WorldWideScience

Sample records for patient navigator grant

  1. Time and Motion Study of a Community Patient Navigator

    Directory of Open Access Journals (Sweden)

    Sara S. Phillips

    2014-04-01

    Full Text Available Research on patient navigation has focused on validating the utility of navigators by defining their roles and analyzing their effects on patient outcomes, patient satisfaction, and cost effectiveness. Patient navigators are increasingly used outside the research context, and their roles without research responsibilities may look very different. This pilot study captured the activities of a community patient navigator for uninsured women with a positive screening test for breast cancer, using a time and motion approach over a period of three days. We followed the actions of this navigator minute by minute to assess the relative ratios of actions performed and to identify areas for time efficiency improvement to increase direct time with patients. This novel approach depicts the duties of a community patient navigator no longer fettered by navigation logs, research team meetings, surveys, and the consent process. We found that the community patient navigator was able to spend more time with patients in the clinical context relative to performing paperwork or logging communication with patients as a result of her lack of research responsibilities. By illuminating how community patient navigation functions as separate from the research setting, our results will inform future hiring and training of community patient navigators, system design and operations for improving the efficiency and efficacy of navigators, and our understanding of what community patient navigators do in the absence of research responsibilities.

  2. Metrics for evaluating patient navigation during cancer diagnosis and treatment: crafting a policy-relevant research agenda for patient navigation in cancer care.

    Science.gov (United States)

    Guadagnolo, B Ashleigh; Dohan, Daniel; Raich, Peter

    2011-08-01

    Racial and ethnic minorities as well as other vulnerable populations experience disparate cancer-related health outcomes. Patient navigation is an emerging health care delivery innovation that offers promise in improving quality of cancer care delivery to these patients who experience unique health-access barriers. Metrics are needed to evaluate whether patient navigation can improve quality of care delivery, health outcomes, and overall value in health care during diagnosis and treatment of cancer. Information regarding the current state of the science examining patient navigation interventions was gathered via search of the published scientific literature. A focus group of providers, patient navigators, and health-policy experts was convened as part of the Patient Navigation Leadership Summit sponsored by the American Cancer Society. Key metrics were identified for assessing the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation data exist for all stages of cancer care; however, the literature is more robust for its implementation during prevention, screening, and early diagnostic workup of cancer. Relatively fewer data are reported for outcomes and efficacy of patient navigation during cancer treatment. Metrics are proposed for a policy-relevant research agenda to evaluate the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation is understudied with respect to its use in cancer diagnosis and treatment. Core metrics are defined to evaluate its efficacy in improving outcomes and mitigating health-access barriers. Copyright © 2011 American Cancer Society.

  3. Tinnitus Patient Navigator

    Science.gov (United States)

    ... Cure About Us Initiatives News & Events Professional Resources Tinnitus Patient Navigator Want to get started on the ... unique and may require a different treatment workflow. Tinnitus Health-Care Providers If you, or someone you ...

  4. Experiences of cancer patients in a patient navigation program: a qualitative systematic review.

    Science.gov (United States)

    Tan, Clarice Hwee Hoon; Wilson, Sally; McConigley, Ruth

    2015-03-12

    A patient navigation program is a model of care which entails trained personnel providing individualized and assistive care to adult oncology patients to help the patients overcome barriers. A further aim of the program is to achieve continuity of care as patients experience the complex healthcare system. Patient navigation is a new model of care in many institutions, and as such the experiences of patients in the patient navigation program remains inconclusive. The review seeks to understand the experiences of adult patients in patient navigation programs and how patient navigators impact the challenges patients encounter in the cancer care continuum. Participants of interest were adult cancer patients more than 18 years of age who are receiving or have received cancer care and are in a patient navigation program or had been in a hospital patient navigation program. Types of intervention(s)/phenomena of interest: The phenomenon of interest was the experiences of adult cancer patients who used patient navigation programs in hospital including how patient navigators impact on the challenges patients encounter in the cancer care continuum. Types of studies: This review considered studies that focused on qualitative data including, but not limited to, designs such as phenomenology, grounded theory, action research and exploratory studies. The review includes patient navigation programs within a hospital setting. Types of outcome: The review sought to understand the experiences of patients with cancer in patient navigation programs in the hospital. A three-step search strategy was used. An initial search to identify keywords was undertaken in PubMed and Science Direct followed by an expanded search using all identified keywords and index terms specific to each included database. The reference lists of included papers were then searched for any other relevant studies. Each paper was assessed independently by two reviewers for methodological quality using the Joanna

  5. Navigational Strategies of Migrating Monarch Butterflies

    Science.gov (United States)

    2014-11-10

    AFRL-OSR-VA-TR-2014-0339 NAVIGATIONAL STRATEGIES OF MIGRATING MONARCH BUTTERFLIES Steven Reppert UNIVERSITY OF MASSACHUSETTS Final Report 11/10/2014...Final Progress Statement to (Dr. Patrick Bradshaw) Contract/Grant Title: Navigational Strategies of Migrating Monarch Butterflies Contract...Grant #: FA9550-10-1-0480 Reporting Period: 01-Sept-10 to 31-Aug-14 Overview of accomplishments: Migrating monarch butterflies (Danaus

  6. Social Network Structures of Breast Cancer Patients and the Contributing Role of Patient Navigators.

    Science.gov (United States)

    Gunn, Christine M; Parker, Victoria A; Bak, Sharon M; Ko, Naomi; Nelson, Kerrie P; Battaglia, Tracy A

    2017-08-01

    Minority women in the U.S. continue to experience inferior breast cancer outcomes compared with white women, in part due to delays in care delivery. Emerging cancer care delivery models like patient navigation focus on social barriers, but evidence demonstrating how these models increase social capital is lacking. This pilot study describes the social networks of newly diagnosed breast cancer patients and explores the contributing role of patient navigators. Twenty-five women completed a one hour interview about their social networks related to cancer care support. Network metrics identified important structural attributes and influential individuals. Bivariate associations between network metrics, type of network, and whether the network included a navigator were measured. Secondary analyses explored associations between network structures and clinical outcomes. We identified three types of networks: kin-based, role and/or affect-based, or heterogeneous. Network metrics did not vary significantly by network type. There was a low prevalence of navigators included in the support networks (25%). Network density scores were significantly higher in those networks without a navigator. Network metrics were not predictive of clinical outcomes in multivariate models. Patient navigators were not frequently included in support networks, but provided distinctive types of support. If navigators can identify patients with poorly integrated (less dense) social networks, or who have unmet tangible support needs, the intensity of navigation services could be tailored. Services and systems that address gaps and variations in patient social networks should be explored for their potential to reduce cancer health disparities. This study used a new method to identify the breadth and strength of social support following a diagnosis of breast cancer, especially examining the role of patient navigators in providing support. While navigators were only included in one quarter of patient

  7. Cancer Patient Navigator Tasks across the Cancer Care Continuum

    Science.gov (United States)

    Braun, Kathryn L.; Kagawa-Singer, Marjorie; Holden, Alan E. C.; Burhansstipanov, Linda; Tran, Jacqueline H.; Seals, Brenda F.; Corbie-Smith, Giselle; Tsark, JoAnn U.; Harjo, Lisa; Foo, Mary Anne; Ramirez, Amelie G.

    2011-01-01

    Cancer patient navigation (PN) programs have been shown to increase access to and utilization of cancer care for poor and underserved individuals. Despite mounting evidence of its value, cancer patient navigation is not universally understood or provided. We describe five PN programs and the range of tasks their navigators provide across the cancer care continuum (education and outreach, screening, diagnosis and staging, treatment, survivorship, and end-of-life). Tasks are organized by their potential to make cancer services understandable, available, accessible, affordable, appropriate, and accountable. Although navigators perform similar tasks across the five programs, their specific approaches reflect differences in community culture, context, program setting, and funding. Task lists can inform the development of programs, job descriptions, training, and evaluation. They also may be useful in the move to certify navigators and establish mechanisms for reimbursement for navigation services. PMID:22423178

  8. Paediatric patient navigation models of care in Canada: An environmental scan.

    Science.gov (United States)

    Luke, Alison; Doucet, Shelley; Azar, Rima

    2018-05-01

    (1) To provide other organizations with useful information when implementing paediatric navigation programs and (2) to inform the implementation of a navigation care centre in New Brunswick for children with complex health conditions. This environmental scan consisted of a literature review of published and grey literature for paediatric patient navigation programs across Canada. Additional programs were found following discussions with program coordinators and navigators. Interviews were conducted with key staff from each program and included questions related to patient condition; target population and location; method delivery; navigator background; and navigator roles. Data analysis included analysis of interviews and identification of common themes across the different programs. We interviewed staff from 19 paediatric navigation programs across Canada. Programs varied across a number of different themes, including: condition and disease type, program location (e.g., hospital or clinic), navigator background (e.g., registered nurse or peer/lay navigator) and method of delivery (e.g., phone or face-to-face). Overall, navigator roles are similar across all programs, including advocacy, education, support and assistance in accessing resources from both within and outside the health care system. This scan offers a road map of Canadian paediatric navigation programs. Knowledge learned from this scan will inform stakeholders who are either involved in the delivery of paediatric patient navigation programs or planning to implement such a program. Specifically, our scan informed the development of a navigation centre for children with complex health conditions in New Brunswick.

  9. Recruiting newly referred lung cancer patients to a patient navigator intervention (PACO)

    DEFF Research Database (Denmark)

    Kjær, Trille Kristina; Mellemgaard, Anders; Stensøe Oksen, Marianne

    2017-01-01

    OBJECTIVES: The incidence of and survival from lung cancer are associated with socioeconomic position, and disparities have been observed in both curative and palliative treatment for lung cancer. 'Patient navigation' is valuable in addressing health disparity, with timely treatment and transitio...... of internal and external obstacles to patients' recruitment. The study provides insight into the barriers to recruitment of socially disadvantaged cancer patients to clinical trials and will inform future trial designs....... to care. We conducted a pilot study to test the feasibility of a patient navigator program (PAtient COach) for newly diagnosed lung cancer. We present the trial, the findings from the pilot study and discuss factors that might have affected recruitment rates. MATERIAL AND METHODS: We invited 24 lung...... of 1 or 2 or be over 65 years of age. The patient navigators targeted four phases of treatment: planning, initiation, compliance and end of treatment. RESULTS: Six months after the start of the study, we had recruited only six patients, due mainly to inherent patient resistance and because only 50...

  10. Resource Use and Medicare Costs During Lay Navigation for Geriatric Patients With Cancer.

    Science.gov (United States)

    Rocque, Gabrielle B; Pisu, Maria; Jackson, Bradford E; Kvale, Elizabeth A; Demark-Wahnefried, Wendy; Martin, Michelle Y; Meneses, Karen; Li, Yufeng; Taylor, Richard A; Acemgil, Aras; Williams, Courtney P; Lisovicz, Nedra; Fouad, Mona; Kenzik, Kelly M; Partridge, Edward E

    2017-06-01

    Lay navigators in the Patient Care Connect Program support patients with cancer from diagnosis through survivorship to end of life. They empower patients to engage in their health care and navigate them through the increasingly complex health care system. Navigation programs can improve access to care, enhance coordination of care, and overcome barriers to timely, high-quality health care. However, few data exist regarding the financial implications of implementing a lay navigation program. To examine the influence of lay navigation on health care spending and resource use among geriatric patients with cancer within The University of Alabama at Birmingham Health System Cancer Community Network. This observational study from January 1, 2012, through December 31, 2015, used propensity score-matched regression analysis to compare quarterly changes in the mean total Medicare costs and resource use between navigated patients and nonnavigated, matched comparison patients. The setting was The University of Alabama at Birmingham Health System Cancer Community Network, which includes 2 academic and 10 community cancer centers across Alabama, Georgia, Florida, Mississippi, and Tennessee. Participants were Medicare beneficiaries with cancer who received care at participating institutions from 2012 through 2015. The primary exposure was contact with a patient navigator. Navigated patients were matched to nonnavigated patients on age, race, sex, cancer acuity (high vs low), comorbidity score, and preenrollment characteristics (costs, emergency department visits, hospitalizations, intensive care unit admissions, and chemotherapy in the preenrollment quarter). Total costs to Medicare, components of cost, and resource use (emergency department visits, hospitalizations, and intensive care unit admissions). In total, 12 428 patients (mean (SD) age at cancer diagnosis, 75 (7) years; 52.0% female) were propensity score matched, including 6214 patients in the navigated group and 6214

  11. Age-Specific Patient Navigation Preferences Among Adolescents and Young Adults with Cancer.

    Science.gov (United States)

    Pannier, Samantha T; Warner, Echo L; Fowler, Brynn; Fair, Douglas; Salmon, Sara K; Kirchhoff, Anne C

    2017-11-23

    Patient navigation is increasingly being directed at adolescent and young adult (AYA) patients. This study provides a novel description of differences in AYA cancer patients' preferences for navigation services by developmental age at diagnosis. Eligible patients were diagnosed with cancer between ages 15 and 39 and had completed at least 1 month of treatment. Between October 2015 and January 2016, patients completed semi-structured interviews about navigation preferences. Summary statistics of demographic and cancer characteristics were generated. Differences in patient navigation preferences were examined through qualitative analyses by developmental age at diagnosis. AYAs were interviewed (adolescents 15-18 years N = 8; emerging adults 19-25 years N = 8; young adults 26-39 years N = 23). On average, participants were 4.5 years from diagnosis. All age groups were interested in face-to-face connection with a navigator and using multiple communication platforms (phone, text, email) to follow-up. Three of the most frequently cited needs were insurance, finances, and information. AYAs differed in support, healthcare, and resource preferences by developmental age; only adolescents preferred educational support. While all groups preferred financial and family support, the specific type of assistance (medical versus living expenses, partner/spouse, child, or parental assistance) varied by age group. AYAs with cancer have different preferences for patient navigation by developmental age at diagnosis. AYAs are not a one-size-fits-all population, and navigation programs can better assist AYAs when services are targeted to appropriate developmental ages. Future research should examine fertility and navigation preferences by time since diagnosis. While some navigation needs to span the AYA age range, other needs are specific to developmental age.

  12. Introduction of a Surgical Navigator in the Perioperative Process Improves Patient Satisfaction

    Directory of Open Access Journals (Sweden)

    Brett G Marshall

    2017-03-01

    Full Text Available Background: Patients who had received surgical services at Bellin Hospital reported anxiety with the surgical flow. This study tested the hypothesis that the introduction of a surgical navigator, someone who guided the patient and their accompanying others throughout the surgical process, would improve patient satisfaction. Methods: Ambulatory surgical patients were randomized to control and study groups. The study group patients were assigned a surgical navigator. Prior to discharge from the hospital, patients were asked to complete a patient satisfaction survey. Results: The study group had significantly higher mean scores (P value ≤ 0.026, top box scores (P value ≤ 0.021, and positive comments. Conclusion: The addition of a surgical navigator to the perioperative process significantly enhanced patient satisfaction in ambulatory surgical patients.

  13. Lay Patient Navigators' Perspectives of Barriers, Facilitators and Training Needs in Initiating Advance Care Planning Conversations With Older Patients With Cancer.

    Science.gov (United States)

    Niranjan, Soumya J; Huang, Chao-Hui S; Dionne-Odom, J Nicholas; Halilova, Karina I; Pisu, Maria; Drentea, Patricia; Kvale, Elizabeth A; Bevis, Kerri S; Butler, Thomas W; Partridge, Edward E; Rocque, Gabrielle B

    2018-04-01

    Respecting Choices is an evidence-based model of facilitating advance care planning (ACP) conversations between health-care professionals and patients. However, the effectiveness of whether lay patient navigators can successfully initiate Respecting Choices ACP conversations is unknown. As part of a large demonstration project (Patient Care Connect [PCC]), a cohort of lay patient navigators underwent Respecting Choices training and were tasked to initiate ACP conversations with Medicare beneficiaries diagnosed with cancer. This article explores PCC lay navigators' perceived barriers and facilitators in initiating Respecting Choices ACP conversations with older patients with cancer in order to inform implementation enhancements to lay navigator-facilitated ACP. Twenty-six lay navigators from 11 PCC cancer centers in 4 states (Alabama, George, Tennessee, and Florida) completed in-depth, one-on-one semistructured interviews between June 2015 and August 2015. Data were analyzed using a thematic analysis approach. This evaluation identifies 3 levels-patient, lay navigator, and organizational factors in addition to training needs that influence ACP implementation. Key facilitators included physician buy-in, patient readiness, and navigators' prior experience with end-of-life decision-making. Lay navigators' perceived challenges to initiating ACP conversations included timing of the conversation and social and personal taboos about discussing dying. Our results suggest that further training and health system support are needed for lay navigators playing a vital role in improving the implementation of ACP among older patients with cancer. The lived expertise of lay navigators along with flexible longitudinal relationships with patients and caregivers may uniquely position this workforce to promote ACP.

  14. Patient Protection and Affordable Care Act; Exchange functions: standards for Navigators and non-Navigator assistance personnel; consumer assistance tools and programs of an Exchange and certified application counselors. Final rule.

    Science.gov (United States)

    2013-07-17

    This final rule addresses various requirements applicable to Navigators and non-Navigator assistance personnel in Federally-facilitated Exchanges, including State Partnership Exchanges, and to non-Navigator assistance personnel in State Exchanges that are funded through federal Exchange Establishment grants. It finalizes the requirement that Exchanges must have a certified application counselor program. It creates conflict-of-interest, training and certification, and meaningful access standards; clarifies that any licensing, certification, or other standards prescribed by a state or Exchange must not prevent application of the provisions of title I of the Affordable Care Act; adds entities with relationships to issuers of stop loss insurance to the list of entities that are ineligible to become Navigators; and clarifies that the same ineligibility criteria that apply to Navigators apply to certain non-Navigator assistance personnel. The final rule also directs that each Exchange designate organizations which will then certify their staff members and volunteers to be application counselors that assist consumers and facilitate enrollment in qualified health plans and insurance affordability programs, and provides standards for that designation.

  15. Effect of Patient Navigation With or Without Financial Incentives on Viral Suppression Among Hospitalized Patients With HIV Infection and Substance Use

    Science.gov (United States)

    Metsch, Lisa R.; Feaster, Daniel J.; Gooden, Lauren; Matheson, Tim; Stitzer, Maxine; Das, Moupali; Jain, Mamta K.; Rodriguez, Allan E.; Armstrong, Wendy S.; Lucas, Gregory M.; Nijhawan, Ank E.; Drainoni, Mari-Lynn; Herrera, Patricia; Vergara-Rodriguez, Pamela; Jacobson, Jeffrey M.; Mugavero, Michael J.; Sullivan, Meg; Daar, Eric S.; McMahon, Deborah K.; Ferris, David C.; Lindblad, Robert; VanVeldhuisen, Paul; Oden, Neal; Castellón, Pedro C.; Tross, Susan; Haynes, Louise F.; Douaihy, Antoine; Sorensen, James L.; Metzger, David S.; Mandler, Raul N.; Colfax, Grant N.; del Rio, Carlos

    2017-01-01

    IMPORTANCE Substance use is a major driver of the HIV epidemic and is associated with poor HIV care outcomes. Patient navigation (care coordination with case management) and the use of financial incentives for achieving predetermined outcomes are interventions increasingly promoted to engage patients in substance use disorders treatment and HIV care, but there is little evidence for their efficacy in improving HIV-1 viral suppression rates. OBJECTIVE To assess the effect of a structured patient navigation intervention with or without financial incentives to improve HIV-1 viral suppression rates among patients with elevated HIV-1 viral loads and substance use recruited as hospital inpatients. DESIGN, SETTING, AND PARTICIPANTS From July 2012 through January 2014, 801 patients with HIV infection and substance use from 11 hospitals across the United States were randomly assigned to receive patient navigation alone (n = 266), patient navigation plus financial incentives (n = 271), or treatment as usual (n = 264). HIV-1 plasma viral load was measured at baseline and at 6 and 12 months. INTERVENTIONS Patient navigation included up to 11 sessions of care coordination with case management and motivational interviewing techniques over 6 months. Financial incentives (up to $1160) were provided for achieving targeted behaviors aimed at reducing substance use, increasing engagement in HIV care, and improving HIV outcomes. Treatment as usual was the standard practice at each hospital for linking hospitalized patients to outpatient HIV care and substance use disorders treatment. MAIN OUTCOMES AND MEASURES The primary outcome was HIV viral suppression (≤200 copies/mL) relative to viral nonsuppression or death at the 12-month follow-up. RESULTS Of 801 patients randomized, 261 (32.6%) were women (mean [SD] age, 44.6 years [10.0 years]). There were no differences in rates of HIV viral suppression versus nonsuppression or death among the 3 groups at 12 months. Eighty-five of 249

  16. Pragmatic Randomized, Controlled Trial of Patient Navigators and Enhanced Personal Health Records in CKD.

    Science.gov (United States)

    Navaneethan, Sankar D; Jolly, Stacey E; Schold, Jesse D; Arrigain, Susana; Nakhoul, Georges; Konig, Victoria; Hyland, Jennifer; Burrucker, Yvette K; Dann, Priscilla Davis; Tucky, Barbara H; Sharp, John; Nally, Joseph V

    2017-09-07

    Patient navigators and enhanced personal health records improve the quality of health care delivered in other disease states. We aimed to develop a navigator program for patients with CKD and an electronic health record-based enhanced personal health record to disseminate CKD stage-specific goals of care and education. We also conducted a pragmatic randomized clinical trial to compare the effect of a navigator program for patients with CKD with enhanced personal health record and compare their combination compared with usual care among patients with CKD stage 3b/4. Two hundred and nine patients from six outpatient clinics (in both primary care and nephrology settings) were randomized in a 2×2 factorial design into four-study groups: ( 1 ) enhanced personal health record only, ( 2 ) patient navigator only, ( 3 ) both, and ( 4 ) usual care (control) group. Primary outcome measure was the change in eGFR over a 2-year follow-up period. Secondary outcome measures included acquisition of appropriate CKD-related laboratory measures, specialty referrals, and hospitalization rates. Median age of the study population was 68 years old, and 75% were white. At study entry, 54% of patients were followed by nephrologists, and 88% were on renin-angiotensin system blockers. After a 2-year follow-up, rate of decline in eGFR was similar across the four groups ( P =0.19). Measurements of CKD-related laboratory parameters were not significantly different among the groups. Furthermore, referral for dialysis education and vascular access placement, emergency room visits, and hospitalization rates were not statistically significant different between the groups. We successfully developed a patient navigator program and an enhanced personal health record for the CKD population. However, there were no differences in eGFR decline and other outcomes among the study groups. Larger and long-term studies along with cost-effectiveness analyses are needed to evaluate the role of patient navigators

  17. Access to Adequate Healthcare for Hmong Women: A Patient Navigation Program to Increase Pap Test Screening

    Directory of Open Access Journals (Sweden)

    Moon S. Chen, Jr

    2010-01-01

    Full Text Available This paper describes the development and implementation of a Hmong Cervical Cancer Intervention Program utilizing a patient navigation model to raise cervical cancer awareness for Hmong women through educational workshops and to assist Hmong women in obtaining a Pap test. Out of 402 women who participated in a baseline survey, the Patient Navigation Program was able to enroll 109 participants who had not had a Pap test in the past 3 years and had never had a Pap test. Through utilization of outreach, an awareness campaign and patient navigation support, at least 38 percent of 109 participants obtained a Pap test. Overall, 21 workshops and 43 outreach activities were conducted by the Hmong Women’s Heritage Association, leading to 63 percent of those enrolled in the Patient Navigation Program who could be contacted to obtain a Pap test.

  18. Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors.

    Science.gov (United States)

    Sollmann, Nico; Goblirsch-Kolb, Moritz F; Ille, Sebastian; Butenschoen, Vicki M; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2016-12-01

    For the navigation of transcranial magnetic stimulation (TMS), various techniques are available. Yet, there are two basic principles underlying them all: electric-field-navigated transcranial magnetic stimulation (En-TMS) and line-navigated transcranial magnetic stimulation (Ln-TMS). The current study was designed to compare both methods. To explore whether there is a difference in clinical applicability, workflow, and mapping results of both techniques, we systematically compared motor mapping via En-TMS and Ln-TMS in 12 patients suffering from brain tumors. The number of motor-positive stimulation spots and the ratio of positive spots per overall stimulation numbers were significantly higher for En-TMS (motor-positive spots: En-TMS vs. Ln-TMS: 128.3 ± 35.0 vs. 41.3 ± 26.8, p mapping in the neurosurgical context for the first time. Although both TMS systems tested in the present study are explicitly designed for application during motor mapping in patients with brain lesions, there are differences in applicability, workflow, and results between En-TMS and Ln-TMS, which should be distinctly considered during clinical use of the technique. However, to draw final conclusions about accuracy, confirmation of motor-positive Ln-TMS spots by intraoperative stimulation is crucial within the scope of upcoming investigations.

  19. Impact of trained oncology financial navigators on patient out-of-pocket spending.

    Science.gov (United States)

    Yezefski, Todd; Steelquist, Jordan; Watabayashi, Kate; Sherman, Dan; Shankaran, Veena

    2018-03-01

    Patients with cancer often face financial hardships, including loss of productivity, high out-of-pocket (OOP) costs, depletion of savings, and bankruptcy. By providing financial guidance and assistance through specially trained navigators, hospitals and cancer care clinics may be able mitigate the financial burdens to patients and also minimize financial losses for the treating institutions. Financial navigators at 4 hospitals were trained through The NaVectis Group, an organization that provides training to healthcare staff to increase patient access to care and assist with OOP expenses. Data regarding financial assistance and hospital revenue were collected after instituting these programs. Amount and type of assistance (free medication, new insurance enrollment, premium/co-pay assistance) were determined annually for all qualifying patients at the participating hospitals. Of 11,186 new patients with cancer seen across the 4 participating hospitals between 2012 and 2016, 3572 (32%) qualified for financial assistance. They obtained $39 million in total financial assistance, averaging $3.5 million per year in the 11 years under observation. Patients saved an average of $33,265 annually on medication, $12,256 through enrollment in insurance plans, $35,294 with premium assistance, and $3076 with co-pay assistance. The 4 hospitals were able to avoid write-offs and save on charity care by an average of $2.1 million per year. Providing financial navigation training to staff at hospitals and cancer centers can significantly benefit patients through decreased OOP expenditures and also mitigate financial losses for healthcare institutions.

  20. Navigating Through Chaos: Charge Nurses and Patient Safety.

    Science.gov (United States)

    Cathro, Heather

    2016-04-01

    The aim of this study was to explore actions and the processes charge nurses (CNs) implement to keep patients safe and generate an emerging theory to inform CN job descriptions, orientation, and training to promote patient safety in practice. Healthcare workers must provide a safe environment for patients. CNs are the frontline leaders on most hospital units and can function as gatekeepers for safe patient care. This grounded theory study utilized purposive sampling of CNs on medical-surgical units in a 400-bed metropolitan hospital. Data collection consisted of 11 interviews and 6 observations. The emerging theory was navigating through chaos: CNs balancing multiple roles, maintaining a watchful eye, and working with and leading the healthcare team to keep patients safe. CNs have knowledge of patients, staff, and complex healthcare environments, putting them in opportune positions to influence patient safety.

  1. An exploration of the patient navigator role: perspectives of younger women with breast cancer.

    Science.gov (United States)

    Pedersen, Allison E; Hack, Thomas F; McClement, Susan E; Taylor-Brown, Jill

    2014-01-01

    To delineate the role of the oncology patient navigator, drawing from the experiences and descriptions of younger women with breast cancer. Interpretive, descriptive, qualitative research design. Participants' homes, researcher's home, and via telephone, all in Winnipeg, Manitoba, Canada. 12 women aged 50 years or younger who were diagnosed with breast cancer within the last three years. Face-to-face semistructured interviews explored patient experiences with the cancer care system, including problems encountered, unmet needs, and opinions about the functions of the patient navigator role. The audio-recorded interviews were transcribed and data were broken down and inductively coded into four categories. Constant comparative techniques also were used during analysis. The role of the oncology patient navigator included two facets: "Processual facets," with the subthemes assigned to me at diagnosis, managing the connection, mapping the process, practical support, and quarterbacking my entire journey; and "Personal qualities: The essentials," with the subthemes empathetic care tenor, knowing the cancer system, and understanding the medical side of breast cancer. Despite the tremendous effort directed toward enhancing care for younger women undergoing treatment for breast cancer, gaps continue to exist. Younger women with breast cancer require a care approach providing ongoing dialogue, teaching, and emotional support from the point of diagnosis through treatment, including transitions of care within the oncology setting and back to their primary care practitioner. Oncology nurse navigators are well positioned to provide patients with anticipatory guidance from diagnosis to the end of treatment.

  2. Detecting allocentric and egocentric navigation deficits in patients with schizophrenia and bipolar disorder using virtual reality.

    Science.gov (United States)

    Mohammadi, Alireza; Hesami, Ehsan; Kargar, Mahmoud; Shams, Jamal

    2018-04-01

    Present evidence suggests that the use of virtual reality has great advantages in evaluating visuospatial navigation and memory for the diagnosis of psychiatric or other neurological disorders. There are a few virtual reality studies on allocentric and egocentric memories in schizophrenia, but studies on both memories in bipolar disorder are lacking. The objective of this study was to compare the performance of allocentric and egocentric memories in patients with schizophrenia and bipolar disorder. For this resolve, an advanced virtual reality navigation task (VRNT) was presented to distinguish the navigational performances of these patients. Twenty subjects with schizophrenia and 20 bipolar disorder patients were compared with 20 healthy-matched controls on the newly developed VRNT consisting of a virtual neighbourhood (allocentric memory) and a virtual maze (egocentric memory). The results demonstrated that schizophrenia patients were significantly impaired on all allocentric, egocentric, visual, and verbal memory tasks compared with patients with bipolar disorder and normal subjects. Dissimilarly, the performance of patients with bipolar disorder was slightly lower than that of control subjects in all these abilities, but no significant differences were observed. It was concluded that allocentric and egocentric navigation deficits are detectable in patients with schizophrenia and bipolar disorder using VRNT, and this task along with RAVLT and ROCFT can be used as a valid clinical tool for distinguishing these patients from normal subjects.

  3. A Patient Navigator Intervention to Reduce Hospital Readmissions among High-Risk Safety-Net Patients: A Randomized Controlled Trial.

    Science.gov (United States)

    Balaban, Richard B; Galbraith, Alison A; Burns, Marguerite E; Vialle-Valentin, Catherine E; Larochelle, Marc R; Ross-Degnan, Dennis

    2015-07-01

    Evidence-based interventions to reduce hospital readmissions may not generalize to resource-constrained safety-net hospitals. To determine if an intervention by patient navigators (PNs), hospital-based Community Health Workers, reduces readmissions among high risk, low socioeconomic status patients. Randomized controlled trial. General medicine inpatients having at least one of the following readmission risk factors: (1) age ≥60 years, (2) any in-network inpatient admission within the past 6 months, (3) length of stay ≥3 days, (4) admission diagnosis of heart failure, or (5) chronic obstructive pulmonary disease. The analytic sample included 585 intervention patients and 925 controls. PNs provided coaching and assistance in navigating the transition from hospital to home through hospital visits and weekly telephone outreach, supporting patients for 30 days post-discharge with discharge preparation, medication management, scheduling of follow-up appointments, communication with primary care, and symptom management. The primary outcome was in-network 30-day hospital readmissions. Secondary outcomes included rates of outpatient follow-up. We evaluated outcomes for the entire cohort and stratified by patient age >60 years (425 intervention/584 controls) and ≤60 years (160 intervention/341 controls). Overall, 30-day readmission rates did not differ between intervention and control patients. However, the two age groups demonstrated marked differences. Intervention patients >60 years showed a statistically significant adjusted absolute 4.1% decrease [95% CI: -8.0%, -0.2%] in readmission with an increase in 30-day outpatient follow-up. Intervention patients ≤60 years showed a statistically significant adjusted absolute 11.8% increase [95% CI: 4.4%, 19.0%] in readmission with no change in 30-day outpatient follow-up. A patient navigator intervention among high risk, safety-net patients decreased readmission among older patients while increasing readmissions

  4. Opt-Out Patient Navigation to Improve Breast and Cervical Cancer Screening Among Homeless Women.

    Science.gov (United States)

    Asgary, Ramin; Naderi, Ramesh; Wisnivesky, Juan

    2017-09-01

    A patient navigation model was implemented to improve breast and cervical cancer screening among women who were homeless in five shelters and shelter clinics in New York City in 2014. Navigation consisted of opt-out screening to eligible women; cancer health and screening education; scheduling and following up for screening completion, obtaining, and communicating results to patients and providers; and care coordination with social services organizations. Women (n = 162, aged 21-74, 58% black) completed mammogram (88%) and Pap testing (83%) from baselines of 59% and 50%, respectively. There was no association between mental health or substance abuse and screening completion. Adjusted analysis showed a significant association between refusing/missing Pap testing and older age (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.04-1.20); independent predictors of mammogram included more pregnancies (OR 0.57, 95% CI 0.37-0.88) and older age (OR 0.84, 95% CI 0.79-0.90). Opt-out patient navigation is feasible and effective and may mitigate multilevel barriers to cancer screening among women with unstable housing.

  5. Navigating the Road to Success: A Systematic Approach to Preparing Competitive Grant Proposals

    Directory of Open Access Journals (Sweden)

    Theresa Mackenzie

    2007-03-01

    Full Text Available Purpose Difficulty in securing research funding has been cited as one barrier to the involvement of more librarians and information professionals in conducting original research. This article seeks to support the work of librarians who wish to secure research funding by describing a systematic approach to the creation of successful grant applications.Approach The authors draw on more than fifteen years collective experience in supporting the development of successful research grant proposals. Eleven grant‐writing best practicesor ‘key approaches’ are described, and a planning timeline is suggested.Conclusions: Use of these best practices can assist researchers in creating successful research grant proposals that will also help streamline the research process once it is underway. It is important to recognize the competitive nature of research grant competitions, obtain feedback from an internal review panel, and use feedback from funding agencies to strengthen future grant applications.

  6. Intraoperative navigation-guided resection of anomalous transverse processes in patients with Bertolotti's syndrome.

    Science.gov (United States)

    Babu, Harish; Lagman, Carlito; Kim, Terrence T; Grode, Marshall; Johnson, J Patrick; Drazin, Doniel

    2017-01-01

    Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure were identified. The patients were 17- and 38-years-old, and presented with severe, chronic low back pain that was resistant to conservative treatment. Imaging revealed lumbosacral transitional vertebrae at the level of L5-S1, which was consistent with Bertolotti's syndrome. Injections of the pseudoarticulations resulted in only temporary symptomatic relief. Thus, the patients subsequently underwent O-arm neuronavigational resection of the bony defects. Both patients experienced immediate pain resolution (documented on the postoperative notes) and remained asymptomatic 1 year later. Intraoperative three-dimensional imaging and navigation guidance facilitated the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Excellent outcomes were achieved in both patients.

  7. BIOMECHANICAL INDICES OF STANDING AND GAIT IN PATIENTS AFTER TOTAL KNEE REPLACEMENT USING COMPUTER NAVIGATION

    Directory of Open Access Journals (Sweden)

    Y. A. Bezgodkov

    2011-01-01

    Full Text Available Several biomechanical parameters of standing and walking in 50 patients with osteoarthrosis after total knee arthroplasty were evaluated. The patients were randomly divided in two equal groups: in the first group the surgery was performed with computer navigation system and in the second - with traditional instruments. After TKA with computer navigation centers of common body pressure and legs pressure during standing phase improved significantly better than in traditional group. Walking parameters like step length, ground contact time and rhythm coefficient improved in both groups of patients but without significant difference. Thereby more precise orientation of implant that achieved during computer assisted TKA leads to better functional performance at 6 and 12 month after surgery.

  8. Disability Grant: a precarious lifeline for HIV/AIDS patients in South Africa.

    Science.gov (United States)

    Govender, Veloshnee; Fried, Jana; Birch, Stephen; Chimbindi, Natsayi; Cleary, Susan

    2015-06-09

    In South Africa, HIV/AIDS remains a major public health problem. In a context of chronic unemployment and deepening poverty, social assistance through a Disability Grant (DG) is extended to adults with HIV/AIDS who are unable to work because of a mental or physical disability. Using a mixed methods approach, we consider 1) inequalities in access to the DG for patients on ART and 2) implications of DG access for on-going access to healthcare. Data were collected in exit interviews with 1200 ART patients in two rural and two urban health sub-districts in four different South African provinces. Additionally, 17 and 18 in-depth interviews were completed with patients on ART treatment and ART providers, respectively, in three of the four sites included in the quantitative phase. Grant recipients were comparatively worse off than non-recipients in terms of employment (9.1 % vs. 29.9 %) and wealth (58.3 % in the poorest half vs. 45.8 %). After controlling for socioeconomic and demographic factors, site, treatment duration, adherence and concomitant TB treatment, the regression analyses showed that the employed were significantly less likely to receive the DG than the unemployed (p < 0.001). Also, patients who were longer on treatment and receiving concomitant treatment (i.e., ART and tuberculosis care) were more likely to receive the DG (significant at the 5 % level). The qualitative analyses indicated that the DG alleviated the burden of healthcare related costs for ART patients. Both patients and healthcare providers spoke of the complexity of the grants process and eligibility criteria as a barrier to accessing the grant. This impacted adversely on patient-provider relationships. These findings highlight the appropriateness of the DG for people living with HIV/AIDS. However, improved collaboration between the Departments of Social Development and Health is essential for preparing healthcare providers who are at the interface between social security and potential

  9. Applications of navigation for orthognathic surgery.

    Science.gov (United States)

    Bobek, Samuel L

    2014-11-01

    Stereotactic surgical navigation has been used in oral and maxillofacial surgery for orbital reconstruction, reduction of facial fractures, localization of foreign bodies, placement of implants, skull base surgery, tumor removal, temporomandibular joint surgery, and orthognathic surgery. The primary goals in adopting intraoperative navigation into these different surgeries were to define and localize operative anatomy, to localize implant position, and to orient the surgical wound. Navigation can optimize the functional and esthetic outcomes in patients with dentofacial deformities by identifying pertinent anatomic structures, transferring the surgical plan to the patient, and verifying the surgical result. This article discusses the principles of navigation-guided orthognathic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Computer Navigation-aided Resection of Sacral Chordomas

    Directory of Open Access Journals (Sweden)

    Yong-Kun Yang

    2016-01-01

    Full Text Available Background: Resection of sacral chordomas is challenging. The anatomy is complex, and there are often no bony landmarks to guide the resection. Achieving adequate surgical margins is, therefore, difficult, and the recurrence rate is high. Use of computer navigation may allow optimal preoperative planning and improve precision in tumor resection. The purpose of this study was to evaluate the safety and feasibility of computer navigation-aided resection of sacral chordomas. Methods: Between 2007 and 2013, a total of 26 patients with sacral chordoma underwent computer navigation-aided surgery were included and followed for a minimum of 18 months. There were 21 primary cases and 5 recurrent cases, with a mean age of 55.8 years old (range: 35-84 years old. Tumors were located above the level of the S3 neural foramen in 23 patients and below the level of the S3 neural foramen in 3 patients. Three-dimensional images were reconstructed with a computed tomography-based navigation system combined with the magnetic resonance images using the navigation software. Tumors were resected via a posterior approach assisted by the computer navigation. Mean follow-up was 38.6 months (range: 18-84 months. Results: Mean operative time was 307 min. Mean intraoperative blood loss was 3065 ml. For computer navigation, the mean registration deviation during surgery was 1.7 mm. There were 18 wide resections, 4 marginal resections, and 4 intralesional resections. All patients were alive at the final follow-up, with 2 (7.7% exhibiting tumor recurrence. The other 24 patients were tumor-free. The mean Musculoskeletal Tumor Society Score was 27.3 (range: 19-30. Conclusions: Computer-assisted navigation can be safely applied to the resection of the sacral chordomas, allowing execution of preoperative plans, and achieving good oncological outcomes. Nevertheless, this needs to be accomplished by surgeons with adequate experience and skill.

  11. Improvement of Navigation and Representation in Virtual Reality after Prism Adaptation in Neglect Patients

    Directory of Open Access Journals (Sweden)

    Bertrand Glize

    2017-11-01

    Full Text Available Prism adaptation (PA is responsible for an expansion of sensori-motor after-effects to cognitive domains for patients with spatial neglect. One important question is whether the cognitive after-effects induced by PA may also concern higher aspects of spatial cognition, such as navigation and topographic memory, which are critical in everyday life. The aim of this study was to assess whether multiple sessions of right PA can affect navigation and topographic memory. Seven right brain-damaged (RBD patients with chronic neglect were included. We used a virtual supermarket named VAP-S which is an original paradigm, similar to the “shopping list test” during which patients had to purchase items from a list of eight products. Furthermore, in order to assess generalization of PA effects on constructing a spatial map from virtual information, each participant was then asked to draw the map of the virtual supermarket from memory. Regarding navigation performance, significant results were obtained: session duration reduction, fewer numbers of pauses and omissions, more items purchased on the left side and more items purchased over all. A long-lasting effect was noted, up to one month after PA. The representational task performance was also significantly increased for map drawing, with a reduction of the right shift of the symmetry axis of the map, more items drawn on the left side of maps and over all, and more items correctly located on the map. Some of these effects lasted for at least 7 days. These results suggest an expansion of PA benefit to a virtual environment. Crucially, the cognitive benefits induced by PA were noted for complex spatial cognition tasks required in everyday life such as navigation and topographic memory and this improvement was maintained for up to 1 month.

  12. Patterns of task and network actions performed by navigators to facilitate cancer care.

    Science.gov (United States)

    Clark, Jack A; Parker, Victoria A; Battaglia, Tracy A; Freund, Karen M

    2014-01-01

    Patient navigation is a widely implemented intervention to facilitate access to care and reduce disparities in cancer care, but the activities of navigators are not well characterized. The aim of this study is to describe what patient navigators actually do and explore patterns of activity that clarify the roles they perform in facilitating cancer care. We conducted field observations of nine patient navigation programs operating in diverse health settings of the national patient navigation research program, including 34 patient navigators, each observed an average of four times. Trained observers used a structured observation protocol to code as they recorded navigator actions and write qualitative field notes capturing all activities in 15-minute intervals during observations ranging from 2 to 7 hours; yielding a total of 133 observations. Rates of coded activity were analyzed using numerical cluster analysis of identified patterns, informed by qualitative analysis of field notes. Six distinct patterns of navigator activity were identified, which differed most relative to how much time navigators spent directly interacting with patients and how much time they spent dealing with medical records and documentation tasks. Navigator actions reveal a complex set of roles in which navigators both provide the direct help to patients denoted by their title and also carry out a variety of actions that function to keep the health system operating smoothly. Working to navigate patients through complex health services entails working to repair the persistent challenges of health services that can render them inhospitable to patients. The organizations that deploy navigators might learn from navigators' efforts and explore alternative approaches, structures, or systems of care in addressing both the barriers patients face and the complex solutions navigators create in helping patients.

  13. Intraoperative navigation-guided resection of anomalous transverse processes in patients with Bertolotti's syndrome

    OpenAIRE

    Babu, Harish; Lagman, Carlito; Kim, Terrence T.; Grode, Marshall; Johnson, J. Patrick; Drazin, Doniel

    2017-01-01

    Background: Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Case Descriptions: Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure...

  14. Benefits and challenges perceived by patients with cancer when offered a nurse navigator

    DEFF Research Database (Denmark)

    Thygesen, Marianne K; Pedersen, Birthe D; Kragstrup, Jakob

    2011-01-01

    Lack of communication, care and respect from healthcare professionals can be challenges for patients in trajectories of cancer, possibly accompanied by experienced fragmentation of the care, anxiety and worries. One way to try to improve delivery of care is additional help from nurse navigators (NN...

  15. Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.

