WorldWideScience

Sample records for patient dose calculation

  1. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  2. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-01-01

    It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. (author)

  3. Improved Patient Size Estimates for Accurate Dose Calculations in Abdomen Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Lae [Yonsei University, Wonju (Korea, Republic of)

    2017-07-15

    The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.

  4. Monte Carlo calculations of patient doses from dental radiography

    International Nuclear Information System (INIS)

    Gibbs, S.J.; Pujol, A.; Chen, T.S.; Malcolm, A.W.

    1984-01-01

    A Monte Carlo computer program has been developed to calculate patient dose from diagnostic radiologic procedures. Input data include patient anatomy as serial CT scans at 1-cm intervals from a typical cadaver, beam spectrum, and projection geometry. The program tracks single photons, accounting for photoelectric effect, coherent (using atomic form factors) and incoherent (using scatter functions) scatter. Inhomogeneities (bone, teeth, muscle, fat, lung, air cavities, etc.) are accounted for as they are encountered. Dose is accumulated in a three-dimensional array of voxels, corresponding to the CT input. Output consists of isodose curves, doses to specific organs, and effective dose equivalent, H/sub E/, as defined by ICRP. Initial results, from dental bite-wing projections using 90-kVp, half-wave rectified dental spectra, have produced H/sub E/ values ranging from 3 to 17 microsieverts (0.3-1.7 mrem) per image, depending on image receptor and projection geometry. The probability of stochastic effect is estimated by ICRP as 10/sup -2//Sv, or about 10/sup -7/ to 10/sup -8/ per image

  5. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  6. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  7. Modeling of tube current modulation methods in computed tomography dose calculations for adult and pregnant patients

    International Nuclear Information System (INIS)

    Caracappa, Peter F.; Xu, X. George; Gu, Jianwei

    2011-01-01

    The comparatively high dose and increasing frequency of computed tomography (CT) examinations have spurred the development of techniques for reducing radiation dose to imaging patients. Among these is the application of tube current modulation (TCM), which can be applied either longitudinally along the body or rotationally along the body, or both. Existing computational models for calculating dose from CT examinations do not include TCM techniques. Dose calculations using Monte Carlo methods have been previously prepared for constant-current rotational exposures at various positions along the body and for the principle exposure projections for several sets of computational phantoms, including adult male and female and pregnant patients. Dose calculations from CT scans with TCM are prepared by appropriately weighting the existing dose data. Longitudinal TCM doses can be obtained by weighting the dose at the z-axis scan position by the relative tube current at that position. Rotational TCM doses are weighted using the relative organ doses from the principle projections as a function of the current at the rotational angle. Significant dose reductions of 15% to 25% to fetal tissues are found from simulations of longitudinal TCM schemes to pregnant patients of different gestational ages. Weighting factors for each organ in rotational TCM schemes applied to adult male and female patients have also been found. As the application of TCM techniques becomes more prevalent, the need for including TCM in CT dose estimates will necessarily increase. (author)

  8. Dose calculation system for remotely supporting radiotherapy

    International Nuclear Information System (INIS)

    Saito, K.; Kunieda, E.; Narita, Y.; Kimura, H.; Hirai, M.; Deloar, H. M.; Kaneko, K.; Ozaki, M.; Fujisaki, T.; Myojoyama, A.; Saitoh, H.

    2005-01-01

    The dose calculation system IMAGINE is being developed keeping in mind remotely supporting external radiation therapy using photon beams. The system is expected to provide an accurate picture of the dose distribution in a patient body, using a Monte Carlo calculation that employs precise models of the patient body and irradiation head. The dose calculation will be performed utilising super-parallel computing at the dose calculation centre, which is equipped with the ITBL computer, and the calculated results will be transferred through a network. The system is intended to support the quality assurance of current, widely carried out radiotherapy and, further, to promote the prevalence of advanced radiotherapy. Prototypes of the modules constituting the system have already been constructed and used to obtain basic data that are necessary in order to decide on the concrete design of the system. The final system will be completed in 2007. (authors)

  9. Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms

    International Nuclear Information System (INIS)

    Gu, J.; George Xu, X.; Caracappa, P. F.; Liu, B.

    2013-01-01

    To investigate the radiation dose to the fetus using retrospective tube current modulation (TCM) data selected from archived clinical records. This paper describes the calculation of fetal doses using retrospective TCM data and Monte Carlo (MC) simulations. Three TCM schemes were adopted for use with three pregnant patient phantoms. MC simulations were used to model CT scanners, TCM schemes and pregnant patients. Comparisons between organ doses from TCM schemes and those from non-TCM schemes show that these three TCM schemes reduced fetal doses by 14, 18 and 25 %, respectively. These organ doses were also compared with those from ImPACT calculation. It is found that the difference between the calculated fetal dose and the ImPACT reported dose is as high as 46 %. This work demonstrates methods to study organ doses from various TCM protocols and potential ways to improve the accuracy of CT dose calculation for pregnant patients. (authors)

  10. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    Science.gov (United States)

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  11. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    International Nuclear Information System (INIS)

    Rana, V. K.; Rudin, S.; Bednarek, D. R.

    2016-01-01

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be

  12. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Rana, V. K., E-mail: vkrana@buffalo.edu [Toshiba Stroke and Vascular Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14203 (United States); Rudin, S., E-mail: srudin@buffalo.edu; Bednarek, D. R., E-mail: bednarek@buffalo.edu [Toshiba Stroke and Vascular Research Center, Departments of Radiology, Neurosurgery, Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14203 (United States)

    2016-09-15

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be

  13. Computed tomography: influence of varying tube current on patient dose and correctness of effective dose calculations; Computertomografie: Einfluss des variablen Roehrenstroms auf die Patientendosis und die Genauigkeit von Berechnungen der effektiven Dosis

    Energy Technology Data Exchange (ETDEWEB)

    Hietschold, V. [Inst. und Poliklinik fuer Radiologische Diagnostik, Universitaetsklinikum Carl-Gustav-Carus der TU Dresden (Germany); Koch, A.; Laniado, M.; Abolmaali, N.D. [OncoRay, Molecular Imaging, TU Dresden (Germany)

    2008-05-15

    Purpose: determination of the influence of tube currents varying during a CT scan on organ doses and on the effective dose as a function of patient constitution. Evaluation of the accuracy of effective dose calculations based on summarizing parameters (effective mAs, dose length product [DLP]) compared to calculations based on slice-specific tube currents. Materials and methods: investigation of the CT datasets of 806 patients acquired from the skull base to the proximal thigh with respect to the body mass index (BMI). The effective dose was calculated by means of slice-specific as well as region-specific conversion factors. Results: dose optimization by means of variable tube current resulted in a reduction of the gonad dose in patients with BMI {<=} 20.. 21 kg/m{sup 2} and of the effective dose in patients with BMI {<=} 26 kg/m{sup 2}. Effective dose values calculated with the DLP for 90% of the patients are within an interval of {+-} 20% of the values calculated using slice-specific tube currents. Conclusion: if tube current optimization during the CT scan was applied, for the scan region under investigation, at a BMI already below the German mean value, an increased effective dose was observed. Calculations of the effective dose on the basis of summarizing values such as DLP or effective mAs are of sufficient accuracy. (orig.)

  14. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy

    Science.gov (United States)

    Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2018-01-01

    This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.

  15. The calculation of 131I dose in second treatment for Graves' disease and the selection of patients

    International Nuclear Information System (INIS)

    Yang Jisheng; Wang Qiang; Hu Mingzao; Zuo Lei; Peng Xiaoyan

    2001-01-01

    Objective: To improve the method of 131 I dose calculation in second treatment for Graves' disease (GD) and to make a criterion for selection of patients. Methods: From 87 GD patients not recovered more than half a year after 131 I treatment, authors selected 41 cases (group A) whose thyroid weight were ≥30 g and gave them second 131 I treatment. The absorbed dose (d 2 ) of 131 I was calculated by the formula we designed: (m 1 /m 2 ):d 1 =(m 2 /m 3 ): d 2 ; i.e. d 2 (Gy) = d 1 m 2 2 /m 1 m 3 . The total dose (D) was calculated by the classical formula: D(37 KBq or μ Ci)= d 2 x 8 x m 2 (g)/1.6 x max. uptake % of 131 I x T 1/2eff (days). m 1 and m 2 was the thyroid weight before and after the first 131 I treatment respectively, m 3 was the pre-estimated thyroid weight after the second treatment, d 1 was the unit dose of the first treatment. Results were compared with 97 patients (group B) who had received second 131 I treatment before using this calculation method. The resting 46 cases (group C) whose thyroid weight were 131 I treatment of group A was 73.2% (30/41 cases), it was remarkably higher than that of group B (19.6%), but the early-permanent hypothyroidism rate was lower in group A. The recovery rate of group C was 91.3% (42/46 case) in two years (averaged 8.8 months). Conclusion: The calculating method can make the dose of second 131 I treatment for GD relatively optimal. Thyroid weight ≥30 g can be used as the main criterion for selection of patients 131 I treatment. Patients whose thyroid weight 131 I treatment and the therapeutic effect was poor

  16. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  17. Clinical implementation and evaluation of the Acuros dose calculation algorithm.

    Science.gov (United States)

    Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M

    2017-09-01

    The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and

  18. Accuracy of pencil-beam redefinition algorithm dose calculations in patient-like cylindrical phantoms for bolus electron conformal therapy.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Chu, Connel; Fields, Robert S; Sprunger, Conrad P

    2013-07-01

    The purpose of this study was to document the improved accuracy of the pencil beam redefinition algorithm (PBRA) compared to the pencil beam algorithm (PBA) for bolus electron conformal therapy using cylindrical patient phantoms based on patient computed tomography (CT) scans of retromolar trigone and nose cancer. PBRA and PBA electron dose calculations were compared with measured dose in retromolar trigone and nose phantoms both with and without bolus. For the bolus treatment plans, a radiation oncologist outlined a planning target volume (PTV) on the central axis slice of the CT scan for each phantom. A bolus was designed using the planning.decimal(®) (p.d) software (.decimal, Inc., Sanford, FL) to conform the 90% dose line to the distal surface of the PTV. Dose measurements were taken with thermoluminescent dosimeters placed into predrilled holes. The Pinnacle(3) (Philips Healthcare, Andover, MD) treatment planning system was used to calculate PBA dose distributions. The PBRA dose distributions were calculated with an in-house C++ program. In order to accurately account for the phantom materials a table correlating CT number to relative electron stopping and scattering powers was compiled and used for both PBA and PBRA dose calculations. Accuracy was determined by comparing differences in measured and calculated dose, as well as distance to agreement for each measurement point. The measured doses had an average precision of 0.9%. For the retromolar trigone phantom, the PBRA dose calculations had an average ± 1σ dose difference (calculated - measured) of -0.65% ± 1.62% without the bolus and -0.20% ± 1.54% with the bolus. The PBA dose calculation had an average dose difference of 0.19% ± 3.27% without the bolus and -0.05% ± 3.14% with the bolus. For the nose phantom, the PBRA dose calculations had an average dose difference of 0.50% ± 3.06% without bolus and -0.18% ± 1.22% with the bolus. The PBA dose calculations had an average dose difference of 0.65%

  19. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  20. SU-F-T-452: Influence of Dose Calculation Algorithm and Heterogeneity Correction On Risk Categorization of Patients with Cardiac Implanted Electronic Devices Undergoing Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, P; Lins, L Nadler [AC Camargo Cancer Center, Sao Paulo (Brazil)

    2016-06-15

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.

  1. SU-F-T-452: Influence of Dose Calculation Algorithm and Heterogeneity Correction On Risk Categorization of Patients with Cardiac Implanted Electronic Devices Undergoing Radiotherapy

    International Nuclear Information System (INIS)

    Iwai, P; Lins, L Nadler

    2016-01-01

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.

  2. Smartphone apps for calculating insulin dose: a systematic assessment.

    Science.gov (United States)

    Huckvale, Kit; Adomaviciute, Samanta; Prieto, José Tomás; Leow, Melvin Khee-Shing; Car, Josip

    2015-05-06

    Medical apps are widely available, increasingly used by patients and clinicians, and are being actively promoted for use in routine care. However, there is little systematic evidence exploring possible risks associated with apps intended for patient use. Because self-medication errors are a recognized source of avoidable harm, apps that affect medication use, such as dose calculators, deserve particular scrutiny. We explored the accuracy and clinical suitability of apps for calculating medication doses, focusing on insulin calculators for patients with diabetes as a representative use for a prevalent long-term condition. We performed a systematic assessment of all English-language rapid/short-acting insulin dose calculators available for iOS and Android. Searches identified 46 calculators that performed simple mathematical operations using planned carbohydrate intake and measured blood glucose. While 59% (n = 27/46) of apps included a clinical disclaimer, only 30% (n = 14/46) documented the calculation formula. 91% (n = 42/46) lacked numeric input validation, 59% (n = 27/46) allowed calculation when one or more values were missing, 48% (n = 22/46) used ambiguous terminology, 9% (n = 4/46) did not use adequate numeric precision and 4% (n = 2/46) did not store parameters faithfully. 67% (n = 31/46) of apps carried a risk of inappropriate output dose recommendation that either violated basic clinical assumptions (48%, n = 22/46) or did not match a stated formula (14%, n = 3/21) or correctly update in response to changing user inputs (37%, n = 17/46). Only one app, for iOS, was issue-free according to our criteria. No significant differences were observed in issue prevalence by payment model or platform. The majority of insulin dose calculator apps provide no protection against, and may actively contribute to, incorrect or inappropriate dose recommendations that put current users at risk of both catastrophic overdose and more

  3. Is it worth to calculate the dose of radioiodine?

    International Nuclear Information System (INIS)

    Mikalauskas, V.; Kuprionis, G.; Vajauskas, D.

    2005-01-01

    Full text: Administration of empirical doses of radioiodine (RAI) has been preferred to calculated doses in many hospitals, because the need to measure the size and the iodine uptake in the thyroid involves considerable inconvenience to the patient and additional costs. The preparation of RAI of varying activities also means extra work. Today there is no general consensus on whether radioiodine should be given as a fixed dose or should be calculated. There is also no consensus regarding the question of which radiation burden should be administered to a given volume of thyroid if the activity is calculated. However, while it is possible to deliver a relatively precise dose of radiation to the thyroid gland, maybe it is worth doing this?The aim of this study was to investigate the results of different uptake and volume dependent target doses on clinical outcome of patients with hyperthyroidism in Graves' disease, multi-nodular toxic goiter or toxic adenoma after radioiodine therapy. We reviewed the records of 428 patients (389 women and 39 men, mean age 56.8±12.9 years) who had received radioiodine treatment for Graves' disease and multinodular toxic goiter (n=312) or toxic adenoma (n=116) during the period of 2000-2004 in Kaunas Medical University Hospital. Most patients were given antithyroid drug therapy in order to achieve euthyroidism before treatment with RAI. Radioiodine uptake test with repeated measurements at 2, 6, 24, 48 and/or 72 and/or 96 hr to define the effective half-life was performed. In addition, all the patients underwent thyroid ultrasonography and scintigraphy to define the volume of the thyroid. The 131I activities were calculated according to the formula of Marinelli. In addition to the normal calculation individual target doses were adjusted to the thyroid volumes of each patient before therapy. For statistical evaluation, the patients were divided into four groups: group I included those with a thyroid volume 51 ml. Statistical analysis was

  4. Manual method for dose calculation in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, Elizabeth A.; Almeida, Carlos E. de; Biaggio, Maria F. de

    1998-01-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author)

  5. Significance and principles of the calculation of the effective dose equivalent for radiological protection of personnel and patients

    International Nuclear Information System (INIS)

    Drexler, G.; Williams, G.

    1985-01-01

    The application of the effective dose equivalent, Hsub(E), concept for radiological protection assessments of occupationally exposed persons is justifiable by the practicability thus achieved with regard to the limiting principles. Nevertheless, it would be proper logic to further use as the basic limiting quantity the real physical dose equivalent of homogeneous whole-body exposure, and for inhomogeneous whole-body irradiation the Hsub(E) value, calculated by means of the concept of the effective dose equivalent. For then the required concepts, models and calculations would not be connected with a basic radiation protection quantity. Application of the effective dose equivalent for radiation protection assessments for patients is misleading and is not practical with regard to assessing an individual or collective radiation risk of patients. The quantity of expected harm would be better suited to this purpose. There is no need to express the radiation risk by a dose quantity, which means careless handling of good information. (orig./WU) [de

  6. PCXMC. A PC-based Monte Carlo program for calculating patient doses in medical x-ray examinations

    International Nuclear Information System (INIS)

    Tapiovaara, M.; Lakkisto, M.; Servomaa, A.

    1997-02-01

    The report describes PCXMC, a Monte Carlo program for calculating patients' organ doses and the effective dose in medical x-ray examinations. The organs considered are: the active bone marrow, adrenals, brain, breasts, colon (upper and lower large intestine), gall bladder, heats, kidneys, liver, lungs, muscle, oesophagus, ovaries, pancreas, skeleton, skin, small intestine, spleen, stomach, testes, thymes, thyroid, urinary bladder, and uterus. (42 refs.)

  7. Validation of GPU based TomoTherapy dose calculation engine.

    Science.gov (United States)

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  8. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  9. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  10. Effective dose calculations in conventional diagnostic X-ray examinations for adult and paediatric patients in a large Italian hospital

    International Nuclear Information System (INIS)

    Compagnone, G.; Pagan, L.; Bergamini, C.

    2005-01-01

    The effective dose E is an efficient and powerful parameter to study the radioprotection of the patient. In our hospital, eight radiological departments and more than 100 radiological X-ray tubes are present. The effective doses were calculated for adults and paediatric patients in 10 standard projections. To calculate E, first the entrance skin dose (ESD) was evaluated by a mathematical model that was validated by >400 direct measurements taken with an ionisation chamber on four different phantoms: the overall accuracy of the model was better than 12%. Second, to relate ESD to E, conversion coefficients calculated by Monte Carlo techniques were used. The E-values obtained were of the same order as those presented in the literature. Finally, we analysed how the study of E distributions among the various radiological departments can help to optimise the procedures, by identifying the most critical examinations or sub-optimal clinical protocols. (authors)

  11. Calculation of radiation dose received in computed tomography examinations

    International Nuclear Information System (INIS)

    Abed Elseed, Eslam Mustafa

    2014-07-01

    Diagnostic computed tomography (CT) examinations play an important role in the health care of the population. These examination may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed to assess the effective dose (ED) received in brain CT examination ( base of skull and cerebrum) and to analyze effective dose distributions among radiological departments under study. The study was performed at Elnileen Medical Center, coverage one CT unit and a sample of 51 patients (25 cerebrum sample and 26 base of skull sample). The following parameters were recorded age, weight, height body mass index (BMI) derived from weight (kg) and height ( m) and exposure factor and CTDI voi , DLP value. The effective dose was measured for brain CT examination. The ED values were calculated from the obtained DLP values using AAPM report No 96 calculation methods. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were 0.35±0.15 for base of skull of brain CT examinations and 0.70±0.32 for cerebrum of brain CT examination, respectively. Further studies are recommended with more number of pa.(Author)

  12. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  13. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  14. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  15. SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.

    Science.gov (United States)

    Yuan, Y; Duan, J; Popple, R; Brezovich, I

    2012-06-01

    To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.

  16. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Healy, J.W.

    1984-01-01

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  17. Superficial dose evaluation of four dose calculation algorithms

    Science.gov (United States)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  18. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  19. Independent procedure of checking dose calculations using an independent calculus algorithm

    International Nuclear Information System (INIS)

    Perez Rozos, A.; Jerez Sainz, I.; Carrasco Rodriguez, J. L.

