models are considered, and conditions are given for the existence of initial reduct's of such models. Algebraic specifications for various set-theoretic concepts are considered....

  13. Virus-Specific T Cells for the Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Amy Houghtelin

    2017-10-01

    Full Text Available While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST, which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo.

  14. Virus-Specific T Cells for the Immunocompromised Patient.

    Science.gov (United States)

    Houghtelin, Amy; Bollard, Catherine M

    2017-01-01

    While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70-90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo .

  15. Specificities of anti-neutrophil autoantibodies in patients with rheumatoid arthritis (RA)

    DEFF Research Database (Denmark)

    Brimnes, J; Halberg, P; Jacobsen, Søren

    1997-01-01

    The objective of this study was to characterize antigens recognized by neutrophil-specific autoantibodies from patients with RA. Sera from 62 RA patients were screened by indirect immunofluorescence (IIF). Positive sera were further tested by ELISAs for antibodies against various granule proteins...

  16. The situation-specific theory of pain experience for Asian American cancer patients.

    Science.gov (United States)

    Im, Eun-Ok

    2008-01-01

    Studies have indicated the need for theories that explain and target ethnic-specific cancer pain experiences, including those of Asian Americans. In this article, I present a situation-specific theory that explains the unique cancer pain experience of Asian Americans. Unlike other existing theories, this situation-specific theory was developed on the basis of evidence, including a systematic literature review and research findings, making it comprehensive and highly applicable to research and practice with Asian American patients with cancer. Thus, this theory would strengthen the interconnections among theory, evidence, and practice in pain management for Asian American cancer patients.

  17. Testing of a Model with Latino Patients That Explains the Links Among Patient-Perceived Provider Cultural Sensitivity, Language Preference, and Patient Treatment Adherence.

    Science.gov (United States)

    Nielsen, Jessica D Jones; Wall, Whitney; Tucker, Carolyn M

    2016-03-01

    Disparities in treatment adherence based on race and ethnicity are well documented but poorly understood. Specifically, the causes of treatment nonadherence among Latino patients living in the USA are complex and include cultural and language barriers. The purpose of this study was to examine whether patients' perceptions in patient-provider interactions (i.e., trust in provider, patient satisfaction, and patient sense of interpersonal control in patient-provider interactions) mediate any found association between patient-perceived provider cultural sensitivity (PCS) and treatment adherence among English-preferred Latino (EPL) and Spanish-preferred Latino (SPL) patients. Data from 194 EPL patients and 361 SPL patients were obtained using questionnaires. A series of language-specific structural equation models were conducted to test the relationship between patient-perceived PCS and patient treatment adherence and the examined mediators of this relationship among the Latino patients. No significant direct effects of patient-perceived PCS on general treatment adherence were found. However, as hypothesized, several significant indirect effects emerged. Preferred language appeared to have moderating effects on the relationships between patient-perceived PCS and general treatment adherence. These results suggest that interventions to promote treatment adherence among Latino patients should likely include provider training to foster patient-defined PCS, trust in provider, and patient satisfaction with care. Furthermore, this training needs to be customized to be suitable for providing care to Latino patients who prefer speaking Spanish and Latino patients who prefer speaking English.

  18. [Specific iatrogenic risks to patients with HIV infection].

    Science.gov (United States)

    De Tournemire, R; Yeni, P

    1994-01-01

    Human immunodeficiency virus-infected patients are exposed to more or less specific iatrogenic diseases. The main characteristics of the risks encountered in this field are described: drug intolerance, mostly to sulfamethoxazole-trimethoprim, is extremely frequent; nucleoside analogue antiviral toxicity is reminiscent of that of chemotherapy; nosocomial infections, in general, are more prominent than in HIV-non infected patients. Intravenous line infections are particularly frequent, but these devices are necessary for prolonged intravenous therapies such as anti-CMV treatment of parenteral nutrition. An improved understanding of different etiopathogenic mechanisms and a better approach of the toxicity/efficacy ratio for each treatment would allow to reduce the excessive morbidity due to iatrogenicity.

  19. Patient-specific bronchoscopy visualization through BRDF estimation and disocclusion correction.

    Science.gov (United States)

    Chung, Adrian J; Deligianni, Fani; Shah, Pallav; Wells, Athol; Yang, Guang-Zhong

    2006-04-01

    This paper presents an image-based method for virtual bronchoscope with photo-realistic rendering. The technique is based on recovering bidirectional reflectance distribution function (BRDF) parameters in an environment where the choice of viewing positions, directions, and illumination conditions are restricted. Video images of bronchoscopy examinations are combined with patient-specific three-dimensional (3-D) computed tomography data through two-dimensional (2-D)/3-D registration and shading model parameters are then recovered by exploiting the restricted lighting configurations imposed by the bronchoscope. With the proposed technique, the recovered BRDF is used to predict the expected shading intensity, allowing a texture map independent of lighting conditions to be extracted from each video frame. To correct for disocclusion artefacts, statistical texture synthesis was used to recreate the missing areas. New views not present in the original bronchoscopy video are rendered by evaluating the BRDF with different viewing and illumination parameters. This allows free navigation of the acquired 3-D model with enhanced photo-realism. To assess the practical value of the proposed technique, a detailed visual scoring that involves both real and rendered bronchoscope images is conducted.

  20. Considerations of anthropometric, tissue volume, and tissue mass scaling for improved patient specificity of skeletal S values

    International Nuclear Information System (INIS)

    Bolch, W.E.; Patton, P.W.; Shah, A.P.; Rajon, D.A.; Jokisch, D.W.

    2002-01-01

    It is generally acknowledged that reference man (70 kg in mass and 170 cm in height) does not adequately represent the stature and physical dimensions of many patients undergoing radionuclide therapy, and thus scaling of radionuclide S values is required for patient specificity. For electron and beta sources uniformly distributed within internal organs, the mean dose from self-irradiation is noted to scale inversely with organ mass, provided no escape of electron energy occurs at the organ boundaries. In the skeleton, this same scaling approach is further assumed to be correct for marrow dosimetry; nevertheless, difficulties in quantitative assessments of marrow mass in specific skeletal regions of the patient make this approach difficult to implement clinically. Instead, scaling of marrow dose is achieved using various anthropometric parameters that presumably scale in the same proportion. In this study, recently developed three-dimensional macrostructural transport models of the femoral head and humeral epiphysis in three individuals (51-year male, 82-year female, and 86-year female) are used to test the abilities of different anthropometric parameters (total body mass, body surface area, etc.) to properly scale radionuclide S values from reference man models. The radionuclides considered are 33 P, 177 Lu, 153 Sm, 186 Re, 89 Sr, 166 Ho, 32 P, 188 Re, and 90 Y localized in either the active marrow or endosteal tissues of the bone trabeculae. S value scaling is additionally conducted in which the 51-year male subject is assigned as the reference individual; scaling parameters are then expanded to include tissue volumes and masses for both active marrow and skeletal spongiosa. The study concludes that, while no single anthropometric parameter emerges as a consistent scaler of reference man S values, lean body mass is indicated as an optimal scaler when the reference S values are based on 3D transport techniques. Furthermore, very exact patient-specific scaling of

  1. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modeling the Cumulative Effects of Social Exposures on Health: Moving beyond Disease-Specific Models

    Directory of Open Access Journals (Sweden)

    Heather L. White

    2013-03-01

    Full Text Available The traditional explanatory models used in epidemiology are “disease specific”, identifying risk factors for specific health conditions. Yet social exposures lead to a generalized, cumulative health impact which may not be specific to one illness. Disease-specific models may therefore misestimate social factors’ effects on health. Using data from the Canadian Community Health Survey and Canada 2001 Census we construct and compare “disease-specific” and “generalized health impact” (GHI models to gauge the negative health effects of one social exposure: socioeconomic position (SEP. We use logistic and multinomial multilevel modeling with neighbourhood-level material deprivation, individual-level education and household income to compare and contrast the two approaches. In disease-specific models, the social determinants under study were each associated with the health conditions of interest. However, larger effect sizes were apparent when outcomes were modeled as compound health problems (0, 1, 2, or 3+ conditions using the GHI approach. To more accurately estimate social exposures’ impacts on population health, researchers should consider a GHI framework.

  3. Prediagnostic prostate-specific antigen kinetics and the risk of biopsy progression in active surveillance patients.

    Science.gov (United States)

    Iremashvili, Viacheslav; Barney, Shane L; Manoharan, Murugesan; Kava, Bruce R; Parekh, Dipen J; Punnen, Sanoj

    2016-04-01

    To analyze the association between prediagnostic prostate-specific antigen kinetics and the risk of biopsy progression in prostate cancer patients on active surveillance, and to study the effect of prediagnostic prostate-specific antigen values on the predictive performance of prostate-specific antigen velocity and prostate-specific antigen doubling time. The study included 137 active surveillance patients with two or more prediagnostic prostate-specific antigen levels measured over a period of at least 3 months. Two sets of analyses were carried out. First, the association between prostate-specific antigen kinetics calculated using only the prediagnostic prostate-specific antigen values and the risk of biopsy progression was studied. Second, using the same cohort of patients, the predictive value of prostate-specific antigen kinetics calculated using only post-diagnostic prostate-specific antigens and compared with that of prostate-specific antigen kinetics based on both pre- and post-diagnostic prostate-specific antigen levels was analyzed. Of 137 patients included in the analysis, 37 (27%) had biopsy progression over a median follow-up period of 3.2 years. Prediagnostic prostate-specific antigen velocity of more than 2 ng/mL/year and 3 ng/mL/year was statistically significantly associated with the risk of future biopsy progression. However, after adjustment for baseline prostate-specific antigen density, these associations were no longer significant. None of the tested prostate-specific antigen kinetics based on combined pre- and post-diagnostic prostate-specific antigen values were statistically significantly associated with the risk of biopsy progression. Historical prediagnostic prostate-specific antigens seems to be not clinically useful in patients diagnosed with low-risk prostate cancer on active surveillance. © 2016 The Japanese Urological Association.

  4. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study.

    Science.gov (United States)

    Walch, Gilles; Vezeridis, Peter S; Boileau, Pascal; Deransart, Pierric; Chaoui, Jean

    2015-02-01

    Glenoid component positioning is a key factor for success in total shoulder arthroplasty. Three-dimensional (3D) measurements of glenoid retroversion, inclination, and humeral head subluxation are helpful tools for preoperative planning. The purpose of this study was to assess the reliability and precision of a novel surgical method for placing the glenoid component with use of patient-specific templates created by preoperative surgical planning and 3D modeling. A preoperative computed tomography examination of cadaveric scapulae (N = 18) was performed. The glenoid implants were virtually placed, and patient-specific guides were created to direct the guide pin into the desired orientation and position in the glenoid. The 3D orientation and position of the guide pin were evaluated by performing a postoperative computed tomography scan for each scapula. The differences between the preoperative planning and the achieved result were analyzed. The mean error in 3D orientation of the guide pin was 2.39°, the mean entry point position error was 1.05 mm, and the mean inclination angle error was 1.42°. The average error in the version angle was 1.64°. There were no technical difficulties or complications related to use of patient-specific guides for guide pin placement. Quantitative analysis of guide pin positioning demonstrated a good correlation between preoperative planning and the achieved position of the guide pin. This study demonstrates the reliability and precision of preoperative planning software and patient-specific guides for glenoid component placement in total shoulder arthroplasty. Copyright © 2015. Published by Elsevier Inc.

  5. Modeling age-specific mortality for countries with generalized HIV epidemics.

    Directory of Open Access Journals (Sweden)

    David J Sharrow

    Full Text Available In a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique 'humped' age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.The model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.We present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and

  6. Nanomedicine-Based Neuroprotective Strategies in Patient Specific-iPSC and Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Shih-Fan Jang

    2014-03-01

    Full Text Available In recent decades, nanotechnology has attracted major interests in view of drug delivery systems and therapies against diseases, such as cancer, neurodegenerative diseases, and many others. Nanotechnology provides the opportunity for nanoscale particles or molecules (so called “Nanomedicine” to be delivered to the targeted sites, thereby, reducing toxicity (or side effects and improving drug bioavailability. Nowadays, a great deal of nano-structured particles/vehicles has been discovered, including polymeric nanoparticles, lipid-based nanoparticles, and mesoporous silica nanoparticles. Nanomedical utilizations have already been well developed in many different aspects, including disease treatment, diagnostic, medical devices designing, and visualization (i.e., cell trafficking. However, while quite a few successful progressions on chemotherapy using nanotechnology have been developed, the implementations of nanoparticles on stem cell research are still sparsely populated. Stem cell applications and therapies are being considered to offer an outstanding potential in the treatment for numbers of maladies. Human induced pluripotent stem cells (iPSCs are adult cells that have been genetically reprogrammed to an embryonic stem cell-like state. Although the exact mechanisms underlying are still unclear, iPSCs are already being considered as useful tools for drug development/screening and modeling of diseases. Recently, personalized medicines have drawn great attentions in biological and pharmaceutical studies. Generally speaking, personalized medicine is a therapeutic model that offers a customized healthcare/cure being tailored to a specific patient based on his own genetic information. Consequently, the combination of nanomedicine and iPSCs could actually be the potent arms for remedies in transplantation medicine and personalized medicine. This review will focus on current use of nanoparticles on therapeutical applications, nanomedicine

  7. Development and fabrication of patient-specific knee implant using additive manufacturing techniques

    Science.gov (United States)

    Zammit, Robert; Rochman, Arif

    2017-10-01

    Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.

  8. Preprocedural Prediction Model for Contrast-Induced Nephropathy Patients.

    Science.gov (United States)

    Yin, Wen-Jun; Yi, Yi-Hu; Guan, Xiao-Feng; Zhou, Ling-Yun; Wang, Jiang-Lin; Li, Dai-Yang; Zuo, Xiao-Cong

    2017-02-03

    Several models have been developed for prediction of contrast-induced nephropathy (CIN); however, they only contain patients receiving intra-arterial contrast media for coronary angiographic procedures, which represent a small proportion of all contrast procedures. In addition, most of them evaluate radiological interventional procedure-related variables. So it is necessary for us to develop a model for prediction of CIN before radiological procedures among patients administered contrast media. A total of 8800 patients undergoing contrast administration were randomly assigned in a 4:1 ratio to development and validation data sets. CIN was defined as an increase of 25% and/or 0.5 mg/dL in serum creatinine within 72 hours above the baseline value. Preprocedural clinical variables were used to develop the prediction model from the training data set by the machine learning method of random forest, and 5-fold cross-validation was used to evaluate the prediction accuracies of the model. Finally we tested this model in the validation data set. The incidence of CIN was 13.38%. We built a prediction model with 13 preprocedural variables selected from 83 variables. The model obtained an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.907 and gave prediction accuracy of 80.8%, sensitivity of 82.7%, specificity of 78.8%, and Matthews correlation coefficient of 61.5%. For the first time, 3 new factors are included in the model: the decreased sodium concentration, the INR value, and the preprocedural glucose level. The newly established model shows excellent predictive ability of CIN development and thereby provides preventative measures for CIN. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Applying machine learning to predict patient-specific current CD 4 ...

    African Journals Online (AJOL)

    This work shows the application of machine learning to predict current CD4 cell count of an HIV-positive patient using genome sequences, viral load and time. A regression model predicting actual CD4 cell counts and a classification model predicting if a patient's CD4 cell count is less than 200 was built using a support ...

  10. Observations of pretreatment prostate-specific antigen doubling time in 107 patients referred for definitive radiotherapy

    International Nuclear Information System (INIS)

    Lee, W. Robert; Hanks, Gerald E.; Corn, Benjamin W.; Schultheiss, Timothy E.

    1995-01-01

    Purpose: To determine pretreatment prostate-specific antigen doubling times (PSADT) in patients referred for definitive radiotherapy. Methods and Materials: One hundred and seven patients with histologically proven nonmetastatic prostate cancer and an elevated prostate-specific antigen (PSA) who were referred for radiation therapy had three serum PSA values obtained prior to the start of definitive therapy. Prostate-specific antigen doubling times were calculated by linear regression. Results: Prostate-specific antigen values increased during the period of observation in 78 patients (73%). Forty-three patients (40%) had calculated PSADT of less than 2 years and of those patients with pretreatment serum PSA values of greater than 10 ng/mL more than 50% has calculated PSADT of less than 2 years. Conclusions: A significant minority of patients referred for radiotherapy have calculated PSADT of less than 2 years. The significance of this relatively fast growth rate is as yet undetermined, but suggests that patients referred for radiotherapy may have aggressive disease prior to treatment

  11. THE USE OF SPECIFIC AND NON-SPECIFIC QUESTIONNAIRES TO ASSESS QUALITY OF LIFE IN PATIENTS WITH FUNCTIONAL DISORDERS OF INTESTINE

    Directory of Open Access Journals (Sweden)

    A. E. Shklyaev

    2016-01-01

    Full Text Available Objective: comparative assessment of the quality of life of IBS patients in the treatment process with the use of specific and non-specific questionnaires.Materials and methods: a dynamic study of quality of life in 40 patients of IBS with the use of questionnaires GSRS and SF-36.Results: marked decrease in the severity of syndromes on all 6 scales of the questionnaire GSRS, and after 1 to 3 weeks of treatment dynamics was gained statistically significant, and total score improved significantly already after 1 week of therapy. Positive dynamics was obtained on the two scales of the questionnaire SF-36 (social functioning, and emotional functioning, as well as physical and psychological components of health.Conclusions: the high sensitivity of specific questionnaire GSRS and diagnostic significance of nonspecific SF-36 questionnaire in patients with IBS, the necessity to combine them.

  12. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer.

    Science.gov (United States)

    Tan, Eddie T W; Ling, Ji Min; Dinesh, Shree Kumar

    2016-05-01

    OBJECT Commercially available, preformed patient-specific cranioplasty implants are anatomically accurate but costly. Acrylic bone cement is a commonly used alternative. However, the manual shaping of the bone cement is difficult and may not lead to a satisfactory implant in some cases. The object of this study was to determine the feasibility of fabricating molds using a commercial low-cost 3D printer for the purpose of producing patient-specific acrylic cranioplasty implants. METHODS Using data from a high-resolution brain CT scan of a patient with a calvarial defect posthemicraniectomy, a skull phantom and a mold were generated with computer software and fabricated with the 3D printer using the fused deposition modeling method. The mold was used as a template to shape the acrylic implant, which was formed via a polymerization reaction. The resulting implant was fitted to the skull phantom and the cranial index of symmetry was determined. RESULTS The skull phantom and mold were successfully fabricated with the 3D printer. The application of acrylic bone cement to the mold was simple and straightforward. The resulting implant did not require further adjustment or drilling prior to being fitted to the skull phantom. The cranial index of symmetry was 96.2% (the cranial index of symmetry is 100% for a perfectly symmetrical skull). CONCLUSIONS This study showed that it is feasible to produce patient-specific acrylic cranioplasty implants with a low-cost 3D printer. Further studies are required to determine applicability in the clinical setting. This promising technique has the potential to bring personalized medicine to more patients around the world.

  13. Nurses' Perceptions of Implementing Fall Prevention Interventions to Mitigate Patient-Specific Fall Risk Factors.

    Science.gov (United States)

    Wilson, Deleise S; Montie, Mary; Conlon, Paul; Reynolds, Margaret; Ripley, Robert; Titler, Marita G

    2016-08-01

    Evidence-based (EB) fall prevention interventions to mitigate patient-specific fall risk factors are readily available but not routinely used in practice. Few studies have examined nurses' perceptions about both the use of these EB interventions and implementation strategies designed to promote their adoption. This article reports qualitative findings of nurses' perceptions about use of EB fall prevention interventions to mitigate patient-specific fall risks, and implementation strategies to promote use of these interventions. The findings revealed five major themes: before-study fall prevention practices, use of EB fall prevention interventions tailored to patient-specific fall risk factors, beneficial implementation strategies, overall impact on approach to fall prevention, and challenges These findings are useful to guide nurses' engagement and use of EB fall prevention practices tailored to patient-specific fall risk factors. © The Author(s) 2016.

  14. Rare myositis-specific autoantibody associations among Hungarian patients with idiopathic inflammatory myopathy.

    Science.gov (United States)

    Bodoki, L; Nagy-Vincze, M; Griger, Z; Betteridge, Z; Szöllősi, L; Jobanputra, R; Dankó, K

    2015-01-01

    Idiopathic inflammatory myopathies are systemic, chronic autoimmune diseases characterized by symmetrical, proximal muscle weakness. Homogeneous groups present with similar symptoms. The response to therapy and prognosis could be facilitated by myositis-specific autoantibodies, and in this way, give rise to immunoserological classification. The myositis-specific autoantibodies are directed against specific proteins found in the cytoplasm or in the nucleus of the cells. To date, literature suggests the rarity of the co-existence of two myositis-specific autoantibodies. In this study the authors highlight rare associations of myositis-specific autoantibodies. Three hundred and thirty-seven Hungarian patients with polymyositis or dermatomyositis were studied. Their clinical findings were noted retrospectively. Specific blood tests identified six patients with the rare co-existence of myositis-specific autoantibodies, anti-Jo-1 and anti-SRP, anti-Jo-1 and anti-Mi-2, anti-Mi-2 and anti-PL-12, anti-Mi-2 and anti-SRP, and anti-SRP and anti-PL-7, respectively. This case review aims to identify the clinical importance of these rare associations and their place within the immunoserological classification.

  15. Slicing AADL specifications for model checking

    NARCIS (Netherlands)

    Odenbrett, M.R.; Nguyen, V.Y.; Noll, T.

    2010-01-01

    To combat the state-space explosion problem in model checking larger systems, abstraction techniques can be employed. Here, methods that operate on the system specification before constructing its state space are preferable to those that try to minimize the resulting transition system as they

  16. Otolaryngology-specific emergency room as a model for resident training.

    Science.gov (United States)

    Sethi, Rosh K V; Kozin, Elliott D; Remenschneider, Aaron K; Lee, Daniel J; Gliklich, Richard E; Shrime, Mark G; Gray, Stacey T

    2015-01-01

    There is a paucity of data on junior resident training in common otolaryngology procedures such as ear debridement, nasal and laryngeal endoscopy, epistaxis management, and peritonsillar abscess drainage. These common procedures represent a critical aspect of training and are necessary skills in general otolaryngology practice. We sought to determine how a dedicated otolaryngology emergency room (ER) staffed by junior residents and a supervising attending provides exposure to common otolaryngologic procedures. Retrospective review. Diagnostic and procedural data for all patients examined in the Massachusetts Eye and Ear Infirmary ER between January 2011 and September 2013 were evaluated. A total of 12,234 patients were evaluated. A total of 5,673 patients (46.4%) underwent a procedure. Each second-year resident performed over 450 procedures, with the majority seen Monday through Friday (75%). The most common procedures in our study included diagnostic nasolaryngoscopy (52.0%), ear debridement (34.4%), and epistaxis control (7.0%) An otolaryngology-specific ER provides junior residents with significant diagnostic and procedural volume in a concentrated period of time. This study demonstrates utility of a unique surgical education model and provides insight into new avenues of investigation for otolaryngology training. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Numerical methods for polyline-to-point-cloud registration with applications to patient-specific stent reconstruction.

    Science.gov (United States)

    Lin, Claire Yilin; Veneziani, Alessandro; Ruthotto, Lars

    2018-03-01

    We present novel numerical methods for polyline-to-point-cloud registration and their application to patient-specific modeling of deployed coronary artery stents from image data. Patient-specific coronary stent reconstruction is an important challenge in computational hemodynamics and relevant to the design and improvement of the prostheses. It is an invaluable tool in large-scale clinical trials that computationally investigate the effect of new generations of stents on hemodynamics and eventually tissue remodeling. Given a point cloud of strut positions, which can be extracted from images, our stent reconstruction method aims at finding a geometrical transformation that aligns a model of the undeployed stent to the point cloud. Mathematically, we describe the undeployed stent as a polyline, which is a piecewise linear object defined by its vertices and edges. We formulate the nonlinear registration as an optimization problem whose objective function consists of a similarity measure, quantifying the distance between the polyline and the point cloud, and a regularization functional, penalizing undesired transformations. Using projections of points onto the polyline structure, we derive novel distance measures. Our formulation supports most commonly used transformation models including very flexible nonlinear deformations. We also propose 2 regularization approaches ensuring the smoothness of the estimated nonlinear transformation. We demonstrate the potential of our methods using an academic 2D example and a real-life 3D bioabsorbable stent reconstruction problem. Our results show that the registration problem can be solved to sufficient accuracy within seconds using only a few number of Gauss-Newton iterations. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Context-Specific Metabolic Model Extraction Based on Regularized Least Squares Optimization.

    Directory of Open Access Journals (Sweden)

    Semidán Robaina Estévez

    Full Text Available Genome-scale metabolic models have proven highly valuable in investigating cell physiology. Recent advances include the development of methods to extract context-specific models capable of describing metabolism under more specific scenarios (e.g., cell types. Yet, none of the existing computational approaches allows for a fully automated model extraction and determination of a flux distribution independent of user-defined parameters. Here we present RegrEx, a fully automated approach that relies solely on context-specific data and ℓ1-norm regularization to extract a context-specific model and to provide a flux distribution that maximizes its correlation to data. Moreover, the publically available implementation of RegrEx was used to extract 11 context-specific human models using publicly available RNAseq expression profiles, Recon1 and also Recon2, the most recent human metabolic model. The comparison of the performance of RegrEx and its contending alternatives demonstrates that the proposed method extracts models for which both the structure, i.e., reactions included, and the flux distributions are in concordance with the employed data. These findings are supported by validation and comparison of method performance on additional data not used in context-specific model extraction. Therefore, our study sets the ground for applications of other regularization techniques in large-scale metabolic modeling.

  19. Relative efficiency of joint-model and full-conditional-specification multiple imputation when conditional models are compatible: The general location model.

    Science.gov (United States)

    Seaman, Shaun R; Hughes, Rachael A

    2018-06-01

    Estimating the parameters of a regression model of interest is complicated by missing data on the variables in that model. Multiple imputation is commonly used to handle these missing data. Joint model multiple imputation and full-conditional specification multiple imputation are known to yield imputed data with the same asymptotic distribution when the conditional models of full-conditional specification are compatible with that joint model. We show that this asymptotic equivalence of imputation distributions does not imply that joint model multiple imputation and full-conditional specification multiple imputation will also yield asymptotically equally efficient inference about the parameters of the model of interest, nor that they will be equally robust to misspecification of the joint model. When the conditional models used by full-conditional specification multiple imputation are linear, logistic and multinomial regressions, these are compatible with a restricted general location joint model. We show that multiple imputation using the restricted general location joint model can be substantially more asymptotically efficient than full-conditional specification multiple imputation, but this typically requires very strong associations between variables. When associations are weaker, the efficiency gain is small. Moreover, full-conditional specification multiple imputation is shown to be potentially much more robust than joint model multiple imputation using the restricted general location model to mispecification of that model when there is substantial missingness in the outcome variable.