    Science.gov (United States)

    Morsy, Ahmed A; Ng, Wai Hoe

    2015-11-01

    We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”

    Energy Technology Data Exchange (ETDEWEB)

    Voros, L; Cohen, G; Zaider, M; Yamada, Y [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan image study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While

  17. Clinical applications of virtual navigation bronchial intervention.

    Science.gov (United States)

    Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2018-01-01

    In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments

  18. Importance of patient-centred signage and navigation guide in an orthopaedic and plastics clinic.

    Science.gov (United States)

    Maqbool, Talha; Raju, Sneha; In, Eunji

    2016-01-01

    Gulshan & Nanji Orthopaedic and Plastics Center at the North York General Hospital is the second busiest site after the emergency department serving more than 26,000 patients annually. Increase in patient flow, overworked staff, and recent renovations to the hospital have resulted in patients experiencing long wait times, and thusly patient dissatisfaction and stress. Several factors contribute to patient dissatisfaction and stress: i) poor and unfriendly signage; ii) inconsistent utilization of the numbering system; and iii) difficulty navigating to and from the imaging center. A multidisciplinary QI team was assembled to improve the patient experience. We developed a questionnaire to assess patient stress levels at the baseline. Overall, more than half of the patients (54.8%) strongly agreed or agreed to having a stressful waiting experience. Subsequently, based on patient feedback and staff perspectives, we implemented two PDSA cycles. For PDSA 1, we placed a floor graphic (i.e. black tape) to assist patients in navigating from the clinic to the imaging centre and back. For PDSA 2, we involved creating a single 21"×32" patient-friendly sign at the entrance to welcome patients, with clear instructions outlining registration procedures. Surveys were re-administered to assess patient stress levels. A combination of both interventions caused a statistically significant reduction in patient stress levels based on the Kruskal-Wallis and Mann-Whitney U Tests. The present project highlighted the importance of involving stakeholders as well as frontline staff when undertaking quality improvement projects as a way to identify bottlenecks as well as establish sustainable solutions. Additionally, the team recognized the importance of incorporating empirical based solutions and involving experts in the field to optimize results. The present project successfully implemented strategies to improve patient satisfaction and reduce stress in a high flow community clinic. These

  19. Interactive navigation-guided ophthalmic plastic surgery: navigation enabling of telescopes and their use in endoscopic lacrimal surgeries

    Directory of Open Access Journals (Sweden)

    Ali MJ

    2016-11-01

    Full Text Available Mohammad Javed Ali,1 Swati Singh,1 Milind N Naik,1 Swathi Kaliki,2 Tarjani Vivek Dave1 1The Institute of Dacryology, 2The Operation Eyesight Universal Institute for Eye Cancer, L.V. Prasad Eye Institute, Hyderabad, India Purpose: The aims of this study were to report the preliminary experience of using telescopes, which were enabled for navigation guidance, and their utility in complex endoscopic lacrimal surgeries. Methods: Navigation enabling of the telescope was achieved by using the AxiEM™ malleable neuronavigation shunt stylet. Image-guided dacryolocalization was performed in five patients using the intraoperative image-guided StealthStation™ system in the electromagnetic mode. The “look ahead” protocol software was used to assist the surgeon in assessing the intraoperative geometric location of the endoscope and what lies ahead in real time. All patients underwent navigation-guided powered endoscopic dacryocystorhinostomy. The utility of uninterrupted navigation guidance throughout the surgery with the endoscope as the navigating tool was noted. Results: Intraoperative geometric localization of the lacrimal sac and the nasolacrimal duct could be easily deciphered. Constant orientation of the lacrimal drainage system and the peri-lacrimal anatomy was possible without the need for repeated point localizations throughout the surgery. The “look ahead” features could accurately alert the surgeon of anatomical structures that exists at 5, 10 and 15 mm in front of the endoscope. Good securing of the shunt stylet with the telescope was found to be essential for constant and accurate navigation. Conclusion: Navigation-enabled endoscopes provide the surgeon with the advantage of sustained stereotactic anatomical awareness at all times during the surgery. Keywords: telescope, endoscope, image guidance, navigation, lacrimal surgery, powered endoscopic DCR

  20. Usability Testing of Two Ambulatory EHR Navigators.

    Science.gov (United States)

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  1. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    Science.gov (United States)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  2. Structural and reliability analysis of a patient satisfaction with cancer-related care measure: a multisite patient navigation research program study.

    Science.gov (United States)

    Jean-Pierre, Pascal; Fiscella, Kevin; Freund, Karen M; Clark, Jack; Darnell, Julie; Holden, Alan; Post, Douglas; Patierno, Steven R; Winters, Paul C

    2011-02-15

    Patient satisfaction is an important outcome measure of quality of cancer care and 1 of the 4 core study outcomes of the National Cancer Institute (NCI)-sponsored Patient Navigation Research Program to reduce race/ethnicity-based disparities in cancer care. There is no existing patient satisfaction measure that spans the spectrum of cancer-related care. The objective of this study was to develop a Patient Satisfaction With Cancer Care measure that is relevant to patients receiving diagnostic/therapeutic cancer-related care. The authors developed a conceptual framework, an operational definition of Patient Satisfaction With Cancer Care, and an item pool based on literature review, expert feedback, group discussion, and consensus. The 35-item Patient Satisfaction With Cancer Care measure was administered to 891 participants from the multisite NCI-sponsored Patient Navigation Research Program. Principal components analysis (PCA) was conducted for latent structure analysis. Internal consistency was assessed using Cronbach coefficient alpha (α). Divergent analysis was performed using correlation analyses between the Patient Satisfaction With Cancer Care, the Communication and Attitudinal Self-Efficacy-Cancer, and demographic variables. The PCA revealed a 1-dimensional measure with items forming a coherent set explaining 62% of the variance in patient satisfaction. Reliability assessment revealed high internal consistency (α ranging from 0.95 to 0.96). The Patient Satisfaction With Cancer Care demonstrated good face validity, convergent validity, and divergent validity, as indicated by moderate correlations with subscales of the Communication and Attitudinal Self-Efficacy-Cancer (all P .05). The Patient Satisfaction With Cancer Care is a valid tool for assessing satisfaction with cancer-related care for this sample. Copyright © 2010 American Cancer Society.

  3. Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study.

    Science.gov (United States)

    Matityahu, Amir; Kahler, David; Krettek, Christian; Stöckle, Ulrich; Grutzner, Paul Alfred; Messmer, Peter; Ljungqvist, Jan; Gebhard, Florian

    2014-12-01

    To evaluate the accuracy of computer-assisted sacral screw fixation compared with conventional techniques in the dysmorphic versus normal sacrum. Review of a previous study database. Database of a multinational study with 9 participating trauma centers. The reviewed group included 130 patients, 72 from the navigated group and 58 from the conventional group. Of these, 109 were in the nondysmorphic group and 21 in the dysmorphic group. Placement of sacroiliac (SI) screws was performed using standard fluoroscopy for the conventional group and BrainLAB navigation software with either 2-dimensional or 3-dimensional (3D) navigation for the navigated group. Accuracy of SI screw placement by 2-dimensional and 3D navigation versus conventional fluoroscopy in dysmorphic and nondysmorphic patients, as evaluated by 6 observers using postoperative computerized tomography imaging at least 1 year after initial surgery. Intraobserver agreement was also evaluated. There were 11.9% (13/109) of patients with misplaced screws in the nondysmorphic group and 28.6% (6/21) of patients with misplaced screws in the dysmorphic group, none of which were in the 3D navigation group. Raw agreement between the 6 observers regarding misplaced screws was 32%. However, the percent overall agreement was 69.0% (kappa = 0.38, P dysmorphic proximal sacral segment. We recommend the use of 3D navigation, where available, for insertion of SI screws in patients with normal and dysmorphic proximal sacral segments. Therapeutic level I.

  4. Spatial and temporal aspects of navigation in two neurological patients.

    Science.gov (United States)

    van der Ham, Ineke J M; van Zandvoort, Martine J E; Meilinger, Tobias; Bosch, Sander E; Kant, Neeltje; Postma, Albert

    2010-07-14

    We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.

  5. Spatial navigation impairment is proportional to right hippocampal volume

    Czech Academy of Sciences Publication Activity Database

    Nedelská, Z.; Andel, R.; Laczó, J.; Vlček, Kamil; Hořínek, D.; Lisý, J.; Sheardová, K.; Bureš, Jan; Hort, J.

    2012-01-01

    Roč. 109, č. 7 (2012), s. 2590-2594 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GA309/09/1053; GA ČR(CZ) GA309/09/0286; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:GA MZd(CZ) NS10331 Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial navigation * Alzheimer’s Disease * hippocampal volume Subject RIV: FH - Neurology Impact factor: 9.737, year: 2012

  6. Computer-navigated minimally invasive total knee arthroplasty for patients with retained implants in the femur

    Directory of Open Access Journals (Sweden)

    Sung-Yen Lin

    2014-08-01

    Full Text Available Total knee arthroplasty (TKA in patients with knee arthritis and retained implants in the ipsilateral femur is a challenge for knee surgeons. Use of a conventional intramedullary femoral cutting guide is not practical because of the obstruction of the medullary canal by implants. Previous studies have shown that computer-assisted surgery (CAS can help restore alignment in conventional TKA for patients with knee arthritis with retained femoral implants or extra-articular deformity, without the need for implant removal or osteotomy. However, little has been published regarding outcomes with the use of navigation in minimally invasive surgery (MIS-TKA for patients with this complex knee arthritis. MIS has been proven to provide less postoperative pain and faster recovery than conventional TKA, but MIS-TKA in patients with retained femoral implants poses a greater risk in limb malalignment. The purpose of this study is to report the outcome of CAS-MIS-TKA in patients with knee arthritis and retained femoral implants. Between April 2006 and March 2008, eight patients with knee arthritis and retained femoral implants who underwent the CAS-MIS-TKA were retrospectively reviewed. Three of the eight patients had extra-articular deformity, including two femur bones and one tibia bone, in the preoperative examination. The anteroposterior, lateral, and long-leg weight-bearing radiographs carried out at 3-month follow-up was used to determine the mechanical axis of lower limb and the position of components. The mean preoperative femorotibial angle in patients without extra-articular deformity was 3.8° of varus and was corrected to 4.6° of valgus. With the use of navigation in MIS-TKA, the two patients in this study with extra-articular femoral deformity also obtained an ideal postoperative mechanical axis within 2° of normal alignment. Overall, there was a good restoration of postoperative mechanical alignment in all cases, with a mean angle of 0.4° of

  7. Towards Safe Navigation by Formalizing Navigation Rules

    Directory of Open Access Journals (Sweden)

    Arne Kreutzmann

    2013-06-01

    Full Text Available One crucial aspect of safe navigation is to obey all navigation regulations applicable, in particular the collision regulations issued by the International Maritime Organization (IMO Colregs. Therefore, decision support systems for navigation need to respect Colregs and this feature should be verifiably correct. We tackle compliancy of navigation regulations from a perspective of software verification. One common approach is to use formal logic, but it requires to bridge a wide gap between navigation concepts and simple logic. We introduce a novel domain specification language based on a spatio-temporal logic that allows us to overcome this gap. We are able to capture complex navigation concepts in an easily comprehensible representation that can direcly be utilized by various bridge systems and that allows for software verification.

  8. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.

    Science.gov (United States)

    Jandl, N M; Sprenger, A; Wojak, J F; Göttlich, M; Münte, T F; Krämer, U M; Helmchen, C

    2015-10-01

    Spatial orientation and navigation depends on information from the vestibular system. Previous work suggested impaired spatial navigation in patients with bilateral vestibular failure (BVF). The aim of this study was to investigate event-related brain activity by functional magnetic resonance imaging (fMRI) during spatial navigation and visual memory tasks in BVF patients. Twenty-three BVF patients and healthy age- and gender matched control subjects performed learning sessions of spatial navigation by watching short films taking them through various streets from a driver's perspective along a route to the Cathedral of Cologne using virtual reality videos (adopted and modified from Google Earth). In the scanner, participants were asked to respond to questions testing for visual memory or spatial navigation while they viewed short video clips. From a similar but not identical perspective depicted video frames of routes were displayed which they had previously seen or which were completely novel to them. Compared with controls, posterior cerebellar activity in BVF patients was higher during spatial navigation than during visual memory tasks, in the absence of performance differences. This cerebellar activity correlated with disease duration. Cerebellar activity during spatial navigation in BVF patients may reflect increased non-vestibular efforts to counteract the development of spatial navigation deficits in BVF. Conceivably, cerebellar activity indicates a change in navigational strategy of BVF patients, i.e. from a more allocentric, landmark or place-based strategy (hippocampus) to a more sequence-based strategy. This interpretation would be in accord with recent evidence for a cerebellar role in sequence-based navigation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Spatial navigation – a unique window into physiological and pathological aging

    Directory of Open Access Journals (Sweden)

    Ivana eGazova

    2012-06-01

    Full Text Available Spatial navigation is a skill of determining and maintaining a trajectory from one place to another. Mild progressive decline of spatial navigation develops gradually during the course of physiological ageing. Nevertheless, severe spatial navigation deficit can be the first sign of incipient Alzheimer’s disease (AD, occurring in the stage of mild cognitive impairment (MCI, preceding the development of a full blown dementia. Patients with amnestic MCI, especially those with the hippocampal type of amnestic syndrome, are at very high risk of AD. These patients present with the same pattern of spatial navigation impairment as do the patients with mild AD. Spatial navigation testing of elderly as well as computer tests developed for routine clinical use thus represent a possibility for further investigation of this cognitive domain, but most of all, an opportunity for making early diagnosis of AD.

  10. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer's disease

    Czech Academy of Sciences Publication Activity Database

    Vlček, Kamil; Laczó, J.

    2014-01-01

    Roč. 8, Mar 17 (2014), s. 89 ISSN 1662-5153 R&D Projects: GA MZd(CZ) NT13386 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional support: RVO:67985823 Keywords : spatial navigation * Alzheimer’s disease * spatial disorientation * brain changes * mild cognitive impairment Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  11. Does intraoperative navigation improve the accuracy of mandibular angle osteotomy: Comparison between augmented reality navigation, individualised templates and free-hand techniques.

    Science.gov (United States)

    Zhu, Ming; Liu, Fei; Zhou, Chaozheng; Lin, Li; Zhang, Yan; Chai, Gang; Xie, Le; Qi, Fazhi; Li, Qingfeng

    2018-04-11

    Augmented reality (AR)-based navigation surgery has evolved to be an advanced assisted technology. The aim of this study is to manifest the accuracy of AR navigation for the intraoperative mandibular angle osteotomy by comparing the navigation with other interventional techniques. A retrospective study was conducted with 93 post-surgical patients with mandibular angle hypertrophy admitted at our plastic and reconstructive surgery department between September 2011 and June 2016. Thirty-one patients received osteotomy conducted using a navigation system based on augmented reality (AR group), 28 patients received osteotomy conducted using individualised templates (IT group) and the remaining 34 patients received osteotomy performed by free hand (free-hand group). The post-operative computed tomography (CT) images were reviewed and analysed by comparing with pre-surgical planning generated by three-dimensional (3D) software. The preparation time, cutting time, whole operating time and discrepancy in osteotomy lines were measured. The preparation time was much shorter for the free-hand group than that for the AR group and the IT group (P  0.05). In addition, the discrepancy in osteotomy lines was lower for the AR group and in the IT group than for the free-hand group (P < 0.01). The navigation system based on AR has a higher accuracy, more reliability and better user friendliness for some particular clinical procedures than for other techniques, which has a promising clinical prospect. Copyright © 2018. Published by Elsevier Ltd.

  12. A pilot study of SPECT/CT-based mixed-reality navigation towards the sentinel node in patients with melanoma or Merkel cell carcinoma of a lower extremity.

    Science.gov (United States)

    van den Berg, Nynke S; Engelen, Thijs; Brouwer, Oscar R; Mathéron, Hanna M; Valdés-Olmos, Renato A; Nieweg, Omgo E; van Leeuwen, Fijs W B

    2016-08-01

    To explore the feasibility of an intraoperative navigation technology based on preoperatively acquired single photon emission computed tomography combined with computed tomography (SPECT/CT) images during sentinel node (SN) biopsy in patients with melanoma or Merkel cell carcinoma. Patients with a melanoma (n=4) or Merkel cell carcinoma (n=1) of a lower extremity scheduled for wide re-excision of the primary lesion site and SN biopsy were studied. Following a Tc-nanocolloid injection and lymphoscintigraphy, SPECT/CT images were acquired with a reference target (ReTp) fixed on the leg or the iliac spine. Intraoperatively, a sterile ReTp was placed at the same site to enable SPECT/CT-based mixed-reality navigation of a gamma ray detection probe also containing a reference target (ReTgp).The accuracy of the navigation procedure was determined in the coronal plane (x, y-axis) by measuring the discrepancy between standard gamma probe-based SN localization and mixed-reality-based navigation to the SN. To determine the depth accuracy (z-axis), the depth estimation provided by the navigation system was compared to the skin surface-to-node distance measured in the computed tomography component of the SPECT/CT images. In four of five patients, it was possible to navigate towards the preoperatively defined SN. The average navigational error was 8.0 mm in the sagittal direction and 8.5 mm in the coronal direction. Intraoperative sterile ReTp positioning and tissue movement during surgery exerted a distinct influence on the accuracy of navigation. Intraoperative navigation during melanoma or Merkel cell carcinoma surgery is feasible and can provide the surgeon with an interactive 3D roadmap towards the SN or SNs in the groin. However, further technical optimization of the modality is required before this technology can become routine practice.

  13. Spatial navigation-a unique window into physiological and pathological aging

    Czech Academy of Sciences Publication Activity Database

    Gažová, I.; Vlček, Kamil; Laczó, J.; Nedělská, Z.; Hynčicová, E.; Mokrišová, I.; Sheardová, K.; Hort, J.

    2012-01-01

    Roč. 4, JUN 21 (2012), s. 16 ISSN 1663-4365 R&D Projects: GA ČR(CZ) GA309/09/0286; GA ČR(CZ) GA309/09/1053; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:GA MZd(CZ) NT11225 Program:NT Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial navigation * Alzheimer’s Disease * disorientation Subject RIV: FH - Neurology Impact factor: 5.224, year: 2012

  14. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review.

    Science.gov (United States)

    Cogné, M; Taillade, M; N'Kaoua, B; Tarruella, A; Klinger, E; Larrue, F; Sauzéon, H; Joseph, P-A; Sorita, E

    2017-06-01

    Spatial navigation, which involves higher cognitive functions, is frequently implemented in daily activities, and is critical to the participation of human beings in mainstream environments. Virtual reality is an expanding tool, which enables on one hand the assessment of the cognitive functions involved in spatial navigation, and on the other the rehabilitation of patients with spatial navigation difficulties. Topographical disorientation is a frequent deficit among patients suffering from neurological diseases. The use of virtual environments enables the information incorporated into the virtual environment to be manipulated empirically. But the impact of manipulations seems differ according to their nature (quantity, occurrence, and characteristics of the stimuli) and the target population. We performed a systematic review of research on virtual spatial navigation covering the period from 2005 to 2015. We focused first on the contribution of virtual spatial navigation for patients with brain injury or schizophrenia, or in the context of ageing and dementia, and then on the impact of visual or auditory stimuli on virtual spatial navigation. On the basis of 6521 abstracts identified in 2 databases (Pubmed and Scopus) with the keywords « navigation » and « virtual », 1103 abstracts were selected by adding the keywords "ageing", "dementia", "brain injury", "stroke", "schizophrenia", "aid", "help", "stimulus" and "cue"; Among these, 63 articles were included in the present qualitative analysis. Unlike pencil-and-paper tests, virtual reality is useful to assess large-scale navigation strategies in patients with brain injury or schizophrenia, or in the context of ageing and dementia. Better knowledge about both the impact of the different aids and the cognitive processes involved is essential for the use of aids in neurorehabilitation. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  16. Effect of electromagnetic navigated ventriculoperitoneal shunt placement on failure rates.

    Science.gov (United States)

    Jung, Nayoung; Kim, Dongwon

    2013-03-01

    To evaluate the effect of electromagnetic (EM) navigation system on ventriculoperitoneal (VP) shunt failure rate through comparing the result of standard shunt placement. All patients undergoing VP shunt from October 2007 to September 2010 were included in this retrospective study. The first group received shunt surgery using EM navigation. The second group had catheters inserted using manual method with anatomical landmark. The relationship between proximal catheter position and shunt revision rate was evaluated using postoperative computed tomography by a 3-point scale. 1) Grade I; optimal position free-floating in cerebrospinal fluid, 2) Grade II; touching choroid or ventricular wall, 3) Grade III; tip within parenchyma. A total of 72 patients were participated, 27 with EM navigated shunts and 45 with standard shunts. Grade I was found in 25 patients from group 1 and 32 patients from group 2. Only 2 patients without use of navigation belonged to grade III. Proximal obstruction took place 7% in grade I, 15% in grade II and 100% in grade III. Shunt revision occurred in 11% of group 1 and 31% of group 2. Compared in terms of proximal catheter position, there was growing trend of revision rate according to increase of grade on each group. Although infection rate was similar between both groups, the result had no statistical meaning (p=0.905, chi-square test). The use of EM navigation in routine shunt surgery can eliminate poor shunt placement resulting in a dramatic reduction in failure rates.

  17. The effect of nurse navigation on timeliness of breast cancer care at an academic comprehensive cancer center.

    Science.gov (United States)

    Basu, Mohua; Linebarger, Jared; Gabram, Sheryl G A; Patterson, Sharla Gayle; Amin, Miral; Ward, Kevin C

    2013-07-15

    A patient navigation process is required for accreditation by the National Accreditation Program for Breast Centers (NAPBC). Patient navigation has previously been shown to improve timely diagnosis in patients with breast cancer. This study sought to assess the effect of nurse navigation on timeliness of care following the diagnosis of breast cancer by comparing patients who were treated in a comprehensive cancer center with and without the assistance of nurse navigation. Navigation services were initiated at an NAPBC-accredited comprehensive breast center in July 2010. Two 9-month study intervals were chosen for comparison of timeliness of care: October 2009 through June 2010 and October 2010 through June 2011. All patients with breast cancer diagnosed in the cancer center with stage 0 to III disease during the 2 study periods were identified by retrospective cancer registry review. Time from diagnosis to initial oncology consultation was measured in business days, excluding holidays and weekends. Overall, 176 patients met inclusion criteria: 100 patients prior to and 76 patients following nurse navigation implementation. Nurse navigation was found to significantly shorten time to consultation for patients older than 60 years (B = -4.90, P = .0002). There was no change in timeliness for patients 31 to 60 years of age. Short-term analysis following navigation implementation showed decreased time to consultation for older patients, but not younger patients. Further studies are indicated to assess the long-term effects and durability of this quality improvement initiative. © 2013 American Cancer Society.

  18. Evaluation of a Hospital-Based Pneumonia Nurse Navigator Program.

    Science.gov (United States)

    Seldon, Lisa E; McDonough, Kelly; Turner, Barbara; Simmons, Leigh Ann

    2016-12-01

    The aim of this study is to evaluate the effectiveness of a hospital-based pneumonia nurse navigator program. This study used a retrospective, formative evaluation. Data of patients admitted from January 2012 through December 2014 to a large community hospital with a primary or secondary diagnosis of pneumonia, excluding aspiration pneumonia, were used. Data included patient demographics, diagnoses, insurance coverage, core measures, average length of stay (ALOS), disposition, readmission rate, financial outcomes, and patient barriers to care were collected. Descriptive statistics and parametric testing were used to analyze data. Core measure performance was sustained at the 90th percentile 2 years after the implementation of the navigator program. The ALOS did not decrease to established benchmarks; however, the SD for ALOS decreased by nearly half after implementation of the navigator program, suggesting the program decreased the number and length of extended stays. Charges per case decreased by 21% from 2012 to 2014. Variable costs decreased by 4% over a 2-year period, which increased net profit per case by 5%. Average readmission payments increased by 8% from 2012 to 2014, and the net revenue per case increased by 8.3%. The pneumonia nurse navigator program may improve core measures, reduce ALOS, and increase net revenue. Future evaluations are necessary to substantiate these findings and optimize the cost and quality performance of navigator programs.

  19. Navigation in musculoskeletal oncology: An overview

    Directory of Open Access Journals (Sweden)

    Guy Vernon Morris

    2018-01-01

    Full Text Available Navigation in surgery has increasingly become more commonplace. The use of this technological advancement has enabled ever more complex and detailed surgery to be performed to the benefit of surgeons and patients alike. This is particularly so when applying the use of navigation within the field of orthopedic oncology. The developments in computer processing power coupled with the improvements in scanning technologies have permitted the incorporation of navigational procedures into day-to-day practice. A comprehensive search of PubMed using the search terms “navigation”, “orthopaedic” and “oncology” yielded 97 results. After filtering for English language papers, excluding spinal surgery and review articles, this resulted in 38 clinical studies and case reports. These were analyzed in detail by the authors (GM and JS and the most relevant papers reviewed. We have sought to provide an overview of the main types of navigation systems currently available within orthopedic oncology and to assess some of the evidence behind its use.

  20. Navigated MRI-guided liver biopsies in a closed-bore scanner: experience in 52 patients.

    Science.gov (United States)

    Moche, Michael; Heinig, Susann; Garnov, Nikita; Fuchs, Jochen; Petersen, Tim-Ole; Seider, Daniel; Brandmaier, Philipp; Kahn, Thomas; Busse, Harald

    2016-08-01

    To evaluate clinical effectiveness and diagnostic efficiency of a navigation device for MR-guided biopsies of focal liver lesions in a closed-bore scanner. In 52 patients, 55 biopsies were performed. An add-on MR navigation system with optical instrument tracking was used for image guidance and biopsy device insertion outside the bore. Fast control imaging allowed visualization of the true needle position at any time. The biopsy workflow and procedure duration were recorded. Histological analysis and clinical course/outcome were used to calculate sensitivity, specificity and diagnostic accuracy. Fifty-four of 55 liver biopsies were performed successfully with the system. No major and four minor complications occurred. Mean tumour size was 23 ± 14 mm and the skin-to-target length ranged from 22 to 177 mm. In 39 cases, access path was double oblique. Sensitivity, specificity and diagnostic accuracy were 88 %, 100 % and 92 %, respectively. The mean procedure time was 51 ± 12 min, whereas the puncture itself lasted 16 ± 6 min. On average, four control scans were taken. Using this navigation device, biopsies of poorly visible and difficult accessible liver lesions could be performed safely and reliably in a closed-bore MRI scanner. The system can be easily implemented in clinical routine workflow. • Targeted liver biopsies could be reliably performed in a closed-bore MRI. • The navigation system allows for image guidance outside of the scanner bore. • Assisted MRI-guided biopsies are helpful for focal lesions with a difficult access. • Successful integration of the method in clinical workflow was shown. • Subsequent system installation in an existing MRI environment is feasible.

  1. Neurocognitive Treatment for a Patient with Alzheimer's Disease Using a Virtual Reality Navigational Environment

    Directory of Open Access Journals (Sweden)

    Paul J.F. White

    2016-01-01

    Full Text Available In this case study, a man at the onset of Alzheimer's disease (AD was enrolled in a cognitive treatment program based upon spatial navigation in a virtual reality (VR environment. We trained him to navigate to targets in a symmetric, landmark-less virtual building. Our research goals were to determine whether an individual with AD could learn to navigate in a simple VR navigation (VRN environment and whether that training could also bring real-life cognitive benefits. The results show that our participant learned to perfectly navigate to desired targets in the VRN environment over the course of the training program. Furthermore, subjective feedback from his primary caregiver (his wife indicated that his skill at navigating while driving improved noticeably and that he enjoyed cognitive improvement in his daily life at home. These results suggest that VRN treatments might benefit other people with AD.

  2. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  3. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  4. Navigation concepts for MR image-guided interventions.

    Science.gov (United States)

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  5. Examining care navigation: librarian participation in a teambased approach?

    Directory of Open Access Journals (Sweden)

    A. Tyler Nix, MSLS

    2016-11-01

    Full Text Available Objective: This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. Method: The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample’s responsibilities and skill sets. Results: Coordination of patient care and a bachelor’s degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Conclusion: Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  6. Laparoscopic Navigated Liver Resection: Technical Aspects and Clinical Practice in Benign Liver Tumors

    Directory of Open Access Journals (Sweden)

    Markus Kleemann

    2012-01-01

    Full Text Available Laparoscopic liver resection has been performed mostly in centers with an extended expertise in both hepatobiliary and laparoscopic surgery and only in highly selected patients. In order to overcome the obstacles of this technique through improved intraoperative visualization we developed a laparoscopic navigation system (LapAssistent to register pre-operatively reconstructed three-dimensional CT or MRI scans within the intra-operative field. After experimental development of the navigation system, we commenced with the clinical use of navigation-assisted laparoscopic liver surgery in January 2010. In this paper we report the technical aspects of the navigation system and the clinical use in one patient with a large benign adenoma. Preoperative planning data were calculated by Fraunhofer MeVis Bremen, Germany. After calibration of the system including camera, laparoscopic instruments, and the intraoperative ultrasound scanner we registered the surface of the liver. Applying the navigated ultrasound the preoperatively planned resection plane was then overlain with the patient's liver. The laparoscopic navigation system could be used under sterile conditions and it was possible to register and visualize the preoperatively planned resection plane. These first results now have to be validated and certified in a larger patient collective. A nationwide prospective multicenter study (ProNavic I has been conducted and launched.

  7. Examining care navigation: librarian participation in a team-based approach?

    Science.gov (United States)

    Nix, A Tyler; Huber, Jeffrey T; Shapiro, Robert M; Pfeifle, Andrea

    2016-04-01

    This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample's responsibilities and skill sets. Coordination of patient care and a bachelor's degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  8. How do cancer patients navigate the public information environment? Understanding patterns and motivations for movement among information sources.

    Science.gov (United States)

    Nagler, Rebekah H; Romantan, Anca; Kelly, Bridget J; Stevens, Robin S; Gray, Stacy W; Hull, Shawnika J; Ramirez, A Susana; Hornik, Robert C

    2010-09-01

    Little is known about how patients move among information sources to fulfill unmet needs. We interviewed 43 breast, prostate, and colorectal cancer patients. Using a grounded theory approach, we identified patterns and motivations for movement among information sources. Overall, patients reported using one source (e.g., newspaper) followed by the use of another source (e.g., Internet), and five key motivations for such cross-source movement emerged. Patients' social networks often played a central role in this movement. Understanding how patients navigate an increasingly complex information environment may help clinicians and educators to guide patients to appropriate, high-quality sources.

  9. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355 (Korea, Republic of)

    2016-11-01

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  10. Real-time MRI navigated ultrasound for preoperative tumor evaluation in breast cancer patients: Technique and clinical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of)

    2016-09-15

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  11. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    Science.gov (United States)

    2015-03-26

    THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones, Capt, USAF AFIT-ENG-MS-15-M-020 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH...DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones

  12. Postoperative Care Navigation for Total Knee Arthroplasty Patients: A Randomized Controlled Trial.

    Science.gov (United States)

    Losina, Elena; Collins, Jamie E; Wright, John; Daigle, Meghan E; Donnell-Fink, Laurel A; Strnad, Doris; Usiskin, Ilana M; Yang, Heidi Y; Lerner, Vladislav; Katz, Jeffrey N

    2016-09-01

    To establish the efficacy of motivational interviewing-based postoperative care navigation in improving functional status after total knee arthroplasty (TKA) and to identify subgroups likely to benefit from the intervention. We conducted a parallel randomized controlled trial in TKA recipients with 2 arms: postoperative care with frequent followup by a care navigator or usual care. The primary outcome was the difference between the arms in Western Ontario and McMaster Universities Osteoarthritis Index function score change, over 6 months postsurgery. We performed a preplanned subgroup analysis of differential efficacy by obesity and exploratory subgroup analyses on sex and pain catastrophizing. We enrolled 308 subjects undergoing TKA for osteoarthritis. Mean ± SD preoperative function score was 41 ± 17 (0-100 scale, where 100 = worst function). At 6 months, subjects in the navigation arm improved by mean ± SD 30 ± 16 points compared to 27 ± 18 points in the usual-care arm (P = 0.148). Participants with moderate to high levels of pain catastrophizing were unlikely to benefit from navigation compared to those with lower levels of pain catastrophizing (P = 0.013 for interaction). Subjects assigned to the navigation intervention did not demonstrate greater functional improvement compared to those in the control group. The negative overall result could be explained by the large effect on functional improvement of TKA itself compared to the smaller, additional benefit from care navigation, as well as by potential differential effects for subjects with moderate to high degrees of pain catastrophizing. Greater focus on developing programs for reducing pain catastrophizing could lead to better functional outcomes following TKA. © 2016, American College of Rheumatology.

  13. Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions.

    Science.gov (United States)

    Makris, D; Scherpereel, A; Leroy, S; Bouchindhomme, B; Faivre, J-B; Remy, J; Ramon, P; Marquette, C-H

    2007-06-01

    The present study prospectively evaluated the diagnostic yield and safety of electromagnetic navigation-guided bronchoscopy biopsy, for small peripheral lung lesions in patients where standard techniques were nondiagnostic. The study was conducted in a tertiary medical centre on 40 consecutive patients considered unsuitable for straightforward surgery or computed tomography (CT)-guided transthoracic needle aspiration biopsy, due to comorbidities. The lung lesion diameter was mean+/-sem 23.5+/-1.5 mm and the depth from the visceral-costal pleura was 14.9+/-2 mm. Navigation was facilitated by an electromagnetic tracking system which could detect a position sensor incorporated into a flexible catheter advanced through a bronchoscope. Information obtained during bronchoscopy was superimposed on previously acquired CT data. Divergence between CT data and data obtained during bronchoscopy was calculated by the system's software as a measure of navigational accuracy. All but one of the target lesions was reached and the overall diagnostic yield was 62.5% (25-40). Diagnostic yield was significantly affected by CT-to-body divergence; yield was 77.2% when estimated divergence was drainage was required in one case. Electromagnetic navigation-guided bronchoscopy has the potential to improve the diagnostic yield of transbronchial biopsies without additional fluoroscopic guidance, and may be useful in the early diagnosis of lung cancer, particularly in nonoperable patients.

  14. Navigation in head and neck oncological surgery: an emerging concept.

    Science.gov (United States)

    Gangloff, P; Mastronicola, R; Cortese, S; Phulpin, B; Sergeant, C; Guillemin, F; Eluecque, H; Perrot, C; Dolivet, G

    2011-01-01

    Navigation surgery, initially applied in rhinology, neurosurgery and orthopaedic cases, has been developed over the last twenty years. Surgery based on computed tomography data has become increasingly important in the head and neck region. The technique for hardware fusion between RMI and computed tomography is also becoming more useful. We use such device since 2006 in head and neck carcinologic situation. Navigation allows control of the resection in order to avoid and protect the precise anatomical structures (vessels and nerves). It also guides biopsy and radiofrequency. Therefore, quality of life is much more increased and morbidity is decreased for these patients who undergo major and mutilating head and neck surgery. Here we report the results of 33 navigation procedures performed for 31 patients in our institution.

  15. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  16. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    Directory of Open Access Journals (Sweden)

    Terrence T. Kim

    2016-01-01

    Full Text Available We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy.

  17. Enhancing the care navigation model: potential roles for health sciences librarians

    Science.gov (United States)

    Huber, Jeffrey T.; Shapiro, Robert M.; Burke, Heather J.; Palmer, Aaron

    2014-01-01

    This study analyzed the overlap between roles and activities that health care navigators perform and competencies identified by the Medical Library Association's (MLA's) educational policy statement. Roles and activities that health care navigators perform were gleaned from published literature. Once common roles and activities that health care navigators perform were identified, MLA competencies were mapped against those roles and activities to identify areas of overlap. The greatest extent of correspondence occurred in patient empowerment and support. Further research is warranted to determine the extent to which health sciences librarians might assume responsibility for roles and activities that health care navigators perform. PMID:24415921

  18. Interactive navigation and bronchial tube tracking in virtual bronchoscopy.

    Science.gov (United States)

    Heng, P A; Fung, P F; Wong, T T; Siu, Y H; Sun, H

    1999-01-01

    An interactive virtual environment for simulation of bronchoscopy is developed. Medical doctor can safely plan their surgical bronchoscopy using the virtual environment without any invasive diagnosis which may risk the patient's health. The 3D pen input device of the system allows the doctor to navigate and visualize the bronchial tree of the patient naturally and interactively. To navigate the patient's bronchial tree, a vessel tracking process is required. While manual tracking is tedious and labor-intensive, fully automatic tracking may not be reliable. We propose a semi-automatic tracking technique called Intelligent Path Tracker which provides automation and enough user control during the vessel tracking. To support an interactive frame rate, we also introduce a new volume rendering acceleration technique, named as IsoRegion Leaping. The volume rendering is further accelerated by distributed rendering on a TCP/IP-based network of low-cost PCs. With these approaches, a 256 x 256 x 256 volume data of human lung, can be navigated and visualized at a frame rate of over 10 Hz in our virtual bronchoscopy system.

  19. Current Role of Computer Navigation in Total Knee Arthroplasty.

    Science.gov (United States)

    Jones, Christopher W; Jerabek, Seth A

    2018-01-31

    Computer-assisted surgical (CAS) navigation has been developed with the aim of improving the accuracy and precision of total knee arthroplasty (TKA) component positioning and therefore overall limb alignment. The historical goal of knee arthroplasty has been to restore the mechanical alignment of the lower limb by aligning the femoral and tibial components perpendicular to the mechanical axis of the femur and tibia. Despite over 4 decades of TKA component development and nearly 2 decades of interest in CAS, the fundamental question remains; does the alignment goal and/or the method of achieving that goal affect the outcome of the TKA in terms of patient-reported outcome measures and/or overall survivorship? The quest for reliable and reproducible achievement of the intraoperative alignment goal has been the primary motivator for the introduction, development, and refinement of CAS navigation. Numerous proprietary systems now exist, and rapid technological advancements in computer processing power are stimulating further development of robotic surgical systems. Three categories of CAS can be defined: image-based large-console navigation; imageless large-console navigation, and more recently, accelerometer-based handheld navigation systems have been developed. A review of the current literature demonstrates that there are enough well-designed studies to conclude that both large-console CAS and handheld navigation systems improve the accuracy and precision of component alignment in TKA. However, missing from the evidence base, other than the subgroup analysis provided by the Australian Orthopaedic Association National Joint Replacement Registry, are any conclusive demonstrations of a clinical superiority in terms of improved patient-reported outcome measures and/or decreased cumulative revision rates in the long term. Few authors would argue that accuracy of alignment is a goal to ignore; therefore, in the absence of clinical evidence, many of the arguments against

  20. Computer-aided navigation in dental implantology: 7 years of clinical experience.

    Science.gov (United States)

    Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne

    2004-03-01

    This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.

  1. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 84 and 115 [Docket No. USCG-2012-0306] RIN 1625-AB86 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments...), the Coast Guard published a final rule entitled ``Navigation and Navigable Waters; Technical...

  2. Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation.

    Science.gov (United States)

    Scholes, Corey; Sahni, Varun; Lustig, Sebastien; Parker, David A; Coolican, Myles R J

    2014-03-01

    The introduction of patient-specific instruments (PSI) for guiding bone cuts could increase the incidence of malalignment in primary total knee arthroplasty. The purpose of this study was to assess the agreement between one type of patient-specific instrumentation (Zimmer PSI) and the pre-operative plan with respect to bone cuts and component alignment during TKR using imageless computer navigation. A consecutive series of 30 femoral and tibial guides were assessed in-theatre by the same surgeon using computer navigation. Following surgical exposure, the PSI cutting guides were placed on the joint surface and alignment assessed using the navigation tracker. The difference between in-theatre data and the pre-operative plan was recorded and analysed. The error between in-theatre measurements and pre-operative plan for the femoral and tibial components exceeded 3° for 3 and 17% of the sample, respectively, while the error for total coronal alignment exceeded 3° for 27% of the sample. The present results indicate that alignment with Zimmer PSI cutting blocks, assessed by imageless navigation, does not match the pre-operative plan in a proportion of cases. To prevent unnecessary increases in the incidence of malalignment in primary TKR, it is recommended that these devices should not be used without objective verification of alignment, either in real-time or with post-operative imaging. Further work is required to identify the source of discrepancies and validate these devices prior to routine use. II.

  3. Pilot Feasibility Study of an Oncology Financial Navigation Program.

    Science.gov (United States)

    Shankaran, Veena; Leahy, Tony; Steelquist, Jordan; Watabayashi, Kate; Linden, Hannah; Ramsey, Scott; Schwartz, Naomi; Kreizenbeck, Karma; Nelson, Judy; Balch, Alan; Singleton, Erin; Gallagher, Kathleen; Overstreet, Karen

    2018-02-01

    Few studies have reported on interventions to alleviate financial toxicity in patients with cancer. We developed a financial navigation program in collaboration with our partners, Consumer Education and Training Services (CENTS) and Patient Advocate Foundation (PAF), to improve patient knowledge about treatment costs, provide financial counseling, and to help manage out-of-pocket expenses. We conducted a pilot study to assess the feasibility and impact of this program. Patients with cancer received a financial education course followed by monthly contact with a CENTS financial counselor and a PAF case manager for 6 months. We measured program adherence, self-reported financial burden and anxiety, program satisfaction, and type of assistance provided. Thirty-four patients (median age, 60.5 years) were consented (85% white and 50% commercially insured). Debt, income declines, and loans were reported by 55%, 55%, and 30% of patients, respectively. CENTS counselors assisted most often with budgeting, retirement planning, and medical bill questions. PAF case managers assisted with applications for appropriate insurance coverage, cost of living issues (eg, housing, transportation), and disability applications. High financial burden and anxiety about costs (4 or 5 on a Likert scale) were reported at baseline by 37% and 47% of patients, respectively. Anxiety about costs decreased over time in 33% of patients, whereas self-reported financial burden did not substantially change. Implementing an oncology financial navigation program is feasible, provides concrete assistance in navigating the cost of care, and mitigates anxiety about costs in a subset of patients. Future work will focus on measuring the program's impact on financial and clinical outcomes.

  4. The Application of Surgical Navigation in the Treatment of Temporomandibular Joint Ankylosis.

    Science.gov (United States)

    Sun, Guowen; Lu, Mingxing; Hu, Qingang

    2015-11-01

    The purpose of this study was to assess the safety and the accuracy of surgical navigation technology in the resection of severe ankylosis of the mandibular condyle with the middle cranial fossa. The computed tomography scan data were transferred to a Windows-based computer workstation, and the patient's individual anatomy was assessed in multiplanar views at the workstation. In the operation, the patient and the virtual image were matched by individual registration with the reference points which were set on the skull bone surface and the teeth. Then, the real-time navigation can be performed. The acquisition of the data sets was uncomplicated, and image quality was sufficient to assess the operative result in 2 cases. Both of the operations were performed successfully with the guidance of real-time navigation. The application of surgical navigation has enhanced the safety and the accuracy of the surgery for bony ankylosis of temporomandibular joint. The use of surgical navigation resulted in the promotion of accurate and safe surgical excision of the ankylosed skull base tissue.

  5. Surgical navigation with QR codes

    Directory of Open Access Journals (Sweden)

    Katanacho Manuel

    2016-09-01

    Full Text Available The presented work is an alternative to established measurement systems in surgical navigation. The system is based on camera based tracking of QR code markers. The application uses a single video camera, integrated in a surgical lamp, that captures the QR markers attached to surgical instruments and to the patient.

  6. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  7. Tele-auscultation support system with mixed reality navigation.

    Science.gov (United States)

    Hori, Kenta; Uchida, Yusuke; Kan, Tsukasa; Minami, Maya; Naito, Chisako; Kuroda, Tomohiro; Takahashi, Hideya; Ando, Masahiko; Kawamura, Takashi; Kume, Naoto; Okamoto, Kazuya; Takemura, Tadamasa; Yoshihara, Hiroyuki

    2013-01-01

    The aim of this research is to develop an information support system for tele-auscultation. In auscultation, a doctor requires to understand condition of applying a stethoscope, in addition to auscultatory sounds. The proposed system includes intuitive navigation system of stethoscope operation, in addition to conventional audio streaming system of auscultatory sounds and conventional video conferencing system for telecommunication. Mixed reality technology is applied for intuitive navigation of the stethoscope. Information, such as position, contact condition and breath, is overlaid on a view of the patient's chest. The contact condition of the stethoscope is measured by e-textile contact sensors. The breath is measured by a band type breath sensor. In a simulated tele-auscultation experiment, the stethoscope with the contact sensors and the breath sensor were evaluated. The results show that the presentation of the contact condition was not understandable enough for navigating the stethoscope handling. The time series of the breath phases was usable for the remote doctor to understand the breath condition of the patient.

  8. Total knee arthroplasty with computer-assisted navigation: an analysis of 200 cases,

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Malheiros Luzo

    2014-04-01

    Full Text Available OBJECTIVE: to evaluate the results from surgery with computer-assisted navigation in cases of total knee arthroplasty.METHOD: a total of 196 patients who underwent total knee arthroplasty with computer-assisted navigation were evaluated. The extension and flexion spaces (gaps were evaluated during the operation and the alignment after the operation was assessed. The Knee Society Score (KSS questionnaire for assessing patient's function was applied preoperatively and postoperatively after a mean follow-up of 22 months.RESULTS: in all, 86.7% of the patients presented good alignment of the mechanical axis (less than 3◦ of varus or valgus in relation to the mechanical axis and 96.4% of the patients presented balanced flexion and extension gaps. Before the operation, 97% of the patients presented poor or insufficient KSS, but after the operation, 77.6% presented good or excellent KSS.CONCLUSION: the navigation system made it possible to achieve aligned and balanced implants, with notable functional improvement among the patients. It was found to be useful in assessing, understanding and improving knowledge in relation to performing arthroplasty procedures.

  9. Conventional versus computer-navigated TKA: a prospective randomized study.

    Science.gov (United States)

    Todesca, Alessandro; Garro, Luca; Penna, Massimo; Bejui-Hugues, Jacques

    2017-06-01

    The purpose of this study was to assess the midterm results of total knee arthroplasty (TKA) implanted with a specific computer navigation system in a group of patients (NAV) and to assess the same prosthesis implanted with the conventional technique in another group (CON); we hypothesized that computer navigation surgery would improve implant alignment, functional scores and survival of the implant compared to the conventional technique. From 2008 to 2009, 225 patients were enrolled in the study and randomly assigned in CON and NAV groups; 240 consecutive mobile-bearing ultra-congruent score (Amplitude, Valence, France) TKAs were performed by a single surgeon, 117 using the conventional method and 123 using the computer-navigated approach. Clinical outcome assessment was based on the Knee Society Score (KSS), the Hospital for Special Surgery Knee Score and the Western Ontario Mac Master University Index score. Component survival was calculated by Kaplan-Meier analysis. Median follow-up was 6.4 years (range 6-7 years). Two patients were lost to follow-up. No differences were seen between the two groups in age, sex, BMI and side of implantation. Three patients of CON group referred feelings of instability during walking, but clinical tests were all negative. NAV group showed statistical significant better KSS Score and wider ROM and fewer outliers from neutral mechanical axis, lateral distal femoral angle, medial proximal tibial angle and tibial slope in post-operative radiographic assessment. There was one case of early post-operative superficial infection (caused by Staph. Aureus) successfully treated with antibiotics. No mechanical loosening, mobile-bearing dislocation or patellofemoral complication was seen. At 7 years of follow-up, component survival in relation to the risk of aseptic loosening or other complications was 100 %. There were no implant revisions. This study demonstrates superior accuracy in implant positioning and statistical significant

  10. Simulation-based camera navigation training in laparoscopy-a randomized trial

    DEFF Research Database (Denmark)

    Nilsson, Cecilia; Sørensen, Jette Led; Konge, Lars

    2017-01-01

    patient safety. The objectives of this trial were to examine how to train laparoscopic camera navigation and to explore the transfer of skills to the operating room. MATERIALS AND METHODS: A randomized, single-center superiority trial with three groups: The first group practiced simulation-based camera...... navigation tasks (camera group), the second group practiced performing a simulation-based cholecystectomy (procedure group), and the third group received no training (control group). Participants were surgical novices without prior laparoscopic experience. The primary outcome was assessment of camera.......033), had a higher score. CONCLUSIONS: Simulation-based training improves the technical skills required for camera navigation, regardless of practicing camera navigation or the procedure itself. Transfer to the clinical setting could, however, not be demonstrated. The control group demonstrated higher...