    2006-01-01

    In radiotherapy it is recommended the use of an independent procedure of checking dose calculations, in order to verify the main treatment planning system and double check every patient dosimetry. In this work we present and automatic spreadsheet that import data from planning system using IMPAC/RTP format and verify monitor unit calculation using an independent calculus algorithm. Additionally, it perform a personalized analysis of dose volume histograms and several radiobiological parameters like TCP and NTCP. Finally, the application automatically generate a clinical dosimetry report for every patient, including treatment fields, fractionation, independent check results, dose volume analysis, and first day forms. (Author)

  20. Dose calculation for electrons

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    1995-01-01

    The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)

  1. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1987-11-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. Critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 [1] methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed. The effective dose equivalent determined using ICRP-26 methods is significantly smaller than the dose equivalent determined by traditional methods. No existing personnel dosimeter or health physics instrument can determine effective dose equivalent. At the present time, the conversion of dosimeter response to dose equivalent is based on calculations for maximal or ''cap'' values using homogeneous spherical or cylindrical phantoms. The evaluated dose equivalent is, therefore, a poor approximation of the effective dose equivalent as defined by ICRP Publication 26. 3 refs., 2 figs., 1 tab

  2. A dose error evaluation study for 4D dose calculations

    Science.gov (United States)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  3. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    Science.gov (United States)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  4. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  5. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  6. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  7. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldeen, A [RMIT university, Docklands, Vic (Australia); Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia); Geso, M [RMIT University, Bundoora, Melbourne (Australia)

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  8. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-01-01

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  9. Methods of bone marrow dose calculation

    International Nuclear Information System (INIS)

    Taboaco, R.C.

    1982-02-01

    Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author) [pt

  10. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  11. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Mirro, Amy E. [Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130 (United States)

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  12. A comparison study of size-specific dose estimate calculation methods

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Roshni A. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Wien, Michael A.; Jordan, David W.; Ciancibello, Leslie; Berlin, Sheila C. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); Novak, Ronald D. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); Rebecca D. Considine Research Institute, Children' s Hospital Medical Center of Akron, Center for Mitochondrial Medicine Research, Akron, OH (United States); Klahr, Paul [CT Clinical Science, Philips Healthcare, Highland Heights, OH (United States); Soriano, Stephanie [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); University of Washington, Department of Radiology, Seattle, WA (United States)

    2018-01-15

    The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ{sub c}) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI{sub vol,} there was poor correlation, ρ{sub c}<0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide

  13. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  14. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  15. Patient-Specific Quality Assurance Using Monte Carlo Dose Calculation and Elekta Log Files for Prostate Volumetric-Modulated Arc Therapy.

    Science.gov (United States)

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Sawada, Kinya; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2017-12-01

    Log file-based methods are attracting increasing interest owing to their ability to validate volumetric-modulated arc therapy outputs with high resolution in the leaf and gantry positions and in delivered dose. Cross-validation of these methods for comparison with measurement-based methods using the ionization chamber/ArcCHECK-3DVH software (version 3.2.0) under the same conditions of treatment anatomy and plan enables an efficient evaluation of this method. In this study, with the purpose of cross-validation, we evaluate the accuracy of a log file-based method using Elekta log files and an X-ray voxel Monte Carlo dose calculation technique in the case of leaf misalignment during prostate volumetric-modulated arc therapy. In this study, 10 prostate volumetric-modulated arc therapy plans were used. Systematic multileaf collimator leaf positional errors (±0.4 and ±0.8 mm for each single bank) were deliberately introduced into the optimized plans. Then, the delivered 3-dimensional doses to a phantom with a certain patient anatomy were estimated by our system. These doses were compared with the ionization chamber dose and the ArcCHECK-3DVH dose. For the given phantom and patient anatomy, the estimated dose strongly coincided with the ionization chamber/ArcCHECK-3DVH dose ( P < .01). In addition, good agreement between the estimated dose and the ionization chamber/ArcCHECK-3DVH dose was observed. The dose estimation accuracy of our system, which combines Elekta log files and X-ray voxel Monte Carlo dose calculation, was evaluated.

  16. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

    International Nuclear Information System (INIS)

    Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu

    2008-01-01

    Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma (γ) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass γ criteria

  17. DosedPet application for Nuclear Medicine: Calculation of the volume of medication needed for PET/CT patient

    International Nuclear Information System (INIS)

    Nascimento, Pedro Augusto do; Rodrigues, Araken dos S. Werneck

    2016-01-01

    This paper presents the application (APP) DosePet that calculates the amount of medicament for PET / CT in patients according to the predetermined radiation dose. The software has been designed using the web MIT App Inventor2 tool for Android platform. The application allows the workers to simulate the amount of radiation still existing in the facilities after the applications, increasing security and reducing exposures, and enable greater efficiency in the use of the radiopharmaceutical. (author)

  18. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1988-01-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed

  19. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    Science.gov (United States)

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  20. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  1. Practical applications of internal dose calculations

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles

  2. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  3. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    International Nuclear Information System (INIS)

    De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.; Celis-Lopez, M. A.

    2010-01-01

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  4. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C; Chan, S; Lee, F; Ngan, R [Queen Elizabeth Hospital (Hong Kong); Lee, V [University of Hong Kong, Hong Kong, HK (Hong Kong)

    2016-06-15

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done with FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.

  5. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Grassberger, C; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Dowdell, S [Illawarra Shoalhaven Local Health District, Wollongong (Australia)

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  6. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-01-01

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  7. Patient Dose From Megavoltage Computed Tomography Imaging

    International Nuclear Information System (INIS)

    Shah, Amish P.; Langen, Katja M.; Ruchala, Kenneth J.; Cox, Andrea; Kupelian, Patrick A.; Meeks, Sanford L.

    2008-01-01

    Purpose: Megavoltage computed tomography (MVCT) can be used daily for imaging with a helical tomotherapy unit for patient alignment before treatment delivery. The purpose of this investigation was to show that the MVCT dose can be computed in phantoms, and further, that the dose can be reported for actual patients from MVCT on a helical tomotherapy unit. Methods and Materials: An MVCT beam model was commissioned and verified through a series of absorbed dose measurements in phantoms. This model was then used to retrospectively calculate the imaging doses to the patients. The MVCT dose was computed for five clinical cases: prostate, breast, head/neck, lung, and craniospinal axis. Results: Validation measurements in phantoms verified that the computed dose can be reported to within 5% of the measured dose delivered at the helical tomotherapy unit. The imaging dose scaled inversely with changes to the CT pitch. Relative to a normal pitch of 2.0, the organ dose can be scaled by 0.67 and 2.0 for scans done with a pitch of 3.0 and 1.0, respectively. Typical doses were in the range of 1.0-2.0 cGy, if imaged with a normal pitch. The maximal organ dose calculated was 3.6 cGy in the neck region of the craniospinal patient, if imaged with a pitch of 1.0. Conclusion: Calculation of the MVCT dose has shown that the typical imaging dose is approximately 1.5 cGy per image. The uniform MVCT dose delivered using helical tomotherapy is greatest when the anatomic thickness is the smallest and the pitch is set to the lowest value

  8. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  9. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  10. Weldon Spring dose calculations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Hill, G.S.; Perdue, P.T.

    1978-09-01

    In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case

  11. Development of mathematical phantoms for calculating internal doses from radiopharmaceuticals using patients' digital picture of bone scintillation

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Kusama, T.

    1996-01-01

    We made a new mathematical phantom using the patients' digital pictures of bone scintillation in nuclear medicine. The data of 99m Tc bone scintillation pictures include the information on the body sizes and shapes. In the bone scintillation pictures, no three dimensional data are available, so that the shapes and sizes of whole body and bones were modelled based on standard anatomical geometry. The organs except bone were also modelled after construction of the bone mathematical model. The mathematical phantoms were developed for each patient. The specific effective energy for each phantom can be calculated by the Monte Carlo code to compare it among the patients. Our mathematical phantoms would provide new calculation of internal doses from radiopharmaceuticals in place of the MIRD phantom. (author)

  12. Dose-Response Calculator for ArcGIS

    Science.gov (United States)

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  13. Comparison of CT number calibration techniques for CBCT-based dose calculation

    International Nuclear Information System (INIS)

    Dunlop, Alex; McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe; Murray, Julia; Bhide, Shreerang; Harrington, Kevin; Poludniowski, Gavin; Nutting, Christopher; Newbold, Kate

    2015-01-01

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT r ); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS auto ), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS auto provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT r (0.5 %) and RS auto (0.6 %) performing best. For lung cases, WL and RS auto methods generated dose distributions most similar to the ground truth. The RS auto density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS auto methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [de

  14. Differentiated thyroid cancer treatment with therapeutic doses of 131I calculated by dosimetry: our experience

    International Nuclear Information System (INIS)

    Fadel, Ana M.; Chebel, G.M.; Valdivieso, C.M.; Degrossi, Osvaldo J.; Cabrejas, R.; Cabrejas, M.L.

    2006-01-01

    The optimum dose for the differentiated thyroid cancer treatment is a motive of controversy. There exist two ways of deciding the dose to administer: the empirical method (fixed doses) and dosimetric calculation method. The use of fixed doses has demonstrated safety and effectiveness. Nevertheless there are cases in which the use of several small doses not resolves the metastases illness of the patients. Using the Benua-Leeper method for dosimetric calculation we have evaluated the maximum dose treatment that could be administered to 20 patients who showed persistent disease after several treatments with 131 I. (author) [es

  15. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    International Nuclear Information System (INIS)

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  16. Reducing dose calculation time for accurate iterative IMRT planning

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Tong, Shidong; Wu Qiuwen; Mohan, Radhe

    2002-01-01

    A time-consuming component of IMRT optimization is the dose computation required in each iteration for the evaluation of the objective function. Accurate superposition/convolution (SC) and Monte Carlo (MC) dose calculations are currently considered too time-consuming for iterative IMRT dose calculation. Thus, fast, but less accurate algorithms such as pencil beam (PB) algorithms are typically used in most current IMRT systems. This paper describes two hybrid methods that utilize the speed of fast PB algorithms yet achieve the accuracy of optimizing based upon SC algorithms via the application of dose correction matrices. In one method, the ratio method, an infrequently computed voxel-by-voxel dose ratio matrix (R=D SC /D PB ) is applied for each beam to the dose distributions calculated with the PB method during the optimization. That is, D PB xR is used for the dose calculation during the optimization. The optimization proceeds until both the IMRT beam intensities and the dose correction ratio matrix converge. In the second method, the correction method, a periodically computed voxel-by-voxel correction matrix for each beam, defined to be the difference between the SC and PB dose computations, is used to correct PB dose distributions. To validate the methods, IMRT treatment plans developed with the hybrid methods are compared with those obtained when the SC algorithm is used for all optimization iterations and with those obtained when PB-based optimization is followed by SC-based optimization. In the 12 patient cases studied, no clinically significant differences exist in the final treatment plans developed with each of the dose computation methodologies. However, the number of time-consuming SC iterations is reduced from 6-32 for pure SC optimization to four or less for the ratio matrix method and five or less for the correction method. Because the PB algorithm is faster at computing dose, this reduces the inverse planning optimization time for our implementation

  17. Selection of skin dose calculation methodologies

    International Nuclear Information System (INIS)

    Farrell, W.E.

    1987-01-01

    This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing

  18. Incorporating partial shining effects in proton pencil-beam dose calculation

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Lii Mingfwu; Sahoo, Narayan; Zhu, Ron X; Gillin, Michael; Mohan, Radhe

    2008-01-01

    A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose

  19. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  20. Potential formula for the calculation of starting and incremental insulin glargine doses: ALOHA subanalysis.

    Directory of Open Access Journals (Sweden)

    Takashi Kadowaki

    Full Text Available BACKGROUND: Pragmatic methods for dose optimization are required for the successful basal management in daily clinical practice. To derive a useful formula for calculating recommended glargine doses, we analyzed data from the Add-on Lantus® to Oral Hypoglycemic Agents (ALOHA study, a 24-week observation of Japanese type 2 diabetes patients. METHODOLOGY/PRINCIPAL FINDINGS: The patients who initiated insulin glargine in basal-supported oral therapy (BOT regimen (n = 3506 were analyzed. The correlations between average changes in glargine dose and HbA1c were calculated, and its regression formula was estimated from grouped data categorized by baseline HbA1c levels. Starting doses of the background-subgroup achieving the HbA1c target with a last-observed dose above the average were compared to an assumed optimal starting dose of 0.15 U/kg/day. The difference in regression lines between background-subgroups was examined. A formula for determining the optimal starting and titration doses was thereby derived. The correlation coefficient between changes in dose and HbA1c was -0.9043. The estimated regression line formula was -0.964 × change in HbA1c+2.000. A starting dose of 0.15 U/kg/day was applicable to all background-subgroups except for patients with retinopathy (0.120 U/kg/day and/or with eGFR<60 mL/min/1.73 m(2 (0.114 U/kg/day. Additionally, women (0.135 U/kg/day and patients with sulfonylureas (0.132 U/kg/day received a slightly decreased starting dose. CONCLUSIONS/SIGNIFICANCE: We suggest a simplified and pragmatic dose calculation formula for type 2 diabetes patients starting glargine BOT optimal daily dose at 24 weeks  =  starting dose (0.15×weight + incremental dose (baseline HbA1c - target HbA1c+2. This formula should be further validated using other samples in a prospective follow-up, especially since several patient groups required lower starting doses.

  1. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    International Nuclear Information System (INIS)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-01-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models

  2. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  3. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-01-01

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts

  4. Manual method for dose calculation in gynecologic brachytherapy; Metodo manual para o calculo de doses em braquiterapia ginecologica

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, Elizabeth A.; Almeida, Carlos E. de [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Biaggio, Maria F. de [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    1998-09-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author) 10 refs., 5 figs.

  5. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  6. Electron and bremsstrahlung penetration and dose calculation

    Science.gov (United States)

    Watts, J. W., Jr.; Burrell, M. O.

    1972-01-01

    Various techniques for the calculation of electron and bremsstrahlung dose deposition are described. Energy deposition, transmission, and reflection coefficients for electrons incident on plane slabs are presented, and methods for their use in electron dose calculations were developed. A method using the straight-ahead approximation was also developed, and the various methods were compared and found to be in good agreement. Both accurate and approximate methods of calculating bremsstrahlung dose were derived and compared. Approximation is found to give a good estimate of dose where the electron spectrum falls off exponentially with energy.

  7. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  8. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  9. Estimated Visualization of Dose Calculation with GEANT4 in Medical Linac

    International Nuclear Information System (INIS)

    Kim, Jhin Kee; Kim, Bu Gil; Lee, Jeong Ok; Kang, Jeong Ku; Oh, Young Kee; Jeong, Dong Hyeok; Kim, Jeong Kee

    2011-01-01

    Geant4 is a toolkit used to simulate the pass age of particles through matter. Recently, it has been used in many medical physics applications. In radiotherapy, positron emission tomography, and magnetic resonance tomography, Geant4 has been applied to accurately simulate the propagation of particles and the interaction of particles, not only with medical devices, but also with patient's phantoms.1,2 Many researchers try to use patient's image data to calculate the dose. The use of DICOM images files to simulate is desired. We construct detector with parameterized volume for Geant4 simulations, which can be applied to simulations using DICOM data as the input.We try to apply this code to the patient's DICOM images to simulate the propagation and interaction of the particles. So we can calculate the absorbed dose of the patient. In this study, the used visualization tool is called gMocren. The purpose of the present paper is to verify a volume visualization tool that simultaneously displays both the complex patient data and the simulated dose distribution with real patient's DICOM data. We applied a volume visualization tool for GEANT4 simulation. We developed to create the each voxel's dose tables of the every slices and review the distribution with DICOM file, gMocren is very convenience tool but provide only qualitative analysis. We need more enhanced functions to display contour like RTP and utility program to create dose table in every points.

  10. Text book of dose calculation for operators

    International Nuclear Information System (INIS)

    Aoyagi, Haruki; Gonda, Kozo

    1979-07-01

    This is a text book of dose calculation for the operators of the reprocessing factory of Power Reactor and Nuclear Fuel Development Corporation. The radiations considered are beta-ray and gamma-ray. The method used is a point attenuation nuclear integral method. Radiation sources are considered as the assemblies of point sources. Dose from each point source is calculated, then, total dose is obtained by the integration for all sources. Attenuation is calculated by considering the attenuation owing to distance and the absorption by absorbers. The build-up factor is introduced for the correction for scattered gamma-ray. The build-up factor is given in a table for various scatterers. The operators are able to calculate dose by themselves. The results of integral calculation expressed with formulas are given in graphs. (Kato, T.)

  11. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  12. The profound effects of patient arm positioning on organ doses from CT procedures calculated using Monte Carlo simulations and deformable phantoms

    International Nuclear Information System (INIS)

    Liu, Haikuan; Gao, Yiming; Ding, Aiping; Caracappa, Peter F.; George Xu, X.

    2015-01-01

    The purpose of this study was to evaluate the organ dose differences caused by the arms-raised and arms-lowered postures for multidetector computed tomography procedures. Organ doses were calculated using computational phantoms and Monte Carlo simulations. The arm position in two previously developed adult male and female human phantoms was adjusted to represent 'raised' and 'lowered' postures using advanced BREP-based mesh surface geometries. Organ doses from routine computed tomography (CT) scan protocols, including the chest, abdomen-pelvis, and chest-abdomen-pelvis scans, were simulated at various tube voltages and reported in the unit of mGy per 100 mAs. The CT scanner model was based on previously tested work. The differences in organ dose per unit tube current between raised and lowered arm postures were studied. Furthermore, the differences due to the tube current modulation (TCM) for these two different postures and their impact on organ doses were also investigated. For a given scan parameter, a patient having lowered arms received smaller doses to organs located within the chest, abdomen or pelvis when compared with the patient having raised arms. As expected, this is caused by the attenuation of the primary X rays by the arms. However, the skin doses and bone surface doses in the patient having lowered arms were found to be 3.97-32.12 % larger than those in a patient having raised arms due to the fact that more skin and spongiosa were covered in the scan range when the arms are lowered. This study also found that dose differences become smaller with the increase in tube voltage for most of organs or tissues except the skin. For example, the liver dose differences decreased from -15.01 to -11.33 % whereas the skin dose differences increased from 21.53 to 25.24 % with tube voltage increased from 80 to 140 kVp. With TCM applied, the organ doses of all the listed organs in patient having lowered arms are larger due to the additional tube

  13. A convolution-superposition dose calculation engine for GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe [Departement de genie informatique et genie logiciel, Ecole polytechnique de Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Departement de radio-oncologie, CRCHUM-Centre hospitalier de l' Universite de Montreal, 1560 rue Sherbrooke Est, Montreal, Quebec H2L 4M1 (Canada)

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  14. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    International Nuclear Information System (INIS)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In

    2017-01-01

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device

  15. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

  16. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2016-08-15

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data

  17. The impact of dose calculation algorithms on partial and whole breast radiation treatment plans

    International Nuclear Information System (INIS)

    Basran, Parminder S; Zavgorodni, Sergei; Berrang, Tanya; Olivotto, Ivo A; Beckham, Wayne

    2010-01-01

    This paper compares the calculated dose to target and normal tissues when using pencil beam (PBC), superposition/convolution (AAA) and Monte Carlo (MC) algorithms for whole breast (WBI) and accelerated partial breast irradiation (APBI) treatment plans. Plans for 10 patients who met all dosimetry constraints on a prospective APBI protocol when using PBC calculations were recomputed with AAA and MC, keeping the monitor units and beam angles fixed. Similar calculations were performed for WBI plans on the same patients. Doses to target and normal tissue volumes were tested for significance using the paired Student's t-test. For WBI plans the average dose to target volumes when using PBC calculations was not significantly different than AAA calculations, the average PBC dose to the ipsilateral breast was 10.5% higher than the AAA calculations and the average MC dose to the ipsilateral breast was 11.8% lower than the PBC calculations. For ABPI plans there were no differences in dose to the planning target volume, ipsilateral breast, heart, ipsilateral lung, or contra-lateral lung. Although not significant, the maximum PBC dose to the contra-lateral breast was 1.9% higher than AAA and the PBC dose to the clinical target volume was 2.1% higher than AAA. When WBI technique is switched to APBI, there was significant reduction in dose to the ipsilateral breast when using PBC, a significant reduction in dose to the ipsilateral lung when using AAA, and a significant reduction in dose to the ipsilateral breast and lung and contra-lateral lung when using MC. There is very good agreement between PBC, AAA and MC for all target and most normal tissues when treating with APBI and WBI and most of the differences in doses to target and normal tissues are not clinically significant. However, a commonly used dosimetry constraint, as recommended by the ASTRO consensus document for APBI, that no point in the contra-lateral breast volume should receive >3% of the prescribed dose needs

  18. Systems automated reporting of patient dose in digital radiology

    International Nuclear Information System (INIS)

    Collado Chamorro, P.; Sanz Freire, C. J.; Martinez Mirallas, O.; Tejada San Juan, S.; Lopez de Gammarra, M. S.