  20. Elevated Cancer-Specific Mortality Among HIV-Infected Patients in the United States.

    Science.gov (United States)

    Coghill, Anna E; Shiels, Meredith S; Suneja, Gita; Engels, Eric A

    2015-07-20

    Despite advances in the treatment of HIV, HIV-infected people remain at increased risk for many cancers, and the number of non-AIDS-defining cancers is increasing with the aging of the HIV-infected population. No prior study has comprehensively evaluated the effect of HIV on cancer-specific mortality. We identified cases of 14 common cancers occurring from 1996 to 2010 in six US states participating in a linkage of cancer and HIV/AIDS registries. We used Cox regression to examine the association between patient HIV status and death resulting from the presenting cancer (ascertained from death certificates), adjusting for age, sex, race/ethnicity, year of cancer diagnosis, and cancer stage. We included 1,816,461 patients with cancer, 6,459 (0.36%) of whom were HIV infected. Cancer-specific mortality was significantly elevated in HIV-infected compared with HIV-uninfected patients for many cancers: colorectum (adjusted hazard ratio [HR], 1.49; 95% CI, 1.21 to 1.84), pancreas (HR, 1.71; 95% CI, 1.35 to 2.18), larynx (HR, 1.62; 95% CI, 1.06 to 2.47), lung (HR, 1.28; 95% CI, 1.17 to 1.39), melanoma (HR, 1.72; 95% CI, 1.09 to 2.70), breast (HR, 2.61; 95% CI, 2.06 to 3.31), and prostate (HR, 1.57; 95% CI, 1.02 to 2.41). HIV was not associated with increased cancer-specific mortality for anal cancer, Hodgkin lymphoma, or diffuse large B-cell lymphoma. After further adjustment for cancer treatment, HIV remained associated with elevated cancer-specific mortality for common non-AIDS-defining cancers: colorectum (HR, 1.40; 95% CI, 1.09 to 1.80), lung (HR, 1.28; 95% CI, 1.14 to 1.44), melanoma (HR, 1.93; 95% CI, 1.14 to 3.27), and breast (HR, 2.64; 95% CI, 1.86 to 3.73). HIV-infected patients with cancer experienced higher cancer-specific mortality than HIV-uninfected patients, independent of cancer stage or receipt of cancer treatment. The elevation in cancer-specific mortality among HIV-infected patients may be attributable to unmeasured stage or treatment differences as well

  1. Mass gathering medicine: a predictive model for patient presentation and transport rates.

    Science.gov (United States)

    Arbon, P; Bridgewater, F H; Smith, C

    2001-01-01

    This paper reports on research into the influence of environmental factors (including crowd size, temperature, humidity, and venue type) on the number of patients and the patient problems presenting to first-aid services at large, public events in Australia. Regression models were developed to predict rates of patient presentation and of transportation-to-a-hospital for future mass gatherings. To develop a data set and predictive model that can be applied across venues and types of mass gathering events that is not venue or event specific. Data collected will allow informed event planning for future mass gatherings for which health care services are required. Mass gatherings were defined as public events attended by in excess of 25,000 people. Over a period of 12 months, 201 mass gatherings attended by a combined audience in excess of 12 million people were surveyed throughout Australia. The survey was undertaken by St. John Ambulance Australia personnel. The researchers collected data on the incidence and type of patients presenting for treatment and on the environmental factors that may influence these presentations. A standard reporting format and definition of event geography was employed to overcome the event-specific nature of many previous surveys. There are 11,956 patients in the sample. The patient presentation rate across all event types was 0.992/1,000 attendees, and the transportation-to-hospital rate was 0.027/1,000 persons in attendance. The rates of patient presentations declined slightly as crowd sizes increased. The weather (particularly the relative humidity) was related positively to an increase in the rates of presentations. Other factors that influenced the number and type of patients presenting were the mobility of the crowd, the availability of alcohol, the event being enclosed by a boundary, and the number of patient-care personnel on duty. Three regression models were developed to predict presentation rates at future events. Several

  2. Development of a patient-doctor communication skills model for medical students.

    Science.gov (United States)

    Lee, Young Hee; Lee, Young-Mee

    2010-09-01

    Communication is a core clinical skill that can be taught and learned. The authors intended to develop a patient-doctor communication model for teaching and assessing undergraduate medical students in Korea. To develop a model, literature reviews and an iterative process of discussion between faculty members of a communication skills course for second year medical students were conducted. The authors extracted common communication skill competencies by comparing the Kalamazoo Consensus Statement, SEGUE framework communication skills, the Calgary Cambridge Observation Guides, and previous communication skills lists that have been used by the authors. The content validity, with regard to clinical importance and feasibility, was surveyed by both faculty physicians and students. The first version of the model consisted of 36 items under 7 categories: initiating the session (8 items), building a relationship (6), gathering information (8), understanding a patient's perspectives (4), sharing information (4), reaching an agreement (3), and closing the session (3). It was used as a guide for both students and teachers in an actual communication skills course. At the end of the course, student performance was assessed using two 7-minute standardized patient interviews with a 34-item checklist. This assessment tool was modified from the first version of the model to reflect the case specificity of the scenarios. A patient-doctor communication model, which can be taught to those with limited patient care experience, was finally developed. We recommended a patient-doctor communication skills model that can be used for teaching and evaluating preclinical and clinical students. Further studies are needed to verify its validity and reliability.

  3. Disentangling the Role of Domain-Specific Knowledge in Student Modeling

    Science.gov (United States)

    Ruppert, John; Duncan, Ravit Golan; Chinn, Clark A.

    2017-08-01

    This study explores the role of domain-specific knowledge in students' modeling practice and how this knowledge interacts with two domain-general modeling strategies: use of evidence and developing a causal mechanism. We analyzed models made by middle school students who had a year of intensive model-based instruction. These models were made to explain a familiar but unstudied biological phenomenon: late onset muscle pain. Students were provided with three pieces of evidence related to this phenomenon and asked to construct a model to account for this evidence. Findings indicate that domain-specific resources play a significant role in the extent to which the models accounted for provided evidence. On the other hand, familiarity with the situation appeared to contribute to the mechanistic character of models. Our results indicate that modeling strategies alone are insufficient for the development of a mechanistic model that accounts for provided evidence and that, while learners can develop a tentative model with a basic familiarity of the situation, scaffolding certain domain-specific knowledge is necessary to assist students with incorporating evidence in modeling tasks.

  4. Moderating Nutritious Habits in Psychiatric Patients Using Transtheoretical Model of Change and Counseling.

    Science.gov (United States)

    Anastopoulou, Konstantina; Fradelos, Evangelos C; Misouridou, Evdokia; Kourakos, Michael; Berk, Aristea; Papathanasiou, Ioanna V; Kleisiaris, Christos; Zyga, Sofia

    2017-01-01

    Motivational Interviewing provides the opportunity to health professionals to have an effective strategy to increase the level of readiness to change health behaviors. Along with the Transtheoretical Model (Stages of Change Model) compose the theoretical base of intervention in psychiatry settings. This study was aimed to change nutritious behavior of psychiatric patients using a specific Model of Change and Counseling implementing a health education program. A quasi-experimental design was adopted on a random sample of 60 psychiatric patients at Military Hospital of Athens. Patients were divided into two groups as follows; (a) Intervention Group (four sessions of counseling and encouraging motivation for modification of their nutritious habits), and (b) Control Group (simple information sessions about the principles of healthy alimentation). The mean age of Intervention Group (IG) was 43.9 ± 9.5 and Control Group (CG) 46.1 ± 9.1, ranging from 40 to 55 years old. Also, 26.7% of the participants were female, 23.3% were married and, 10% divorced. Our analyses showed that IG patients were significantly loss weight post-intervention compared to CG patients. Specifically, IG patients were significantly moderated the intake of starchy foods in every meal (p moderated the intake of low fat dairy foods while they changed the full fat dairy foods with low fat (p moderating unhealthy nutritious behaviors (p = 0.032). Our results confirms that health educational and promotional Interventions may change behavior of psychiatric patients and thus may positively influence their nutritious habits.

  5. A Novel Risk prediction Model for Patients with Combined Hepatocellular-Cholangiocarcinoma.

    Science.gov (United States)

    Tian, Meng-Xin; He, Wen-Jun; Liu, Wei-Ren; Yin, Jia-Cheng; Jin, Lei; Tang, Zheng; Jiang, Xi-Fei; Wang, Han; Zhou, Pei-Yun; Tao, Chen-Yang; Ding, Zhen-Bin; Peng, Yuan-Fei; Dai, Zhi; Qiu, Shuang-Jian; Zhou, Jian; Fan, Jia; Shi, Ying-Hong

    2018-01-01

    Backgrounds: Regarding the difficulty of CHC diagnosis and potential adverse outcomes or misuse of clinical therapies, an increasing number of patients have undergone liver transplantation, transcatheter arterial chemoembolization (TACE) or other treatments. Objective: To construct a convenient and reliable risk prediction model for identifying high-risk individuals with combined hepatocellular-cholangiocarcinoma (CHC). Methods: 3369 patients who underwent surgical resection for liver cancer at Zhongshan Hospital were enrolled in this study. The epidemiological and clinical characteristics of the patients were collected at the time of tumor diagnosis. Variables ( P model discrimination. Calibration was performed using the Hosmer-Lemeshow test and a calibration curve. Internal validation was performed using a bootstrapping approach. Results: Among the entire study population, 250 patients (7.42%) were pathologically defined with CHC. Age, HBcAb, red blood cells (RBC), blood urea nitrogen (BUN), AFP, CEA and portal vein tumor thrombus (PVTT) were included in the final risk prediction model (area under the curve, 0.69; 95% confidence interval, 0.51-0.77). Bootstrapping validation presented negligible optimism. When the risk threshold of the prediction model was set at 20%, 2.73% of the patients diagnosed with liver cancer would be diagnosed definitely, which could identify CHC patients with 12.40% sensitivity, 98.04% specificity, and a positive predictive value of 33.70%. Conclusions: Herein, the study established a risk prediction model which incorporates the clinical risk predictors and CT/MRI-presented PVTT status that could be adopted to facilitate the diagnosis of CHC patients preoperatively.

  6. ETHICAL MODELS OF PHYSICIAN--PATIENT RELATIONSHIP REVISITED WITH REGARD TO PATIENT AUTONOMY, VALUES AND PATIENT EDUCATION.

    Science.gov (United States)

    Borza, Liana Rada; Gavrilovici, Cristina; Stockman, René

    2015-01-01

    The present paper revisits the ethical models of patient--physician relationship from the perspective of patient autonomy and values. It seems that the four traditional models of physician--patient relationship proposed by Emanuel & Emanuel in 1992 closely link patient values and patient autonomy. On the other hand, their reinterpretation provided by Agarwal & Murinson twenty years later emphasizes the independent expression of values and autonomy in individual patients. Additionally, patient education has been assumed to join patient values and patient autonomy. Moreover, several authors have noted that, over the past few decades, patient autonomy has gradually replaced the paternalistic approach based on the premise that the physician knows what is best for the patient. Neither the paternalistic model of physician-patient relationship, nor the informative model is considered to be satisfactory, as the paternalistic model excludes patient values from decision making, while the informative model excludes physician values from decision making. However, the deliberative model of patient-physician interaction represents an adequate alternative to the two unsatisfactory approaches by promoting shared decision making between the physician and the patient. It has also been suggested that the deliberative model would be ideal for exercising patient autonomy in chronic care and that the ethical role of patient education would be to make the deliberative model applicable to chronic care. In this regard, studies have indicated that the use of decision support interventions might increase the deliberative capacity of chronic patients.

  7. Logistic regression models for predicting physical and mental health-related quality of life in rheumatoid arthritis patients.

    Science.gov (United States)

    Alishiri, Gholam Hossein; Bayat, Noushin; Fathi Ashtiani, Ali; Tavallaii, Seyed Abbas; Assari, Shervin; Moharamzad, Yashar

    2008-01-01

    The aim of this work was to develop two logistic regression models capable of predicting physical and mental health related quality of life (HRQOL) among rheumatoid arthritis (RA) patients. In this cross-sectional study which was conducted during 2006 in the outpatient rheumatology clinic of our university hospital, Short Form 36 (SF-36) was used for HRQOL measurements in 411 RA patients. A cutoff point to define poor versus good HRQOL was calculated using the first quartiles of SF-36 physical and mental component scores (33.4 and 36.8, respectively). Two distinct logistic regression models were used to derive predictive variables including demographic, clinical, and psychological factors. The sensitivity, specificity, and accuracy of each model were calculated. Poor physical HRQOL was positively associated with pain score, disease duration, monthly family income below 300 US$, comorbidity, patient global assessment of disease activity or PGA, and depression (odds ratios: 1.1; 1.004; 15.5; 1.1; 1.02; 2.08, respectively). The variables that entered into the poor mental HRQOL prediction model were monthly family income below 300 US$, comorbidity, PGA, and bodily pain (odds ratios: 6.7; 1.1; 1.01; 1.01, respectively). Optimal sensitivity and specificity were achieved at a cutoff point of 0.39 for the estimated probability of poor physical HRQOL and 0.18 for mental HRQOL. Sensitivity, specificity, and accuracy of the physical and mental models were 73.8, 87, 83.7% and 90.38, 70.36, 75.43%, respectively. The results show that the suggested models can be used to predict poor physical and mental HRQOL separately among RA patients using simple variables with acceptable accuracy. These models can be of use in the clinical decision-making of RA patients and to recognize patients with poor physical or mental HRQOL in advance, for better management.

  8. Assessing overall patient satisfaction in inflammatory bowel disease using structural equation modeling.

    Science.gov (United States)

    Soares, João-Bruno; Marinho, Ana S; Fernandes, Dália; Moreira Gonçalves, Bruno; Camila-Dias, Cláudia; Gonçalves, Raquel; Magro, Fernando

    2015-08-01

    Structural equation modeling (SEM) is a very popular data-analytic technique for the evaluation of customer satisfaction. We aimed to measure the overall satisfaction of inflammatory bowel disease (IBD) patients with healthcare in Portugal and to define its main determinants using SEM. The study included three steps: (i) specification of a patient satisfaction model that included the following dimensions: Image, Expectations, Facilities, Admission process, Assistant staff, Nursing staff, Medical staff, Treatment, Inpatient care, Outpatient care, Overall quality, Overall satisfaction, and Loyalty; (ii) sample survey from 2000 patients, members of the Portuguese Association of the IBD; and (iii) estimation of the satisfaction model using partial least squares (XLSTAT-PLSPM). We received 498 (25%) valid questionnaires from 324 (66%) patients with Crohn's disease and 162 (33%) patients with ulcerative colitis. Our model provided a substantial explanation for Overall satisfaction (R=0.82). The mean index of overall satisfaction was 74.4 (0-100 scale). The main determinants of Overall satisfaction were the Image (β=0.26), Outpatient care (β=0.23), and Overall quality (β=0.21), whose mean indices were 83, 75, and 81, respectively. Facilities and Inpatient care were the variables with a significant impact on Overall satisfaction and the worst mean indices. SEM is useful for the evaluation of IBD patient satisfaction. The Overall satisfaction of IBD patients with healthcare in Portugal is good, but to increase it, IBD services need to focus on the improvement of Outpatient care, Facilities, and Inpatient care. Our model could be a matrix for a global model of IBD patient satisfaction.

  9. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis

    Directory of Open Access Journals (Sweden)

    Gattinger Johannes

    2016-09-01

    Full Text Available Aim of this study was to prove the possibility of manufacturing patient specific root analogue two-part (implant and abutment implants by direct metal laser sintering. The two-part implant design enables covered healing of the implant. Therefore, CT-scans of three patients are used for reverse engineering of the implants, abutments and crowns. Patient specific implants are manufactured and measured concerning dimensional accuracy and surface roughness. Impacts of occlusal forces are simulated via FEA and compared to those of standard implants.

  10. Patient-Specific Variations in Biomarkers across Gingivitis and Periodontitis

    Science.gov (United States)

    Nagarajan, Radhakrishnan; Miller, Craig S.; Dawson, Dolph; Al-Sabbagh, Mohanad; Ebersole, Jeffrey L.

    2015-01-01

    This study investigates the use of saliva, as an emerging diagnostic fluid in conjunction with classification techniques to discern biological heterogeneity in clinically labelled gingivitis and periodontitis subjects (80 subjects; 40/group) A battery of classification techniques were investigated as traditional single classifier systems as well as within a novel selective voting ensemble classification approach (SVA) framework. Unlike traditional single classifiers, SVA is shown to reveal patient-specific variations within disease groups, which may be important for identifying proclivity to disease progression or disease stability. Salivary expression profiles of IL-1ß, IL-6, MMP-8, and MIP-1α from 80 patients were analyzed using four classification algorithms (LDA: Linear Discriminant Analysis [LDA], Quadratic Discriminant Analysis [QDA], Naïve Bayes Classifier [NBC] and Support Vector Machines [SVM]) as traditional single classifiers and within the SVA framework (SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM). Our findings demonstrate that performance measures (sensitivity, specificity and accuracy) of traditional classification as single classifier were comparable to that of the SVA counterparts using clinical labels of the samples as ground truth. However, unlike traditional single classifier approaches, the normalized ensemble vote-counts from SVA revealed varying proclivity of the subjects for each of the disease groups. More importantly, the SVA identified a subset of gingivitis and periodontitis samples that demonstrated a biological proclivity commensurate with the other clinical group. This subset was confirmed across SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM. Heatmap visualization of their ensemble sets revealed lack of consensus between these subsets and the rest of the samples within the respective disease groups indicating the unique nature of the patients in these subsets. While the source of variation is not known, the results presented clearly elucidate the

  11. Model-based versus specific dosimetry in diagnostic context: Comparison of three dosimetric approaches

    Energy Technology Data Exchange (ETDEWEB)

    Marcatili, S., E-mail: sara.marcatili@inserm.fr; Villoing, D.; Mauxion, T.; Bardiès, M. [Inserm, UMR1037 CRCT, Toulouse F-31000, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse F-31000 (France); McParland, B. J. [Imaging Technology Group, GE Healthcare, Life Sciences, B22U The Grove Centre, White Lion Road, Amersham, England HP7 9LL (United Kingdom)

    2015-03-15

    Purpose: The dosimetric assessment of novel radiotracers represents a legal requirement in most countries. While the techniques for the computation of internal absorbed dose in a therapeutic context have made huge progresses in recent years, in a diagnostic scenario the absorbed dose is usually extracted from model-based lookup tables, most often derived from International Commission on Radiological Protection (ICRP) or Medical Internal Radiation Dose (MIRD) Committee models. The level of approximation introduced by these models may impact the resulting dosimetry. The aim of this work is to establish whether a more refined approach to dosimetry can be implemented in nuclear medicine diagnostics, by analyzing a specific case. Methods: The authors calculated absorbed doses to various organs in six healthy volunteers administered with flutemetamol ({sup 18}F) injection. Each patient underwent from 8 to 10 whole body 3D PET/CT scans. This dataset was analyzed using a Monte Carlo (MC) application developed in-house using the toolkit GATE that is capable to take into account patient-specific anatomy and radiotracer distribution at the voxel level. They compared the absorbed doses obtained with GATE to those calculated with two commercially available software: OLINDA/EXM and STRATOS implementing a dose voxel kernel convolution approach. Results: Absorbed doses calculated with GATE were higher than those calculated with OLINDA. The average ratio between GATE absorbed doses and OLINDA’s was 1.38 ± 0.34 σ (from 0.93 to 2.23). The discrepancy was particularly high for the thyroid, with an average GATE/OLINDA ratio of 1.97 ± 0.83 σ for the six patients. Differences between STRATOS and GATE were found to be higher. The average ratio between GATE and STRATOS absorbed doses was 2.51 ± 1.21 σ (from 1.09 to 6.06). Conclusions: This study demonstrates how the choice of the absorbed dose calculation algorithm may introduce a bias when gamma radiations are of importance, as is

  12. The Specificity of Health-Related Autobiographical Memories in Patients With Somatic Symptom Disorder.

    Science.gov (United States)

    Walentynowicz, Marta; Raes, Filip; Van Diest, Ilse; Van den Bergh, Omer

    2017-01-01

    Patients with somatic symptom disorder (SSD) have persistent distressing somatic symptoms that are associated with excessive thoughts, feelings, and behaviors. Reduced autobiographical memory specificity (rAMS) is related to a range of emotional disorders and is considered a vulnerability factor for an unfavorable course of pathology. The present study investigated whether the specificity of health-related autobiographical memories is reduced in patients with SSD with medically unexplained dyspnea complaints, compared with healthy controls. Female patients with SSD (n = 30) and matched healthy controls (n = 24) completed a health-related Autobiographical Memory Test, the Beck Depression Inventory, the Ruminative Response Scale, and rumination scales concerning bodily reactions. Depressive symptoms and rumination were assessed because both variables previously showed associations with rAMS. Patients with SSD recalled fewer specific (F(1,52) = 13.63, p = .001) and more categoric (F(1,52) = 7.62, p = .008) autobiographical memories to health-related cue words than healthy controls. Patients also reported higher levels of depressive symptoms and rumination (all t > 3.00, p < .01). Importantly, the differences in memory specificity were independent of depressive symptoms and trait rumination. The present study extends findings on rAMS to a previously unstudied sample of patients with SSD. Importantly, the presence of rAMS could not be explained by increased levels of depressive symptoms and rumination. We submit that rAMS in this group reflects how health-related episodes and associated symptoms are encoded in memory.

  13. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  14. Neuron- specific enolase level in patients with metabolic syndrome and its value forecasting acute stroke

    Directory of Open Access Journals (Sweden)

    Oral Ospanov

    2018-03-01

    Full Text Available Background Patients with metabolic syndrome are at a greater risk of experiencing a cerebrovascular event. Several studies show that patients with metabolic syndrome have asymptomatic ischemic brain injury. In this case, there is a need for rapid determination of asymptomatic brain lesions and prediction of acute stroke. Aims The aim of the study was to determine the neuron-specific enolase (NSE serum level in patients with metabolic syndrome and the value of this level for forecasting acute stroke. Methods The study used the following information to determine metabolic syndrome: waist circumference, total cholesterol, triglycerides, high-density lipoprotein cholesterol, blood pressure, and blood glucose. Doppler sonography mapping of the brachiocephalic trunk was held to determine the percentage of the carotid artery stenosis. To determine asymptomatic ischemic brain injury, the NSE serum marker was measured. Statistical processing of the measurements was performed using the H test and the Mann–Whitney test. The possible link between MS and NSE were determined by logistic regression analysis. Mathematical modeling was performed using logistic regression. Results There are statistically significant differences in NSE concentrations in groups with metabolic syndrome and ischemic stroke patients. This assertion is confirmed by logistic regression analysis, which revealed the existence of a relationship between metabolic syndrome and increased concentration of NSE. Conclusion Patients with metabolic syndrome have an increased concentration of NSE. This indicates the presence of asymptomatic ischemic neuronal damage. A prognostic model for determining the probability that patients with metabolic syndrome will have an acute stroke was developed.

  15. Violence and Personality in Forensic Patients: Is There a Forensic Patient-Specific Personality Profile?

    Science.gov (United States)

    Stupperich, Alexandra; Ihm, Helga; Strack, Micha

    2009-01-01

    Concerning the discussion about the connection of personality traits, personality disorders, and mental illness, this study focused on the personality profiles of male forensic patients, prison inmates, and young men without criminal reports. The main topic centered on group-specific personality profiles and identifying personality facets…

  16. Analysis specifications for the CC3 biosphere model BIOTRAC

    International Nuclear Information System (INIS)

    Szekely, J.G.; Wojciechowski, L.C.; Stephens, M.E.; Halliday, H.A.

    1994-12-01

    AECL Research is assessing a concept for disposing of Canada's nuclear fuel waste in a vault deep in plutonic rock of the Canadian Shield. A computer program called the Systems Variability Analysis Code (SYVAC) has been developed as an analytical tool for the postclosure (long-term) assessment of the concept. SYVAC3, the third generation of the code, is an executive program that directs repeated simulation of the disposal system to take into account parameter variation. For the postclosure assessment, the system model, CC3 (Canadian Concept, generation 3), was developed to describe a hypothetical disposal system that includes a disposal vault, the local geosphere and the biosphere in the vicinity of any discharge zones. BIOTRAC (BIOsphere TRansport And Consequences) is the biosphere model in the CC3 system model. The specifications for BIOTRAC, which were developed over a period of seven years, were subjected to numerous walkthrough examinations by the Biosphere Model Working Group to ensure that the intent of the model developers would be correctly specified for transformation into FORTRAN code. The FORTRAN version of BIOTRAC was written from interim versions of these specifications. Improvements to the code are based on revised versions of these specifications. The specifications consist of a data dictionary; sets of synopses, data flow diagrams and mini specs for the component models of BIOTRAC (surface water, soil, atmosphere, and food chain and dose); and supporting calculations (interface to the geosphere, consequences, and mass balance). (author). 20 refs., tabs., figs

  17. Implementing the Keele stratified care model for patients with low back pain: an observational impact study.

    Science.gov (United States)

    Bamford, Adrian; Nation, Andy; Durrell, Susie; Andronis, Lazaros; Rule, Ellen; McLeod, Hugh

    2017-02-03

    The Keele stratified care model for management of low back pain comprises use of the prognostic STarT Back Screening Tool to allocate patients into one of three risk-defined categories leading to associated risk-specific treatment pathways, such that high-risk patients receive enhanced treatment and more sessions than medium- and low-risk patients. The Keele model is associated with economic benefits and is being widely implemented. The objective was to assess the use of the stratified model following its introduction in an acute hospital physiotherapy department setting in Gloucestershire, England. Physiotherapists recorded data on 201 patients treated using the Keele model in two audits in 2013 and 2014. To assess whether implementation of the stratified model was associated with the anticipated range of treatment sessions, regression analysis of the audit data was used to determine whether high- or medium-risk patients received significantly more treatment sessions than low-risk patients. The analysis controlled for patient characteristics, year, physiotherapists' seniority and physiotherapist. To assess the physiotherapists' views on the usefulness of the stratified model, audit data on this were analysed using framework methods. To assess the potential economic consequences of introducing the stratified care model in Gloucestershire, published economic evaluation findings on back-related National Health Service (NHS) costs, quality-adjusted life years (QALYs) and societal productivity losses were applied to audit data on the proportion of patients by risk classification and estimates of local incidence. When the Keele model was implemented, patients received significantly more treatment sessions as the risk-rating increased, in line with the anticipated impact of targeted treatment pathways. Physiotherapists were largely positive about using the model. The potential annual impact of rolling out the model across Gloucestershire is a gain in approximately 30

  18. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitroulas, Panagiotis; Efthimiou, Nikos; Nikiforidis, George C.; Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04 (Greece); Loudos, George [Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos Street, Egaleo GR 122 10, Athens (Greece); Le Maitre, Amandine; Hatt, Mathieu; Tixier, Florent; Visvikis, Dimitris [Medical Information Processing Laboratory (LaTIM), National Institute of Health and Medical Research (INSERM), 29609 Brest (France)

    2013-11-15

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines

  19. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  20. Disease specific knowledge about cystic fibrosis, patient education and counselling in Poland

    Directory of Open Access Journals (Sweden)

    Sławomir Chomik

    2014-06-01

    Full Text Available introduction and objective. The presented study assesses levels of specific knowledge of the disease among cystic fibrosis (CF patients and their families, and evaluates the effectiveness of a targeted, disease specific education programme. materials and methods. A cross-sectional survey among 462 families with a CF child evaluated their knowledge of the disease. A one year follow up survey among 200 families assessed the effectiveness of an educational programme developed to correct gaps, errors and misconceptions identified in the previously administered survey. Self-administered, comprehensive, 5-domains, 45-item multiple-choice CF Disease Knowledge Questionnaire (CFDKQ was anonymously completed by 462 subjects. results. 228 respondents were male (49%, 234 female (51%. The level of disease-specific knowledge in the age groups 0–6 and 7–10 years, was significantly higher than in 11–14 and 15–18 years of age groups (p<0.005. General medical and Genetics/Reproduction knowledge was low in all patients. Significant predictors of patient and parental knowledge were age and domicile. Patients and parents rely heavily on doctors for information about CF (77%. The follow-up survey (CFDKQ emphasized that special education programmes significantly improved levels of disease specific knowledge (p<0.0001. conclusions. If left uncorrected, the misconceptions, gaps and errors in CF knowledge identified in the presented study could result in inadvertent non-adherence to treatment, and impact on the progression and outcome of the disease. Secondly, the results demonstrate the effectiveness of targeted, disease specific information in improving disease knowledge of CF patients and their families, and highlights the value and need for the development of educational programmes for chronically ill patients and their families.