  11. Psychometric validation and reliability analysis of a Spanish version of the patient satisfaction with cancer-related care measure: a patient navigation research program study.

    Science.gov (United States)

    Jean-Pierre, Pascal; Fiscella, Kevin; Winters, Paul C; Paskett, Electra; Wells, Kristen; Battaglia, Tracy

    2012-09-01

    Patient satisfaction (PS), a key measure of quality of cancer care, is a core study outcome of the multi-site National Cancer Institute-funded Patient Navigation Research Program. Despite large numbers of underserved monolingual Spanish speakers (MSS) residing in USA, there is no validated Spanish measure of PS that spans the whole spectrum of cancer-related care. The present study reports on the validation of the Patient Satisfaction with Cancer Care (PSCC) measure for Spanish (PSCC-Sp) speakers receiving diagnostic and therapeutic cancer-related care. Original PSCC items were professionally translated and back translated to ensure cultural appropriateness, meaningfulness, and equivalence. Then, the resulting 18-item PSCC-Sp measure was administered to 285 MSS. We evaluated latent structure and internal consistency of the PSCC-Sp using principal components analysis (PCA) and Cronbach coefficient alpha (α). We used correlation analyses to demonstrate divergence and convergence of the PSCC-Sp with a Spanish version of the Patient Satisfaction with Interpersonal Relationship with Navigator (PSN-I-Sp) measure and patients' demographics. The PCA revealed a coherent set of items that explicates 47% of the variance in PS. Reliability assessment demonstrated that the PSCC-Sp had high internal consistency (α = 0.92). The PSCC-Sp demonstrated good face validity and convergent and divergent validities as indicated by moderate correlations with the PSN-I-Sp (p = 0.003) and nonsignificant correlations with marital status and household income (all p(s) > 0.05). The PSCC-Sp is a valid and reliable measure of PS and should be tested in other MSS populations.

  12. First experience using navigation-guided radiofrequency kyphoplasty for sacroplasty in sacral insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, J.H.; Kluge, P.; Sircar, R.; Kogias, E.; Scholz, C.; Krueger, M.T.; Scheiwe, C.; Hubbe, U. [Freiburg Univ. Medical Center, Freiburg (Germany). Dept. of Neurosurgery

    2013-08-15

    Purpose: To evaluate the efficacy and safety of navigation-guided radiofrequency kyphoplasty for sacroplasty in patients with sacral insufficiency fractures. Methods: In this single-center retrospective observational study, four consecutive patients with sacral insufficiency fractures were treated with navigation-guided radiofrequency kyphoplasty for sacroplasty between April 2010 and May 2012. Symptom characteristics, pain duration and pain intensity were recorded for each patient. Cement extravasation was evaluated in thin-sliced and triplanar reconstructed CT scans of the sacrum. Results: Four female patients with painful sacral insufficiency fractures and extensive osteopenic areas significantly improved from an average pre-treatment VAS score of 8.3 {+-} 0.5 to 2.3 {+-} 1.0 (p < 0.001) on the first postoperative day and to 1.3 {+-} 1.9 (p < 0.004) at follow-up (mean, 20.1 weeks). Slight cement extravasations were observed without evidence of being symptomatic. No major complications or procedure-related morbidity were noted. Conclusion: From the limited experience in four patients, navigation-guided radiofrequency kyphoplasty appears to be a safe and effective treatment option for sacral insufficiency fractures even though asymptomatic cement extravasation was noted. The use of navigation based on intraoperative 3 D images simplifies the positioning of the navigated bone needles via the long axis approach. The radiofrequency kyphoplasty system provides the possibility to administer a sufficient amount of bone cement with a well-defined viscosity over the entire period of the procedure leading to high security and low cement extravasation. Sacroplasty provides rapid and enduring pain relief and facilitates prompt mobilization. (orig.)

  13. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Kamil eVlček

    2014-03-01

    Full Text Available Although the memory impairment is a hallmark of Alzheimer’s disease (AD, AD has also been characterized by spatial disorientation, which is present from its early stages. Spatial disorientation in AD manifests itself in getting lost in familiar and unfamiliar places and have been characterized more specifically using spatial navigation tests in both real space and virtual environments as an impairment in multiple spatial abilities, including allocentric and egocentric navigation strategies, visuospatial perception or selection of relevant information for successful navigation. Patients suffering mild cognitive impairment (MCI, who are at a high risk of development of dementia, show impairment in a subset of these abilities, mainly connected with allocentric and egocentric processing. While spatial disorientation in typical AD patients probably reflects neurodegenerative changes in medial and posterior temporal, parietal and frontal lobes and retrosplenial cortex, the impairment of spatial navigation in MCI seem to be connected mainly with the medial temporal and also parietal brain changes. In this review we will summarize the signs of brain disease in most MCI and AD patients showing in various tasks of spatial memory and navigation.

  14. Challenges in navigational strategies for flexible endoscopy

    NARCIS (Netherlands)

    van der Stap, N.; van der Heijden, Ferdinand; Broeders, Ivo Adriaan Maria Johannes

    Automating flexible endoscope navigation could lead to an increase in patient safety for endoluminal therapeutic procedures. Additionally, it may decrease the costs of diagnostic flexible endoscope procedures by shortening the learning curve and increasing the efficiency of insertion. Earlier

  15. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience.

    Science.gov (United States)

    Wirtz, C R; Bonsanto, M M; Knauth, M; Tronnier, V M; Albert, F K; Staubert, A; Kunze, S

    1997-01-01

    We report on the first successful intraoperative update of interactive image guidance based on an intraoperatively acquired magnetic resonance imaging (MRI) date set. To date, intraoperative imaging methods such as ultrasound, computerized tomography (CT), or MRI have not been successfully used to update interactive navigation. We developed a method of imaging patients intraoperatively with the surgical field exposed in an MRI scanner (Magnetom Open; Siemens Corp., Erlangen, Germany). In 12 patients, intraoperatively acquired 3D data sets were used for successful recalibration of neuronavigation, accounting for any anatomical changes caused by surgical manipulations. The MKM Microscope (Zeiss Corp., Oberkochen, Germany) was used as navigational system. With implantable fiducial markers, an accuracy of 0.84 +/- 0.4 mm for intraoperative reregistration was achieved. Residual tumor detected on MRI was consequently resected using navigation with the intraoperative data. No adverse effects were observed from intraoperative imaging or the use of navigation with intraoperative images, demonstrating the feasibility of recalibrating navigation with intraoperative MRI.

  16. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids to...

  17. Navigated versus conventional total knee arthroplasty: A prospective study at three years follow-up.

    Science.gov (United States)

    Martín-Hernández, C; Sanz-Sainz, M; Revenga-Giertych, C; Hernández-Vaquero, D; Fernández-Carreira, J M; Albareda-Albareda, J; Castillo-Palacios, A; Ranera-Garcia, M

    2018-03-28

    Computer-assisted surgery application in total knee arthroplasty (TKA) has shown more accurate implant alignment compared with conventional instrumentation and is associated with more homogeneous alignment results. Although longer implant survival and superior clinical outcomes should be expected from navigated TKA, currently available evidence does not support this hypothesis. The aim of this study was to compare navigated TKA with conventional TKA regarding clinical and radiological outcomes after a 3-year follow-up under the hypothesis that navigated TKA would provide better outcomes than conventional TKA. In a prospective multicentre study, 119 patients underwent navigated TKA and 80 patients received conventional instrumentation. Patients were evaluated at the baseline and at postoperative months 3, 12, 24, and 36. Analysis included the American Knee Society Score (KSS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Short Form-12 (SF12) Health Survey, and radiographic assessment. All clinical scores improved significantly for all patients during the follow-up but were significantly better in the navigation group. The percentage of patients showing a mechanical axis between 3° of varus and 3° of valgus was significantly higher in the ATR group (93%) than in the conventional TKA group (71%) (P<.01). The use of computer-assisted surgery in TKA provides more accurate mechanical alignment and superior short-term functional outcomes compared to conventional TKA. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Navigation Problems in Blind-to-Blind Pedestrians Tele-assistance Navigation

    OpenAIRE

    Balata , Jan; Mikovec , Zdenek; Maly , Ivo

    2015-01-01

    International audience; We raise a question whether it is possible to build a large-scale navigation system for blind pedestrians where a blind person navigates another blind person remotely by mobile phone. We have conducted an experiment, in which we observed blind people navigating each other in a city center in 19 sessions. We focused on problems in the navigator’s attempts to direct the traveler to the destination. We observed 96 problems in total, classified them on the basis of the typ...

  19. Vision/INS Integrated Navigation System for Poor Vision Navigation Environments

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2016-10-01

    Full Text Available In order to improve the performance of an inertial navigation system, many aiding sensors can be used. Among these aiding sensors, a vision sensor is of particular note due to its benefits in terms of weight, cost, and power consumption. This paper proposes an inertial and vision integrated navigation method for poor vision navigation environments. The proposed method uses focal plane measurements of landmarks in order to provide position, velocity and attitude outputs even when the number of landmarks on the focal plane is not enough for navigation. In order to verify the proposed method, computer simulations and van tests are carried out. The results show that the proposed method gives accurate and reliable position, velocity and attitude outputs when the number of landmarks is insufficient.

  20. Evaluating screening colonoscopy quality in an uninsured urban population following patient navigation

    Directory of Open Access Journals (Sweden)

    Keith Naylor

    2017-03-01

    Full Text Available Patient navigation (PN increases screening colonoscopy completion in minority and uninsured populations. However, colonoscopy quality is under-reported in the setting of PN and quality indicators have often failed to meet benchmark standards. This study investigated screening colonoscopy quality indicators after year-one of a PN initiative targeting the medically uninsured. This was a retrospective analysis of 296 outpatient screening colonoscopies. Patients were 45 to 75 years of age with no history of bowel cancer, inflammatory bowel disease, or colorectal surgery. The screening colonoscopy quality indicators: adenoma detection rate (ADR, cecal intubation rate (CIR, and bowel preparation quality were compared in 89 uninsured Federally Qualified Health Center (FQHC patients who received PN and 207 University Hospital patients who received usual care. The FQHC PN and University Hospital cohorts were similar in female sex (69% vs. 70%; p = 0.861 and African American race (61% vs. 61%; p = 0.920. The FQHC PN cohort was younger (57 years vs. 60 years; p < 0.001. There was no difference in ADR (33% vs. 32%; p = 0.971 or CIR (96% vs. 95%; p = 0.900 comparing the FQHC PN and University Hospital cohorts. The FQHC PN patients had a greater likelihood of an optimal bowel preparation on multivariate logistic regression (odds ratio 4.17; 95% confidence interval 1.07 to 16.20. Uninsured FQHC patients who received PN were observed to have intra-procedure quality indicators that exceeded bench-mark standards for high-quality screening colonoscopy and were equivalent to those observed in an insured University Hospital patient population.

  1. Navigation skill impairment: Another dimension of the driving difficulties in minimal hepatic encephalopathy.

    Science.gov (United States)

    Bajaj, Jasmohan S; Hafeezullah, Muhammad; Hoffmann, Raymond G; Varma, Rajiv R; Franco, Jose; Binion, David G; Hammeke, Thomas A; Saeian, Kia

    2008-02-01

    Patients with minimal hepatic encephalopathy (MHE) have attention, response inhibition, and working memory difficulties that are associated with driving impairment and high motor vehicle accident risk. Navigation is a complex system needed for safe driving that requires functioning working memory and other domains adversely affected by MHE. The aim of this study was to determine the effect of MHE on navigation skills and correlate them with psychometric impairment. Forty-nine nonalcoholic patients with cirrhosis (34 MHE+, 15 MHE-; divided on the basis of a battery of block design, digit symbol, and number connection test A) and 48 age/education-matched controls were included. All patients underwent the psychometric battery and inhibitory control test (ICT) (a test of response inhibition) and driving simulation. Driving simulation consisted of 4 parts: (1) training; (2) driving (outcome being accidents); (3) divided attention (outcome being missed tasks); and (4) navigation, driving along a marked path on a map in a "virtual city" (outcome being illegal turns). Illegal turns were significantly higher in MHE+ (median 1; P = 0.007) compared with MHE-/controls (median 0). Patients who were MHE+ missed more divided attention tasks compared with others (median MHE+ 1, MHE-/controls 0; P = 0.001). Similarly, accidents were higher in patients who were MHE+ (median 2.5; P = 0.004) compared with MHE- (median 1) or controls (median 2). Accidents and illegal turns were significantly correlated (P = 0.001, r = 0.51). ICT impairment was the test most correlated with illegal turns (r = 0.6) and accidents (r = 0.44), although impairment on the other tests were also correlated with illegal turns. Patients positive for MHE have impaired navigation skills on a driving simulator, which is correlated with impairment in response inhibition (ICT) and attention. This navigation difficulty may pose additional driving problems, compounding the pre-existing deleterious effect of attention

  2. Visual navigation in adolescents with early periventricular lesions: knowing where, but not getting there.

    Science.gov (United States)

    Pavlova, Marina; Sokolov, Alexander; Krägeloh-Mann, Ingeborg

    2007-02-01

    Visual navigation in familiar and unfamiliar surroundings is an essential ingredient of adaptive daily life behavior. Recent brain imaging work helps to recognize that establishing connectivity between brain regions is of importance for successful navigation. Here, we ask whether the ability to navigate is impaired in adolescents who were born premature and suffer congenital bilateral periventricular brain damage that might affect the pathways interconnecting subcortical structures with cortex. Performance on a set of visual labyrinth tasks was significantly worse in patients with periventricular leukomalacia (PVL) as compared with premature-born controls without lesions and term-born adolescents. The ability for visual navigation inversely relates to the severity of motor disability, leg-dominated bilateral spastic cerebral palsy. This agrees with the view that navigation ability substantially improves with practice and might be compromised in individuals with restrictions in active spatial exploration. Visual navigation is negatively linked to the volumetric extent of lesions over the right parietal and frontal periventricular regions. Whereas impairments of visual processing of point-light biological motion are associated in patients with PVL with bilateral parietal periventricular lesions, navigation ability is specifically linked to the frontal lesions in the right hemisphere. We suggest that more anterior periventricular lesions impair the interrelations between the right hippocampus and cortical areas leading to disintegration of neural networks engaged in visual navigation. For the first time, we show that the severity of right frontal periventricular damage and leg-dominated motor disorders can serve as independent predictors of the visual navigation disability.

  3. Intraoperative computed tomography with integrated navigation system in spinal stabilizations.

    Science.gov (United States)

    Zausinger, Stefan; Scheder, Ben; Uhl, Eberhard; Heigl, Thomas; Morhard, Dominik; Tonn, Joerg-Christian

    2009-12-15

    STUDY DESIGN.: A prospective interventional case-series study plus a retrospective analysis of historical patients for comparison of data. OBJECTIVE.: To evaluate workflow, feasibility, and clinical outcome of navigated stabilization procedures with data acquisition by intraoperative computed tomography. SUMMARY OF BACKGROUND DATA.: Routine fluoroscopy to assess pedicle screw placement is not consistently reliable. Our hypothesis was that image-guided spinal navigation using an intraoperative CT-scanner can improve the safety and precision of spinal stabilization surgery. METHODS.: CT data of 94 patients (thoracolumbar [n = 66], C1/2 [n = 12], cervicothoracic instability [n = 16]) were acquired after positioning the patient in the final surgical position. A sliding gantry 40-slice CT was used for image acquisition. Data were imported to a frameless infrared-based neuronavigation workstation. Intraoperative CT was obtained to assess the accuracy of instrumentation and, if necessary, the extent of decompression. All patients were clinically evaluated by Odom-criteria after surgery and after 3 months. RESULTS.: Computed accuracy of the navigation system reached /=2 mm without persistent neurologic or vascular damage in 20/414 screws (4.8%) leading to immediate correction of 10 screws (2.4%). Control-iCT changed the course of surgery in 8 cases (8.5% of all patients). The overall revision rate was 8.5% (4 wound revisions, 2 CSF fistulas, and 2 epidural hematomas). There was no reoperation due to implant malposition. According to Odom-criteria all patients experienced a clinical improvement. A retrospective analysis of 182 patients with navigated thoracolumbar transpedicular stabilizations in the preiCT era revealed an overall revision rate of 10.4% with 4.4% of patients requiring screw revision. CONCLUSION.: Intraoperative CT in combination with neuronavigation provides high accuracy of screw placement and thus safety for patients undergoing spinal stabilization

  4. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  5. The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training.

    Science.gov (United States)

    Waran, V; Pancharatnam, Devaraj; Thambinayagam, Hari Chandran; Raman, Rajagopal; Rathinam, Alwin Kumar; Balakrishnan, Yuwaraj Kumar; Tung, Tan Su; Rahman, Z A

    2014-01-01

    Navigation in neurosurgery has expanded rapidly; however, suitable models to train end users to use the myriad software and hardware that come with these systems are lacking. Utilizing three-dimensional (3D) industrial rapid prototyping processes, we have been able to create models using actual computed tomography (CT) data from patients with pathology and use these models to simulate a variety of commonly performed neurosurgical procedures with navigation systems. To assess the possibility of utilizing models created from CT scan dataset obtained from patients with cranial pathology to simulate common neurosurgical procedures using navigation systems. Three patients with pathology were selected (hydrocephalus, right frontal cortical lesion, and midline clival meningioma). CT scan data following an image-guidance surgery protocol in DIACOM format and a Rapid Prototyping Machine were taken to create the necessary printed model with the corresponding pathology embedded. The ability in registration, planning, and navigation of two navigation systems using a variety of software and hardware provided by these platforms was assessed. We were able to register all models accurately using both navigation systems and perform the necessary simulations as planned. Models with pathology utilizing 3D rapid prototyping techniques accurately reflect data of actual patients and can be used in the simulation of neurosurgical operations using navigation systems. Georg Thieme Verlag KG Stuttgart · New York.

  6. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  7. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  8. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery

    International Nuclear Information System (INIS)

    Tomikawa, Morimasa; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Uemura, Munenori; Hashizume, Makoto; Shiotani, Satoko; Tokunaga, Eriko; Maehara, Yoshihiko

    2011-01-01

    We report here the early experiences using a real-time three-dimensional (3D) virtual reality navigation system with open magnetic resonance imaging (MRI) for breast-conserving surgery (BCS). Two patients with a non-palpable MRI-detected breast tumor underwent BCS under the guidance of the navigation system. An initial MRI for the breast tumor using skin-affixed markers was performed immediately prior to excision. A percutaneous intramammary dye marker was applied to delineate an excision line, and the computer software '3D Slicer' generated a real-time 3D virtual reality model of the tumor and the puncture needle in the breast. Under guidance by the navigation system, marking procedures were performed without any difficulties. Fiducial registration errors were 3.00 mm for patient no.1, and 4.07 mm for patient no.2. The real-time 3D virtual reality navigation system with open MRI is feasible for safe and accurate excision of non-palpable MRI-detected breast tumors. (author)

  9. Intraoperative Spinal Navigation for the Removal of Intradural Tumors: Technical Notes.

    Science.gov (United States)

    Stefini, Roberto; Peron, Stefano; Mandelli, Jaime; Bianchini, Elena; Roccucci, Paolo

    2017-08-05

    In recent years, spinal surgery has incorporated the many advantages of navigation techniques to facilitate the placement of pedicle screws during osteosynthesis, mainly for degenerative diseases. However, spinal intradural tumors are not clearly visible by intraoperative fluoroscopy or computed tomography scans, thereby making navigation necessary. To evaluate the use of spinal navigation for the removal of intradural and spinal cord tumors using spinal magnetic resonance imaging (MRI) merged with intraoperative 3-dimensional (3-D) fluoro images. After fixing the patient reference frame on the spinous process, the 3-D fluoro images were obtained in the surgical room. Using this image as the reference, the preoperative volumetric MRI images and intraoperative 3-D fluoro images were merged using automated software or manually. From January to July 2016, we performed 10 navigated procedures for intradural spinal tumors by merging MRI and 3-D fluoro images. Nine patients had an intradural extramedullary tumor, 6 had neurinomas, and 3 had meningiomas; 1 patient had an intramedullary spinal cord metastasis. The surgically demonstrated benefits of spinal navigation for the removal of intradural tumors include the decreased risk of surgery at the wrong spinal level, a minimal length of skin incision and muscle strip, and a reduction in bone removal extension. Furthermore, this technique offers the advantage of opening the dura as much as is necessary and, in the case of intrinsic spinal cord tumors, it allows the tumor to be centered. Otherwise, this would not be visible, thus enabling the precise level and the posterior midline sulcus to be determined when performing a mielotomy. Copyright © 2017 by the Congress of Neurological Surgeons

  10. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke.

    Science.gov (United States)

    Chervyakov, Alexander V; Poydasheva, Alexandra G; Lyukmanov, Roman H; Suponeva, Natalia A; Chernikova, Ludmila A; Piradov, Michael A; Ustinova, Ksenia I

    2018-03-01

    The purpose of this study was to test the effects of navigated repetitive transcranial magnetic stimulation, delivered in different modes, on motor impairments and functional limitations after stroke. The study sample included 42 patients (58.5 ± 10.7 years; 26 males) who experienced a single unilateral stroke (1-12 months previously) in the area of the middle cerebral artery. Patients completed a course of conventional rehabilitation, together with 10 sessions of navigated repetitive transcranial magnetic stimulation or sham stimulation. Stimulation was scheduled five times a week over two consecutive weeks in an inpatient clinical setting. Patients were randomly assigned to one of four groups and received sham stimulation (n = 10), low-frequency (1-Hz) stimulation of the nonaffected hemisphere (n = 11), high-frequency (10-Hz) stimulation of the affected hemisphere (n = 13), or sequential combination of low- and high-frequency stimulations (n = 8). Participants were evaluated before and after stimulation with clinical tests, including the arm and hand section of the Fugl-Meyer Assessment Scale, modified Ashworth Scale of Muscle Spasticity, and Barthel Index of Activities of Daily Living. Participants in the three groups receiving navigated repetitive transcranial magnetic stimulation showed improvements in arm and hand functions on the Fugl-Meyer Stroke Assessment Scale. Ashworth Scale of Muscle Spasticity and Barthel Index scores were significantly reduced in groups receiving low- or high-frequency stimulation alone. Including navigated repetitive transcranial magnetic stimulation in a conventional rehabilitation program positively influenced motor and functional recovery in study participants, demonstrating the clinical potential of the method. The results of this study will be used for designing a large-scale clinical trial.

  11. A Leapfrog Navigation System

    Science.gov (United States)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  12. Optimal motion planning using navigation measure

    Science.gov (United States)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  13. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    International Nuclear Information System (INIS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-01-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved. (paper)

  14. A full 3D-navigation system in a suitcase.

    Science.gov (United States)

    Freysinger, W; Truppe, M J; Gunkel, A R; Thumfart, W F

    2001-01-01

    To reduce the impact of contemporary 3D-navigation systems on the environment of typical otorhinolaryngologic operating rooms, we demonstrate that a transfer of navigation software to modern high-power notebook computers is feasible and results in a practicable way to provide positional information to a surgeon intraoperatively. The ARTMA Virtual Patient System has been implemented on a Macintosh PowerBook G3 and, in connection with the Polhemus FASTRAK digitizer, provides intraoperative positional information during endoscopic endonasal surgery. Satisfactory intraoperative navigation has been realized in two- and three-dimensional medical image data sets (i.e., X-ray, ultrasound images, CT, and MR) and live video. This proof-of-concept study demonstrates that acceptable ergonomics and excellent performance of the system can be achieved with contemporary high-end notebook computers. Copyright 2001 Wiley-Liss, Inc.

  15. EOS-based cup navigation: Randomised controlled trial in 78 total hip arthroplasties.

    Science.gov (United States)

    Verdier, N; Billaud, A; Masquefa, T; Pallaro, J; Fabre, T; Tournier, C

    2016-06-01

    Minimising the risk of cup implantation outside the safe zone is among the objectives of navigation during total hip arthroplasty (THA). However, given the technical challenges raised by navigation when the patient is lying on the side, many surgeons still use the freehand technique. We conducted a randomised controlled trial to evaluate the new navigation system NAVEOS in the iliac plane, which is easily identified in the lateral decubitus position, with the objective of determining whether NAVEOS navigation decreased the frequency of cup implantation outside the safe zone compared to freehand cup positioning, without increasing the operative time or the frequency of complications. NAVEOS navigation decreases the frequency of cup positioning outside the safe zone compared to freehand positioning. This randomised controlled trial compared cup positioning using NAVEOS navigation versus the freehand technique in patients undergoing primary THA. The safe zone was defined according to Lewinnek as 15±10° of radiological anteversion and 40±10° of radiological inclination. Cup position parameters were measured on computed tomography images obtained 3months after THA. The images were read by two independent observers who were blinded to group assignment. The primary evaluation criterion was cup position within the safe zone. A 1:1 randomisation scheme was used to assign 78 patients (mean age, 68years; age range, 44-91years) to NAVEOS navigation or freehand cup positioning. The two groups were comparable for age, gender distribution, body mass index, and preoperative functional scores. In the NAVEOS group, navigation was discontinued prematurely in 6 patients, because of technical difficulties (n=2) or a marked discrepancy with clinical findings (n=4); however, the intention-to-treat approach was used for the analysis. The proportion of cups in the safe zone was 67% (28/39) in the NAVEOS group and 38% (17/39) in the freehand group (P=0.012). Anteversion was within the

  16. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique.

    Science.gov (United States)

    Jin, Mengran; Liu, Zhen; Liu, Xingyong; Yan, Huang; Han, Xiao; Qiu, Yong; Zhu, Zezhang

    2016-06-01

    To assess the accuracy of O-arm-navigation-based pedicle screw insertion in dystrophic scoliosis secondary to NF-1 and compare it with free-hand pedicle screw insertion technique. 32 patients with dystrophic NF-1-associated scoliosis were divided into two groups. A total of 92 pedicle screws were implanted in apical region (two vertebrae above and below the apex each) in 13 patients using O-arm-based navigation (O-arm group), and 121 screws were implanted in 19 patients using free-hand technique (free-hand group). The postoperative CT images were reviewed and analyzed for pedicle violation. The screw penetration was divided into four grades: grade 0 (ideal placement), grade 1 (penetration 4 mm). The accuracy rate of pedicle screw placement (grade 0, 1) was significantly higher in the O-arm group (79 %, 73/92) compared to 67 % (81/121) of the free-hand group (P = 0.045). Meanwhile, a significantly lower prevalence of grade 2-3 perforation was observed in the O-arm group (21 vs. 33 %, P arm navigation compared to free-hand technique (2 vs. 15 %, P arm navigation (58 vs. 42 %, P arm-based pedicle screw placement in dystrophic NF-1-associated scoliosis. O-arm navigation system does facilitate pedicle screw insertion in dystrophic NF-1-associated scoliosis, demonstrating superiorities in the safety and accuracy of pedicle screw placement in comparison with free-hand technique.

  17. Difference of cerebral activation between healthy volunteers and MCI-patients during navigation in a virtual reality environment. A parametric study using O15 H2O-PET

    International Nuclear Information System (INIS)

    Drzezga, A.; Wermke, M.D.; Schwaiger, M.; Grimmer, T.; Foerstl, H.; Kurz, A.

    2002-01-01

    Aim: To assess the regional cerebral activation during navigation in a virtual reality (VR) environment in healthy volunteers and patients with mild cognitive impairment (MCI) to identify possible differences in cerebral processing of a complex cognitive task. Materials and Methods: A computer-based VR-system has been developed that allows movements in a virtual labyrinth using a special space-mouse and 3-dimensional perception by shutter-glasses. In 11 healthy, right-handed volunteers (3 female, age 66+/-9 years) and 9 patients with MCI (3 female, 69+/-10 years, diagnosis according to criteria of the Mayo-Clinic) twelve H215O PET-scans were performed (each 370 MBq i.v.-bolus). During the scan subjects had to navigate actively from startpoint to a predefined destination point. Three difficulty levels were presented, 4 times each, in randomized order. Test performance (speed, mistakes) was co-registered. PET data were analyzed using statistical parametric mapping (SPM99, Wellcome Inst., London, UK) including correlation analysis with the acquired test performance results. A significance threshold of p<0,001 uncorrected was applied. Results: In both groups a similar network of extended cerebral activation was identified during active navigation, including maxima in the cerebellum, premotor cortex (Brodmann area [BA] 6), parietal cortex (BA 7, 40) and posterior cingulate cortex (BA 31). However, in MCI-patients a significantly stronger activation of anterior cingulate cortex (BA 24), prefrontal cortex (BA 8) and parietal cortex (BA 40) was observed, as compared to healthy volunteers. Conclusion: The applied combination of PET and VR-technology allows to examine the processing of complex cognitive tasks in the brain. During active navigation significant differences have been observed between the activated cerebral networks in MCI-patients and healthy volunteers. In MCI-patients stronger activation has been identified in cerebral regions associated with attention and

  18. Medicaid Expansion And Grant Funding Increases Helped Improve Community Health Center Capacity.

    Science.gov (United States)

    Han, Xinxin; Luo, Qian; Ku, Leighton

    2017-01-01

    Through the expansion of Medicaid eligibility and increases in core federal grant funding, the Affordable Care Act (ACA) sought to increase the capacity of community health centers to provide primary care to low-income populations. We examined the effects of the ACA Medicaid expansion and changes in federal grant levels on the centers' numbers of patients, percentages of patients by type of insurance, and numbers of visits from 2012 to 2015. In the period after expansion (2014-15), health centers in expansion states had a 5 percent higher total patient volume, larger shares of Medicaid patients, smaller shares of uninsured patients, and increases in overall visits and mental health visits, compared to centers in nonexpansion states. Increases in federal grant funding levels were associated with increases in numbers of patients and of overall, medical, and preventive service visits. If federal grant levels are not sustained after 2017, there could be marked reductions in health center capacity in both expansion and nonexpansion states. Project HOPE—The People-to-People Health Foundation, Inc.

  19. Grants Solutions -

    Data.gov (United States)

    Department of Transportation — The Grants Center of Excellence The Grants Center of Excellence (COE) delivers end-to-end grants management products and support to over 17 Federal partner agencies....

  20. Multidisciplinary evaluation of an emergency department nurse navigator role: A mixed methods study.

    Science.gov (United States)

    Jessup, Melanie; Fulbrook, Paul; Kinnear, Frances B

    2017-09-20

    To utilise multidisciplinary staff feedback to assess their perceptions of a novel emergency department nurse navigator role and to understand the impact of the role on the department. Prolonged emergency department stays impact patients, staff and quality of care, and are linked to increased morbidity and mortality. One innovative strategy to facilitate patient flow is the navigator: a nurse supporting staff in care delivery to enhance efficient, timely movement of patients through the department. However, there is a lack of rigorous research into this emerging role. Sequential exploratory mixed methods. A supernumerary emergency department nurse navigator was implemented week-off-week-on, seven days a week for 20 weeks. Diaries, focus groups, and an online survey (24-item Navigator Role Evaluation tool) were used to collect and synthesise data from the perspectives of multidisciplinary departmental staff. Thematic content analysis of cumulative qualitative data drawn from the navigators' diaries, focus groups and survey revealed iterative processes of the navigators growing into the role and staff incorporating the role into departmental flow, manifested as: Reception of the role and relationships with staff; Defining the role; and Assimilation of the role. Statistical analysis of survey data revealed overall staff satisfaction with the role. Physicians, nurses and others assessed it similarly. However, only 44% felt the role was an overall success, less than half (44%) considered it necessary, and just over a third (38%) thought it positively impacted inter-professional relationships. Investigation of individual items revealed several areas of uncertainty about the role. Within-group differences between nursing grades were noted, junior nurses rating the role significantly higher than more senior nurses. Staff input yielded invaluable insider feedback for ensuing modification and optimal instigation of the navigator role, rendering a sense of departmental

  1. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  2. 78 FR 20581 - Patient Protection and Affordable Care Act; Exchange Functions: Standards for Navigators and Non...

    Science.gov (United States)

    2013-04-05

    ... rule, in order to mitigate conflicts of interest, there are three types of information that Navigators... require disclosure of two other types of indirect financial conflicts of interest. Navigators and their... stop loss insurance or subsidiaries of such [[Page 20588

  3. E-navigation Services for Non-SOLAS Ships

    Directory of Open Access Journals (Sweden)

    Kwang An

    2016-06-01

    Full Text Available It is clearly understood that the main benefits of e-navigation are improved safety and better protection of the environment through the promotion of standards of navigational system and a reduction in human error. In order to meet the expectations on the benefit of e-navigation, e-navigation services should be more focused on non-SOLAS ships. The purpose of this paper is to present necessary e-navigation services for non-SOLAS ships in order to prevent marine accidents in Korean coastal waters. To meet the objectives of the study, an examination on the present navigation and communication system for non-SOLAS ships was performed. Based on the IMO's e-navigation Strategy Implementation Plan (SIP and Korea's national SIP for e-navigation, future trends for the development and implementation of e-navigation were discussed. Consequently, Electronic Navigational Chart (ENC download and ENC up-date service, ENC streaming service, route support service and communication support service based on Maritime Cloud were presented as essential e-navigation services for non-SOLAS ships. This study will help for the planning and designing of the Korean e-navigation system. It is expected that the further researches on the navigation support systems based on e-navigation will be carried out in order to implement the essential e-navigation services for non-SOLAS ships.

  4. Lost after stroke: Theory, assessment, and rehabilitation of navigation impairment

    NARCIS (Netherlands)

    Claessen, M.H.G.

    2017-01-01

    The general objective of this thesis was to better understand the navigation problems that nearly a third of stroke patients are faced with. Insight into these types of problems is currently very limited in this patient group. I adopted four approaches to address this main objective, corresponding

  5. First clinical experience with extended planning and navigation in an interventional MRI unit; Erste klinische Erfahrungen mit einer erweiterten Eingriffsplanung und Navigation am interventionellen MRT

    Energy Technology Data Exchange (ETDEWEB)

    Moche, M.; Schneider, J.P.; Schulz, T.; Voerkel, C.; Kahn, T.; Busse, H. [Klinik und Poliklinik fuer Diagnostische Radiologie, Universitaetsklinikum Leipzig (Germany); Schmitgen, A.; Bublat, M. [Fraunhofer-Inst. fuer Angewandte Informationstechnik, St. Augustin (Germany); Trantakis, C. [Klinik und Poliklinik fuer Neurochirurgie, Universitaetsklinikum Leipzig (Germany); Bennek, J. [Klinik und Poliklinik fuer Kinderchirurgie, Univ. Leipzig (Germany)

    2004-07-01

    Purpose: To present an advanced concept for patient-based navigation and to report on our first clinical experience with interventions in the cranium, of soft-tissue structures (breast, liver) and in the musculoskeletal system. Materials and Methods: A PC-based navigation system was integrated into an existing interventional MRI environment. Intraoperatively acquired 3D data were used for interventional planning. The information content of these reference data was increased by integration of additional image modalities (e. g., fMRI, CT) and by color display of areas with early contrast media enhancement. Within 18 months, the system was used in 123 patients undergoing interventions in different anatomic regions (brain: 64, paranasal sinus: 9, breast: 20, liver: 17, bone: 9, muscle: 4). The mean duration of 64 brain interventions was compared that of 36 procedures using the scanner's standard navigation. Results: In contrast with the continuous scanning mode of the MR system (0.25 fps), the higher quality as well as the real time display (4 fps) of the MR images reconstructed from the 3D reference data allowed adequate hand-eye coordination. With our system, patient movement and tissue shifts could be immediately detected intraoperatively, and, in contrast to the standard procedure, navigation safely resumed after updating the reference data. The navigation system was characterized by good stability, efficient system integration and easy usability. Despite additional working steps still to be optimized, the duration of the image-guided brain tumor resections was not significantly longer. (orig.) [German] Ziel: Vorstellung eines erweiterten Konzepts zur patientenbasierten Navigation sowie erste klinische Bewertung der durchgefuehrten Massnahmen im Kopf, Weichteil- und muskuloskeletalen Bereich. Material und Methode: Ein PC-basiertes Navigationssystem wurde in eine vorhandene interventionelle MRT-Umgebung integriert. Intraoperativ akquirierte 3-D

  6. Needle and catheter navigation using electromagnetic tracking for computer-assisted C-arm CT interventions

    Science.gov (United States)

    Nagel, Markus; Hoheisel, Martin; Petzold, Ralf; Kalender, Willi A.; Krause, Ulrich H. W.

    2007-03-01

    Integrated solutions for navigation systems with CT, MR or US systems become more and more popular for medical products. Such solutions improve the medical workflow, reduce hardware, space and costs requirements. The purpose of our project was to develop a new electromagnetic navigation system for interventional radiology which is integrated into C-arm CT systems. The application is focused on minimally invasive percutaneous interventions performed under local anaesthesia. Together with a vacuum-based patient immobilization device and newly developed navigation tools (needles, panels) we developed a safe and fully automatic navigation system. The radiologist can directly start with navigated interventions after loading images without any prior user interaction. The complete system is adapted to the requirements of the radiologist and to the clinical workflow. For evaluation of the navigation system we performed different phantom studies and achieved an average accuracy of better than 2.0 mm.

  7. The effects of individually tailored nurse navigation for patients with newly diagnosed breast cancer

    DEFF Research Database (Denmark)

    Mertz, Birgitte Goldschmidt; Dunn-Henriksen, Anne Katrine; Kroman, Niels

    2017-01-01

    AIM: Our aim was to determine the feasibility and effectiveness of an individual, nurse-navigator intervention for relieving distress, anxiety, depression and health-related quality of life in women who have been treated for breast cancer (BC) and are experiencing moderate-to-severe psychological...... and the secondary outcomes were anxiety, depression, health-related quality of life and feasibility of the intervention. RESULTS: Women in the intervention group reported significantly greater satisfaction with treatment and rehabilitation and lower levels of distress (mean 2.7 vs. 5.1, panxiety (mean 5.1 vs...... no significant effects were observed after 6 months, we did find statistically significant effects on distress, anxiety and depression 12 months after diagnosis. Our results will assist in developing rehabilitation to the most vulnerable patients....

  8. Multi-morbidity: A patient perspective on navigating the health care system and everyday life

    DEFF Research Database (Denmark)

    Ørtenblad, Lisbeth; Meillier, Lucette Kirsten; Jønsson, Alexandra Brandt Ryborg

    2017-01-01

    and the management of their treatment burdens. Dilemmas were identified within three domains: family and social life; work life; agendas and set goals in appointments with health professionals. Individual resources and priorities in everyday life play a dominant role in resolving dilemmas and navigating the tension...... study using individual interviews and participant-observations. An inductive analytical approach was applied, moving from observations and results to broader generalisations. Results: People with multimorbidity experience dilemmas related to their individual priorities in everyday life...... between everyday life and the health care system. Discussion: People with multimorbidity are seldom supported by health professionals in resolving the dilemmas they must face. This study suggests an increased focus on patient-centeredness and argues in favour of planning health care through cooperation...

  9. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  10. Intraoperative CT with integrated navigation system in spinal neurosurgery

    International Nuclear Information System (INIS)

    Zausinger, S.; Heigl, T.; Scheder, B.; Schnell, O.; Tonn, J.C.; Uhl, E.; Morhard, D.

    2007-01-01

    For spinal surgery navigational system images are usually acquired before surgery with patients positioned supine. The aim of this study was to evaluate prospectively navigated procedures in spinal surgery with data acquisition by intraoperative computed tomography (iCT). CT data of 38 patients [thoracolumbar instability (n = 24), C1/2 instability (n = 6), cervicothoracic stabilization (n = 7), disk herniation (n = 1)] were acquired after positioning the patient in prone position. A sliding gantry 24 detector row CT was used for image acquisition. Data were imported to the frameless infrared-based neuronavigation station. A postprocedural CT was obtained to assess the extent of decompression and the accuracy of instrumentation. Intraoperative registration revealed computed accuracy 2 mm in 9/158 screws (5.6%), allowing immediate correction in five screws without any damage to vessels or nerves. There were three transient complications with clinical improvement in all patients. Intraoperative CT in combination with neuronavigation provides high accuracy of screw placement and thus safety for patients undergoing spinal stabilization. The procedure is rapid and easy to perform and - by replacing pre- and postoperative imaging-is not associated with additional exposure to radiation. (orig.)

  11. Virtual Patients in a Behavioral Medicine Massive Open Online Course (MOOC): A Case-Based Analysis of Technical Capacity and User Navigation Pathways.

    Science.gov (United States)

    Kononowicz, Andrzej A; Berman, Anne H; Stathakarou, Natalia; McGrath, Cormac; Bartyński, Tomasz; Nowakowski, Piotr; Malawski, Maciej; Zary, Nabil

    2015-09-10

    Massive open online courses (MOOCs) have been criticized for focusing on presentation of short video clip lectures and asking theoretical multiple-choice questions. A potential way of vitalizing these educational activities in the health sciences is to introduce virtual patients. Experiences from such extensions in MOOCs have not previously been reported in the literature. This study analyzes technical challenges and solutions for offering virtual patients in health-related MOOCs and describes patterns of virtual patient use in one such course. Our aims are to reduce the technical uncertainty related to these extensions, point to aspects that could be optimized for a better learner experience, and raise prospective research questions by describing indicators of virtual patient use on a massive scale. The Behavioral Medicine MOOC was offered by Karolinska Institutet, a medical university, on the EdX platform in the autumn of 2014. Course content was enhanced by two virtual patient scenarios presented in the OpenLabyrinth system and hosted on the VPH-Share cloud infrastructure. We analyzed web server and session logs and a participant satisfaction survey. Navigation pathways were summarized using a visual analytics tool developed for the purpose of this study. The number of course enrollments reached 19,236. At the official closing date, 2317 participants (12.1% of total enrollment) had declared completing the first virtual patient assignment and 1640 (8.5%) participants confirmed completion of the second virtual patient assignment. Peak activity involved 359 user sessions per day. The OpenLabyrinth system, deployed on four virtual servers, coped well with the workload. Participant survey respondents (n=479) regarded the activity as a helpful exercise in the course (83.1%). Technical challenges reported involved poor or restricted access to videos in certain areas of the world and occasional problems with lost sessions. The visual analyses of user pathways display

  12. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  13. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  14. Access 3 project protocol: young people and health system navigation in the digital age: a multifaceted, mixed methods study.

    Science.gov (United States)

    Kang, Melissa; Robards, Fiona; Sanci, Lena; Steinbeck, Katharine; Jan, Stephen; Hawke, Catherine; Kong, Marlene; Usherwood, Tim

    2017-08-07

    The integration of digital technology into everyday lives of young people has become widespread. It is not known whether and how technology influences barriers and facilitators to healthcare, and whether and how young people navigate between face-to-face and virtual healthcare. To provide new knowledge essential to policy and practice, we designed a study that would explore health system access and navigation in the digital age. The study objectives are to: (1) describe experiences of young people accessing and navigating the health system in New South Wales (NSW), Australia; (2) identify barriers and facilitators to healthcare for young people and how these vary between groups; (3) describe health system inefficiencies, particularly for young people who are marginalised; (4) provide policy-relevant knowledge translation of the research data. This mixed methods study has four parts, including: (1) a cross-sectional survey of young people (12-24 years) residing in NSW, Australia; (2) a longitudinal, qualitative study of a subsample of marginalised young people (defined as young people who: identify as Aboriginal and/or Torres Strait Islander; are experiencing homelessness; identify as sexuality and/or gender diverse; are of refugee or vulnerable migrant background; and/or live in rural or remote NSW); (3) interviews with professionals; (4) a knowledge translation forum. Ethics approvals were sought and granted. Data collection commenced in March 2016 and will continue until June 2017. This study will gather practice and policy-relevant intelligence about contemporary experiences of young people and health services, with a unique focus on five different groups of marginalised young people, documenting their experiences over time. Access 3 will explore navigation around all levels of the health system, determine whether digital technology is integrated into this, and if so how, and will translate findings into policy-relevant recommendations. © Article author(s) (or

  15. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    International Nuclear Information System (INIS)

    Bonel, H.; Frei, K.A.; Raio, L.; Meyer-Wittkopf, M.; Remonda, L.; Wiest, R.

    2008-01-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 ± 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 ± 0.58 vs. 3.65 ± 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 ± 7.27 to 19.83 ± 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  16. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts.

    Science.gov (United States)

    Bonel, H; Frei, K A; Raio, L; Meyer-Wittkopf, M; Remonda, L; Wiest, R

    2008-04-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.

  17. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, H. [University Hospital Berne-Inselspital, Freiburgstrasse, Institute of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Frei, K.A.; Raio, L.; Meyer-Wittkopf, M. [University of Berne, Women' s' Hospital, Bern (Switzerland); Remonda, L.; Wiest, R. [University of Berne, Institute of Diagnostic and Interventional Neuroradiology (DIN), Inselspital, Bern (Switzerland)

    2008-04-15

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 {+-} 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 {+-} 0.58 vs. 3.65 {+-} 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 {+-} 7.27 to 19.83 {+-} 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  18. [Clinical application of three-dimensional O-arm navigation system in treating patients with dystrophic scoliosis secondary to neurofibromatosis type Ⅰ].