    2013-01-01

    It has developed a procedure automated reporting of doses to patients in Radiology. This procedure allows to save the time required of the data used to calculate the dose to patients by yields. Also saves the time spent in the transcription of these data for the realization of the necessary calculations. This system has been developed using open source software. The characteristics of the systems of digital radiography for the automation of procedures, in particular the registration of dose should benefit from patient. This procedure is validated and currently in use at our institution. (Author)

  19. Georgia fishery study: implications for dose calculations

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr

  20. A patient dose survey for femoral arteriogram diagnostic radiographic examinations using a dose-area product meter

    International Nuclear Information System (INIS)

    Thwaites, J.H.; Rafferty, M.W.; Gray, N.; Black, J.; Stock, B.

    1996-01-01

    A patient dose survey was carried out for femoral arteriogram procedures at the Sir Charles Gairdner Hospital. The procedure involves fluoroscopy to the pelvic region to locate a guide wire and catheter, followed by a series of radiographs extending from the pelvic area to the feet to form a collage image of the entire arterial system. Radiographs are taken whilst a bolus of contrast media is injected into the arterial system. A dose-area product meter was used to determine the dose-area product delivered to patients. Radiographic and patient details were logged with dose-area product for each part of each procedure. Mean energy imparted, mean effective dose and effective dose equivalent are calculated for the examinations. Calculated effective doses are shown to produce results consistent with those of other authors. We present a method for dealing with a complex radiographic procedure including multiple radiographs and fluoroscopy in an attempt to provide a simple way of calculating effective dose from which a general risk factor can be determined. The effective dose varies considerably from examination to examination due to the large range in the number of radiographs taken in any one procedure. A useful index can be obtained by logging the number of radiographs in each region, and fluoroscopy time, from which the effective dose may be easily calculated. These measurements extend a continuing survey of doses for common diagnostic radiographic examinations which previously included the simple examinations: lumbar spine, abdoment and pelvis. (author)

  1. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Carrier, Jean-Francois; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-01-01

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D 90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  2. Evolution of dose calculation models for proton-therapy treatment planning

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams [fr

  3. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  4. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices

    International Nuclear Information System (INIS)

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-01-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan

  5. Educational audit on drug dose calculation learning in a Tanzanian ...

    African Journals Online (AJOL)

    Background: Patient safety is a key concern for nurses; ability to calculate drug ... Specific objectives were to assess learning from targeted teaching, to identify problem areas in perfor- .... this could result in reduced risk of drug dose error in.

  6. An inter-hospital comparison of patient dose based on clinical indications

    International Nuclear Information System (INIS)

    Teeuwisse, W.; Geleijns, J.; Veldkamp, W.

    2007-01-01

    Patient dose is usually estimated for a single radiographic projection or computed tomography (CT) series. In this study, patient dose was calculated for predefined clinical indications (24 radiography, 11 CT). Members of the radiology staff of each of 11 hospitals were trained in dose measurement and calculation techniques. Based on clinical indications participants decided on imaging protocols and calculated cumulative effective dose for a complete examination. Effective dose ranged from <1 μSv to 0.6 mSv for examinations with radiographs and from 0.2 to 12 mSv for CT scans. Differences in the imaging protocols contributedd to a substantial variation in patient dose. For mammography, average glandular dose (AGD) was estimated for 32-, 53- and 90-mm compressed breast thicknesses, with a median value of 0.74, 1.74 and 3.40 mGy, respectively. The results presented here demonstrate that a pragmatic choice of dosimetry methods enables local staff to estimate effective dose. The inclusion of imaging protocols in the dose surveys provided a broader view on the variations in patient dose between hospitals. (orig.)

  7. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  8. SU-F-T-60: A Quick Dose Calculation Check for Accuboost Breast Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A [Cancer Treatment Center of America, Tulsa, OK (United States)

    2016-06-15

    Purpose: Accuboost treatment planning uses dwell times from a nomogram designed with Monte Carlo calculations for round and D-shaped applicators. A quick dose calculation method has been developed for verification of the HDR Brachytherapy dose as a second check. Methods: Accuboost breast treatment uses several round and D-shaped applicators to be used non-invasively with an Ir-192 source from a HDR Brachytherapy afterloader after the breast is compressed in a mammographic unit for localization. The breast thickness, source activity, the prescription dose and the applicator size are entered into a nomogram spreadsheet which gives the dwell times to be manually entered into the delivery computer. Approximating the HDR Ir-192 as a point source, and knowing the geometry of the round and D-applicators, the distances from the source positions to the midpoint of the central plane are calculated. Using the exposure constant of Ir-192 and medium as human tissue, the dose at a point is calculated as: D(cGy) = 1.254 × A × t/R2, where A is the activity in Ci, t is the dwell time in sec and R is the distance in cm. The dose from each dwell position is added to get the total dose. Results: Each fraction is delivered in two compressions: cranio-caudally and medial-laterally. A typical APBI treatment in 10 fractions requires 20 compressions. For a patient treated with D45 applicators and an average of 5.22 cm thickness, this calculation was 1.63 % higher than the prescription. For another patient using D53 applicators in the CC direction and 7 cm SDO applicators in the ML direction, this calculation was 1.31 % lower than the prescription. Conclusion: This is a simple and quick method to double check the dose on the central plane for Accuboost treatment.

  9. Internal dose conversion factors for calculation of dose to the public

    International Nuclear Information System (INIS)

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities

  10. A study of different dose calculation methods and the impact on the dose evaluation protocol in lung stereotactic radiation therapy

    International Nuclear Information System (INIS)

    Takada, Takahiro; Furuya, Tomohisa; Ozawa, Shuichi; Ito, Kana; Kurokawa, Chie; Karasawa, Kumiko; Miura, Kohei

    2008-01-01

    AAA (analytical anisotropic algorithm) dose calculation, which shows a better performance for heterogeneity correction, was tested for lung stereotactic radiation therapy (SBRT) in comparison to conventional PBC (pencil beam convolution method) to evaluate its impact on tumor dose parameters. Eleven lung SBRT patients who were treated with photon 4 MV beams in our department between April 2003 and February 2007 were reviewed. Clinical target volume (CTV) was delineated including the spicula region on planning CT images. Planning target volume (PTV) was defined by adding the internal target volume (ITV) and set-up margin (SM) of 5 mm from CTV, and then an multileaf collimator (MLC) penumbra margin of another 5 mm was also added. Six-port non-coplanar beams were employed, and a total prescribed dose of 48 Gy was defined at the isocenter point with four fractions. The entire treatment for an individual patient was completed within 8 days. Under the same prescribed dose, calculated dose distribution, dose volume histogram (DVH), and tumor dose parameters were compared between two dose calculation methods. In addition, the fractionated prescription dose was repeatedly scaled until the monitor units (MUs) calculated by AAA reached a level of MUs nearly identical to those achieved by PBC. AAA resulted in significantly less D95 (irradiation dose that included 95% volume of PTV) and minimal dose in PTV compared to PBC. After rescaling of each MU for each beam in the AAA plan, there was no revision of the isocenter of the prescribed dose required. However, when the PTV volume was less than 20 cc, a 4% lower prescription resulted in nearly identical MUs between AAA and PBC. The prescribed dose in AAA should be the same as that in PBC, if the dose is administered at the isocenter point. However, planners should compare DVHs and dose distributions between AAA and PBC for a small lung tumor with a PTV volume less than approximately 20 cc. (author)

  11. Dose calculations for severe LWR accident scenarios

    International Nuclear Information System (INIS)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well

  12. Internal emitter dosimetry: are patient-specific calculations necessary?

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The question of whether patient-specific calculations are needed in internal emitter dosimetry arises when radionuclides are used for therapy. In diagnostic procedures the absorbed dose delivered to normal tissue is far below hazardous levels. In internal emitter therapy, the need for patient-specific dosimetry may arise if a large variability in biodistribution, normal tissue toxicity or efficacy is anticipated. Patient-specificity may be accomplished at the level of pharmacokinetics, anatomy/tumor-geometry or both. At the first level, information regarding the biodistribution of a particular radiolabeled agent is obtained and used to determine the maximum activity that may be administered for treatment. The classical example of this is radioiodine therapy for thyroid cancer. In radioiodine therapy, the therapy dose is preceded by a tracer dose of I-131-iodide which is used to measure patient kinetics by imaging and whole-body counting. Absorbed dose estimates obtained from these data are used to constrain the therapy dose to meet safety criteria established in a previously performed dose-response study. The most ambitious approach to patient-specific dosimetry, requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of registered images representing anatomy (CT or MRI). The spatial distribution of absorbed dose or dose-rate may then be obtained by convolution of a point-kernel with the radioactivity distribution or by Monte Carlo calculation. The spatial absorbed dose or dose-rate distribution may be represented as a set of images, as isodose contours, or as dose-volume histograms. The 3-D Monte Carlo approach is, in principle, the most patient-specific; it accounts for patient anatomy and tumor geometry as well as for the spatial distribution of radioactivity. It is also, however, the most logistically and technically demanding. Patients are required to undergo CT or MRI and at least one

  13. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    Science.gov (United States)

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-07

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  14. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, A [Linkoping University, Linkoping, Linkoping (Sweden); Persson, M; Nilsson, J [Karolinska hospital, Stockholm, Stockholm (Sweden)

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  15. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-01-01

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  16. Scatter Dose in Patients in Radiation Therapy

    International Nuclear Information System (INIS)

    Schmidt, W. F. O.

    2003-01-01

    Patients undergoing radiation therapy are often treated with high energy radiation (bremsstrahlung) which causes scatter doses in the patients from various sources as photon scatter coming from collimator, gantry, patient, patient table or room (walls, floor, air) or particle doses resulting from gamma-particle reactions in the atomic nucleus if the photon energies are above 8 MeV. In the last years new treatment techniques like IMRT (esp the step-and-shoot- or the MIMIC-techniques) have increased interest in these topics again. In the lecture an overview about recent measurements on scatter doses resulting from gantry, table and room shall be given. Scatter doses resulting from the volume treated in the patient to other critical parts of the body like eyes, ovarii etc. have been measured in two diploma works in our institute and are compared with a program (PERIDOSE; van der Giessen, Netherlands) to estimate them. In some cases these scatter doses have led to changes of treatment modalities. Also an overview and estimation of doses resulting from photon-particle interactions is given according to a publication from Gudowska et al.(Gudowska I, Brahme A, Andreo P, Gudowski W, Kierkegaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol 1999; 44(9):2099-2125.). Energy dose has been calculated with Monte Carlo-methods and is compared with analytical methods for 50 MV bremsstrahlung. From these data biologically effective doses from particles in different depths of the body can be estimated also for energies used in normal radiotherapy. (author)

  17. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  18. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    International Nuclear Information System (INIS)

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-01-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  19. The software program Peridose to calculate the fetal dose or dose to other critical structures outside the target area in radiation therapy

    International Nuclear Information System (INIS)

    Giessen, P.H. van der

    2001-01-01

    An accurate estimate of the dose outside the target area is of utmost importance when pregnant patients have to undergo radiotherapy, something that occurs in every radiotherapy department once in a while. Such peripheral doses (PD) are also of interest for late effects risk estimations for doses to specific organs as well as estimations of dose to pacemakers. A software program, Peridose, is described to allow easy calculation of this peripheral dose. The calculation is based on data from many publications on peripheral dose measurements, including those by the author. Clinical measurements have shown that by using data averaged over many measurements and different machine types PDs can be estimated with an accuracy of ± 60% (2 standard deviations). The program allows easy and fairly accurate estimates of peripheral doses in patients. Further development to overcome some of the constraints and limitations is desirable. The use of average data is to be preferred if general applicability is to be maintained. (author)

  20. Recommendations on dose buildup factors used in models for calculating gamma doses for a plume

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Thykier-Nielsen, S.

    1980-09-01

    Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)

  1. Influence of metallic dental implants and metal artefacts on dose calculation accuracy.

    Science.gov (United States)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-03-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.

  2. Influence of metallic dental implants and metal artefacts on dose calculation accuracy

    International Nuclear Information System (INIS)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-01-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic trademark EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques. (orig.) [de

  3. Monte Carlo calculations for doses in organs and tissues to oral radiography

    International Nuclear Information System (INIS)

    Sampaio, E.V.M.

    1985-01-01

    Using the MIRD 5 phantom and Monte Carlo technique, organ doses in patients undergoing external dental examination were calculated taking into account the different x-ray beam geometries and the various possible positions of x-ray source with regard to the head of the patient. It was necessary to introduce in the original computer program a new source description specific for dental examinations. To have a realistic evaluation of organ doses during dental examination it was necessary to introduce a new region in the phantom heat which characterizes the teeth and salivary glands. The attenuation of the x-ray beam by the lead shield of the radiographic film was also introduced in the calculation. (author)

  4. A Monte Carlo evaluation of RapidArc dose calculations for oropharynx radiotherapy

    International Nuclear Information System (INIS)

    Gagne, I M; Ansbacher, W; Zavgorodni, S; Popescu, C; Beckham, W A

    2008-01-01

    RapidArc(TM), recently released by Varian Medical Systems, is a novel extension of IMRT in which an optimized 3D dose distribution may be delivered in a single gantry rotation of 360 deg. or less. The purpose of this study was to investigate the accuracy of the analytical anisotropic algorithm (AAA), the sole algorithm for photon dose calculations of RapidArc(TM) treatment plans. The clinical site chosen was oropharynx and the associated nodes involved. The VIMC-Arc system, which utilizes BEAMnrc and DOSXYZnrc for particle transport through the linac head and patient CT phantom, was used as a benchmarking tool. As part of this study, the dose for a single static aperture, typical for RapidArc(TM) delivery, was calculated by the AAA, MC and compared with the film. This film measurement confirmed MC modeling of the beam aperture in water. It also demonstrated that the AAA dosimetric error can be as high as 12% near isolated leaf edges and up to 5% at the leaf end. The composite effect of these errors in a full RapidArc(TM) calculation in water involving a C-shaped target and the associated organ at risk produced a 1.5% overprediction of the mean target dose. In our cohort of six patients, the AAA was found, on average, to overestimate the PTV60 coverage at the 95% level in the presence of air cavities by 1.0% (SD = 1.1%). Removing the air cavities from the target volumes reduced these differences by about a factor of 2. The dose to critical structures was also overestimated by the AAA. The mean dose to the spinal cord was higher by 1.8% (SD = 0.8%), while the effective maximum dose (D 2% ) was only 0.2% higher (SD = 0.6%). The mean dose to the parotid glands was overestimated by ∼9%. This study has shown that the accuracy of the AAA for RapidArc(TM) dose calculations, performed at a resolution of 2.5 mm or better, is adequate for clinical use.

  5. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Lübeck Christiansen, Rasmus; Jensen, Henrik R.; Brink, Carsten

    2017-01-01

    Background: Current state of the art radiotherapy planning of prostate cancer utilises magnetic resonance (MR) for soft tissue delineation and computed tomography (CT) to provide an electron density map for dose calculation. This dual scan workflow is prone to setup and registration error....... This study evaluates the feasibility of an MR-only workflow and the validity of dose calculation from an MR derived pseudo CT. Material and methods: Thirty prostate cancer patients were CT and MR scanned. Clinical treatment plans were generated on CT using a single 18 MV arc volumetric modulated arc therapy...... was successfully delivered to one patient, including manually performed daily IGRT. Conclusions: Median gamma pass rates were high for pseudo CT and proved superior to uniform density. Local differences in dose calculations were concluded not to have clinical relevance. Feasibility of the MR-only workflow...

  6. Warfarin maintenance dose in older patients: higher average dose and wider dose frequency distribution in patients of African ancestry than those of European ancestry.

    Science.gov (United States)

    Garwood, Candice L; Clemente, Jennifer L; Ibe, George N; Kandula, Vijay A; Curtis, Kristy D; Whittaker, Peter

    2010-06-15

    Studies report that warfarin doses required to maintain therapeutic anticoagulation decrease with age; however, these studies almost exclusively enrolled patients of European ancestry. Consequently, universal application of dosing paradigms based on such evidence may be confounded because ethnicity also influences dose. Therefore, we determined if warfarin dose decreased with age in Americans of African ancestry, if older African and European ancestry patients required different doses, and if their daily dose frequency distributions differed. Our chart review examined 170 patients of African ancestry and 49 patients of European ancestry cared for in our anticoagulation clinic. We calculated the average weekly dose required for each stable, anticoagulated patient to maintain an international normalized ratio of 2.0 to 3.0, determined dose averages for groups 80 years of age and plotted dose as a function of age. The maintenance dose in patients of African ancestry decreased with age (PAfrican ancestry required higher average weekly doses than patients of European ancestry: 33% higher in the 70- to 79-year-old group (38.2+/-1.9 vs. 28.8+/-1.7 mg; P=0.006) and 52% in the >80-year-old group (33.2+/-1.7 vs. 21.8+/-3.8 mg; P=0.011). Therefore, 43% of older patients of African ancestry required daily doses >5mg and hence would have been under-dosed using current starting-dose guidelines. The dose frequency distribution was wider for older patients of African ancestry compared to those of European ancestry (PAfrican ancestry indicate that strategies for initiating warfarin therapy based on studies of patients of European ancestry could result in insufficient anticoagulation and thereby potentially increase their thromboembolism risk. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Vancomycin Dosing in Obese Patients: Special Considerations and Novel Dosing Strategies.

    Science.gov (United States)

    Durand, Cheryl; Bylo, Mary; Howard, Brian; Belliveau, Paul

    2018-06-01

    To review the literature regarding vancomycin pharmacokinetics in obese patients and strategies used to improve dosing in this population. PubMed, EMBASE (1974 to November 2017), and Google Scholar searches were conducted using the search terms vancomycin, obese, obesity, pharmacokinetics, strategy, and dosing. Additional articles were selected from reference lists of selected studies. Included articles were those published in English with a primary focus on vancomycin pharmacokinetic parameters in obese patients and practical vancomycin dosing strategies, clinical experiences, or challenges of dosing vancomycin in this population. Volume of distribution and clearance are the pharmacokinetic parameters that most often affect vancomycin dosing in obese patients; both are increased in this population. Challenges with dosing in obese patients include inconsistent and inadequate dosing, observations that the obese population may not be homogeneous, and reports of an increased likelihood of supratherapeutic trough concentrations. Investigators have revised and developed dosing and monitoring protocols to address these challenges. These approaches improved target trough attainment to varying degrees. Some of the vancomycin dosing approaches provided promising results in obese patients, but there were notable differences in methods used to develop these approaches, and sample sizes were small. Although some approaches can be considered for validation in individual institutions, further research is warranted. This may include validating approaches in larger populations with narrower obesity severity ranges, investigating target attainment in indication-specific target ranges, and evaluating the impact of different dosing weights and methods of creatinine clearance calculation.

  8. Doses to patients from diagnostic radiology in Romania

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.

    2001-01-01

    Effective doses to over 2400 patients undergoing 20 of the most important types of X-ray examinations have been estimated from entrance surface doses or dose-area products, measured in 27 X-ray departments, and the appropriate conversion coefficients calculated by the NRPB for six mathematical phantoms representing 0, 1, 5, 10, 15 year old children and the adult. The patient-weighted mean effective dose from X-ray examinations performed annually in Romania is 1.32 mSv, with 1.40 mSv for the average adult patient and 0,59 mSv for the average paediatric patient. The corresponding annual collective effective dose is about 13,430 man Sv, with the main contribution belonging to adult patients (95%), the remainder of 5 percent - to paediatric patients. (author)

  9. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  10. Contouring and dose calculation in head and neck cancer radiotherapy after reduction of metal artifacts in CT images

    DEFF Research Database (Denmark)

    Hansen, Christian Rønn; Lübeck Christiansen, Rasmus; Lorenzen, Ebbe Laugaard

    2017-01-01

    of metal artifact reduction (MAR) in H&N patients in terms of delineation consistency and dose calculation precision in radiation treatment planning. Material and methods: Tumor and OAR delineations were evaluated in planning CT scans of eleven oropharynx patients with streaking artifacts in the tumor...... region preceding curative radiotherapy (RT). The GTV-tumor (GTV-T), GTV-node and parotid glands were contoured by four independent observers on standard CT images and MAR images. Dose calculation was evaluated on thirty H&N patients with dental implants near the treated volume. For each patient, the dose...