  1. Patient specific 3D visualisation of human brain | Baichoo ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Patient specific 3D visualisation of human brain.

  2. Morphing methods to parameterize specimen-specific finite element model geometries.

    Science.gov (United States)

    Sigal, Ian A; Yang, Hongli; Roberts, Michael D; Downs, J Crawford

    2010-01-19

    Shape plays an important role in determining the biomechanical response of a structure. Specimen-specific finite element (FE) models have been developed to capture the details of the shape of biological structures and predict their biomechanics. Shape, however, can vary considerably across individuals or change due to aging or disease, and analysis of the sensitivity of specimen-specific models to these variations has proven challenging. An alternative to specimen-specific representation has been to develop generic models with simplified geometries whose shape is relatively easy to parameterize, and can therefore be readily used in sensitivity studies. Despite many successful applications, generic models are limited in that they cannot make predictions for individual specimens. We propose that it is possible to harness the detail available in specimen-specific models while leveraging the power of the parameterization techniques common in generic models. In this work we show that this can be accomplished by using morphing techniques to parameterize the geometry of specimen-specific FE models such that the model shape can be varied in a controlled and systematic way suitable for sensitivity analysis. We demonstrate three morphing techniques by using them on a model of the load-bearing tissues of the posterior pole of the eye. We show that using relatively straightforward procedures these morphing techniques can be combined, which allows the study of factor interactions. Finally, we illustrate that the techniques can be used in other systems by applying them to morph a femur. Morphing techniques provide an exciting new possibility for the analysis of the biomechanical role of shape, independently or in interaction with loading and material properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Muller cell-specific autoantibodies in a patient with progressive loss of vision

    NARCIS (Netherlands)

    Peek, R.; Verbraak, F.; Coevoet, H. M.; Kijlstra, A.

    1998-01-01

    PURPOSE. To study the specificity of circulating retinal autoantibodies in a patient with progressive loss of vision resembling cancer-associated retinopathy in the absence of systemic malignancy. METHODS. Patient's serum was tested for the presence of antiretinal antibodies by Western blot

  4. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance.

    Science.gov (United States)

    Kamomae, Takeshi; Shimizu, Hidetoshi; Nakaya, Takayoshi; Okudaira, Kuniyasu; Aoyama, Takahiro; Oguchi, Hiroshi; Komori, Masataka; Kawamura, Mariko; Ohtakara, Kazuhiro; Monzen, Hajime; Itoh, Yoshiyuki; Naganawa, Shinji

    2017-12-01

    Pretreatment intensity-modulated radiotherapy quality assurance is performed using simple rectangular or cylindrical phantoms; thus, the dosimetric errors caused by complex patient-specific anatomy are absent in the evaluation objects. In this study, we construct a system for generating patient-specific three-dimensional (3D)-printed phantoms for radiotherapy dosimetry. An anthropomorphic head phantom containing the bone and hollow of the paranasal sinus is scanned by computed tomography (CT). Based on surface rendering data, a patient-specific phantom is formed using a fused-deposition-modeling-based 3D printer, with a polylactic acid filament as the printing material. Radiophotoluminescence glass dosimeters can be inserted in the 3D-printed phantom. The phantom shape, CT value, and absorbed doses are compared between the actual and 3D-printed phantoms. The shape difference between the actual and printed phantoms is less than 1 mm except in the bottom surface region. The average CT value of the infill region in the 3D-printed phantom is -6 ± 18 Hounsfield units (HU) and that of the vertical shell region is 126 ± 18 HU. When the same plans were irradiated, the dose differences were generally less than 2%. These results demonstrate the feasibility of the 3D-printed phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Open-Source Radiation Exposure Extraction Engine (RE3) with Patient-Specific Outlier Detection.

    Science.gov (United States)

    Weisenthal, Samuel J; Folio, Les; Kovacs, William; Seff, Ari; Derderian, Vana; Summers, Ronald M; Yao, Jianhua

    2016-08-01

    We present an open-source, picture archiving and communication system (PACS)-integrated radiation exposure extraction engine (RE3) that provides study-, series-, and slice-specific data for automated monitoring of computed tomography (CT) radiation exposure. RE3 was built using open-source components and seamlessly integrates with the PACS. RE3 calculations of dose length product (DLP) from the Digital imaging and communications in medicine (DICOM) headers showed high agreement (R (2) = 0.99) with the vendor dose pages. For study-specific outlier detection, RE3 constructs robust, automatically updating multivariable regression models to predict DLP in the context of patient gender and age, scan length, water-equivalent diameter (D w), and scanned body volume (SBV). As proof of concept, the model was trained on 811 CT chest, abdomen + pelvis (CAP) exams and 29 outliers were detected. The continuous variables used in the outlier detection model were scan length (R (2)  = 0.45), D w (R (2) = 0.70), SBV (R (2) = 0.80), and age (R (2) = 0.01). The categorical variables were gender (male average 1182.7 ± 26.3 and female 1047.1 ± 26.9 mGy cm) and pediatric status (pediatric average 710.7 ± 73.6 mGy cm and adult 1134.5 ± 19.3 mGy cm).

  6. Analysis specifications for the CC3 geosphere model GEONET

    International Nuclear Information System (INIS)

    Melnyk, T.W.

    1995-04-01

    AECL is assessing a concept for disposing of Canada's nuclear fuel waste in a sealed vault deep in plutonic rock of the Canadian Shield. A computer program has been developed as an analytical tool for the postclosure assessment case study, a system model, CC3 (Canadian Concept, generation 3), has been developed to describe a hypothetical disposal system. This system model includes separate models for the engineered barriers within the disposal vault, the geosphere in which the vault is emplaced, and the biosphere in the vicinity of any discharge zones. The system model is embedded within a computer code SYVAC3, (SYstems Variability Analysis Code, generation 3), which takes parameter uncertainty into account by repeated simulation of the system. GEONET (GEOsphere NETwork) is the geosphere model component of this system model. It simulates contaminant transport from the vault to the biosphere along a transport network composed of one-dimensional transport segments that are connected together in three-dimensional space. This document is a set of specifications for GEONET that were developed over a number of years. Improvements to the code will be based on revisions to these specifications. The specifications consist of a model synopsis, describing all the relevant equations and assumptions used in the model, a set of formal data flow diagrams and minispecifications, and a data dictionary. (author). 26 refs., 20 figs

  7. 3D active shape models of human brain structures: application to patient-specific mesh generation

    Science.gov (United States)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  8. Disease-in-a-dish: the contribution of patient-specific induced pluripotent stem cell technology to regenerative rehabilitation.

    Science.gov (United States)

    Mack, David L; Guan, Xuan; Wagoner, Ashley; Walker, Stephen J; Childers, Martin K

    2014-11-01

    Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.

  9. Beneficial immune modulatory effects of a specific nutritional combination in a murine model for cancer cachexia

    Science.gov (United States)

    Faber, J; Vos, P; Kegler, D; van Norren, K; Argilés, J M; Laviano, A; Garssen, J; van Helvoort, A

    2008-01-01

    The majority of patients with advanced cancer are recognised by impaired immune competence influenced by several factors, including the type and stage of the tumour and the presence of cachexia. Recently, a specific nutritional combination containing fish oil, specific oligosaccharide mixture, high protein content and leucine has been developed aimed to support the immune system of cancer patients in order to reduce the frequency and severity of (infectious) complications. In a recently modified animal model cachexia is induced by inoculation of C26 tumour cells in mice. In a pre-cachectic state, no effect was observed on contact hypersensitivity, a validated in vivo method to measure Th1-mediated immune function, after adding the individual nutritional ingredients to the diet of tumour-bearing mice. However, the complete mixture resulted in significantly improved Th1 immunity. Moreover, in a cachectic state, the complete mixture reduced plasma levels of pro-inflammatory cytokines and beneficially affected ex vivo immune function. Accordingly, the combination of the nutritional ingredients is required to obtain a synergistic effect, leading to a reduced inflammatory state and improved immune competence. From this, it can be concluded that the specific nutritional combination has potential as immune-supporting nutritional intervention to reduce the risk of (infectious) complications in cancer patients. PMID:19018259

  10. Adverse risk: a 'dynamic interaction model of patient moving and handling'.

    Science.gov (United States)

    Griffiths, Howard

    2012-09-01

    The aim of the present study was to examine patient adverse events associated with sub-optimal patient moving and handling. Few studies have examined the patient's perspective on adverse risk during manual handling episodes. A narrative review was undertaken to develop the 'Dynamic Interaction Model of Patient Moving and Handling' in an orthopaedic rehabilitation setting, using peer-reviewed publications published in English between 1992 and 2010. Five predominant themes emerged from the narrative review: 'patient's need to know about analgesics prior to movement/ambulation'; 'comfort care'; 'mastery of and acceptance of mobility aids/equipment'; 'psychological adjustment to fear of falling'; and 'the need for movement to prevent tissue pressure damage'. Prevalence of discomfort, pain, falls, pressure sores together with a specific Direct Instrument Nursing Observation (DINO) tool enable back care advisers to measure quality of patient manual handling. Evaluation of patients' use of mobility aids together with fear of falling may be important in determining patients' recovery trajectory. Clinical governance places a responsibility on nurse managers to consider quality of care for their service users. 'Dynamic Interaction Model of Nurse-Patient Moving and Handling' provides back care advisers, clinical risk managers and occupational health managers with an alternative perspective to clinical risk and occupational risk. © 2011 Blackwell Publishing Ltd.

  11. Internal Models Support Specific Gaits in Orthotic Devices

    DEFF Research Database (Denmark)

    Matthias Braun, Jan; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Patients use orthoses and prosthesis for the lower limbs to support and enable movements, they can not or only with difficulties perform themselves. Because traditional devices support only a limited set of movements, patients are restricted in their mobility. A possible approach to overcome such...... the system's accuracy and robustness on a Knee-Ankle-Foot-Orthosis, introducing behaviour changes depending on the patient's current walking situation. We conclude that the here presented model-based support of different gaits has the power to enhance the patient's mobility....

  12. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  13. Integrated care: an Information Model for Patient Safety and Vigilance Reporting Systems.

    Science.gov (United States)

    Rodrigues, Jean-Marie; Schulz, Stefan; Souvignet, Julien

    2015-01-01

    Quality management information systems for safety as a whole or for specific vigilances share the same information types but are not interoperable. An international initiative tries to develop an integrated information model for patient safety and vigilance reporting to support a global approach of heath care quality.

  14. Risks of all-cause and site-specific fractures among hospitalized patients with COPD

    Science.gov (United States)

    Liao, Kuang-Ming; Liang, Fu-Wen; Li, Chung-Yi

    2016-01-01

    Abstract Patients with chronic obstructive pulmonary disease (COPD) have a high prevalence of osteoporosis. The clinical sequel of osteoporosis is fracture. Patients with COPD who experience a fracture also have increased morbidity and mortality. Currently, the types of all-cause and site-specific fracture among patients with COPD are unknown. Thus, we elucidated the all-cause and site-specific fractures among patients with COPD. A retrospective, population-based, cohort study was conducted utilizing the Taiwan Longitudinal Health Insurance Database. Patients with COPD were defined as those who were hospitalized with an International Classification of Diseases, Ninth Revision, Clinical Modification code of 490 to 492 or 496 between 2001 and 2011. The index date was set as the date of discharge. The study patients were followed from the index date to the date when they sought care for any type of fracture, date of death, date of health insurance policy termination, or the last day of 2013. The types of fracture analyzed in this study included vertebral, rib, humeral, radial and ulnar/wrist, pelvic, femoral, and tibial and fibular fractures. The cohort consisted of 11,312 patients with COPD. Among these patients, 1944 experienced fractures. The most common site-specific fractures were vertebral, femoral, rib, and forearm fractures (radius, ulna, and wrist) at 32.4%, 31%, 12%, and 11.8%, respectively. The adjusted hazard ratios of fracture were 1.71 [95% confidence interval (95% CI) = 1.56–1.87] for female patient with COPD and 1.50 (95% CI = 1.39–1.52) for patients with osteoporosis after covariate adjustment. Vertebral and hip fractures are common among patients with COPD, especially among males with COPD. Many comorbidities contribute to the high risk of fracture among patients with COPD. PMID:27749576

  15. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available The accuracy with which a recent elastic surface registration algorithm deforms the complex geometry of a skull is examined. This algorithm is then coupled to a line based algorithm as is frequently used in patient specific feature registration...

  16. A scoring model for predicting prognosis of patients with severe fever with thrombocytopenia syndrome.

    Directory of Open Access Journals (Sweden)

    Bei Jia

    2017-09-01

    Full Text Available Severe fever with thrombocytopenia syndrome (SFTS is an emerging epidemic infectious disease caused by the SFTS bunyavirus (SFTSV with an estimated high case-fatality rate of 12.7% to 32.6%. Currently, the disease has been reported in mainland China, Japan, Korea, and the United States. At present, there is no specific antiviral therapy for SFTSV infection. Considering the higher mortality rate and rapid clinical progress of SFTS, supporting the appropriate treatment in time to SFTS patients is critical. Therefore, it is very important for clinicians to predict these SFTS cases who are more likely to have a poor prognosis or even more likely to decease. In the present study, we established a simple and feasible model for assessing the severity and predicting the prognosis of SFTS patients with high sensitivity and specificity. This model may aid the physicians to immediately initiate prompt treatment to block the rapid development of the illness and reduce the fatality of SFTS patients.

  17. Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.

    Science.gov (United States)

    Kim, Dae-Seung; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Hwang, Soon-Jung; Kim, Seong-Ha; Yi, Won-Jin

    2013-03-01

    Accurate simulation and evaluation of mandibular movement is fundamental for the analysis of functional changes and effects of the mandible and maxilla before and after surgical treatments. We applied principal axes of inertia to the three-dimensional (3D) trajectories generated by patient-specific simulations of TMJ movements for the functional evaluations of mandible movement. Three-dimensional movements of the mandible and the maxilla were tracked based on a patient-specific splint and an optical tracking system. The dental occlusion recorded on the sprint provided synchronization for initial movement in the tracking and the simulation phases. The translation and rotation recorded during movement tracking was applied sequentially to the mandibular model in relation to a fixed maxilla model. The sequential 3D positions of selected landmarks on the mandible were calculated based on the reference coordinate system. The landmarks selected for analysis were bilateral condyles and pogonion points. The moment of inertia tensor was calculated with respect to the 3D trajectory points. Using the unit vectors along the principal axes derived from the tensor matrix, α, β and γ rotations around z-, y- and x-axes were determined to represent the principal directions as principal rotations respectively. The γ direction showed the higher standard deviation, variation of directions, than other directions at all the landmarks. The mandible movement has larger kinematic redundancy in the γ direction than α and β during mouth opening and closing. Principal directions of inertia would be applied to analyzing the changes in angular motion of trajectories introduced by mandibular shape changes from surgical treatments and also to the analysis of the influence of skeletal deformities on mandibular movement asymmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modelling of subject specific based segmental dynamics of knee joint

    Science.gov (United States)

    Nasir, N. H. M.; Ibrahim, B. S. K. K.; Huq, M. S.; Ahmad, M. K. I.

    2017-09-01

    This study determines segmental dynamics parameters based on subject specific method. Five hemiplegic patients participated in the study, two men and three women. Their ages ranged from 50 to 60 years, weights from 60 to 70 kg and heights from 145 to 170 cm. Sample group included patients with different side of stroke. The parameters of the segmental dynamics resembling the knee joint functions measured via measurement of Winter and its model generated via the employment Kane's equation of motion. Inertial parameters in the form of the anthropometry can be identified and measured by employing Standard Human Dimension on the subjects who are in hemiplegia condition. The inertial parameters are the location of centre of mass (COM) at the length of the limb segment, inertia moment around the COM and masses of shank and foot to generate accurate motion equations. This investigation has also managed to dig out a few advantages of employing the table of anthropometry in movement biomechanics of Winter's and Kane's equation of motion. A general procedure is presented to yield accurate measurement of estimation for the inertial parameters for the joint of the knee of certain subjects with stroke history.

  19. Periodontal disease bacteria specific to tonsil in IgA nephropathy patients predicts the remission by the treatment.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nagasawa

    Full Text Available BACKGROUND: Immunoglobulin (IgA nephropathy (IgAN is the most common form of primary glomerulonephritis in the world. Some bacteria were reported to be the candidate of the antigen or the pathogenesis of IgAN, but systematic analysis of bacterial flora in tonsil with IgAN has not been reported. Moreover, these bacteria specific to IgAN might be candidate for the indicator which can predict the remission of IgAN treated by the combination of tonsillectomy and steroid pulse. METHODS AND FINDINGS: We made a comprehensive analysis of tonsil flora in 68 IgAN patients and 28 control patients using Denaturing gradient gel electrophoresis methods. We also analyzed the relationship between several bacteria specific to the IgAN and the prognosis of the IgAN. Treponema sp. were identified in 24% IgAN patients, while in 7% control patients (P = 0.062. Haemophilus segnis were detected in 53% IgAN patients, while in 25% control patients (P = 0.012. Campylobacter rectus were identified in 49% IgAN patients, while in 14% control patients (P = 0.002. Multiple Cox proportional-hazards model revealed that Treponema sp. or Campylobactor rectus are significant for the remission of proteinuria (Hazard ratio 2.35, p = 0.019. There was significant difference in remission rates between IgAN patients with Treponema sp. and those without the bacterium (p = 0.046, and in remission rates between IgAN patients with Campylobacter rectus and those without the bacterium (p = 0.037 by Kaplan-Meier analysis. Those bacteria are well known to be related with the periodontal disease. Periodontal bacteria has known to cause immune reaction and many diseases, and also might cause IgA nephropathy. CONCLUSION: This insight into IgAN might be useful for diagnosis of the IgAN patients and the decision of treatment of IgAN.

  20. Periodontal disease bacteria specific to tonsil in IgA nephropathy patients predicts the remission by the treatment.

    Science.gov (United States)

    Nagasawa, Yasuyuki; Iio, Kenichiro; Fukuda, Shinji; Date, Yasuhiro; Iwatani, Hirotsugu; Yamamoto, Ryohei; Horii, Arata; Inohara, Hidenori; Imai, Enyu; Nakanishi, Takeshi; Ohno, Hiroshi; Rakugi, Hiromi; Isaka, Yoshitaka

    2014-01-01

    Immunoglobulin (Ig)A nephropathy (IgAN) is the most common form of primary glomerulonephritis in the world. Some bacteria were reported to be the candidate of the antigen or the pathogenesis of IgAN, but systematic analysis of bacterial flora in tonsil with IgAN has not been reported. Moreover, these bacteria specific to IgAN might be candidate for the indicator which can predict the remission of IgAN treated by the combination of tonsillectomy and steroid pulse. We made a comprehensive analysis of tonsil flora in 68 IgAN patients and 28 control patients using Denaturing gradient gel electrophoresis methods. We also analyzed the relationship between several bacteria specific to the IgAN and the prognosis of the IgAN. Treponema sp. were identified in 24% IgAN patients, while in 7% control patients (P = 0.062). Haemophilus segnis were detected in 53% IgAN patients, while in 25% control patients (P = 0.012). Campylobacter rectus were identified in 49% IgAN patients, while in 14% control patients (P = 0.002). Multiple Cox proportional-hazards model revealed that Treponema sp. or Campylobactor rectus are significant for the remission of proteinuria (Hazard ratio 2.35, p = 0.019). There was significant difference in remission rates between IgAN patients with Treponema sp. and those without the bacterium (p = 0.046), and in remission rates between IgAN patients with Campylobacter rectus and those without the bacterium (p = 0.037) by Kaplan-Meier analysis. Those bacteria are well known to be related with the periodontal disease. Periodontal bacteria has known to cause immune reaction and many diseases, and also might cause IgA nephropathy. This insight into IgAN might be useful for diagnosis of the IgAN patients and the decision of treatment of IgAN.

  1. A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols.

    Science.gov (United States)

    van den Boom, Rieneke; Manniesing, Rashindra; Oei, Marcel T H; van der Woude, Willem-Jan; Smit, Ewoud J; Laue, Hendrik O A; van Ginneken, Bram; Prokop, Mathias

    2014-07-01

    Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. A patient-specific 4D digital phantom allows for realistic simulation of mean values and

  2. Are specific antiretrovirals associated with an increased risk of discontinuation due to toxicities or patient/physician choice in patients with hepatitis C virus coinfection?

    DEFF Research Database (Denmark)

    Mocroft, A; Rockstroh, J; Soriano, V

    2005-01-01

    clinical trials as patients with HCV are often excluded. AIMS: To compare incidence rates of discontinuation due to TOXPC associated with specific antiretrovial drugs in patients with or without HCV. PATIENTS/METHODS: A total of 4929 patients from EuroSIDA under follow-up from January 1999 on a specific...

  3. 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees.

    Science.gov (United States)

    Liew, Yaoren; Beveridge, Erin; Demetriades, Andreas K; Hughes, Mark A

    2015-01-01

    We report the use of three-dimensional or 3D printed, patient-specific anatomy as a tool to improve informed patient consent and patient understanding in a case of posterior lumbar fixation. Next, we discuss its utility as an educational tool to enhance imaging interpretation by neurosurgery trainees.

  4. Characterizing economic trends by Bayesian stochastic model specification search

    DEFF Research Database (Denmark)

    Grassi, Stefano; Proietti, Tommaso

    We extend a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. In particular, we focus on autoregressive models with possibly time-varying intercept and slope and decide on ...

  5. Quantification by qPCR of Pathobionts in Chronic Periodontitis: Development of Predictive Models of Disease Severity at Site-Specific Level

    OpenAIRE

    Tomás, Inmaculada; Regueira-Iglesias, Alba; López, Maria; Arias-Bujanda, Nora; Novoa, Lourdes; Balsa-Castro, Carlos; Tomás, Maria

    2017-01-01

    Currently, there is little evidence available on the development of predictive models for the diagnosis or prognosis of chronic periodontitis based on the qPCR quantification of subgingival pathobionts. Our objectives were to: (1) analyze and internally validate pathobiont-based models that could be used to distinguish different periodontal conditions at site-specific level within the same patient with chronic periodontitis; (2) develop nomograms derived from predictive models. Subgingival pl...

  6. Reliability of patient specific instrumentation in total knee arthroplasty.

    Science.gov (United States)

    Jennart, Harold; Ngo Yamben, Marie-Ange; Kyriakidis, Theofylaktos; Zorman, David

    2015-12-01

    The aim of this study was to compare the precision between Patient Specific Instrumentation (PSI) and Conventional Instrumentation (CI) as determined intra-operatively by a pinless navigation system. Eighty patients were included in this prospective comparative study and they were divided into two homogeneous groups. We defined an original score from 6 to 30 points to evaluate the accuracy of the position of the cutting guides. This score is based on 6 objective criteria. The analysis indicated that PSI was not superior to conventional instrumentation in the overall score (p = 0.949). Moreover, no statistically significant difference was observed for any individual criteria of our score. Level of evidence II.

  7. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges.

    Science.gov (United States)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya; Phanthong, Phetcharat; Schmid, Benjamin; Nielsen, Troels T; Freude, Kristine K

    2017-10-25

    The rising prevalence of progressive neurodegenerative diseases coupled with increasing longevity poses an economic burden at individual and societal levels. There is currently no effective cure for the majority of neurodegenerative diseases and disease-affected tissues from patients have been difficult to obtain for research and drug discovery in pre-clinical settings. While the use of animal models has contributed invaluable mechanistic insights and potential therapeutic targets, the translational value of animal models could be further enhanced when combined with in vitro models derived from patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide the opportunity to model disease development, uncover novel mechanisms and test potential therapeutics. Here we review findings from iPSC-based modeling of selected neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and spinocerebellar ataxia. Furthermore, we discuss the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Specific and General Human Capital in an Endogenous Growth Model

    OpenAIRE

    Evangelia Vourvachaki; Vahagn Jerbashian; : Sergey Slobodyan

    2014-01-01

    In this article, we define specific (general) human capital in terms of the occupations whose use is spread in a limited (wide) set of industries. We analyze the growth impact of an economy's composition of specific and general human capital, in a model where education and research and development are costly and complementary activities. The model suggests that a declining share of specific human capital, as observed in the Czech Republic, can be associated with a lower rate of long-term grow...

  9. Association between PSA kinetics and cancer-specific mortality in patients with localised prostate cancer

    DEFF Research Database (Denmark)

    Thomsen, Frederik Birkebæk; Brasso, Klaus; Berg, Kasper Drimer

    2016-01-01

    BACKGROUND: The prognostic value of prostate-specific antigen (PSA) kinetics in untreated prostate cancer (PCa) patients is debatable. We investigated the association between PSA doubling time (PSAdt), PSA velocity (PSAvel) and PSAvel risk count (PSAvRC) and PCa mortality in a cohort of patients...... with localised PCa managed on watchful waiting. PATIENTS AND METHODS: Patients with clinically localised PCa managed observationally, who were randomised to and remained on placebo for minimum 18 months in the SPCG-6 study, were included. All patients survived at least 2 years and had a minimum of three PSA...... determinations available. The prognostic value of PSA kinetics was analysed and patients were stratified according to their PSA at consent: ≤10, 10.1-25, and >25 ng/ml. Cumulative incidences of PCa-specific mortality were estimated with the Aalen-Johansen method. RESULTS: Two hundred and sixty-three patients...

  10. Using an EPID for patient-specific VMAT quality assurance

    International Nuclear Information System (INIS)

    Bakhtiari, M.; Kumaraswamy, L.; Bailey, D. W.; Boer, S. de; Malhotra, H. K.; Podgorsak, M. B.

    2011-01-01

    Purpose: A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). Methods: VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. Results: Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. Conclusions: This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.

  11. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Amy [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Gaebler, Carl P.; Huang, Hailiang; Olek, Devin [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-12-01

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for

  12. Modeling the Development of Goal-Specificity in Mirror Neurons.

    Science.gov (United States)

    Thill, Serge; Svensson, Henrik; Ziemke, Tom

    2011-12-01

    Neurophysiological studies have shown that parietal mirror neurons encode not only actions but also the goal of these actions. Although some mirror neurons will fire whenever a certain action is perceived (goal-independently), most will only fire if the motion is perceived as part of an action with a specific goal. This result is important for the action-understanding hypothesis as it provides a potential neurological basis for such a cognitive ability. It is also relevant for the design of artificial cognitive systems, in particular robotic systems that rely on computational models of the mirror system in their interaction with other agents. Yet, to date, no computational model has explicitly addressed the mechanisms that give rise to both goal-specific and goal-independent parietal mirror neurons. In the present paper, we present a computational model based on a self-organizing map, which receives artificial inputs representing information about both the observed or executed actions and the context in which they were executed. We show that the map develops a biologically plausible organization in which goal-specific mirror neurons emerge. We further show that the fundamental cause for both the appearance and the number of goal-specific neurons can be found in geometric relationships between the different inputs to the map. The results are important to the action-understanding hypothesis as they provide a mechanism for the emergence of goal-specific parietal mirror neurons and lead to a number of predictions: (1) Learning of new goals may mostly reassign existing goal-specific neurons rather than recruit new ones; (2) input differences between executed and observed actions can explain observed corresponding differences in the number of goal-specific neurons; and (3) the percentage of goal-specific neurons may differ between motion primitives.