    Science.gov (United States)

    Liu, Z; Qiu, Y; Li, Y; Zhao, Z H; Wang, B; Zhu, F; Yu, Y; Sun, X; Zhu, Z Z

    2017-03-01

    Objective: To investigate the clinical outcomes and the accuracy of O-arm-navigation system assisted pedicle screw insertion in dystrophic scoliosis secondary to neurofibromatosis type Ⅰ(NF-1). Methods: A retrospective study was conducted in 41 patients with dystrophic NF-1-associated thoracic scoliosis who were surgically treated at Department of Orthopaedics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School between June 2012 and October 2014 with more than 18 months follow-up. The patients were then divided into two groups: 18 patients were under the assistance of O-arm-navigation-based pedicle screw insertion (O-arm group) and the remaining 23 patients' pedicle screws insertion were conducted by free-hand (free-hand group). The X-ray and CT were analyzed to investigate the correction rate and safety of pedicle insertion. t -test was used to analyze measurement data and χ(2) test was used to analyze accuracy of screw insertion between the two groups. Results: The mean coronal Cobb angle was 63.2°±8.7° in the O-arm group and 66.9°±7.4° in the free-hand group ( P >0.05), which was then corrected into 23.1°±6.8° and 30.2°±7.6°( t =2.231, P =0.031) after surgery respectively.Operation time was (265.0±70.3)minutes and estimated blood loss was (1 024±465)ml in the O-arm group. Operation time and estimated blood loss was (243.0±49.6)minutes and (1 228±521)ml respectively in the free-hand group, which had no significant difference between the two groups. However, the implant density was higher in the O-arm group than that in the free-hand group ((64.1±10.8)% vs .(44.3±15.3)%)( t =4.652, P =0.000). The O-arm group comprised 122 screws, of which 72.9% were excellent, 22.1% were good and 4.9% were bad. The free-hand group comprised 136 screws and 48.5% of them were excellent, 33.8% were good and 17.6% were bad.Accuracy of pedicle screw insertion was higher in the O-arm group than that in the free-hand group(χ(2

  19. Semiotic resources for navigation

    DEFF Research Database (Denmark)

    Due, Brian Lystgaard; Lange, Simon Bierring

    2018-01-01

    This paper describes two typical semiotic resources blind people use when navigating in urban areas. Everyone makes use of a variety of interpretive semiotic resources and senses when navigating. For sighted individuals, this especially involves sight. Blind people, however, must rely on everything...... else than sight, thereby substituting sight with other modalities and distributing the navigational work to other semiotic resources. Based on a large corpus of fieldwork among blind people in Denmark, undertaking observations, interviews, and video recordings of their naturally occurring practices...... of walking and navigating, this paper shows how two prototypical types of semiotic resources function as helpful cognitive extensions: the guide dog and the white cane. This paper takes its theoretical and methodological perspective from EMCA multimodal interaction analysis....

  20. Benefits and challenges perceived by patients with cancer when offered a nurse navigator

    Directory of Open Access Journals (Sweden)

    Marianne Kirstine Thygesen

    2011-10-01

    Full Text Available Introduction: Lack of communication, care and respect from healthcare professionals can be challenges for patients in trajectories of cancer, possibly accompanied by experienced fragmentation of the care, anxiety and worries. One way to try to improve delivery of care is additional help from Nurse Navigators (NN offered in a predefined shorter or longer period, but patients´ experiences with this have seldom been investigated. Aims: To explore patients´ experiences of an NN offered in a short period of a longer trajectory of cancer. Methods: NN worked from the hospital side in the transition between primary care and a university hospital before admission. A phenomenological-hermeneutical longitudinal study was performed from referral and until two months after discharge from the hospital. Semi-structured interviews provided data for the analysis, which started open-minded. Results:  Affectional bonds were made to NN and patients felt that they benefited from her presence and her help, which they requested until one month after discharge. They were deeply disappointed and felt rejected when the contact to the NN stopped. Conclusion: In efforts to increase quality of care for patients with cancer we recommend paying special attention to critical periods in their trajectories, as well as to the theory of attachment to supplement thoughts of continuity of care and coordination in the care for women. In short, it is fine to offer additional help to those who can use it, but in practice as well as in research we call attention to awareness on how and when to stop the help, to prevent patients from feeling hurt.

  1. 33 CFR 401.54 - Interference with navigation aids.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  2. Evaluation of a patient navigation program to promote colorectal cancer screening in rural Georgia, USA.

    Science.gov (United States)

    Honeycutt, Sally; Green, Rhonda; Ballard, Denise; Hermstad, April; Brueder, Alex; Haardörfer, Regine; Yam, Jennifer; Arriola, Kimberly J

    2013-08-15

    Colorectal cancer (CRC) is a leading cause of cancer death in the United States. Early detection through recommended screening has been shown to have favorable treatment outcomes, yet screening rates among the medically underserved and uninsured are low, particularly for rural and minority populations. This study evaluated the effectiveness of a patient navigation program that addresses individual and systemic barriers to CRC screening for patients at rural, federally qualified community health centers. This quasi-experimental evaluation compared low-income patients at average risk for CRC (n = 809) from 4 intervention clinics and 9 comparison clinics. We abstracted medical chart data on patient demographics, CRC history and risk factors, and CRC screening referrals and examinations. Outcomes of interest were colonoscopy referral and examination during the study period and being compliant with recommended screening guidelines at the end of the study period. We conducted multilevel logistic analyses to evaluate the program's effectiveness. Patients at intervention clinics were significantly more likely than patients at comparison clinics to undergo colonoscopy screening (35% versus 7%, odds ratio = 7.9, P screening test (43% versus 11%, odds ratio = 5.9, P Screening Program, can be an effective approach to ensure that lifesaving, preventive health screenings are provided to low-income adults in a rural setting. Copyright © 2013 American Cancer Society.

  3. Cost-Effectiveness Analysis of a Navigation Program for Colorectal Cancer Screening to Reduce Social Health Inequalities: A French Cluster Randomized Controlled Trial.

    Science.gov (United States)

    De Mil, Rémy; Guillaume, Elodie; Guittet, Lydia; Dejardin, Olivier; Bouvier, Véronique; Pornet, Carole; Christophe, Véronique; Notari, Annick; Delattre-Massy, Hélène; De Seze, Chantal; Peng, Jérôme; Launoy, Guy; Berchi, Célia

    2018-06-01

    Patient navigation programs to increase colorectal cancer (CRC) screening adherence have become widespread in recent years, especially among deprived populations. To evaluate the cost-effectiveness of the first patient navigation program in France. A total of 16,250 participants were randomized to either the usual screening group (n = 8145) or the navigation group (n = 8105). Navigation consisted of personalized support provided by social workers. A cost-effectiveness analysis of navigation versus usual screening was conducted from the payer perspective in the Picardy region of northern France. We considered nonmedical direct costs in the analysis. Navigation was associated with a significant increase of 3.3% (24.4% vs. 21.1%; P = 0.003) in participation. The increase in participation was higher among affluent participants (+4.1%; P = 0.01) than among deprived ones (+2.6%; P = 0.07). The cost per additional individual screened by navigation compared with usual screening (incremental cost-effectiveness ratio) was €1212 globally and €1527 among deprived participants. Results were sensitive to navigator wages and to the intervention effectiveness whose variations had the greatest impact on the incremental cost-effectiveness ratio. Patient navigation aiming at increasing CRC screening participation is more efficient among affluent individuals. Nevertheless, when the intervention is implemented for the entire population, social inequalities in CRC screening adherence increase. To reduce social inequalities, patient navigation should therefore be restricted to deprived populations, despite not being the most cost-effective strategy, and accepted to bear a higher extra cost per additional individual screened. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  4. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions.

    Science.gov (United States)

    van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B

    2018-03-01

    To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.

  5. Nonvisual spatial navigation fMRI lateralizes mesial temporal lobe epilepsy in a patient with congenital blindness.

    Science.gov (United States)

    Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; König, Kristina; Jokeit, Hennric

    2015-01-01

    Nonvisual spatial navigation functional magnetic resonance imaging (fMRI) may help clinicians determine memory lateralization in blind individuals with refractory mesial temporal lobe epilepsy (MTLE). We report on an exceptional case of a congenitally blind woman with late-onset left MTLE undergoing presurgical memory fMRI. To activate mesial temporal structures despite the lack of visual memory, the patient was requested to recall familiar routes using nonvisual multisensory and verbal cues. Our findings demonstrate the diagnostic value of a nonvisual fMRI task to lateralize MTLE despite congenital blindness and may therefore contribute to the risk assessment for postsurgical amnesia in rare cases with refractory MTLE and accompanying congenital blindness.

  6. Granting death with dignity: patient, family and professional perspectives.

    Science.gov (United States)

    Leung, Doris

    2007-04-01

    Dignity is a complex construct lacking clear meaning. While conceptualizing dignity as a basic right is useful in determining and justifying social and economic costs of health care, it is insufficient in considerations of personal dignity at the end of life. There is a dissonance between how dignity is shown to matter to healthcare professionals compared to patients. Furthermore, dignity is not clearly linked in the empirical literature to variables of quality of life and to a dignified death. Current studies about the construct of dignity enhance understanding of how we extrinsically construct moral worth, but not of how individuals interpret intrinsic moral worth through maintaining their personal integrity and attitudes of being cared for. References to key qualitative studies illuminate how clinicians ethically negotiate a creation of dying with dignity. As one's personal integrity fades, caregivers (i.e. healthcare providers, family and friends) are challenged to recognise and attend to the individual's vulnerability. I suggest that caregivers nurture personal integrity - through gestures that remember and honour aspects of the other as he/she was once known. Perhaps only through others can dying people be granted death with a sense of personal dignity.

  7. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  8. Real-time navigation system for sentinel lymph node biopsy in breast cancer patients using projection mapping with indocyanine green fluorescence.

    Science.gov (United States)

    Takada, Masahiro; Takeuchi, Megumi; Suzuki, Eiji; Sato, Fumiaki; Matsumoto, Yoshiaki; Torii, Masae; Kawaguchi-Sakita, Nobuko; Nishino, Hiroto; Seo, Satoru; Hatano, Etsuro; Toi, Masakazu

    2018-05-09

    Inability to visualize indocyanine green fluorescence images in the surgical field limits the application of current near-infrared fluorescence imaging (NIR) systems for real-time navigation during sentinel lymph node (SLN) biopsy in breast cancer patients. The aim of this study was to evaluate the usefulness of the Medical Imaging Projection System (MIPS), which uses active projection mapping, for SLN biopsy. A total of 56 patients (59 procedures) underwent SLN biopsy using the MIPS between March 2016 and November 2017. After SLN biopsy using the MIPS, residual SLNs were removed using a conventional NIR camera and/or radioisotope method. The primary endpoint of this study was identification rate of SLNs using the MIPS. In all procedures, at least one SLN was detected by the MIPS, giving an SLN identification rate of 100% [95% confidence interval (CI) 94-100%]. SLN biopsy was successfully performed without operating lights in all procedures. In total, 3 positive SLNs were excised using MIPS, but were not included in the additional SLNs excised by other methods. The median number of SLNs excised using the MIPS was 3 (range 1-7). Of procedures performed after preoperative systemic therapy, the median number of SLNs excised using the MIPS was 3 (range 2-6). The MIPS is effective in detecting SLNs in patients with breast cancer, providing continuous and accurate projection of fluorescence signals in the surgical field, without need for operating lights, and could be useful in real-time navigation surgery for SLN biopsy.

  9. [Functional neuro-navigation and intraoperative magnetic resonance imaging for the resection of gliomas involving eloquent language structures].

    Science.gov (United States)

    Chen, Xiao-lei; Xu, Bai-nan; Wang, Fei; Meng, Xiang-hui; Zhang, Jun; Jiang, Jin-li; Yu, Xin-guang; Zhou, Ding-biao

    2011-08-01

    To explore the clinical value of functional neuro-navigation and high-field-strength intraoperative magnetic resonance imaging (iMRI) for the resection of intracerebral gliomas involving eloquent language structures. From April 2009 to April 2010, 48 patients with intracerebral gliomas involving eloquent language structures, were operated with functional neuro-navigation and iMRI. Blood oxygen level dependent functional MRI (BOLD-fMRI) was used to depict both Broca and Wernicke cortex, while diffusion tensor imaging (DTI) based fiber tracking was used to delineate arcuate fasciculus. The reconstructed language structures were integrated into a navigation system, so that intra-operative microscopic-based functional neuro-navigation could be achieved. iMRI was used to update the images for both language structures and residual tumors. All patients were evaluated for language function pre-operatively and post-operatively upon short-term and long-term follow-up. In all patients, functional neuro-navigation and iMRI were successfully achieved. In 38 cases (79.2%), gross total resection was accomplished, while in the rest 10 cases (20.8%), subtotal resection was achieved. Only 1 case (2.1%) developed long-term (more than 3 months) new language function deficits at post-operative follow-up. No peri-operative mortality was recorded. With functional neuro-navigation and iMRI, the eloquent structures for language can be precisely located, while the resection size can be accurately evaluated intra-operatively. This technique is safe and helpful for preservation of language function.

  10. RT-06GAMMA KNIFE SURGERY AFTER NAVIGATION-GUIDED ASPIRATION FOR CYSTIC METASTATIC BRAIN TUMORS

    Science.gov (United States)

    Chiba, Yasuyoshi; Mori, Kanji; Toyota, Shingo; Kumagai, Tetsuya; Yamamoto, Shota; Sugano, Hirofumi; Taki, Takuyu

    2014-01-01

    Metastatic brain tumors over 3 cm in diameter (volume of 14.1ml) are generally considered poor candidates for Gamma Knife surgery (GKS). We retrospectively assessed the method and efficacy of GKS for large cystic metastatic brain tumors after navigation-guided aspiration under local anesthesia. From September 2007 to April 2014, 38 cystic metastatic brain tumors in 32 patients (12 males, 20 females; mean age, 63.2 years) were treated at Kansai Rosai Hospital. The patients were performed navigation-guided cyst aspiration under local anesthesia, then at the day or the next day, were performed GKS and usually discharged on the day. The methods for preventing of leptomeningeal dissemination are following: 1) puncture from the place whose cerebral thickness is 1 cm or more; 2) avoidance of Ommaya reservoir implantation; and 3) placement of absorbable gelatin sponge to the tap tract. Tumor volume, including the cystic component, decreased from 25.4 ml (range 8.7-84.7 ml) to 11.4 ml (range 2.9-36.7 ml) following aspiration; the volume reduction was approximately 51.6%. Follow-up periods in the study population ranged from 0 to 24 months (median 3.5 months). The overall median survival was 6.7 months. There was no leptomeningeal dissemination related to the aspiration. One patient experienced radiation necrosis after GKS, one patient experienced re-aspiration by failure of aspiration, and two patients experienced surgical resections and one patient experienced re-aspiration by cyst regrowth after GKS. Long-term hospitalization is not desirable for the patients with brain metastases. In japan, Long-term hospitalization is required for surgical resection or whole brain radiation therapy, but only two days hospitalization is required for GKS after navigation-guided aspiration at our hospital. This GKS after navigation-guided aspiration is more effective and less invasive than surgical resection or whole brain radiation therapy.

  11. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region.

    Science.gov (United States)

    KleinJan, Gijs H; Karakullukçu, Baris; Klop, W Martin C; Engelen, Thijs; van den Berg, Nynke S; van Leeuwen, Fijs W B

    2017-08-17

    Intraoperative sentinel node (SN) identification in patients with head-and-neck malignancies can be challenging due to unexpected drainage patterns and anatomical complexity. Here, intraoperative navigation-based guidance technologies may provide outcome. In this study, gamma camera-based freehandSPECT was evaluated in combination with the hybrid tracer ICG- 99m Tc-nanocolloid. Eight patients with melanoma located in the head-and-neck area were included. Indocyanine green (ICG)- 99m Tc-nanocolloid was injected preoperatively, whereafter lymphoscintigraphy and SPECT/CT imaging were performed in order to define the location of the SN(s). FreehandSPECT scans were generated in the operation room using a portable gamma camera. For lesion localization during surgery, freehandSPECT scans were projected in an augmented reality video-view that was used to spatially position a gamma-ray detection probe. Intraoperative fluorescence imaging was used to confirm the accuracy of the navigation-based approach and identify the exact location of the SNs. Preoperatively, 15 SNs were identified, of which 14 were identified using freehandSPECT. Navigation towards these nodes using the freehandSPECT approach was successful in 13 nodes. Fluorescence imaging provided optical confirmation of the navigation accuracy in all patients. In addition, fluorescence imaging allowed for the identification of (clustered) SNs that could not be identified based on navigation alone. The use of gamma camera-based freehandSPECT aids intraoperative lesion identification and, with that, supports the transition from pre- to intraoperative imaging via augmented reality display and directional guidance.

  12. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    Science.gov (United States)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  13. Social support, flexible resources, and health care navigation.

    Science.gov (United States)

    Gage-Bouchard, Elizabeth A

    2017-10-01

    Recent research has focused attention on the role of patients' and clinicians' cultural skills and values in generating inequalities in health care experiences. Yet, examination of how social structural factors shape people's abilities to build, refine, and leverage strategies for navigating the health care system have received less attention. In this paper I place focus on one such social structural factor, social support, and examine how social support operates as a flexible resource that helps people navigate the health care system. Using the case of families navigating pediatric cancer care this study combines in-depth interviews with parents of pediatric cancer patients (N = 80), direct observation of clinical interactions between families and physicians (N = 73), and in-depth interviews with pediatric oncologists (N = 8). Findings show that physicians assess parental visibility in the hospital, medical vigilance, and adherence to their child's treatment and use these judgments to shape clinical decision-making. Parents who had help from their personal networks had more agility in balancing competing demands, and this allowed parents to more effectively meet institutional expectations for appropriate parental involvement in the child's health care. In this way, social support served as a flexible resource for some families that allowed parents to more quickly adapt to the demands of caring for a child with cancer, foster productive interpersonal relationships with health care providers, and play a more active role in their child's health care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Patient navigation pathway and barriers to treatment seeking in cancer in India: a qualitative inquiry.

    Science.gov (United States)

    Pati, Sanghamitra; Hussain, Mohammad Akhtar; Chauhan, Abhimanyu Singh; Mallick, Diptimayee; Nayak, Sukdev

    2013-12-01

    Cancer is a leading cause of mortality worldwide. Early diagnosis and treatment of cancer may curb the growing burden of the disease. Understanding cancer patients' navigation pathways for seeking treatment is important in order to facilitate early diagnosis and treatment. With this background we conducted a hospital-based cross-sectional study comprising 68 randomly selected cancer inpatients in a tertiary cancer specialty hospital in Odisha, India, to explore the treatment-seeking pathways of the cancer patients and the barriers and enablers in seeking treatment. Financial constraint is one of the major reasons for the delay in accessing treatment, even when patients are suspected of or diagnosed with cancer. Low awareness of the presenting signs and symptoms of cancer and limited knowledge of the availability of cancer diagnosis and treatment facilities are major factors contributing to delay. Family and friends' support is found to be the major enabling factor toward seeking treatment. Generation of awareness of cancer among the general population and primary-care practitioners - including those in alternative systems of medicine - is important. Information on diagnostic and treatment services appears to be a felt need. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  16. You Can Get Grants!

    Science.gov (United States)

    Novelli, Joan

    1994-01-01

    Presents strategies to help elementary teachers win grants for the classroom. The article includes information on grant sources, where to find out more about grants, and how to write winning grants. Examples of successful grant projects are provided, and announcement of a $500 Instructor grant competition is included. (SM)

  17. 75 FR 50884 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-18

    ... 3 and 165 to reflect changes in Coast Guard internal organizational structure. Sector Portland and... 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector... Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River.'' 2. On page 48564...

  18. Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning

    International Nuclear Information System (INIS)

    McGarry, Conor K.; Bokrantz, Rasmus; O’Sullivan, Joe M.; Hounsell, Alan R.

    2014-01-01

    Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study’s aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managed through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8 Gy vs 35.5 ± 4.2 Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4 Gy vs 35.5 ± 4.2 Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to

  19. Getting Lost Through Navigation

    DEFF Research Database (Denmark)

    Debus, Michael S.

    2017-01-01

    In this presentation, I argued two things. First, that it is navigation that lies at the core of contemporary (3D-) videogames and that its analysis is of utmost importance. Second, that this analysis needs a more rigorous differentiation between specific acts of navigation. Considering the Oxford...... in videogames is a configurational rather than an interpretational one (Eskelinen 2001). Especially in the case of game spaces, navigation appears to be of importance (Wolf 2009; Flynn 2008). Further, it does not only play a crucial role for the games themselves, but also for the experience of the player...

  20. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  1. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    Science.gov (United States)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  2. Addressing Cancer Disparities Among American Indians through Innovative Technologies and Patient Navigation: The Walking Forward Experience

    Energy Technology Data Exchange (ETDEWEB)

    Petereit, Daniel G. [Department of Oncology, John T. Vucurevich Cancer Care Institute, Rapid City, SD (United States); Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States); Guadagnolo, B. Ashleigh [Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Wong, Rosemary; Coleman, C. Norman, E-mail: dpetereit@regionalhealth.com [Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD (United States)

    2011-06-22

    Purpose/Objective(s): American Indians (AIs) present with more advanced stages of cancer and, therefore, suffer from higher cancer mortality rates compared to non-AIs. Under the National Cancer Institute (NCI) Cancer Disparities Research Partnership (CDRP) Program, we have been researching methods of improving cancer treatment and outcomes since 2002, for AIs in Western South Dakota, through the Walking Forward (WF) Program. Materials/Methods: This program consists of (a) a culturally tailored patient navigation program that facilitated access to innovative clinical trials in conjunction with a comprehensive educational program encouraging screening and early detection, (b), surveys to evaluate barriers to access, (c) clinical trials focusing on reducing treatment length to facilitate enhanced participation using brachytherapy and intensity modulated radiotherapy (IMRT) for breast and prostate cancer, as AIs live a median of 140 miles from the cancer center, and (d) a molecular study (ataxia telangiectasia mutated) to address whether there is a specific profile that increases toxicity risks. Results: We describe the design and implementation of this program, summary of previously published results, and ongoing research to influence stage at presentation. Some of the critical outcomes include the successful implementation of a community-based research program, development of trust within tribal communities, identification of barriers, analysis of nearly 400 navigated cancer patients, clinical trial accrual rate of 10%, and total enrollment of nearly 2,500 AIs on WF research studies. Conclusion: This NCI funded pilot program has achieved some initial measures of success. A research infrastructure has been created in a community setting to address new research questions and interventions. Efforts underway to promote cancer education and screening are presented, as well as applications of the lessons learned to other health disparity populations – both nationally and

  3. Addressing Cancer Disparities Among American Indians through Innovative Technologies and Patient Navigation: The Walking Forward Experience

    International Nuclear Information System (INIS)

    Petereit, Daniel G.; Guadagnolo, B. Ashleigh; Wong, Rosemary; Coleman, C. Norman

    2011-01-01

    Purpose/Objective(s): American Indians (AIs) present with more advanced stages of cancer and, therefore, suffer from higher cancer mortality rates compared to non-AIs. Under the National Cancer Institute (NCI) Cancer Disparities Research Partnership (CDRP) Program, we have been researching methods of improving cancer treatment and outcomes since 2002, for AIs in Western South Dakota, through the Walking Forward (WF) Program. Materials/Methods: This program consists of (a) a culturally tailored patient navigation program that facilitated access to innovative clinical trials in conjunction with a comprehensive educational program encouraging screening and early detection, (b), surveys to evaluate barriers to access, (c) clinical trials focusing on reducing treatment length to facilitate enhanced participation using brachytherapy and intensity modulated radiotherapy (IMRT) for breast and prostate cancer, as AIs live a median of 140 miles from the cancer center, and (d) a molecular study (ataxia telangiectasia mutated) to address whether there is a specific profile that increases toxicity risks. Results: We describe the design and implementation of this program, summary of previously published results, and ongoing research to influence stage at presentation. Some of the critical outcomes include the successful implementation of a community-based research program, development of trust within tribal communities, identification of barriers, analysis of nearly 400 navigated cancer patients, clinical trial accrual rate of 10%, and total enrollment of nearly 2,500 AIs on WF research studies. Conclusion: This NCI funded pilot program has achieved some initial measures of success. A research infrastructure has been created in a community setting to address new research questions and interventions. Efforts underway to promote cancer education and screening are presented, as well as applications of the lessons learned to other health disparity populations – both nationally and

  4. 78 FR 41304 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction

    Science.gov (United States)

    2013-07-10

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 105 [Docket No. USCG-2013-0397] RIN 1625-AC06 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction AGENCY: Coast Guard, DHS. ACTION: Final rule; correction. SUMMARY: The Coast Guard published a final rule...

  5. Patient participation in cancer clinical trials: A pilot test of lay navigation

    Directory of Open Access Journals (Sweden)

    Kathleen B. Cartmell

    2016-08-01

    Conclusions: In this formative single-arm pilot project, initial evidence was found for the potential effect of a lay navigation intervention on CT understanding and enrollment. A randomized controlled trial is needed to examine the efficacy of the intervention for improving CT education and enrollment.

  6. Restricted Navigation Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  7. NFC Internal: An Indoor Navigation System

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  8. 75 FR 48564 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 3 and 165 [Docket No. USCG-2010-0351] RIN 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River, WA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: This rule makes non-substantive...

  9. Sex differences in navigation strategy and efficiency.

    Science.gov (United States)

    Boone, Alexander P; Gong, Xinyi; Hegarty, Mary

    2018-05-22

    Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.

  10. Celestial Navigation in the USA, Fiji, and Tunisia

    Science.gov (United States)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  11. Navigation and Robotics in Spinal Surgery: Where Are We Now?

    Science.gov (United States)

    Overley, Samuel C; Cho, Samuel K; Mehta, Ankit I; Arnold, Paul M

    2017-03-01

    Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery. Copyright © 2016 by the Congress of Neurological Surgeons.

  12. Nautical Navigation Aids (NAVAID) Locations

    Data.gov (United States)

    Department of Homeland Security — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  13. Image navigation as a means to expand the boundaries of fluorescence-guided surgery.

    Science.gov (United States)

    Brouwer, Oscar R; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L; Wendler, Thomas; Valdés-Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-05-21

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  14. Intraoperative CT navigation for glenoid component fixation in reverse shoulder arthroplasty

    Directory of Open Access Journals (Sweden)

    Ashok S Gavaskar

    2013-01-01

    Full Text Available CT navigation has been shown to improve component positioning in total shoulder arthroplasty. The technique can be useful in achieving strong initial fixation of the metal backed glenoid in reverse shoulder arthroplasty. We report a 61 years male patient who underwent reverse shoulder arthroplasty for rotator cuff arthropathy. CT navigation was used intraoperatively to identify best possible glenoid bone and to maximize the depth of the fixation screws that anchor the metaglene portion of the metal backed glenoid component. Satisfactory positioning of screws and component was achieved without any perforation or iatrogenic fracture in the scapula. CT navigation can help in maximizing the purchase of the fixation screws that dictate the initial stability of the glenoid component in reverse shoulder arthroplasty. The technique can be extended to improve glenoid component position [version and tilt] with the availability of appropriate software.

  15. Design of all-weather celestial navigation system

    Science.gov (United States)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  16. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  17. 32 CFR 644.3 - Navigation Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  18. Consumer Use of "Dr Google": A Survey on Health Information-Seeking Behaviors and Navigational Needs.

    Science.gov (United States)

    Lee, Kenneth; Hoti, Kreshnik; Hughes, Jeffery David; Emmerton, Lynne M

    2015-12-29

    The Internet provides a platform to access health information and support self-management by consumers with chronic health conditions. Despite recognized barriers to accessing Web-based health information, there is a lack of research quantitatively exploring whether consumers report difficulty finding desired health information on the Internet and whether these consumers would like assistance (ie, navigational needs). Understanding navigational needs can provide a basis for interventions guiding consumers to quality Web-based health resources. We aimed to (1) estimate the proportion of consumers with navigational needs among seekers of Web-based health information with chronic health conditions, (2) describe Web-based health information-seeking behaviors, level of patient activation, and level of eHealth literacy among consumers with navigational needs, and (3) explore variables predicting navigational needs. A questionnaire was developed based on findings from a qualitative study on Web-based health information-seeking behaviors and navigational needs. This questionnaire also incorporated the eHealth Literacy Scale (eHEALS; a measure of self-perceived eHealth literacy) and PAM-13 (a measure of patient activation). The target population was consumers of Web-based health information with chronic health conditions. We surveyed a sample of 400 Australian adults, with recruitment coordinated by Qualtrics. This sample size was required to estimate the proportion of consumers identified with navigational needs with a precision of 4.9% either side of the true population value, with 95% confidence. A subsample was invited to retake the survey after 2 weeks to assess the test-retest reliability of the eHEALS and PAM-13. Of 514 individuals who met our eligibility criteria, 400 (77.8%) completed the questionnaire and 43 participants completed the retest. Approximately half (51.3%; 95% CI 46.4-56.2) of the population was identified with navigational needs. Participants with

  19. Markets of well-being : navigating health and healing in Africa

    NARCIS (Netherlands)

    Dekker, M.; Dijk, van R.A.

    2010-01-01

    Health and healing in Africa have increasingly become subject to monetization and commodification, in short, the market. Based on fieldwork in nine countries, this volume offers different perspectives on these emerging markets and the way medical staff, patients, households and institutions navigate

  20. SLAM algorithm applied to robotics assistance for navigation in unknown environments

    Directory of Open Access Journals (Sweden)

    Lobo Pereira Fernando

    2010-02-01

    Full Text Available Abstract Background The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous. The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI. Methods In this paper, a sequential Extended Kalman Filter (EKF feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. Results The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how

  1. Beyond dizziness: virtual navigation, spatial anxiety and hippocampal volume in bilateral vestibulopathy

    Directory of Open Access Journals (Sweden)

    Olympia eKremmyda

    2016-03-01

    Full Text Available Bilateral vestibulopathy (BVP is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63 and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87 compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional

  2. 14 CFR 121.349 - Communication and navigation equipment for operations under VFR over routes not navigated by...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for... § 121.349 Communication and navigation equipment for operations under VFR over routes not navigated by... receiver providing visual and aural signals; and (iii) One ILS receiver; and (3) Any RNAV system used to...

  3. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  4. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully a...... automatically learn and store visual landmarks, and later recognize these landmarks from arbitrary positions and thus estimate robot position and heading.......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...... autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...

  5. NFC Internal: An Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Busra Ozdenizci

    2015-03-01

    Full Text Available Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  6. Acute and long term outcomes of catheter ablation using remote magnetic navigation for the treatment of electrical storm in patients with severe ischemic heart failure

    DEFF Research Database (Denmark)

    Jin, Qi; Jacobsen, Peter Karl; Pehrson, Steen

    2015-01-01

    BACKGROUND: Catheter ablation with remote magnetic navigation (RMN) can offer some advantages compared to manual techniques. However, the relevant clinical evidence for how RMN-guided ablation affects electrical storm (ES) due to ventricular tachycardia (VT) in patients with severe ischemic heart......-guided catheter ablation can prevent VT recurrence and significantly reduce ICD shocks, suggesting that this strategy can be used as an alternative therapy for VT storm in SIHF patients with ICDs....

  7. Inland Electronic Navigational Charts (IENC)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — These Inland Electronic Navigational Charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  8. Low Cost Integrated Navigation System for Unmanned Vessel

    Directory of Open Access Journals (Sweden)

    Yang Changsong

    2017-11-01

    Full Text Available Large errors of low-cost MEMS inertial measurement unit (MIMU lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS. This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

  9. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    Science.gov (United States)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  10. Development of field navigation system; Field navigation system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibara, S; Minode, M; Nishioka, K [Daihatsu Motor Co. Ltd., Osaka (Japan)

    1995-04-20

    This paper describes the following matters on a field navigation system developed for the purpose of covering a field of several kilometer square. This system consists of a center system and a vehicle system, and the center system comprises a map information computer and a communication data controlling computer; since the accuracy for a vehicle position detected by a GPS is not sufficient, an attempt of increasing the accuracy of vehicle position detection is made by means of a hybrid system; the hybrid system uses a satellite navigation method of differential system in which the error components in the GPS are transmitted from the center, and also uses a self-contained navigation method which performs an auxiliary function when the accuracy in the GPS has dropped; corrected GPS values, emergency messages to all of the vehicles and data of each vehicle position are communicated by wireless transmission in two ways between the center and vehicles; and accommodation of the map data adopted a system that can respond quickly to any change in roads and facilities. 3 refs., 13 figs., 1 tab.

  11. A New Electromagnetic Navigation System for Pedicle Screws Placement: A Human Cadaver Study at the Lumbar Spine.

    Directory of Open Access Journals (Sweden)

    Patrick Hahn

    Full Text Available Technical developments for improving the safety and accuracy of pedicle screw placement play an increasingly important role in spine surgery. In addition to the standard techniques of free-hand placement and fluoroscopic navigation, the rate of complications is reduced by 3D fluoroscopy, cone-beam CT, intraoperative CT/MRI, and various other navigation techniques. Another important aspect that should be emphasized is the reduction of intraoperative radiation exposure for personnel and patient. The aim of this study was to investigate the accuracy of a new navigation system for the spine based on an electromagnetic field.Twenty pedicle screws were placed in the lumbar spine of human cadavers using EMF navigation. Navigation was based on data from a preoperative thin-slice CT scan. The cadavers were positioned on a special field generator and the system was matched using a patient tracker on the spinous process. Navigation was conducted using especially developed instruments that can be tracked in the electromagnetic field. Another thin-slice CT scan was made postoperatively to assess the result. The evaluation included the position of the screws in the direction of trajectory and any injury to the surrounding cortical bone. The results were classified in 5 groups: grade 1: ideal screw position in the center of the pedicle with no cortical bone injury; grade 2: acceptable screw position, cortical bone injury with cortical penetration ≤ 2 mm; grade 3: cortical bone injury with cortical penetration 2,1-4 mm, grad 4: cortical bone injury with cortical penetration 4,1-6 mm, grade 5: cortical bone injury with cortical penetration >6 mm.The initial evaluation of the system showed good accuracy for the lumbar spine (65% grade 1, 20% grade 2, 15% grade 3, 0% grade 4, 0% grade 5. A comparison of the initial results with other navigation techniques in literature (CT navigation, 2D fluoroscopic navigation shows that the accuracy of this system is

  12. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  13. Landmark Agnosia: Evaluating the Definition of Landmark-based Navigation Impairment.

    Science.gov (United States)

    van der Ham, Ineke J M; Martens, Marieke A G; Claessen, Michiel H G; van den Berg, Esther

    2017-06-01

    Landmark agnosia is a rare type of navigation impairment, for which various definitions have been presented. From a clinical as well as theoretical perspective, consensus on the characteristics of landmark agnosia would be valuable. In the current study we review the literature concerning landmark agnosia and present a new case study. Existing literature highlights the importance of examining familiar as well as novel landmark processing and substantial variation in performance patterns of individual patients. We performed a case study with patient KS, a 53-year-old male, suffering from landmark agnosia, making use of elaborate neuropsychological screening and virtual reality-based tests of navigation ability. Our extensive examination of his impairment shows that landmark agnosia can be very narrow; in KS it is restricted to recognition of newly learned landmarks only. Also, he has no trouble recognizing familiar landmarks that are not part of a navigated route. The literature review shows that the right temporal lobe, and the right hippocampus in particular are the main lesion sites for landmark agnosia. Furthermore, our case study substantiates that this disorder can occur for both familiar and novel landmarks, and can affect novel landmarks in isolation from familiar landmarks. Moreover, it can occur in isolation from problems with processing route information. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Surgical treatment of diastematomyelia using ct-based navigation system (case report

    Directory of Open Access Journals (Sweden)

    S. V. Vissarionov

    2013-01-01

    Full Text Available The authors presented the clinical observation of the patient 14 years old with congenital malformation of the spinal canal associated with congenital scoliosis and multiple vertebral malformations. The main congenital malformation was diastematomyelia type I at level Th11-Th12, fixed spinal cord syndrome and flail legs. The surgery was performed in the following way: removal of the bone septum of the spinal canal and elimination of the spinal cord fixation using 3D computer navigation. Using 3D navigation allowed exactly to detect the location of the bone septum, creating conditions for reducing the extent of surgical access and minimizing the area of the approach to the same bone spicules. These factors allowed to manage in postoperative period without additional external orthotics. The observation period for patients was 1 year 7 months after surgery.

  15. Parsimonious Ways to Use Vision for Navigation

    Directory of Open Access Journals (Sweden)

    Paul Graham

    2012-05-01

    Full Text Available The use of visual information for navigation appears to be a universal strategy for sighted animals, amongst which, one particular group of expert navigators are the ants. The broad interest in studies of ant navigation is in part due to their small brains, thus biomimetic engineers expect to be impressed by elegant control solutions, and psychologists might hope for a description of the minimal cognitive requirements for complex spatial behaviours. In this spirit, we have been taking an interdisciplinary approach to the visual guided navigation of ants in their natural habitat. Behavioural experiments and natural image statistics show that visual navigation need not depend on the remembering or recognition of objects. Further modelling work suggests how simple behavioural routines might enable navigation using familiarity detection rather than explicit recall, and we present a proof of concept that visual navigation using familiarity can be achieved without specifying when or what to learn, nor separating routes into sequences of waypoints. We suggest that our current model represents the only detailed and complete model of insect route guidance to date. What's more, we believe the suggested mechanisms represent useful parsimonious hypotheses for the visually guided navigation in larger-brain animals.

  16. Risk management model of winter navigation operations

    International Nuclear Information System (INIS)

    Valdez Banda, Osiris A.; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-01-01

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish–Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. - Highlights: •A model to assess and manage the risk of winter navigation operations is proposed. •The risks of oil spills in winter navigation in the Gulf of Finland are analysed. •The model assesses and prioritizes actions to control the risk of the operations. •The model suggests navigational training as the most efficient risk control option.

  17. Adaptive Landmark-Based Navigation System Using Learning Techniques

    DEFF Research Database (Denmark)

    Zeidan, Bassel; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2014-01-01

    The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal. In...... hexapod robots. As a result, it allows the robots to successfully learn to navigate to distal goals in complex environments.......The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal....... Inspired by this, we develop an adaptive landmark-based navigation system based on sequential reinforcement learning. In addition, correlation-based learning is also integrated into the system to improve learning performance. The proposed system has been applied to simulated simple wheeled and more complex...

  18. A navigational evaluation model for content management systems

    International Nuclear Information System (INIS)

    Gilani, S.; Majeed, A.

    2016-01-01

    Web applications are widely used world-wide, however it is important that the navigation of these websites is effective, to enhance usability. Navigation is not limited to links between pages, it is also how we complete a task. Navigational structure presented as hypertext is one of the most important component of the Web application besides content and presentation. The main objective of this paper is to explore the navigational structure of various open source Content Management Systems from the developer's perspective. For this purpose three CMS are chosen which are WordPress, Joomla, and Drupal. Objective of the research is to identify the important navigational aspects present in these CMSs. Moreover, a comparative study of these CMSs in terms of navigational support is required. For this purpose an industrial survey is conducted based on our proposed navigational evaluation model. The results shows that there exist correlation between the identified factors and these CMSs provide helpful and effective navigational support to their users. (author)

  19. Use of Community Health Workers and Patient Navigators to Improve Cancer Outcomes Among Patients Served by Federally Qualified Health Centers: A Systematic Literature Review.

    Science.gov (United States)

    Roland, Katherine B; Milliken, Erin L; Rohan, Elizabeth A; DeGroff, Amy; White, Susan; Melillo, Stephanie; Rorie, William E; Signes, Carmita-Anita C; Young, Paul A

    2017-01-01

    Introduction: In the United States, disparities in cancer screening, morbidity, and mortality are well documented, and often are related to race/ethnicity and socioeconomic indicators including income, education, and healthcare access. Public health approaches that address social determinants of health have the greatest potential public health benefit, and can positively impact health disparities. As public health interventions, community health workers (CHWs), and patient navigators (PNs) work to address disparities and improve cancer outcomes through education, connecting patients to and navigating them through the healthcare system, supporting patient adherence to screening and diagnostic services, and providing social support and linkages to financial and community resources. Clinical settings, such as federally qualified health centers (FQHCs) are mandated to provide care to medically underserved communities, and thus are also valuable in the effort to address health disparities. We conducted a systematic literature review to identify studies of cancer-related CHW/PN interventions in FQHCs, and to describe the components and characteristics of those interventions in order to guide future intervention development and evaluation. Method: We searched five databases for peer-reviewed CHW/PN intervention studies conducted in partnership with FQHCs with a focus on cancer, carried out in the United States, and published in English between January 1990 and December 2013. Results: We identified 24 articles, all reporting positive outcomes of CHW/PNs interventions in FQHCs. CHW/PN interventions most commonly promoted breast, cervical, or colorectal cancer screening and/or referral for diagnostic resolution. Studies were supported largely through federal funding. Partnerships with academic institutions and community-based organizations provided support and helped develop capacity among FQHC clinic leadership and community members. Discussion: Both the FQHC system and CHW

  20. Vibrotactile in-vehicle navigation system

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veen, H.J. van

    2004-01-01

    A vibrotactile display, consisting ofeight vibrating elements or tactors mounted in a driver's seat, was tested in a driving simulator. Participants drove with visual, tactile and multimodal navigation displays through a built-up area. Workload and the reaction time to navigation messages were

  1. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    The need to assess security and take protection decisions is at least as old as our civilisation. However, the complexity and development speed of our interconnected technical systems have surpassed our capacity to imagine and evaluate risk scenarios. This holds in particular for risks...... that are caused by the strategic behaviour of adversaries. Therefore, technology-supported methods are needed to help us identify and manage these risks. In this paper, we describe the attack navigator: a graph-based approach to security risk assessment inspired by navigation systems. Based on maps of a socio...

  2. ANALYSIS OF FREE ROUTE AIRSPACE AND PERFORMANCE BASED NAVIGATION IMPLEMENTATION IN THE EUROPEAN AIR NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Svetlana Pavlova

    2014-12-01

    Full Text Available European Air Traffic Management system requires continuous improvements as air traffic is increasingday by day. For this purpose it was developed by international organizations Free Route Airspace and PerformanceBased Navigation concepts that allow to offer a required level of safety, capacity, environmental performance alongwith cost-effectiveness. The aim of the article is to provide detailed analysis of Free Route Airspace and PerformanceBased Navigation implementation status within European region including Ukrainian air navigation system.

  3. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    Science.gov (United States)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  4. Three-dimensional Cross-Platform Planning for Complex Spinal Procedures: A New Method Adaptive to Different Navigation Systems.

    Science.gov (United States)

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf

    2017-08-01

    A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or

  5. SLS Model Based Design: A Navigation Perspective

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  6. Collective navigation of complex networks: Participatory greedy routing.

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2017-06-06

    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.

  7. Navigating the fifth dimension: new concepts in interactive multimodality and multidimensional image navigation

    Science.gov (United States)

    Ratib, Osman; Rosset, Antoine; Dahlbom, Magnus; Czernin, Johannes

    2005-04-01

    Display and interpretation of multi dimensional data obtained from the combination of 3D data acquired from different modalities (such as PET-CT) require complex software tools allowing the user to navigate and modify the different image parameters. With faster scanners it is now possible to acquire dynamic images of a beating heart or the transit of a contrast agent adding a fifth dimension to the data. We developed a DICOM-compliant software for real time navigation in very large sets of 5 dimensional data based on an intuitive multidimensional jog-wheel widely used by the video-editing industry. The software, provided under open source licensing, allows interactive, single-handed, navigation through 3D images while adjusting blending of image modalities, image contrast and intensity and the rate of cine display of dynamic images. In this study we focused our effort on the user interface and means for interactively navigating in these large data sets while easily and rapidly changing multiple parameters such as image position, contrast, intensity, blending of colors, magnification etc. Conventional mouse-driven user interface requiring the user to manipulate cursors and sliders on the screen are too cumbersome and slow. We evaluated several hardware devices and identified a category of multipurpose jogwheel device that is used in the video-editing industry that is particularly suitable for rapidly navigating in five dimensions while adjusting several display parameters interactively. The application of this tool will be demonstrated in cardiac PET-CT imaging and functional cardiac MRI studies.

  8. A clinical study of navigation accuracy during surgery

    International Nuclear Information System (INIS)

    Hirabayashi, Hidehiro; Uchiyama, Yoshitomo; Hoshida, Toru; Nakase, Hiroyuki; Morimoto, Tetsuya; Sakaki, Toshisuke

    2000-01-01

    It is essential to implement image-guided surgery or neuronavigation technologies that can be applied during functional surgery to localize targets accurately in the surgical field. Various navigation systems have been developed, such as the optical system and mechanical-arm-based system, to localize targets in the operative field. However, either the reference system, in optical systems, or the arm joint, in mechanical-arm-based systems, can sometimes interfere with surgical maneuvers. Therefore, we used the magnetic-force-based Computed Assisted Neurosurgery system (CANS system, Shimadzu, Co. Ltd., Kyoto, Japan) for neuronavigation. The purpose of this study was to evaluate the accuracy of the CANS navigation system. Ten patients with medically refractory epilepsy underwent implantation of subdural electrode grids to detect the epilepsy focus, and then lobectomy or multiple subpial transection was performed after informed consent was obtained. The male/female ratio was 6:4 and the mean age was 30.7 years. The CANS navigator system consists mainly of a magnetic source, a localizer probe with magnetic sensor, a three-dimensional locating measuring instrument (digitizer), an image scanner, and a personal computer. To determine the localization accuracy, the probe was moved on the subdural electrode grid which typically consists of 64 or 16 platinum-iridium electrode contacts (3 mm in the diameter) embedded in a Silastic sheet. The array of electrodes was 8 x 8 cm or 2 x 8 cm and the center-to-center inter-electrode distance was 10 mm. We evaluated the inter-electrode distances and spatial relationships among the electrodes to quantitate the precision of the probe tip localization and assumed the nasion origin reference system to assess the distribution of target coordinates. The measurement errors of each component derived from different planes for the same targets were evaluated in ten patients. The error in X-dimension ranged from 0.38 mm to 7.8 mm, the error in Y

  9. Target relative navigation results from hardware-in-the-loop tests using the sinplex navigation system

    NARCIS (Netherlands)

    Steffes, S.; Dumke, M.; Heise, D.; Sagliano, M.; Samaan, M.; Theil, S.; Boslooper, E.C.; Oosterling, J.A.J.; Schulte, J.; Skaborn, D.; Söderholm, S.; Conticello, S.; Esposito, M.; Yanson, Y.; Monna, B.; Stelwagen, F.; Visee, R.