  11. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    Energy Technology Data Exchange (ETDEWEB)

    French, S; Nazareth, D [Roswell Park Cancer Institute, Buffalo, NY (United States); Bellor, M [Lockheed Martin, Manassas, VA (United States)

    2016-06-15

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrc package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate

  12. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    International Nuclear Information System (INIS)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S

    2016-01-01

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V_2_0 and V_5 to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm"3. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V_2_0 (+3.1%) and V_5 (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm

  13. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States)

    2016-06-15

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates

  14. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  15. [Evaluation of methods to calculate dialysis dose in daily hemodialysis].

    Science.gov (United States)

    Maduell, F; Gutiérrez, E; Navarro, V; Torregrosa, E; Martínez, A; Rius, A

    2003-01-01

    Daily dialysis has shown excellent clinical results because a higher frequency of dialysis is more physiological. Different methods have been described to calculate dialysis dose which take into consideration change in frequency. The aim of this study was to calculate all dialysis dose possibilities and evaluate the better and practical options. Eight patients, 6 males and 2 females, on standard 4 to 5 hours thrice weekly on-line hemodiafiltration (S-OL-HDF) were switched to daily on-line hemodiafiltration (D-OL-HDF) 2 to 2.5 hours six times per week. Dialysis parameters were identical during both periods and only frequency and dialysis time of each session were changed. Time average concentration (TAC), time average deviation (TAD), normalized protein catabolic rate (nPCR), Kt/V, equilibrated Kt/V (eKt/V), equivalent renal urea clearance (EKR), standard Kt/V (stdKt/V), urea reduction ratio (URR), hemodialysis product and time off dialysis were measured. Daily on-line hemodiafiltration was well accepted and tolerated. Patients maintained the same TAC although TAD decreased from 9.7 +/- 2 in baseline to a 6.2 +/- 2 mg/dl after six months, p time off dialysis was reduced to half. Dialysis frequency is an important urea kinetic parameter which there are to take in consideration. It's necessary to use EKR, stdKt/V or weekly URR to calculate dialysis dose for an adequate comparison between different frequency dialysis schedules.

  16. Validation of dose calculation programmes for recycling

    International Nuclear Information System (INIS)

    Menon, Shankar; Brun-Yaba, Christine; Yu, Charley; Cheng, Jing-Jy; Williams, Alexander

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  17. Validation of dose calculation programmes for recycling

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Shankar [Menon Consulting, Nykoeping (Sweden); Brun-Yaba, Christine [Inst. de Radioprotection et Securite Nucleaire (France); Yu, Charley; Cheng, Jing-Jy [Argonne National Laboratory, IL (United States). Environmental Assessment Div.; Bjerler, Jan [Studsvik Stensand, Nykoeping (Sweden); Williams, Alexander [Dept. of Energy (United States). Office of Environmental Management

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  18. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  19. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  20. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy

    International Nuclear Information System (INIS)

    Meijer, Gert J.; Berg, Hetty A. van den; Hurkmans, Coen W.; Stijns, Pascal E.; Weterings, Jan H.

    2006-01-01

    Purpose: To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Materials and methods: Between 6/2000 and 11/2005, 510 patients underwent 125 I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose-volume parameters such as the V 100 and d 90 for the target, V 100 r for the rectum and d 10 u for the urethra. Furthermore, the target volume ratios (TVR=V 100 body /V 100 ), and the homogeneity indices (HI=[V 100 -V 150 ]/V 100 ) were calculated as additional quality parameters. Results: The dose outside the target volume was significantly reduced, the V 100 r decreased from 1.4cm 3 for the interactive technique to 0.6cm 3 for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V 100 increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V 100 10 u (136% vs. 140%) and the HI (0.58 vs. 0.51). Conclusion: The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate

  1. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Giantsoudi, D; Grassberger, C; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To estimate the clinical relevance of approximations made in analytical dose calculation methods (ADCs) used for treatment planning on tumor coverage and tumor control probability (TCP) in proton therapy. Methods: We compared dose distributions planned with ADC to delivered dose distributions (as determined by TOPAS Monte Carlo (MC) simulations). We investigated 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). We evaluated differences between the two dose distributions analyzing dosimetric indices based on the dose-volume-histograms, the γ-index and the TCP. The normal tissue complication probability (NTCP) was estimated for the bladder and anterior rectum for the prostate patients. Results: We find that the target doses are overestimated by the ADC by 1–2% on average for all patients considered. All dosimetric indices (the mean dose, D95, D50 and D02, the dose values covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. A γ-index with a 3%/3mm criteria had a passing rate for target volumes above 96% for all patients. The TCP predicted by the two algorithms was up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in NTCP for anterior-rectum and bladder for prostate patients were less than 3%. Conclusion: We show that ADC provide adequate dose distributions for most patients, however, they can Result in underdosage of the target by as much as 5%. The TCP was found to be up to 11% lower than predicted. Advanced dose-calculation methods like MC simulations may be necessary in proton therapy to ensure target coverage for heterogeneous patient geometries, in clinical trials comparing proton therapy to conventional radiotherapy to avoid biases due to systematic discrepancies in calculated dose distributions, and, if tighter range margins are considered. Fully funded by NIH grants.

  2. Calculation of radiation dose to infants from radioactive breast milk and suspensions necessary to constrain dose

    International Nuclear Information System (INIS)

    Cormack, J.; Shearer, J.

    2000-01-01

    Full text: For nuclear medicine patients who are breast feeding an infant, special radiation safety precautions may need to be taken. An estimate of the potential radiation dose to the child from ingested milk must be made, and breast-feeding may need to be suspended until levels of radioactivity in the breast-milk have fallen to acceptable levels. The risk of radiation to the child must be weighed against the benefits of breast-feeding and the possible trauma to both mother and child arising from interruption or cessation of the milk supply. In the United States, the Nuclear Regulatory Commission (NRC) has already published regulations which will necessitate an estimate of the infant's dose from breast milk to be made, in principle, for every breast-feeding patient. There is obviously, therefore, a need to provide a rapid and reliable means of estimating such doses. A spreadsheet template which automatically calculates the cumulative dose to breast feeding infants based on any multi-exponential clearance of activity from the breast milk, and any pattern of feeding, has been developed by the authors. The time (post administration) for which breast-feeding should be interrupted in order to constrain the radiation dose to a selected limit is also calculated along with the concentration of activity in breast milk at which feeding can resume. The effect of changing dose limits, feeding patterns and using individually derived breast milk clearance rates may be readily modelled using this spreadsheet template. Data has been included for many of the most commonly used radiopharmaceuticals and new data can readily be incorporated as it becomes available. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  3. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K [Department of Radiation Oncology, NYU Langone Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  4. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    International Nuclear Information System (INIS)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K

    2016-01-01

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  5. The calculation of the surface dose in examinations following cardiac catheterization

    International Nuclear Information System (INIS)

    Ewen, K.

    1995-01-01

    It is inevitable in examinations requiring patient exposure to high doses that the investigators and medical assistants receive high wholebody doses on account of fray radiation and, occasionally, also high partial body doses (hands) on account of the useful beam range. A number of different circumstances are adding up to create this extreme situation. In this connection, a mathematical method for the calculation of the surface dose (cutaneous dose rate) is described that is based on sets of parameters commonly used in diagnostic radiology: Set I of parameters: Tube voltage - current strength of tube - distance between focus and skin; - set II of parameters: Incidence dose rate of image intensifier - distance between focus and skin -distance between image intensifier and plane of ray incidence (skin). (orig./VHE) [de

  6. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D.

    2014-08-01

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  7. Evaluation of absorbed doses during irradiation of patients

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Kozlov, V.A.

    1981-01-01

    Provided is an analysis of a general scheme for the method of control over the dose field realization in the patient's body using direct dose measurements in patients. On the basis of data from literature presented are error limits in the stages of preradiation preparation and irradiation of patients, and in the stage of dose measurement for different irradiation techniques and radiation types. The authors also provide scientific data of their own. It has been concluded that the main emphasis should be placed on the improvement of topometry facilities, field calculation, patients posture and visual control methods of the radiation beam position [ru

  8. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  9. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  10. Development of internal dose calculation programing via food ingestion

    International Nuclear Information System (INIS)

    Kim, H. J.; Lee, W. K.; Lee, M. S.

    1998-01-01

    Most of dose for public via ingestion pathway is calculating for considering several pathways; which start from radioactive material released from a nuclear power plant to diffusion and migration. But in order to model these complicate pathways mathematically, some assumptions are essential and lots of input data related with pathways are demanded. Since there is uncertainty related with environment in these assumptions and input data, the accuracy of dose calculating result is not reliable. To reduce, therefore, these uncertain assumptions and inputs, this paper presents exposure dose calculating method using the activity of environmental sample detected in any pathway. Application of dose calculation is aim at peoples around KORI nuclear power plant and the value that is used to dose conversion factor recommended in ICRP Publ. 60

  11. Evaluating organ delineation, dose calculation and daily localization in an open-MRI simulation workflow for prostate cancer patients

    International Nuclear Information System (INIS)

    Doemer, Anthony; Chetty, Indrin J; Glide-Hurst, Carri; Nurushev, Teamour; Hearshen, David; Pantelic, Milan; Traughber, Melanie; Kim, Joshua; Levin, Kenneth; Elshaikh, Mohamed A; Walker, Eleanor; Movsas, Benjamin

    2015-01-01

    This study describes initial testing and evaluation of a vertical-field open Magnetic Resonance Imaging (MRI) scanner for the purpose of simulation in radiation therapy for prostate cancer. We have evaluated the clinical workflow of using open MRI as a sole modality for simulation and planning. Relevant results related to MRI alignment (vs. CT) reference dataset with Cone-Beam CT (CBCT) for daily localization are presented. Ten patients participated in an IRB approved study utilizing MRI along with CT simulation with the intent of evaluating the MRI-simulation process. Differences in prostate gland volume, seminal vesicles, and penile bulb were assessed with MRI and compared to CT. To evaluate dose calculation accuracy, bulk-density-assignments were mapped onto respective MRI datasets and treated IMRT plans were re-calculated. For image localization purposes, 400 CBCTs were re-evaluated with MRI as the reference dataset and daily shifts compared against CBCT-to-CT registration. Planning margins based on MRI/CBCT shifts were computed using the van Herk formalism. Significant organ contour differences were noted between MRI and CT. Prostate volumes were on average 39.7% (p = 0.002) larger on CT than MRI. No significant difference was found in seminal vesicle volumes (p = 0.454). Penile bulb volumes were 61.1% higher on CT, without statistical significance (p = 0.074). MRI-based dose calculations with assigned bulk densities produced agreement within 1% with heterogeneity corrected CT calculations. The differences in shift positions for the cohort between CBCT-to-CT registration and CBCT-to-MRI registration are −0.15 ± 0.25 cm (anterior-posterior), 0.05 ± 0.19 cm (superior-inferior), and −0.01 ± 0.14 cm (left-right). This study confirms the potential of using an open-field MRI scanner as primary imaging modality for prostate cancer treatment planning simulation, dose calculations and daily image localization

  12. Monte Carlo method for dose calculation due to oral X-rays

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    1998-06-01

    The increasing utilization of oral X-rays, especially in youngsters and children, calls for the assessment of equivalent doses in their organs and tissues. With this purpose, a Monte Carlo code was adapted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM.FOR developed at the GSF-Germany) and the adapted program (MCDRO.PAS). Good agreement between results obtained with both codes was observed. Irradiations of the incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone narrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the larger the field area, the higher the dose in assessed organs and tissues. The variation of the source-skin distance does not change the conversion coefficients. On the other hand, the increase in the voltage applied to the X-ray tube causes an increase in the calculated conversion coefficients. (author)

  13. Estimation of organ doses of patient undergoing hepatic chemoembolization procedures

    International Nuclear Information System (INIS)

    Jaramillo, G.W.; Kramer, R.; Khoury, H.J.; Barros, V.S.M.; Andrade, G.

    2015-01-01

    The aim of this study is to evaluate the organ doses of patients undergoing hepatic chemoembolization procedures performed in two hospitals in the city of Recife-Brazil. Forty eight patients undergoing fifty hepatic chemoembolization procedures were investigated. For the 20 cases with PA projection only, organ and tissue absorbed doses as well as radiation risks were calculated. For this purpose organs and tissues dose to KAP conversion coefficients were calculated using the mesh-based phantom series FASH and MASH coupled to the EGSnrc Monte Carlo code. Clinical, dosimetric and irradiations parameters were registered for all patients. The maximum organ doses found were 1.72 Gy, 0.65Gy, 0.56 Gy and 0.33 Gy for skin, kidneys, adrenals and liver, respectively. (authors)

  14. Evolution of calculation models for the proton-therapy dose planning software

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie Proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams. (author) [fr

  15. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  16. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  17. Independent dose calculation in IMRT for the Tps Iplan using the Clarkson modified integral

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Garrigo, E.; Venencia, D.

    2014-08-01

    Intensity-Modulated Radiation Therapy (IMRT) treatments require a quality assurance (Q A) specific patient before delivery. These controls include the experimental verification in dose phantom of the total plan as well as dose distributions. The use of independent dose calculation (IDC) is used in 3D-Crt treatments; however its application in IMRT requires the implementation of an algorithm that allows considering a non-uniform intensity beam. The purpose of this work was to develop IDC software in IMRT with MLC using the algorithm proposed by Kung (Kung et al. 2000). The software was done using Matlab programming. The Clarkson modified integral was implemented on each flowing, applying concentric rings for the dose determination. From the integral of each field was calculated the dose anywhere. One time finished a planning; all data are exported to a phantom where a Q A plan is generated. On this is calculated the half dose in a representative volume of the ionization chamber and the dose at the center of it. Until now 230 IMRT planning were analyzed carried out ??in the treatment planning system (Tps) Iplan. For each one of them Q A plan was generated, were calculated and compared calculated dose with the Tps, IDC system and measurement with ionization chamber. The average difference between measured and calculated dose with the IDC system was 0.4% ± 2.2% [-6.8%, 6.4%]. The difference between the measured and the calculated doses by the pencil-beam algorithm (Pb) of Tps was 2.6% ± 1.41% [-2.0%, 5.6%] and with the Monte Carlo algorithm was 0.4% ± 1.5% [-4.9%, 3.7%]. The differences of the carried out software are comparable to the obtained with the ionization chamber and Tps in Monte Carlo mode. (author)

  18. Feasibility of CBCT-based dose calculation: Comparative analysis of HU adjustment techniques

    International Nuclear Information System (INIS)

    Fotina, Irina; Hopfgartner, Johannes; Stock, Markus; Steininger, Thomas; Lütgendorf-Caucig, Carola; Georg, Dietmar

    2012-01-01

    Background and purpose: The aim of this work was to compare the accuracy of different HU adjustments for CBCT-based dose calculation. Methods and materials: Dose calculation was performed on CBCT images of 30 patients. In the first two approaches phantom-based (Pha-CC) and population-based (Pop-CC) conversion curves were used. The third method (WAB) represents override of the structures with standard densities for water, air and bone. In ROI mapping approach all structures were overridden with average HUs from planning CT. All techniques were benchmarked to the Pop-CC and CT-based plans by DVH comparison and γ-index analysis. Results: For prostate plans, WAB and ROI mapping compared to Pop-CC showed differences in PTV D median below 2%. The WAB and Pha-CC methods underestimated the bladder dose in IMRT plans. In lung cases PTV coverage was underestimated by Pha-CC method by 2.3% and slightly overestimated by the WAB and ROI techniques. The use of the Pha-CC method for head–neck IMRT plans resulted in difference in PTV coverage up to 5%. Dose calculation with WAB and ROI techniques showed better agreement with pCT than conversion curve-based approaches. Conclusions: Density override techniques provide an accurate alternative to the conversion curve-based methods for dose calculation on CBCT images.

  19. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 3

    International Nuclear Information System (INIS)

    Drexler, G.; Panzer, W.; Widenmann, L.; Williams, G.; Zankl, M.

    1984-03-01

    This report gives tables of conversion factors for the calculation of organ doses from technical parameters of typical radiographic techniques. These conversion factors were calculated using a male and a female mathematical human phantom and an efficient Monte Carlo programme that determines the mean organ doses from the energy deposited in each organ. Each diagnostic X-ray examination is studied using three X-ray spectra resulting from three different high tension values. The conversion factors per unit entrance air dose in free air are given for sixteen organs and for the entrance and exit surface skin doses. The tables are actually valid only for the given parameters such as phantom dimensions, source-to-skin distance, projection and X-ray quality. This, of course, gives rise to some uncertainty when dealing with the individual technique and patient. The uncertainty in organ dose of adult patients, however, should not be very large, if the calculation is based on a similar geometry, and before all, on the actually administered entrance air dose in the selected high tension range according to the patient parameters. (orig.)

  20. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy.

    Science.gov (United States)

    Meijer, Gert J; van den Berg, Hetty A; Hurkmans, Coen W; Stijns, Pascal E; Weterings, Jan H

    2006-09-01

    To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Between 6/2000 and 11/2005, 510 patients underwent (125)I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose - volume parameters such as the V(100) and d(90) for the target, V(100)(r) for the rectum and d(10)(u) for the urethra. Furthermore, the target volume ratios (TVR identical with V(100)(body)/V(100)), and the homogeneity indices (HI identical with [V(100)-V(150)]/V(100)) were calculated as additional quality parameters. The dose outside the target volume was significantly reduced, the V(100)(r) decreased from 1.4 cm(3) for the interactive technique to 0.6 cm(3) for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V(100) increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V(100) < 80% reduced from 5% to 1%. A slight decline was observed with regard to the d(10)(u) (136% vs. 140%) and the HI (0.58 vs. 0.51). The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate.

  1. Development of a computational methodology for internal dose calculations

    International Nuclear Information System (INIS)

    Yoriyaz, Helio

    2000-01-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body and a more precise tool for the radiation transport simulation. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. In order to utilize the segmented human anatomy as a computational model for the simulation of radiation transport, an interface program, SCMS, was developed to build the geometric configurations for the phantom through the use of tomographic images. This procedure allows to calculate not only average dose values but also spatial distribution of dose in regions of interest. With the present methodology absorbed fractions for photons and electrons in various organs of the Zubal segmented phantom were calculated and compared to those reported for the mathematical phantoms of Snyder and Cristy-Eckerman. Although the differences in the organ's geometry between the phantoms are quite evident, the results demonstrate small discrepancies, however, in some cases, considerable discrepancies were found due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the Zubal segmented phantom, which is not considered in the mathematical phantom. This effect was quite evident for organ cross-irradiation from electrons. With the determination of spatial dose distribution it was demonstrated the possibility of evaluation of more detailed doses data than those obtained in conventional methods, which will give important information for the clinical analysis in therapeutic procedures and in radiobiologic studies of the human body. (author)

  2. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  3. Iodine 131 therapy patients: radiation dose to staff

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.; Beh, R.A.; Veilleux, N.M.

    1986-01-01

    Metastasis to the skeletal system from follicular thyroid carcinoma may be treated with an oral dose of 131 I-NaI. Radiation exposures to hospital personnel attending these patients were calculated as a function of administered dose, distance from the patient and time after administration. Routine or emergency patient handling tasks would not exceed occupational radiation protection guidelines for up to 30 min immediately after administration. The emergency handling of several patients presents the potential for exceeding these guidelines. (author)

  4. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  5. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  6. SU-F-I-38: Patient Organ Specific Dose Assessment in Coronary CT Angiograph Using Voxellaized Volume Dose Index in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh. [Tehran University of Medical Scienced(TUMS), School of Medicine, Department of Nedical Physics and Biomedical Engineering, Tehran (Iran, Islamic Republic of); Paydar, R. [Iran University of Medical Sciences(IUMS), Allied Medicine Faculty, Department of radiation Sciences, Tehran (Iran, Islamic Republic of)

    2016-06-15

    Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-system component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose

  7. The calculation of dose rates from rectangular sources

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1998-01-01

    A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)

  8. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    International Nuclear Information System (INIS)

    Wan, H; Tseung, Chan; Beltran, C

    2016-01-01

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10"8 proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  9. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H; Tseung, Chan; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  10. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  11. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  12. IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram

    International Nuclear Information System (INIS)

    Grigorov, Grigor N.; Chow, James C.L.; Grigorov, Lenko; Jiang, Runqing; Barnett, Rob B.