  13. Work-specific cognitive symptoms and the role of work characteristics, fatigue and depressive symptoms in cancer patients during 18 months post return to work.

    Science.gov (United States)

    Dorland, H F; Abma, F I; Roelen, C A M; Stewart, R; Amick, B C; Bültmann, U; Ranchor, A V

    2018-06-19

    Cancer patients can experience work-specific cognitive symptoms post return to work (RTW). The study aims to: 1) describe the course of work-specific cognitive symptoms in the first 18 months post RTW, and 2) examine the associations of work characteristics, fatigue and depressive symptoms with work-specific cognitive symptoms over time. This study used data from the 18-months longitudinal "Work Life after Cancer" cohort. The Cognitive Symptom Checklist-Work, Dutch Version (CSC-W DV) was used to measure work-specific cognitive symptoms. Linear mixed models were performed to examine the course of work-specific cognitive symptoms during 18 months follow-up; linear regression analyses with generalised estimating equations (GEE) were used to examine associations over time. Working cancer patients diagnosed with different cancer types were included (n=378). Work-specific cognitive symptoms were stable over 18 months. At baseline, cancer patients reported more working memory symptoms (M=31.9, CI=23.1, 26.4) compared to executive function symptoms (M=19.3; CI=17.6, 20.9). Cancer patients holding a job with both manual and non-manual tasks reported less work-specific cognitive symptoms (unstandardized regression coefficient b=-4.80; CI=-7.76, -1.83) over time, compared to cancer patients with a non-manual job. Over time, higher depressive symptoms were related to experiencing more overall work-specific cognitive symptoms (b=1.27; CI=1.00, 1.55) and a higher fatigue score was related to more working memory symptoms (b=0.13; CI=0.04, 0.23). Job type should be considered when looking at work-specific cognitive symptoms over time in working cancer patients. To reduce work-specific cognitive symptoms, interventions targeted at fatigue and depressive symptoms might be promising. This article is protected by copyright. All rights reserved.

  14. A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves' disease

    International Nuclear Information System (INIS)

    Di Martino, F.; Traino, A.C.; Lazzeri, M.; Brill, A.B.; Stabin, M.G.

    2002-01-01

    A fundamental function of the thyroid is to extract iodine from the blood, synthesize it into thyroid hormones, and release it into the circulation under feedback control by pituitary-secreted hormones. This capability of the thyroid, termed as functionality, can in principle be related to the severity of hyperthyroidism in individual patients. In this paper the uptake and release of 131 I by the thyroid following the administration of 131 I therapy for Graves' disease has been theoretically studied. The kinetics of iodine in the thyroid and blood have been evaluated using a two-compartment model. This simplified model appears to be adequate for dosimetry purposes and allows one to correlate levels of increased thyroid functionality (hyperthyroidism) with clinically measurable kinetic parameters. An expression has been derived for the rate of change of thyroid mass following therapy; this has the same form as an empirical relationship described in an earlier work. A method is presented for calculation of the amount of radioiodine activity to be administered to individual patients in order to achieve the desired final functionality of the gland. The activity to be administered is based on measurements of 131 I kinetics after the administration of a 'low-activity' (1850 kBq) tracer for treatment planning. (author)

  15. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways

    International Nuclear Information System (INIS)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. - Highlights: • Mechanism-based, position-specific isotope modeling of micropollutants degradation. • Simultaneous description of concentration and primary and secondary isotope effects. • Key features of the model are demonstrated with three illustrative examples. • Model as a tool to explore reaction mechanisms and to design experiments. - We propose a modeling approach incorporating mechanistic information and

  16. SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans

    International Nuclear Information System (INIS)

    Chang, C; Mah, D

    2015-01-01

    Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18 measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA

  17. Patient choice modelling: how do patients choose their hospitals?

    Science.gov (United States)

    Smith, Honora; Currie, Christine; Chaiwuttisak, Pornpimol; Kyprianou, Andreas

    2018-06-01

    As an aid to predicting future hospital admissions, we compare use of the Multinomial Logit and the Utility Maximising Nested Logit models to describe how patients choose their hospitals. The models are fitted to real data from Derbyshire, United Kingdom, which lists the postcodes of more than 200,000 admissions to six different local hospitals. Both elective and emergency admissions are analysed for this mixed urban/rural area. For characteristics that may affect a patient's choice of hospital, we consider the distance of the patient from the hospital, the number of beds at the hospital and the number of car parking spaces available at the hospital, as well as several statistics publicly available on National Health Service (NHS) websites: an average waiting time, the patient survey score for ward cleanliness, the patient safety score and the inpatient survey score for overall care. The Multinomial Logit model is successfully fitted to the data. Results obtained with the Utility Maximising Nested Logit model show that nesting according to city or town may be invalid for these data; in other words, the choice of hospital does not appear to be preceded by choice of city. In all of the analysis carried out, distance appears to be one of the main influences on a patient's choice of hospital rather than statistics available on the Internet.

  18. Results from Development of Model Specifications for Multifamily Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K.

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  19. Results From Development of Model Specifications for Multifamily Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, Kevin [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  20. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents.

    Science.gov (United States)

    Broger, Tobias; Basu Roy, Robindra; Filomena, Angela; Greef, Charles H; Rimmele, Stefanie; Havumaki, Joshua; Danks, David; Schneiderhan-Marra, Nicole; Gray, Christen M; Singh, Mahavir; Rosenkrands, Ida; Andersen, Peter; Husar, Gregory M; Joos, Thomas O; Gennaro, Maria L; Lochhead, Michael J; Denkinger, Claudia M; Perkins, Mark D

    2017-04-01

    Development of rapid diagnostic tests for tuberculosis is a global priority. A whole proteome screen identified Mycobacterium tuberculosis antigens associated with serological responses in tuberculosis patients. We used World Health Organization (WHO) target product profile (TPP) criteria for a detection test and triage test to evaluate these antigens. Consecutive patients presenting to microscopy centers and district hospitals in Peru and to outpatient clinics at a tuberculosis reference center in Vietnam were recruited. We tested blood samples from 755 HIV-uninfected adults with presumptive pulmonary tuberculosis to measure IgG antibody responses to 57 M. tuberculosis antigens using a field-based multiplexed serological assay and a 132-antigen bead-based reference assay. We evaluated single antigen performance and models of all possible 3-antigen combinations and multiantigen combinations. Three-antigen and multiantigen models performed similarly and were superior to single antigens. With specificity set at 90% for a detection test, the best sensitivity of a 3-antigen model was 35% (95% confidence interval [CI], 31-40). With sensitivity set at 85% for a triage test, the specificity of the best 3-antigen model was 34% (95% CI, 29-40). The reference assay also did not meet study targets. Antigen performance differed significantly between the study sites for 7/22 of the best-performing antigens. Although M. tuberculosis antigens were recognized by the IgG response during tuberculosis, no single antigen or multiantigen set performance approached WHO TPP criteria for clinical utility among HIV-uninfected adults with presumed tuberculosis in high-volume, urban settings in tuberculosis-endemic countries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  1. Are Hip-Specific Items Useful in a Quality of Life Questionnaire for Patients with Hip Fractures?

    Science.gov (United States)

    Yao, Kai-Ping Grace; Lee, Hsin-Yi; Tsauo, Jau-Yih

    2009-01-01

    Researchers measure the significance of hip fracture by the patient's impairment. The patient's quality of life (QOL) is usually also substantially affected. However, there is no specific quality of life (QOL) questionnaire for patients with hip fractures. This study was designed to determine whether adding a new set of specific questions about…

  2. Patient recall of specific cognitive therapy contents predicts adherence and outcome in adults with major depressive disorder.

    Science.gov (United States)

    Dong, Lu; Zhao, Xin; Ong, Stacie L; Harvey, Allison G

    2017-10-01

    The current study examined whether and which specific contents of patients' memory for cognitive therapy (CT) were associated with treatment adherence and outcome. Data were drawn from a pilot RCT of forty-eight depressed adults, who received either CT plus Memory Support Intervention (CT + Memory Support) or CT-as-usual. Patients' memory for treatment was measured using the Patient Recall Task and responses were coded into cognitive behavioral therapy (CBT) codes, such as CBT Model and Cognitive Restructuring, and non-CBT codes, such as individual coping strategies and no code. Treatment adherence was measured using therapist and patient ratings during treatment. Depression outcomes included treatment response, remission, and recurrence. Total number of CBT codes recalled was not significantly different comparing CT + Memory Support to CT-as-usual. Total CBT codes recalled were positively associated with adherence, while non-CBT codes recalled were negatively associated with adherence. Treatment responders (vs. non-responders) exhibited a significant increase in their recall of Cognitive Restructuring from session 7 to posttreatment. Greater recall of Cognitive Restructuring was marginally significantly associated with remission. Greater total number of CBT codes recalled (particularly CBT Model) was associated with non-recurrence of depression. Results highlight the important relationships between patients' memory for treatment and treatment adherence and outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of INAR(1)-Poisson model and Markov prediction model in forecasting the number of DHF patients in west java Indonesia

    Science.gov (United States)

    Ahdika, Atina; Lusiyana, Novyan

    2017-02-01

    World Health Organization (WHO) noted Indonesia as the country with the highest dengue (DHF) cases in Southeast Asia. There are no vaccine and specific treatment for DHF. One of the efforts which can be done by both government and resident is doing a prevention action. In statistics, there are some methods to predict the number of DHF cases to be used as the reference to prevent the DHF cases. In this paper, a discrete time series model, INAR(1)-Poisson model in specific, and Markov prediction model are used to predict the number of DHF patients in West Java Indonesia. The result shows that MPM is the best model since it has the smallest value of MAE (mean absolute error) and MAPE (mean absolute percentage error).

  4. Analysis of ion beam teletherapy patient-specific quality assurance.

    Science.gov (United States)

    Liu, Xiaoli; Deng, Yu; Schlegel, Nicki; Huang, Zhijie; Moyers, Michael F

    2018-02-27

    The objective of this study was to evaluate the procedures for patient-specific quality assurance measurements using modulated scanned and energy stacked beams for proton and carbon ion teletherapy. Delivery records from 1734 portal measurements were analyzed using a 3-point pass criteria: more than 22 of 24 chambers in a water phantom (WP) had to have a measured dose difference from the planned portal doses less than or equal to 3%, or the distance from the measurement point location to a point location in the plan having the same dose had to be less than or equal to 3 mm (distance to agreement [DTA]), and the mean dose deviation of all chambers had to be less than 3%. Stratification of results showed some associations between measurement parameters and pass rates. For proton portals, pass rates were high at all measurement depths, but for carbon ion portals, pass rates decreased as a function of increasing measurement depth. Pass rates of both proton and carbon ion portals with 1 WP were slightly lower than those with a second WP. The total pass rates were 97.7% and 91.9% for proton and carbon ion patient portals, respectively. In general, the measured doses exhibited good agreement with the treatment planning system (TPS) calculated doses. When the chamber position was deeper than 150 mm in carbon ion beams, a lower pass rate was observed, which may have been caused by ion chamber array setup uncertainty (lateral and depth) in highly modulated portals or incorrect modeling of scatter by the TPS. These deviations need further investigation. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  5. Risk-based technical specifications: Development and application of an approach to the generation of a plant specific real-time risk model

    International Nuclear Information System (INIS)

    Puglia, B.; Gallagher, D.; Amico, P.; Atefi, B.

    1992-10-01

    This report describes a process developed to convert an existing PRA into a model amenable to real time, risk-based technical specification calculations. In earlier studies (culminating in NUREG/CR-5742), several risk-based approaches to technical specification were evaluated. A real-time approach using a plant specific PRA capable of modeling plant configurations as they change was identified as the most comprehensive approach to control plant risk. A master fault tree logic model representative of-all of the core damage sequences was developed. Portions of the system fault trees were modularized and supercomponents comprised of component failures with similar effects were developed to reduce the size of the model and, quantification times. Modifications to the master fault tree logic were made to properly model the effect of maintenance and recovery actions. Fault trees representing several actuation systems not modeled in detail in the existing PRA were added to the master fault tree logic. This process was applied to the Surry NUREG-1150 Level 1 PRA. The master logic mode was confirmed. The model was then used to evaluate frequency associated with several plant configurations using the IRRAS code. For all cases analyzed computational time was less than three minutes. This document Volume 2, contains appendices A, B, and C. These provide, respectively: Surry Technical Specifications Model Database, Surry Technical Specifications Model, and a list of supercomponents used in the Surry Technical Specifications Model

  6. Patient-specific quality assurance for intracranial cases in robotic radiosurgery system.

    Science.gov (United States)

    Koksal, Canan; Akbas, Ugur; Donmez Kesen, Nazmiye; Okutan, Murat; Bilge, Hatice; Kemikler, Gonul

    2018-01-01

    The purpose of this study was to perform pretreatment patient-specific quality assurance (QA) for intracranial irradiation using CyberKnife with an ion chamber. Twenty-five intracranial plans created using the ray-tracing algorithm were used for this study. Computed tomography (CT) images of the water-equivalent RW3 slab phantom with PinPoint ionization chamber were acquired with 1-mm slice thickness and transferred to the MultiPlan treatment planning system (TPS). Four gold fiducial markers embedded into two different plates were used to tracking during the irradiation. Intracranial plans were transferred to CT images of the RW3 phantom. The isodose curves and sensitive volume of ion chamber were overlapped. Point dose measurements were performed three times and the mean point doses were calculated for each plan. The mean doses measured by the PinPoint ion chamber were compared with those of the calculated by MultiPlan TPS in the sensitive volume of PinPoint. The mean percentage difference (MPD) in point dose measurements was -2.44±1.97 for 25 plans. The maximum and minimum percentage differences between the measured and calculated absolute point doses were -7.14 and 0.23, respectively. The MPD was -1.70±1.90 for 12 plans using a fixed collimator and -3.11±1.86 for 13 plans using an IRIS cone. Point dose measurement is a reliable and functional method for pre-treatment patient-specific QA in intracranial CyberKnife plans. Point dose verification should be performed to correct any possible errors prior to patient treatment. It is recommended for use in patient-specific QA process in the CyberKnife plans.

  7. Nationwide Assessment of Cause-Specific Mortality in Patients with Rosacea

    DEFF Research Database (Denmark)

    Egeberg, Alexander; Fowler, Joseph F; Gislason, Gunnar H

    2016-01-01

    1000 person-years, and hazard ratios (HRs) were estimated using Cox regression models. RESULTS: The total cohort (n = 35,958) included 5993 patients with rosacea and 29,965 age- and sex-matched individuals from the general population. During the maximum 15 years of follow-up, 664 (11.1 %) patients...

  8. The development of model generators for specific reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor design, safety analysis, and code validation. The conventional approach is to use a text-editor to either manually manipulate an existing model or to assemble a new model by copying and pasting or direct typing. This approach is error-prone and substantial effort is required for verification. Alternatively, models can be generated programmatically for a specific system via a centralized data source and with rigid algorithms to generate models consistently and efficiently. This approach is demonstrated here for model generators for MCNP and KENO for the ZED-2 reactor. (author)

  9. A Specific N=2 Supersymmetric Quantum Mechanical Model: Supervariable Approach

    Directory of Open Access Journals (Sweden)

    Aradhya Shukla

    2017-01-01

    Full Text Available By exploiting the supersymmetric invariant restrictions on the chiral and antichiral supervariables, we derive the off-shell nilpotent symmetry transformations for a specific (0 + 1-dimensional N=2 supersymmetric quantum mechanical model which is considered on a (1, 2-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables (θ,θ¯. We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specific N=2 SUSY quantum mechanical model is a model for Hodge theory.

  10. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    International Nuclear Information System (INIS)

    Alexander, A; DeBlois, F; Stroian, G; Al-Yahya, K; Heath, E; Seuntjens, J

    2007-01-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM R T, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform

  11. The value of urine specific gravity in detecting diabetes insipidus in a patient with uncontrolled diabetes mellitus: urine specific gravity in differential diagnosis.

    Science.gov (United States)

    Akarsu, Ersin; Buyukhatipoglu, Hakan; Aktaran, Sebnem; Geyik, Ramazan

    2006-11-01

    When a patient with diabetes mellitus presents with worsening polyuria and polydipsia, what is a sensible, cost-effective approach? We report the unique coincidence of type 2 diabetes mellitus and diabetes insipidus. A 46-year-old woman with poorly controlled type 2 diabetes complained of polyuria with a daily output of 5 L. Although urinalysis demonstrated significant glucosuria, diabetes insipidus was suspected owing to a low urine specific gravity (1.008). The low specific gravity persisted during a water deprivation test. Ultimately, diabetes insipidus was confirmed when urine specific gravity and urine osmolality normalized following desmopressin administration. This case emphasizes the importance of accurately interpreting the urine specific gravity in patients with polyuria and diabetes mellitus to detect diabetes insipidus.

  12. Verifying large SDL-specifications using model checking

    NARCIS (Netherlands)

    Sidorova, N.; Steffen, M.; Reed, R.; Reed, J.

    2001-01-01

    In this paper we propose a methodology for model-checking based verification of large SDL specifications. The methodology is illustrated by a case study of an industrial medium-access protocol for wireless ATM. To cope with the state space explosion, the verification exploits the layered and modular

  13. On Automatic Modeling and Use of Domain-specific Ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Knappe, Rasmus; Bulskov, Henrik

    2005-01-01

    In this paper, we firstly introduce an approach to the modeling of a domain-specific ontology for use in connection with a given document collection. Secondly, we present a methodology for deriving conceptual similarity from the domain-specific ontology. Adopted for ontology representation is a s...

  14. [Design of an educational tool for Primary Care patients with chronic non-specific low back pain].

    Science.gov (United States)

    Díaz-Cerrillo, Juan Luis; Rondón-Ramos, Antonio

    2015-02-01

    Current scientific evidence on the management of chronic non-specific low back pain highlights the benefits of physical exercise. This goal is frequently undermined due to lack of education of the subjects on the multifactorial, benign, and non-specific nature of low back pain, which can lead to a chronic disease with genuine psychosocial risk factors. Its influence may not only interfere with individual decision to adopt more adaptive coping behaviors, but also with the endogenous mechanisms of pain neuromodulation. Thus, the educational strategies and control of these factors have become important objectives to be incorporated into the management of the disorder and research guidelines. This paper presents the theoretical models and the scientific basis on which it has based the design of an educational tool for patients with chronic non-specific low back pain treated in Primary Care physiotherapy. Structure, content and objectives are also presented. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  15. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. III. Radiation treated patients

    International Nuclear Information System (INIS)

    Stamey, T.A.; Kabalin, J.N.; Ferrari, M.

    1989-01-01

    Serum prostate specific antigen was determined (Yang polyclonal radioimmunoassay) in 183 men after radiation therapy for adenocarcinoma of the prostate. A total of 163 men had received 7,000 rad external beam radiotherapy and 20 had been implanted with iodine-125 seeds. Only 11 per cent of these 183 patients had undetectable prostate specific antigen levels at a mean interval of 5 years since completion of radiotherapy. Prostate specific antigen levels after radiotherapy were directly related to initial clinical stage and Gleason score before treatment. Multiple prostate specific antigen determinations were performed with time in 124 of 183 patients. During year 1 after radiotherapy prostate specific antigen levels were decreasing in 82 per cent of the patients but only 8 per cent continued to decrease beyond year 1. Of 80 patients observed greater than 1 year after completion of radiotherapy 51 per cent had increasing values and 41 per cent had stable values. Increasing prostate specific antigen values after radiotherapy were correlated with progression to metastastic disease and residual cancer on prostate biopsy. Total serum acid phosphatase levels were poorly related to prostate specific antigen levels, were less effective in discriminating patients with metastatic disease and provided no additional information beyond that provided by prostate specific antigen

  16. TIPPtool: Compositional Specification and Analysis of Markovian Performance Models

    NARCIS (Netherlands)

    Hermanns, H.; Halbwachs, N.; Peled, D.; Mertsiotakis, V.; Siegle, M.

    1999-01-01

    In this short paper we briefly describe a tool which is based on a Markovian stochastic process algebra. The tool offers both model specification and quantitative model analysis in a compositional fashion, wrapped in a userfriendly graphical front-end.

  17. COPE-ICD: Patient experience of participation in an ICD specific rehabilitation programme

    DEFF Research Database (Denmark)

    Berg, Selina Kikkenborg; Pedersen, Birthe Dagmar; Svendsen, Jesper Hastrup

    2012-01-01

    individualized care. Four themes emerged: Knowledge: patients gained much needed understanding; Physical attention: patients interpreted body signals and adjusted their exercise behaviour; Trust: patients regained trust, felt secure and dared to live again; Strategies of living: patients' coping was supported...... through reflection and professional dialogue, and they dealt with the risk of shock or death. CONCLUSION: Participating in an ICD-specific rehabilitation programme can make patients feel inspired and secure through individualized care. They discover that they have to rethink some of their strategies......PURPOSE: Evaluating rehabilitation programmes from the patient's perspective is much needed, as the patients are the most important stakeholders in the health care system. A comprehensive rehabilitation programme, COPE-ICD programme, consists of exercise training and nursing consultations during...

  18. Quantification of hepatic flow distribution using particle tracking for patient specific virtual Fontan surgery

    Science.gov (United States)

    Yang, Weiguang; Vignon-Clementel, Irene; Troianowski, Guillaume; Shadden, Shawn; Mohhan Reddy, V.; Feinstein, Jeffrey; Marsden, Alison

    2010-11-01

    The Fontan surgery is the third and final stage in a palliative series to treat children with single ventricle heart defects. In the extracardiac Fontan procedure, the inferior vena cava (IVC) is connected to the pulmonary arteries via a tube-shaped Gore-tex graft. Clinical observations have shown that the absence of a hepatic factor, carried in the IVC flow, can cause pulmonary arteriovenous malformations. Although it is clear that hepatic flow distribution is an important determinant of Fontan performance, few studies have quantified its relation to Fontan design. In this study, we virtually implanted three types of grafts (T-junction, offset and Y-graft) into 5 patient specific models of the Glenn (stage 2) anatomy. We then performed 3D time-dependent simulations and systematically compared the IVC flow distribution, energy loss, and pressure levels in different surgical designs. A robustness test is performed to evaluate the sensitivity of hepatic distribution to pulmonary flow split. Results show that the Y-graft design effectively improves the IVC flow distribution, compared to traditional designs and that surgical designs could be customized on a patient-by-patient basis.

  19. Modelling and subject-specific validation of the heart-arterial tree system.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Tosello, Francesco; Canuto, Claudio; Ridolfi, Luca

    2015-01-01

    A modeling approach integrated with a novel subject-specific characterization is here proposed for the assessment of hemodynamic values of the arterial tree. A 1D model is adopted to characterize large-to-medium arteries, while the left ventricle, aortic valve and distal micro-circulation sectors are described by lumped submodels. A new velocity profile and a new formulation of the non-linear viscoelastic constitutive relation suitable for the {Q, A} modeling are also proposed. The model is firstly verified semi-quantitatively against literature data. A simple but effective procedure for obtaining subject-specific model characterization from non-invasive measurements is then designed. A detailed subject-specific validation against in vivo measurements from a population of six healthy young men is also performed. Several key quantities of heart dynamics-mean ejected flow, ejection fraction, and left-ventricular end-diastolic, end-systolic and stroke volumes-and the pressure waveforms (at the central, radial, brachial, femoral, and posterior tibial sites) are compared with measured data. Mean errors around 5 and 8%, obtained for the heart and arterial quantities, respectively, testify the effectiveness of the model and its subject-specific characterization.

  20. WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom

    International Nuclear Information System (INIS)

    Ger, R; Craft, DF; Burgett, EA; Price, RR; Kry, SF; Howell, RM

    2015-01-01

    Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by an ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between

  1. WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ger, R; Craft, DF [The University of Texas Graduate School of Biomedical Sciences (United States); Burgett, EA [Idaho State University, Pocatello, idaho (United States); Price, RR [RANDJ Consulting, Frederick, MD (United States); Kry, SF; Howell, RM [The University of Texas Graduate School of Biomedical Sciences (United States); The University of Texas MD Anderson Cancer Ctr., Houston, TX (United States)

    2015-06-15

    Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by an ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between

  2. Patient-specific reconstruction plates are the missing link in computer-assisted mandibular reconstruction: A showcase for technical description.

    Science.gov (United States)

    Cornelius, Carl-Peter; Smolka, Wenko; Giessler, Goetz A; Wilde, Frank; Probst, Florian A

    2015-06-01

    Preoperative planning of mandibular reconstruction has moved from mechanical simulation by dental model casts or stereolithographic models into an almost completely virtual environment. CAD/CAM applications allow a high level of accuracy by providing a custom template-assisted contouring approach for bone flaps. However, the clinical accuracy of CAD reconstruction is limited by the use of prebent reconstruction plates, an analogue step in an otherwise digital workstream. In this paper the integration of computerized, numerically-controlled (CNC) milled, patient-specific mandibular plates (PSMP) within the virtual workflow of computer-assisted mandibular free fibula flap reconstruction is illustrated in a clinical case. Intraoperatively, the bone segments as well as the plate arms showed a very good fit. Postoperative CT imaging demonstrated close approximation of the PSMP and fibular segments, and good alignment of native mandible and fibular segments and intersegmentally. Over a follow-up period of 12 months, there was an uneventful course of healing with good bony consolidation. The virtual design and automated fabrication of patient-specific mandibular reconstruction plates provide the missing link in the virtual workflow of computer-assisted mandibular free fibula flap reconstruction. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Wildtype p53-specific Antibody and T-Cell Responses in Cancer Patients

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Stryhn, Anette; Justesen, Sune

    2011-01-01

    patients. Detection of antibodies against wt p53 protein has been used as a diagnostic and prognostic marker and discovery of new T-cell epitopes has enabled design of cancer vaccination protocols with promising results. Here, we identified wt p53-specific antibodies in various cancer patients......(264-272) in breast cancer patients and against HLA-A*01:01 binding peptide wt p53(226-234) and HLA-B*07:02 binding peptide wt p53(74-82) in renal cell cancer and breast cancer patients, respectively. Finally, we analyzed antibody and T-cell responses against wt p53 15-mer peptides in patients with metastatic renal...

  4. A framework for different levels of integration of computational models into web-based virtual patients.

    Science.gov (United States)

    Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-23

    Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the

  5. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis.