    2014-01-01

    The goal of the SINPLEX project is to develop an innovative solution to significantly reduce the mass of the navigation subsystem for exploration missions which include landing and/or rendezvous and capture phases. The system mass is reduced while still maintaining good navigation performance as

  10. Binocular stereo-navigation for three-dimensional thoracoscopic lung resection.

    Science.gov (United States)

    Kanzaki, Masato; Isaka, Tamami; Kikkawa, Takuma; Sakamoto, Kei; Yoshiya, Takehito; Mitsuboshi, Shota; Oyama, Kunihiro; Murasugi, Masahide; Onuki, Takamasa

    2015-05-08

    This study investigated the efficacy of binocular stereo-navigation during three-dimensional (3-D) thoracoscopic sublobar resection (TSLR). From July 2001, the authors' department began to use a virtual 3-D pulmonary model on a personal computer (PC) for preoperative simulation before thoracoscopic lung resection and for intraoperative navigation during operation. From 120 of 1-mm thin-sliced high-resolution computed tomography (HRCT)-scan images of tumor and hilum, homemade software CTTRY allowed sugeons to mark pulmonary arteries, veins, bronchi, and tumor on the HRCT images manually. The location and thickness of pulmonary vessels and bronchi were rendered as diverse size cylinders. With the resulting numerical data, a 3-D image was reconstructed by Metasequoia shareware. Subsequently, the data of reconstructed 3-D images were converted to Autodesk data, which appeared on a stereoscopic-vision display. Surgeons wearing 3-D polarized glasses performed 3-D TSLR. The patients consisted of 5 men and 5 women, ranging in age from 65 to 84 years. The clinical diagnoses were a primary lung cancer in 6 cases and a solitary metastatic lung tumor in 4 cases. Eight single segmentectomies, one bi-segmentectomy, and one bi-subsegmentectomy were performed. Hilar lymphadenectomy with mediastinal lymph node sampling has been performed in 6 primary lung cancers, but four patients with metastatic lung tumors were performed without lymphadenectomy. The operation time and estimated blood loss ranged from 125 to 333 min and from 5 to 187 g, respectively. There were no intraoperative complications and no conversion to open thoracotomy and lobectomy. Postoperative courses of eight patients were uneventful, and another two patients had a prolonged lung air leak. The drainage duration and hospital stay ranged from 2 to 13 days and from 8 to 19 days, respectively. The tumor histology of primary lung cancer showed 5 adenocarcinoma and 1 squamous cell carcinoma. All primary lung

  11. Chemotaxis of C. elegans in 3D media: a model for navigation of undulatory microswimmers

    Science.gov (United States)

    Patel, Amar; Bilbao, Alejandro; Rahman, Mizanur; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2017-11-01

    While the natural environment of C. elegans consists of complex 3D media (e.g., decomposing organic matter and water), most studies of chemotactic behavior of this nematode are limited to 2D. We present a 3D chemotaxis model that combines a realistic geometrical representation of body movements associated with 3D maneuvers, an analysis of mechanical interactions of the nematode body with the surrounding medium to determine nematode trajectories, and a simple memory-function description of chemosensory apparatus that controls the frequency, magnitude, and timing of turning maneuvers. We show that two main chemotaxis strategies of C. elegans moving in 2D, i.e., the biased random walk and gradual turn, are effective also in 3D, provided that 2D turns are supplemented by the roll maneuvers that enable 3D reorientation. Optimal choices of chemosensing and gait-control parameters are discussed; we show that the nematode can maintain efficient chemotaxis in burrowing and swimming by adjusting the undulation frequency alone, without changing the chemotactic component of the body control. Understanding how C. elegans efficiently navigates in 3D media may help in developing self-navigating artificial microswimmers. Supported by NSF Grant No. CBET 1603627.

  12. Optical surgical navigation system causes pulse oximeter malfunction.

    Science.gov (United States)

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  13. 33 CFR 117.458 - Inner Harbor Navigation Canal, New Orleans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Inner Harbor Navigation Canal, New Orleans. 117.458 Section 117.458 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Harbor Navigation Canal, New Orleans. (a) The draws of the SR 46 (St. Claude Avenue) bridge, mile 0.5...

  14. 33 CFR 209.170 - Violations of laws protecting navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Violations of laws protecting navigable waters. 209.170 Section 209.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... navigable waters. (a) [Reserved] (b) Injuries to Government works. Section 14 of the River and Harbor Act of...

  15. Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip.

    Science.gov (United States)

    Zhang, Yuan Z; Chen, Bin; Lu, Sheng; Yang, Yong; Zhao, Jian M; Liu, Rui; Li, Yan B; Pei, Guo X

    2011-12-01

    The considerable variation in anatomical abnormalities of hip joints associated with different types of developmental dysplasia of hip (DDH) makes reconstruction in total hip arthroplasty (THA) difficult. It is desirable to create patient-specific designs for THA procedures. In the cases of adult single DDH, an accuracy-improved method has been developed for acetabular cup prosthesis implantation of hip arthroplasty. From October 2007 to November 2008, 22 patients with single DDH (according to the Crowe standard, all dysplasia hips were classified as type I) were scanned with spiral CT pre-operatively. These patients scheduled for THA were randomly assigned to undergo either conventional THA (control group, n = 11) or navigation template implantation (NT group, n = 11). In the NT group, three-dimensional (3D) CT pelvis image data were transferred to a computer workstation and 3D models of the hip were reconstructed using the Mimics software. The 3D models were then processed by the Imageware software. In brief, a template that best fitted the location and shape of the acetabular cup was 'reversely' built from the 3D model, the rotation centre of the pathological hip determined by mirroring that of the healthy site, and a guiding hole in the template was then designed. The navigational templates were manufactured using a rapid prototyping machine. These navigation templates guide acetabular component placement. Based on the predetermined abduction angle 45° and anteversion angle 18°, after 1 year follow-up, the NT group showed significantly smaller differences (1.6° ± 0.4°, 1.9° ± 1.1°) from the predetermined angles than those in the control group (5.8° ± 2.9°, 3.9° ± 2.5°) (P < 0.05). The template designs facilitated accurate placement of acetabular components in dysplasia of acetabulum. The hip's center of rotation in DDH could be established using computer-aided design, which provides a useful method for the accurate

  16. Fault-tolerant and Diagnostic Methods for Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2003-01-01

    to diagnose faults and autonomously provide valid navigation data, disregarding any faulty sensor data and use sensor fusion to obtain a best estimate for users. This paper discusses how diagnostic and fault-tolerant methods are applicable in marine systems. An example chosen is sensor fusion for navigation......Precise and reliable navigation is crucial, and for reasons of safety, essential navigation instruments are often duplicated. Hardware redundancy is mostly used to manually switch between instruments should faults occur. In contrast, diagnostic methods are available that can use analytic redundancy...

  17. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...... or safety, some from the construction of physical boundaries, and others mediated through aspects of social relations, such as trust, communication and team dynamics. Referring to these spatial localities as ‘riskscapes’, the paper calls for greater recognition of the role of place in understanding risk...... perception, and how people navigate risk....

  18. Magnetic navigation in a coronary phantom: experimental results.

    Science.gov (United States)

    García-García, Héctor M; Tsuchida, Keiichi; Meulenbrug, Hans; Ong, Andrew T L; Van der Giessen, Willem J; Serruys, Patrick W

    2005-11-01

    The objective was to investigate the efficacy of a magnetic navigation system (MNS) in a coronary phantom. The number of coronary interventional procedures performed is steadily increasing with the availability of new devices to treat more complex lesions. Vessel tortuosity remains an important limiting factor in percutaneous coronary intervention. The MNS can orient the tip of magnetized wire. The coronary phantom is a representation of the coronary tree. Two operators using both a magnetic wire and a standard wire, measured the procedural time (PT), the fluoroscopic time (FT) and the radiation exposure/area product (DAP) required to navigate through to fourteen segments. Ten wire advancements were performed per segment. In all but two segments, the PT was significantly longer using magnetic navigation than using manual navigation. The median FT in the left main artery (LMA) - first septal segment was 7 seconds vs. 18 seconds, with magnetic and manual navigation respectively, (p=0.05); in the LMA - obtuse marginal segment the median FT was 15 seconds with magnetic navigation vs. 29.5 seconds with manual navigation, (p=0.01); in the segment from proximal right coronary artery (RCA1) to the acute marginal branch, the median FT was 8 seconds with magnetic vs. 11 seconds with manual navigation, (p=0.05); and in the RCA1 -posterior descending segment the median FT was 9.5 seconds with magnetic vs. 15 seconds with manual navigation, (p=0.006). The MNS facilitates wire access to distal segments in a coronary phantom, with a reduction in FT and radiation exposure using magnetic navigation in tortuous segments.

  19. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  20. Piles, tabs and overlaps in navigation among documents

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2010-01-01

    Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles. In an experim......Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles....... In an experiment we compared 11 participants’ navigation with these variations and found strong task effects. Overall, overlapping windows were preferred and their structured layout worked well with some tasks. Surprisingly, tabbed documents were efficient in tasks requiring simply finding a document. Piled...... on document navigation and its support by piling....

  1. An Integrated Approach to Electronic Navigation

    National Research Council Canada - National Science Library

    Shaw, Peter; Pettus, Bill

    2001-01-01

    While the Global Positioning System (GPS) is and will continue to be an excellent navigation system, it is neither flawless nor is it the only system employed in the navigation of today's seagoing warfighters...

  2. Intra-prosthetic breast MR virtual navigation: a preliminary study for a new evaluation of silicone breast implants.

    Science.gov (United States)

    Moschetta, Marco; Telegrafo, Michele; Capuano, Giulia; Rella, Leonarda; Scardapane, Arnaldo; Angelelli, Giuseppe; Stabile Ianora, Amato Antonio

    2013-10-01

    To assess the contribute of intra-prosthetic MRI virtual navigation for evaluating breast implants and detecting implant ruptures. Forty-five breast implants were evaluated by MR examination. Only patients with a clinical indication were assessed. A 1.5-T device equipped with a 4-channel breast coil was used by performing axial TSE-T2, axial silicone-only, axial silicone suppression and sagittal STIR images. The obtained dicom files were also analyzed by using virtual navigation software. Two blinded radiologists evaluated all MR and virtual images. Eight patients for a total of 13 implants underwent surgical replacement. Sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were calculated for both imaging strategies. Intra-capsular rupture was diagnosed in 13 out of 45 (29%) implants by using MRI. Basing on virtual navigation, 9 (20%) cases of intra-capsular rupture were diagnosed. Sensitivity, specificity, accuracy, PPV and NPV values of 100%, 86%, 89%, 62% and 100%, respectively, were found for MRI. Virtual navigation increased the previous values up to 100%, 97%, 98%, 89% and 100%. Intra-prosthetic breast MR virtual navigation can represent an additional promising tool for the evaluation of breast implants being able to reduce false positives and to provide a more accurate detection of intra-capsular implant rupture signs. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Fault-tolerant Sensor Fusion for Marine Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2006-01-01

    Reliability of navigation data are critical for steering and manoeuvring control, and in particular so at high speed or in critical phases of a mission. Should faults occur, faulty instruments need be autonomously isolated and faulty information discarded. This paper designs a navigation solution...... where essential navigation information is provided even with multiple faults in instrumentation. The paper proposes a provable correct implementation through auto-generated state-event logics in a supervisory part of the algorithms. Test results from naval vessels document the performance and shows...... events where the fault-tolerant sensor fusion provided uninterrupted navigation data despite temporal instrument defects...

  4. Application of Real-Time 3D Navigation System in CT-Guided Percutaneous Interventional Procedures: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Priya Bhattacharji

    2017-01-01

    Full Text Available Introduction. To evaluate the accuracy of a quantitative 3D navigation system for CT-guided interventional procedures in a two-part study. Materials and Methods. Twenty-two procedures were performed in abdominal and thoracic phantoms. Accuracies of the 3D anatomy map registration and navigation were evaluated. Time used for the navigated procedures was recorded. In the IRB approved clinical evaluation, 21 patients scheduled for CT-guided thoracic and hepatic biopsy and ablations were recruited. CT-guided procedures were performed without following the 3D navigation display. Accuracy of navigation as well as workflow fitness of the system was evaluated. Results. In phantoms, the average 3D anatomy map registration error was 1.79 mm. The average navigated needle placement accuracy for one-pass and two-pass procedures, respectively, was 2.0±0.7 mm and 2.8±1.1 mm in the liver and 2.7±1.7 mm and 3.0±1.4 mm in the lung. The average accuracy of the 3D navigation system in human subjects was 4.6 mm ± 3.1 for all procedures. The system fits the existing workflow of CT-guided interventions with minimum impact. Conclusion. A 3D navigation system can be performed along the existing workflow and has the potential to navigate precision needle placement in CT-guided interventional procedures.

  5. The effects of individually tailored nurse navigation for patients with newly diagnosed breast cancer

    DEFF Research Database (Denmark)

    Mertz, Birgitte Goldschmidt; Dunn-Henriksen, Anne Katrine; Kroman, Niels

    2017-01-01

    AIM: Our aim was to determine the feasibility and effectiveness of an individual, nurse-navigator intervention for relieving distress, anxiety, depression and health-related quality of life in women who have been treated for breast cancer (BC) and are experiencing moderate-to-severe psychological...... and the secondary outcomes were anxiety, depression, health-related quality of life and feasibility of the intervention. RESULTS: Women in the intervention group reported significantly greater satisfaction with treatment and rehabilitation and lower levels of distress (mean 2.7 vs. 5.1, p.... 7.8, p = .02) and depression (mean 2.2 vs. 4.4, p = .04) after 12 months compared to the control group. No significant effects were seen on health-related quality of life. CONCLUSIONS: The study shows promising feasibility of the individually tailored nurse-navigation intervention and while...

  6. Navigation in Cross-cultural business relationships

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence......Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence...

  7. Comparative advantage between traditional and smart navigation systems

    Science.gov (United States)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  8. A fuzzy logic based navigation for mobile robot

    International Nuclear Information System (INIS)

    Adel Ali S Al-Jumaily; Shamsudin M Amin; Mohamed Khalil

    1998-01-01

    The main issue of intelligent robot is how to reach its goal safely in real time when it moves in unknown environment. The navigational planning is becoming the central issue in development of real-time autonomous mobile robots. Behaviour based robots have been successful in reacting with dynamic environment but still there are some complexity and challenging problems. Fuzzy based behaviours present as powerful method to solve the real time reactive navigation problems in unknown environment. We shall classify the navigation generation methods, five some characteristics of these methods, explain why fuzzy logic is suitable for the navigation of mobile robot and automated guided vehicle, and describe a reactive navigation that is flexible to react through their behaviours to the change of the environment. Some simulation results will be presented to show the navigation of the robot. (Author)

  9. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity.

    Science.gov (United States)

    Rösler, J; Niraula, B; Strack, V; Zdunczyk, A; Schilt, S; Savolainen, P; Lioumis, P; Mäkelä, J; Vajkoczy, P; Frey, D; Picht, T

    2014-03-01

    This article explores the feasibility of a novel repetitive navigated transcranial magnetic stimulation (rnTMS) system and compares language mapping results obtained by rnTMS in healthy volunteers and brain tumor patients. Fifteen right-handed healthy volunteers and 50 right-handed consecutive patients with left-sided gliomas were examined with a picture-naming task combined with time-locked rnTMS (5-10 Hz and 80-120% resting motor threshold) applied over both hemispheres. Induced errors were classified into four psycholinguistic types and assigned to their respective cortical areas according to the coil position during stimulation. In healthy volunteers, language disturbances were almost exclusively induced in the left hemisphere. In patients errors were more frequent and induced at a comparative rate over both hemispheres. Predominantly dysarthric errors were induced in volunteers, whereas semantic errors were most frequent in the patient group. The right hemisphere's increased sensitivity to rnTMS suggests reorganization in language representation in brain tumor patients. rnTMS is a novel technology for exploring cortical language representation. This study proves the feasibility and safety of rnTMS in patients with brain tumor. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Intelligent navigation to improve obstetrical sonography.

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto

    2016-04-01

    'Manual navigation' by the operator is the standard method used to obtain information from two-dimensional and volumetric sonography. Two-dimensional sonography is highly operator dependent and requires extensive training and expertise to assess fetal anatomy properly. Most of the sonographic examination time is devoted to acquisition of images, while 'retrieval' and display of diagnostic planes occurs rapidly (essentially instantaneously). In contrast, volumetric sonography has a rapid acquisition phase, but the retrieval and display of relevant diagnostic planes is often time-consuming, tedious and challenging. We propose the term 'intelligent navigation' to refer to a new method of interrogation of a volume dataset whereby identification and selection of key anatomical landmarks allow the system to: 1) generate a geometrical reconstruction of the organ of interest; and 2) automatically navigate, find, extract and display specific diagnostic planes. This is accomplished using operator-independent algorithms that are both predictable and adaptive. Virtual Intelligent Sonographer Assistance (VIS-Assistance®) is a tool that allows operator-independent sonographic navigation and exploration of the surrounding structures in previously identified diagnostic planes. The advantage of intelligent (over manual) navigation in volumetric sonography is the short time required for both acquisition and retrieval and display of diagnostic planes. Intelligent navigation technology automatically realigns the volume, and reorients and standardizes the anatomical position, so that the fetus and the diagnostic planes are consistently displayed in the same manner each time, regardless of the fetal position or the initial orientation. Automatic labeling of anatomical structures, subject orientation and each of the diagnostic planes is also possible. Intelligent navigation technology can operate on conventional computers, and is not dependent on specific ultrasound platforms or on the

  11. Ecodesign Navigator

    DEFF Research Database (Denmark)

    Simon, M; Evans, S.; McAloone, Timothy Charles

    The Ecodesign Navigator is the product of a three-year research project called DEEDS - DEsign for Environment Decision Support. The initial partners were Manchester Metropolitan University, Cranfield University, Engineering 6 Physical Sciences Resaech Council, Electrolux, ICL, and the Industry...

  12. An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance.

    Science.gov (United States)

    Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Grabau, Jonathan D; Andres, Kristin N; Vandsburger, Moriel H; Powell, David K; Sorrell, Vincent L; Fornwalt, Brandon K

    2016-09-06

    Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10

  13. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  14. Shape Perception and Navigation in Blind Adults

    Science.gov (United States)

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2017-01-01

    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226

  15. A simultaneous navigation and radiation evasion algorithm (SNARE)

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan)

    2013-12-15

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  16. A simultaneous navigation and radiation evasion algorithm (SNARE)

    International Nuclear Information System (INIS)

    Khasawneh, Mohammed A.; Jaradat, Mohammad A.; Al-Shboul, Zeina Aman M.

    2013-01-01

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  17. Off the Beaten tracks: Exploring Three Aspects of Web Navigation

    NARCIS (Netherlands)

    Weinreich, H.; Obendorf, H.; Herder, E.; Mayer, M.; Edmonds, H.; Hawkey, K.; Kellar, M.; Turnbull, D.

    2006-01-01

    This paper presents results of a long-term client-side Web usage study, updating previous studies that range in age from five to ten years. We focus on three aspects of Web navigation: changes in the distribution of navigation actions, speed of navigation and within-page navigation. “Navigation

  18. The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality.

    Science.gov (United States)

    Watanabe, Eiju; Satoh, Makoto; Konno, Takehiko; Hirai, Masahiro; Yamaguchi, Takashi

    2016-03-01

    The neuronavigator has become indispensable for brain surgery and works in the manner of point-to-point navigation. Because the positional information is indicated on a personal computer (PC) monitor, surgeons are required to rotate the dimension of the magnetic resonance imaging/computed tomography scans to match the surgical field. In addition, they must frequently alternate their gaze between the surgical field and the PC monitor. To overcome these difficulties, we developed an augmented reality-based navigation system with whole-operation-room tracking. A tablet PC is used for visualization. The patient's head is captured by the back-face camera of the tablet. Three-dimensional images of intracranial structures are extracted from magnetic resonance imaging/computed tomography and are superimposed on the video image of the head. When viewed from various directions around the head, intracranial structures are displayed with corresponding angles as viewed from the camera direction, thus giving the surgeon the sensation of seeing through the head. Whole-operation-room tracking is realized using a VICON tracking system with 6 cameras. A phantom study showed a spatial resolution of about 1 mm. The present system was evaluated in 6 patients who underwent tumor resection surgery, and we showed that the system is useful for planning skin incisions as well as craniotomy and the localization of superficial tumors. The main advantage of the present system is that it achieves volumetric navigation in contrast to conventional point-to-point navigation. It extends augmented reality images directly onto real surgical images, thus helping the surgeon to integrate these 2 dimensions intuitively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Responsibility navigator

    NARCIS (Netherlands)

    Kuhlmann, Stefan; Edler, Jakob; Ordonez Matamoros, Hector Gonzalo; Randles, Sally; Walhout, Bart; Walhout, Bart; Gough, Clair; Lindner, Ralf; Lindner, Ralf; Kuhlmann, Stefan; Randles, Sally; Bedsted, Bjorn; Gorgoni, Guido; Griessler, Erich; Loconto, Allison; Mejlgaard, Niels

    2016-01-01

    Research and innovation activities need to become more responsive to societal challenges and concerns. The Responsibility Navigator, developed in the Res-AGorA project, supports decision-makers to govern such activities towards more conscious responsibility. What is considered “responsible” will

  20. Letting in-vehicle navigation lead the way: Older drivers' perceptions of and ability to follow a GPS navigation system.

    Science.gov (United States)

    Stinchcombe, Arne; Gagnon, Sylvain; Kateb, Matthew; Curtis, Meredith; Porter, Michelle M; Polgar, Jan; Bédard, Michel

    2017-09-01

    In-vehicle navigation systems have the potential to simplify the driving task by reducing the drivers' need to engage in wayfinding, especially in unfamiliar environments. This study sought to characterize older drivers' overall assessment of using in-vehicle GPS technology as part of a research study and to explore whether the use of this technology has an impact on participants' driving behaviour. Forty-seven older drivers completed an on-road evaluation where directions were provided by an in-vehicle GPS navigation system and their behaviour was recorded using video technology. They later completed a questionnaire to assess their perception of the navigation system. After the study, participants were grouped based on whether they were able to accurately follow the instructions provided by the navigation system. The results indicated that most drivers were satisfied with the navigation technology and found the directions it provided to be clear. There were no statistically significant differences in the number of on-road errors committed by drivers who did not follow the directions from the navigation system in comparison to drivers who did follow the directions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  2. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  3. Minimally invasive neurosurgery within a 0.5 tesla intraoperative magnetic resonance scanner using an off-line neuro-navigation system.

    Science.gov (United States)

    Mursch, K; Gotthardt, T; Kröger, R; Bublat, M; Behnke-Mursch, J

    2005-08-01

    We evaluated an advanced concept for patient-based navigation during minimally invasive neurosurgical procedures. An infrared-based, off-line neuro-navigation system (LOCALITE, Bonn, Germany) was applied during operations within a 0.5 T intraoperative MRI scanner (iMRI) (Signa SF, GE Medical Systems, Milwaukee, WI, USA) in addition to the conventional real-time system. The three-dimensional (3D) data set was acquired intraoperatively and up-dated when brain-shift was suspected. Twenty-three patients with subcortical lesions were operated upon with the aim to minimise the operative trauma. Small craniotomies (median diameter 30 mm, mean diameter 27 mm) could be placed exactly. In all cases, the primary goal of the operation (total resection or biopsy) was achieved in a straightforward procedure without permanent morbidity. The navigation system could be easily used without technical problems. In contrast to the real-time navigation mode of the MR system, the higher quality as well as the real-time display of the MR images reconstructed from the 3D reference data provided sufficient visual-manual coordination. The system combines the advantages of conventional neuro-navigation with the ability to adapt intraoperatively to the continuously changing anatomy. Thus, small and/or deep lesions can be operated upon in straightforward minimally invasive operations.

  4. Comparison of pain scores between patients undergoing panretinal photocoagulation using navigated or pattern scan laser systems

    Directory of Open Access Journals (Sweden)

    Umit Ubeyt Inan

    2016-02-01

    Full Text Available ABSTRACT Purpose: To compare the pain responses of patients with proliferative diabetic retinopathy (PDR undergoing panretinal photocoagulation (PRP using either pattern scan laser (PASCAL or navigated laser photocoagulation (NAVILAS. Methods: Patients diagnosed with PDR were randomly assigned to undergo either PASCAL or NAVILAS photocoagulation treatment. PRP was performed using the multi-shot mode with a spot size of 200-400 µm and a pulse duration of 30 ms to obtain a white-grayish spot on the retina. Parameters were identical in both procedures. After 30 min of PRP application, patients were asked to verbally describe their pain perception as either "none," "mild," "moderate," "severe," or "very severe" using a verbal rating scale (VRS and visual analog scale (VAS by indicating a score from "0" to "10," representing the severity of pain from "no pain" to "severe pain." Results: A total of 60 eyes of 60 patients (20 females and 40 males diagnosed with PDR were treated. The mean age of patients was 62.22 ± 9.19 years, and the mean diabetes duration was 195.47 ± 94.54 months. The mean number of laser spots delivered during PRP was 389.47 ± 71.52 in the NAVILAS group and 392.70 ± 54.33 in the PASCAL group (p=0.57. The difference in pain responses between patients in the NAVILAS and PASCAL groups was significant with regard to the mean VRS (1.10 ± 0.67 and 1.47 ± 0.69, respectively; p=0.042 and mean VAS (2.13 ± 1.17 and 2.97 ± 1.35, respectively; p=0.034 scores. Conclusions: Pain responses in patients undergoing PRP with a 30-ms pulse duration were significantly milder in the NAVILAS group than in the PASCAL group.

  5. Surgical Navigation

    DEFF Research Database (Denmark)

    Azarmehr, Iman; Stokbro, Kasper; Bell, R. Bryan

    2017-01-01

    Purpose: This systematic review investigates the most common indications, treatments, and outcomes of surgical navigation (SN) published from 2010 to 2015. The evolution of SN and its application in oral and maxillofacial surgery have rapidly developed over recent years, and therapeutic indicatio...

  6. Requirements for e-Navigation Architectures

    Directory of Open Access Journals (Sweden)

    Axel Hahn

    2016-12-01

    Full Text Available Technology is changing the way of navigation. New technologies for communication and navigation can be found on virtually every vessel. System architectures define structure and cooperation of components and subsystems. IMO, IALA, costal authorities, technology provider and many more actually propose new architectures for e-Navigation. This paper looks at other transportation domains and technical as normative requirements for e-Navigation architectures. With the aim of identifying possible synergies in the research, development, certification and standardization, this paper sets out to compare requirements and approaches of these two domains with respect to safety and security aspects. Since from an autonomy perspective, the automotive domain has started earlier and therefore has achieved a higher degree of technical progress, we will start with an overview of the developments in this domain. After that, the paper discusses the requirements on automation and assistance systems in the maritime domain and gives an overview of the developments into this direction within the maritime domain. This then allows us to compare developments in both domains and to derive recommendations for further developments in the maritime domain at the end of this paper.

  7. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  8. Virtual Planning and Intraoperative Navigation in Craniomaxillofacial Surgery

    Directory of Open Access Journals (Sweden)

    Jorge Guiñales

    2017-08-01

    Full Text Available Surgery planning assisted by computer represents one important example of the collaboration between surgeons and engineers. Virtual planning allows surgeons to pre-do the surgery by working over a virtual 3D model of the patient obtained through a computer tomography. Through surgical navigation, surgeons are helped while working with deep structures and can check if they are following accurately the surgical plan. These assistive tools are crucial in the field of facial reconstructive surgery. This paper describes two cases, one related to orbital fractures and another one related to oncological patients, showing the advantages that these tools provide, specifically when used for craniomaxillofacial surgery.

  9. Motor Cortex Reorganization in Patients with Glioma Assessed by Repeated Navigated Transcranial Magnetic Stimulation-A Longitudinal Study.

    Science.gov (United States)

    Barz, Anne; Noack, Anika; Baumgarten, Peter; Seifert, Volker; Forster, Marie-Therese

    2018-04-01

    Evidence for cerebral reorganization after resection of low-grade glioma has mainly been obtained by serial intraoperative cerebral mapping. Noninvasively collected data on cortical plasticity in tumor patients over a surgery-free period are still scarce. The present study therefore aimed at evaluating motor cortex reorganization by navigated transcranial magnetic stimulation (nTMS) in patients after perirolandic glioma surgery. nTMS was performed preoperatively and postoperatively in 20 patients, separated by 26.1 ± 24.8 months. Further nTMS mapping was conducted in 14 patients, resulting in a total follow-up period of 46.3 ± 25.4 months. Centers of gravity (CoGs) were calculated for every muscle representation area, and Euclidian distances between CoGs over time were defined. Results were compared with data from 12 healthy individuals, who underwent motor cortex mapping by nTMS in 2 sessions. Preoperatively and postoperatively pooled CoGs from the area of the dominant abductor pollicis brevis muscle and of the nondominant leg area differed significantly compared with healthy individuals (P < 0.05). Most remarkably, during the ensuing follow-up period, a reorganization of all representation areas was observed in 3 patients, and a significant shift of hand representation areas was identified in further 3 patients. Complete functional recovery of postoperative motor deficits was exclusively associated with cortical reorganization. Despite the low potential of remodeling within the somatosensory region, long-term reorganization of cortical motor function can be observed. nTMS is best suited for a noninvasive evaluation of this reorganization. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. 19 CFR 351.504 - Grants.

    Science.gov (United States)

    2010-04-01

    ... INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Identification and Measurement of Countervailable Subsidies § 351.504 Grants. (a) Benefit. In the case of a grant, a benefit exists in the amount of the grant. (b) Time of receipt of benefit. In the case of a grant, the...

  11. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  12. Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results.

    Directory of Open Access Journals (Sweden)

    Ernst Michael Jung

    Full Text Available OBJECTIVE: Assessing the feasibility and efficiency of interventions using ultrasound (US volume navigation (V Nav with real time needle tracking and image fusion with contrast enhanced (ce CT, MRI or US. METHODS: First an in vitro study on a liver phantom with CT data image fusion was performed, involving the puncture of a 10 mm lesion in a depth of 5 cm performed by 15 examiners with US guided freehand technique vs. V Nav for the purpose of time optimization. Then 23 patients underwent ultrasound-navigated biopsies or interventions using V Nav image fusion of live ultrasound with ceCT, ceMRI or CEUS, which were acquired before the intervention. A CEUS data set was acquired in all patients. Image fusion was established for CEUS and CT or CEUS and MRI using anatomical landmarks in the area of the targeted lesion. The definition of a virtual biopsy line with navigational axes targeting the lesion was achieved by the usage of sterile trocar with a magnetic sensor embedded in its distal tip employing a dedicated navigation software for real time needle tracking. RESULTS: The in vitro study showed significantly less time needed for the simulated interventions in all examiners when V Nav was used (p<0.05. In the study involving patients, in all 10 biopsies of suspect lesions of the liver a histological confirmation was achieved. We also used V Nav for a breast biopsy (intraductal carcinoma, for a biopsy of the abdominal wall (metastasis of ovarial carcinoma and for radiofrequency ablations (4 ablations. In 8 cases of inflammatory abdominal lesions 9 percutaneous drainages were successfully inserted. CONCLUSION: Percutaneous biopsies and drainages, even of small lesions involving complex access pathways, can be accomplished with a high success rate by using 3D real time image fusion together with real time needle tracking.

  13. Navigation System of Marks Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  14. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography

    International Nuclear Information System (INIS)

    Liu Fangyi; Yu Xiaoling; Liang Ping; Cheng Zhigang; Han Zhiyu; Dong Baowei; Zhang Xiaohong

    2012-01-01

    Objectives: To evaluate the efficiency and feasibility of microwave (MW) ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma (HCC) undetectable by conventional ultrasonography. Methods: 18 patients with 18 HCC nodules (undetectable on conventional US but detectable by intravenous contrast-enhanced CT or MRI) were enrolled in this study. Before MW ablation, US images and MRI or CT images were synchronized using the internal markers at the best timing of the inspiration. Thereafter, MW ablation was performed under real-time virtual navigation system guidance. Therapeutic efficacy was assessed by the result of contrast-enhanced imagings after the treatment. Results: The target HCC nodules could be detected with fusion images in all patients. The time required for image fusion was 8–30 min (mean, 13.3 ± 5.7 min). 17 nodules were successfully ablated according to the contrast enhanced imagings 1 month after ablation. The technique effectiveness rate was 94.44% (17/18). The follow-up time was 3–12 months (median, 6 months) in our study. No severe complications occurred. No local recurrence was observed in any patients. Conclusions: MW ablation assisted by a real-time virtual navigation system is a feasible and efficient treatment of patients with HCC undetectable by conventional ultrasonography.

  15. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur...

  16. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  17. Navigation and Image Injection for Control of Bone Removal and Osteotomy Planes in Spine Surgery.

    Science.gov (United States)

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven Rainer; Archavlis, Elefterios; Giese, Alf

    2017-04-01

    In contrast to cranial interventions, neuronavigation in spinal surgery is used in few applications, not tapping into its full technological potential. We have developed a method to preoperatively create virtual resection planes and volumes for spinal osteotomies and export 3-D operation plans to a navigation system controlling intraoperative visualization using a surgical microscope's head-up display. The method was developed using a Sawbone ® model of the lumbar spine, demonstrating feasibility with high precision. Computer tomographic and magnetic resonance image data were imported into Amira ® , a 3-D visualization software. Resection planes were positioned, and resection volumes representing intraoperative bone removal were defined. Fused to the original Digital Imaging and Communications in Medicine data, the osteotomy planes were exported to the cranial version of a Brainlab ® navigation system. A navigated surgical microscope with video connection to the navigation system allowed intraoperative image injection to visualize the preplanned resection planes. The workflow was applied to a patient presenting with a congenital hemivertebra of the thoracolumbar spine. Dorsal instrumentation with pedicle screws and rods was followed by resection of the deformed vertebra guided by the in-view image injection of the preplanned resection planes into the optical path of a surgical microscope. Postoperatively, the patient showed no neurological deficits, and the spine was found to be restored in near physiological posture. The intraoperative visualization of resection planes in a microscope's head-up display was found to assist the surgeon during the resection of a complex-shaped bone wedge and may help to further increase accuracy and patient safety. Copyright © 2017 by the Congress of Neurological Surgeons

  18. THE ROLE OF NAVIGATIONAL AIDS IN FLIGHT SAFETY MANAGEMENT WITHIN ICAO GLOBAL AIR NAVIGATION PLAN

    Directory of Open Access Journals (Sweden)

    Vadim V. Vurobyov

    2017-01-01

    Full Text Available The development of the global civil aviation is provided on the basis of the ICAO Communication and Surveillance/Air Traffic Management Concept, which has determined the basic strategy for further commercial flight management effectiveness improvement. On the basis of this concept a Global Air Navigation Plan has been developed by ICAO recently. The core strategies of CNS/ATM concept were specified and combined into so-called blocks. Thus the term Global Aviation System block upgrade has been introduced. At the same time, GANP states that the introduction of new procedures and flight management systems will inevitably affect flight safety. Accordingly, there is a task of flight safety management level maintaining, or even increasing within the Global Air Navigation Plan implementation. Various air navigational aids play a significant role in the process as they are directly associated with the new systems and structures introduction.This breeds the new global challenge of flight safety management level change assessment during the introduction of new procedures and systems connected with the use of both navigational aids and instruments. Some aspects of this problem solution are covered in the article.

  19. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  20. A Qualitative Approach to Mobile Robot Navigation Using RFID

    International Nuclear Information System (INIS)

    Hossain, M; Rashid, M M; Bhuiyan, M M I; Ahmed, S; Akhtaruzzaman, M

    2013-01-01

    Radio Frequency Identification (RFID) system allows automatic identification of items with RFID tags using radio-waves. As the RFID tag has its unique identification number, it is also possible to detect a specific region where the RFID tag lies in. Recently it is widely been used in mobile robot navigation, localization, and mapping both in indoor and outdoor environment. This paper represents a navigation strategy for autonomous mobile robot using passive RFID system. Conventional approaches, such as landmark or dead-reckoning with excessive number of sensors, have complexities in establishing the navigation and localization process. The proposed method satisfies less complexity in navigation strategy as well as estimation of not only the position but also the orientation of the autonomous robot. In this research, polar coordinate system is adopted on the navigation surface where RFID tags are places in a grid with constant displacements. This paper also presents the performance comparisons among various grid architectures through simulation to establish a better solution of the navigation system. In addition, some stationary obstacles are introduced in the navigation environment to satisfy the viability of the navigation process of the autonomous mobile robot

  1. Clinical Application of Different Surgical Navigation Systems in Complex Craniomaxillofacial Surgery: The Use of Multisurface 3-Dimensional Images and a 2-Plane Reference System.

    Science.gov (United States)

    Liu, Tom J; Ko, An-Ta; Tang, Yueh-Bih; Lai, Hong-Shiee; Chien, Hsiung-Fei; Hsieh, Thomas Mon-Hsian

    2016-04-01

    Intraoperative navigation is a tool that provides surgeons with real-time guidance based on patients' preoperative imaging studies. The application of intraoperative navigation to neurosurgery and otolaryngology has been well documented; however, only isolated reports have analyzed its potential in the field of craniomaxillofacial surgery. From November 2010 to July 2014, 15 patients were operated on for complex craniomaxillofacial surgery with assistance by 3 different navigation systems, which used either infrared or electromagnetic technologies. We imported fine-cut (0.625-mm) computed tomographic scan images of the patients to the navigation systems whose software processed them into multisurface 3-dimentional models used as guiding material for the surgical navigation. We also developed a simple "2-plane reference system" to ensure that the final results were symmetric to the normal half of the face. Appearance outcome was evaluated by questionnaire. Of these 15 cases, 3 cases were performed with infrared-based navigation, and the remaining 12 cases were accomplished by electromagnetic technology. Most of these cases resulted in satisfactory outcomes after tumor resection, posttraumatic reconstruction, and postablative reconstruction. Navigation systems offer highly valuable intraoperative assistance in complex craniomaxillofacial surgery. Not only can these systems pinpoint deep-seated lesions as neurosurgeons or otolaryngologists do, but they can also use a simple 2-plane reference system for accurate bone alignment. Moreover, advancements in multisurface 3-D models provide us more reliable intuitive image guidance. The application of electromagnetic technology, with its smaller reference obviation of the line-of-sight problem, makes the manipulation of craniomaxillofacial surgery more comfortable.

  2. FEMA Grants Program Directorate - Preparedness (Non-Disaster) and Assistance to Firefighter Grants

    Data.gov (United States)

    Department of Homeland Security — The Grant Programs Directorate (GPD) strategically and effectively administers and manages FEMA grants to ensure critical and measurable results for customers and...

  3. A navigator-based rigid body motion correction for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ullisch, Marcus Goerge

    2012-01-01

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  4. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  5. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Science.gov (United States)

    Malkov, Yury A; Ponomarenko, Alexander

    2016-01-01

    Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  6. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Directory of Open Access Journals (Sweden)

    Yury A Malkov

    Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  7. Accuracy of Cup Positioning With the Computed Tomography-Based Two-dimensional to Three-Dimensional Matched Navigation System: A Prospective, Randomized Controlled Study.

    Science.gov (United States)

    Yamada, Kazuki; Endo, Hirosuke; Tetsunaga, Tomonori; Miyake, Takamasa; Sanki, Tomoaki; Ozaki, Toshifumi

    2018-01-01

    The accuracy of various navigation systems used for total hip arthroplasty has been described, but no publications reported the accuracy of cup orientation in computed tomography (CT)-based 2D-3D (two-dimensional to three-dimensional) matched navigation. In a prospective, randomized controlled study, 80 hips including 44 with developmental dysplasia of the hips were divided into a CT-based 2D-3D matched navigation group (2D-3D group) and a paired-point matched navigation group (PPM group). The accuracy of cup orientation (absolute difference between the intraoperative record and the postoperative measurement) was compared between groups. Additionally, multiple logistic regression analysis was performed to evaluate patient factors affecting the accuracy of cup orientation in each navigation. The accuracy of cup inclination was 2.5° ± 2.2° in the 2D-3D group and 4.6° ± 3.3° in the PPM group (P = .0016). The accuracy of cup anteversion was 2.3° ± 1.7° in the 2D-3D group and 4.4° ± 3.3° in the PPM group (P = .0009). In the PPM group, the presence of roof osteophytes decreased the accuracy of cup inclination (odds ratio 8.27, P = .0140) and the absolute value of pelvic tilt had a negative influence on the accuracy of cup anteversion (odds ratio 1.27, P = .0222). In the 2D-3D group, patient factors had no effect on the accuracy of cup orientation. The accuracy of cup positioning in CT-based 2D-3D matched navigation was better than in paired-point matched navigation, and was not affected by patient factors. It is a useful system for even severely deformed pelvises such as developmental dysplasia of the hips. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task.

    Science.gov (United States)

    Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D

    2013-11-01

    Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.

  9. 42 CFR 51b.605 - How will grant applications be evaluated and the grants awarded?

    Science.gov (United States)

    2010-10-01

    ... HUMAN SERVICES GRANTS PROJECT GRANTS FOR PREVENTIVE HEALTH SERVICES Grants for Research, Demonstrations... has potential to directly benefit the national venereal disease control effort? (2) Are the project...

  10. Wetland Program Development Grants (WPDGs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  11. Ego-motion based on EM for bionic navigation

    Science.gov (United States)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  12. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  13. [Efficacy of Sacroiliac Joint Anterior Approach with Double Reconstruction Plate and Computer Assisted Navigation Percutaneous Sacroiliac Screw for Treating Tile C1 Pelvic Fractures].

    Science.gov (United States)

    Tan, Zhen; Fang, Yue; Zhang, Hui; Liu, Lei; Xiang, Zhou; Zhong, Gang; Huang, Fu-Guo; Wang, Guang-Lin

    2017-09-01

    To compare the efficacy of sacroiliac joint anterior approach with double reconstruction plate and computer assisted navigation percutaneous sacroiliac screw for treating Tile C1 pelvic fractures. Fifty patients with pelvic Tile C1 fractures were randomly divided into two groups ( n =25 for each) in the orthopedic department of West China Hospital of Sichuan University from December 2012 to November 2014. Patients in group A were treated by sacroiliac joint dislocation with anterior plate fixation. Patients in group B were treated with computerized navigation for percutaneous sacroiliac screw. The operation duration,intraoperative blood loss,incision length,and postoperative complications (nausea,vomiting,pulmonary infection,wound complications,etc.) were compared between the two groups. The postoperative fracture healing time,postoperative patient satisfaction,and postoperative fractures MATTA scores (to evaluate fracture reduction),postoperative MAJEED function scores,and SF36 scores of the patients were also recorded and compared. No significant differences in baseline characteristics were found between the two groups of patients. All of the patients in both groups had their operations successfully completed. Patients in group B had significantly shorter operations and lower intraoperative blood loss,incision length and postoperative complications than those in group A ( P 0.05). Sacroiliac joint anterior approach with double reconstruction plate and computer assisted navigation percutaneous sacroiliac screws are both effective for treating Tile C1type pelvic fractures,with similar longterm efficacies. However,computer assisted navigation percutaneous sacroiliac screw has the advantages of less trauma,less bleeding,and quicker.

  14. Visual navigation using edge curve matching for pinpoint planetary landing

    Science.gov (United States)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  15. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  16. 76 FR 27337 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2011-05-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-1116] Houston/Galveston Navigation Safety...: The Houston/Galveston Navigation Safety Advisory Committee postponed its originally scheduled February... Houston Ship Channel, and various other navigation safety matters in the Galveston Bay area. The meeting...

  17. Visual Guided Navigation

    National Research Council Canada - National Science Library

    Banks, Martin

    1999-01-01

    .... Similarly, the problem of visual navigation is the recovery of an observer's self-motion with respect to the environment from the moving pattern of light reaching the eyes and the complex of extra...

  18. Collaboration between a US Academic Institution and International Ministry of Health to develop a culturally appropriate palliative care navigation curriculum.

    Science.gov (United States)

    Fernandes, Ritabelle; Riklon, Sheldon; Langidrik, Justina R; Williams, Shellie N; Kabua, Neiar

    2014-12-01

    Implementation lessons: (1) The development and testing of a culturally appropriate palliative care navigation curriculum for countries facing high cancer and non-communicable diseases burden requires collaboration with the local Ministry of Health. (2) Lay volunteers from non-governmental and faith-based organizations are potential candidates to provide patient navigation services. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Navigated pedicle screw placement using computed tomographic data in dorsolumbar fractures

    Directory of Open Access Journals (Sweden)

    Saurabh Kapoor

    2014-01-01

    Conclusion: CT-based navigation is effective in improving accuracy of pedicle screw placement in traumatic injuries of dorsolumbar spine (T9-L5, however additional cost of procuring CT scan to the patient and cost of equipment is of significant concern in developing countries. Reduced radiation exposure and lowered ergonomic constraints around the operation table are its additional benefits.