    2006-01-01

    The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurance check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP ( R NTCP). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the R NTCP if 1 cm 3 of the volume of intersection of the PTV and rectum (R int ) is irradiated uniformly by a dose of 1 Gy. The function was 'geometrically' normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the R NTCP for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the R int , and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The R NTCPs of another group of patients were calculated by the new method and the resulting difference was <±5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose

  13. Patient dose in neonatal units

    International Nuclear Information System (INIS)

    Smans, K.; Struelens, L.; Smet, M.; Bosmans, H.; Vanhavere, F.

    2008-01-01

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is therefore the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Hence, knowledge of the patient dose is necessary to justify the exposures. A study to assess the patient doses was started at the neonatal intensive care unit (NICU) of the Univ. Hospital in Leuven. Between September 2004 and September 2005, prematurely born babies underwent on average 10 X-ray examinations in the NICU. In this sample, the maximum was 78 X-ray examinations. For chest radiographs, the median entrance skin dose was 34 μGy and the median dose area product was 7.1 mGy.cm 2 . By means of conversion coefficients, the measured values were converted to organ doses. Organ doses were calculated for three different weight classes: extremely low birth weight infants ( 2500 g). The doses to the lungs for a single chest radiograph for infants with extremely low birth weights, low birth weights and normal birth weights were 24, 25 and 32 μGy, respectively. (authors)

  14. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for "dose of the day" calculations.

    Science.gov (United States)

    Veiga, Catarina; McClelland, Jamie; Moinuddin, Syed; Lourenço, Ana; Ricketts, Kate; Annkah, James; Modat, Marc; Ourselin, Sébastien; D'Souza, Derek; Royle, Gary

    2014-03-01

    The aim of this study was to evaluate the appropriateness of using computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) for the application of calculating the "dose of the day" received by a head and neck patient. NiftyReg is an open-source registration package implemented in our institution. The affine registration uses a Block Matching-based approach, while the deformable registration is a GPU implementation of the popular B-spline Free Form Deformation algorithm. Two independent tests were performed to assess the suitability of our registrations methodology for "dose of the day" calculations in a deformed CT. A geometric evaluation was performed to assess the ability of the DIR method to map identical structures between the CT and CBCT datasets. Features delineated in the planning CT were warped and compared with features manually drawn on the CBCT. The authors computed the dice similarity coefficient (DSC), distance transformation, and centre of mass distance between features. A dosimetric evaluation was performed to evaluate the clinical significance of the registrations errors in the application proposed and to identify the limitations of the approximations used. Dose calculations for the same intensity-modulated radiation therapy plan on the deformed CT and replan CT were compared. Dose distributions were compared in terms of dose differences (DD), gamma analysis, target coverage, and dose volume histograms (DVHs). Doses calculated in a rigidly aligned CT and directly in an extended CBCT were also evaluated. A mean value of 0.850 in DSC was achieved in overlap between manually delineated and warped features, with the distance between surfaces being less than 2 mm on over 90% of the pixels. Deformable registration was clearly superior to rigid registration in mapping identical structures between the two datasets. The dose recalculated in the deformed CT is a good match to the dose calculated on a replan CT. The DD is smaller

  15. Presentation of the DosePet application (APP) for use in Nuclear Medicine: calculation of the amount of medicament for PET / CT patients

    International Nuclear Information System (INIS)

    Nascimento, Pedro Augusto do; Rodrigues, Araken dos S. Werneck

    2016-01-01

    This paper presents the application (APP) DosePet that calculates the amount of medicament for PET / CT in patients according to the predetermined radiation dose. The software has been designed using the web MIT App Inventor2 tool for Android platform. The application allows the workers to simulate the amount of radiation still existing in the premises after the applications, increasing security and reducing exposures, and enable greater efficiency in the use of the radiopharmaceutical. (author)

  16. The determination of patient dose from 18F-FDG PET/CT examination

    International Nuclear Information System (INIS)

    Khamwan, K.; Krisanachinda, A.; Pasawang, P.

    2010-01-01

    The use of positron emission tomography/computed tomography (PET/CT) system has heightened the need for medical diagnosis. However, the patient dose is increasing in comparison to whole-body PET/CT dose. The aim of this study is to determine the patient effective dose in 35 oncology Thai patients with the age range of 28-60 y from PET scan using [fluorine-18]-fluoro-2-deoxy-D-glucose and from CT scan. Cumulated activity and residence time of various organs were calculated from time-activity curves by using S-value based on the body mass. Mean organ absorbed dose and the effective dose from CT scan were calculated using the Medical Internal Radiation Dosimetry method and Monte Carlo simulation, respectively. The average whole-body effective doses from PET and CT were 4.40 ± 0.61 and 14.45 ± 2.82 mSv, respectively, resulting in the total patient dose of 18.85 mSv. This can be used as the reference dose in Thai patients. (authors)

  17. Assessment of mean glandular dose to patients from digital mammography systems

    International Nuclear Information System (INIS)

    Pwamang, Caroline K.

    2016-07-01

    Mean glandular dose assessment of patients undergoing digital mammography examination has been done. A total of 297 patient data was used for the study. Basic Quality Control tests were done to ascertain the performance of the equipment used. The results of Quality Control tests indicated that the three Mammography units used for this study were functioning within the internationally acceptable performance criteria. Patients with a breast thickness of 30 mm within the two age groups of 40-49 yrs and 50-64 yrs received doses slightly higher than the acceptable dose levels. A patient in the category 40-49 yrs with breast thickness of 30 mm received 1.83 mGy as calculated Mean Glandular Dose, 2.10 mGy was the recorded dose and 1.58 mGy was recorded under the age group 50-64 yrs. These values have deviated by -22%, -40%, and -5.33% respectively from 1.5 mGy which is the recommended dose for a breast thickness of 30 mm. Also patients with breast thickness of 70 mm under the age group 40–49 yrs had a recorded dose of 6.58 mGy, which deviated by -1.21% from the recommended value of 6.5 mGy for that breast thickness. Aside these values, all the other values were within the recommended dose values. The percentage deviation between the recommended values and the calculated values was within ±25% which was a working limit that was set for this work. Doses delivered by the Full-field Digital mammography equipment were higher than doses delivered by the Computered Radiography equipment. The calculated Mean Glandular Doses for the three facilities were within recommended dose values. (author)

  18. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  19. Simulation of lung cancer treatment with equivalent dose calculation and analysis of the dose distribution profile

    International Nuclear Information System (INIS)

    Thalhofer, J. L.; Marques L, J.; Da Silva, A. X.; Dos Reis J, J. P.; Da Silva J, W. F. R.; Arruda C, S. C.; Monteiro de S, E.; Santos B, D. V.

    2017-10-01

    Actually, lung cancer is one of the most lethal types, due to the disease in the majority of the cases asymptomatic in the early stages, being the detection of the pathology in advanced stage, with tumor considerable volume. Dosimetry analysis of healthy organs under real conditions is not feasible. Therefore, computational simulations are used to auxiliary in dose verification in organs of patients submitted to radiotherapy. The goal of this study is to calculate the equivalent dose, due to photons, in surrounding in healthy organs of a patient submitted to radiotherapy for lung cancer, through computational modeling. The simulation was performed using the MCNPX code (Version, 2006], Rex and Regina phantom [ICRP 110, 2008], radiotherapy room, Siemens Oncor Expression accelerator operating at 6 MV and treatment protocol adopted at the Inca (National Cancer Institute, Brazil). The results obtained, considering the dose due to photons for both phantom indicate that organs located inside the thoracic cavity received higher dose, being the bronchi, heart and esophagus more affected, due to the anatomical positioning. Clinical data describe the development of bronchiolitis, esophagitis, and cardiomyopathies with decreased cardiopulmonary function as one of the major effects of lung cancer treatment. In the Regina phantom, the second largest dose was in the region of the breasts with 615,73 mSv / Gy, while in the Rex 514,06 mSv / Gy, event related to the difference of anatomical structure of the organ. Through the t mesh command, a qualitative analysis was performed between the dose deposition profile of the planning system and the simulated treatment, with a similar profile of the dose distribution being verified along the patients body. (Author)

  20. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  1. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    International Nuclear Information System (INIS)

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-01-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy

  3. Simplified dose calculation method for mantle technique

    International Nuclear Information System (INIS)

    Scaff, L.A.M.

    1984-01-01

    A simplified dose calculation method for mantle technique is described. In the routine treatment of lymphom as using this technique, the daily doses at the midpoints at five anatomical regions are different because the thicknesses are not equal. (Author) [pt

  4. Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland); Nesteruk, Marta [Faculty of Physics, University of Warsaw, Warsaw (Poland); Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich (Switzerland); Brzozowska, Beata [Faculty of Physics, University of Warsaw, Warsaw (Poland); Kukołowicz, Paweł F. [Medical Physics Department, Centre of Oncology, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw (Poland)

    2017-04-01

    The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared for 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.

  5. Reference doses and patient size in paediatric radiology

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.; Shrimpton, P.

    2000-01-01

    There is a wide range in patient size from a newborn baby to a 15 year old adolescent. Reference doses for paediatric radiology can sensibly be established only for specific sizes of children. Here five standard sizes have been chosen, representing 0 (newborn), 1, 5, 10 and 15 year old patients. This selection of standard ages has the advantage of matching the paediatric mathematical phantoms which are often used in Monte Carlo organ dose calculations. A method has been developed for calculating factors for normalising doses measured on individual children to those for the nearest standard-sized 'child'. These normalisation factors for entrance surface dose (ESD) and dose-area product (DAP) measurements depend on the thickness of the real child, the thickness of the nearest standard 'child', and an effective linear attenuation coefficient (μ) which is itself a function of the x-ray spectrum, the field size, and whether or not an antiscatter grid is used. Entrance and exit dose measurements were made with phantom material representing soft tissue to establish μ values for abdominal and head examinations, and with phantom material representing lung for chest examinations. These measurements of μ were confirmed and extended to other x-ray spectra and field sizes by Monte Carlo calculations. The normalisation factors are tabulated for ESD measurements for specific radiographic projections through the head and trunk, and for DAP measurements for complete multiprojection examinations in the trunk. The normalisation factors were applied to European survey data for entrance surface dose and dose-area product measurements to derive provisional reference doses for common radiographic projections and for micturating cystourethrography (MCU) examinations - the most frequent fluoroscopic examination on children. (author)

  6. Carboplatin dosing for adult Japanese patients.

    Science.gov (United States)

    Ando, Yuichi; Shimokata, Tomoya; Yasuda, Yoshinari; Hasegawa, Yoshinori

    2014-02-01

    Carboplatin is a platinum-based anticancer drug that has been long used to treat many types of solid cancer. Because the clearance of carboplatin strongly correlates with the glomerular filtration rate (GFR), its dosage is calculated with the Calvert formula on the basis of the patient's GFR to achieve the target area under the plasma drug concentration-time curve (AUC) for each patient. However, many lines of evidence from previous clinical studies should be interpreted with caution because different methods were used to estimate drug clearance and derive the dosage of carboplatin. There is a particularly high risk of carboplatin overdosing when the dosage is determined on the basis of standardized serum creatinine values. When deciding the dose of carboplatin for adult Japanese patients, preferred methods to assess renal function instead of directly measuring GFR include (1) 24-h urinary collection-based creatinine clearance adjusted by adding 0.2 mg/dl to the serum creatinine concentration measured by standardized methods, and (2) equation-based GFR (eGFR) with a back calculation to units of ml/min per subject. Given the limitations of serum creatinine-based GFR estimations, the GFR or creatinine clearance should be directly measured in each patient whenever possible. To ensure patient safety and facilitate a medical-team approach, the single most appropriate method available at each institute or medical team should be consistently used to calculate the dose of carboplatin with the Calvert formula.

  7. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 6

    International Nuclear Information System (INIS)

    Zankl, M.; Panzer, W.; Drexler, G.

    1991-11-01

    Computed tomography (CT) is a technique which offers a high diagnostic capability; however, the dose to the patient is high compared to conventional radiography. This report provides a catalogue of organ doses resulting from CT examinations. The organ doses were calculated for the type of CT scanners most commonly used in the FRG and for three different radiation qualities. For the dose calculations, the patients were represented by the adult mathematical phantoms Adam and Eva. The radiation transport in the body was simulated using a Monte Carlo method. The doses were calculated as conversion factors of mean organ doses per air kerma free in air on the axis of rotation. Mean organ dose conversion factors are given per organ and per single CT slice of 1 cm width. The mean dose to an organ resulting from a particular CT examination can be estimated by summing up the contribution to the organ dose from each relevant slice. In order to facilitate the selection of the appropriate slices, a table is given which relates the mathematical phantoms' coordinates to certain anatomical landmarks in the human body. (orig.)

  8. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  9. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone-beam CT

    International Nuclear Information System (INIS)

    Rampado, Osvaldo; Giglioli, Francesca Romana; Rossetti, Veronica; Ropolo, Roberto; Fiandra, Christian; Ragona, Riccardo

    2016-01-01

    Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution in an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K_a_i_r), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses

  10. Investigations on the necessity of dose calculations for several planes of the target volume

    International Nuclear Information System (INIS)

    Richter, E.

    1987-01-01

    In radiotherapy planning, the shape of a target volume can at present be exactly delimited by means of computed tomography. A method often applied is to project the largest target volume scan on the plane of the central ray and to calculate the dose in this plane. This method does not allow to take into account any change of the target volume scan which will be mainly due to the body contours of the patient. The results of dose calculations made in several planes for pharyngeal and laryngeal tumors are presented. With this procedure, 33 out of 60 irradiation techniques for nine tumor sites meet the requirements with regard to the central ray plane. If several planes are regarded, this is only true for ten irradiation plans. If is therefore absolutely necessary to calculate the doses of several planes if the target volume has an irregular shape or if the body contours vary considerably. This is the only way to prevent a false treatment caused by possibly severe dose excesses or dose insufficiencies in radiotherapy. (orig.) [de

  11. Dose calculation of X-ray in medium

    International Nuclear Information System (INIS)

    Liu Yanmei; Xue Dingyu; Xu Xinhe; Chen Zhen; Dong Zaili

    2006-01-01

    The photon transportation in radiotherapy is studied based on Monte Carlo method. The dose calculation based on the MC simulation package DPM has been carried out, and the results have been visualized using MEX technology of Matlab. The dose results of X-ray in homogeneity and inhomogeneity medium have been compared with experimental data and those of other MC simulation package, and these results all agree. The calculation method we proposed has the advantage of high speed and good accuracy, therefore, is applicable in practice. (authors)

  12. Analysis of offsite dose calculation methodology for a nuclear power reactor

    International Nuclear Information System (INIS)

    Moser, D.M.

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected

  13. SU-F-P-56: On a New Approach to Reconstruct the Patient Dose From Phantom Measurements

    International Nuclear Information System (INIS)

    Bangtsson, E; Vries, W de

    2016-01-01

    Purpose: The development of complex radiation treatment schemes emphasizes the need for advanced QA analysis methods to ensure patient safety. One such tool is the Delta4 DVH Anatomy software, where the patient dose is reconstructed from phantom measurements. Deviations in the measured dose are transferred to the patient anatomy and their clinical impact is evaluated in situ. Results from the original algorithm revealed weaknesses that may introduce artefacts in the reconstructed dose. These can lead to false negatives or obscure the effects of minor dose deviations from delivery failures. Here, we will present results from a new patient dose reconstruction algorithm. Methods: The main steps of the new algorithm are: (1) the dose delivered to a phantom is measured in a number of detector positions. (2) The measured dose is compared to an internally calculated dose distribution evaluated in said positions. The so-obtained dose difference is (3) used to calculate an energy fluence difference. This entity is (4) used as input to a patient dose correction calculation routine. Finally, the patient dose is reconstructed by adding said patient dose correction to the planned patient dose. The internal dose calculation in step (2) and (4) is based on the Pencil Beam algorithm. Results: The new patient dose reconstruction algorithm have been tested on a number of patients and the standard metrics dose deviation (DDev), distance-to-agreement (DTA) and Gamma index are improved when compared to the original algorithm. In a certain case the Gamma index (3%/3mm) increases from 72.9% to 96.6%. Conclusion: The patient dose reconstruction algorithm is improved. This leads to a reduction in non-physical artefacts in the reconstructed patient dose. As a consequence, the possibility to detect deviations in the dose that is delivered to the patient is improved. An increase in Gamma index for the PTV can be seen. The corresponding author is an employee of ScandiDos

  14. SU-F-P-56: On a New Approach to Reconstruct the Patient Dose From Phantom Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bangtsson, E [ScandiDos, Uppsala (Sweden); Vries, W de [University Medical Center Utrecht, Utrecht (Netherlands)

    2016-06-15

    Purpose: The development of complex radiation treatment schemes emphasizes the need for advanced QA analysis methods to ensure patient safety. One such tool is the Delta4 DVH Anatomy software, where the patient dose is reconstructed from phantom measurements. Deviations in the measured dose are transferred to the patient anatomy and their clinical impact is evaluated in situ. Results from the original algorithm revealed weaknesses that may introduce artefacts in the reconstructed dose. These can lead to false negatives or obscure the effects of minor dose deviations from delivery failures. Here, we will present results from a new patient dose reconstruction algorithm. Methods: The main steps of the new algorithm are: (1) the dose delivered to a phantom is measured in a number of detector positions. (2) The measured dose is compared to an internally calculated dose distribution evaluated in said positions. The so-obtained dose difference is (3) used to calculate an energy fluence difference. This entity is (4) used as input to a patient dose correction calculation routine. Finally, the patient dose is reconstructed by adding said patient dose correction to the planned patient dose. The internal dose calculation in step (2) and (4) is based on the Pencil Beam algorithm. Results: The new patient dose reconstruction algorithm have been tested on a number of patients and the standard metrics dose deviation (DDev), distance-to-agreement (DTA) and Gamma index are improved when compared to the original algorithm. In a certain case the Gamma index (3%/3mm) increases from 72.9% to 96.6%. Conclusion: The patient dose reconstruction algorithm is improved. This leads to a reduction in non-physical artefacts in the reconstructed patient dose. As a consequence, the possibility to detect deviations in the dose that is delivered to the patient is improved. An increase in Gamma index for the PTV can be seen. The corresponding author is an employee of ScandiDos.

  15. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  16. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  17. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  18. SU-E-T-470: Importance of HU-Mass Density Calibration Technique in Proton Pencil Beam Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Penfold, S; Miller, A [University of Adelaide, Adelaide, SA (Australia)

    2015-06-15

    Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based on scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.