    Science.gov (United States)

    Gabr, Refaat E; Pednekar, Amol S; Govindarajan, Koushik A; Sun, Xiaojun; Riascos, Roy F; Ramírez, María G; Hasan, Khader M; Lincoln, John A; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2017-08-01

    To improve the conspicuity of white matter lesions (WMLs) in multiple sclerosis (MS) using patient-specific optimization of single-slab 3D fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Sixteen MS patients were enrolled in a prospective 3.0T MRI study. FLAIR inversion time and echo time were automatically optimized for each patient during the same scan session based on measurements of the relative proton density and relaxation times of the brain tissues. The optimization criterion was to maximize the contrast between gray matter (GM) and white matter (WM), while suppressing cerebrospinal fluid. This criterion also helps increase the contrast between WMLs and WM. The performance of the patient-specific 3D FLAIR protocol relative to the fixed-parameter protocol was assessed both qualitatively and quantitatively. Patient-specific optimization achieved a statistically significant 41% increase in the GM-WM contrast ratio (P < 0.05) and 32% increase in the WML-WM contrast ratio (P < 0.01) compared with fixed-parameter FLAIR. The increase in WML-WM contrast ratio correlated strongly with echo time (P < 10 -11 ). Two experienced neuroradiologists indicated substantially higher lesion conspicuity on the patient-specific FLAIR images over conventional FLAIR in 3-4 cases (intrarater correlation coefficient ICC = 0.72). In no case was the image quality of patient-specific FLAIR considered inferior to conventional FLAIR by any of the raters (ICC = 0.32). Changes in proton density and relaxation times render fixed-parameter FLAIR suboptimal in terms of lesion contrast. Patient-specific optimization of 3D FLAIR increases lesion conspicuity without scan time penalty, and has potential to enhance the detection of subtle and small lesions in MS. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:557-564. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Evaluation of Functional Correlation of Task-Specific Muscle Synergies with Motor Performance in Patients Poststroke

    Directory of Open Access Journals (Sweden)

    Si Li

    2017-07-01

    Full Text Available The central nervous system produces movements by activating specifically programmed muscle synergies that are also altered with injuries in the brain, such as stroke. In this study, we hypothesize that there exists a positive correlation between task-specific muscle synergy and motor functions at joint and task levels in patients following stroke. The purpose here is to define and evaluate neurophysiological metrics based on task-specific muscle synergy for assessing motor functions in patients. A patient group of 10 subjects suffering from stroke and a control group of nine age-matched healthy subjects were recruited to participate in this study. Electromyography (EMG signals and movement kinematics were recorded in patients and control subjects while performing arm reaching tasks. Muscle synergies of individual patients were extracted off-line from EMG records of each patient, and a baseline pattern of muscle synergy was obtained from the pooled EMG data of all nine control subjects. Peak velocities and movement durations of each reaching movement were computed from measured kinematics. Similarity indices of matching components to those of the baseline synergy were defined by synergy vectors and time profiles, respectively, as well as by a combined similarity of vector and time profile. Results showed that pathological synergies of patients were altered from the characteristics of baseline synergy with missing components, or varied vector patterns and time profiles. The kinematic performance measured by peak velocities and movement durations was significantly poorer for the patient group than the control group. In patients, all three similarity indices were found to correlate significantly to the kinematics of movements for the reaching tasks. The correlation to the Fugl-Meyer score of arm was the highest with the vector index, the lowest with the time profile index, and in between with the combined index. These findings illustrate that the

  7. Evaluation of a patient specific femoral alignment guide for hip resurfacing.

    Science.gov (United States)

    Olsen, Michael; Naudie, Douglas D; Edwards, Max R; Sellan, Michael E; McCalden, Richard W; Schemitsch, Emil H

    2014-03-01

    A novel alternative to conventional instrumentation for femoral component insertion in hip resurfacing is a patient specific, computed tomography based femoral alignment guide. A benchside study using cadaveric femora was performed comparing a custom alignment guide to conventional instrumentation and computer navigation. A clinical series of twenty-five hip resurfacings utilizing a custom alignment guide was conducted by three surgeons experienced in hip resurfacing. Using cadaveric femora, the custom guide was comparable to conventional instrumentation with computer navigation proving superior to both. Clinical femoral component alignment accuracy was 3.7° and measured within ± 5° of plan in 20 of 24 cases. Patient specific femoral alignment guides provide a satisfactory level of accuracy and may be a better alternative to conventional instrumentation for initial femoral guidewire placement in hip resurfacing. Crown Copyright © 2014. All rights reserved.

  8. Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2011-01-01

    Full Text Available The occurrence of SOX2-specific autoantibodies seems to be associated with an improved prognosis in patients with monoclonal gammopathy of undetermined significance (MGUS. However, it is unclear if SOX2-specific antibodies also develop in established multiple myeloma (MM. Screening 1094 peripheral blood (PB sera from 196 MM patients and 100 PB sera from healthy donors, we detected SOX2-specific autoantibodies in 7.7% and 2.0% of patients and donors, respectively. We identified SOX2211–230 as an immunodominant antibody-epitope within the full protein sequence. SOX2 antigen was expressed in most healthy tissues and its expression did not correlate with the number of BM-resident plasma cells. Accordingly, anti-SOX2 immunity was not related to SOX2 expression levels or tumor burden in the patients’ BM. The only clinical factor predicting the development of anti-SOX2 immunity was application of allogeneic stem cell transplantation (alloSCT. Anti-SOX2 antibodies occurred more frequently in patients who had received alloSCT (n=74. Moreover, most SOX2-seropositive patients had only developed antibodies after alloSCT. This finding indicates that alloSCT is able to break tolerance towards this commonly expressed antigen. The questions whether SOX2-specific autoantibodies merely represent an epiphenomenon, are related to graft-versus-host effects or participate in the immune control of myeloma needs to be answered in prospective studies.

  9. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  10. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Science.gov (United States)

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

  11. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  12. Predictive modeling of EEG time series for evaluating surgery targets in epilepsy patients.

    Science.gov (United States)

    Steimer, Andreas; Müller, Michael; Schindler, Kaspar

    2017-05-01

    During the last 20 years, predictive modeling in epilepsy research has largely been concerned with the prediction of seizure events, whereas the inference of effective brain targets for resective surgery has received surprisingly little attention. In this exploratory pilot study, we describe a distributional clustering framework for the modeling of multivariate time series and use it to predict the effects of brain surgery in epilepsy patients. By analyzing the intracranial EEG, we demonstrate how patients who became seizure free after surgery are clearly distinguished from those who did not. More specifically, for 5 out of 7 patients who obtained seizure freedom (= Engel class I) our method predicts the specific collection of brain areas that got actually resected during surgery to yield a markedly lower posterior probability for the seizure related clusters, when compared to the resection of random or empty collections. Conversely, for 4 out of 5 Engel class III/IV patients who still suffer from postsurgical seizures, performance of the actually resected collection is not significantly better than performances displayed by random or empty collections. As the number of possible collections ranges into billions and more, this is a substantial contribution to a problem that today is still solved by visual EEG inspection. Apart from epilepsy research, our clustering methodology is also of general interest for the analysis of multivariate time series and as a generative model for temporally evolving functional networks in the neurosciences and beyond. Hum Brain Mapp 38:2509-2531, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Lip-Synching Using Speaker-Specific Articulation, Shape and Appearance Models

    Directory of Open Access Journals (Sweden)

    Gaspard Breton

    2009-01-01

    Full Text Available We describe here the control, shape and appearance models that are built using an original photogrammetric method to capture characteristics of speaker-specific facial articulation, anatomy, and texture. Two original contributions are put forward here: the trainable trajectory formation model that predicts articulatory trajectories of a talking face from phonetic input and the texture model that computes a texture for each 3D facial shape according to articulation. Using motion capture data from different speakers and module-specific evaluation procedures, we show here that this cloning system restores detailed idiosyncrasies and the global coherence of visible articulation. Results of a subjective evaluation of the global system with competing trajectory formation models are further presented and commented.

  14. Prostate-specific antigen density values among patients with symptomatic prostatic enlargement in Nigeria.

    Science.gov (United States)

    Udeh, Emeka I; Nnabugwu, Ikenna I; Ozoemena, Francis O; Ugwumba, Fred O; Aderibigbe, Adesina S O; Ohayi, Samuel R; Echetabu, Kevin N

    2016-06-29

    This study aims to estimate the prostate-specific antigen density (PSAD) cutoff level for detecting prostate cancer (CAP) in Nigerian men with "grey zone PSA" (4-10 ng/ml) and normal digital rectal examination findings. We addressed this research question: Is the international PSAD cutoff of 0.15 ideal for detecting CAP in our symptomatic patients with "grey zone PSA?" To estimate the prostate-specific antigen density (PSAD) cutoff level for detecting CAP in Nigerian men with "grey zone PSA" (4-10 ng/ml) and normal digital rectal examination findings. Prospective. A tertiary medical center in Enugu, Nigeria. Two hundred and fifty-four men with either benign prostatic hyperplasia (BPH) or CAP were recruited. Patients with PSA above 4 ng/ml or abnormal digital rectal examination or hypoechoic lesion in the prostate were biopsied. PSAD and histology report of BPH or CAP. Ninety-seven patients had CAP while 157 had benign prostatic hyperplasia (BPH). Seventy-two patients had their serum PSA value within the range of 4.0 and 10 ng/ml. PSAD cutoff level to detect CAP was 0.04 (sensitivity 95.88 %; specificity 28.7 %). The PSAD cutoff level generated for Nigerian men in this study is 0.04 which is relatively different from international consensus. This PSAD cutoff level has a positive correlation with histology and could detect patients with CAP who have "grey zone PSA."

  15. A Hybrid Parallel Execution Model for Logic Based Requirement Specifications (Invited Paper

    Directory of Open Access Journals (Sweden)

    Jeffrey J. P. Tsai

    1999-05-01

    Full Text Available It is well known that undiscovered errors in a requirements specification is extremely expensive to be fixed when discovered in the software maintenance phase. Errors in the requirement phase can be reduced through the validation and verification of the requirements specification. Many logic-based requirements specification languages have been developed to achieve these goals. However, the execution and reasoning of a logic-based requirements specification can be very slow. An effective way to improve their performance is to execute and reason the logic-based requirements specification in parallel. In this paper, we present a hybrid model to facilitate the parallel execution of a logic-based requirements specification language. A logic-based specification is first applied by a data dependency analysis technique which can find all the mode combinations that exist within a specification clause. This mode information is used to support a novel hybrid parallel execution model, which combines both top-down and bottom-up evaluation strategies. This new execution model can find the failure in the deepest node of the search tree at the early stage of the evaluation, thus this new execution model can reduce the total number of nodes searched in the tree, the total processes needed to be generated, and the total communication channels needed in the search process. A simulator has been implemented to analyze the execution behavior of the new model. Experiments show significant improvement based on several criteria.

  16. Development of a Subject-Specific Foot-Ground Contact Model for Walking.

    Science.gov (United States)

    Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J

    2016-09-01

    Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments-a hindfoot (HF) segment and a forefoot (FF) segment-connected by a pin joint representing the toes flexion-extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior-posterior (AP) CoP, 8 mm for medial-lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The

  17. XML for data representation and model specification in neuroscience.

    Science.gov (United States)

    Crook, Sharon M; Howell, Fred W

    2007-01-01

    EXtensible Markup Language (XML) technology provides an ideal representation for the complex structure of models and neuroscience data, as it is an open file format and provides a language-independent method for storing arbitrarily complex structured information. XML is composed of text and tags that explicitly describe the structure and semantics of the content of the document. In this chapter, we describe some of the common uses of XML in neuroscience, with case studies in representing neuroscience data and defining model descriptions based on examples from NeuroML. The specific methods that we discuss include (1) reading and writing XML from applications, (2) exporting XML from databases, (3) using XML standards to represent neuronal morphology data, (4) using XML to represent experimental metadata, and (5) creating new XML specifications for models.

  18. Clinical accuracy of a patient-specific femoral osteotomy guide in minimally-invasive posterior hip arthroplasty.

    Science.gov (United States)

    Schneider, Adrian K; Pierrepont, Jim W; Hawdon, Gabrielle; McMahon, Stephen

    2018-04-01

    Patient specific guides can be a valuable tool in improving the precision of planned femoral neck osteotomies, especially in minimally invasive hip surgery, where bony landmarks are often inaccessible. The aim of our study was to validate the accuracy of a novel patient specific femoral osteotomy guide for THR through a minimally invasive posterior approach, the direct superior approach (DSA). As part of our routine preoperative planning 30 patients underwent low dose CT scans of their arthritic hip. 3D printed patient specific femoral neck osteotomy guides were then produced. Intraoperatively, having cleared all soft tissue from the postero-lateral neck of the enlocated hip, the guide was placed and pinned onto the posterolateral femoral neck. The osteotomy was performed using an oscillating saw and the uncemented hip components were implanted as per routine. Postoperatively, the achieved level of the osteotomy at the medial calcar was compared with the planned level of resection using a 3D/2D matching analysis (Mimics X-ray module, Materialise, Belgium). A total of 30 patients undergoing uncemented Trinity™ acetabular and TriFit TS™ femoral component arthroplasty (Corin, UK) were included in our analysis. All but one of our analysed osteotomies were found to be within 3 mm from the planned height of osteotomy. In one patient the level of osteotomy deviated 5 mm below the planned level of resection. Preoperative planning and the use of patient specific osteotomy guides provides an accurate method of performing femoral neck osteotomies in minimally invasive hip arthroplasty using the direct superior approach. IV (Case series).

  19. Cumulative Intracranial Tumor Volume Augments the Prognostic Value of Diagnosis-Specific Graded Prognostic Assessment Model for Survival in Patients with Melanoma Cerebral Metastases

    DEFF Research Database (Denmark)

    Hirshman, Brian R; Wilson, Bayard R; Ali, Mir Amaan

    2018-01-01

    BACKGROUND: The diagnosis-specific graded prognostic assessment scale (ds-GPA) for patients with melanoma brain metastasis (BM) utilizes only 2 key prognostic variables: Karnofsky performance status and the number of intracranial metastases. We wished to determine whether inclusion of cumulative ...

  20. A Framework for the Specification of Acquisition Models

    National Research Council Canada - National Science Library

    Meyers, B

    2001-01-01

    .... The timing properties associated with the items receives special treatment. The value of a framework is that one can develop specifications of various acquisition models, such as waterfall, spiral, or incremental, as instances of that framework...

  1. On the relationship between pain intensity and postural sway in patients with non-specific neck pain

    DEFF Research Database (Denmark)

    Ruhe, Alexander; Fejer, René; Walker, Bruce

    2013-01-01

    Increased center of pressure excursions are well documented in patients with non-specific neck pain. While a linear relationship between pain intensity and postural sway has been described in low back pain patients, no such investigation has been conducted in adults with non-specific neck pain....

  2. Health-related quality of life of food allergic patients measured with generic and disease-specific questionnaires

    NARCIS (Netherlands)

    Flokstra-de Blok, B. M. J.; van der Velde, J. L.; Vlieg-Boerstra, B. J.; Oude Elberink, J. N. G.; DunnGalvin, A.; Hourihane, J. O.'B.; Duiverman, E. J.; Dubois, A. E. J.

    2010-01-01

    Health-related quality of life (HRQL) has never been measured with both generic and disease-specific questionnaires in the same group of food allergic patients. The aim of this study was to compare HRQL of food allergic patients as measured with generic and disease-specific questionnaires. Generic

  3. Health-related quality of life of food allergic patients measured with generic and disease-specific questionnaires

    NARCIS (Netherlands)

    Flokstra-de Blok, B. M. J.; van der Velde, J. L.; Vlieg-Boerstra, B. J.; Oude Elberink, J. N. G.; DunnGalvin, A.; Hourihane, J. O'B.; Duiverman, E. J.; Dubois, A. E. J.

    P>Background: Health-related quality of life (HRQL) has never been measured with both generic and disease-specific questionnaires in the same group of food allergic patients. The aim of this study was to compare HRQL of food allergic patients as measured with generic and disease-specific

  4. A conceptual-practice model for occupational therapy to facilitate return to work in breast cancer patients.

    Science.gov (United States)

    Désiron, Huguette A M; Donceel, Peter; de Rijk, Angelique; Van Hoof, Elke

    2013-12-01

    Improved therapies and early detection have significantly increased the number of breast cancers survivors, leading to increasing needs regarding return to work (RTW). Occupational therapy (OT) interventions provide successful RTW assistance for other conditions, but are not validated in breast cancer. This paper aims to identify a theoretical framework for OT intervention by questioning how OT models can be used in OT interventions in RTW of breast cancer patients; criteria to be used to select these models and adaptations that would be necessary to match the OT model(s) to breast cancer patients' needs? Using research specific criteria derived from OT literature (conceptual OT-model, multidisciplinary, referring to the International Classification of functioning (ICF), RTW in breast cancer) a search in 9 electronic databases was conducted to select articles that describe conceptual OT models. A content analysis of those models complying to at least two of the selection criteria was realised. Checking for breast cancer specific issues, results were matched with literature of care-models regarding RTW in breast cancer. From the nine models initially identified, three [Canadian Model of Occupational Performance, Model of Human Occupation (MOHO), Person-Environment-Occupation-Performance model] were selected based on the selection criteria. The MOHO had the highest compliance rate with the criteria. To enhance usability in breast cancer, some adaptations are needed. No OT model to facilitate RTW in breast cancer could be identified, indicating a need to fill this gap. Individual and societal needs of breast cancer patients can be answered by using a MOHO-based OT model, extended with indications for better treatment, work-outcomes and longitudinal process factors.

  5. Practical Findings from Applying the PSD Model for Evaluating Software Design Specifications

    Science.gov (United States)

    Räisänen, Teppo; Lehto, Tuomas; Oinas-Kukkonen, Harri

    This paper presents practical findings from applying the PSD model to evaluating the support for persuasive features in software design specifications for a mobile Internet device. On the one hand, our experiences suggest that the PSD model fits relatively well for evaluating design specifications. On the other hand, the model would benefit from more specific heuristics for evaluating each technique to avoid unnecessary subjectivity. Better distinction between the design principles in the social support category would also make the model easier to use. Practitioners who have no theoretical background can apply the PSD model to increase the persuasiveness of the systems they design. The greatest benefit of the PSD model for researchers designing new systems may be achieved when it is applied together with a sound theory, such as the Elaboration Likelihood Model. Using the ELM together with the PSD model, one may increase the chances for attitude change.

  6. Specimen-specific modeling of hip fracture pattern and repair.

    Science.gov (United States)

    Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J

    2014-01-22

    Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.

  7. Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of Lagrangian-coherent structures.

    Science.gov (United States)

    Joly, Florian; Soulez, Gilles; Garcia, Damien; Lessard, Simon; Kauffmann, Claude

    2018-01-01

    Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. When equilibrium between blood pressure (loading) and wall mechanical resistance is lost, rupture ensues, and patient death follows, if not treated immediately. Experimental and numerical analyses of flow patterns in arteries show direct correlations between wall shear stress and wall mechano-adaptation with the development of zones prone to thrombus formation. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) in 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-year follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. Good correlation - 2-D cross-correlation coefficients of 0.65, 0.86 and 0.082 (min, max, SD) - was obtained between numerical simulations and 4-D MRI acquisitions in 6 specific cross-sections from 4 patients. In follow-up study, LCS divided AAA lumens into 3 dynamically-isolated zones: 2 stagnation volumes lying in dilated portions of the AAA, and circulating volume connecting the inlet to the outlet. The volume of each zone was tracked over time. Although circulating volume remained unchanged during 8-year follow-up, the AAA lumen and main stagnation zones grew significantly (8 cm 3 /year and 6 cm 3 /year, respectively). This study reveals that transient transport topology can be quantified in patient-specific AAA during disease progression

  8. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID

  9. T helper cell subsets specific for Pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Hannah K Bayes

    Full Text Available We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis.Peripheral blood human memory CD4(+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines.Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4(+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6(+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood.Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions.

  10. Specific count model for investing the related factors of cost of GERD and functional dyspepsia

    Science.gov (United States)

    Abadi, Alireza; Chaibakhsh, Samira; Safaee, Azadeh; Moghimi-Dehkordi, Bijan

    2013-01-01

    Aim The purpose of this study is to analyze the cost of GERD and functional dyspepsia for investing its related factors. Background Gastro-oesophageal reflux disease GERD and dyspepsia are the most common symptoms of gastrointestinal disorders. Recent studies showed high prevalence and variety of clinical presentation of these two symptoms imposed enormous economic burden to the society. Cost data that related to economics burden have specific characteristics. So this kind of data needs to specific models. Poisson regression (PR) and negative binomial regression (NB) are the models that were used for analyzing cost data in this paper. Patients and methods This study designed as a cross-sectional household survey from May 2006 to December 2007 on a random sample of individual in the Tehran province, Iran to find the prevalence of gastrointestinal symptoms and disorders and its related factors. The Cost in each item was counted. PR and NB were carried out to the data respectively. Likelihood ratio test was performed for comparison between models. Also Log likelihood, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used to compare performance of the models. Results According to Likelihood ratio test and all three criterions that we used to compare performance of the models, NB was the best model for analyzing this cost data. Sex, age and insurance statues were being significant. Conclusion PR and NB models were carried out for this data and according the results improved fit of the NB model over PR, it clearly indicates that over-dispersion is involved due to unobserved heterogeneity and/or clustering. NB model in cost data more appropriate fit than PR. PMID:24834282

  11. Determining the Cost-Savings Threshold and Alignment Accuracy of Patient-Specific Instrumentation in Total Ankle Replacements.

    Science.gov (United States)

    Hamid, Kamran S; Matson, Andrew P; Nwachukwu, Benedict U; Scott, Daniel J; Mather, Richard C; DeOrio, James K

    2017-01-01

    Traditional intraoperative referencing for total ankle replacements (TARs) involves multiple steps and fluoroscopic guidance to determine mechanical alignment. Recent adoption of patient-specific instrumentation (PSI) allows for referencing to be determined preoperatively, resulting in less steps and potentially decreased operative time. We hypothesized that usage of PSI would result in decreased operating room time that would offset the additional cost of PSI compared with standard referencing (SR). In addition, we aimed to compare postoperative radiographic alignment between PSI and SR. Between August 2014 and September 2015, 87 patients undergoing TAR were enrolled in a prospectively collected TAR database. Patients were divided into cohorts based on PSI vs SR, and operative times were reviewed. Radiographic alignment parameters were retrospectively measured at 6 weeks postoperatively. Time-driven activity-based costing (TDABC) was used to derive direct costs. Cost vs operative time-savings were examined via 2-way sensitivity analysis to determine cost-saving thresholds for PSI applicable to a range of institution types. Cost-saving thresholds defined the price of PSI below which PSI would be cost-saving. A total of 35 PSI and 52 SR cases were evaluated with no significant differences identified in patient characteristics. Operative time from incision to completion of casting in cases without adjunct procedures was 127 minutes with PSI and 161 minutes with SR ( P cost-savings threshold range at our institution of $863 below which PSI pricing would provide net cost-savings. Two-way sensitivity analysis generated a globally applicable cost-savings threshold model based on institution-specific costs and surgeon-specific time-savings. This study demonstrated equivalent postoperative TAR alignment with PSI and SR referencing systems but with a significant decrease in operative time with PSI. Based on TDABC and associated sensitivity analysis, a cost-savings threshold

  12. Patient pools and the use of "patient means" are valuable tools in quality control illustrated by a bone-specific alkaline phosphatase assay

    DEFF Research Database (Denmark)

    Hinge, Maja; Lund, Erik D.; Brandslund, Ivan

    2016-01-01

    BACKGROUND: Quality control (QC) is an essential part of clinical biochemistry to ensure that laboratory test results are reliable and correct. Those tests without a defined reference method constitute a special challenge, as is the case with bone-specific alkaline phosphatase (BAP). METHODS...... AND RESULTS: The present study reports an example where a shift in a BAP assay was detected by use of a patient pool and supported by a retrospective calculation of "patient mean", while the external QC and specific assay control material were unaffected by the shift. CONCLUSIONS: Patient pools and the use...

  13. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  14. [Obstetrical prognosis improvement in patients exposed in utero to diethylstilbestrol with specific care management].

    Science.gov (United States)

    Amour, M-C; Mokdad, A; Mayenga, J-M; Belaisch-Allart, J

    2004-11-01

    To define the interest of a specific care management of pregnancies in patients exposed in utero to diethylstilbestrol, with the intention of reducing the number of spontaneous miscarriage and prematurity. One hundred and three pregnancies in 49 patients exposed in utero to diethylstilbestrol were followed during a 4-year study, while establishing a specific care management of pregnancies in those women. Spontaneous miscarriage rate was 18.5%, among which 16.5% before 15 weeks of pregnancy and 2% after 15 weeks of pregnancy. Premature birth rate was 41.9%, among which 10.8% of great premature birth (before 32 weeks of pregnancy), 13.5% of moderate premature birth (between 32 and 36 weeks of pregnancy), and 17.6% of minor prematurity (after 36 weeks of pregnancy). The patients' average delivery term was 36 +/-3.6 weeks. As compared with the literature data, our miscarriage and prematurity rates are found to be lower. Our specific care management seems thus to be effective.

  15. A bottleneck model of set-specific capture.

    Directory of Open Access Journals (Sweden)

    Katherine Sledge Moore

    Full Text Available Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., "search for green letters" and "search for orange letters". In this type of capture, a potential target that matches one attentional set (e.g. a green stimulus impairs the ability to identify a temporally proximal target that matches another attentional set (e.g. an orange stimulus. In the present study, we investigated whether set-specific capture stems from a bottleneck in working memory or from a depletion of limited resources that are distributed across multiple attentional sets. In each trial, participants searched a rapid serial visual presentation (RSVP stream for up to three target letters (T1-T3 that could appear in any of three target colors (orange, green, or lavender. The most revealing findings came from trials in which T1 and T2 matched different attentional sets and were both identified. In these trials, T3 accuracy was lower when it did not match T1's set than when it did match, but only when participants failed to identify T2. These findings support a bottleneck model of set-specific capture in which a limited-capacity mechanism in working memory enhances only one attentional set at a time, rather than a resource model in which processing capacity is simultaneously distributed across multiple attentional sets.

  16. Patient-Specific MRI-Based Right Ventricle Models Using Different Zero-Load Diastole and Systole Geometries for Better Cardiac Stress and Strain Calculations and Pulmonary Valve Replacement Surgical Outcome Predictions.

    Directory of Open Access Journals (Sweden)

    Dalin Tang

    Full Text Available Accurate calculation of ventricular stress and strain is critical for cardiovascular investigations. Sarcomere shortening in active contraction leads to change of ventricular zero-stress configurations during the cardiac cycle. A new model using different zero-load diastole and systole geometries was introduced to provide more accurate cardiac stress/strain calculations with potential to predict post pulmonary valve replacement (PVR surgical outcome.Cardiac magnetic resonance (CMR data were obtained from 16 patients with repaired tetralogy of Fallot prior to and 6 months after pulmonary valve replacement (8 male, 8 female, mean age 34.5 years. Patients were divided into Group 1 (n = 8 with better post PVR outcome and Group 2 (n = 8 with worse post PVR outcome based on their change in RV ejection fraction (EF. CMR-based patient-specific computational RV/LV models using one zero-load geometry (1G model and two zero-load geometries (diastole and systole, 2G model were constructed and RV wall thickness, volume, circumferential and longitudinal curvatures, mechanical stress and strain were obtained for analysis. Pairwise T-test and Linear Mixed Effect (LME model were used to determine if the differences from the 1G and 2G models were statistically significant, with the dependence of the pair-wise observations and the patient-slice clustering effects being taken into consideration. For group comparisons, continuous variables (RV volumes, WT, C- and L- curvatures, and stress and strain values were summarized as mean ± SD and compared between the outcome groups by using an unpaired Student t-test. Logistic regression analysis was used to identify potential morphological and mechanical predictors for post PVR surgical outcome.Based on results from the 16 patients, mean begin-ejection stress and strain from the 2G model were 28% and 40% higher than that from the 1G model, respectively. Using the 2G model results, RV EF changes correlated negatively with

  17. Satisfaction with tolterodine: assessing symptom-specific patient-reported goal achievement in the treatment of overactive bladder in female patients (STARGATE study).