  20. Effectiveness of a citywide patient immunization navigator program on improving adolescent immunizations and preventive care visit rates.

    Science.gov (United States)

    Szilagyi, Peter G; Humiston, Sharon G; Gallivan, Sarah; Albertin, Christina; Sandler, Martha; Blumkin, Aaron

    2011-06-01

    To assess the impact of a tiered patient immunization navigator intervention (immunization tracking, reminder/recall, and outreach) on improving immunization and preventive care visit rates in urban adolescents. Randomized clinical trial allocating adolescents (aged 11-15 years) to intervention vs standard of care control. Eight primary care practices. Population-based sample of adolescents (N = 7546). Immunization navigators at each practice implemented a tiered protocol: immunization tracking, telephone or mail reminder/recall, and home visits if participants remained unimmunized or behind on preventive care visits. Immunization rates at study end. Secondary outcomes were preventive care visit rates during the previous 12 months and costs. The intervention and control groups were similar at baseline for demographics (mean age, 13.5 years; 63% black, 14% white, and 23% Hispanic adolescents; and 74% receiving Medicaid), immunization rates, and preventive care visit rates. Immunization rates at the end of the study were 44.7% for the intervention group and 32.4% for the control group (adjusted risk ratio, 1.4; 95% confidence interval, 1.3-1.5); preventive care visit rates were 68.0% for the intervention group and 55.2% for the control group (1.2; 1.2-1.3). Findings were similar across practices, sexes, ages, and insurance providers. The number needed to treat for immunizations and preventive care visits was 9. The intervention cost was $3.81 per adolescent per month; the cost per additional adolescent fully vaccinated was $465, and the cost per additional adolescent receiving a preventive care visit was $417. A tiered tracking, reminder/recall, and outreach intervention improved immunization and preventive care visit rates in urban adolescents. clinicaltrials.gov Identifier: NCT00581347.

  1. The longitudinal impact of patient navigation on equity in colorectal cancer screening in a large primary care network.

    Science.gov (United States)

    Percac-Lima, Sanja; López, Lenny; Ashburner, Jeffrey M; Green, Alexander R; Atlas, Steven J

    2014-07-01

    The long-term effects of interventions to improve colorectal (CRC) screening in vulnerable populations are uncertain. The authors evaluated the impact of patient navigation (PN) on the equity of CRC prevention over a 5-year period. A culturally tailored CRC screening PN program was implemented in 1 community health center (CHC) in 2007. In a primary care network, CRC screening rates from 2006 to 2010 among eligible patients from the CHC with PN were compared with the rates from other practices without PN. Multivariable logistic regression models for repeated measures were used to assess differences over time. Differences in CRC screening rates diminished among patients at the CHC with PN and at other practices between 2006 (49.2% vs 62.5%, respectively; P practices (5% vs 3.4% per year; P practices, lower CRC screening rates in 2006 (47.5% vs 52.1%, respectively; P = .02) were higher by 2010 (73.5% vs 67.3%, respectively; P practices in 2006 (44.3% vs 44.7%, respectively; P = .79) were higher at the CHC by 2010 (70.6% vs 58.6%, respectively; P practices (both P < .001). A PN program increased CRC screening rates in a CHC and improved equity in vulnerable patients. Long-term funding of PN programs has the potential to reduce cancer screening disparities. © 2014 American Cancer Society.

  2. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  3. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  4. 33 CFR 207.580 - Buffalo Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y.; use, administration, and navigation. 207.580 Section 207.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.580 Buffalo Harbor, N.Y.; use...

  5. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas.

    Science.gov (United States)

    Mert, Aygül; Kiesel, Barbara; Wöhrer, Adelheid; Martínez-Moreno, Mauricio; Minchev, Georgi; Furtner, Julia; Knosp, Engelbert; Wolfsberger, Stefan; Widhalm, Georg

    2015-01-01

    OBJECT Surgery of suspected low-grade gliomas (LGGs) poses a special challenge for neurosurgeons due to their diffusely infiltrative growth and histopathological heterogeneity. Consequently, neuronavigation with multimodality imaging data, such as structural and metabolic data, fiber tracking, and 3D brain visualization, has been proposed to optimize surgery. However, currently no standardized protocol has been established for multimodality imaging data in modern glioma surgery. The aim of this study was therefore to define a specific protocol for multimodality imaging and navigation for suspected LGG. METHODS Fifty-one patients who underwent surgery for a diffusely infiltrating glioma with nonsignificant contrast enhancement on MRI and available multimodality imaging data were included. In the first 40 patients with glioma, the authors retrospectively reviewed the imaging data, including structural MRI (contrast-enhanced T1-weighted, T2-weighted, and FLAIR sequences), metabolic images derived from PET, or MR spectroscopy chemical shift imaging, fiber tracking, and 3D brain surface/vessel visualization, to define standardized image settings and specific indications for each imaging modality. The feasibility and surgical relevance of this new protocol was subsequently prospectively investigated during surgery with the assistance of an advanced electromagnetic navigation system in the remaining 11 patients. Furthermore, specific surgical outcome parameters, including the extent of resection, histological analysis of the metabolic hotspot, presence of a new postoperative neurological deficit, and intraoperative accuracy of 3D brain visualization models, were assessed in each of these patients. RESULTS After reviewing these first 40 cases of glioma, the authors defined a specific protocol with standardized image settings and specific indications that allows for optimal and simultaneous visualization of structural and metabolic data, fiber tracking, and 3D brain

  6. Medical leave granted to psychiatric inpatients--a one-year retrospective review.

    Science.gov (United States)

    Koh, K G; Ang, A W

    2000-09-01

    Of the 676 patients warded in 1998 at the National University Hospital (NUH) Department of Psychological Medicine, over a third (n = 268) required certification of absence from work. Duration of inpatient stay and immediate post-discharge medical leave were examined for this group. These durations were correlated against the patients' diagnoses and their demographic variables. The mental health morbidity of teachers was specifically studied. In this retrospective study, we used medical certificate counterfoils to determine the lengths of admission and post-discharge medical leave duration. ANOVA and Kruskal-Wallis tests of the SPSS computer package were used for statistical analysis. The sex and marital status of these patients did not affect either duration significantly. However, those 45 years and older were granted longer outpatient medical leave. Patients diagnosed with mood and psychotic disorders required longer inpatient stay and were granted longer outpatient medical leave, as compared with other diagnostic groups. It was found that the teachers admitted were largely 45 years and older, had a diagnosis of depression and required extended periods of outpatient medical leave compared to other occupational groups. The mean number of days of inpatient stay and outpatient medical leave may serve as a helpful guideline of current practice. As introduced in this paper, the use of medical certificate counterfoils is a simple yet effective way of measuring days off-work. With the inclusion of those psychiatric patients not working and the medical leave granted long after discharge, calculations of the economic costs of specific mental disorders to Singapore can then be attempted.

  7. Benefits of multisensory presentation on perception, memory and navigation

    NARCIS (Netherlands)

    Philippi, T.G.|info:eu-repo/dai/nl/313711577

    2012-01-01

    Navigation is the process of planning and following routes to travel from the current location to a target location. In comparison with real world navigation, we have considerable difficulty with navigation in virtual environments. An important cause is that less information is presented in a

  8. Superfund Technical Assistance Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes data related to the Superfund Technical Assistance Grant program, including grant number, award amounts, award dates, period of performance,...

  9. 3D-navigation for interstitial stereotactic brachytherapy; 3D-Navigation in der interstitiellen stereotaktischen Brachytherapie

    Energy Technology Data Exchange (ETDEWEB)

    Auer, T.; Hensler, E.; Eichberger, P.; Bluhm, A.; Lukas, P. [Innsbruck Univ. (Austria). Klinik fuer Strahlentherapie und Radioonkologie; Gunkel, A.; Freysinger, W.; Bale, R.; Thumfart, W.F. [Innsbruck Univ. (Austria). Klinik fuer HNO-Krankheiten; Gaber, O. [Innsbruck Univ. (Austria). Inst. fuer Anatomie

    1998-02-01

    The aim of this paper is to describe the adaption of 3D-navigation for interstitial brachytherapy. The new method leads to prospective and therefore improved planning of the therapy (position of the needle and dose distribution) and to the possibility of a virtual simulation (control if vessels or nerves are on the pathway of the needle). The EasyGuide Neuro {sup trademark} navigation system (Philips) was adapted in the way, that needles for interstitial bracachytherapy were made connectable to the pointer and correctly displayed on the screen. To determine the positioning accuracy, several attempts were performed to hit defined targets on phantoms. Two methods were used: `Free navigation`, where the needle was under control of the navigation system, and the `guided navigation` where an aligned template was used additionally to lead the needle to the target. In addition a mask system was tested, whether it met the requirements of stable and reproducible positioning. The potential of applying this method is clinical practice was tested with an anatomical specimen. About 91% of all attempts lied within 5 mm. There were even better results on the more rigid table (94%<4 mm). No difference could be seen between both application methods (`free navigation` and `navigation with template`), they showed the same accuracy. (orig./MG) [Deutsch] Es war das Ziel dieser Arbeit, ein 3D-Infrarotnavigationssystem fuer die Anforderungen der interstitiellen stereotaktischen Brachytherapie zu adaptieren. Damit wird die Planung der Therapie verbessert (prospektive Planung der Nadelpositionen und der Dosisverteilung), und eine virtuelle Simulation wird realisierbar (Kontrolle des vorgeplanten Zugangs bezueglich Verletzungsmoeglichkeit von Gefaessen oder Nerven). Das EasyGuide-Neuro {sup trademark} -Navigagationssystem (Philips) wurde so veraendert, dass Nadeln, die in der Brachytherapie Verwendung finden, am Pointer befestigt werden konnten und am Bildschirm angezeigt wurden. Um die

  10. Economic support to patients in HIV and TB grants in rounds 7 and 10 from the global fund to fight AIDS, tuberculosis and malaria.

    Directory of Open Access Journals (Sweden)

    Linda M Richter

    Full Text Available People with TB and/or HIV frequently experience severe economic barriers to health care, including out-of-pocket expenses related to diagnosis and treatment, as well as indirect costs due to loss of income. These barriers can both aggravate economic hardship and prevent or delay diagnosis, treatment and successful outcome, leading to increased transmission, morbidity and mortality. WHO, UNAIDS and the ILO argue that economic support of various kinds is essential to enable vulnerable people to protect themselves from infection, avoid delayed diagnosis and treatment, overcome barriers to adherence, and avert destitution. This paper analyses successful country proposals to the Global Fund to Fight AIDS, Tuberculosis and Malaria that include economic support in Rounds 7 and 10; 36 and 20 HIV and TB grants in Round 7 and 32 and 26, respectively, in Round 10. Of these, up to 84 percent included direct or indirect economic support for beneficiaries, although the amount constituted a very small proportion of the total grant. In TB grants, the objectives of economic support were generally clearly stated, and focused on mechanisms to improve treatment uptake and adherence, and the case was most clearly made for MDR-TB patients. In HIV grants, the objectives were much broader in scope, including mitigation of adverse economic and social effects of HIV and its treatment on both patients and families. The analysis shows that economic support is on the radar for countries developing Global Fund proposals, and a wide range of economic support activities are in place. In order to move forward in this area, the wealth of country experience that exists needs to be collated, assessed and disseminated. In addition to trials, operational research and programme evaluations, more precise guidance to countries is needed to inform evidence-based decision about activities that are cost-effective, affordable and feasible.

  11. Survey of computer vision technology for UVA navigation

    Science.gov (United States)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are

  12. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  13. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    International Nuclear Information System (INIS)

    Loeffler, Ralf B.; McCarville, M.B.; Song, Ruitian; Hillenbrand, Claudia M.; Wagstaff, Anne W.; Smeltzer, Matthew P.; Krafft, Axel J.; Hankins, Jane S.

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be

  14. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Ralf B.; McCarville, M.B.; Song, Ruitian; Hillenbrand, Claudia M. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Wagstaff, Anne W. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Rhodes College, Memphis, TN (United States); University of Alabama at Birmingham School of Medicine, Birmingham, AL (United States); Smeltzer, Matthew P. [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); University of Memphis, Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, Memphis, TN (United States); Krafft, Axel J. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); University Hospital Center Freiburg, Department of Radiology, Freiburg (Germany); Hankins, Jane S. [St. Jude Children' s Research Hospital, Department of Hematology, Memphis, TN (United States)

    2017-01-15

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be

  15. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  16. CT-MR image data fusion for computer assisted navigated neurosurgery of temporal bone tumors

    International Nuclear Information System (INIS)

    Nemec, Stefan Franz; Donat, Markus Alexander; Mehrain, Sheida; Friedrich, Klaus; Krestan, Christian; Matula, Christian; Imhof, Herwig; Czerny, Christian

    2007-01-01

    Purpose: To demonstrate the value of multi detector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the preoperative work up of temporal bone tumors and to present, especially, CT and MR image fusion for surgical planning and performance in computer assisted navigated neurosurgery of temporal bone tumors. Materials and methods: Fifteen patients with temporal bone tumors underwent MDCT and MRI. MDCT was performed in high-resolution bone window level setting in axial plane. The reconstructed MDCT slice thickness was 0.8 mm. MRI was performed in axial and coronal plane with T2-weighted fast spin-echo (FSE) sequences, un-enhanced and contrast-enhanced T1-weighted spin-echo (SE) sequences, and coronal T1-weighted SE sequences with fat suppression and with 3D T1-weighted gradient-echo (GE) contrast-enhanced sequences in axial plane. The 3D T1-weighted GE sequence had a slice thickness of 1 mm. Image data sets of CT and 3D T1-weighted GE sequences were merged utilizing a workstation to create CT-MR fusion images. MDCT and MR images were separately used to depict and characterize lesions. The fusion images were utilized for interventional planning and intraoperative image guidance. The intraoperative accuracy of the navigation unit was measured, defined as the deviation between the same landmark in the navigation image and the patient. Results: Tumorous lesions of bone and soft tissue were well delineated and characterized by CT and MR images. The images played a crucial role in the differentiation of benign and malignant pathologies, which consisted of 13 benign and 2 malignant tumors. The CT-MR fusion images supported the surgeon in preoperative planning and improved surgical performance. The mean intraoperative accuracy of the navigation system was 1.25 mm. Conclusion: CT and MRI are essential in the preoperative work up of temporal bone tumors. CT-MR image data fusion presents an accurate tool for planning the correct surgical procedure and is a

  17. The Navigation Metaphor in Security Economics

    DEFF Research Database (Denmark)

    Pieters, Wolter; Barendse, Jeroen; Ford, Margaret

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept of na...... of navigation makes it easier to motivate and explain security investment to a wide audience, encouraging strategic security decisions....

  18. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...

  19. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  20. Model-base visual navigation of a mobile robot

    International Nuclear Information System (INIS)

    Roening, J.

    1992-08-01

    The thesis considers the problems of visual guidance of a mobile robot. A visual navigation system is formalized consisting of four basic components: world modelling, navigation sensing, navigation and action. According to this formalization an experimental system is designed and realized enabling real-world navigation experiments. A priori knowledge of the world is used for global path finding, aiding scene analysis and providing feedback information to the close the control loop between planned and actual movements. Two world models were developed. The first approach was a map-based model especially designed for low-level description of indoor environments. The other was a higher level and more symbolic representation of the surroundings utilizing the spatial graph concept. Two passive vision approaches were developed to extract navigation information. With passive three- camera stereovision a sparse depth map of the scene was produced. Another approach employed a fish-eye lens to map the entire scene of the surroundings without camera scanning. The local path planning of the system is supported by three-dimensional scene interpreter providing a partial understanding of scene contents. The interpreter consists of data-driven low-level stages and a model-driven high-level stage. Experiments were carried out in a simulator and test vehicle constructed in the laboratory. The test vehicle successfully navigated indoors

  1. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  2. 22 CFR 401.25 - Government brief regarding navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Government brief regarding navigable waters. 401... PROCEDURE Applications § 401.25 Government brief regarding navigable waters. When in the opinion of the Commission it is desirable that a decision should be rendered which affects navigable waters in a manner or...

  3. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    the current position to a desired destination. This thesis presents and experimentally validates solutions for road classification, obstacle avoidance and mission execution. The road classification is based on laser scanner measurements and supported at longer ranges by vision. The road classification...... is sufficiently sensitive to separate the road from flat roadsides, and to distinguish asphalt roads from gravelled roads. The vision-based road detection uses a combination of chromaticity and edge detection to outline the traversable part of the road based on a laser scanner classified sample area....... The perception of these two sensors are utilised by a path planner to allow a number of drive modes, and especially the ability to follow road edges are investigated. The navigation mission is controlled by a script language. The navigation script controls route sequencing, junction detection, junction crossing...

  4. Interactive navigation-guided ophthalmic plastic surgery: the utility of 3D CT-DCG-guided dacryolocalization in secondary acquired lacrimal duct obstructions

    Directory of Open Access Journals (Sweden)

    Ali MJ

    2016-12-01

    Full Text Available Mohammad Javed Ali,1 Swati Singh,1 Milind N Naik,1 Swathi Kaliki,2 Tarjani Vivek Dave1 1Govindram Seksaria Institute of Dacryology, 2The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, Telangana, India Aim: The aim of this study was to report the preliminary experience with the techniques and utility of navigation-guided, 3D, computed tomography–dacryocystography (CT-DCG in the management of secondary acquired lacrimal drainage obstructions.Methods: Stereotactic surgeries using CT-DCG as the intraoperative image-guiding tool were performed in 3 patients. One patient had nasolacrimal duct obstruction (NLDO following a complete maxillectomy for a sinus malignancy, and the other 2 had NLDO following extensive maxillofacial trauma. All patients underwent a 3D CT-DCG. Image-guided dacryolocalization (IGDL was performed using the intraoperative image-guided StealthStation™ system in the electromagnetic mode. All patients underwent navigation-guided powered endoscopic dacryocystorhinostomy (DCR. The utility of intraoperative dacryocystographic guidance and the ability to localize the lacrimal drainage system in the altered endoscopic anatomical milieu were noted.Results: Intraoperative geometric localization of the lacrimal sac and the nasolacrimal duct could be easily achieved. Constant orientation of the lacrimal drainage system was possible while navigating in the vicinity of altered endoscopic perilacrimal anatomy. Useful clues with regard to modifications while performing a powered endoscopic DCR could be obtained. Surgeries could be performed with utmost safety and precision, thereby avoiding complications. Detailed preoperative 3D CT-DCG reconstructions with constant intraoperative dacryolocalization were found to be essential for successful outcomes.Conclusion: The 3D CT-DCG-guided navigation procedure is very useful while performing endoscopic DCRs in cases of secondary acquired and complex

  5. Navigating nuclear science: Enhancing analysis through visualization

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  6. The Programmer's Guide to iSeries Navigator

    CERN Document Server

    Touhy, Paul

    2012-01-01

    iSeries Navigator is a favorite tool of operators and administrators-who use it with great success-but many programmers have missed the great programming tools that is provides! This book introduces you to iSeries Navigator along with all the powerful tools and interfaces that will expand your programming horizons. As iSeries applications continue to move toward a graphical user interface (GUI), so does the development environment. Programs such as CODE and WDSC may fill the need for the programming environment, but iSeries Navigator fills the programmer's need for general system access as wel

  7. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Navigable windows of the Northwest Passage

    Science.gov (United States)

    Liu, Xing-he; Ma, Long; Wang, Jia-yue; Wang, Ye; Wang, Li-na

    2017-09-01

    Artic sea ice loss trends support a greater potential for Arctic shipping. The information of sea ice conditions is important for utilizing Arctic passages. Based on the shipping routes given by ;Arctic Marine Shipping Assessment 2009 Report;, the navigable windows of these routes and the constituent legs were calculated by using sea ice concentration product data from 2006 to 2015, by which a comprehensive knowledge of the sea ice condition of the Northwest Passage was achieved. The results showed that Route 4 (Lancaster Sound - Barrow Strait - Prince Regent Inlet and Bellot Strait - Franklin Strait - Larsen Sound - Victoria Strait - Queen Maud Gulf - Dease Strait - Coronation Gulf - Dolphin and Union Strait - Amundsen Gulf) had the best navigable expectation, Route 2 (Parry Channel - M'Clure Strait) had the worst, and the critical legs affecting the navigation of Northwest Passage were Viscount Melville Sound, Franklin Strait, Victoria Strait, Bellot Strait, M'Clure Strait and Prince of Wales Strait. The shortest navigable period of the routes of Northwest Passage was up to 69 days. The methods used and the results of the study can help the selection and evaluation of Arctic commercial routes.

  9. [Cost analysis for navigation in knee endoprosthetics].

    Science.gov (United States)

    Cerha, O; Kirschner, S; Günther, K-P; Lützner, J

    2009-12-01

    Total knee arthroplasty (TKA) is one of the most frequent procedures in orthopaedic surgery. The outcome depends on a range of factors including alignment of the leg and the positioning of the implant in addition to patient-associated factors. Computer-assisted navigation systems can improve the restoration of a neutral leg alignment. This procedure has been established especially in Europe and North America. The additional expenses are not reimbursed in the German DRG system (Diagnosis Related Groups). In the present study a cost analysis of computer-assisted TKA compared to the conventional technique was performed. The acquisition expenses of various navigation systems (5 and 10 year depreciation), annual costs for maintenance and software updates as well as the accompanying costs per operation (consumables, additional operating time) were considered. The additional operating time was determined on the basis of a meta-analysis according to the current literature. Situations with 25, 50, 100, 200 and 500 computer-assisted TKAs per year were simulated. The amount of the incremental costs of the computer-assisted TKA depends mainly on the annual volume and the additional operating time. A relevant decrease of the incremental costs was detected between 50 and 100 procedures per year. In a model with 100 computer-assisted TKAs per year an additional operating time of 14 mins and a 10 year depreciation of the investment costs, the incremental expenses amount to 300-395 depending on the navigation system. Computer-assisted TKA is associated with additional costs. From an economical point of view an amount of more than 50 procedures per year appears to be favourable. The cost-effectiveness could be estimated if long-term results will show a reduction of revisions or a better clinical outcome.

  10. Grants: View from the Campus.

    Science.gov (United States)

    Mohrman, Kathryn, Ed.

    Each of 13 authors, all experienced in obtaining grants, examines a separate element of the grantsgetting process. The essays include: The Characteristics of an Effective Grants Officer (Julia B. Leverenz); The Grants Office (Morton Cooper); Working with the Academic Dean (Robert C. Nordvall); Working with the Development Office (Barbara A.…

  11. A Discussion on e-Navigation and Implementation in Turkey

    Directory of Open Access Journals (Sweden)

    Y.V. Aydogdu

    2014-03-01

    Full Text Available Electronic navigation, which has great important for ship management, has taken a step with technological improvements. In the result of these enhancements, new systems appeared as well as existing systems and these systems began to be integrated each other or used data of obtaining from the others like that AIS, Radar, ECDIS etc. All these and likely future systems have been put together under the roof of enhanced navigation (e-navigation is defined by organizations such as International Maritime Organization (IMO, International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA, General Lighthouse Authority (GLA etc. Especially IALA guidelines serve as model future applications in Turkish waterways. In this study aim to redefine e-navigation concept based on maritime safety awareness, maritime service portfolio (MSC 85/26 and discuss possible applications.

  12. Evolved Navigation Theory and Horizontal Visual Illusions

    Science.gov (United States)

    Jackson, Russell E.; Willey, Chela R.

    2011-01-01

    Environmental perception is prerequisite to most vertebrate behavior and its modern investigation initiated the founding of experimental psychology. Navigation costs may affect environmental perception, such as overestimating distances while encumbered (Solomon, 1949). However, little is known about how this occurs in real-world navigation or how…

  13. SRA Grant Writing Tutorial

    Science.gov (United States)

    This tutorial will help give your organization a broad but succinct analysis of what the SRA grant program is about. This self-paced tutorial is organized under two segments: Overview of Grant Program and Program Details.

  14. Mapping, Navigation, and Learning for Off-Road Traversal

    DEFF Research Database (Denmark)

    Konolige, Kurt; Agrawal, Motilal; Blas, Morten Rufus

    2009-01-01

    The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project is to autonomously navigate a small robot using stereo vision as the main sensor. During this project, we demonstrated a complete autonomous system for off-road navigation in unstructured environments, using stereo vision......, online terrain traversability learning, visual odometry, map registration, planning, and control. At the end of 3 years, the system we developed outperformed all nine other teams in final blind tests over previously unseen terrain.......The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project is to autonomously navigate a small robot using stereo vision as the main sensor. During this project, we demonstrated a complete autonomous system for off-road navigation in unstructured environments, using stereo vision...

  15. Lost in Virtual Space: Studies in Human and Ideal Spatial Navigation

    Science.gov (United States)

    Stankiewicz, Brian J.; Legge, Gordon E.; Mansfield, J. Stephen; Schlicht, Erik J.

    2006-01-01

    The authors describe 3 human spatial navigation experiments that investigate how limitations of perception, memory, uncertainty, and decision strategy affect human spatial navigation performance. To better understand the effect of these variables on human navigation performance, the authors developed an ideal-navigator model for indoor navigation…

  16. Conceptual Grounds of Navigation Safety

    Directory of Open Access Journals (Sweden)

    Vladimir Torskiy

    2016-04-01

    Full Text Available The most important global problem being solved by the whole world community nowadays is to provide sustainable mankind development. Recent research in the field of sustainable development states that civilization safety is impossible without transfer sustainable development. At the same time, sustainable development (i.e. preservation of human culture and biosphere is impossible as a system that serves to meet economical, cultural, scientific, recreational and other human needs without safety. Safety plays an important role in sustainable development goals achievement. An essential condition of effective navigation functioning is to provide its safety. The “prescriptive” approach to the navigation safety, which is currently used in the world maritime field, is based on long-term experience and ship accidents investigation results. Thus this approach acted as an the great fact in reduction of number of accidents at sea. Having adopted the International Safety Management Code all the activities connected with navigation safety problems solution were transferred to the higher qualitative level. Search and development of new approaches and methods of ship accidents prevention during their operation have obtained greater importance. However, the maritime safety concept (i.e. the different points on ways, means and methods that should be used to achieve this goal hasn't been formed and described yet. The article contains a brief review of the main provisions of Navigation Safety Conceptions, which contribute to the number of accidents and incidents at sea reduction.

  17. Risk factors for spatial memory impairment in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Amlerova, Jana; Laczo, Jan; Vlcek, Kamil; Javurkova, Alena; Andel, Ross; Marusic, Petr

    2013-01-01

    At present, the risk factors for world-centered (allocentric) navigation impairment in patients with temporal lobe epilepsy (TLE) are not known. There is some evidence on the importance of the right hippocampus but other clinical features have not been investigated yet. In this study, we used an experimental human equivalent to the Morris water maze to examine spatial navigation performance in patients with drug-refractory unilateral TLE. We included 47 left-hemisphere speech dominant patients (25 right sided; 22 left sided). The aim of our study was to identify clinical and demographic characteristics of TLE patients who performed poorly in allocentric spatial memory tests. Our results demonstrate that poor spatial navigation is significantly associated with younger age at epilepsy onset, longer disease duration, and lower intelligence level. Allocentric navigation in TLE patients was impaired irrespective of epilepsy lateralization. Good and poor navigators did not differ in their age, gender, or preoperative/postoperative status. This study provides evidence on risk factors that increase the likelihood of allocentric navigation impairment in TLE patients. The results indicate that not only temporal lobe dysfunction itself but also low general cognitive abilities may contribute to the navigation impairment. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Intra-operative computer navigation guided cervical pedicle screw insertion in thirty-three complex cervical spine deformities

    Directory of Open Access Journals (Sweden)

    S Rajasekaran

    2010-01-01

    Full Text Available Background: Cervical pedicle screw fixation is challenging due to the small osseous morphometrics and the close proximity of neurovascular elements. Computer navigation has been reported to improve the accuracy of pedicle screw placement. There are very few studies assessing its efficacy in the presence of deformity. Also cervical pedicle screw insertion in children has not been described before. We evaluated the safety and accuracy of Iso-C 3D-navigated pedicle screws in the deformed cervical spine. Materials and Methods: Thirty-three patients including 15 children formed the study group. One hundred and forty-five cervical pedicle screws were inserted using Iso-C 3D-based computer navigation in patients undergoing cervical spine stabilization for craniovertebral junction anomalies, cervico-thoracic deformities and cervical instabilities due to trauma, post-surgery and degenerative disorders. The accuracy and containment of screw placement was assessed from postoperative computerized tomography scans. Results: One hundred and thirty (89.7% screws were well contained inside the pedicles. Nine (6.1% Type A and six (4.2% Type B pedicle breaches were observed. In 136 levels, the screws were inserted in the classical description of pedicle screw application and in nine deformed vertebra, the screws were inserted in a non-classical fashion, taking purchase of the best bone stock. None of them had a critical breach. No patient had any neurovascular complications. Conclusion: Iso-C navigation improves the safety and accuracy of pedicle screw insertion and is not only successful in achieving secure pedicle fixation but also in identifying the best available bone stock for three-column bone fixation in altered anatomy. The advantages conferred by cervical pedicle screws can be extended to the pediatric population also.

  19. Ulysses S. Grant and Reconstruction.

    Science.gov (United States)

    Wilson, David L.

    1989-01-01

    Discusses the role played by Ulysses S. Grant during the four years of Reconstruction before he became President of the United States. Describes the dynamics of the relationship between Grant and Andrew Johnson. Points out that Grant's attitude of service to the laws created by Congress submerged his desire to create a new South. (KO)

  20. Cislunar navigation

    Science.gov (United States)

    Cesarone, R. J.; Burke, J. D.; Hastrup, R. C.; Lo, M. W.

    2003-01-01

    In the future, navigation and communication in Earth-Moon space and on the Moon will differ from past practice due to evolving technology and new requirements. Here we describe likely requirements, discuss options for meeting them, and advocate steps that can be taken now to begin building the navcom systems needed in coming years for exploring and using the moon.

  1. Natural Language Navigation Support in Virtual Reality

    NARCIS (Netherlands)

    van Luin, J.; Nijholt, Antinus; op den Akker, Hendrikus J.A.; Giagourta, V.; Strintzis, M.G.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to

  2. Endoscopic trans-nasal approach for biopsy of orbital tumors using image-guided neuro-navigation system

    International Nuclear Information System (INIS)

    Sieskiewicz, A.; Mariak, Z.; Rogowski, M.; Lyson, T.

    2008-01-01

    Histopathological diagnosis of intraorbital tumors is of crucial value for planning further therapy. The aim of the study was to explore clinical utility of image-guided endoscopy for biopsy of orbital tumors. Trans-nasal endoscopic biopsy of intraorbital mass lesions was performed in 6 patients using a neuro-navigation system (Medtronic Stealth Station Treon plus). The CT and MRI 1 mm slice images were fused by the system in order to visualise both bony and soft tissue structures. The anatomic fiducial registration protocol was used during the procedure. All lesions were precisely localised and the biopsies could be taken from the representative part of the pathological mass. None of the patients developed aggravation of ocular symptoms after the procedure. The operative corridor as well as the size of orbital wall fenestration could be limited to a minimum. The accuracy of neuro-navigation remained high and stable during the entire procedure. The image-guided neuro-navigation system facilitated endoscopic localisation and biopsy of intraorbital tumors and contributed to the reduction of surgical trauma during the procedure. The technique was particularly useful in small, medially located, retrobulbar tumors and in unclear situations when the structure of the lesion resembled surrounding intraorbital tissue. (author)

  3. Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2008-12-01

    Full Text Available This paper surveys the developments of last 10 years in the area of vision based target tracking for autonomous vehicles navigation. First, the motivations and applications of using vision based target tracking for autonomous vehicles navigation are presented in the introduction section. It can be concluded that it is very necessary to develop robust visual target tracking based navigation algorithms for the broad applications of autonomous vehicles. Then this paper reviews the recent techniques in three different categories: vision based target tracking for the applications of land, underwater and aerial vehicles navigation. Next, the increasing trends of using data fusion for visual target tracking based autonomous vehicles navigation are discussed. Through data fusion the tracking performance is improved and becomes more robust. Based on the review, the remaining research challenges are summarized and future research directions are investigated.

  4. Grantee Spotlight: Marvella Ford, Ph.D. - Reducing Barriers to Surgical Cancer Care among African Am

    Science.gov (United States)

    Drs. Marvella E. Ford and Nestor F. Esnaola were awarded a five-year NIH/NIMHD R01 grant to evaluate a patient navigation intervention to reduce barriers to surgical cancer care and improving surgical resection rates in African Americans with lung cancer.

  5. 33 CFR 64.16 - Duration of marking on sunken vessels in navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duration of marking on sunken vessels in navigable waters. 64.16 Section 64.16 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sunken Vessels and Other Obstructions § 64.16 Duration of marking on sunken vessels in navigable waters...

  6. 33 CFR 207.600 - Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation. 207.600 Section 207.600 Navigation and Navigable Waters CORPS OF... (Charlotte) Harbor, N.Y.; use, administration, and navigation. (a)-(b) [Reserved] (c) No vessel shall moor or...

  7. Benchmark Framework for Mobile Robots Navigation Algorithms

    Directory of Open Access Journals (Sweden)

    Nelson David Muñoz-Ceballos

    2014-01-01

    Full Text Available Despite the wide variety of studies and research on mobile robot systems, performance metrics are not often examined. This makes difficult to establish an objective comparison of achievements. In this paper, the navigation of an autonomous mobile robot is evaluated. Several metrics are described. These metrics, collectively, provide an indication of navigation quality, useful for comparing and analyzing navigation algorithms of mobile robots. This method is suggested as an educational tool, which allows the student to optimize the algorithms quality, relating to important aspectsof science, technology and engineering teaching, as energy consumption, optimization and design.

  8. [Clinical decision making with regard to the granting of escorted leave for forensic patients detained by court order in a Dutch psychiatric clinic. Role of gender, disorder and the type of offence in the procedure].

    Science.gov (United States)

    Ter Horst, P; Jessen, A; Bogaerts, S; Spreen, M

    2015-01-01

    An increase in the length of time until the first escorted leave is granted to a patient detained by court order (tbs) results in a longer period of treatment. Physicians involved in the treatment and clinic managers are striving to reduce, in a responsible manner, the length of the period of treatment preceding the patient's first escorted leave. Forensic Psychiatric Clinic (fpk) 'De Woenselse Poort' aims to find out to what extent gender, pathology and the type of offence committed by the detainee influence the length of time that elapses before the patient's first leave is granted. We conducted a retrospective study based on patients' records. Although men use physical aggression more often than women, we found that gender, pathology and the type of offence had no influence on the length of the treatment period that preceded the granting of the patient's first escorted leave. Partly on the basis of risk management scales, clinicians judge whether the patient has adopted a more positive or a more negative attitude to risk factors relating to his or her offence. If the risk factors have become more positive, one would expect the application for leave to be made earlier. Surprisingly, this was not the case. In order to speed up the decision-making process regarding the application for leave, a clinical method for evaluating risk related treatment needs to be developed in which offence related risk factors are identified and the patient's positive or negative attitude to these risks are measured and monitored. At each treatment evaluation practitioners should be required to produce arguments that determine whether or not the patient is to be granted permission to go on leave at a particular moment.

  9. Preservation of the Acetabular Cup During Revision Total Hip Arthroplasty Using a Novel Mini-navigation Tool: A Case Report.

    Science.gov (United States)

    Vincent, John; Alshaygy, Ibrahim; Muir, Jeffrey M; Kuzyk, Paul

    2018-01-01

    While intraoperative navigation systems have been shown to improve outcomes in primary total hip arthroplasty (THA), their use in the context of revision has been largely overlooked. This case report presents the first documented use of an imageless navigation tool in the context of revision THA, and an unexpected benefit to the surgical procedure as a result. An 84-year-old female patient presented following five episodes of dislocation of the left hip and with pain in the left buttock, groin, and posterior aspect of her hip. Relevant surgical history included primary hip arthroplasty in 1999 and the first revision in 2014. Preoperative analysis revealed a constrained liner that had become disengaged and migrated inferiorly, lodging at the distal aspect of the femoral neck. Acetabular protrusion was also noted. The pre-operative plan included the replacement of the fragmented liner and likely of the acetabular cup due to hardware failure. Intraoperative assessment, however, revealed that the cup was in good condition and would be difficult to remove due to substantial bony ingrowth. With the assistance of imageless navigation, the orientation of the acetabular cup was determined and a new constrained liner was cemented into the preexisting acetabular component at an altered orientation, correcting anteversion by 7°. In revision hip arthroplasty cases, image-based navigation is limited by the presence of existing implants and corresponding metal artefact. This case demonstrates the successful use of an imageless navigation tool for revision surgery. Use of navigation led to the unexpected intraoperative discovery that the acetabular cup was in an acceptable state, and allowed the surgical team to correct the position of the cup using a constrained liner, thus preserving the cup. This significantly benefitted patient outcome, due to the risks associated with the removal of a firmly fixated acetabular cup. While more extensive research is required, this case

  10. 33 CFR 165.1402 - Apra Outer Harbor, Guam-regulated navigation area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Apra Outer Harbor, Guam-regulated....1402 Apra Outer Harbor, Guam—regulated navigation area. (a) The following is a regulated navigation area—The waters of the Pacific Ocean and Apra Outer Harbor enclosed by a line beginning at latitude 13...

  11. Human-robot collaborative navigation for autonomous maintenance management of nuclear installation

    International Nuclear Information System (INIS)

    Nugroho, Djoko Hari

    2002-01-01

    Development of human and robot collaborative navigation for autonomous maintenance management of nuclear installation has been conducted. The human-robot collaborative system is performed using a switching command between autonomous navigation and manual navigation that incorporate a human intervention. The autonomous navigation path is conducted using a novel algorithm of MLG method based on Lozano-Perez s visibility graph. The MLG optimizes the shortest distance and safe constraints. While the manual navigation is performed using manual robot tele operation tools. Experiment in the MLG autonomous navigation system is conducted for six times with 3-D starting point and destination point coordinate variation. The experiment shows a good performance of autonomous robot maneuver to avoid collision with obstacle. The switching navigation is well interpreted using open or close command to RS-232C constructed using LabVIEW

  12. Three-Dimensional Implant Positioning with a Piezosurgery Implant Site Preparation Technique and an Intraoral Surgical Navigation System: Case Report.

    Science.gov (United States)

    Pellegrino, Gerardo; Taraschi, Valerio; Vercellotti, Tomaso; Ben-Nissan, Besim; Marchetti, Claudio

    This case report describes new implant site preparation techniques joining the benefits of using an intraoral navigation system to optimize three-dimensional implant site positioning in combination with an ultrasonic osteotomy. A report of five patients is presented, and the implant positions as planned in the navigation software with the postoperative scan image were compared. The preliminary results are useful, although further clinical studies with larger populations are needed to confirm these findings.

  13. Gray and White Matter Correlates of Navigational Ability in Humans

    NARCIS (Netherlands)

    Wegman, J.B.T.; Fonteijn, H.M.; Ekert, J. van; Tyborowska, A.B.; Jansen, C.; Janzen, G.

    2014-01-01

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different

  14. Pareto navigation-algorithmic foundation of interactive multi-criteria IMRT planning

    International Nuclear Information System (INIS)

    Monz, M; Kuefer, K H; Bortfeld, T R; Thieke, C

    2008-01-01

    Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle-a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far

  15. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning.

    Science.gov (United States)

    Monz, M; Küfer, K H; Bortfeld, T R; Thieke, C

    2008-02-21

    Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle -- a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far.

  16. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  17. Enabling Autonomous Navigation for Affordable Scooters.

    Science.gov (United States)

    Liu, Kaikai; Mulky, Rajathswaroop

    2018-06-05

    Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  18. A Semantic Navigation Model for Video Games

    Science.gov (United States)

    van Driel, Leonard; Bidarra, Rafael

    Navigational performance of artificial intelligence (AI) characters in computer games is gaining an increasingly important role in the perception of their behavior. While recent games successfully solve some complex navigation problems, there is little known or documented on the underlying approaches, often resembling a primitive conglomerate of ad-hoc algorithms for specific situations.

  19. Navigator. Volume 45, Number 2, Winter 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" contains the following reports: (1) A Message from the President: Creating Networks of…

  20. Autonomous navigation - The ARMMS concept. [Autonomous Redundancy and Maintenance Management Subsystem

    Science.gov (United States)

    Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.

    1984-01-01

    A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.

  1. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Pollution of coastal and navigable waters. 4.66b... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is being or has been deposited in navigable waters or any tributary of any navigable waters in violation of...

  2. PulsarPlane: a feasibility study for millisecond radio pulsar navigation

    NARCIS (Netherlands)

    Buist, Peter; Hesselink, Henk; Gibbs, Alex; Keuning, Michel; Gaubitch, Nikolay; Noroozi, Arash; Bentum, Marinus Jan; Verhoeven, Chris; Heusdens, Richard; Fernandes, Jorge; Kabakchiev, Hristo; Kestilä, Antti

    2014-01-01

    Stars have been used -in what is called celestial navigation- since thousands of years by mankind. Celestial navigation was used extensively in aviation until the 1960s, and in marine navigation until recently. It has been investigated for agriculture applications, utilized for military aircraft

  3. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    Science.gov (United States)

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Computed tomography guided navigation assisted percutaneous ablation of osteoid osteoma in a 7-year-old patient: the low dose approach

    Energy Technology Data Exchange (ETDEWEB)

    Krokidis, Miltiadis; Tappero, Carlo; Bogdanovic, Daniel; Stamm, Anna-Christina [Inselspital, Bern University Hospital, Department of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Ziebarth, Kai [Inselspital, Bern University Hospital, Department of Pediatric Surgery, Bern (Switzerland)

    2017-07-15

    Osteoid osteoma (OO) is a benign tumour that can cause severe pain and functional limitation to children and young adults; the treatment of choice is image-guided ablation. Due to the very small size of the lesion, detection and accurate needle placement may be challenging. Computed tomography (CT) offers very detailed imaging of the skeleton and is the modality of choice for the detection of small OO and for ablation guidance. Nevertheless, CT-guided positioning of the ablation applicator is linked to significant radiation exposure, particularly for the paediatric population. This case describes the successful use of a novel CT-based navigation system that offers the possibility of accurate ablation with only minimal radiation exposure in a paediatric patient. (orig.)

  6. Unraveling navigational strategies in migratory insects

    OpenAIRE

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M.

    2011-01-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied d...

  7. Hemispheric language dominance measured by repetitive navigated transcranial magnetic stimulation and postoperative course of language function in brain tumor patients.

    Science.gov (United States)

    Ille, Sebastian; Kulchytska, Nataliia; Sollmann, Nico; Wittig, Regina; Beurskens, Eva; Butenschoen, Vicki M; Ringel, Florian; Vajkoczy, Peter; Meyer, Bernhard; Picht, Thomas; Krieg, Sandro M

    2016-10-01

    The resection of left-sided perisylvian brain lesions harbors the risk of postoperative aphasia. Because it is known that language function can shift between hemispheres in brain tumor patients, the preoperative knowledge of the patient's language dominance could be helpful. We therefore investigated the hemispheric language dominance by repetitive navigated transcranial magnetic stimulation (rTMS) and surgery-related deficits of language function. We pooled the bicentric language mapping data of 80 patients undergoing the resection of left-sided perisylvian brain lesions in our two university neurosurgical departments. We calculated error rates (ERs; ER = errors per stimulations) for both hemispheres and defined the hemispheric dominance ratio (HDR) as the quotient of the left- and right-sided ER (HDR >1= left dominant; HDR right dominant). The course of the patient's language function was evaluated and correlated with the preoperative HDR. Only three of 80 patients (4%) presented with permanent surgery-related aphasia and 24 patients (30%) with transient surgery-related aphasia. The mean HDR (± standard deviation) of patients with new aphasia after five days was significantly higher (1.68±1.07) than the HDR of patients with no new language deficit (1.37±1.08) (p=0.0482). With a predefined cut-off value of 0.5 for HDR, we achieved a sensitivity for predicting new aphasia of 100%. A higher preoperative HDR significantly correlates with an increased risk for transient aphasia. Moreover, the intensive preoperative workup in this study led to a considerably low rate of permanent aphasia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. GPS surveying method applied to terminal area navigation flight experiments

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M; Shingu, H; Satsushima, K; Tsuji, T; Ishikawa, K; Miyazawa, Y; Uchida, T [National Aerospace Laboratory, Tokyo (Japan)

    1993-03-01

    With an objective of evaluating accuracy of new landing and navigation systems such as microwave landing guidance system and global positioning satellite (GPS) system, flight experiments are being carried out using experimental aircraft. This aircraft mounts a GPS and evaluates its accuracy by comparing the standard orbits spotted by a Kalman filter from the laser tracing data on the aircraft with the navigation results. The GPS outputs position and speed information from an earth-centered-earth-fixed system called the World Geodetic System, 1984 (WGS84). However, in order to compare the navigation results with output from a reference orbit sensor or other navigation sensor, it is necessary to structure a high-precision reference coordinates system based on the WGS84. A method that applies the GPS phase interference measurement for this problem was proposed, and used actually in analyzing a flight experiment data. As referred to a case of the method having been applied to evaluating an independent navigation accuracy, the method was verified sufficiently effective and reliable not only in navigation method analysis, but also in the aspect of navigational operations. 12 refs., 10 figs., 5 tabs.