  19. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene

    2003-10-01

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of {sup 131}I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other

  20. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Lourenço, Ana; Ricketts, Kate; Annkah, James; Royle, Gary [Radiation Physics Group, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); McClelland, Jamie; Modat, Marc; Ourselin, Sébastien [Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Moinuddin, Syed [Department of Radiotherapy, University College London Hospital, London NW1 2BU (United Kingdom); D’Souza, Derek [Department of Radiotherapy Physics, University College London Hospital, London NW1 2PG (United Kingdom)

    2014-03-15

    Purpose: The aim of this study was to evaluate the appropriateness of using computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) for the application of calculating the “dose of the day” received by a head and neck patient. Methods: NiftyReg is an open-source registration package implemented in our institution. The affine registration uses a Block Matching-based approach, while the deformable registration is a GPU implementation of the popular B-spline Free Form Deformation algorithm. Two independent tests were performed to assess the suitability of our registrations methodology for “dose of the day” calculations in a deformed CT. A geometric evaluation was performed to assess the ability of the DIR method to map identical structures between the CT and CBCT datasets. Features delineated in the planning CT were warped and compared with features manually drawn on the CBCT. The authors computed the dice similarity coefficient (DSC), distance transformation, and centre of mass distance between features. A dosimetric evaluation was performed to evaluate the clinical significance of the registrations errors in the application proposed and to identify the limitations of the approximations used. Dose calculations for the same intensity-modulated radiation therapy plan on the deformed CT and replan CT were compared. Dose distributions were compared in terms of dose differences (DD), gamma analysis, target coverage, and dose volume histograms (DVHs). Doses calculated in a rigidly aligned CT and directly in an extended CBCT were also evaluated. Results: A mean value of 0.850 in DSC was achieved in overlap between manually delineated and warped features, with the distance between surfaces being less than 2 mm on over 90% of the pixels. Deformable registration was clearly superior to rigid registration in mapping identical structures between the two datasets. The dose recalculated in the deformed CT is a good match to the dose calculated on

  1. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations

    International Nuclear Information System (INIS)

    Veiga, Catarina; Lourenço, Ana; Ricketts, Kate; Annkah, James; Royle, Gary; McClelland, Jamie; Modat, Marc; Ourselin, Sébastien; Moinuddin, Syed; D’Souza, Derek

    2014-01-01

    Purpose: The aim of this study was to evaluate the appropriateness of using computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) for the application of calculating the “dose of the day” received by a head and neck patient. Methods: NiftyReg is an open-source registration package implemented in our institution. The affine registration uses a Block Matching-based approach, while the deformable registration is a GPU implementation of the popular B-spline Free Form Deformation algorithm. Two independent tests were performed to assess the suitability of our registrations methodology for “dose of the day” calculations in a deformed CT. A geometric evaluation was performed to assess the ability of the DIR method to map identical structures between the CT and CBCT datasets. Features delineated in the planning CT were warped and compared with features manually drawn on the CBCT. The authors computed the dice similarity coefficient (DSC), distance transformation, and centre of mass distance between features. A dosimetric evaluation was performed to evaluate the clinical significance of the registrations errors in the application proposed and to identify the limitations of the approximations used. Dose calculations for the same intensity-modulated radiation therapy plan on the deformed CT and replan CT were compared. Dose distributions were compared in terms of dose differences (DD), gamma analysis, target coverage, and dose volume histograms (DVHs). Doses calculated in a rigidly aligned CT and directly in an extended CBCT were also evaluated. Results: A mean value of 0.850 in DSC was achieved in overlap between manually delineated and warped features, with the distance between surfaces being less than 2 mm on over 90% of the pixels. Deformable registration was clearly superior to rigid registration in mapping identical structures between the two datasets. The dose recalculated in the deformed CT is a good match to the dose calculated on

  2. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  3. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2012-02-15

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and

  4. Application of the mathematical modelling and human phantoms for calculation of the organ doses

    International Nuclear Information System (INIS)

    Kluson, J.; Cechak, T.

    2005-01-01

    Increasing power of the computers hardware and new versions of the software for the radiation transport simulation and modelling of the complex experimental setups and geometrical arrangement enable to dramatically improve calculation of organ or target volume doses ( dose distributions) in the wide field of medical physics and radiation protection applications. Increase of computers memory and new software features makes it possible to use not only analytical (mathematical) phantoms but also allow constructing the voxel models of human or phantoms with voxels fine enough (e.g. 1·1·1 mm) to represent all required details. CT data can be used for the description of such voxel model geometry .Advanced scoring methods are available in the new software versions. Contribution gives the overview of such new possibilities in the modelling and doses calculations, discusses the simulation/approximation of the dosimetric quantities ( especially dose ) and calculated data interpretation. Some examples of application and demonstrations will be shown, compared and discussed. Present computational tools enables to calculate organ or target volumes doses with new quality of large voxel models/phantoms (including CT based patient specific model ), approximating the human body with high precision. Due to these features has more and more importance and use in the fields of medical and radiological physics, radiation protection, etc. (authors)

  5. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  6. Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors

    International Nuclear Information System (INIS)

    Martel, Mary Kaye; Sandler, Howard M.; Cornblath, Wayne T.; Marsh, Lon H.; Hazuka, Mark B.; Roa, Wilson H.; Fraass, Benedict A.; Lichter, Allen S.

    1997-01-01

    Purpose: The purpose of the present work was to relate dose and volume information to complication data for visual pathway structures in patients with advanced paranasal sinus tumors. Methods and Materials: Three-dimensional (3D) dose distributions for chiasm, optic nerve, and retina were calculated and analyzed for 20 patients with advanced paranasal sinus malignant tumors. 3D treatment planning with beam's eye view capability was used to design beam and block arrangements, striving to spare the contralateral orbit (to lessen the chance of unilateral blindness) and frequently the ipsilateral orbit (to help prevent bilateral blindness). Point doses, dose-volume histogram analysis, and normal tissue complication probability (NTCP) calculations were performed. Published tolerance doses that indicate significant risk of complications were used as guidelines for analysis of the 3D dose distributions. Results: Point doses, percent volume exceeding a specified published tolerance dose, and NTCP calculations are given in detail for patients with complications versus patients without complications. Two optic nerves receiving maximum doses below the published tolerance dose sustained damage (mild vision loss). Three patients (of 13) without optic nerve sparing and/or chiasm sparing had moderate or severe vision loss. Complication data, including individual patient analysis to estimate overall risk for loss of vision, are given. Conclusion: 3D treatment planning techniques were used successfully to provide bilateral sparing of the globe for most patients. It was more difficult to spare the optic nerves, especially on the ipsilateral side, when prescription dose exceeded the normal tissue tolerance doses. NTCP calculations may be useful in assessing complication risk better than point dose tolerance criteria for the chiasm, optic nerve, and retina. It is important to assess the overall risk of blindness for the patient in addition to the risk for individual visual pathway

  7. Accuracy of radiotherapy dose calculations based on cone-beam CT: comparison of deformable registration and image correction based methods

    Science.gov (United States)

    Marchant, T. E.; Joshi, K. D.; Moore, C. J.

    2018-03-01

    Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).

  8. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kan, M W K; Cheung, J Y C; Leung, L H T; Lau, B M F; Yu, P K N

    2011-01-01

    Nasopharyngeal tumors are commonly treated with intensity-modulated radiotherapy techniques. For photon dose calculations, problems related to loss of lateral electronic equilibrium exist when small fields are used. The anisotropic analytical algorithm (AAA) implemented in Varian Eclipse was developed to replace the pencil beam convolution (PBC) algorithm for more accurate dose prediction in an inhomogeneous medium. The purpose of this study was to investigate the accuracy of the AAA for predicting interface doses for intensity-modulated stereotactic radiotherapy boost of nasopharyngeal tumors. The central axis depth dose data and dose profiles of phantoms with rectangular air cavities for small fields were measured using a 6 MV beam. In addition, the air-tissue interface doses from six different intensity-modulated stereotactic radiotherapy plans were measured in an anthropomorphic phantom. The nasopharyngeal region of the phantom was especially modified to simulate the air cavities of a typical patient. The measured data were compared to the data calculated by both the AAA and the PBC algorithm. When using single small fields in rectangular air cavity phantoms, both AAA and PBC overestimated the central axis dose at and beyond the first few millimeters of the air-water interface. Although the AAA performs better than the PBC algorithm, its calculated interface dose could still be more than three times that of the measured dose when a 2 x 2 cm 2 field was used. Testing of the algorithms using the anthropomorphic phantom showed that the maximum overestimation by the PBC algorithm was 20.7%, while that by the AAA was 8.3%. When multiple fields were used in a patient geometry, the dose prediction errors of the AAA would be substantially reduced compared with those from a single field. However, overestimation of more than 3% could still be found at some points at the air-tissue interface.

  9. Investigation of the HU-density conversion method and comparison of dose distribution for dose calculation on MV cone beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Joo; Lee, Seu Ran; Suh, Tae Suk [Dept. of Biomedical Engineering, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2011-11-15

    Modern radiation therapy techniques, such as Image-guided radiation therapy (IGRT), Adaptive radiation therapy (ART) has become a routine clinical practice on linear accelerators for the increase the tumor dose conformity and improvement of normal tissue sparing at the same time. For these highly developed techniques, megavoltage cone beam computed tomography (MVCBCT) system produce volumetric images at just one rotation of the x-ray beam source and detector on the bottom of conventional linear accelerator for real-time application of patient condition into treatment planning. MV CBCT image scan be directly registered to a reference CT data set which is usually kilo-voltage fan-beam computed tomography (kVFBCT) on treatment planning system and the registered image scan be used to adjust patient set-up error. However, to use MV CBCT images in radiotherapy, reliable electron density (ED) distribution are required. Patients scattering, beam hardening and softening effect caused by different energy application between kVCT, MV CBCT can cause cupping artifacts in MV CBCT images and distortion of Houns field Unit (HU) to ED conversion. The goal of this study, for reliable application of MV CBCT images into dose calculation, MV CBCT images was modified to correct distortion of HU to ED using the relationship of HU and ED from kV FBCT and MV CBCT images. The HU-density conversion was performed on MV CBCT image set using Dose difference map was showing in Figure 1. Finally, percentage differences above 3% were reduced depending on applying density calibration method. As a result, total error co uld be reduced to under 3%. The present study demonstrates that dose calculation accuracy using MV CBCT image set can be improved my applying HU-density conversion method. The dose calculation and comparison of dose distribution from MV CBCT image set with/without HU-density conversion method was performed. An advantage of this study compared to other approaches is that HU

  10. Lung Dose Calculation With SPECT/CT for 90Yittrium Radioembolization of Liver Cancer

    International Nuclear Information System (INIS)

    Yu, Naichang; Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-01-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ( 99m Tc-MAA) single photon emission CT (SPECT)/CT for 90 Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of 99m Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on 99m Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended

  11. Some measurements of doses to patients from dental X-rays

    International Nuclear Information System (INIS)

    Woehni, T.

    1976-01-01

    Some measurements of doses to patients from conventional dental radiography and orthopantomography are presented. Doses to the red bone marrow are calculated. The bone marrow doses from two different exposures, Maxilla incisor and Molar bite-wing, were calculated to be 0.4 and 1.0 mrad respectively. The average dose to red bone marrow from a full-mouth examination (10 exposures) was 0.7 mrad/exposure. An orthopantomographic examination involved 2 mrad to the bone marrow. The greatest doses from an orthopantomographic examination were found around the lateral rotational axis, namely 700 mrad. The dose distributions from the two different cone lengths did not differ as much as expected, mainly due to scattered radiation. (Auth.)

  12. Some measurements of doses to patients from dental X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Woehni, T [Statens Institutt for Straalehygiene, Oslo (Norway)

    1976-11-01

    Some measurements of doses to patients from conventional dental radiography and orthopantomography are presented. Doses to the red bone marrow are calculated. The bone marrow doses from two different exposures, Maxilla incisor and Molar bite-wing, were calculated to be 0.4 and 1.0 mrad respectively. The average dose to red bone marrow from a full-mouth examination (10 exposures) was 0.7 mrad/exposure. An orthopantomographic examination involved 2 mrad to the bone marrow. The greatest doses from an orthopantomographic examination were found around the lateral rotational axis, namely 700 mrad. The dose distributions from the two different cone lengths did not differ as much as expected, mainly due to scattered radiation.

  13. CT dose profiles and MSAD calculation in a chest phantom

    International Nuclear Information System (INIS)

    Oliveira, Bruno Beraldo; Silva, Teogenes Augusto da

    2011-01-01

    For optimizing patient doses in computed tomography (CT), the Brazilian legislation has only established diagnostic reference levels (DRLs) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a quality control parameter for CT scanners. Compliance with the DRLs can be verified by measuring the Computed Tomography Air Kerma Index with a calibrated pencil ionization chamber or by obtaining the dose distribution in CT scans. An analysis of the quality of five CT scanners in Belo Horizonte was done in terms of dose profile of chest scans and MSAD determinations. Measurements were done with rod shape lithium fluoride thermoluminescent dosimeters (TLD-100) distributed in cylinders positioned in peripheral and central regions of a polymethylmethacrylate chest phantom. The peripheral regions presented higher dose values. The longitudinal dose variation can be observed and the maximum dose was recorded at the edges of the phantom at the midpoint of the longitudinal axis. The MSAD results were in according to the DRL of 25 mGy established by Brazilian legislation. The results contribute to disseminate to hospitals and radiologists the proper procedure to use the thermoluminescent dosimeters for the calculation of the MSAD from the CT dose profiles and to notice the compliance with the DRLs. (author)

  14. Secondary neutron doses received by patients of different ages during intracranial proton therapy treatments

    International Nuclear Information System (INIS)

    Sayah, R.

    2012-01-01

    Proton therapy is an advanced radiation therapy technique that allows delivering high doses to the tumor while saving the healthy surrounding tissues due to the protons' ballistic properties. However, secondary particles, especially neutrons, are created during protons' nuclear reactions in the beam-line and the treatment room components, as well as inside the patient. Those secondary neutrons lead to unwanted dose deposition to the healthy tissues located at distance from the target, which may increase the secondary cancer risks to the patients, especially the pediatric ones. The aim of this work was to calculate the neutron secondary doses received by patients of different ages treated at the Institut Curie-centre de Protontherapie d'Orsay (ICPO) for intracranial tumors, using a 178 MeV proton beam. The treatments are undertaken at the new ICPO room equipped with an IBA gantry. The treatment room and the beam-line components, as well as the proton source were modeled using the Monte Carlo code MCNPX. The obtained model was then validated by a series of comparisons between model calculations and experimental measurements. The comparisons concerned: a) depth and lateral proton dose distributions in a water phantom, b) neutron spectrometry at one position in the treatment room, c) ambient dose equivalents at different positions in the treatment room and d) secondary absorbed doses inside a physical anthropomorphic phantom. A general good agreement was found between calculations and measurements, thus our model was considered as validated. The University of Florida hybrid voxelized phantoms of different ages were introduced into the MCNPX validated model, and secondary neutron doses were calculated to many of these phantoms' organs. The calculated doses were found to decrease as the organ's distance to the treatment field increases and as the patient's age increases. The secondary doses received by a one year-old patient may be two times higher than the doses

  15. SU-E-T-67: Clinical Implementation and Evaluation of the Acuros Dose Calculation Algorithm

    International Nuclear Information System (INIS)

    Yan, C; Combine, T; Dickens, K; Wynn, R; Pavord, D; Huq, M

    2014-01-01

    Purpose: The main aim of the current study is to present a detailed description of the implementation of the Acuros XB Dose Calculation Algorithm, and subsequently evaluate its clinical impacts by comparing it with AAA algorithm. Methods: The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were evaluated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6cm × 6cm to 40cm × 40cm. Central axis and off-axis points with different depths were chosen for the comparison. Similarly, wedge fields with wedge angles from 15 to 60 degree were used. In addition, variable field sizes for a heterogeneous phantom were used to evaluate the Acuros algorithm. Finally, both Acuros and AAA were tested on VMAT patient plans for various sites. Does distributions and calculation time were compared. Results: On average, computation time is reduced by at least 50% by Acuros XB compared with AAA on single fields and VMAT plans. When used for open 6MV photon beams on homogeneous water phantom, both Acuros XB and AAA calculated doses were within 1% of measurement. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. When heterogeneous phantom was used, Acuros XB also improved on accuracy. Conclusion: Compared with AAA, Acuros XB can improve accuracy while significantly reduce computation time for VMAT plans

  16. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Wang Zhikang; Sun Jianzhong; Zhao Zudan

    2012-01-01

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  17. Application of a Monte Carlo linac model in routine verifications of dose calculations

    International Nuclear Information System (INIS)

    Linares Rosales, H. M.; Alfonso Laguardia, R.; Lara Mas, E.; Popescu, T.

    2015-01-01

    The analysis of some parameters of interest in Radiotherapy Medical Physics based on an experimentally validated Monte Carlo model of an Elekta Precise lineal accelerator, was performed for 6 and 15 Mv photon beams. The simulations were performed using the EGSnrc code. As reference for simulations, the optimal beam parameters values (energy and FWHM) previously obtained were used. Deposited dose calculations in water phantoms were done, on typical complex geometries commonly are used in acceptance and quality control tests, such as irregular and asymmetric fields. Parameters such as MLC scatter, maximum opening or closing position, and the separation between them were analyzed from calculations in water. Similarly simulations were performed on phantoms obtained from CT studies of real patients, making comparisons of the dose distribution calculated with EGSnrc and the dose distribution obtained from the computerized treatment planning systems (TPS) used in routine clinical plans. All the results showed a great agreement with measurements, finding all of them within tolerance limits. These results allowed the possibility of using the developed model as a robust verification tool for validating calculations in very complex situation, where the accuracy of the available TPS could be questionable. (Author)

  18. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    International Nuclear Information System (INIS)

    Nelson, Geoff; Fahrig, Rebecca; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian

    2013-01-01

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  19. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  20. Two examples of indication specific radiation dose calculations in dental CBCT and Multidetector CT scanners.

    Science.gov (United States)

    Stratis, Andreas; Zhang, Guozhi; Lopez-Rendon, Xochitl; Politis, Constantinus; Hermans, Robert; Jacobs, Reinhilde; Bogaerts, Ria; Shaheen, Eman; Bosmans, Hilde

    2017-09-01

    To calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners. The radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices. For orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32mSv for a normal resolution operation mode in Promax 3D Max, 0.27mSv in VGi-evo and 1.18mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28mSv while for NewTom 5G the ED was 0.31 and 0.22mSv for monolateral and bilateral imaging respectively. Two clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    International Nuclear Information System (INIS)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young

    2016-01-01

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety

  2. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2016-11-15

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety.

  3. Testing of the analytical anisotropic algorithm for photon dose calculation

    International Nuclear Information System (INIS)

    Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka; Tenhunen, Mikko; Helminen, Hannu; Siljamaeki, Sami; Alakuijala, Jyrki; Paiusco, Marta; Iori, Mauro; Huyskens, Dominique P.

    2006-01-01

    The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d max . The electron contamination model was found to be suboptimal to model the dose around d max , especially for physical

  4. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  5. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    Science.gov (United States)

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.

  6. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lepej, L; Messingerova, M [F.D. Rosvelt Hospital, Banska Bystrica (Slovakia). Dept. of Nuclear Medicine; Ftacnikova, S [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the values of mean effective dose equivalents per unit activity (H{sub E/1Bq}) were used for the calculation of mean effective dose equivalents for one examination (H{sub E}). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S{sub ER}) and global collective effective dose equivalent for department for all radiopharmaceuticals (S{sub E}) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H{sub E} and S{sub E} during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H{sub min}) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H{sub min} from all examinations - patient`s radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs.