    Science.gov (United States)

    Choo, M-S; Doo, C K; Lee, K-S

    2008-02-01

    Open-label study to evaluate the effect of tolterodine extended-release (ER) on symptom-specific patient-reported goal achievement (PGA) of overactive bladder (OAB) symptoms in females. Eligible patients who had frequency >or= 8 and urgency >or= 2 episodes per 24 h with or without urgency incontinence were treated with 12-week tolterodine ER (4 mg once daily). Primary end-point was the rate of PGA by a visual analogue scale compared with initial expectation with treatment. At baseline, patients were asked to set their personal goals for each OAB symptom with treatment. Secondary efficacy variables were changes in symptom severity, voiding diary and patient perception of bladder condition (PPBC), global impression of improvement (GII), and willingness to continue treatment. A total of 56 patients were entered. The median rate of symptom-specific PGA and reductions in symptom severity were for frequency (60%, 45%), episodes of urgency 60%, 55%), urge incontinence (80%, 71%), nocturia (50%, 52%) and tenesmus (30%, 26%) after 12 weeks treatment. There was a significant improvement in all OAB symptoms in voiding diary. Thirty-five patients (62.5%) experienced an improvement of >or= 2 points in PPBC. Thirty (53.6%) and 22 (39.3%) of patients reported much and little improvement of their symptoms in GII. A total of 41 (73.2%) patients wanted to continue taking the medication at the end of the study. Most OAB patients reported improvement of their OAB symptoms with 12-week tolterodine ER 4 mg treatment. There was a significant achievement of symptom-specific goal on the key OAB symptoms. But, PGA did not correlate with objective outcomes.

  18. Barriers to Effective Doctor-Patient Relationship Based on PRECEDE PROCEED Model

    Science.gov (United States)

    Ghaffarifar, Saeideh; Ghofranipour, Fazlollah; Ahmadi, Fazlollah; Khoshbaten, Manouchehr

    2015-01-01

    Objective: This study intends to investigate interns and faculty members’ insights into constructing relationship between physicians and patients at 3 more accredited Iranian universities of medical sciences. Method: Applying PRECEDE PROCEED model, semi-structured interviews were completed with 7 interns and 14 faculty members and two themes were emerged from directed content analysis. The meaning units of the first theme, barriers to effective doctor-patient relationship, are discussed in this paper. Results: According to the participants, building doctor-patient relationship is influenced by many contextual and regulatory factors as well as content, process and perceptual skills of physicians. Conclusions: Faculty and curriculum development, as well as foundation of the department of communication skills at medical schools are recommended to eliminate the impact of poor communication on patients’ satisfaction and physicians’ self-efficacy specific to their communication skills. Practice Implications: Applying theories and models of health education and health promotion, researchers and educators can use the most predictive constructs of theories to design and implement effective interventions. PMID:26153160

  19. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.

    Science.gov (United States)

    Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C

    2014-02-01

    Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Refinement of MLC modeling improves commercial QA dosimetry system for SRS and SBRT patient-specific QA.

    Science.gov (United States)

    Hillman, Yair; Kim, Josh; Chetty, Indrin; Wen, Ning

    2018-04-01

    Mobius 3D (M3D) provides a volumetric dose verification of the treatment planning system's calculated dose using an independent beam model and a collapsed cone convolution superposition algorithm. However, there is a lack of investigation into M3D's accuracy and effectiveness for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) quality assurance (QA). Here, we collaborated with the vendor to develop a revised M3D beam model for SRS/SBRT cases treated with a 6X flattening filter-free (FFF) beam and high-definition multiple leaf collimator (HDMLC) on an Edge linear accelerator. Eighty SRS/SBRT cases, planned with AAA dose algorithm and validated with Gafchromic film, were compared to M3D dose calculations using 3D gamma analysis with 2%/2 mm gamma criteria and a 10% threshold. A revised beam model was developed by refining the HD-MLC model in M3D to improve small field dose calculation accuracy and beam profile agreement. All cases were reanalyzed using the revised beam model. The impact of heterogeneity corrections for lung cases was investigated by applying lung density overrides to five cases. For the standard and revised beam models, respectively, the mean gamma passing rates were 94.6% [standard deviation (SD): 6.1%] and 98.0% [SD: 1.7%] (for the overall patient), 88.2% [SD: 17.3%] and 93.8% [SD: 6.8%] (for the brain PTV), 71.4% [SD: 18.4%] and 81.5% [SD: 14.3%] (for the lung PTV), 83.3% [SD: 16.7%] and 67.9% [SD: 23.0%] (for the spine PTV), and 78.6% [SD: 14.0%] and 86.8% [SD: 12.5%] (for the PTV of all other sites). The lung PTV mean gamma passing rates improved from 74.1% [SD: 7.5%] to 89.3% [SD: 7.2%] with the lung density overridden. The revised beam model achieved an output factor within 3% of plastic scintillator measurements for 2 × 2 cm 2 MLC field size, but larger discrepancies are still seen for smaller field sizes which necessitate further improvement of the beam model. Special attention needs to be paid to small field

  1. A model of adaptation for families of elderly patients with dementia: focusing on family resilience.

    Science.gov (United States)

    Kim, Geun Myun; Lim, Ji Young; Kim, Eun Joo; Kim, Sang Suk

    2017-07-19

    We constructed a model explaining families' positive adaptation in chronic crisis situations such as the problematic behavior of elderly patients with dementia and attendant caregiving stress, based on the family resilience model. Our aim was to devise an adaptation model for families of elderly patients with dementia. A survey of problematic behavior in elderly patients with dementia, family stress, family resilience, and family adaptation was conducted with 292 consenting individuals. The collected data were analyzed using structural equation modeling. The communication process, family stress, and problematic behavior of elderly patients with dementia had direct and indirect effects on family adaptation, while belief system, organization pattern, and social support had indirect effects. Specifically, family stress and more severe problematic behavior by elderly patients with dementia negatively influenced family adaptation, while greater family resilience improved such adaptation. Interventions aiming to enhance family resilience, based on the results of this study, are required to help families with positive adaptation. Such family programs might involve practical support such as education on the characteristics of elderly persons with dementia and coping methods for their problematic behavior; forming self-help groups for families; revitalizing communication within families; and activating communication channels with experts.

  2. Correlative study between neuron-specific enolase and blood sugar level in ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Aparna Pandey

    2011-01-01

    Full Text Available Background: A study to investigate the level of the neurobiochemical marker, Neuron-Specific Enolase (NSE, at the time of admission and its correlation with the blood sugar level in ischemic stroke patients. Patients and Methods: We investigated 90 patients with complete stroke who were admitted to the Stroke Unit of the Department of Neurology at Sri Aurobindo Institute of Medical Sciences. NSE was measured with commercially available quantitative ′sandwich′ enzyme-linked immunosorbent assay kits obtained from R and D Systems. Hyperglycemia was defined as blood glucose concentration ≥ 7 mmol / L, and measured using the glucose oxidase method immediately. Results: Significantly increased NSE and lipid profile levels were found in ischemic stroke patients as compared to the control. Hyperglycemic ischemic stroke patients had increased levels of NSE, lipid profile, and National Institute of Health stroke scale scores (NIHSS score compared to normoglycemic ischemic stroke patients. In addition the serum NSE level of hyperglycemic stroke patients was also positively correlated with the blood sugar level (r = 0.734 P < 0.001. Conclusions: Hyperglycemia predicts an increased risk of poor outcome after ischemic stroke and it is reflected by a significantly increased level of Neuron-Specific Enolase.

  3. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  4. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments

    Science.gov (United States)

    Lau, Ivan Wen Wen; Liu, Dongting; Xu, Lei; Fan, Zhanming

    2018-01-01

    Objective Current diagnostic assessment tools remain suboptimal in demonstrating complex morphology of congenital heart disease (CHD). This limitation has posed several challenges in preoperative planning, communication in medical practice, and medical education. This study aims to investigate the dimensional accuracy and the clinical value of 3D printed model of CHD in the above three areas. Methods Using cardiac computed tomography angiography (CCTA) data, a patient-specific 3D model of a 20-month-old boy with double outlet right ventricle was printed in Tango Plus material. Pearson correlation coefficient was used to evaluate correlation of the quantitative measurements taken at analogous anatomical locations between the CCTA images pre- and post-3D printing. Qualitative analysis was conducted by distributing surveys to six health professionals (two radiologists, two cardiologists and two cardiac surgeons) and three medical academics to assess the clinical value of the 3D printed model in these three areas. Results Excellent correlation (r = 0.99) was noted in the measurements between CCTA and 3D printed model, with a mean difference of 0.23 mm. Four out of six health professionals found the model to be useful in facilitating preoperative planning, while all of them thought that the model would be invaluable in enhancing patient-doctor communication. All three medical academics found the model to be helpful in teaching, and thought that the students will be able to learn the pathology quicker with better understanding. Conclusion The complex cardiac anatomy can be accurately replicated in flexible material using 3D printing technology. 3D printed heart models could serve as an excellent tool in facilitating preoperative planning, communication in medical practice, and medical education, although further studies with inclusion of more clinical cases are needed. PMID:29561912

  5. Integrating UML, the Q-model and a Multi-Agent Approach in Process Specifications and Behavioural Models of Organisations

    Directory of Open Access Journals (Sweden)

    Raul Savimaa

    2005-08-01

    Full Text Available Efficient estimation and representation of an organisation's behaviour requires specification of business processes and modelling of actors' behaviour. Therefore the existing classical approaches that concentrate only on planned processes are not suitable and an approach that integrates process specifications with behavioural models of actors should be used instead. The present research indicates that a suitable approach should be based on interactive computing. This paper examines the integration of UML diagrams for process specifications, the Q-model specifications for modelling timing criteria of existing and planned processes and a multi-agent approach for simulating non-deterministic behaviour of human actors in an organisation. The corresponding original methodology is introduced and some of its applications as case studies are reviewed.

  6. Can Predictive Modeling Identify Head and Neck Oncology Patients at Risk for Readmission?

    Science.gov (United States)

    Manning, Amy M; Casper, Keith A; Peter, Kay St; Wilson, Keith M; Mark, Jonathan R; Collar, Ryan M

    2018-05-01

    Objective Unplanned readmission within 30 days is a contributor to health care costs in the United States. The use of predictive modeling during hospitalization to identify patients at risk for readmission offers a novel approach to quality improvement and cost reduction. Study Design Two-phase study including retrospective analysis of prospectively collected data followed by prospective longitudinal study. Setting Tertiary academic medical center. Subjects and Methods Prospectively collected data for patients undergoing surgical treatment for head and neck cancer from January 2013 to January 2015 were used to build predictive models for readmission within 30 days of discharge using logistic regression, classification and regression tree (CART) analysis, and random forests. One model (logistic regression) was then placed prospectively into the discharge workflow from March 2016 to May 2016 to determine the model's ability to predict which patients would be readmitted within 30 days. Results In total, 174 admissions had descriptive data. Thirty-two were excluded due to incomplete data. Logistic regression, CART, and random forest predictive models were constructed using the remaining 142 admissions. When applied to 106 consecutive prospective head and neck oncology patients at the time of discharge, the logistic regression model predicted readmissions with a specificity of 94%, a sensitivity of 47%, a negative predictive value of 90%, and a positive predictive value of 62% (odds ratio, 14.9; 95% confidence interval, 4.02-55.45). Conclusion Prospectively collected head and neck cancer databases can be used to develop predictive models that can accurately predict which patients will be readmitted. This offers valuable support for quality improvement initiatives and readmission-related cost reduction in head and neck cancer care.

  7. Models for truth-telling in physician-patient encounters: what can we learn from Yoruba concept of Ooto?

    Science.gov (United States)

    Ewuoso, Cornelius

    2017-09-29

    Empirical studies have now established that many patients make clinical decisions based on models other than Anglo American model of truth-telling and patient autonomy. Some scholars also add that current medical ethics frameworks and recent proposals for enhancing communication in health professional-patient relationship have not adequately accommodated these models. In certain clinical contexts where health professional and patients are motivated by significant cultural and religious values, these current frameworks cannot prevent communication breakdown, which can, in turn, jeopardize patient care, cause undue distress to a patient in certain clinical contexts or negatively impact his/her relationship with the community. These empirical studies have now recommended that additional frameworks developed around other models of truth-telling; and which take very seriously significant value-differences which sometimes exist between health professional and patients, as well as patient's cultural/religious values or relational capacities, must be developed. This paper contributes towards the development of one. Specifically, this study proposes a framework for truth-telling developed around African model of truth-telling by drawing insights from the communitarian concept of ootọ́ amongst the Yoruba people of south west Nigeria. I am optimistic that if this model is incorporated into current medical ethics codes and curricula, it will significantly enhance health professional-patient communication. © 2017 John Wiley & Sons Ltd.

  8. Age-Specific Patient Navigation Preferences Among Adolescents and Young Adults with Cancer.

    Science.gov (United States)

    Pannier, Samantha T; Warner, Echo L; Fowler, Brynn; Fair, Douglas; Salmon, Sara K; Kirchhoff, Anne C

    2017-11-23

    Patient navigation is increasingly being directed at adolescent and young adult (AYA) patients. This study provides a novel description of differences in AYA cancer patients' preferences for navigation services by developmental age at diagnosis. Eligible patients were diagnosed with cancer between ages 15 and 39 and had completed at least 1 month of treatment. Between October 2015 and January 2016, patients completed semi-structured interviews about navigation preferences. Summary statistics of demographic and cancer characteristics were generated. Differences in patient navigation preferences were examined through qualitative analyses by developmental age at diagnosis. AYAs were interviewed (adolescents 15-18 years N = 8; emerging adults 19-25 years N = 8; young adults 26-39 years N = 23). On average, participants were 4.5 years from diagnosis. All age groups were interested in face-to-face connection with a navigator and using multiple communication platforms (phone, text, email) to follow-up. Three of the most frequently cited needs were insurance, finances, and information. AYAs differed in support, healthcare, and resource preferences by developmental age; only adolescents preferred educational support. While all groups preferred financial and family support, the specific type of assistance (medical versus living expenses, partner/spouse, child, or parental assistance) varied by age group. AYAs with cancer have different preferences for patient navigation by developmental age at diagnosis. AYAs are not a one-size-fits-all population, and navigation programs can better assist AYAs when services are targeted to appropriate developmental ages. Future research should examine fertility and navigation preferences by time since diagnosis. While some navigation needs to span the AYA age range, other needs are specific to developmental age.

  9. Specification Search for Identifying the Correct Mean Trajectory in Polynomial Latent Growth Models

    Science.gov (United States)

    Kim, Minjung; Kwok, Oi-Man; Yoon, Myeongsun; Willson, Victor; Lai, Mark H. C.

    2016-01-01

    This study investigated the optimal strategy for model specification search under the latent growth modeling (LGM) framework, specifically on searching for the correct polynomial mean or average growth model when there is no a priori hypothesized model in the absence of theory. In this simulation study, the effectiveness of different starting…

  10. An Integrated Framework to Specify Domain-Specific Modeling Languages

    DEFF Research Database (Denmark)

    Zarrin, Bahram; Baumeister, Hubert

    2018-01-01

    , a logic-based specification language. The drawback of MS DSL Tools is it does not provide a formal and rigorous approach for semantics specifications. In this framework, we use Microsoft DSL Tools to define the metamodel and graphical notations of DSLs, and an extended version of ForSpec as a formal......In this paper, we propose an integrated framework that can be used by DSL designers to implement their desired graphical domain-specific languages. This framework relies on Microsoft DSL Tools, a meta-modeling framework to build graphical domain-specific languages, and an extension of ForSpec...... language to define their semantics. Integrating these technologies under the umbrella of Microsoft Visual Studio IDE allows DSL designers to utilize a single development environment for developing their desired domain-specific languages....

  11. Spontaneous presence of FOXO3-specific T cells in cancer patients

    DEFF Research Database (Denmark)

    Larsen, Stine Kiaer; Ahmad, Shamaila Munir; Idorn, Manja

    2014-01-01

    In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8(+) T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3...... may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs......) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises...

  12. A model to predict progression in brain-injured patients.

    Science.gov (United States)

    Tommasino, N; Forteza, D; Godino, M; Mizraji, R; Alvarez, I

    2014-11-01

    The study of brain death (BD) epidemiology and the acute brain injury (ABI) progression profile is important to improve public health programs, organ procurement strategies, and intensive care unit (ICU) protocols. The purpose of this study was to analyze the ABI progression profile among patients admitted to ICUs with a Glasgow Coma Score (GCS) ≤8, as well as establishing a prediction model of probability of death and BD. This was a retrospective analysis of prospective data that included all brain-injured patients with GCS ≤8 admitted to a total of four public and private ICUs in Uruguay (N = 1447). The independent predictor factors of death and BD were studied using logistic regression analysis. A hierarchical model consisting of 2 nested logit regression models was then created. With these models, the probabilities of death, BD, and death by cardiorespiratory arrest were analyzed. In the first regression, we observed that as the GCS decreased and age increased, the probability of death rose. Each additional year of age increased the probability of death by 0.014. In the second model, however, BD risk decreased with each year of age. The presence of swelling, mass effect, and/or space-occupying lesion increased BD risk for the same given GCS. In the presence of injuries compatible with intracranial hypertension, age behaved as a protective factor that reduced the probability of BD. Based on the analysis of the local epidemiology, a model to predict the probability of death and BD can be developed. The organ potential donation of a country, region, or hospital can be predicted on the basis of this model, customizing it to each specific situation.

  13. Site-Specific Multilevel Modeling of Potato Response to Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Serge-Étienne Parent

    2017-12-01

    Full Text Available Technologies of precision agriculture, digital soil maps, and meteorological stations provide a minimum data set to guide precision farming operations. However, determining optimal nutrient requirements for potato (Solanum tuberosum L. crops at subfield scale remains a challenge given specific climatic, edaphic, and managerial conditions. Multilevel modeling can generalize yield response to fertilizer additions using data easily accessible to growers. Our objective was to elaborate a multilevel N fertilizer response model for potato crops using the Mitscherlich equation and a core data set of 93 N fertilizer trials conducted in Québec, Canada. Daily climatic data were collected at 10 × 10 km resolution. Soils were characterized by organic matter content, pH, and texture in the arable layer, and by texture and tools of pedometrics across a gleization-podzolization continuum in subsoil layers. There were five categories of preceding crops and five cultivar maturity orders. The three Mitscherlich parameters (Asymptote, Rate, and Environment were most often site-specific. Sensitivity analysis showed that optimum N dosage increased with non-leguminous high-residue preceding crops, coarser soils, podzolization, drier climatic condition, and late cultivar maturity. The inferential model could guide site-specific N fertilization using an accessible minimum data set to support fertilization decisions. As decision-support system, the model could also provide a range of optimum N doses across a large spectrum of site-specific conditions including climate change.

  14. Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-03-01

    Full Text Available The truncated mutant form of the charged multivesicular body protein 2B (CHMP2B is causative for frontotemporal dementia linked to chromosome 3 (FTD3. CHMP2B is a constituent of the endosomal sorting complex required for transport (ESCRT and, when mutated, disrupts endosome-to-lysosome trafficking and substrate degradation. To understand the underlying molecular pathology, FTD3 patient induced pluripotent stem cells (iPSCs were differentiated into forebrain-type cortical neurons. FTD3 neurons exhibited abnormal endosomes, as previously shown in patients. Moreover, mitochondria of FTD3 neurons displayed defective cristae formation, accompanied by deficiencies in mitochondrial respiration and increased levels of reactive oxygen. In addition, we provide evidence for perturbed iron homeostasis, presenting an in vitro patient-specific model to study the effects of iron accumulation in neurodegenerative diseases. All phenotypes observed in FTD3 neurons were rescued in CRISPR/Cas9-edited isogenic controls. These findings illustrate the relevance of our patient-specific in vitro models and open up possibilities for drug target development.

  15. Phonological deficits in specific language impairment and developmental dyslexia: towards a multidimensional model

    Science.gov (United States)

    Ramus, Franck; Marshall, Chloe R.; Rosen, Stuart

    2013-01-01

    An on-going debate surrounds the relationship between specific language impairment and developmental dyslexia, in particular with respect to their phonological abilities. Are these distinct disorders? To what extent do they overlap? Which cognitive and linguistic profiles correspond to specific language impairment, dyslexia and comorbid cases? At least three different models have been proposed: the severity model, the additional deficit model and the component model. We address this issue by comparing children with specific language impairment only, those with dyslexia-only, those with specific language impairment and dyslexia and those with no impairment, using a broad test battery of language skills. We find that specific language impairment and dyslexia do not always co-occur, and that some children with specific language impairment do not have a phonological deficit. Using factor analysis, we find that language abilities across the four groups of children have at least three independent sources of variance: one for non-phonological language skills and two for distinct sets of phonological abilities (which we term phonological skills versus phonological representations). Furthermore, children with specific language impairment and dyslexia show partly distinct profiles of phonological deficit along these two dimensions. We conclude that a multiple-component model of language abilities best explains the relationship between specific language impairment and dyslexia and the different profiles of impairment that are observed. PMID:23413264

  16. Conventional patient specific IMRT QA and 3DVH verification of dose distribution for helical tomotherapy

    International Nuclear Information System (INIS)

    Sharma, Prabhat Krishna; Joshi, Kishore; Epili, D.; Gavake, Umesh; Paul, Siji; Reena, Ph.; Jamema, S.V.

    2016-01-01

    In recent years, patient-specific IMRT QA has transitioned from point dose measurements by ion chambers to films to 2D array measurements. 3DVH software has taken this transition a step further by estimating the 3D dose delivered to the patient volume from 2D diode measurements using a planned dose perturbation (PDP) algorithm. This algorithm was developed to determine, if the conventional IMRT QA though sensitive at detecting errors, has any predictive power in detecting dose errors of clinical significance related to dose to the target volume and organs at risk (OAR). The aim of this study is to compare the conventional IMRT patient specific QA and 3DVH dose distribution for patients treated with helical tomotherapy (HT)

  17. Ready for goal setting? Process evaluation of a patient-specific goal-setting method in physiotherapy.

    Science.gov (United States)

    Stevens, Anita; Köke, Albère; van der Weijden, Trudy; Beurskens, Anna

    2017-08-31

    Patient participation and goal setting appear to be difficult in daily physiotherapy practice, and practical methods are lacking. An existing patient-specific instrument, Patient-Specific Complaints (PSC), was therefore optimized into a new Patient Specific Goal-setting method (PSG). The aims of this study were to examine the feasibility of the PSG in daily physiotherapy practice, and to explore the potential impact of the new method. We conducted a process evaluation within a non-controlled intervention study. Community-based physiotherapists were instructed on how to work with the PSG in three group training sessions. The PSG is a six-step method embedded across the physiotherapy process, in which patients are stimulated to participate in the goal-setting process by: identifying problematic activities, prioritizing them, scoring their abilities, setting goals, planning and evaluating. Quantitative and qualitative data were collected among patients and physiotherapists by recording consultations and assessing patient files, questionnaires and written reflection reports. Data were collected from 51 physiotherapists and 218 patients, and 38 recordings and 219 patient files were analysed. The PSG steps were performed as intended, but the 'setting goals' and 'planning treatment' steps were not performed in detail. The patients and physiotherapists were positive about the method, and the physiotherapists perceived increased patient participation. They became aware of the importance of engaging patients in a dialogue, instead of focusing on gathering information. The lack of integration in the electronic patient system was a major barrier for optimal use in practice. Although the self-reported actual use of the PSG, i.e. informing and involving patients, and client-centred competences had improved, this was not completely confirmed by the objectively observed behaviour. The PSG is a feasible method and tends to have impact on increasing patient participation in the goal

  18. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    Science.gov (United States)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  19. 78 FR 26849 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Science.gov (United States)

    2013-05-08

    ... requirements, and asked whether the Model Specifications should limit sensor technology to alcohol-specific sensors (such as fuel cell technology based on electrochemical oxidation of alcohol) or other emerging... have demanded alcohol- specific sensor technology. [Interlocks that] are not alcohol-specific...

  20. [Application of 3D soft print models of the kidney for treatment of patients with localized cancer of the kidney (a pilot study)].

    Science.gov (United States)

    Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Fiev, D N; Bukatov, M D; Letunovskii, A V; Byadretdinov, I Sh

    2017-12-01

    To evaluate the possibility of using 3D-printing in the management of patients with localized kidney cancer. The study comprised five patients with localized kidney cancer who were treated at the Urology Clinic of the I.M. Sechenov First Moscow State Medical University from January 2016 to April 2017. Along with the standard examination, the patients underwent multispiral computed tomography (MSCT) to produce patient-specific 3D-printed models of the kidney tumors using 3D modeling and 3D printing. To evaluate the effectiveness of using 3D-printed models, two-stage preoperative planning was conducted, and five surgeons were surveyed using a four-question multiple choice questionnaire. At the first stage, the planning of operations was carried out based on MSCT findings. At the second stage, the surgeons were given patient-specific soft 3D models of the kidney with a tumor for preoperative training. After preoperative training, patients underwent laparoscopic resection of the kidney with a tumor. According to the survey results, each of the participating surgeons at least once changed surgical plan based on data obtained with 3D printed models of the kidney with the tumor. The implementation of preoperative training using 3D printed models of the kidney turned out to be effective. All patients underwent laparoscopic surgery performed by a single surgeon with extensive experience in this type of surgery. The mean operative time was 187 minutes. All operations were performed with main renal artery occlusion. The men warm ischemia time was 19.5 minutes and the mean blood loss was 170 ml. There were no conversions to open surgery and organ-removing operations. There were no postoperative complications or deaths. All surgical margins were negative. Morphological examination showed that four patients had renal cell carcinoma one patient had the oncocytoma. The study demonstrated the promise of using 3D printing for preoperative planning and surgical performance due to a

  1. Specific heat of the simple-cubic Ising model

    NARCIS (Netherlands)

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  2. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients.

    Directory of Open Access Journals (Sweden)

    Daniel Belstrøm

    Full Text Available The purpose of this study was to compare microbial profiles of saliva, pooled and site-specific subgingival samples in patients with periodontitis. We tested the hypotheses that saliva can be an alternative to pooled subgingival samples, when screening for presence of periopathogens.Site specific subgingival plaque samples (n = 54, pooled subgingival plaque samples (n = 18 and stimulated saliva samples (n = 18 were collected from 18 patients with generalized chronic periodontitis. Subgingival and salivary microbiotas were characterized by means of HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing and microbial community profiles were compared using Spearman rank correlation coefficient.Pronounced intraindividual differences were recorded in site-specific microbial profiles, and site-specific information was in general not reflected by pooled subgingival samples. Presence of Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Filifactor alocis, Tannerella forsythia and Parvimona micra in site-specific subgingival samples were detected in saliva with an AUC of 0.79 (sensitivity: 0.61, specificity: 0.94, compared to an AUC of 0.76 (sensitivity: 0.56, specificity: 0.94 in pooled subgingival samples.Site-specific presence of periodontal pathogens was detected with comparable accuracy in stimulated saliva samples and pooled subgingival plaque samples. Consequently, saliva may be a reasonable surrogate for pooled subgingival samples when screening for presence of periopathogens. Future large-scale studies are needed to confirm findings from this study.

  3. Age- and sex-specific thorax finite element model development and simulation.

    Science.gov (United States)

    Schoell, Samantha L; Weaver, Ashley A; Vavalle, Nicholas A; Stitzel, Joel D

    2015-01-01

    The shape, size, bone density, and cortical thickness of the thoracic skeleton vary significantly with age and sex, which can affect the injury tolerance, especially in at-risk populations such as the elderly. Computational modeling has emerged as a powerful and versatile tool to assess injury risk. However, current computational models only represent certain ages and sexes in the population. The purpose of this study was to morph an existing finite element (FE) model of the thorax to depict thorax morphology for males and females of ages 30 and 70 years old (YO) and to investigate the effect on injury risk. Age- and sex-specific FE models were developed using thin-plate spline interpolation. In order to execute the thin-plate spline interpolation, homologous landmarks on the reference, target, and FE model are required. An image segmentation and registration algorithm was used to collect homologous rib and sternum landmark data from males and females aged 0-100 years. The Generalized Procrustes Analysis was applied to the homologous landmark data to quantify age- and sex-specific isolated shape changes in the thorax. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant model was morphed to create age- and sex-specific thoracic shape change models (scaled to a 50th percentile male size). To evaluate the thoracic response, 2 loading cases (frontal hub impact and lateral impact) were simulated to assess the importance of geometric and material property changes with age and sex. Due to the geometric and material property changes with age and sex, there were observed differences in the response of the thorax in both the frontal and lateral impacts. Material property changes alone had little to no effect on the maximum thoracic force or the maximum percent compression. With age, the thorax becomes stiffer due to superior rotation of the ribs, which can result in increased bone strain that can increase the risk of fracture. For the 70-YO models

  4. Readability of patient discharge instructions with and without the use of electronically available disease-specific templates.