  9. Acoustic Communications and Navigation for Mobile Under-Ice Sensors

    Science.gov (United States)

    2017-02-04

    contact below the ice. 15. SUBJECT TERMS Arctic Ocean , Undersea Workstations & Vehicles, Signal Processing, Navigation , Underwater Acoustics 16...Partan, Peter Koski, and Sandipa Singh, "Long Range Acoustic Communications and Navigation in the Arctic", Proc. IEEE/MTS Oceans Conf., Washington, DC...Oct. 2015. Freitag, L., P. Koski, A. Morozov, S. Singh, J. Partan, "Acoustic Communications and Navigation Under Arctic Ice", OCEANS , 2012

  10. Navigator. Volume 45, Number 3, Spring 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" includes the following items: (1) A Message from the President (Brenda Wojnowski); (2) NSELA…

  11. Gender differences in navigational memory: pilots vs. nonpilots.

    Science.gov (United States)

    Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico

    2015-02-01

    The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.

  12. 76 FR 58105 - Regulated Navigation Area; Saugus River, Lynn, MA

    Science.gov (United States)

    2011-09-20

    ... final rule. SUMMARY: The Coast Guard is establishing a Regulated Navigation Area (RNA) on the navigable... INFORMATION: Regulatory Information The Coast Guard is issuing this temporary rule without prior notice and... Pipeline bridge poses to the navigational channel necessitates that all mariners comply with this RNA...

  13. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  14. Neural-network-based depth computation for blind navigation

    Science.gov (United States)

    Wong, Farrah; Nagarajan, Ramachandran R.; Yaacob, Sazali

    2004-12-01

    A research undertaken to help blind people to navigate autonomously or with minimum assistance is termed as "Blind Navigation". In this research, an aid that could help blind people in their navigation is proposed. Distance serves as an important clue during our navigation. A stereovision navigation aid implemented with two digital video cameras that are spaced apart and fixed on a headgear to obtain the distance information is presented. In this paper, a neural network methodology is used to obtain the required parameters of the camera which is known as camera calibration. These parameters are not known but obtained by adjusting the weights in the network. The inputs to the network consist of the matching features in the stereo pair images. A back propagation network with 16-input neurons, 3 hidden neurons and 1 output neuron, which gives depth, is created. The distance information is incorporated into the final processed image as four gray levels such as white, light gray, dark gray and black. Preliminary results have shown that the percentage errors fall below 10%. It is envisaged that the distance provided by neural network shall enable blind individuals to go near and pick up an object of interest.

  15. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  16. Impact of a Patient Navigator Program on Hospital-Based and Outpatient Utilization Over 180 Days in a Safety-Net Health System.

    Science.gov (United States)

    Balaban, Richard B; Zhang, Fang; Vialle-Valentin, Catherine E; Galbraith, Alison A; Burns, Marguerite E; Larochelle, Marc R; Ross-Degnan, Dennis

    2017-09-01

    With emerging global payment structures, medical systems need to understand longer-term impacts of care transition strategies. To determine the effect of a care transition program using patient navigators (PNs) on health service utilization among high-risk safety-net patients over a 180-day period. Randomized controlled trial conducted October 2011 through April 2013. Patients admitted to the general medicine service with ≥1 readmission risk factor: (1) age ≥ 60; (2) in-network inpatient admission within prior 6 months; (3) index length of stay ≥ 3 days; or (4) admission diagnosis of heart failure or (5) chronic obstructive pulmonary disease. The analytic sample included 739 intervention patients, 1182 controls. Through hospital visits and 30 days of post-discharge telephone outreach, PNs provided coaching and assistance with medications, appointments, transportation, communication with primary care, and self-care. Primary outcomes: (1) hospital-based utilization, a composite of ED visits and hospital admissions; (2) hospital admissions; (3) ED visits; and (4) outpatient visits. We evaluated outcomes following an index discharge, stratified by patient age (≥ 60 and safety-net patients differentially impacted patients based on age, and among younger patients, outcomes varied over time. Our findings highlight the importance for future research to evaluate care transition programs among different subpopulations and over longer time periods.

  17. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy

  18. Social networks improve leaderless group navigation by facilitating long-distance communication

    Directory of Open Access Journals (Sweden)

    Nikolai W. F. BODE, A. Jamie WOOD, Daniel W. FRANKS

    2012-04-01

    Full Text Available Group navigation is of great importance for many animals, such as migrating flocks of birds or shoals of fish. One theory states that group membership can improve navigational accuracy compared to limited or less accurate individual navigational ability in groups without leaders (“Many-wrongs principle”. Here, we simulate leaderless group navigation that includes social connections as preferential interactions between individuals. Our results suggest that underlying social networks can reduce navigational errors of groups and increase group cohesion. We use network summary statistics, in particular network motifs, to study which characteristics of networks lead to these improvements. It is networks in which preferences between individuals are not clustered, but spread evenly across the group that are advantageous in group navigation by effectively enhancing long-distance information exchange within groups. We suggest that our work predicts a base-line for the type of social structure we might expect to find in group-living animals that navigate without leaders [Current Zoology 58 (2: 329-341, 2012].

  19. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  20. Assessment and validation of CT scanogram to compare per-operative and post-operative mechanical axis after navigated total knee replacement

    Science.gov (United States)

    Jain, Sunil

    2008-01-01

    Our objective was to assess and validate low-dose computed tomography (CT) scanogram as a post-operative imaging modality to measure the mechanical axis after navigated total knee replacement. A prospective study was performed to compare intra-operative and post-operative mechanical axis after navigated total knee replacements. All consecutive patients who underwent navigated total knee replacement between May and December 2006 were included. The intra-operative final axis was recorded, and post-operatively a CT scanogram of lower limbs was performed. The mechanical axis was measured and compared against the intra-operative measurement. There were 15 patients ranging in age from 57 to 80 (average 70) years. The average final intra-operative axis was 0.56° varus (4° varus to 1.5° valgus) and post-operative CT scanogram axis was 0.52° varus (3.1° varus to 1.8° valgus). The average deviation from final axes to CT scanogram axes was 0.12° valgus with a correlation coefficient of 0.9. Our study suggests that CT scanogram is an imaging modality with reasonable accuracy for measuring mechanical axis despite significantly low radiation. It also confirms a high level of correlation between intra-operative and post-operative mechanical axis after navigated total knee replacement. PMID:18696064

  1. Federal health services grants, 1985.

    Science.gov (United States)

    Zwick, D I

    1986-01-01

    Federal health services grants amounted to about $1.8 billion in fiscal year 1985. The total amount was about $100 million less, about 6 percent, than in 1980. Reductions in the health planning program accounted for most of the decline in absolute dollars. The four formula grants to State agencies amounted to about $1.0 billion in 1985, about 60 percent of the total. The largest formula grants were for maternal and child health services and for alcohol, drug abuse, and mental health services. Project grants to selected State and local agencies amounted to about $.8 billion. There was 12 such grants in 1985 (compared with 34 in 1980). The largest, for community health services, equaled almost half the total. In real, inflation-adjusted dollars, the decline in Federal funds for these programs exceeded a third during the 5-year period. The overall dollar total in real terms in 1985 approximated the 1970 level. The ratio of formula grants to project grants in 1985 was similar to that in 1965. Studies of the impact of changes in Federal grants have found that while the development of health programs has been seriously constrained in most cases, their nature has not been substantially altered. In some cases broader program approaches and allocations have been favored. Established modes of operations and administration have generally been strengthened. Some efficiencies but few savings in administration have been identified. Replacement of reduced Federal funding by the States has been modest but has increased over time, especially for direct service activities. These changes reflect the important influence of professionalism in the health fields and the varying strengths of political interest and influence among program supporters. The long-term impact on program innovation is not yet clear.

  2. Time Demand and Radiation Dose in 3D-Fluoroscopy-based Navigation-assisted 3D-Fluoroscopy-controlled Pedicle Screw Instrumentations.

    Science.gov (United States)

    Balling, Horst

    2018-05-01

    Prospective single-center cohort study to record additional time requirements and radiation dose in navigation-assisted O-arm-controlled pedicle screw (PS) instrumentations. The aim of this study was to evaluate amount of extra-time and radiation dose for navigation-assisted PS instrumentations of the thoracolumbosacral spine using O-arm 3D-real-time-navigation (O3DN) compared to non-navigated spinal procedures (NNSPs) with a single C-arm and postoperative computed tomography (CT) scan for controlling PS positions. 3D-navigation is reported to enhance PS insertion accuracy. But time-consuming navigational steps and considerable additional radiation doses seem to limit this modern technique's attraction. A detailed analysis of additional time demand and extra-radiation dose in 3D-navigated spine surgery is not provided in literature, yet. From February 2011 through July 2015, 306 consecutive posterior instrumentations were performed in vertebral levels T10-S1 using O3DN for PS insertion. The duration of procedure-specific navigational steps of the overall collective (I) and the last cohort of 50 consecutive O3DN-surgeries (II) was compared to the average duration of analogous surgical steps in 100 consecutive NNSP using a single C-arm. 3D-radiation dose (dose-length-product, DLP) of navigational and postinstrumentation O-arm scans in group I and II was compared to the average DLP of 100 diagnostic lumbar CT scans. The average presurgical time from patient positioning on the operating table to skin incision was 46.2 ± 10.1 minutes (O3DN, I) and 40.6 ± 9.8 minutes (O3DN, II) versus 30.6 ± 8.3 minutes (NNSP) (P demand of 13.0 minutes compared to NNSP, and with a total DLP below that of a diagnostic lumbar CT scan (P ≈ 0.81). 4.

  3. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  4. Current use of navigation system in ACL surgery: a historical review.

    Science.gov (United States)

    Zaffagnini, S; Urrizola, F; Signorelli, C; Grassi, A; Di Sarsina, T Roberti; Lucidi, G A; Marcheggiani Muccioli, G M; Bonanzinga, T; Marcacci, M

    2016-11-01

    The present review aims to analyse the available literature regarding the use of navigation systems in ACL reconstructive surgery underling the evolution during the years. A research of indexed scientific papers was performed on PubMed and Cochrane Library database. The research was performed in December 2015 with no publication year restriction. Only English-written papers and related to the terms ACL, NAVIGATION, CAOS and CAS were considered. Two reviewers independently selected only those manuscripts that presented at least the application of navigation system for ACL reconstructive surgery. One hundred and forty-six of 394 articles were finally selected. In this analysis, it was possible to review the main uses of navigation system in ACL surgery including tunnel positioning for primary and revision surgery and kinematic assessment of knee laxity before and after different surgical procedures. In the early years, until 2006, navigation system was mainly used to improve tunnel positioning, but since the last decade, this tool has been principally used for kinematics evaluation. Increased accuracy of tunnel placement was observed using navigation surgery, especially, regarding femoral, 42 of 146 articles used navigation to guide tunnel positioning. During the following years, 82 of 146 articles have used navigation system to evaluate intraoperative knee kinematic. In particular, the importance of controlling rotatory laxity to achieve better surgical outcomes has been underlined. Several applications have been described and despite the contribution of navigation systems, its potential uses and theoretical advantages, there are still controversies about its clinical benefit. The present papers summarize the most relevant studies that have used navigation system in ACL reconstruction. In particular, the analysis identified four main applications of the navigation systems during ACL reconstructive surgery have been identified: (1) technical assistance for tunnel

  5. THE DEVELOPMENT OF NAVIGATION SYSTEMS IN CIVIL AVIATION

    Directory of Open Access Journals (Sweden)

    Anastasiya Sergeyevna Stepanenko

    2017-01-01

    Full Text Available The article describes the history of navigation systems formation, such as "Cicada" system, which at that time could compete with the US "Transit", European, Chinese Beidou navigation system and the Japanese Quasi-Zenit.The detailed information about improving the American GPS system, launched in 1978 and working till now is provided. The characteristics of GPS-III counterpart "Transit", which became the platform for creating such modern globalnavigation systems as GLONASS and GPS. The process of implementation of the GLONASS system in civil aviation, itssegments, functions and features are considered. The stages of GLONASS satellite system orbital grouping formation are analyzed. The author draws the analogy with the American GPS system, the GALILEO system, which has a number of additional advantages, are given. The author remarks the features of the European counterpart of the GALILEO global nav- igation system. One of the goals of this system is to provide a high-precision positioning system, which Europe can rely on regardless of the Russian GLONASS system, the US - GPS and the Chinese Beidou. GALILEO offers a unique global search and rescue function called SAR, with an important feedback function. The peculiarities of Chinese scientists’ navi- gation system, the Beidou satellite system, and the Japanese global Quasi-Zenith Satellite System are described.Global navigation systems development tendencies are considered. The author dwells upon the path to world satel- lite systems globalization, a good example of which is the trend towards GLONASS and Beidou unification. Most attention was paid to the latest development of Russian scientists’ autonomous navigation system SINS 2015, which is a strap-down inertial navigation system and allows you to navigate the aircraft without being connected to a global satellite system. The ways of navigation systems further development in Russia are determined. The two naturally opposite directions are

  6. Image processing and applications based on visualizing navigation service

    Science.gov (United States)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  7. Comparing two types of navigational interfaces for Virtual Reality.

    Science.gov (United States)

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  8. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    Science.gov (United States)

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  9. Welfare financing : Grant allocation and efficiency

    NARCIS (Netherlands)

    Toolsema-Veldman, Linda; Allers, M.A.

    2012-01-01

    Welfare is often administered locally, but financed through grants from the central government. This raises the question how the central government can prevent local governments from spending more than necessary. Block grants are more efficient than matching grants, because the latter reduce the

  10. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  11. Enabling Autonomous Navigation for Affordable Scooters

    Directory of Open Access Journals (Sweden)

    Kaikai Liu

    2018-06-01

    Full Text Available Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  12. Error Analysis of Inertial Navigation Systems Using Test Algorithms

    OpenAIRE

    Vaispacher, Tomáš; Bréda, Róbert; Adamčík, František

    2015-01-01

    Content of this contribution is an issue of inertial sensors errors, specification of inertial measurement units and generating of test signals for Inertial Navigation System (INS). Given the different levels of navigation tasks, part of this contribution is comparison of the actual types of Inertial Measurement Units. Considering this comparison, there is proposed the way of solving inertial sensors errors and their modelling for low – cost inertial navigation applications. The last part is ...

  13. Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Adel Al-Jumaily

    2005-06-01

    Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.

  14. When unbearable suffering incites psychiatric patients to request euthanasia: qualitative study†

    Science.gov (United States)

    Verhofstadt, Monica; Thienpont, Lieve; Peters, Gjalt-Jorn Ygram

    2017-01-01

    Background The concept of ‘unbearable suffering’ is central to legislation governing whether euthanasia requests may be granted, but remains insufficiently understood, especially in relation to psychiatric patients. Aims To provide insights into the suffering experiences of psychiatric patients who have made a request for euthanasia. Method Testimonials from 26 psychiatric patients who requested euthanasia were analysed using QualiCoder software. Results Five domains of suffering were identified: medical, intrapersonal, interpersonal, societal and existential. Hopelessness was confirmed to be an important contributor. The lengthy process of applying for euthanasia was a cause of suffering and added to experienced hopelessness, whereas encountering physicians who took requests seriously could offer new perspectives on treatment. Conclusions The development of measurement instruments to assess the nature and extent of suffering as experienced by psychiatric patients could help both patients and physicians to better navigate the complicated and sensitive process of evaluating requests in a humane and competent way. Some correlates of suffering (such as low income) indicate the need for a broad medical, societal and political debate on how to reduce the burden of financial and socioeconomic difficulties and inequalities in order to reduce patients' desire for euthanasia. Euthanasia should never be seen (or used) as a means of resolving societal failures. PMID:28970302

  15. When unbearable suffering incites psychiatric patients to request euthanasia: qualitative study.

    Science.gov (United States)

    Verhofstadt, Monica; Thienpont, Lieve; Peters, Gjalt-Jorn Ygram

    2017-10-01

    Background The concept of 'unbearable suffering' is central to legislation governing whether euthanasia requests may be granted, but remains insufficiently understood, especially in relation to psychiatric patients. Aims To provide insights into the suffering experiences of psychiatric patients who have made a request for euthanasia. Method Testimonials from 26 psychiatric patients who requested euthanasia were analysed using QualiCoder software. Results Five domains of suffering were identified: medical, intrapersonal, interpersonal, societal and existential. Hopelessness was confirmed to be an important contributor. The lengthy process of applying for euthanasia was a cause of suffering and added to experienced hopelessness, whereas encountering physicians who took requests seriously could offer new perspectives on treatment. Conclusions The development of measurement instruments to assess the nature and extent of suffering as experienced by psychiatric patients could help both patients and physicians to better navigate the complicated and sensitive process of evaluating requests in a humane and competent way. Some correlates of suffering (such as low income) indicate the need for a broad medical, societal and political debate on how to reduce the burden of financial and socioeconomic difficulties and inequalities in order to reduce patients' desire for euthanasia. Euthanasia should never be seen (or used) as a means of resolving societal failures. © The Royal College of Psychiatrists 2017.

  16. Kilohoku Ho`okele Wa`a : Astronomy of the Hawaiian Navigators

    Science.gov (United States)

    Slater, Stephanie; Slater, Timothy F.; Baybayan, Kalepa C.

    2016-01-01

    This poster provides an introduction to the astronomy of the Hawaiian wayfinders, Kilohoku Ho`okele Wa`a. Rooted in a legacy of navigation across the Polynesian triangle, wayfinding astronomy has been part of a suite of skills that allows navigators to deliberately hop between the small islands of the Pacific, for thousands of years. Forty years ago, in one manifestation of the Hawaiian Renaissance, our teachers demonstrated that ancient Hawaiians were capable of traversing the wide Pacific to settle and trade on islands separated by thousands of miles. Today those same mentors train a new generation of navigators, making Hawaiian voyaging a living, evolving, sustainable endeavor. This poster presents two components of astronomical knowledge that all crewmen, but particularly those in training to become navigators, learn early in their training. Na Ohana Hoku, the Hawaiian Star Families constitute the basic units of the Hawaiian sky. In contrast to the Western system of 88 constellations, Na Ohana Hoku divides the sky into four sections that each run from the northern to the southern poles. This configuration reduces cognitive load, allowing the navigator to preserve working memory for other complex tasks. In addition, these configurations of stars support the navigator in finding and generatively using hundreds of individual, and navigationally important pairs of stars. The Hawaiian Star Compass divides the celestial sphere into a directional system that uses 32 rather than 8 cardinal points. Within the tropics, the rising and setting of celestial objects are consistent within the Hawaiian Star Compass, providing for extremely reliable direction finding. Together, Na Ohana Hoku and the Hawaiian Star Compass provide the tropical navigator with astronomical assistance that is not available to, and would have been unknown to Western navigators trained at higher latitudes.

  17. Navigated Waterways of Louisiana, Geographic NAD83, LOSCO (1999) [navigated_waterways_LOSCO_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a line dataset of navigated waterways fitting the LOSCO definition: it has been traveled by vessels transporting 10,000 gallons of oil or fuel as determined...

  18. Ultrasound-Aided Pedestrian Dead Reckoning for Indoor Navigation

    NARCIS (Netherlands)

    Fischer, C.; Kavitha Muthukrishnan, K.; Hazas, M.; Gellersen, H.

    2008-01-01

    Ad hoc solutions for tracking and providing navigation support to emergency response teams is an important and safety-critical challenge. We propose a navigation system based on a combination of foot-mounted inertial sensors and ultrasound beacons. We evaluate experimentally the performance of our

  19. Determining navigability of terrain using point cloud data.

    Science.gov (United States)

    Cockrell, Stephanie; Lee, Gregory; Newman, Wyatt

    2013-06-01

    This paper presents an algorithm to identify features of the navigation surface in front of a wheeled robot. Recent advances in mobile robotics have brought about the development of smart wheelchairs to assist disabled people, allowing them to be more independent. These robots have a human occupant and operate in real environments where they must be able to detect hazards like holes, stairs, or obstacles. Furthermore, to ensure safe navigation, wheelchairs often need to locate and navigate on ramps. The algorithm is implemented on data from a Kinect and can effectively identify these features, increasing occupant safety and allowing for a smoother ride.

  20. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  1. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels.

    Directory of Open Access Journals (Sweden)

    Ajay Narendra

    Full Text Available Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.

  2. 41 CFR 105-74.650 - Grant.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Grant. 105-74.650 Section 105-74.650 Public Contracts and Property Management Federal Property Management Regulations System...-GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 105-74.650 Grant. Grant...

  3. Addressing the Influence of Space Weather on Airline Navigation

    Science.gov (United States)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  4. Correlating subcortical interhemispheric connectivity and cortical hemispheric dominance in brain tumor patients: A repetitive navigated transcranial magnetic stimulation study.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Tussis, Lorena; Maurer, Stefanie; Hauck, Theresa; Negwer, Chiara; Bauer, Jan S; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-02-01

    The present study aims to investigate the relationship between transcallosal interhemispheric connectivity (IC) and hemispheric language lateralization by using a novel approach including repetitive navigated transcranial magnetic stimulation (rTMS), hemispheric dominance ratio (HDR) calculation, and rTMS-based diffusion tensor imaging fiber tracking (DTI FT). 31 patients with left-sided perisylvian brain lesions underwent diffusion tensor imaging (DTI) and rTMS language mapping. Cortical language-positive rTMS spots were used to calculate HDRs (HDR: quotient of the left-sided divided by right-sided naming error rates for corresponding left- and right-sided cortical regions) and to create regions of interest (ROIs) for DTI FT. Then, fibers connecting the rTMS-based ROIs of both hemispheres were tracked, and the correlation of IC to HDRs was calculated via Spearman's rank correlation coefficient (rs). Fibers connecting rTMS-based ROIs of both hemispheres were detected in 12 patients (38.7%). Within the patients in which IC was detected, the mean number of subcortical IC fibers ± standard deviation (SD) was 138.0 ± 346.5 (median: 7.5; range: 1-1,217 fibers). Regarding rs for the correlation of HDRs and fiber numbers of patients that showed IC, only moderate correlation was revealed. Our approach might be beneficial and technically feasible for further investigation of the relationship between IC and language lateralization. However, only moderate correlation was revealed in the present study. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2018-03-01

    Full Text Available To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  6. Celestial Navigation on the Surface of Mars

    Science.gov (United States)

    Malay, Benjamin P.

    2001-05-01

    A simple, accurate, and autonomous method of finding position on the surface of Mars currently does not exist. The goal of this project is to develop a celestial navigation process that will fix a position on Mars with 100-meter accuracy. This method requires knowing the position of the stars and planets referenced to the Martian surface with one arcsecond accuracy. This information is contained in an ephemeris known as the Aeronautical Almanac (from Ares, the god of war) . Naval Observatory Vector Astrometry Subroutines (NOVAS) form the basis of the code used to generate the almanac. Planetary position data come the JPL DE405 Planetary Ephemeris. The theoretical accuracy of the almanac is determined mathematically and compared with the Ephemeris for Physical Observations of Mars contained in the Astronautical Almanac. A preliminary design of an autonomous celestial navigation system is presented. Recommendations of how to integrate celestial navigation into NASA=s current Mars exploration program are also discussed. This project is a useful and much-needed first step towards establishing celestial navigation as a practical way to find position on the surface of Mars.

  7. 'Outsmarting Traffic, Together': Driving as Social Navigation

    Directory of Open Access Journals (Sweden)

    Sam Hind

    2014-04-01

    Full Text Available The automotive world is evolving. Ten years ago Nigel Thrift (2004: 41 made the claim that the experience of driving was slipping into our 'technological unconscious'. Only recently the New York Times suggested that with the rise of automated driving, standalone navigation tools as we know them would cease to exist, instead being 'fully absorbed into the machine' (Fisher, 2013. But in order to bridge the gap between past and future driving worlds, another technological evolution is emerging. This short, critical piece charts the rise of what has been called 'social navigation' in the industry; the development of digital mapping platforms designed to foster automotive sociality. It makes two provisional points. Firstly, that 'ludic' conceptualisations can shed light on the ongoing reconfiguration of drivers, vehicles, roads and technological aids such as touch-screen satellite navigation platforms. And secondly, that as a result of this, there is a coming-into-being of a new kind of driving politics; a 'casual politicking' centred on an engagement with digital interfaces. We explicate both by turning our attention towards Waze; a social navigation application that encourages users to interact with various driving dynamics.

  8. Plagiarism in Grant Proposals

    Science.gov (United States)

    Markin, Karen M.

    2012-01-01

    It is not news that software exists to check undergraduate papers for plagiarism. What is less well known is that some federal grant agencies are using technology to detect plagiarism in grant proposals. That variety of research misconduct is a growing problem, according to federal experts. The National Science Foundation, in its most recent…

  9. Randomized controlled dissemination study of community-to-clinic navigation to promote CRC screening: Study design and implications.

    Science.gov (United States)

    Larkey, Linda; Szalacha, Laura; Herman, Patricia; Gonzalez, Julie; Menon, Usha

    2017-02-01

    Regular screening facilitates early diagnosis of colorectal cancer (CRC) and reduction of CRC morbidity and mortality. Screening rates for minorities and low-income populations remain suboptimal. Provider referral for CRC screening is one of the strongest predictors of adherence, but referrals are unlikely among those who have no clinic home (common among poor and minority populations). This group randomized controlled study will test the effectiveness of an evidence based tailored messaging intervention in a community-to-clinic navigation context compared to no navigation. Multicultural, underinsured individuals from community sites will be randomized (by site) to receive CRC screening education only, or education plus navigation. In Phase I, those randomized to education plus navigation will be guided to make a clinic appointment to receive a provider referral for CRC screening. Patients attending clinic appointments will continue to receive navigation until screened (Phase II) regardless of initial arm assignment. We hypothesize that those receiving education plus navigation will be more likely to attend clinic appointments (H1) and show higher rates of screening (H2) compared to those receiving education only. Phase I group assignment will be used as a control variable in analysis of screening follow-through in Phase II. Costs per screening achieved will be evaluated for each condition and the RE-AIM framework will be used to examine dissemination results. The novelty of our study design is the translational dissemination model that will allow us to assess the real-world application of an efficacious intervention previously tested in a randomized controlled trial. Copyright © 2016. Published by Elsevier Inc.

  10. The impact of navigation systems on traffic safety

    NARCIS (Netherlands)

    Rooijen, T. van; Vonk, T.

    2007-01-01

    This paper studies the impact of navigation systems on traffic safety in the Netherlands. This study consists of four analyses: a literature survey, a database analysis, a user survey and an instrumented vehicle study. The results of the four sections show that navigation systems have a positive

  11. The impact of navigation systems on traffic safety

    NARCIS (Netherlands)

    Rooijen, T. van; Vonk, T.

    2008-01-01

    This paper studies the impact of navigation systems on traffic safety in the Netherlands. This study consists of four analyses: a literature survey, a database analysis, a user survey and an instrumented vehicle study. The results of the four sections show that navigation systems have a positive

  12. 14 CFR 125.203 - Communication and navigation equipment.

    Science.gov (United States)

    2010-01-01

    ... within the degree of accuracy required for ATC; (ii) One marker beacon receiver providing visual and... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment. 125... Equipment Requirements § 125.203 Communication and navigation equipment. (a) Communication equipment—general...

  13. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  14. Comparison of three filters in asteroid-based autonomous navigation

    International Nuclear Information System (INIS)

    Cui Wen; Zhu Kai-Jian

    2014-01-01

    At present, optical autonomous navigation has become a key technology in deep space exploration programs. Recent studies focus on the problem of orbit determination using autonomous navigation, and the choice of filter is one of the main issues. To prepare for a possible exploration mission to Mars, the primary emphasis of this paper is to evaluate the capability of three filters, the extended Kalman filter (EKF), unscented Kalman filter (UKF) and weighted least-squares (WLS) algorithm, which have different initial states during the cruise phase. One initial state is assumed to have high accuracy with the support of ground tracking when autonomous navigation is operating; for the other state, errors are set to be large without this support. In addition, the method of selecting asteroids that can be used for navigation from known lists of asteroids to form a sequence is also presented in this study. The simulation results show that WLS and UKF should be the first choice for optical autonomous navigation during the cruise phase to Mars

  15. Aging specifically impairs switching to an allocentric navigational strategy.

    Science.gov (United States)

    Harris, Mathew A; Wiener, Jan M; Wolbers, Thomas

    2012-01-01

    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.

  16. Navigation of Pedicle Screws in the Thoracic Spine with a New Electromagnetic Navigation System: A Human Cadaver Study

    Directory of Open Access Journals (Sweden)

    Patrick Hahn

    2015-01-01

    Full Text Available Introduction. Posterior stabilization of the spine is a standard procedure in spinal surgery. In addition to the standard techniques, several new techniques have been developed. The objective of this cadaveric study was to examine the accuracy of a new electromagnetic navigation system for instrumentation of pedicle screws in the spine. Material and Method. Forty-eight pedicle screws were inserted in the thoracic spine of human cadavers using EMF navigation and instruments developed especially for electromagnetic navigation. The screw position was assessed postoperatively by a CT scan. Results. The screws were classified into 3 groups: grade 1 = ideal position; grade 2 = cortical penetration <2 mm; grade 3 = cortical penetration ≥2 mm. The initial evaluation of the system showed satisfied positioning for the thoracic spine; 37 of 48 screws (77.1%, 95% confidence interval [62.7%, 88%] were classified as group 1 or 2. Discussion. The screw placement was satisfactory. The initial results show that there is room for improvement with some changes needed. The ease of use and short setup times should be pointed out. Instrumentation is achieved without restricting the operator’s mobility during navigation. Conclusion. The results indicate a good placement technique for pedicle screws. Big advantages are the easy handling of the system.

  17. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  18. Evaluation of navigation interfaces in virtual environments

    Science.gov (United States)

    Mestre, Daniel R.

    2014-02-01

    When users are immersed in cave-like virtual reality systems, navigational interfaces have to be used when the size of the virtual environment becomes larger than the physical extent of the cave floor. However, using navigation interfaces, physically static users experience self-motion (visually-induced vection). As a consequence, sensorial incoherence between vision (indicating self-motion) and other proprioceptive inputs (indicating immobility) can make them feel dizzy and disoriented. We tested, in two experimental studies, different locomotion interfaces. The objective was twofold: testing spatial learning and cybersickness. In a first experiment, using first-person navigation with a flystick ®, we tested the effect of sensorial aids, a spatialized sound or guiding arrows on the ground, attracting the user toward the goal of the navigation task. Results revealed that sensorial aids tended to impact negatively spatial learning. Moreover, subjects reported significant levels of cybersickness. In a second experiment, we tested whether such negative effects could be due to poorly controlled rotational motion during simulated self-motion. Subjects used a gamepad, in which rotational and translational displacements were independently controlled by two joysticks. Furthermore, we tested first- versus third-person navigation. No significant difference was observed between these two conditions. Overall, cybersickness tended to be lower, as compared to experiment 1, but the difference was not significant. Future research should evaluate further the hypothesis of the role of passively perceived optical flow in cybersickness, but manipulating the virtual environment'sperrot structure. It also seems that video-gaming experience might be involved in the user's sensitivity to cybersickness.

  19. Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory.

    Science.gov (United States)

    Kolarik, Branden S; Baer, Trevor; Shahlaie, Kiarash; Yonelinas, Andrew P; Ekstrom, Arne D

    2018-01-01

    Increasing evidence suggests that the human hippocampus contributes to a range of different behaviors, including episodic memory, language, short-term memory, and navigation. A novel theoretical framework, the Precision and Binding Model, accounts for these phenomenon by describing a role for the hippocampus in high-resolution, complex binding. Other theories like Cognitive Map Theory, in contrast, predict a specific role for the hippocampus in allocentric navigation, while Declarative Memory Theory predicts a specific role in delay-dependent conscious memory. Navigation provides a unique venue for testing these predictions, with past results from research with humans providing inconsistent findings regarding the role of the human hippocampus in spatial navigation. Here, we tested five patients with lesions primarily restricted to the hippocampus and those extending out into the surrounding medial temporal lobe cortex on a virtual water maze task. Consistent with the Precision and Binding Model, we found partially intact allocentric memory in all patients, with impairments in the spatial precision of their searches for a hidden target. We found similar impairments at both immediate and delayed testing. Our findings are consistent with the Precision and Binding Model of hippocampal function, arguing for its role across domains in high-resolution, complex binding. Remembering goal locations in one's environment is a critical skill for survival. How this information is represented in the brain is still not fully understood, but is believed to rely in some capacity on structures in the medial temporal lobe. Contradictory findings from studies of both humans and animals have been difficult to reconcile with regard to the role of the MTL, specifically the hippocampus. By assessing impairments observed during navigation to a goal in patients with medial temporal lobe damage we can better understand the role these structures play in such behavior. Utilizing virtual reality

  20. GRIP DC-8 NAVIGATION AND HOUSEKEEPING DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains aircraft navigational data obtained during the GRIP campaign (15 Aug 2010 - 30 Sep 2010). The NASA DC-8 is outfitted with a navigational...

  1. Accuracy evaluation of initialization-free registration for intraoperative 3D-navigation

    International Nuclear Information System (INIS)

    Diakov, Georgi; Freysinger, Wolfgang

    2007-01-01

    Purpose An initialization-free approach for perioperative registration in functional endoscopic sinus surgery (FESS) is sought. The quality of surgical navigation relies on registration accuracy of preoperative images to the patient. Although landmark-based registration is fast, it is prone to human operator errors. This study evaluates the accuracy of two well-known methods for segmentation of the occipital bone from CT-images for use in surgical 3D-navigation. Method The occipital bone was segmented for registration without pre-defined correspondences, with the iterative closest point algorithm (ICP). The thresholding plus marching cubes segmentation (TMCS), and the deformable model segmentation (DMS) were compared quantitatively by overlaying the areas of the segmentations in cross-sectional slices, and visually by displaying the pointwise distances between the segmentations in a three-dimensional distance map relative to an expert manual segmentation, taken as a ''ground truth''. Results Excellent correspondence between the two methods was achieved; the results showed, however, that the TMCS is closer to the ''ground truth''. This is due to the sub-voxel accuracy of the marching cubes algorithm by definition, and the sensitivity of the DMS method to the choice of parameters. The DMS approach, as a gradient-based method, is insensitive to the thresholding initialization. For noisy images and soft tissue delineation a gradient-based method, like the deformable model, performs better. Both methods correspond within minute differences less than 4%. Conclusion These results will allow further minimization of human interaction in the planning phase for intraoperative 3D-navigation, by allowing to automatically create surface patches for registration purposes, ultimately allowing to build an initialization-free, fully automatic registration procedure for navigated Ear-, Nose-, Throat- (ENT) surgery. (orig.)

  2. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.

    Science.gov (United States)

    Guderian, Sebastian; Dzieciol, Anna M; Gadian, David G; Jentschke, Sebastian; Doeller, Christian F; Burgess, Neil; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-21

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with "moderate" hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is

  3. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    Directory of Open Access Journals (Sweden)

    Jisun Lee

    2015-07-01

    Full Text Available In this study, simulation tests for gravity gradient referenced navigation (GGRN are conducted to verify the effects of various factors such as database (DB and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN. In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available.

  4. Image-based path planning for automated virtual colonoscopy navigation

    Science.gov (United States)

    Hong, Wei

    2008-03-01

    Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.

  5. VISION-AIDED CONTEXT-AWARE FRAMEWORK FOR PERSONAL NAVIGATION SERVICES

    Directory of Open Access Journals (Sweden)

    S. Saeedi

    2012-07-01

    Full Text Available The ubiquity of mobile devices (such as smartphones and tablet-PCs has encouraged the use of location-based services (LBS that are relevant to the current location and context of a mobile user. The main challenge of LBS is to find a pervasive and accurate personal navigation system (PNS in different situations of a mobile user. In this paper, we propose a method of personal navigation for pedestrians that allows a user to freely move in outdoor environments. This system aims at detection of the context information which is useful for improving personal navigation. The context information for a PNS consists of user activity modes (e.g. walking, stationary, driving, and etc. and the mobile device orientation and placement with respect to the user. After detecting the context information, a low-cost integrated positioning algorithm has been employed to estimate pedestrian navigation parameters. The method is based on the integration of the relative user’s motion (changes of velocity and heading angle estimation based on the video image matching and absolute position information provided by GPS. A Kalman filter (KF has been used to improve the navigation solution when the user is walking and the phone is in his/her hand. The Experimental results demonstrate the capabilities of this method for outdoor personal navigation systems.

  6. Olfaction Contributes to Pelagic Navigation in a Coastal Shark.

    Science.gov (United States)

    Nosal, Andrew P; Chao, Yi; Farrara, John D; Chai, Fei; Hastings, Philip A

    2016-01-01

    How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities.

  7. 7 CFR 1948.95 - Grant monitoring.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Grant monitoring. 1948.95 Section 1948.95 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... § 1948.95 Grant monitoring. Each grant will be monitored by FmHA or its successor agency under Public Law...

  8. GRIP DC-8 NAVIGATION AND HOUSEKEEPING DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP DC-8 Navigation and Housekeeping Data contains aircraft navigational data obtained during the GRIP campaign (15 Aug 2010 - 30 Sep 2010). The major goal was...

  9. Application of a real-time three-dimensional navigation system to various oral and maxillofacial surgical procedures.

    Science.gov (United States)

    Ohba, Seigo; Yoshimura, Hitoshi; Ishimaru, Kyoko; Awara, Kousuke; Sano, Kazuo

    2015-09-01

    The aim of this study was to confirm the effectiveness of a real-time three-dimensional navigation system for use during various oral and maxillofacial surgeries. Five surgeries were performed with this real-time three-dimensional navigation system. For mandibular surgery, patients wore acrylic surgical splints when they underwent computed tomography examinations and the operation to maintain the mandibular position. The incidence of complications during and after surgery was assessed. No connection with the nasal cavity or maxillary sinus was observed at the maxilla during the operation. The inferior alveolar nerve was not injured directly, and any paresthesia around the lower lip and mental region had disappeared within several days after the surgery. In both maxillary and mandibular cases, there was no abnormal hemorrhage during or after the operation. Real-time three-dimensional computer-navigated surgery allows minimally invasive, safe procedures to be performed with precision. It results in minimal complications and early recovery.

  10. The current state of funded NIH grants in implementation science in genomic medicine: a portfolio analysis.

    Science.gov (United States)

    Roberts, Megan C; Clyne, Mindy; Kennedy, Amy E; Chambers, David A; Khoury, Muin J

    2017-10-26

    PurposeImplementation science offers methods to evaluate the translation of genomic medicine research into practice. The extent to which the National Institutes of Health (NIH) human genomics grant portfolio includes implementation science is unknown. This brief report's objective is to describe recently funded implementation science studies in genomic medicine in the NIH grant portfolio, and identify remaining gaps.MethodsWe identified investigator-initiated NIH research grants on implementation science in genomic medicine (funding initiated 2012-2016). A codebook was adapted from the literature, three authors coded grants, and descriptive statistics were calculated for each code.ResultsForty-two grants fit the inclusion criteria (~1.75% of investigator-initiated genomics grants). The majority of included grants proposed qualitative and/or quantitative methods with cross-sectional study designs, and described clinical settings and primarily white, non-Hispanic study populations. Most grants were in oncology and examined genetic testing for risk assessment. Finally, grants lacked the use of implementation science frameworks, and most examined uptake of genomic medicine and/or assessed patient-centeredness.ConclusionWe identified large gaps in implementation science studies in genomic medicine in the funded NIH portfolio over the past 5 years. To move the genomics field forward, investigator-initiated research grants should employ rigorous implementation science methods within diverse settings and populations.Genetics in Medicine advance online publication, 26 October 2017; doi:10.1038/gim.2017.180.

  11. Improved accuracy of component alignment with the implementation of image-free navigation in total knee arthroplasty.

    Science.gov (United States)

    Rosenberger, Ralf E; Hoser, Christian; Quirbach, Sebastian; Attal, Rene; Hennerbichler, Alfred; Fink, Christian

    2008-03-01

    Accuracy of implant positioning and reconstruction of the mechanical leg axis are major requirements for achieving good long-term results in total knee arthroplasty (TKA). The purpose of the present study was to determine whether image-free computer navigation technology has the potential to improve the accuracy of component alignment in TKA cohorts of experienced surgeons immediately and constantly. One hundred patients with primary arthritis of the knee underwent the unilateral total knee arthroplasty. The cohort of 50 TKAs implanted with conventional instrumentation was directly followed by the cohort of the very first 50 computer-assisted TKAs. All surgeries were performed by two senior surgeons. All patients received the Zimmer NexGen total knee prosthesis (Zimmer Inc., Warsaw, IN, USA). There was no variability regarding surgeons or surgical technique, except for the use of the navigation system (StealthStation) Treon plus Medtronic Inc., Minnesota, MI, USA). Accuracy of implant positioning was measured on postoperative long-leg standing radiographs and standard lateral X-rays with regard to the valgus angle and the coronal and sagittal component angles. In addition, preoperative deformities of the mechanical leg axis, tourniquet time, age, and gender were correlated. Statistical analyses were performed using the SPSS 15.0 (SPSS Inc., Chicago, IL, USA) software package. Independent t-tests were used, with significance set at P alignment between the two cohorts. To compute the rate of optimally implanted prostheses between the two groups we used the chi(2) test. The average postoperative radiological frontal mechanical alignment was 1.88 degrees of varus (range 6.1 degrees of valgus-10.1 degrees of varus; SD 3.68 degrees ) in the conventional cohort and 0.28 degrees of varus (range 3.7 degrees -6.0 degrees of varus; SD 1.97 degrees ) in the navigated cohort. Including all criteria for optimal implant alignment, 16 cases (32%) in the conventional cohort and 31

  12. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  13. Navigation of robotic system using cricket motes

    Science.gov (United States)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  14. 33 CFR 207.50 - Hudson River Lock at Troy, N.Y.; navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hudson River Lock at Troy, N.Y..., DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.50 Hudson River Lock at Troy, N.Y.; navigation. (a...) [Reserved] (n) Trespass on U.S. property. Trespass on U.S. property, or willful injury to the banks, masonry...

  15. CT-guided percutaneous lung biopsy: Comparison of conventional CT fluoroscopy to CT fluoroscopy with electromagnetic navigation system in 60 consecutive patients

    Energy Technology Data Exchange (ETDEWEB)

    Grand, David Justin, E-mail: dgrand@lifespan.org [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, Providence, RI 02903 (United States); Atalay, Michael A., E-mail: matalay@lifespan.org [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, Providence, RI 02903 (United States); Cronan, John J., E-mail: cronan@lifespan.org [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, Providence, RI 02903 (United States); Mayo-Smith, William W., E-mail: wmayo-smith@lifespan.org [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, Providence, RI 02903 (United States); Dupuy, Damian E., E-mail: ddupuy@lifespan.org [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, Providence, RI 02903 (United States)

    2011-08-15

    Purpose: To determine if use of an electromagnetic navigation system (EMN) decreases radiation dose and procedure time of CT fluoroscopy guided lung biopsy in lesions smaller than 2.5 cm. Materials/methods: 86 consecutive patients with small lung masses (<2.5 cm) were approached. 60 consented and were randomized to undergo biopsy with CT fluoroscopy (CTF) (34 patients) or EMN (26 patients). Technical failure required conversion to CTF in 8/26 EMN patients; 18 patients completed biopsy with EMN. Numerous biopsy parameters were compared as described below. Results: Average fluoroscopy time using CTF was 28.2 s compared to 35.0 s for EMN (p = 0.1). Average radiation dose was 117 mGy using CTF and 123 mGy for EMN (p = 0.7). Average number of needle repositions was 3.7 for CTF and 4.4 for EMN (p = 0.4). Average procedure time was 15 min for CTF and 20 min for EMN (p = 0.01). There were 7 pneumothoracesin the CTF group and 6 pneumothoraces in the EMN group (p = 0.7). One pneumothorax in the CTF group and 3 pneumothoraces in the EMN group required chest tube placement (p = 0.1). One pneumothorax patient in each group required hospital admission. Diagnostic specimens were obtained in 31/34 patients in the CTF group and 22/26 patients in the EMN group (p = 0.4). Conclusions: EMN was not statistically different than CTF for fluoroscopy time, radiation dose, number of needle repositions, incidence of pneumothorax, need for chest tube, or diagnostic yield. Procedure time was increased with EMN.

  16. 42 CFR 52.6 - Grant awards.

    Science.gov (United States)

    2010-10-01

    ... grant to those applicants whose approved projects will in the Secretary's judgment best promote the..., the grant will initially be for one year and subsequent continuation awards will also be for one year... application nor the award of any grant commits or obligates the United States in any way to make any...

  17. Prior publication productivity, grant percentile ranking, and topic-normalized citation impact of NHLBI cardiovascular R01 grants.

    Science.gov (United States)

    Kaltman, Jonathan R; Evans, Frank J; Danthi, Narasimhan S; Wu, Colin O; DiMichele, Donna M; Lauer, Michael S

    2014-09-12

    We previously demonstrated absence of association between peer-review-derived percentile ranking and raw citation impact in a large cohort of National Heart, Lung, and Blood Institute cardiovascular R01 grants, but we did not consider pregrant investigator publication productivity. We also did not normalize citation counts for scientific field, type of article, and year of publication. To determine whether measures of investigator prior productivity predict a grant's subsequent scientific impact as measured by normalized citation metrics. We identified 1492 investigator-initiated de novo National Heart, Lung, and Blood Institute R01 grant applications funded between 2001 and 2008 and linked the publications from these grants to their InCites (Thompson Reuters) citation record. InCites provides a normalized citation count for each publication stratifying by year of publication, type of publication, and field of science. The coprimary end points for this analysis were the normalized citation impact per million dollars allocated and the number of publications per grant that has normalized citation rate in the top decile per million dollars allocated (top 10% articles). Prior productivity measures included the number of National Heart, Lung, and Blood Institute-supported publications each principal investigator published in the 5 years before grant review and the corresponding prior normalized citation impact score. After accounting for potential confounders, there was no association between peer-review percentile ranking and bibliometric end points (all adjusted P>0.5). However, prior productivity was predictive (Pcitation counts, we confirmed a lack of association between peer-review grant percentile ranking and grant citation impact. However, prior investigator publication productivity was predictive of grant-specific citation impact. © 2014 American Heart Association, Inc.