  7. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  8. Dose-volume histograms based on serial intravascular ultrasound: a calculation model for radioactive stents

    International Nuclear Information System (INIS)

    Kirisits, Christian; Wexberg, Paul; Gottsauner-Wolf, Michael; Pokrajac, Boris; Ortmann, Elisabeth; Aiginger, Hannes; Glogar, Dietmar; Poetter, Richard

    2001-01-01

    Background and purpose: Radioactive stents are under investigation for reduction of coronary restenosis. However, the actual dose delivered to specific parts of the coronary artery wall based on the individual vessel anatomy has not been determined so far. Dose-volume histograms (DVHs) permit an estimation of the actual dose absorbed by the target volume. We present a method to calculate DVHs based on intravascular ultrasound (IVUS) measurements to determine the dose distribution within the vessel wall. Materials and methods: Ten patients were studied by intravascular ultrasound after radioactive stenting (BX Stent, P-32, 15-mm length) to obtain tomographic cross-sections of the treated segments. We developed a computer algorithm using the actual dose distribution of the stent to calculate differential and cumulative DVHs. The minimal target dose, the mean target dose, the minimal doses delivered to 10 and 90% of the adventitia (DV10, DV90), and the percentage of volume receiving a reference dose at 0.5 mm from the stent surface cumulated over 28 days were derived from the DVH plots. Results were expressed as mean±SD. Results: The mean activity of the stents was 438±140 kBq at implantation. The mean reference dose was 111±35 Gy, whereas the calculated mean target dose within the adventitia along the stent was 68±20 Gy. On average, DV90 and DV10 were 33±9 Gy and 117±41 Gy, respectively. Expanding the target volume to include 2.5-mm-long segments at the proximal and distal ends of the stent, the calculated mean target dose decreased to 55±17 Gy, and DV 90 and DV 10 were 6.4±2.4 Gy and 107±36 Gy, respectively. Conclusions: The assessment of DVHs seems in principle to be a valuable tool for both prospective and retrospective analysis of dose-distribution of radioactive stents. It may provide the basis to adapt treatment planning in coronary brachytherapy to the common standards of radiotherapy

  9. Assessment of leakage dose in vivo in patients undergoing radiotherapy for breast cancer

    Directory of Open Access Journals (Sweden)

    Peta Lonski

    2018-01-01

    Full Text Available Background and purpose: Accurate quantification of the relatively small radiation doses delivered to untargeted regions during breast irradiation in patients with breast cancer is of increasing clinical interest for the purpose of estimating long-term radiation-related risks. Out-of-field dose calculations from commercial planning systems however may be inaccurate which can impact estimates for long-term risks associated with treatment. This work compares calculated and measured dose out-of-field and explores the application of a correction for leakage radiation. Materials and methods: Dose calculations of a Boltzmann transport equation solver, pencil beam-type, and superposition-type algorithms from a commercial treatment planning system (TPS were compared with in vivo thermoluminescent dosimetry (TLD measurements conducted out-of-field on the contralateral chest at points corresponding to the thyroid, axilla and contralateral breast of eleven patients undergoing tangential beam radiotherapy for breast cancer. Results: Overall, the TPS was found to under-estimate doses at points distal to the radiation field edge with a modern linear Boltzmann transport equation solver providing the best estimates. Application of an additive correction for leakage (0.04% of central axis dose improved correlation between the measured and calculated doses at points greater than 15 cm from the field edge. Conclusions: Application of a correction for leakage doses within peripheral regions is feasible and could improve accuracy of TPS in estimating out-of-field doses in breast radiotherapy. Keywords: Breast radiotherapy, TLD, Leakage dose, Dose calculation algorithm

  10. Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom

    International Nuclear Information System (INIS)

    Jang, Ki Won; Lee, Jae Ki; Kim, Jong Kyung

    2005-01-01

    The computed tomography (CT) provides a high quality in images of human body but contributes relatively high patient dose compared with the conventional X-ray examination. Furthermore, the frequency of CT examination has been increasing in Korea for the last decade owing to the national health insurance benefits. Increasing concerns about high patient dose from CT have stimulated a great deal of researches on dose assessment, which many of these are based on the Monte Carlo simulation. But in this study, absorbed doses and effective dose of patient undergoing CT examination were determined experimentally using anthropomorphic physical phantom and the measured results are compared with those from Monte Carlo calculation

  11. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  12. Approaches to reducing photon dose calculation errors near metal implants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Liu, Xinming [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Stingo, Francesco C. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  13. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  14. Method for dose calculation in intracavitary irradiation of endometrical carcinoma

    International Nuclear Information System (INIS)

    Zevrieva, I.F.; Ivashchenko, N.T.; Musapirova, N.A.; Fel'dman, S.Z.; Sajbekov, T.S.

    1979-01-01

    A method for dose calculation for the conditions of intracavitary gamma therapy of endometrial carcinoma using spherical and linear 60 Co sources was elaborated. Calculations of dose rates for different amount and orientation of spherical radiation sources and for different planes were made with the aid of BEhSM-4M computer. Dosimet were made with the aid of BEhSM-4M computer. Dosimetric study of dose fields was made using a phantom imitating the real conditions of irradiation. Discrepancies between experimental and calculated values are within the limits of the experiment accuracy

  15. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    International Nuclear Information System (INIS)

    Lepej, L.; Messingerova, M.

    1995-01-01

    In this paper the values of mean effective dose equivalents per unit activity (H E/1Bq ) were used for the calculation of mean effective dose equivalents for one examination (H E ). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S ER ) and global collective effective dose equivalent for department for all radiopharmaceuticals (S E ) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H E and S E during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H min ) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H min from all examinations - patient's radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs

  16. Point kernels and superposition methods for scatter dose calculations in brachytherapy

    International Nuclear Information System (INIS)

    Carlsson, A.K.

    2000-01-01

    Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)

  17. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2012-09-15

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  18. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun

    2012-01-01

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  19. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  20. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, P [Univ New Mexico Radiology Dept., Albuquerque, NM (United States); Heintz, B [Texas Oncology, PA, Southlake, TX (United States); Sandoval, D [University of New Mexico, Albuquerque, NM (United States); Weber, W; Melo, D; Guilmette, R [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  1. Patient dose monitoring systems: A new way of managing patient dose and quality in the radiology department.

    Science.gov (United States)

    Fitousi, N

    2017-12-01

    Due to the upcoming European Directive (2013/59/EURATOM) and the increased focus on patient safety in international guidelines and regulations, Patient Dose Monitoring Systems, also called Dose Management Systems (DMS), are introduced in medical imaging departments. This article focusses on the requirements for a DMS, its benefits and the necessary implementation steps. The implementation of a DMS can be perceived as a lengthy, yet worthy, procedure: users have to select the appropriate system for their applications, prepare data collection, validate, perform configuration, and start using the results in quality improvement projects. A state of the art DMS improves the quality of service, ensures patient safety and optimizes the efficiency of the department. The gain is multifaceted: the initial goal is compliance monitoring against diagnostic reference levels. At a higher level, the user gets an overview of the performance of the devices or centers that are under his supervision. Error identification, generation of alerts and workflow analysis are additional benefits. It can also enable a more patient-centric approach with personalized dosimetry. Skin dose, size-specific dose estimates and organ doses can be calculated and evaluated per patient. A DMS is a powerful tool and essential for improved quality and patient care in a radiology department. It can be configured to the needs of medical physicists, radiologists, technologists, even for the management of the hospital. Collaboration between all health professionals and stakeholders, input-output validation and communication of findings are key points in the process of a DMS implementation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. The Monte Carlo applied for calculation dose

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1988-01-01

    The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt

  3. Influence of intravenous contrast agent on dose calculations of intensity modulated radiation therapy plans for head and neck cancer

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kim, Jeung-Kee; Lee, Hyung-Sik; Hur, Won-Joo; Hong, Young-Seoub; Park, Sungkwang; Ahn, Kijung; Cho, Heunglae

    2006-01-01

    Background and purpose: To evaluate the effect of an intravenous contrast agent (CA) on dose calculations and its clinical significance in intensity modulated radiation therapy (IMRT) plans for head and neck cancer. Materials and methods: Fifteen patients with head and neck cancer and involved neck nodes were enrolled. Each patient took two sets of computerized tomography (CT) in the same position before and after intravenous CA injections. Target volumes and organs at risk (OAR) were contoured on the enhanced CT, and then an IMRT plan of nine equiangular beams with a 6 MV X-ray was created. After the fusion of non-enhanced and enhanced CTs, the contours and the IMRT plan created from the enhanced CT were copied and placed to the non-enhanced CT. Doses were calculated again from the non-enhanced CT by the same IMRT plan. The radiation doses calculated from the two sets of CTs were compared with regard to planning target volumes (PTV) and the three OARs, both parotid glands and the spinal cord, by Wilcoxon's signed rank test. Results: The doses (maximum, mean, and the dose of 95% of PTV received (D 95% )) of PTV70 and PTV59.4 calculated from the enhanced CTs were lower than those from the non-enhanced CTs (p < 0.05), but the dose differences were less than 1% compared to the doses calculated from the enhanced CTs. The doses of PTV50.4, parotid glands, and spinal cord were not significantly different between the non-enhanced and enhanced CTs. Conclusions: The difference between the doses calculated from the CTs with and without CA enhancement was tolerably small, therefore using intravenous CA could be recommended for the planning CT of head and neck IMRT

  4. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  5. A fast dose calculation method based on table lookup for IMRT optimization

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe

    2003-01-01

    This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)

  6. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  7. Development of a program for calculation of second dose and securities in brachytherapy high dose rate

    International Nuclear Information System (INIS)

    Esteve Sanchez, S.; Martinez Albaladejo, M.; Garcia Fuentes, J. D.; Bejar Navarro, M. J.; Capuz Suarez, B.; Moris de Pablos, R.; Colmenares Fernandez, R.

    2015-01-01

    We assessed the reliability of the program with 80 patients in the usual points of prescription of each pathology. The average error of the calculation points is less than 0.3% in 95% of cases, finding the major differences in the axes of the applicators (maximum error -0.798%). The program has proved effective previously testing him with erroneous dosimetry. Thanks to the implementation of this program is achieved by the calculation of the dose and part of the process of quality assurance program in a few minutes, highlighting the case of HDR prostate due to having a limited time. Having separate data sheet allows each institution to its protocols modify parameters. (Author)

  8. Standardized dose factors for dose calculations - 1982 SRP reactor safety analysis report tritium, iodine, and noble gases

    International Nuclear Information System (INIS)

    Pillinger, W.L.; Marter, W.L.

    1982-01-01

    Standardized dose constants are recommended for calculation of offsite doses in the 1982 SRP Reactor Safety Analysis Report (SAR). Dose constants are proposed for inhalation of tritium and radioiodines and for submersion in a semi-infinite cloud of radioiodines and noble gases. The proposed constants, based on ICRP2 methodology for internal dose and methodology recommended by the US Nuclear Regulatory Commission for external dose, are compatible with dose calculational methods used at the Savannah River Plant and Savannah River Laboratory for normal releases of radioactivity. 8 references

  9. Monte Carlo Calculated Effective Dose to Teenage Girls from Computed Tomography Examinations

    International Nuclear Information System (INIS)

    Caon, M.; Bibbo, G.; Pattison, J.

    2000-01-01

    Effective doses from CT to paediatric patients are not common in the literature. This article reports some effective doses to teenage girls from CT examinations. The voxel computational model ADELAIDE, representative of a 14-year-old girl, was scaled in size by ±5% to represent also 11-12-year-old and 16-year-old girls. The EGS4 Monte Carlo code was used to calculate the effective dose from chest, abdomen and whole torso CT examinations to the three version of ADELAIDE using a 120 kV spectrum. For the whole torso CT examination, in order of increasing model size, the effective doses were 9.0, 8.2 and 7.8 mSv per 100 mA.s. Data are presented that allow the estimation of effective dose from CT examinations of the torso for girls between the ages of 11 and 16. (author)

  10. Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma

    International Nuclear Information System (INIS)

    Lee, Jong-Jin; Chung, June-Key; Kim, Sung-Eun; Kang, Won-Jun; Park, Do-Joon; Lee, Dong-Soo; Cho, Bo-Youn; Lee, Myung-Chul

    2008-01-01

    The maximal safe dose (MSD) on the basis of bone marrow irradiation levels allows the delivery of a large amount of I-131 to thyroid cancer tissue. The efficacy of MSD therapy in differentiated metastatic thyroid cancers that persisted after conventional fixed dose therapy is investigated. Forty-seven differentiated thyroid carcinoma patients with non-responsive residual disease despite repetitive fixed dose I-131 therapy were enrolled in this study. Their postoperative pathologies were 43 papillary carcinomas and 4 follicular carcinomas. The MSD was calculated with the Memorial Sloan-Kettering Cancer Center protocol using serial blood samples. The MSDs were administered at intervals of 6 months. Treatment responses were evaluated using I-131 whole-body scans and serum thyroglobulin measurements. The mean calculated MSD was 12.5±2.1 GBq (339.6±57.5 mCi). Of the 46 patients, 7 (14.9%) showed complete remission, 15 (31.9%) partial remission, 19 (40.4%) stable disease, and 6 (12.8%) disease progression. Of the patients who showed complete or partial remission, 15 (65%) showed response after the first MSD session and 6 (26%) showed response after the second session. Twenty-nine patients (62%) experienced transient cytopenia after therapy, but three did not recover to the baseline level. The maximal safe dose provides an effective means of treatment in patients who failed to respond adequately to conventional fixed dose therapy. I-131 MSD therapy can be considered in patients who fail fixed dose therapy. (author)

  11. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Naichang, E-mail: yun@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States); Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States); Levitin, Abraham; McLennan, Gordon; Spain, James [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States); Xia, Ping; Wilkinson, Allan [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  12. Lung dose calculation with SPECT/CT for ⁹⁰Yittrium radioembolization of liver cancer.

    Science.gov (United States)

    Yu, Naichang; Srinivas, Shaym M; Difilippo, Frank P; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-03-01

    To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ((99m)Tc-MAA) single photon emission CT (SPECT)/CT for (90)Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Images of 71 patients who had SPECT/CT and PS images of (99m)Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on (99m)Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  14. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin-Madison, WI, 53792 (United States); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3002 (Australia) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Human Oncology, University of Wisconsin-Madison, WI 53792 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia) and Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Einstein Institute of Oncophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  15. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed “Super Sampling” involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  16. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  17. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    International Nuclear Information System (INIS)

    Jimenez V, Reina A.

    2007-01-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae

  18. Measurement of patient radiation doses in certain urography procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Barakat, H.; Zailae, A.; Abuderman, A.; Theodorou, K.

    2015-01-01

    Patients are exposed to significant radiation doses during diagnostic and interventional urological procedures. This study aimed to measure patient entrance surface air kerma (ESAK) and to estimate the effective dose during intravenous urography (IVU), extracorporeal shock-wave lithotripsy (ESWL), and ascending urethrogram (ASU) procedures. ESAK was measured in patients using calibrated thermo luminance dosimeters, GR200A). Effective doses (E) were calculated using the National Radiological Protection Board (NRPB) software. A total of 179 procedures were investigated. 27.9 % of the patients underwent IVU procedures, 27.9 % underwent ESWL procedures and 44.2 % underwent ASU procedures. The mean ESAK was 2.1, 4.18 and 4.9 mGy for IVU, ESWL, and ASU procedures, respectively. Differences in patient ESAK for the same procedure were observed. The mean ESAK values were comparable with those in previous studies. (authors)

  19. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  20. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions

    Directory of Open Access Journals (Sweden)

    Karlsson Mikael

    2010-06-01

    Full Text Available Abstract Background Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI as a complement to computed tomography (CT in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data. Methods MR and CT data were collected retrospectively for 40 patients with prostate, lung, head and neck, or brain cancers. Comparisons were made between calculations on CT data with and without inhomogeneity corrections and on MRI or CT data with bulk density assignments. The bulk densities were assigned using manual segmentation of tissue, bone, lung, and air cavities. Results The deviations between calculations on CT data with inhomogeneity correction and on bulk density assigned MR data were small. The maximum difference in the number of monitor units required to reach the prescribed dose was 1.6%. This result also includes effects of possible geometrical distortions. Conclusions The dose calculation accuracy at the investigated treatment sites is not significantly compromised when using MRI data when adequate bulk density assignments are made. With respect to treatment planning, MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation.

  1. The calculation of dose from photon exposures using reference human phantoms and Monte Carlo methods. Pt. 5

    International Nuclear Information System (INIS)

    Petoussi, N.; Zankl, M.; Williams, G.; Veit, R.; Drexler, G.

    1987-01-01

    There has been some evidence that cervical cancer patients who were treated by radiotherapy, had an increased incidence of second primary cancers noticeable 15 years or more after the radiotherapy. The data suggested that high dose pelvic irradiation was associated with increase in cancers of the bladder, kidneys, rectum, ovaries, corpus uteri, and non-Hodgkin's lymphoma but not leukemia (Kleinerman et al., 1982, Morton 1973). The aim of the present work is to estimate the absorbed dose, due to radiotherapy treatment for cervival cancer, to various organs and tissues in the body. Monte Carlo calculations were performed to calculate the organ absorbed doses resulting from intracavitary sources such as ovoids and applicators filled or loaded with radium, Co-60 and Cs-137. For that purpose a routine which simulates an internal source was constructed and added to the existing Monte Carlo code (GSF-Bericht S-885, Kramer et al.). Calculations were also made for external beam therapy. Various anterior, posterior and lateral fields were applied, resulting from megavoltage, Co-60 and Cs-137 therapy machines. The calculated organ doses are tabulated in three different ways: as organ dose per air Kerma in the reference field, according to the recommendations of the International Commission on Radiation Units and Measurements (ICRU Report No 38, 1985); as organ dose per surface dose and as organ dose per tissue dose at Point B. (orig.)

  2. Estimation of patient dose in abdominal CT examination in some Sudanese hospitals

    International Nuclear Information System (INIS)

    Adam, Ebthal Adam Shikhalden

    2016-04-01

    The use of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. The aim of this study was to estimate radiation doses in abdomen CT examinations of patients in two Sudanese hospitals. Details were obtained from approximately 80 CT examinations and included all age groups ( adults and pediatric). The results from the two hospitals were compared with each other as well as with the IAEA guidance level for this particular investigation. The estimation of radiation doses were carried out by calculating volume dose index (CTD1vol), dose length product (DLP), doses to some organs of interest and effective dose (E) using the software program "CT EXPO V2.1". The study showed that the mean DLP of the one hospitals ASH is 1736.7 mGy.cm which is by far much higher than that for the other hospital NMDC which stands at 185.3 mGy.cm, as well as higher than the IAEA level which is 696 mGy.cm. The study showed that the mean CTD1vol for patients in ASH is 36.2 mGy which again higher than that for the other hospital which is 3.9 mGy and higher than the IAEA level which is 10.9 mGy calculating the effective dose for patients in the two hospitals reveals that the mean effective dose of patient in one hospital (ASH) is 26.25 mSv, which is quite high compared with other hospital (NMDC), which has the mean value of 2.8 mGv and also higher than the IAEA level from this investigation which is 7.6 mSv. Regarding organ doses, the study showed that organ doses in hospital ASH are always higher than that calculated in hospital NMDC and the highest doses in both hospital were delivered to the kidneys with mean values of 50.24 mGy and 5045 mGy for the two hospitals respectively. The study showed that there is an urgent need for optimizing patient doses in such CT examinations. This can be ensured by providing training and retraining for workers and conducting quality control measurements and preventive maintenance regularly so

  3. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  4. Monte Carlo calculations for doses in organs and tissues to oral radiography; Calculo de Monte Carlo para doses em orgaos e tecidos para radiologia oral

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, E V.M.

    1986-12-31

    Using the MIRD 5 phantom and Monte Carlo technique, organ doses in patients undergoing external dental examination were calculated taking into account the different x-ray beam geometries and the various possible positions of x-ray source with regard to the head of the patient. It was necessary to introduce in the original computer program a new source description specific for dental examinations. To have a realistic evaluation of organ doses during dental examination it was necessary to introduce a new region in the phantom heat which characterizes the teeth and salivary glands. The attenuation of the x-ray beam by the lead shield of the radiographic film was also introduced in the calculation. (author).

  5. An approach to calculating absorbed doses to organs of high radiation sensitivity in diagnostic radioisotope examinations in vivo

    International Nuclear Information System (INIS)

    Staniszewska, M.A.; Jankowski, J.

    1984-01-01

    A method is presented of dose calculations for internal exposures of organ-sources and organ-targets. Variations of absorbed doses depending on sex and age of the patients investigated with the use of radionuclides are discussed. Definitions of the effective and collective dose equivalents are also given. 8 refs., 1 tab. (author)

  6. Dose calculations for intakes of ore dust

    International Nuclear Information System (INIS)

    O'Brien, R.S.

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these 'ores' contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another 'parent' radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures

  7. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  8. Effective dose estimation to patients and staff during urethrography procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Barakat, H.; Alkhorayef, M.; Babikir, E.; Dalton, A.; Bradley, D.