    Science.gov (United States)

    Mueller, Stephanie K; Giannelli, Kyla; Boxer, Robert; Schnipper, Jeffrey L

    2015-07-01

    Low health literacy is common, leading to patient vulnerability during hospital discharge, when patients rely on written health instructions. We aimed to examine the impact of the use of electronic, patient-friendly, templated discharge instructions on the readability of discharge instructions provided to patients at discharge. We performed a retrospective cohort study of 233 patients discharged from a large tertiary care hospital to their homes following the implementation of a web-based "discharge module," which included the optional use of diagnosis-specific templated discharge instructions. We compared the readability of discharge instructions, as measured by the Flesch Reading Ease Level test (FREL, on a 0-100 scale, with higher scores indicating greater readability) and the Flesch-Kincaid Grade Level test (FKGL, measured in grade levels), between discharges that used templated instructions (with or without modification) versus discharges that used clinician-generated instructions (with or without available templated instructions for the specific discharge diagnosis). Templated discharge instructions were provided to patients in 45% of discharges. Of the 55% of patients that received clinician-generated discharge instructions, the majority (78.1%) had no available templated instruction for the specific discharge diagnosis. Templated discharge instructions had higher FREL scores (71 vs. 57, P readability (a higher FREL score and a lower FKGL score) than the use of clinician-generated discharge instructions. The main reason for clinicians to create discharge instructions was the lack of available templates for the patient's specific discharge diagnosis. Use of electronically available templated discharge instructions may be a viable option to improve the readability of written material provided to patients at discharge, although the library of available templates requires expansion. © The Author 2015. Published by Oxford University Press on behalf of the

  5. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    Science.gov (United States)

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. CT-based patient modeling for head and neck hyperthermia treatment planning: Manual versus automatic normal-tissue-segmentation

    International Nuclear Information System (INIS)

    Verhaart, René F.; Fortunati, Valerio; Verduijn, Gerda M.; Walsum, Theo van; Veenland, Jifke F.; Paulides, Margarethus M.

    2014-01-01

    Background and purpose: Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H and N) carcinoma. Hyperthermia treatment planning (HTP) guided H and N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. Material and methods: CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Results: Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Conclusions: Automatically generated 3D patient models can be introduced in the clinic for H and N HTP

  7. Myositis-specific autoantibodies and their association with malignancy in Italian patients with polymyositis and dermatomyositis.

    Science.gov (United States)

    Ceribelli, Angela; Isailovic, Natasa; De Santis, Maria; Generali, Elena; Fredi, Micaela; Cavazzana, Ilaria; Franceschini, Franco; Cantarini, Luca; Satoh, Minoru; Selmi, Carlo

    2017-02-01

    This study aims to characterize myositis-specific antibodies in a well-defined cohort of patients with idiopathic inflammatory myopathy and to determine their association with cancer. Sera from 40 patients with polymyositis, dermatomyositis, and controls were tested by protein and RNA immunoprecipitation to detect autoantibodies, and immunoprecipitation-Western blot was used for anti-MJ/NXP-2, anti-MDA5, and anti-TIF1γ/α identification. Medical records were re-evaluated with specific focus on cancer. Anti-MJ/NXP-2 and anti-TIF1γ/α were the most common antibodies in dermatomyositis. In six dermatomyositis cases, we found five solid forms of cancer and one Hodgkin's lymphoma in long-term remission. Among patients with cancer-associated dermatomyositis, three were positive for anti-TIF1γ/α, two for anti-Mi-2, and one for anti-MJ/NXP-2. The strongest positivity of anti-TIF1γ was seen in two active forms of cancer, and this antibody was either negative or positive at low titers in the absence of cancer or in the 7-year remission Hodgkin's lymphoma. Four out of twenty (20 %) patients with polymyositis had solid cancer, but no specific association with autoantibodies was identified; further, none of the four cases of antisynthetase syndrome had a history of cancer. No serum myositis-associated autoantibody was observed in control sera, resulting in positive predictive value 75 %, negative predictive value 78.5 %, sensitivity 50 %, specificity 92 %, and area under the ROC curve 0.7083 for the risk of paraneoplastic DM in anti-TIF1γ/α (+) patients. Myositis-specific autoantibodies can be identified thanks to the use of immunoprecipitation, and their association with cancer is particularly clear for anti-TIF1γ/α in dermatomyositis. This association should be evaluated in a prospective study by immunoprecipitation in clinical practice.

  8. SU-E-CAMPUS-T-04: Statistical Process Control for Patient-Specific QA in Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    LAH, J [Myongji Hospital, Goyangsi, Gyeonggi-do (Korea, Republic of); SHIN, D [National Cancer Center, Goyangsi, Gyeonggi-do (Korea, Republic of); Kim, G [UCSD Medical Center, La Jolla, CA (United States)

    2014-06-15

    Purpose: To evaluate and improve the reliability of proton QA process, to provide an optimal customized level using the statistical process control (SPC) methodology. The aim is then to suggest the suitable guidelines for patient-specific QA process. Methods: We investigated the constancy of the dose output and range to see whether it was within the tolerance level of daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to suggest the suitable guidelines for patient-specific QA in proton beam by using process capability indices. In this study, patient QA plans were classified into 6 treatment sites: head and neck (41 cases), spinal cord (29 cases), lung (28 cases), liver (30 cases), pancreas (26 cases), and prostate (24 cases). Results: The deviations for the dose output and range of daily QA process were ±0.84% and ±019%, respectively. Our results show that the patient-specific range measurements are capable at a specification limit of ±2% in all treatment sites except spinal cord cases. In spinal cord cases, comparison of process capability indices (Cp, Cpm, Cpk ≥1, but Cpmk ≤1) indicated that the process is capable, but not centered, the process mean deviates from its target value. The UCL (upper control limit), CL (center line) and LCL (lower control limit) for spinal cord cases were 1.37%, −0.27% and −1.89%, respectively. On the other hands, the range differences in prostate cases were good agreement between calculated and measured values. The UCL, CL and LCL for prostate cases were 0.57%, −0.11% and −0.78%, respectively. Conclusion: SPC methodology has potential as a useful tool to customize an optimal tolerance levels and to suggest the suitable guidelines for patient-specific QA in clinical proton beam.

  9. Disease-specific health status as a predictor of mortality in patients with heart failure

    DEFF Research Database (Denmark)

    Mastenbroek, Mirjam H; Versteeg, Henneke; Zijlstra, Wobbe P

    2014-01-01

    AIMS: Some, but not all, studies have shown that patient-reported health status, including symptoms, functioning, and health-related quality of life, provides additional information to traditional clinical factors in predicting prognosis in heart failure patients. To evaluate the overall evidence......, the association of disease-specific health status on mortality in heart failure was examined through a systematic review and meta-analysis. METHODS AND RESULTS: Prospective cohort studies that assessed the independent association of disease-specific health status with mortality in heart failure were selected....... Searching PubMed (until March 2013) resulted in 17 articles in the systematic review and 17 studies in the meta-analysis. About half of the studies reported a significant relationship between disease-specific health status and mortality in heart failure, while the remainder found no association. A larger...

  10. Time dependent patient no-show predictive modelling development.

    Science.gov (United States)

    Huang, Yu-Li; Hanauer, David A

    2016-05-09

    Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows.

  11. The development of a patient-specific method for physiotherapy goal setting: a user-centered design.

    Science.gov (United States)

    Stevens, Anita; Köke, Albère; van der Weijden, Trudy; Beurskens, Anna

    2018-08-01

    To deliver client-centered care, physiotherapists need to identify the patients' individual treatment goals. However, practical tools for involving patients in goal setting are lacking. The purpose of this study was to improve the frequently used Patient-Specific Complaints instrument in Dutch physiotherapy, and to develop it into a feasible method to improve physiotherapy goal setting. An iterative user-centered design was conducted in co-creation with the physiotherapists and patients, in three phases. Their needs and preferences were identified by means of group meetings and questionnaires. The new method was tested in several field tests in physiotherapy practices. Four main objectives for improvement were formulated: clear instructions for the administration procedure, targeted use across the physiotherapy process, client-activating communication skills, and a client-centered attitude of the physiotherapist. A theoretical goal-setting framework and elements of shared decision making were integrated into the new-called, Patient-Specific Goal-setting method, together with a practical training course. The user-centered approach resulted in a goal-setting method that is fully integrated in the physiotherapy process. The new goal-setting method contributes to a more structured approach to goal setting and enables patient participation and goal-oriented physiotherapy. Before large-scale implementation, its feasibility in physiotherapy practice needs to be investigated. Implications for rehabilitation Involving patients and physiotherapists in the development and testing of a goal-setting method, increases the likelihood of its feasibility in practice. The integration of a goal-setting method into the physiotherapy process offers the opportunity to focus more fully on the patient's goals. Patients should be informed about the aim of every step of the goal-setting process in order to increase their awareness and involvement. Training physiotherapists to use a patient-specific

  12. The population genetics of Pseudomonas aeruginosa isolates from different patient populations exhibits high-level host specificity.

    Directory of Open Access Journals (Sweden)

    Rosa van Mansfeld

    Full Text Available OBJECTIVE: To determine whether highly prevalent P. aeruginosa sequence types (ST in Dutch cystic fibrosis (CF patients are specifically linked to CF patients we investigated the population structure of P. aeruginosa from different clinical backgrounds. We first selected the optimal genotyping method by comparing pulsed-field gel electrophoresis (PFGE, multilocus sequence typing (MLST and multilocus variable number tandem-repeat analysis (MLVA. METHODS: Selected P. aeruginosa isolates (n = 60 were genotyped with PFGE, MLST and MLVA to determine the diversity index (DI and congruence (adjusted Rand and Wallace coefficients. Subsequently, isolates from patients admitted to two different ICUs (n = 205, from CF patients (n = 100 and from non-ICU, non-CF patients (n = 58, of which 19 were community acquired were genotyped with MLVA to determine distribution of genotypes and genetic diversity. RESULTS: Congruence between the typing methods was >79% and DIs were similar and all >0.963. Based on costs, ease, speed and possibilities to compare results between labs an adapted MLVA scheme called MLVA9-Utrecht was selected as the preferred typing method. In 363 clinical isolates 252 different MLVA types (MTs were identified, indicating a highly diverse population (DI  = 0.995; CI  = 0.993-0.997. DI levels were similarly high in the diverse clinical sources (all >0.981 and only eight genotypes were shared. MTs were highly specific (>80% for the different patient populations, even for similar patient groups (ICU patients in two distinct geographic regions, with only three of 142 ICU genotypes detected in both ICUs. The two major CF clones were unique to CF patients. CONCLUSION: The population structure of P. aeruginosa isolates is highly diverse and population specific without evidence for a core lineage in which major CF, hospital or community clones co-cluster. The two genotypes highly prevalent among Dutch CF patients appeared unique to CF patients

  13. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    Directory of Open Access Journals (Sweden)

    Vijayendra Dasari

    2016-01-01

    Full Text Available Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients.

  14. A conceptual model specification language (CMSL Version 2)

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1992-01-01

    Version 2 of a language (CMSL) to specify conceptual models is defined. CMSL consists of two parts, the value specification language VSL and the object spercification language OSL. There is a formal semantics and an inference system for CMSL but research on this still continues. A method for

  15. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    Science.gov (United States)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  16. Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs.

    Science.gov (United States)

    Fu, Lina; Xu, Xiuling; Ren, Ruotong; Wu, Jun; Zhang, Weiqi; Yang, Jiping; Ren, Xiaoqing; Wang, Si; Zhao, Yang; Sun, Liang; Yu, Yang; Wang, Zhaoxia; Yang, Ze; Yuan, Yun; Qiao, Jie; Izpisua Belmonte, Juan Carlos; Qu, Jing; Liu, Guang-Hui

    2016-03-01

    Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.

  17. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer.

    Science.gov (United States)

    Mukherjee, Pinku; Madsen, Cathy S; Ginardi, Amelia R; Tinder, Teresa L; Jacobs, Fred; Parker, Joanne; Agrawal, Babita; Longenecker, B Michael; Gendler, Sandra J

    2003-01-01

    Human mucin 1 (MUC1) is an epithelial mucin glycoprotein that is overexpressed in 90% of all adenocarcinomas including breast, lung, pancreas, prostate, stomach, colon, and ovary. MUC1 is a target for immune intervention, because, in patients with solid adenocarcinomas, low-level cellular and humoral immune responses to MUC1 have been observed, which are not sufficiently strong to eradicate the growing tumor. The hypothesis for this study is that enhancing MUC1-specific immunity will result in antitumor immunity. To test this, the authors have developed a clinically relevant breast cancer model that demonstrates peripheral and central tolerance to MUC1 and develops spontaneous tumors of the mammary gland. In these mice, the authors tested a vaccine formulation comprised of liposomal-MUC1 lipopeptide and human recombinant interleukin-2. Results indicate that when compared with untreated mice, immunized mice develop T cells that express intracellular IFN-gamma, are reactive with MHC class I H-2Db/MUC1 tetramer, and are cytotoxic against MUC1-expressing tumor cells in vitro. The presence of MUC1-specific CTL did not translate into a clinical response as measured by time of tumor onset, tumor burden, and survival. The authors demonstrate that some of the immune-evasion mechanisms used by the tumor cells include downregulation of MHC-class I molecule, expression of TGF-beta2, and decrease in IFN-gamma -expressing effector T cells as tumors progress. Finally, utilizing an injectable breast cancer model, the authors show that targeting a single tumor antigen may not be an effective antitumor treatment, but that immunization with dendritic cells fed with whole tumor lysate is effective in breaking tolerance and protecting mice from subsequent tumor challenge. A physiologically relevant spontaneous breast cancer model has been developed to test improved immunotherapeutic approaches.

  18. Mesothelin-specific Immune Responses Predict Survival of Patients With Brain Metastasis

    DEFF Research Database (Denmark)

    Zhenjiang, Liu; Rao, Martin; Luo, Xiaohua

    2017-01-01

    BACKGROUND: Patients with advanced malignancies, e.g. lung cancer, ovarian cancer or melanoma, frequently present with brain metastases. Clinical presentation and disease progression of cancer is in part shaped by the interaction of the immune system with malignant cells. Antigen-targeted immune ...... of the primary tumor origin. Analyses of immunological markers could potentially serve as prognostic markers in patients with brain metastases and help to select patients in need for adjunct, immunological, treatment strategies....... were tested for interferon gamma (IFN-γ) production, after which univariate and multivariate analyses (Cox stepwise regression model) were performed to identify independent clinical and immunological factors associated with patient survival. Patients were followed-up for at least 500days after surgery...

  19. Comparison of air-standard rectangular cycles with different specific heat models

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2016-01-01

    Highlights: • Air-standard rectangular cycle models are built and investigated. • Finite-time thermodynamics is applied. • Different dissipation models and variable specific heats models are adopted. • Performance characteristics of different cycle models are compared. - Abstract: In this paper, performance comparison of air-standard rectangular cycles with constant specific heat (SH), linear variable SH and non-linear variable SH are conducted by using finite time thermodynamics. The power output and efficiency of each cycle model and the characteristic curves of power output versus compression ratio, efficiency versus compression ratio, as well as power output versus efficiency are obtained by taking heat transfer loss (HTL) and friction loss (FL) into account. The influences of HTL, FL and SH on cycle performance are analyzed by detailed numerical examples.

  20. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification.

    Science.gov (United States)

    Moj, Daniel; Britz, Hannah; Burhenne, Jürgen; Stewart, Clinton F; Egerer, Gerlinde; Haefeli, Walter E; Lehr, Thorsten

    2017-11-01

    This study aimed at recommending pediatric dosages of the histone deacetylase (HDAC) inhibitor vorinostat and potentially more effective adult dosing regimens than the approved standard dosing regimen of 400 mg/day, using a comprehensive physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling approach. A PBPK/PD model for vorinostat was developed for predictions in adults and children. It includes the maturation of relevant metabolizing enzymes. The PBPK model was expanded by (1) effect compartments to describe vorinostat concentration-time profiles in peripheral blood mononuclear cells (PBMCs), (2) an indirect response model to predict the HDAC inhibition, and (3) a thrombocyte model to predict the dose-limiting thrombocytopenia. Parameterization of drug and system-specific processes was based on published and unpublished in silico, in vivo, and in vitro data. The PBPK modeling software used was PK-Sim and MoBi. The PBPK/PD model suggests dosages of 80 and 230 mg/m 2 for children of 0-1 and 1-17 years of age, respectively. In comparison with the approved standard treatment, in silico trials reveal 11 dosing regimens (9 oral, and 2 intravenous infusion rates) increasing the HDAC inhibition by an average of 31%, prolonging the HDAC inhibition by 181%, while only decreasing the circulating thrombocytes to a tolerable 53%. The most promising dosing regimen prolongs the HDAC inhibition by 509%. Thoroughly developed PBPK models enable dosage recommendations in pediatric patients and integrated PBPK/PD models, considering PD biomarkers (e.g., HDAC activity and platelet count), are well suited to guide future efficacy trials by identifying dosing regimens potentially superior to standard dosing regimens.

  1. External validation of three dimensional conformal radiotherapy based NTCP models for patient-rated xerostomia and sticky saliva among patients treated with intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Beetz, Ivo; Schilstra, Cornelis; Luijk, Peter van; Christianen, Miranda E.M.C.; Doornaert, Patricia; Bijl, Henk P.; Chouvalova, Olga; Heuvel, Edwin R. van den; Steenbakkers, Roel J.H.M.; Langendijk, Johannes A.

    2012-01-01

    chemoradiation turned out to be less valid for patients treated with IMRT. The main message from these findings is that models developed in a population treated with a specific technique cannot be generalised and extrapolated to a population treated with another technique without external validation.

  2. Basis for the ICRP's age-specific biokinetic model for uranium

    International Nuclear Information System (INIS)

    Leggett, R.W.

    1994-01-01

    In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is developing age-specific biokinetic models and dose coefficients for environmentally important radionuclides. This paper describes the ICRP's age-specific biokinetic model for uranium. The model is constructed within a physiologically based framework originally developed for application to the alkaline earth elements but sufficiently general to apply to the larger class of bone-volume-seeking elements. Transfer rates for a reference adult are based mainly on: (1) measurements of uranium in blood and excreta of several human subjects who were intravenously injected with uranium; (2) postmortem measurements of uranium in tissues of some of those subjects; (3) postmortem measurements of uranium in tissues of occupationally and non-occupationally exposed subjects; (4) data on baboons, dogs, and smaller laboratory animals exposed to uranium for experimental purposes; and (5) consideration of the physiological processes thought to control retention and translocation of uranium in the body. Transfer rates for the adult are extended to children by application of a set of generic assumptions applied by the ICRP to calcium-like elements. These assumptions were derived mainly from observations of the age-specific biokinetics of the alkaline earth elements and lead in humans and laboratory animals but are consistent with available age-specific biokinetic data on uranium. 82 refs., 17 figs., 8 tabs

  3. Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?

    Directory of Open Access Journals (Sweden)

    Janelle Drouin-Ouellet

    2017-09-01

    Full Text Available Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows for the possibility of generating patient-derived neurons. A unique feature of these so-called induced neurons (iNs is the potential to maintain aging and epigenetic signatures of the donor, which is critical given that many diseases of the CNS are age related. Here, we review the published literature on the work that has been undertaken using iNs to model human brain disorders. Furthermore, as disease-modeling studies using this direct neuronal reprogramming approach are becoming more widely adopted, it is important to assess the criteria that are used to characterize the iNs, especially in relation to the extent to which they are mature adult neurons. In particular: i what constitutes an iN cell, ii which stages of conversion offer the earliest/optimal time to assess features that are specific to neurons and/or a disorder and iii whether generating subtype-specific iNs is critical to the disease-related features that iNs express. Finally, we discuss the range of potential biomedical applications that can be explored using patient-specific models of neurological disorders with iNs, and the challenges that will need to be overcome in order to realize these applications.

  4. Respiratory gated radiotherapy-pretreatment patient specific quality assurance

    Directory of Open Access Journals (Sweden)

    Rajesh Thiyagarajan

    2016-01-01

    Full Text Available Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany in conjunction with "Real-time position management" (Varian, USA to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA phantom (Computerized Imaging Reference Systems type is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%. Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84% for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.

  5. HIV-Specific B Cell Frequency Correlates with Neutralization Breadth in Patients Naturally Controlling HIV-Infection

    Directory of Open Access Journals (Sweden)

    Angeline Rouers

    2017-07-01

    Full Text Available HIV-specific broadly neutralizing antibodies (bnAbs have been isolated from patients with high viremia but also from HIV controllers that repress HIV-1 replication. In these elite controllers (ECs, multiple parameters contribute to viral suppression, including genetic factors and immune responses. Defining the immune correlates associated with the generation of bnAbs may help in designing efficient immunotherapies. In this study, in ECs either positive or negative for the HLA-B*57 protective allele, in treated HIV-infected and HIV-negative individuals, we characterized memory B cell compartments and HIV-specific memory B cells responses using flow cytometry and ELISPOT. ECs preserved their memory B cell compartments and in contrast to treated patients, maintained detectable HIV-specific memory B cell responses. All ECs presented IgG1+ HIV-specific memory B cells but some individuals also preserved IgG2+ or IgG3+ responses. Importantly, we also analyzed the capacity of sera from ECs to neutralize a panel of HIV strains including transmitted/founder virus. 29% and 21% of HLA-B*57+ and HLA-B*57− ECs, respectively, neutralized at least 40% of the viral strains tested. Remarkably, in HLA-B*57+ ECs the frequency of HIV-Env-specific memory B cells correlated positively with the neutralization breadth suggesting that preservation of HIV-specific memory B cells might contribute to the neutralizing responses in these patients.

  6. Tract specific analysis in patients with sickle cell disease

    Science.gov (United States)

    Chai, Yaqiong; Coloigner, Julie; Qu, Xiaoping; Choi, Soyoung; Bush, Adam; Borzage, Matt; Vu, Chau; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.

  7. Tumor-specific binding of radiolabeled G-22 monoclonal antibody in glioma patients

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Jun; Wakabayashi, Toshihiko; Mizuno, Masaaki; Sugita, Kenichiro; Oshima, Motoo; Tadokoro, Masanori; Sakuma, Sadayuki [Nagoya Univ. (Japan). Faculty of Medicine; Seo, Hisao

    1992-03-01

    Iodine-131-labeled G-22 monoclonal antibody F(ab'){sub 2} fragment reacting specifically with a glioma-associated surface glycoprotein was administered to 12 glioma patients to investigate its use in radioimaging of intracranial gliomas. No immediate or delayed side effects were attributable to antibody injection. Nine patients received the radiolabeled complex intravenously. The images of low-grade gliomas were generally poor and disappeared within 4 days. High-contrast images were obtained beyond the 7th day in high-grade gliomas except one case in the pineal region. Three patients received intraventricular or intratumoral administration. Clear images of all tumors were demonstrated from the 2nd until later than the 7th day. One patient with cerebrospinal fluid (CSF) dissemination of brainstem glioma demonstrated negative CSF cytology after intraventricular administration. (author).

  8. Are There Gender-Specific Risk Factors for Suicidal Activity among Patients with Schizophrenia and Depression?

    Science.gov (United States)

    Kaplan, Kalman J.; Harrow, Martin; Faull, Robert N.

    2012-01-01

    Are there gender-specific risk factors for suicidal activity among patients with schizophrenia and depression? A total of 74 schizophrenia patients (51 men, 23 women) and 77 unipolar nonpsychotic depressed patients (26 men, 51 women) from the Chicago Follow-up Study were studied prospectively at 2 years posthospitalization and again at 7.5 years.…

  9. Subject-specific cardiovascular system model-based identification and diagnosis of septic shock with a minimally invasive data set: animal experiments and proof of concept

    International Nuclear Information System (INIS)

    Geoffrey Chase, J; Starfinger, Christina; Hann, Christopher E; Lambermont, Bernard; Ghuysen, Alexandre; Kolh, Philippe; Dauby, Pierre C; Desaive, Thomas; Shaw, Geoffrey M

    2011-01-01

    A cardiovascular system (CVS) model and parameter identification method have previously been validated for identifying different cardiac and circulatory dysfunctions in simulation and using porcine models of pulmonary embolism, hypovolemia with PEEP titrations and induced endotoxic shock. However, these studies required both left and right heart catheters to collect the data required for subject-specific monitoring and diagnosis—a maximally invasive data set in a critical care setting although it does occur in practice. Hence, use of this model-based diagnostic would require significant additional invasive sensors for some subjects, which is unacceptable in some, if not all, cases. The main goal of this study is to prove the concept of using only measurements from one side of the heart (right) in a 'minimal' data set to identify an effective patient-specific model that can capture key clinical trends in endotoxic shock. This research extends existing methods to a reduced and minimal data set requiring only a single catheter and reducing the risk of infection and other complications—a very common, typical situation in critical care patients, particularly after cardiac surgery. The extended methods and assumptions that found it are developed and presented in a case study for the patient-specific parameter identification of pig-specific parameters in an animal model of induced endotoxic shock. This case study is used to define the impact of this minimal data set on the quality and accuracy of the model application for monitoring, detecting and diagnosing septic shock. Six anesthetized healthy pigs weighing 20–30 kg received a 0.5 mg kg −1 endotoxin infusion over a period of 30 min from T0 to T30. For this research, only right heart measurements were obtained. Errors for the identified model are within 8% when the model is identified from data, re-simulated and then compared to the experimentally measured data, including measurements not used in the

  10. An anatomic risk model to screen post endovascular aneurysm repair patients for aneurysm sac enlargement.

    Science.gov (United States)

    Png, Chien Yi M; Tadros, Rami O; Beckerman, William E; Han, Daniel K; Tardiff, Melissa L; Torres, Marielle R; Marin, Michael L; Faries, Peter L

    2017-09-01

    Follow-up computed tomography angiography (CTA) scans add considerable postimplantation costs to endovascular aneurysm repairs (EVARs) of abdominal aortic aneurysms (AAAs). By building a risk model, we hope to identify patients at low risk for aneurysm sac enlargement to minimize unnecessary CTAs. 895 consecutive patients who underwent EVAR for AAA were reviewed, of which 556 met inclusion criteria. A Probit model was created for aneurysm sac enlargement, with preoperative aneurysm morphology, patient demographics, and operative details as variables. Our final model included 287 patients and had a sensitivity of 100%, a specificity of 68.9%, and an accuracy of 70.4%. Ninety-nine (35%) of patients were assigned to the high-risk group, whereas 188 (65%) of patients were assigned to the low-risk group. Notably, regarding anatomic variables, our model reported that age, pulmonary comorbidities, aortic neck diameter, iliac artery length, and aneurysms were independent predictors of post-EVAR sac enlargement. With the exception of age, all statistically significant variables were qualitatively supported by prior literature. With regards to secondary outcomes, the high-risk group had significantly higher proportions of AAA-related deaths (5.1% versus 1.1%, P = 0.037) and Type 1 endoleaks (9.1% versus 3.2%, P = 0.033). Our model is a decent predictor of patients at low risk for post AAA EVAR aneurysm sac enlargement and associated complications. With additional validation and refinement, it could be applied to practices to cut down on the overall need for postimplantation CTA. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Language-specific dysgraphia in Korean patients with right brain stroke: influence of unilateral spatial neglect.