  18. Spatial navigation by congenitally blind individuals.

    Science.gov (United States)

    Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert

    2016-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  19. Navigating across Cultures: Narrative Constructions of Lived Experience

    Science.gov (United States)

    Pufall-Jones, Elizabeth; Mistry, Jayanthi

    2010-01-01

    In this study, we investigated how individuals from diverse backgrounds learn to navigate the many worlds in which they live and explore how variations in life experiences are associated with aspects of navigating across cultures. We conducted the study using a phenomenological approach based on retrospective personal narratives from 19 young…

  20. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  1. GPS Navigation Above 76,000 km for the MMS Mission

    Science.gov (United States)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  2. Biologically inspired autonomous agent navigation using an integrated polarization analyzing CMOS image sensor

    NARCIS (Netherlands)

    Sarkaer, M.; San Segundo Bello, D.; Van Hoof, C.; Theuwissen, A.

    2010-01-01

    The navigational strategies of insects using skylight polarization are interesting for applications in autonomous agent navigation because they rely on very little information for navigation. A polarization navigation sensor using the Stokes parameters to determine the orientation is presented. The

  3. Granting silence to avoid wireless collisions

    KAUST Repository

    Choi, Jung Il

    2010-10-01

    We describe grant-to-send, a novel collision avoidance algorithm for wireless mesh networks. Rather than announce packets it intends to send, a node using grant-to-send announces packets it expects to hear others send. We present evidence that inverting collision avoidance in this way greatly improves wireless mesh performance. Evaluating four protocols from 802.11 meshes and 802.15.4 sensor networks, we find that grant-to-send matches or outperforms CSMA and RTS/CTS in all cases. For example, in a 4-hop UDP flow, grantto- send can achieve 96% of the theoretical maximum throughput while maintaining a 99.9% packet delivery ratio. Grant-tosend is also general enough to replace protocol-specific collision avoidance mechanisms common to sensor network protocols. Grant-to-send is simple. For example, incorporating it into 802.11 requires only 11 lines of driver code and no hardware changes. Furthermore, as it reuses existing 802.11 mechanisms, grant-to-send inter-operates with current networks and can be incrementally deployed. © 2010 IEEE.

  4. Granting silence to avoid wireless collisions

    KAUST Repository

    Choi, Jung Il; Jain, Mayank; Kazandjieva, Maria A.; Levis, Philip

    2010-01-01

    We describe grant-to-send, a novel collision avoidance algorithm for wireless mesh networks. Rather than announce packets it intends to send, a node using grant-to-send announces packets it expects to hear others send. We present evidence that inverting collision avoidance in this way greatly improves wireless mesh performance. Evaluating four protocols from 802.11 meshes and 802.15.4 sensor networks, we find that grant-to-send matches or outperforms CSMA and RTS/CTS in all cases. For example, in a 4-hop UDP flow, grantto- send can achieve 96% of the theoretical maximum throughput while maintaining a 99.9% packet delivery ratio. Grant-tosend is also general enough to replace protocol-specific collision avoidance mechanisms common to sensor network protocols. Grant-to-send is simple. For example, incorporating it into 802.11 requires only 11 lines of driver code and no hardware changes. Furthermore, as it reuses existing 802.11 mechanisms, grant-to-send inter-operates with current networks and can be incrementally deployed. © 2010 IEEE.

  5. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  6. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  7. Advanced Navigation Aids System based on Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jaeyong OH

    2016-12-01

    Full Text Available Many maritime accidents have been caused by human-error including such things as inadequate watch keeping and/or mistakes in ship handling. Also, new navigational equipment has been developed using Information Technology (IT technology to provide various kinds of information for safe navigation. Despite these efforts, the reduction of maritime accidents has not occurred to the degree expected because, navigational equipment provides too much information, and this information is not well organized, such that users feel it to be complicated rather than helpful. In this point of view, the method of representation of navigational information is more important than the quantity of that information and research is required on the representation of information to make that information more easily understood and to allow decisions to be made correctly and promptly. In this paper, we adopt Augmented Reality (AR technologies for the representation of information. AR is a 3D computer graphics technology that blends virtual reality and the real world. Recently, this technology has been widely applied in our daily lives because it can provide information more effectively to users. Therefore, we propose a new concept, a navigational system based on AR technology; we review experimental results from a ship-handling simulator and from an open sea test to verify the efficiency of the proposed system.

  8. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    Science.gov (United States)

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  9. 38 CFR 61.41 - Special needs grants application.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Special needs grants... (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.41 Special needs grants application. (a) To apply for a special needs grant, an applicant must obtain from VA a special needs grant application...

  10. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Hauck, Theresa; Maurer, Stefanie; Negwer, Chiara; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2015-04-11

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is used for resection planning in patients suffering from brain lesions within regions known to be involved in language function. Yet we also need data that show whether patients benefit clinically from preoperative rTMS for language mapping. We enrolled 25 patients with language eloquently located brain lesions undergoing preoperative rTMS language mapping (GROUP 1, 2011-2013), with the mapping results not being available for the surgeon, and we matched these patients with 25 subjects who also underwent preoperative rTMS (GROUP 2, 2013-2014), but the mapping results were taken into account during tumor resection. Additionally, cortical language maps were generated by analyzing preoperative rTMS and intraoperative direct cortical stimulation (DCS) data. Mean anterior-posterior (ap) craniotomy extents and overall craniotomy sizes were significantly smaller for the patients in GROUP 2 (Ap: p = 0.0117; overall size: p = 0.0373), and postoperative language deficits were found significantly more frequently for the patients in GROUP 1 (p = 0.0153), although the preoperative language status did not differ between groups (p = 0.7576). Additionally, there was a trend towards fewer unexpected tumor residuals, shorter surgery duration, less peri- or postoperative complications, shorter inpatient stay, and higher postoperative Karnofsky performance status scale (KPS) for the patients in GROUP 2. The present study provides a first hint that the clinical course of patients suffering from brain tumors might be improved by preoperative rTMS language mapping. However, a significant difference between both groups was only found for craniotomy extents and postoperative deficits, but not for other clinical parameters, which only showed a trend toward better results in GROUP 2. Therefore, multicenter trials with higher sample sizes are needed to further investigate the distinct impact of r

  11. 49 CFR 110.110 - After-grant requirements.

    Science.gov (United States)

    2010-10-01

    ... PUBLIC SECTOR TRAINING AND PLANNING GRANTS § 110.110 After-grant requirements. The Associate... must submit all financial, performance, and other reports required as a condition of the grant, within...

  12. Navigated Pattern Laser System versus Single-Spot Laser System for Postoperative 360-Degree Laser Retinopexy.

    Science.gov (United States)

    Kulikov, Alexei N; Maltsev, Dmitrii S; Boiko, Ernest V

    2016-01-01

    Purpose . To compare three 360°-laser retinopexy (LRP) approaches (using navigated pattern laser system, single-spot slit-lamp (SL) laser delivery, and single-spot indirect ophthalmoscope (IO) laser delivery) in regard to procedure duration, procedural pain score, technical difficulties, and the ability to achieve surgical goals. Material and Methods . Eighty-six rhegmatogenous retinal detachment patients (86 eyes) were included in this prospective randomized study. The mean procedural time, procedural pain score (using 4-point Verbal Rating Scale), number of laser burns, and achievement of the surgical goals were compared between three groups (pattern LRP (Navilas® laser system), 36 patients; SL-LRP, 28 patients; and IO-LRP, 22 patients). Results . In the pattern LRP group, the amount of time needed for LRP and pain level were statistically significantly lower, whereas the number of applied laser burns was higher compared to those in the SL-LRP group and in the IO-LRP group. In the pattern LRP, SL-LRP, and IO-LRP groups, surgical goals were fully achieved in 28 (77.8%), 17 (60.7%), and 13 patients (59.1%), respectively ( p > 0.05). Conclusion . The navigated pattern approach allows improving the treatment time and pain in postoperative 360° LRP. Moreover, 360° pattern LRP is at least as effective in achieving the surgical goal as the conventional (slit-lamp or indirect ophthalmoscope) approaches with a single-spot laser.

  13. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  14. Interference and deception detection technology of satellite navigation based on deep learning

    Science.gov (United States)

    Chen, Weiyi; Deng, Pingke; Qu, Yi; Zhang, Xiaoguang; Li, Yaping

    2017-10-01

    Satellite navigation system plays an important role in people's daily life and war. The strategic position of satellite navigation system is prominent, so it is very important to ensure that the satellite navigation system is not disturbed or destroyed. It is a critical means to detect the jamming signal to avoid the accident in a navigation system. At present, the detection technology of jamming signal in satellite navigation system is not intelligent , mainly relying on artificial decision and experience. For this issue, the paper proposes a method based on deep learning to monitor the interference source in a satellite navigation. By training the interference signal data, and extracting the features of the interference signal, the detection sys tem model is constructed. The simulation results show that, the detection accuracy of our detection system can reach nearly 70%. The method in our paper provides a new idea for the research on intelligent detection of interference and deception signal in a satellite navigation system.

  15. Development of a new automotive navigation system; Shingata navigation system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sone, M; Nakano, H; Nakayama, O; Tanemura, E; Yoshitsugu, N; Watanabe, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1996-01-31

    An automotive navigation system was outlined. Features of this system are described below: map display called `Bird View` extending up to the horizon was commercialized; accuracy of determining the vehicle`s present position was realized using new algorithm; and automatic route selection was adopted. Human machine interface of this system also was completely reviewed. `Bird View` was realized by reading plane map data out from CD-ROM and converting them onto the coordinate on the virtual screen in front of the view point. Automatic selection which depends mostly on self-contained navigation adopts the certain way in comparison of the computation position in GPS. To assume vehicle advancing direction, employed were optical fiber gyroscope, geomagnetic sensor, and Karman filter making a good use of advantages of GPS, for the improvement of accuracy. For the automatic distance correction, a function of correcting pulse-distance conversion coefficient was employed, and the free maintenance was realized. 5 figs.

  16. Electrophysiological correlates of mental navigation in blind and sighted people.

    Science.gov (United States)

    Kober, Silvia Erika; Wood, Guilherme; Kampl, Christiane; Neuper, Christa; Ischebeck, Anja

    2014-10-15

    The aim of the present study was to investigate functional reorganization of the occipital cortex for a mental navigation task in blind people. Eight completely blind adults and eight sighted matched controls performed a mental navigation task, in which they mentally imagined to walk along familiar routes of their hometown during a multi-channel EEG measurement. A motor imagery task was used as control condition. Furthermore, electrophysiological activation patterns during a resting measurement with open and closed eyes were compared between blind and sighted participants. During the resting measurement with open eyes, no differences in EEG power were observed between groups, whereas sighted participants showed higher alpha (8-12Hz) activity at occipital sites compared to blind participants during an eyes-closed resting condition. During the mental navigation task, blind participants showed a stronger event-related desynchronization in the alpha band over the visual cortex compared to sighted controls indicating a stronger activation in this brain region in the blind. Furthermore, groups showed differences in functional brain connectivity between fronto-central and parietal-occipital brain networks during mental navigation indicating stronger visuo-spatial processing in sighted than in blind people during mental navigation. Differences in electrophysiological parameters between groups were specific for mental navigation since no group differences were observed during motor imagery. These results indicate that in the absence of vision the visual cortex takes over other functions such as spatial navigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Advancements in Optical Navigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The Goddard Image Analysis and Navigation Tool (GIANT) is a tool that was developed for the Origins, Spectral Interpretation, Resource Identification,...

  18. Using a sand wave model for optimal monitoring of navigation depth

    NARCIS (Netherlands)

    Knaapen, Michiel; Hulscher, Suzanne J.M.H.; Tiessen, Meinard C.H.; van den Berg, J.; Parker, G.; García, M.H.

    2005-01-01

    In the Euro Channel to Rotterdam Harbor, sand waves reduce the navigable depth to an unacceptable level. To avoid the risk of grounding, the navigation depth is monitored and sand waves that reduce the navigation depth unacceptably are dredged. After the dredging, the sand waves slowly regain their

  19. Screen Miniatures as Icons for Backward Navigation in Content-Based Software.

    Science.gov (United States)

    Boling, Elizabeth; Ma, Guoping; Tao, Chia-Wen; Askun, Cengiz; Green, Tim; Frick, Theodore; Schaumburg, Heike

    Users of content-based software programs, including hypertexts and instructional multimedia, rely on the navigation functions provided by the designers of those program. Typical navigation schemes use abstract symbols (arrows) to label basic navigational functions like moving forward or backward through screen displays. In a previous study, the…

  20. Risk factors for spatial memory impairment in patients with temporal lobe epilepsy

    Czech Academy of Sciences Publication Activity Database

    Amlerová, J.; Laczó, J.; Vlček, Kamil; Javůrková, A.; Andel, R.; Marusič, P.

    2013-01-01

    Roč. 26, č. 1 (2013), s. 57-60 ISSN 1525-5050 R&D Projects: GA ČR(CZ) GA309/09/1053 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : spatial navigation * temporal lobe epilepsy * Morris water maze Subject RIV: FH - Neurology Impact factor: 2.061, year: 2013

  1. Navigation Operations with Prototype Components of an Automated Real-Time Spacecraft Navigation System

    Science.gov (United States)

    Cangahuala, L.; Drain, T. R.

    1999-01-01

    At present, ground navigation support for interplanetary spacecraft requires human intervention for data pre-processing, filtering, and post-processing activities; these actions must be repeated each time a new batch of data is collected by the ground data system.

  2. Navigation by environmental geometry: the use of zebrafish as a model.

    Science.gov (United States)

    Lee, Sang Ah; Vallortigara, Giorgio; Flore, Michele; Spelke, Elizabeth S; Sovrano, Valeria A

    2013-10-01

    Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations.

  3. GEF small grants programme - overview

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This paper describes the GEF small grants program which seeks to enhance the role of households and communities in conserving global biodiversity, mitigating global climate change, and protecting international waters. Grants up to $50k have been granted for projects in 33 countries, with plans for 12 other countries. The author describes the framework that the program works under, and the methodology followed in developing and planning projects. The approach to climate change concerns is to emphasize the development of non-carbon energy development activities to provide energy sources and economic development.

  4. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  5. Treatment response assessment of radiofrequency ablation for hepatocellular carcinoma: Usefulness of virtual CT sonography with magnetic navigation

    International Nuclear Information System (INIS)

    Minami, Yasunori; Kitai, Satoshi; Kudo, Masatoshi

    2012-01-01

    Purpose: Virtual CT sonography using magnetic navigation provides cross sectional images of CT volume data corresponding to the angle of the transducer in the magnetic field in real-time. The purpose of this study was to clarify the value of this virtual CT sonography for treatment response of radiofrequency ablation for hepatocellular carcinoma. Patients and methods: Sixty-one patients with 88 HCCs measuring 0.5–1.3 cm (mean ± SD, 1.0 ± 0.3 cm) were treated by radiofrequency ablation. For early treatment response, dynamic CT was performed 1–5 days (median, 2 days). We compared early treatment response between axial CT images and multi-angle CT images using virtual CT sonography. Results: Residual tumor stains on axial CT images and multi-angle CT images were detected in 11.4% (10/88) and 13.6% (12/88) after the first session of RFA, respectively (P = 0.65). Two patients were diagnosed as showing hyperemia enhancement after the initial radiofrequency ablation on axial CT images and showed local tumor progression shortly because of unnoticed residual tumors. Only virtual CT sonography with magnetic navigation retrospectively showed the residual tumor as circular enhancement. In safety margin analysis, 10 patients were excluded because of residual tumors. The safety margin more than 5 mm by virtual CT sonographic images and transverse CT images were determined in 71.8% (56/78) and 82.1% (64/78), respectively (P = 0.13). The safety margin should be overestimated on axial CT images in 8 nodules. Conclusion: Virtual CT sonography with magnetic navigation was useful in evaluating the treatment response of radiofrequency ablation therapy for hepatocellular carcinoma.

  6. Multitarget Approaches to Robust Navigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance, stability, and statistical consistency of a vehicle's navigation algorithm are vitally important to the success and safety of its mission....

  7. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  8. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ , the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤  θ  ≤ 40°, 1 okta ≤  ρ  ≤ 6 oktas for summer solstice, and at 20° ≤  θ  ≤ 25°, 0 okta ≤  ρ  ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite

  9. Navigational efficiency in a biased and correlated random walk model of individual animal movement.

    Science.gov (United States)

    Bailey, Joseph D; Wallis, Jamie; Codling, Edward A

    2018-01-01

    Understanding how an individual animal is able to navigate through its environment is a key question in movement ecology that can give insight into observed movement patterns and the mechanisms behind them. Efficiency of navigation is important for behavioral processes at a range of different spatio-temporal scales, including foraging and migration. Random walk models provide a standard framework for modeling individual animal movement and navigation. Here we consider a vector-weighted biased and correlated random walk (BCRW) model for directed movement (taxis), where external navigation cues are balanced with forward persistence. We derive a mathematical approximation of the expected navigational efficiency for any BCRW of this form and confirm the model predictions using simulations. We demonstrate how the navigational efficiency is related to the weighting given to forward persistence and external navigation cues, and highlight the counter-intuitive result that for low (but realistic) levels of error on forward persistence, a higher navigational efficiency is achieved by giving more weighting to this indirect navigation cue rather than direct navigational cues. We discuss and interpret the relevance of these results for understanding animal movement and navigation strategies. © 2017 by the Ecological Society of America.

  10. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    Science.gov (United States)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  11. 75 FR 51473 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2010-08-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2010-0656] Houston/Galveston... Houston/Galveston Navigation Safety Advisory Committee (HOGANSAC) and its working groups will meet in Houston, Texas, to discuss waterway improvements, aids to navigation, area projects impacting safety on...

  12. 75 FR 23793 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2010-0032] Houston/Galveston... Houston/Galveston Navigation Safety Advisory Committee (``HOGANSAC'' or ``the Committee'') and its working groups will meet in Houston, Texas to discuss waterway improvements, aids to navigation, area projects...

  13. USEPA Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a provisional dataset that contains point locations for all grants given out by the USEPA going back to the 1960s through today. There are many limitations...

  14. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  15. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  16. 33 CFR 165.1704 - Prince William Sound, Alaska-regulated navigation area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Prince William Sound, Alaska... District § 165.1704 Prince William Sound, Alaska-regulated navigation area. (a) The following is a... Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between 146°30′ W...

  17. Navigating ECA-Zones

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Hendriksen, Christian

    This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight...... much time their operated vessels navigate the ECA in the future....

  18. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach.

    Science.gov (United States)

    Sollmann, Nico; Wildschuetz, Noémie; Kelm, Anna; Conway, Neal; Moser, Tobias; Bulubas, Lucia; Kirschke, Jan S; Meyer, Bernhard; Krieg, Sandro M

    2018-03-01

    OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging fiber tracking (DTI FT) based on nTMS data are increasingly used for preoperative planning and resection guidance in patients suffering from motor-eloquent brain tumors. The present study explores whether nTMS-based DTI FT can also be used for individual preoperative risk assessment regarding surgery-related motor impairment. METHODS Data derived from preoperative nTMS motor mapping and subsequent nTMS-based tractography in 86 patients were analyzed. All patients suffered from high-grade glioma (HGG), low-grade glioma (LGG), or intracranial metastasis (MET). In this context, nTMS-based DTI FT of the corticospinal tract (CST) was performed at a range of fractional anisotropy (FA) levels based on an individualized FA threshold ([FAT]; tracking with 50%, 75%, and 100% FAT), which was defined as the highest FA value allowing for visualization of fibers (100% FAT). Minimum lesion-to-CST distances were measured, and fiber numbers of the reconstructed CST were assessed. These data were then correlated with the preoperative, postoperative, and follow-up status of motor function and the resting motor threshold (rMT). RESULTS At certain FA levels, a statistically significant difference in lesion-to-CST distances was observed between patients with HGG who had no impairment and those who developed surgery-related transient or permanent motor deficits (75% FAT: p = 0.0149; 100% FAT: p = 0.0233). In this context, no patient with a lesion-to-CST distance ≥ 12 mm suffered from any new surgery-related permanent paresis (50% FAT and 75% FAT). Furthermore, comparatively strong negative correlations were observed between the rMT and lesion-to-CST distances of patients with surgery-related transient paresis (Spearman correlation coefficient [r s ]; 50% FAT: r s = -0.8660; 75% FAT: r s = -0.8660) or surgery-related permanent paresis (50% FAT: r s = -0.7656; 75% FAT: r s = -0.6763). CONCLUSIONS

  19. Towards automated visual flexible endoscope navigation.

    Science.gov (United States)

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  20. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  1. Bilateral human-robot control for semi-autonomous UAV navigation

    NARCIS (Netherlands)

    Wopereis, Han Willem; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2015-01-01

    This paper proposes a semi-autonomous bilateral control architecture for unmanned aerial vehicles. During autonomous navigation, a human operator is allowed to assist the autonomous controller of the vehicle by actively changing its navigation parameters to assist it in critical situations, such as

  2. Information content in reflected global navigation satellite system signals

    DEFF Research Database (Denmark)

    Høeg, Per; Carlstrom, Anders

    2011-01-01

    The direct signals from satellites in global satellite navigation satellites systems (GNSS) as, GPS, GLONASS and GALILEO, constitute the primary source for positioning, navigation and timing from space. But also the reflected GNSS signals contain an important information content of signal travel...

  3. Pilot perception and confidence of location during a simulated helicopter navigation task.

    Science.gov (United States)

    Yang, Ji Hyun; Cowden, Bradley T; Kennedy, Quinn; Schramm, Harrison; Sullivan, Joseph

    2013-09-01

    This paper aims to provide insights into human perception, navigation performance, and confidence in helicopter overland navigation. Helicopter overland navigation is a challenging mission area because it is a complex cognitive task, and failing to recognize when the aircraft is off-course can lead to operational failures and mishaps. A human-in-the-loop experiment to investigate pilot perception during simulated overland navigation by analyzing actual navigation trajectory, pilots' perceived location, and corresponding confidence levels was designed. There were 15 military officers with prior overland navigation experience who completed 4 simulated low-level navigation routes, 2 of which entailed auto-navigation. This route was paused roughly every 30 s for the subject to mark their perceived location on the map and their confidence level using a customized program. Analysis shows that there is no correlation between perceived and actual location of the aircraft, nor between confidence level and actual location. There is, however, some evidence that there is a correlation (rho = -0.60 to approximately 0.65) between perceived location and intended route of flight, suggesting that there is a bias toward believing one is on the intended flight route. If aviation personnel can proactively identify the circumstances in which usual misperceptions occur in navigation, they may reduce mission failure and accident rate. Fleet squadrons and instructional commands can benefit from this study to improve operations that require low-level flight while also improving crew resource management.

  4. Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations

    Science.gov (United States)

    Getzandanner, Kenneth M.

    2011-01-01

    A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.

  5. Next-Generation Navigational Infrastructure and the ATLAS Event Store

    CERN Document Server

    van Gemmeren, P; The ATLAS collaboration; Nowak, M

    2014-01-01

    The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigation...

  6. Next-Generation Navigational Infrastructure and the ATLAS Event Store

    CERN Document Server

    van Gemmeren, P; The ATLAS collaboration; Nowak, M

    2013-01-01

    The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigation...

  7. Next-generation navigational infrastructure and the ATLAS event store

    International Nuclear Information System (INIS)

    Gemmeren, P van; Malon, D; Nowak, M

    2014-01-01

    The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigational infrastructure.

  8. IMPLEMENTATION OF INTERTIAL NAVIGATION SYSTEM MODEL DURING AIRCRAFT TESTING

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The flight subset control is required during the aviation equipment test flights. In order to achieve this objective the complex consisting of strap down inertial navigation system (SINS and user equipment of satellite navigation systems (SNS can be used. Such combination needs to be used for error correction in positioning which is accumulated in SINS with time. This article shows the research results of the inertial navigation system (INS model. The results of the position- ing error calculation for various INS classes are given. Each of the examined INS has a different accumulated error for the same time lag. The methods of combining information of INS and SRNS are covered. The results obtained can be applied for upgrading the aircraft flight and navigation complexes. In particular, they can allow to continuously determine speed, coordinates, angular situation and repositioning rate of change of axes of the instrument frame.

  9. Mars Atmospheric Entry Integrated Navigation with Partial Intermittent Measurements

    Directory of Open Access Journals (Sweden)

    Tai-shan Lou

    2017-01-01

    Full Text Available Signal degradation suffered by the vehicle is a combination brownout and blackout during Mars atmospheric entry. The communications brownout means that signal fades and blackout means that the signal is lost completely. The communications brownout and blackout periods are analyzed and predicted with an altitude and velocity profiles. In the brownout period, the range measurements between the vehicle and the orbiters are modeled as intermittent measurements with the radio signal arrival probabilities, which are distributed as a Rayleigh distribution of the electron number density around the entry vehicle. A new integrated navigation strategy during the Mars atmospheric entry phase is proposed to consider the probabilities of the radio measurements in the communications brownout and blackout periods under the IMU/beacon scenario based on the information filter with intermittent measurements. Numerical navigation simulations are designed to show the performance of the proposed navigation strategy under the integrated navigation scenario.

  10. Multi-focal Vision and Gaze Control Improve Navigation Performance

    Directory of Open Access Journals (Sweden)

    Kolja Kuehnlenz

    2008-11-01

    Full Text Available Multi-focal vision systems comprise cameras with various fields of view and measurement accuracies. This article presents a multi-focal approach to localization and mapping of mobile robots with active vision. An implementation of the novel concept is done considering a humanoid robot navigation scenario where the robot is visually guided through a structured environment with several landmarks. Various embodiments of multi-focal vision systems are investigated and the impact on navigation performance is evaluated in comparison to a conventional mono-focal stereo set-up. The comparative studies clearly show the benefits of multi-focal vision for mobile robot navigation: flexibility to assign the different available sensors optimally in each situation, enhancement of the visible field, higher localization accuracy, and, thus, better task performance, i.e. path following behavior of the mobile robot. It is shown that multi-focal vision may strongly improve navigation performance.

  11. Lucy: Navigating a Jupiter Trojan Tour

    Science.gov (United States)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

  12. ATLAS PhD Grants 2015

    CERN Multimedia

    Marcelloni De Oliveira, Claudia

    2015-01-01

    ATLAS PHd Grants - We are excited to announce the creation of a dedicated grant scheme (thanks to a donation from Fabiola Gianotti and Peter Jenni following their award from the Fundamental Physics Prize foundation) to encourage young and high-caliber doctoral students in particle physics research (including computing for physics) and permit them to obtain world class exposure, supervision and training within the ATLAS collaboration. This special PhD Grant is aimed at graduate students preparing a doctoral thesis in particle physics (incl. computing for physics) to spend one year at CERN followed by one year support also at the home Institute.

  13. Mapping of arithmetic processing by navigated repetitive transcranial magnetic stimulation in patients with parietal brain tumors and correlation with postoperative outcome.

    Science.gov (United States)

    Ille, Sebastian; Drummer, Katharina; Giglhuber, Katrin; Conway, Neal; Maurer, Stefanie; Meyer, Bernhard; Krieg, Sandro M

    2018-03-26

    Preserving functionality is of significant importance during neurosurgical resection of brain tumors. Specialized centers also map further brain functions apart from motor and language functions, such as arithmetic processing (AP). The mapping of AP by navigated repetitive transcranial magnetic stimulation (nrTMS) in healthy volunteers has been demonstrated. The present study aimed to correlate the results of mapping AP with functional patient outcomes. We included 26 patients with parietal brain tumors. Due to preoperative impairment of AP, mapping was not possible in 8 patients (31%). We stimulated 52 cortical sites by nrTMS while patients performed a calculation task. Pre- and postoperatively, patients underwent a standardized number-processing and calculation test (NPCT). Tumor resection was blinded to nrTMS results, and the change in NPCT performance was correlated to resected AP-positive spots as identified by nrTMS. The resection of AP-positive sites correlated with a worsening of the postoperative NPCT result in 12 cases. In 3 cases, no AP-positive sites were resected and the postoperative NPCT result was similar to or better than preoperatively. Also, in 3 cases, the postoperative NPCT result was better than preoperatively, although AP-positive sites were resected. Despite only presenting a low number of cases, nrTMS might be a useful tool for preoperative mapping of AP. However, the reliability of the present results has to be evaluated in a larger series and by intraoperative mapping data. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Iconic memory-based omnidirectional route panorama navigation.

    Science.gov (United States)

    Yagi, Yasushi; Imai, Kousuke; Tsuji, Kentaro; Yachida, Masahiko

    2005-01-01

    A route navigation method for a mobile robot with an omnidirectional image sensor is described. The route is memorized from a series of consecutive omnidirectional images of the horizon when the robot moves to its goal. While the robot is navigating to the goal point, input is matched against the memorized spatio-temporal route pattern by using dual active contour models and the exact robot position and orientation is estimated from the converged shape of the active contour models.

  15. Eye tracking, strategies, and sex differences in virtual navigation.

    Science.gov (United States)

    Andersen, Nicolas E; Dahmani, Louisa; Konishi, Kyoko; Bohbot, Véronique D

    2012-01-01

    Reports of sex differences in wayfinding have typically used paradigms sensitive to the female advantage (navigation by landmarks) or sensitive to the male advantage (navigation by cardinal directions, Euclidian coordinates, environmental geometry, and absolute distances). The current virtual navigation paradigm allowed both men and women an equal advantage. We studied sex differences by systematically varying the number of landmarks. Eye tracking was used to quantify sex differences in landmark utilisation as participants solved an eight-arm radial maze task within different virtual environments. To solve the task, participants were required to remember the locations of target objects within environments containing 0, 2, 4, 6, or 8 landmarks. We found that, as the number of landmarks available in the environment increases, the proportion of time men and women spend looking at landmarks and the number of landmarks they use to find their way increases. Eye tracking confirmed that women rely more on landmarks to navigate, although landmark fixations were also associated with an increase in task completion time. Sex differences in navigational behaviour occurred only in environments devoid of landmarks and disappeared in environments containing multiple landmarks. Moreover, women showed sustained landmark-oriented gaze, while men's decreased over time. Finally, we found that men and women use spatial and response strategies to the same extent. Together, these results shed new light on the discrepancy in landmark utilisation between men and women and help explain the differences in navigational behaviour previously reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. 7 CFR 3021.650 - Grant.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 3021.650 Grant. Grant means an award of financial assistance that, consistent with 31 U.S.C. 6304, is used to...

  17. Representing User Navigation in XML Retrieval with Structural Summaries

    DEFF Research Database (Denmark)

    Ali, M. S.; Consens, Mariano P.; Larsen, Birger

    This poster presents a novel way to represent user navigation in XML retrieval using collection statistics from XML summaries. Currently, developing user navigation models in XML retrieval is costly and the models are specific to collected user assessments. We address this problem by proposing...

  18. Towards support for collaborative navigation in complex indoor environments

    NARCIS (Netherlands)

    Bouwer, A.; Nack, F.; Evers, V.

    2011-01-01

    In this paper we present first results of an observation study on indoor navigation behaviour of visitors at a large public fair. As an outcome we present a number of requirements for mobile indoor navigation systems that support collaborative destination and path finding tasks.

  19. Remarks on the observability of single beacon underwater navigation

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Ross, Andrew

    This paper contributes a simple and intuitive result in the analysis of underwater navigation using a single ranging beacon. This analysis should help with the design of small and lightweight underwater vehicles by reducing the amount of instrumentation required for accurate navigation. The concept...

  20. Large-Scale Context-Aware Volume Navigation using Dynamic Insets

    KAUST Repository

    Al-Awami, Ali

    2012-07-01

    Latest developments in electron microscopy (EM) technology produce high resolution images that enable neuro-scientists to identify and put together the complex neural connections in a nervous system. However, because of the massive size and underlying complexity of this kind of data, processing, navigation and analysis suffer drastically in terms of time and effort. In this work, we propose the use of state-of- the-art navigation techniques, such as dynamic insets, built on a peta-scale volume visualization framework to provide focus and context-awareness to help neuro-scientists in their mission to analyze, reconstruct, navigate and explore EM neuroscience data.

  1. Effects of Visual, Auditory, and Tactile Navigation Cues on Navigation Performance, Situation Awareness, and Mental Workload

    National Research Council Canada - National Science Library

    Davis, Bradley M

    2007-01-01

    .... Results from both experiments indicate that augmented visual displays reduced time to complete navigation, maintained situation awareness, and drastically reduced mental workload in comparison...

  2. Radio/FADS/IMU integrated navigation for Mars entry

    Science.gov (United States)

    Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu

    2018-03-01

    Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.

  3. 7 CFR 3550.102 - Grant and loan purposes.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, DEPARTMENT OF... Waste Disposal Grants § 3550.102 Grant and loan purposes. (a) Grant funds. Grant funds may be used only... repair or remodel dwellings to make them accessible and useable for household members with disabilities...

  4. 25 CFR 23.21 - Noncompetitive tribal government grants.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Noncompetitive tribal government grants. 23.21 Section 23... ACT Grants to Indian Tribes for Title II Indian Child and Family Service Programs § 23.21 Noncompetitive tribal government grants. (a) Grant application information and technical assistance. Information...

  5. Monitoring Completed Navigation Projects Program

    National Research Council Canada - National Science Library

    Bottin, Jr., Robert R

    2001-01-01

    ... (MCNP) Program. The program was formerly known as the Monitoring Completed Coastal Projects Program, but was modified in the late 1990s to include all navigation projects, inland as well as coastal...

  6. Application of Rapid Prototyping Technique and Intraoperative Navigation System for the Repair and Reconstruction of Orbital Wall Fractures

    Science.gov (United States)

    Cha, Jong Hyun; Lee, Yong Hae; Ruy, Wan Chul; Roe, Young; Moon, Myung Ho

    2016-01-01

    Background Restoring the orbital cavity in large blow out fractures is a challenge for surgeons due to the anatomical complexity. This study evaluated the clinical outcomes and orbital volume after orbital wall fracture repair using a rapid prototyping (RP) technique and intraoperative navigation system. Methods This prospective study was conducted on the medical records and radiology records of 12 patients who had undergone a unilateral blow out fracture reconstruction using a RP technique and an intraoperative navigation system from November 2014 to March 2015. The surgical results were assessed by an ophthalmic examination and a comparison of the preoperative and postoperative orbital volume ratio (OVR) values. Results All patients had a successful treatment outcome without complications. Volumetric analysis revealed a significant decrease in the mean OVR from 1.0952±0.0662 (ranging from 0.9917 to 1.2509) preoperatively to 0.9942±0.0427 (ranging from 0.9394 to 1.0680) postoperatively. Conclusion The application of a RP technique for the repair of orbital wall fractures is a useful tool that may help improve the clinical outcomes by understanding the individual anatomy, determining the operability, and restoring the orbital cavity volume through optimal implant positioning along with an intraoperative navigation system. PMID:28913272

  7. Visual map and instruction-based bicycle navigation: a comparison of effects on behaviour.

    Science.gov (United States)

    de Waard, Dick; Westerhuis, Frank; Joling, Danielle; Weiland, Stella; Stadtbäumer, Ronja; Kaltofen, Leonie

    2017-09-01

    Cycling with a classic paper map was compared with navigating with a moving map displayed on a smartphone, and with auditory, and visual turn-by-turn route guidance. Spatial skills were found to be related to navigation performance, however only when navigating from a paper or electronic map, not with turn-by-turn (instruction based) navigation. While navigating, 25% of the time cyclists fixated at the devices that present visual information. Navigating from a paper map required most mental effort and both young and older cyclists preferred electronic over paper map navigation. In particular a turn-by-turn dedicated guidance device was favoured. Visual maps are in particular useful for cyclists with higher spatial skills. Turn-by-turn information is used by all cyclists, and it is useful to make these directions available in all devices. Practitioner Summary: Electronic navigation devices are preferred over a paper map. People with lower spatial skills benefit most from turn-by-turn guidance information, presented either auditory or on a dedicated device. People with higher spatial skills perform well with all devices. It is advised to keep in mind that all users benefit from turn-by-turn information when developing a navigation device for cyclists.

  8. AUTOMATIC RECOGNITION OF INDOOR NAVIGATION ELEMENTS FROM KINECT POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    L. Zeng

    2017-09-01

    Full Text Available This paper realizes automatically the navigating elements defined by indoorGML data standard – door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor – histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor – in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  9. Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds

    Science.gov (United States)

    Zeng, L.; Kang, Z.

    2017-09-01

    This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  10. 75 FR 14596 - Family Violence Prevention and Services/Grants for Domestic Violence Shelters/Grants to Native...

    Science.gov (United States)

    2010-03-26

    ...This announcement governs the proposed award of formula grants under the Family Violence Prevention and Services Act (FVPSA) to Native American Tribes (including Alaska Native Villages) and Tribal organizations. The purpose of these grants is to assist Tribes in establishing, maintaining, and expanding programs and projects to prevent family violence and to provide immediate shelter and related assistance for victims of family violence and their dependents (42 U.S.C. 10401). This announcement sets forth the application requirements, the application process, and other administrative and fiscal requirements for grants in Fiscal Year (FY) 2010. Grantees are to be mindful that although the expenditure period for grants is a two-year period, an application is required every year to provide continuity in the provision of services. (See Section II. Award Information, Expenditure Periods.)

  11. Role of diuretics, β blockers, and statins in increasing the risk of diabetes in patients with impaired glucose tolerance: reanalysis of data from the NAVIGATOR study.

    Science.gov (United States)

    Shen, Lan; Shah, Bimal R; Reyes, Eric M; Thomas, Laine; Wojdyla, Daniel; Diem, Peter; Leiter, Lawrence A; Charbonnel, Bernard; Mareev, Viacheslav; Horton, Edward S; Haffner, Steven M; Soska, Vladimir; Holman, Rury; Bethel, M Angelyn; Schaper, Frank; Sun, Jie-Lena; McMurray, John J V; Califf, Robert M; Krum, Henry

    2013-12-09

    To examine the degree to which use of β blockers, statins, and diuretics in patients with impaired glucose tolerance and other cardiovascular risk factors is associated with new onset diabetes. Reanalysis of data from the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial. NAVIGATOR trial. Patients who at baseline (enrolment) were treatment naïve to β blockers (n=5640), diuretics (n=6346), statins (n=6146), and calcium channel blockers (n=6294). Use of calcium channel blocker was used as a metabolically neutral control. Development of new onset diabetes diagnosed by standard plasma glucose level in all participants and confirmed with glucose tolerance testing within 12 weeks after the increased glucose value was recorded. The relation between each treatment and new onset diabetes was evaluated using marginal structural models for causal inference, to account for time dependent confounding in treatment assignment. During the median five years of follow-up, β blockers were started in 915 (16.2%) patients, diuretics in 1316 (20.7%), statins in 1353 (22.0%), and calcium channel blockers in 1171 (18.6%). After adjusting for baseline characteristics and time varying confounders, diuretics and statins were both associated with an increased risk of new onset diabetes (hazard ratio 1.23, 95% confidence interval 1.06 to 1.44, and 1.32, 1.14 to 1.48, respectively), whereas β blockers and calcium channel blockers were not associated with new onset diabetes (1.10, 0.92 to 1.31, and 0.95, 0.79 to 1.13, respectively). Among people with impaired glucose tolerance and other cardiovascular risk factors and with serial glucose measurements, diuretics and statins were associated with an increased risk of new onset diabetes, whereas the effect of β blockers was non-significant. ClinicalTrials.gov NCT00097786.

  12. GPM Ground Validation Navigation Data ER-2 OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA ER-2 Navigation Data OLYMPEX dataset supplies navigation data collected by the NASA ER-2 aircraft for flights that occurred during...

  13. GNSS-based receiver autonomous integrity monitoring for aircraft navigation

    NARCIS (Netherlands)

    Imparato, D.

    2016-01-01

    Nowadays, GNSS-based navigation is moving more and more to critical applications. Global Navigation Satellite Systems (GNSS), which in the past used to be represented by the American GPS and the Russian GLONASS are now growing in number and performance. The European systemGalileo and the Chinese

  14. Magnetic navigation and tracking of underwater vehicles

    Digital Repository Service at National Institute of Oceanography (India)

    Teixeira, F.C.; Pascoal, A.M.

    for the navigation of AUVs has been proposed many years ago but the concept still requires practical demonstration. Implementation issues One of the advantages of mag- netic navigation consists in being passive and economical in terms of energy. Magnetic sensors do... like the present one, that require magnetic measurements with very high precision. A typical solution to this problem consists in the placement of magnetic sensors as far away as possible from the sources of noise but this may not be practical...

  15. Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)

    Science.gov (United States)

    Donaldson, Jennifer

    2017-01-01

    NASA Goddard has been investing in technology demonstrations of a beacon service, now called Next Generation Broadcast Services (NGBS). NGBS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). NGBS will provide an S-band beacon messaging source and radio navigation available to users at orbital altitudes 1400 km and below, increasing the autonomy and resiliency of onboard communication and navigation. NGBS will deliver both one-way radiometric (Doppler and pseudorange) and fast forward data transport services to users. Portions of the overall forward data volume will be allocated for fixed message types while the remaining data volume will be left for user forward command data. The NGBS signal will reside within the 2106.43 MHz spectrum currently allocated for the Space Networks multiple access forward (MAF) service and a live service demonstration is currently being planned via the 2nd and 3rd generation TDRS satellites.

  16. PandaEPL: a library for programming spatial navigation experiments.

    Science.gov (United States)

    Solway, Alec; Miller, Jonathan F; Kahana, Michael J

    2013-12-01

    Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment.

  17. Software engineering of a navigation and guidance system for commercial aircraft

    Science.gov (United States)

    Lachmann, S. G.; Mckinstry, R. G.

    1975-01-01

    The avionics experimental configuration of the considered system is briefly reviewed, taking into account the concept of an advanced air traffic management system, flight critical and noncritical functions, and display system characteristics. Cockpit displays and the navigation computer are examined. Attention is given to the functions performed in the navigation computer, major programs in the navigation computer, and questions of software development.

  18. 76 FR 72978 - Premier Trim, LLC, Spectrum Trim, LLC and Grant Products International, Inc. D/B/A Spectrum Grant...

    Science.gov (United States)

    2011-11-28

    ..., Spectrum Trim, LLC and Grant Products International, Inc. D/B/A Spectrum Grant De Mexico Including Workers Whose Unemployment Insurance (UI) Wages Are Paid Through Grant Products International, Inc... Brownsville, TX; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In...

  19. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques

    International Nuclear Information System (INIS)

    Kaso, G.; Horvath, Z.; Doczi, T.; Szenohradszky, K.; Sandor, J.

    2008-01-01

    This study was intended to assess the results of post-operative CT scans in three groups of patients following percutaneous vertebroplasty (VP) using different navigation and injection methods, in an attempt to explain the radiological characteristics of extravertebral cement leakage with relation to needle placement and focused on the ventral epidural accumulation of bone cement. Furthermore, we have suggested a morphological (and functional) classification of the types of cement leakage. Between July 2001 and February 2005, 123 percutaneous VP procedures were performed during 75 sessions in 65 patients for treatment of painful osteoporotic vertebral body compression fractures. These included: group 1: 28 patients, 33 sessions; 50 right sided unilateral VP under fluoroscopic control with central position of the tip of the needle within the bone marrow. Group 2: 27 patients, 28 sessions; 50 bilateral VP under fluoroscopic control with separate cement injections into both 'hemivertebrae'. Group 3: 14 patients, 14 sessions; 23 bilateral VP navigated by frameless stereotaxy (neuronavigation). Needles were positioned strictly into the lateral thirds of the vertebral bodies. Leakages were classified as epidural, foraminal, intradiscal, venous paravertebral, compact extravertebral on the post-operative CT scans, and their frequency was compared in relation to the navigation method and the position of the tip of the needle. Group 1: extravertebral cement was detected in 23 patients (82 %), and in 35 (70 %) of the 50 vertebrae treated (ventral epidural: 23 vertebrae = 46 %; intradiscal: 12 vertebrae = 24 %; venous paravertebral: 8 vertebrae = 16 %; intraforaminal: 7 vertebrae = 14 %; and compact extravertebral: 3 vertebrae = 6 %). Group 2: extravertebral cement was detected in 20 patients (74 %), and in 38 (76 %) of the 50 vertebrae treated (ventral epidural: 12 vertebrae = 24 %; intradiscal: 12 vertebrae = 24 %; venous paravertebral: 9 vertebrae = 18 %; and foraminal: 1

  20. Mobile Robot Navigation Based on Q-Learning Technique

    Directory of Open Access Journals (Sweden)

    Lazhar Khriji

    2011-03-01

    Full Text Available This paper shows how Q-learning approach can be used in a successful way to deal with the problem of mobile robot navigation. In real situations where a large number of obstacles are involved, normal Q-learning approach would encounter two major problems due to excessively large state space. First, learning the Q-values in tabular form may be infeasible because of the excessive amount of memory needed to store the table. Second, rewards in the state space may be so sparse that with random exploration they will only be discovered extremely slowly. In this paper, we propose a navigation approach for mobile robot, in which the prior knowledge is used within Q-learning. We address the issue of individual behavior design using fuzzy logic. The strategy of behaviors based navigation reduces the complexity of the navigation problem by dividing them in small actions easier for design and implementation. The Q-Learning algorithm is applied to coordinate between these behaviors, which make a great reduction in learning convergence times. Simulation and experimental results confirm the convergence to the desired results in terms of saved time and computational resources.