    Science.gov (United States)

    Jang, Dae-Hyun; Kim, Min-Wook; Park, Kyoung Ha; Lee, Jae Woo

    2015-03-01

    The purpose of the present study was to investigate the relationship between Korean language-specific dysgraphia and unilateral spatial neglect in 31 right brain stroke patients. All patients were tested for writing errors in spontaneous writing, dictation, and copying tests. The dysgraphia was classified into visuospatial omission, visuospatial destruction, syllabic tilting, stroke omission, stroke addition, and stroke tilting. Twenty-three (77.4%) of the 31 patients made dysgraphia and 18 (58.1%) demonstrated unilateral spatial neglect. The visuospatial omission was the most common dysgraphia followed by stroke addition and omission errors. The highest number of errors was made in the copying and the least was in the spontaneous writing test. Patients with unilateral spatial neglect made a significantly higher number of dysgraphia in the copying test than those without. We identified specific dysgraphia features such as a right side space omission and a vertical stroke addition in Korean right brain stroke patients. In conclusion, unilateral spatial neglect influences copy writing system of Korean language in patients with right brain stroke.

  12. Analysis and description of disease-specific quality of life in patients with anal fistula.

    Science.gov (United States)

    Ferrer-Márquez, Manuel; Espínola-Cortés, Natalia; Reina-Duarte, Ángel; Granero-Molina, José; Fernández-Sola, Cayetano; Hernández-Padilla, José Manuel

    2018-04-01

    In patients diagnosed with anal fistula, knowing the quality of life specifically related to the disease can help coloproctology specialists to choose the most appropriate therapeutic strategy for each case. The aim of our study is to analyzse and describe the factors related to the specific quality of life in a consecutive series of patients diagnosed with anal fistula. Observational, cross-sectional study carried out from March 2015 to February 2017. All patients were assessed in the colorectal surgery unit of a hospital in southeast of Spain. After performing an initial anamnesis and a physical examination, patients diagnosed with anal fistula completed the Quality of Life in Ppatients with Anal Fistula Questionnaire (QoLAF-Q). This questionnaire specifically measures quality of life in people with anal fistula and its score range is the following: zero impact = 14 points, limited impact = 15 to 28 points, moderate impact = 29 to 42 points, high impact = 43 to 56 points, and very high impact = 57 to 70 points. A total of 80 patients were included. The median score obtained in the questionnaire for the sample studied was 34.00 (range=14-68). Statistically significant differences between patients with "primary anal fistula" (n=65) and "recurrent anal fistula" (n=15) were observed (mean rank=42.96 vs. mean rank=29.83, p=0.048). Furthermore, an inverse proportion (P=.016) between "time with clinical symptoms" and "impact on quality of life" was found (5 years: mean rank = 19.00). There were no statistically significant differences (P=.149) between quality of life amongst patients diagnosed with complex (mean rank = 36.13) and simple fistulae (mean rank = 43.59). Anal fistulae exert moderate-high impact on patients' quality of life. "Shorter time experiencing clinical symptoms" and the "presence of primary fistula" are factors that can be associated with worse quality of life. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Computational study to investigate effect of tonometer geometry and patient-specific variability on radial artery tonometry.

    Science.gov (United States)

    Singh, Pranjal; Choudhury, Mohammed Ikbal; Roy, Sitikantha; Prasad, Anamika

    2017-06-14

    Tonometry-based devices are valuable method for vascular function assessment and for measurement of blood pressure. However current design and calibration methods rely on simple models, neglecting key geometrical features, and anthropometric and property variability among patients. Understanding impact of these influences on tonometer measurement is thus essential for improving outcomes of current devices, and for proposing improved design. Towards this goal, we present a realistic computational model for tissue-device interaction using complete wrist section with hyperelastic material and frictional contact. Three different tonometry geometries were considered including a new design, and patient-specific influences incorporated via anthropometric and age-dependent tissue stiffness variations. The results indicated that the new design showed stable surface contact stress with minimum influence of the parameters analyzed. The computational predictions were validated with experimental data from a prototype based on the new design. Finally, we showed that the underlying mechanics of vascular unloading in tonometry to be fundamentally different from that of oscillatory method. Due to directional loading in tonometry, pulse amplitude maxima was observed to occur at a significantly lower compression level (around 31%) than previously reported, which can impact blood pressure calibration approaches based on maximum pulse pressure recordings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Specific acoustic models for spontaneous and dictated style in indonesian speech recognition

    Science.gov (United States)

    Vista, C. B.; Satriawan, C. H.; Lestari, D. P.; Widyantoro, D. H.

    2018-03-01

    The performance of an automatic speech recognition system is affected by differences in speech style between the data the model is originally trained upon and incoming speech to be recognized. In this paper, the usage of GMM-HMM acoustic models for specific speech styles is investigated. We develop two systems for the experiments; the first employs a speech style classifier to predict the speech style of incoming speech, either spontaneous or dictated, then decodes this speech using an acoustic model specifically trained for that speech style. The second system uses both acoustic models to recognise incoming speech and decides upon a final result by calculating a confidence score of decoding. Results show that training specific acoustic models for spontaneous and dictated speech styles confers a slight recognition advantage as compared to a baseline model trained on a mixture of spontaneous and dictated training data. In addition, the speech style classifier approach of the first system produced slightly more accurate results than the confidence scoring employed in the second system.

  15. ISLAMIC CARING MODEL ON INCREASE PATIENT SATISFACTION

    Directory of Open Access Journals (Sweden)

    Muh. Abdurrouf

    2017-04-01

    Full Text Available Introduction: Patient satisfaction was important aspect that must be considered by health service providers, patients who were not satisfied will leave the hospital and be a competitor's customers so be able caused a decrease in sales of products/services and in turn could reduce and even loss of profit, therefore, the hospital must provided the best service so that it could increase patient satisfaction. The purpose of this study was to exams the effect of Islamic caring model on increase patient satisfaction.. Method: This study was used pre-experimental design, the respondents were 31 patients in the treatment group assigned Islamic caring and 31 patients with a kontrol group that were not given Islamic caring Inpatient Surgical Sultan Agung Islamic Hospital Semarang by using consecutive sampling techniques, patient satisfaction data collected through questionnaires and analyzed with Mann-Whitney test, as for finding out the Islamic caring for patient satisfaction were analyzed with spearmen's rho test. Result: The results showed that there was a significant influence of Islamic caring for perceived disconfirmation (p=0,000 there was a perceived disconfirmation influence on patient satisfaction significantly (p=0,000, there was a significant influence of Islamic caring for patient satisfaction in the treatment group with a kontrol group (p=0.001. Discussion: Discussion of this study was Islamic caring model effect on the increase perceived disconfirmation and patient satisfaction, Perceived disconfirmation effect on patient satisfaction, patient satisfaction who given Islamic caring was increase, patients given Islamic caring had higher satisfaction levels than patients who not given Islamic caring. Suggestions put forward based on the results of the study of Islamic caring model could be applied in Sultan Agung Islamic Hospital as a model of nursing care, Islamic caring behavior can be learned and improved through training and commitment and

  16. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  17. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.

    2013-11-26

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  18. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.; Baker, Ruth E.; Tickle, Cheryll; Maini, Philip K.; Towers, Matthew

    2013-01-01

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  19. Correlative study between neuron-specific enolase and blood sugar level in ischemic stroke patients

    OpenAIRE

    Pandey, Aparna; Saxena, Kiran; Verma, Meena; Bharosay, Anuradha

    2011-01-01

    Background: A study to investigate the level of the neurobiochemical marker, Neuron-Specific Enolase (NSE), at the time of admission and its correlation with the blood sugar level in ischemic stroke patients. Patients and Methods: We investigated 90 patients with complete stroke who were admitted to the Stroke Unit of the Department of Neurology at Sri Aurobindo Institute of Medical Sciences. NSE was measured with commercially available quantitative ′sandwich′ enzyme-linked immunosorbent assa...

  20. Model construction of nursing service satisfaction in hospitalized tumor patients.

    Science.gov (United States)

    Chen, Yongyi; Liu, Jingshi; Xiao, Shuiyuan; Liu, Xiangyu; Tang, Xinhui; Zhou, Yujuan

    2014-01-01

    This study aims to construct a satisfaction model on nursing service in hospitalized tumor patients. Using questionnaires, data about hospitalized tumor patients' expectation, quality perception and satisfaction of hospital nursing service were obtained. A satisfaction model of nursing service in hospitalized tumor patients was established through empirical study and by structural equation method. This model was suitable for tumor specialized hospital, with reliability and validity. Patient satisfaction was significantly affected by quality perception and patient expectation. Patient satisfaction and patient loyalty was also affected by disease pressure. Hospital brand was positively correlated with patient satisfaction and patient loyalty, negatively correlated with patient complaint. Patient satisfaction was positively correlated with patient loyalty, patient complaints, and quality perception, and negatively correlated with disease pressure and patient expectation. The satisfaction model on nursing service in hospitalized tumor patients fits well. By this model, the quality of hospital nursing care may be improved.

  1. Effect of the patient-to-patient communication model on dysphagia caused by total laryngectomy.

    Science.gov (United States)

    Tian, L; An, R; Zhang, J; Sun, Y; Zhao, R; Liu, M

    2017-03-01

    The study aimed to evaluate the effect of a patient-to-patient communication model on dysphagia in laryngeal cancer patients after total laryngectomy. Sixty-five patients who had undergone total laryngectomy were randomly divided into three groups: a routine communication group, a patient communication group (that received the patient-to-patient communication model) and a physician communication group. Questionnaires were used to compare quality of life and swallowing problems among all patient groups. The main factors causing dysphagia in total laryngectomy patients were related to fear and mental health. The patient communication group had improved visual analogue scale scores at one week after starting to eat. Quality of life in swallowing disorders questionnaire scores were significantly higher in the patient communication and physician communication groups than in the routine communication group. In addition, swallowing problems were much more severe in patients educated to high school level and above than in others. The patient-to-patient communication model can be used to resolve swallowing problems caused by psychological factors in total laryngectomy patients.

  2. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio ...

  3. Pioglitazone and cause-specific risk of mortality in patients with type 2 diabetes: extended analysis from a European multidatabase cohort study.

    Science.gov (United States)

    Strongman, Helen; Christopher, Solomon; Majak, Maila; Williams, Rachael; Bahmanyar, Shahram; Linder, Marie; Heintjes, Edith M; Bennett, Dimitri; Korhonen, Pasi; Hoti, Fabian

    2018-01-01

    Describe and compare the risk of cardiovascular and non-cardiovascular mortality in patients whose antidiabetic therapy is modified to include pioglitazone compared with an alternative antidiabetic medication at the same stage of disease progression. This exploratory linked database cohort analysis used pooled health and mortality data from three European countries: Finland, Sweden and the UK. Propensity score together with exact matching was used to match 31 133 patients with type 2 diabetes first prescribed pioglitazone from 2000 to 2011, to 31 133 patients never prescribed pioglitazone. Exact matching variables were treatment stage, history of diabetes, diabetes complications and cardiovascular disease, and year of cohort entry. Mean follow-up time was 2.60 (SD 2.00) and 2.69 (SD 2.31) years in the pioglitazone and non-pioglitazone-exposed groups, respectively. Crude cause-specific mortality rates were ascertained. Association with pioglitazone use was estimated using Cox proportional hazards models adjusted a priori for country, age, sex, the propensity score quintile and time-dependent variables representing use of antidiabetic drugs. Stepwise testing identified no additional confounders to include in adjusted models. The crude mortality rate was lower in the pioglitazone-exposed group than the non-exposed group for both cardiovascular and non-cardiovascular mortality. Adjusted HRs comparing pioglitazone to alternative antidiabetic exposure were 0.58 (95% CI 0.52 to 0.63) and 0.63 (95% CI 0.58 to 0.68) for cardiovascular and non-cardiovascular mortality, respectively. A protective effect associated with pioglitazone was also found for all specific cardiovascular causes. This analysis suggests that pioglitazone is associated with a decrease in both cardiovascular and non-cardiovascular mortality. Results should be interpreted with caution due to the potential for residual confounding in this exploratory analysis. Further studies, specifically designed to test

  4. Disease-specific health-related quality of life in patients with esophageal achalasia before and after therapy.

    Science.gov (United States)

    Garrigues, V; Ortiz, V; Casanova, C; Bujanda, L; Moreno-Osset, E; Rodríguez-Téllez, M; Montserrat, A; Brotons, A; Fort, E; Ponce, J

    2010-07-01

    To evaluate disease-specific health-related quality of life (HRQoL) in patients with symptomatic esophageal achalasia before and after therapy. Symptoms and disease-specific HRQoL were evaluated before and 3 months after therapy. Therapy selection, either dilatation or myotomy, depended exclusively on the opinion of the physician on charge of the patient. Symptom severity was graded from 0 to 3, using a scoring system. A disease-specific questionnaire for achalasia developed and validated in Spanish language with 18 items and four subscales (AE-18) was used to evaluate HRQoL. Changes after therapy in HRQoL and its association with clinical improvement were analyzed. Sixty-five patients were prospectively included in eight hospitals in Spain. Of them, 47 were treated with dilatation, and 18 with laparoscopic Heller myotomy. After therapy, AE-18 global and subscales scores improved significantly. Changes in HRQoL were associated with improvement in symptoms. An important improvement in symptoms (>or=50%) was needed to obtain a minimal clinically important improvement (>or=20%) in HRQoL. Disease-specific HRQoL improves in patients with symptomatic achalasia after therapy with dilatation or myotomy. The degree of improvement of HRQoL depends on the degree of improvement of esophageal symptoms.

  5. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait

    NARCIS (Netherlands)

    Carbone, V.; Krogt, M.M. van der; Koopman, H.F.J.M.; Verdonschot, N.J.

    2016-01-01

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of

  6. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait

    NARCIS (Netherlands)

    Carbone, Vincenzo; van der Krogt, Marjolein; Koopman, Hubertus F.J.M.; Verdonschot, Nicolaas Jacobus Joseph

    2016-01-01

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle–tendon (MT) model parameters for each of

  7. Pain relief is associated with decreasing postural sway in patients with non-specific low back pain

    DEFF Research Database (Denmark)

    Ruhe, A.; Fejer, René; Walker, B.

    2012-01-01

    is maintained if pain levels change in adults with non-specific low back pain. Methods: Thirty-eight patients with non-specific low back pain and a matching number of healthy controls were enrolled. Postural sway was measured by three identical static bipedal standing tasks of 90 sec duration with eyes closed......Background: Increased postural sway is well documented in patients suffering from non-specific low back pain, whereby a linear relationship between higher pain intensities and increasing postural sway has been described. No investigation has been conducted to evaluate whether this relationship...... in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS 11). The patients received three manual interventions (e. g. manipulation, mobilization or soft tissue techniques) at 3-4 day intervals, postural sway measures were obtained at each occasion. Results...

  8. A clinical decision-making mechanism for context-aware and patient-specific remote monitoring systems using the correlations of multiple vital signs.

    Science.gov (United States)

    Forkan, Abdur Rahim Mohammad; Khalil, Ibrahim

    2017-02-01

    In home-based context-aware monitoring patient's real-time data of multiple vital signs (e.g. heart rate, blood pressure) are continuously generated from wearable sensors. The changes in such vital parameters are highly correlated. They are also patient-centric and can be either recurrent or can fluctuate. The objective of this study is to develop an intelligent method for personalized monitoring and clinical decision support through early estimation of patient-specific vital sign values, and prediction of anomalies using the interrelation among multiple vital signs. In this paper, multi-label classification algorithms are applied in classifier design to forecast these values and related abnormalities. We proposed a completely new approach of patient-specific vital sign prediction system using their correlations. The developed technique can guide healthcare professionals to make accurate clinical decisions. Moreover, our model can support many patients with various clinical conditions concurrently by utilizing the power of cloud computing technology. The developed method also reduces the rate of false predictions in remote monitoring centres. In the experimental settings, the statistical features and correlations of six vital signs are formulated as multi-label classification problem. Eight multi-label classification algorithms along with three fundamental machine learning algorithms are used and tested on a public dataset of 85 patients. Different multi-label classification evaluation measures such as Hamming score, F1-micro average, and accuracy are used for interpreting the prediction performance of patient-specific situation classifications. We achieved 90-95% Hamming score values across 24 classifier combinations for 85 different patients used in our experiment. The results are compared with single-label classifiers and without considering the correlations among the vitals. The comparisons show that multi-label method is the best technique for this problem

  9. Proof of Concept Study for the Design, Manufacturing, and Testing of a Patient-Specific Shape Memory Device for Treatment of Unicoronal Craniosynostosis.

    Science.gov (United States)

    Borghi, Alessandro; Rodgers, Will; Schievano, Silvia; Ponniah, Allan; Jeelani, Owase; Dunaway, David

    2018-01-01

    Treatment of unicoronal craniosynostosis is a surgically challenging problem, due to the involvement of coronal suture and cranial base, with complex asymmetries of the calvarium and orbit. Several techniques for correction have been described, including surgical bony remodeling, early strip craniotomy with orthotic helmet remodeling and distraction. Current distraction devices provide unidirectional forces and have had very limited success. Nitinol is a shape memory alloy that can be programmed to the shape of a patient-specific anatomy by means of thermal treatment.In this work, a methodology to produce a nitinol patient-specific distractor is presented: computer tomography images of a 16-month-old patient with unicoronal craniosynostosis were processed to create a 3-dimensional model of his skull and define the ideal shape postsurgery. A mesh was produced from a nitinol sheet, formed to the ideal skull shape and heat treated to be malleable at room temperature. The mesh was afterward deformed to be attached to a rapid prototyped plastic skull, replica of the patient initial anatomy. The mesh/skull construct was placed in hot water to activate the mesh shape memory property: the deformed plastic skull was computed tomography scanned for comparison of its shape with the initial anatomy and with the desired shape, showing that the nitinol mesh had been able to distract the plastic skull to a shape close to the desired one.The shape-memory properties of nitinol allow for the design and production of patient-specific devices able to deliver complex, preprogrammable shape changes.

  10. A Domain-Specific Language for Generic Interlocking Models and Their Properties

    DEFF Research Database (Denmark)

    Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan

    2017-01-01

    of this work is to provide a domain-specific language for generic models and an instantiator tool taking not only configuration data but also a generic model as input instead of using a hard-coded generator for instantiating only one fixed generic model and its properties with configuration data....

  11. Early Prostate Cancer: Hedonic Prices Model of Provider-Patient Interactions and Decisions

    International Nuclear Information System (INIS)

    Jani, Ashesh B.; Hellman, Samuel

    2008-01-01

    Purpose: To determine the relative influence of treatment features and treatment availabilities on final treatment decisions in early prostate cancer. Methods and Materials: We describe and apply a model, based on hedonic prices, to understand provider-patient interactions in prostate cancer. This model included four treatments (observation, external beam radiotherapy, brachytherapy, and prostatectomy) and five treatment features (one efficacy and four treatment complication features). We performed a literature search to estimate (1) the intersections of the 'bid' functions and 'offer' functions with the price function along different treatment feature axes, and (2) the treatments actually rendered in different patient subgroups based on age. We performed regressions to determine the relative weight of each feature in the overall interaction and the relative availability of each treatment modality to explain differences between observed vs. predicted use of different modalities in different patient subpopulations. Results: Treatment efficacy and potency preservation are the major factors influencing decisions for young patients, whereas preservation of urinary and rectal function is much more important for very elderly patients. Referral patterns seem to be responsible for most of the deviations of observed use of different treatments from those predicted by idealized provider-patient interactions. Specifically, prostatectomy is used far more commonly in young patients and radiotherapy and observation used far more commonly in elderly patients than predicted by a uniform referral pattern. Conclusions: The hedonic prices approach facilitated identifying the relative importance of treatment features and quantification of the impact of the prevailing referral pattern on prostate cancer treatment decisions

  12. Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population

    DEFF Research Database (Denmark)

    Eriksson, Robert; Werge, Thomas; Jensen, Lars Juhl

    2014-01-01

    patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength.When applying the method to the 3,394 patients...... all indication areas.The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner.We used a psychiatric hospital’s EPR system to investigate undesired drug effects. Within one workflow the method identified...

  13. 75 FR 61820 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Science.gov (United States)

    2010-10-06

    ... technology to alcohol-specific sensors (such as fuel cell technology based on electro-chemical oxidation of alcohol) or other emerging sensor technologies? Or, should NHTSA not specify the sensor technology and... require alcohol- specific technology in the Model Specifications, but that the particular sensor design...

  14. Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Harry O'Hanley

    2012-01-01

    Full Text Available Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry (DSC, a robust experimental methodology for measuring the heat capacity of fluids, the specific heat capacities of water-based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5 wt% and 50 wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviated very significantly from the data. Therefore, Model II is recommended for nanofluids.

  15. Modeling patients' acceptance of provider-delivered e-health.

    Science.gov (United States)

    Wilson, E Vance; Lankton, Nancy K

    2004-01-01

    Health care providers are beginning to deliver a range of Internet-based services to patients; however, it is not clear which of these e-health services patients need or desire. The authors propose that patients' acceptance of provider-delivered e-health can be modeled in advance of application development by measuring the effects of several key antecedents to e-health use and applying models of acceptance developed in the information technology (IT) field. This study tested three theoretical models of IT acceptance among patients who had recently registered for access to provider-delivered e-health. An online questionnaire administered items measuring perceptual constructs from the IT acceptance models (intrinsic motivation, perceived ease of use, perceived usefulness/extrinsic motivation, and behavioral intention to use e-health) and five hypothesized antecedents (satisfaction with medical care, health care knowledge, Internet dependence, information-seeking preference, and health care need). Responses were collected and stored in a central database. All tested IT acceptance models performed well in predicting patients' behavioral intention to use e-health. Antecedent factors of satisfaction with provider, information-seeking preference, and Internet dependence uniquely predicted constructs in the models. Information technology acceptance models provide a means to understand which aspects of e-health are valued by patients and how this may affect future use. In addition, antecedents to the models can be used to predict e-health acceptance in advance of system development.

  16. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    Science.gov (United States)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  17. A new model consists of intravesical prostatic protrusion, prostate volume and serum prostatic-specific antigen in the evaluation of prostate cancer.

    Science.gov (United States)

    Xu, Ding; Yu, Yongjiang; Zhu, Yunkai; Huang, Tao; Chen, Yaqing; Qi, Jun

    2014-04-01

    The Prostate-specific antigen (PSA) level is largely used to diagnose prostate cancer (PCa) in last decades. However, its specificity is low in patients with a PSA level ranging from 4.0 to 10.0 ng/ml. This study aims to define the correlation between intravesical prostatic protrusion (IPP) and PSA and to establish a new model to predict PCa. A total of 339 patients order than 45 years examined between October 2010 and June 2012 were enrolled. Eligible patients were recommended for transrectal ultrasonography (TRUS)-guided prostate biopsies after measuring total prostate volume (TPV), tranzisional zone volume (TZV) and IPP. The levels of total PSA (tPSA), free PSA (fPSA) were analyzed by using Hybritech calibrated Access tPSA and fPSA assays. A new mathematical model, named IPP removed PCa predicting score (IRPPS), consists of tPSA, TZV and IPP was established. The predictive accuracy of IRPPS, PSA density (PSAD), %PSA and tPSA were compared using receiver-operator characteristic (ROC) analysis. Eighty-six patients had PSA levels of 4.0-10.0 ng/ml. Twenty of them were diagnosed as PCa. Using ROC curves, the areas under the curve for IRPPS, PSAD and %PSA and tPSA were 0.786, 0.768 and 0.664 and 0.585, respectively. We suggested IPP grade had a significant relationship with serum tPSA levels. The predictive accuracy of IRPPS was higher than the other 3 indictors.

  18. Refusal of Treatment by Mentally Competent Patient: The Choice of Doctor-Patient Relationship Models

    Directory of Open Access Journals (Sweden)

    Andrei M. Beliaev

    2010-01-01

    Full Text Available Introduction: In modern medicine professional relationship between the clinician and the patient is patient-centered. Patients become actively involved in the treatment decision making process and are encouraged to express their health-related preferences. Some patients may, however, refuse a favorable risk/benefit ratio treatment. This manuscript presents three cases of refusal of treatment by mentally competent surgical patients and discusses differences in their management. Conclusion: To achieve the best medical outcome for patients who possess the Actual Understanding test of mental competence clinicians use the deliberate model of medical professional relationship. For patients demonstrating the Understanding test of mental competence and wishing to utilize their health-related preferences physicians are obliged to deploy the interpretive model of doctor-patient relationship. In mentally competent patients with an illness-induced acute psychological regression the interpretive model of doctor-patient relationship as an initial strategy and cognitive behavior therapy can be useful in modifying treatment rejecting behavior and improving medical outcome.

  19. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia

    Science.gov (United States)

    Denton, Kyle R.; Lei, Ling; Grenier, Jeremy; Rodionov, Vladimir; Blackstone, Craig; Li, Xue-Jun

    2013-01-01

    Human neuronal models of hereditary spastic paraplegias (HSP) that recapitulate disease-specific axonal pathology hold the key to understanding why certain axons degenerate in patients and to developing therapies. SPG4, the most common form of HSP, is caused by autosomal dominant mutations in the SPAST gene, which encodes the microtubule-severing ATPase spastin. Here, we have generated a human neuronal model of SPG4 by establishing induced pluripotent stem cells (iPSCs) from an SPG4 patient and differentiating these cells into telencephalic glutamatergic neurons. The SPG4 neurons displayed a significant increase in axonal swellings, which stained strongly for mitochondria and tau, indicating the accumulation of axonal transport cargoes. In addition, mitochondrial transport was decreased in SPG4 neurons, revealing that these patient iPSC-derived neurons recapitulate disease-specific axonal phenotypes. Interestingly, spastin protein levels were significantly decreased in SPG4 neurons, supporting a haploinsufficiency mechanism. Furthermore, cortical neurons derived from spastin-knockdown human embryonic stem cells (hESCs) exhibited similar axonal swellings, confirming that the axonal defects can be caused by loss of spastin function. These spastin-knockdown hESCs serve as an additional model for studying HSP. Finally, levels of stabilized acetylated-tubulin were significantly increased in SPG4 neurons. Vinblastine, a microtubule-destabilizing drug, rescued this axonal swelling phenotype in neurons derived from both SPG4 iPSCs and spastin-knockdown hESCs. Thus, this study demonstrates the successful establishment of human pluripotent stem cell-based neuronal models of SPG4, which will be valuable for dissecting the pathogenic cellular mechanisms and screening compounds to rescue the axonal degeneration in HSP. PMID:24123785

  20. Patient iPSC-derived neurons for disease modeling of frontotemporal dementia with mutation in CHMP2B

    DEFF Research Database (Denmark)

    Zhang, Yu; Schmid, Benjamin; Nikolaisen, Nanett Kvist

    2017-01-01

    -to-lysosome trafficking and substrate degradation. To understand the underlying molecular pathology, FTD3 patient induced pluripotent stem cells (iPSCs) were differentiated into forebrain-type cortical neurons. FTD3 neurons exhibited abnormal endosomes, as previously shown in patients. Moreover, mitochondria of FTD3...... in neurodegenerative diseases. All phenotypes observed in FTD3 neurons were rescued in CRISPR/Cas9-edited isogenic controls. These findings illustrate the relevance of our patient-specific in vitro models and open up possibilities for drug target development....