    2015-10-01

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  9. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  10. Analytical probabilistic proton dose calculation and range uncertainties

    Science.gov (United States)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  11. Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels

    International Nuclear Information System (INIS)

    Lu Weiguo; Olivera, Gustavo H; Chen Mingli; Reckwerdt, Paul J; Mackie, Thomas R

    2005-01-01

    Convolution/superposition (C/S) is regarded as the standard dose calculation method in most modern radiotherapy treatment planning systems. Different implementations of C/S could result in significantly different dose distributions. This paper addresses two major implementation issues associated with collapsed cone C/S: one is how to utilize the tabulated kernels instead of analytical parametrizations and the other is how to deal with voxel size effects. Three methods that utilize the tabulated kernels are presented in this paper. These methods differ in the effective kernels used: the differential kernel (DK), the cumulative kernel (CK) or the cumulative-cumulative kernel (CCK). They result in slightly different computation times but significantly different voxel size effects. Both simulated and real multi-resolution dose calculations are presented. For simulation tests, we use arbitrary kernels and various voxel sizes with a homogeneous phantom, and assume forward energy transportation only. Simulations with voxel size up to 1 cm show that the CCK algorithm has errors within 0.1% of the maximum gold standard dose. Real dose calculations use a heterogeneous slab phantom, both the 'broad' (5 x 5 cm 2 ) and the 'narrow' (1.2 x 1.2 cm 2 ) tomotherapy beams. Various voxel sizes (0.5 mm, 1 mm, 2 mm, 4 mm and 8 mm) are used for dose calculations. The results show that all three algorithms have negligible difference (0.1%) for the dose calculation in the fine resolution (0.5 mm voxels). But differences become significant when the voxel size increases. As for the DK or CK algorithm in the broad (narrow) beam dose calculation, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 10% (7%) of the maximum dose. As for the broad (narrow) beam dose calculation using the CCK algorithm, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 1% of the maximum dose. Among all three methods, the CCK algorithm

  12. Accuracy of internal dose calculations with special consideration of radiopharmaceutical biokinetics

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    The individual steps of internal dose calculation, including the models and data used, as well as error considerations, are analysed following a short synopsis on the formalism of absorbed dose calculation. The mean dose in a target tissue depends on the administered activity, the residence time of the activity in the source tissues and the mean absorbed dose in the target tissue per transformation in a source tissue. Usually, a standard dosage is applied in radionuclide studies except in children. Actually administered and nomial activities generally differ by less than 10%. For the purpose of internal dose calculation, the biokinetics of a radiopharmaceutical are reflected in the residence times for the individual source tissues. The methods and the evaluation of measurements of biodistribution and retention data are discussed. The extrapolation of animal data to man is treated in some detail, including a survey of the methods used, as well as an attempt for validating these methods. None of these seem to yield more convincing results than the direct transfer of the residence times from animal to man, at least for the two radiopharmaceuticals discussed. The minimum period of measurement to derive residence times for the purpose of dose calculation has been determined as about one physical half-time. Some problems of the dose per transformation to a phantom are presented, including the age- or size-dependence of the internal dose. Organ doses to the phantom, calculated from different apparently reliable sets of biokinetic data, are generally compatible within a factor of 2 to 3, and somatically effective doses are generally compatible within a factor of less than 2

  13. Calculation of shielding and radiation doses for PET/CT nuclear medicine facility

    International Nuclear Information System (INIS)

    Mollah, A.S.; Muraduzzaman, S.M.

    2011-01-01

    Positron emission tomography (PET) is a new modality that is gaining use in nuclear medicine. The use of PET and computed tomography (CT) has grown dramatically. Because of the high energy of the annihilation radiation (511 keV), shielding requirements are an important consideration in the design of a PET or PET/CT imaging facility. The goal of nuclear medicine and PET facility shielding design is to keep doses to workers and the public as low as reasonably achievable (ALARA). Design involves: 1. Calculation of doses to occupants of the facility and adjacent regions based on projected layouts, protocols and workflows, and 2. Reduction of doses to ALARA through adjustment of the aforementioned parameters. The radiological evaluation of a PET/CT facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The objective of the study was to evaluate shielding requirements for a PET/CT to be installed in the department of nuclear medicine of Bangladesh Atomic Energy Commission (BAEC). Minimizing shielding would result in a possible reduction of structural as well as financial burden. Formulas and attenuation coefficients following the basic AAPM guidelines were used to calculate un-attenuated radiation through shielding materials. Doses to all points on the floor plan are calculated based primarily on the AAPM guidelines and include consideration of broad beam attenuation and radionuclide energy and decay. The analysis presented is useful for both, facility designers and regulators. (author)

  14. Maximal safe dose therapy of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma

    International Nuclear Information System (INIS)

    Lee, Jong Jin; Seok, Ju Won; Uh, Jae Sun

    2005-01-01

    In patients with recurrent or metastatic differentiated thyroid carcinoma, residual disease despite repetitive fixed dose I-131 therapy presents an awkward situation in terms of treatment decision making. Maximal safe dose (MSD) administration base on bone marrow radiation allows the delivery of a large amount I-131 to thyroid cancer tissue within the safety margin. We investigated the efficacy of MSD in differentiated thyroid cancers, which had persisted after conventional fixed dose therapy. Forty-six patients with differentiated thyroid carcinoma who had non-responsible residual disease despite repetitive fixed dose I-131 therapy were enrolled in this study. The postoperative pathology consisted of 43 papillary carcinomas and 3 follicular carcinomas. MSD was calculated according the Memorial Sloan Kettering Cancer Center protocol using blood samples. MSDs were administered at intervals of at least 6 months. Treatment responses were evaluated using I-131 whole body scan (WBS) and serum thyroglobulin measurements. Mean calculated MSD was 12.5±2.1 GBq. Of the 46 patients, 6 (13.0%) showed complete remission, 15 (32.6%) partial response, 19 (41.3%) stable disease, and 6 (13.0%) disease progression. Thus, about a half of the patients showed complete or partial remission, and of these patients, 14 (67%) showed response after a single MSD administration and 6 (29%) showed response after the second dose of MSD administrations. Twenty-nine patients (63%) experienced transient cytopenia after therapy, and recovered spontaneously with the exception of one. MSD administration is an effective method even in the patients who failed to be treated by conventional fixed dose therapy. MSD therapy of I-131 can be considered in the patients who failed by fixed dose therapy

  15. SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans

    International Nuclear Information System (INIS)

    Chang, C; Mah, D

    2015-01-01

    Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18 measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA

  16. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  17. Calculation of Blood Dose in Patients Treated With 131I Using MIRD, Imaging, and Blood Sampling Methods.

    Science.gov (United States)

    Piruzan, Elham; Haghighatafshar, Mahdi; Faghihi, Reza; Entezarmahdi, Seyed Mohammad

    2016-03-01

    Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods. In this study, 23 patients with DTC with different administrated activities, 3.7, 4.62, and 5.55 GBq after thyroidectomy, were randomly selected. Blood dosimetry of treated patients was performed with external whole body counting using a dual-head gamma camera imaging device and also with blood sample activity measurements using a dose calibrator. Absorbed dose to the blood was measured at 2, 6, 12, 24, 48, and 96 hours after the administration of radioiodine with the 2 methods. Based on the results of whole body counting and blood sample activity dose rate measurements, 96 hours after administration of 3.7, 4.62, and 5.55 GBq of radioiodine, absorbed doses to patients' blood were 0.65 ± 0.20, 0.67 ± 0.18, 0.79 ± 0.51 Gy, respectively. Increasing radioiodine activity from 3.7 to 5.55 GBq increased blood dose significantly, while there was no significant difference in blood dose between radioiodine dosages of 3.7 and 4.62 GBq. Our results revealed a significant correlation between the blood absorbed dose and blood sample activity and between the blood absorbed dose and whole body counts 24 to 48 hours after the administration of radioiodine.

  18. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  19. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  20. Comparison of CT number calibration techniques for CBCT-based dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Alex [The Royal Marsden NHS Foundation Trust, Joint Department of Physics, Institute of Cancer Research, London (United Kingdom); The Royal Marsden Hospital, Sutton, Surrey, Downs Road (United Kingdom); McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe [The Royal Marsden NHS Foundation Trust, Joint Department of Physics, Institute of Cancer Research, London (United Kingdom); Murray, Julia; Bhide, Shreerang; Harrington, Kevin [The Royal Marsden Hospital, Sutton, Surrey, Downs Road (United Kingdom); The Institute of Cancer Research, London (United Kingdom); Poludniowski, Gavin [Karolinska University Hospital, Department of Medical Physics, Stockholm (Sweden); Nutting, Christopher [The Institute of Cancer Research, London (United Kingdom); Newbold, Kate [The Royal Marsden Hospital, Sutton, Surrey, Downs Road (United Kingdom)

    2015-12-15

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT{sub r}); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS{sub auto}), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS{sub auto} provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT{sub r} (0.5 %) and RS{sub auto} (0.6 %) performing best. For lung cases, WL and RS{sub auto} methods generated dose distributions most similar to the ground truth. The RS{sub auto} density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS{sub auto} methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [German] Ziel dieser Arbeit ist der Vergleich und die Validierung mehrerer CT-Kalibrierungsmethoden zur Dosisberechnung auf der Grundlage von Kegelstrahlcomputertomographie

  1. Exact comparison of dose rate measurements and calculation of TN12/2 packages

    International Nuclear Information System (INIS)

    Taniuchi, H.; Matsuda, F.

    1998-01-01

    Both of dose rate measurements of TN 12/2 package and calculations by Monte Carlo code MORSE in SCALE code system and MCNP were performed to evaluate the difference between the measurement and the calculation and finding out the cause of the difference. The calculated gamma-ray dose rates agreed well with measured ones, but calculated neutron dose rates overestimated more than a factor of 1.7. When considering the cause of the difference and applying the modification into the neutron calculation, the calculated neutron dose rates become to agree well, and the factor decreased to around 1.3. (authors)

  2. MO-FG-CAMPUS-IeP2-03: Validation of an SSDE-To-Organ-Dose Calculation Methodology Developed for Pediatric CT in An Adult Population

    Energy Technology Data Exchange (ETDEWEB)

    Mead, H [Christian Brothers University, Memphis, TN (United States); St. Jude Children’s Research Hospital, Memphis, TN (United States); Brady, S; Kaufman, R [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: To discover if a previously published methodology for estimating patient-specific organ dose in a pediatric population (5–55kg) is translatable to the adult sized patient population (> 55 kg). Methods: An adult male anthropomorphic phantom was scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations in the chest and abdominopelvic regions to determine absolute organ dose. Organ-dose-to-SSDE correlation factors were developed by dividing individual phantom organ doses by SSDE of the phantom; where SSDE was calculated at the center of the scan volume of the chest and abdomen/pelvis separately. Organ dose correlation factors developed in phantom were multiplied by 28 chest and 22 abdominopelvic patient SSDE values to estimate organ dose. The median patient weight from the CT examinations was 68.9 kg (range 57–87 kg) and median age was 17 years (range 13–28 years). Calculated organ dose estimates were compared to published Monte Carlo simulated patient and phantom results. Results: Organ-dose-to-SSDE correlation was determined for a total of 23 organs in the chest and abdominopelvic regions. For organs fully covered by the scan volume, correlation in the chest (median 1.3; range 1.1–1.5) and abdominopelvic (median 0.9; range 0.7–1.0) was 1.0 ± 10%. For organs that extended beyond the scan volume (i.e. skin bone marrow and bone surface) correlation was determined to be a median of 0.3 (range 0.1–0.4). Calculated patient organ dose using patient SSDE agreed to better than 6% (chest) and 15% (abdominopelvic) to published values. Conclusion: This study demonstrated that our previous published methodology for calculating organ dose using patient-specific SSDE for the chest and abdominopelvic regions is translatable to adult sized patients for organs fully covered by the scan volume.

  3. Calculation of dose point kernels for five radionuclides used in radio-immunotherapy

    International Nuclear Information System (INIS)

    Okigaki, S.; Ito, A.; Uchida, I.; Tomaru, T.

    1994-01-01

    With the recent interest in radioimmunotherapy, attention has been given to calculation of dose distribution from beta rays and monoenergetic electrons in tissue. Dose distribution around a point source of a beta ray emitting radioisotope is referred to as a beta dose point kernel. Beta dose point kernels for five radionuclides such as 131 I, 186 Re, 32 P, 188 Re, and 90 Y appropriate for radioimmunotherapy are calculated by Monte Carlo method using the EGS4 code system. Present results were compared with the published data of experiments and other calculations. Accuracy and precisions of beta dose point kernels are discussed. (author)

  4. ESTIMATION OF THE CONVERSION COEFFICIENTS FROM DOSE-AREA PRODUCT TO EFFECTIVE DOSE FOR BARIUM MEAL EXAMINATIONS FOR ADULT PATIENTS

    Directory of Open Access Journals (Sweden)

    A. V. Vodovatov

    2018-01-01

    Full Text Available Fluoroscopic examinations of the upper gastro-intestinal tract and, especially, barium meal examinations, are commonly performed in a majority of hospitals. These examinations are associated both with substantial individual patient doses and contribution to the collective dose from medical exposure. Effective dose estimation for this type of examinations is complicated due to: 1 the necessity to simulate the moving X-ray irradiation field; 2 differences in study structure for the individual patients; 3 subjectivity of the operators; and 4 differences in the X-ray equipment. The aim of the current study was to estimate conversion coefficients from dose-area product to effective dose for barium meal examinations for the over couch and under couch exposure conditions. The study was based on data collected in the X-ray unit of the surgical department of the St-Petersburg Mariinsky hospital. A model of patient exposure during barium meal examination was developed based on the collected data on fluoroscopy protocols and adult patient irradiation geometry. Conversion coefficients were calculated using PCXMC 2.0 software. Complete examinations were converted into a set of typical fluoroscopy phases and X-ray images, specified by the examined anatomical region and the projection of patient exposure. Conversion coefficients from dose-area product to effective dose were calculated for each phase of the examination and for the complete examination. The resulting values of the conversion coefficients are comparable with published data. Variations in the absolute values of the conversion coefficients can be explained by differences in clinical protocols, models for the estimation of the effective dose and parameters of barium meal examinations. The proposed approach for estimation of effective dose considers such important features of fluoroscopic examinations as: 1 non-uniform structure of examination, 2 significant movement of the X-ray tube within a single

  5. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  6. Evaluation of the 'dose of the day' for IMRT prostate cancer patients derived from portal dose measurements and cone-beam CT

    International Nuclear Information System (INIS)

    Zijtveld, Mathilda van; Dirkx, Maarten; Breuers, Marcel; Kuipers, Ruud; Heijmen, Ben

    2010-01-01

    Purpose: High geometrical and dosimetrical accuracies are required for radiotherapy treatments where IMRT is applied in combination with narrow treatment margins in order to minimize dose delivery to normal tissues. As an overall check, we implemented a method for reconstruction of the actually delivered 3D dose distribution to the patient during a treatment fraction, i.e., the 'dose of the day'. In this article results on the clinical evaluation of this concept for a group of IMRT prostate cancer patients are presented. Materials and methods: The actual IMRT fluence maps delivered to a patient were derived from measured EPID-images acquired during treatment using a previously described iterative method. In addition, the patient geometry was obtained from in-room acquired cone-beam CT images. For dose calculation, a mapping of the Hounsfield Units from the planning CT was applied. With the fluence maps and the modified cone-beam CT the 'dose of the day' was calculated. The method was validated using phantom measurements and evaluated clinically for 10 prostate cancer patients in 4 or 5 fractions. Results: The phantom measurements showed that the delivered dose could be reconstructed within 3%/3 mm accuracy. For prostate cancer patients, the isocenter dose agreed within -0.4 ± 1.0% (1 SD) with the planned value, while for on average 98.1% of the pixels within the 50% isodose surface the actually delivered dose agreed within 3% or 3 mm with the planned dose. For most fractions, the dose coverage of the prostate volume was slightly deteriorated which was caused by small prostate rotations and small inaccuracies in fluence delivery. The dose that was delivered to the rectum remained within the constraints used during planning. However, for two patients a large degrading of the dose delivery was observed in two fractions. For one patient this was related to changes in rectum filling with respect to the planning CT and for the other to large intra-fraction motion during

  7. Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements

    International Nuclear Information System (INIS)

    Visser, R.; Wauben, D. J. L.; Godart, J.; Langendijk, J. A.; Veld, A. A. van't; Korevaar, E. W.; Groot, M. de

    2013-01-01

    Purpose: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method. Methods: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%/3mm and classification of PASS (GI ≤ 0.4), EVAL (0.4 0.6), and FAIL (GI ≥ 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans. Results: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g/cm 3 ). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 ± 0.08. Linac stability was high with an average GI of 0.28 ± 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA. Conclusions: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.

  8. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams.

    Science.gov (United States)

    Vandervoort, Eric J; Tchistiakova, Ekaterina; La Russa, Daniel J; Cygler, Joanna E

    2014-02-01

    In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm(2). Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  9. Activities of the ICRP task group on dose calculations (DOCAL)

    International Nuclear Information System (INIS)

    Bertelli, Luiz

    1997-01-01

    Full text. The International Commission of Radiological Protection has been doing many efforts to improve dose calculations due to intake of radionuclides by workers and members of the public. More specifically, the biokinetic models have become more and more physiologically based and developed for age-groups ranging from the embryo to the adult. The dosimetric aspects have also been very carefully revised and a new series of phantoms encompassing all developing stages of embryo and fetus were also envisaged. In order to assure the quality of the calculations, dose coefficients have been derived by two different laboratories and the results and methods have been frequently compared and discussed. A CD-ROM has been prepared allowing the user to obtain dose coefficients for the several age-groups for ingestion and inhalation of all important radionuclides. Inhalation dose coefficients will be available for several AMADs. For the particular case of embryo and fetus, doses will be calculated when the intake occurred before and during gestation for single and chronic patterns of intake

  10. Towards real-time photon Monte Carlo dose calculation in the cloud

    Science.gov (United States)

    Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe

    2017-06-01

    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.

  11. Development of Computational Procedure for Assessment of Patient Dose in Multi-Detector Computed Tomography

    International Nuclear Information System (INIS)

    Park, Dong Wook

    2007-02-01

    Technological development to improve the quality and speed with which images are obtained have fostered the growth of frequency and collective effective dose of CT examination. Especially, High-dose x-ray technique of CT has increased in the concern of patient dose. However CTDI and DLP in CT dosimetry leaves something to be desired to evaluate patient dose. And even though the evaluation of effective dose in CT practice is required for comparison with other radiography, it's not sufficient to show any estimation because it's not for medical purpose. Therefore the calculation of effective dose in CT procedure is needed for that purpose. However modelling uncertainties will be due to insufficient information from manufacturing tolerances. Therefore the purpose of this work is development of computational procedure for assessment of patient dose through the experiment for getting essential information in MDCT. In order to obtain exact absorbed dose, normalization factors must be created to relate simulated dose values with CTDI air measurement. The normalization factors applied to the calculation of CTDI 100 using axial scanning and organ effective dose using helical scanning. The calculation of helical scanning was compared with the experiment of Groves et al.(2004). The result has a about factor 2 of the experiment. It seems because AEC is not simulated. In several studies, when AEC applied to a CT examination, approximately 20-30% dose reduction was appeared. Therefore the study of AEC simulation should be added and modified

  12. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  13. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  14. Methodology of dose calculation for the SRS SAR

    International Nuclear Information System (INIS)

    Price, J.B.

    1991-07-01

    The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided

  15. Quality control procedure of the BNCT patient dose determination

    International Nuclear Information System (INIS)

    Bjugg, H.; Kortesniemi, M.; Seppaelae, T.; Karila, J.; Perkioe, J.; Ryynaenen, P.; Savolainen, S.; Auterinen, I.; Kotiluoto, P.; Seren, T.

    2000-01-01

    The concepts used at the Finnish BNCT facility for the patient dose quality assurance are introduced here. Dose planning images are obtained using a MR scanner with MRI sensitive markers. The dose distribution is computed with BNCT Rtpe. The program and the beam (DORT) model used have been verified with measurements and validated with MCNP calculations in phantoms. Dosimetric intercomparison has been done between FiR 1 and BMRR BNCT beams. The FiR 1 beam has been characterised also by visiting teams. Before every patient irradiation the relationship between beam monitor pulse rate and neutron fluence rate in the beam is checked by activation measurements. Cross-hair lasers used in the patient positioning are checked for spatial drift prior to each treatment. Kinetic models used to estimate the time-behaviour of blood boron concentration have been verified using independent patient sample data to assess and verify the performance of the applications. Quality control guides have been developed for each step in the patient irradiation. (author)

  16. Evaluation of effective dose from CT scans for overweight and obese adult patients using the VirtualDose software

    International Nuclear Information System (INIS)

    Liang, Baohui; Gao, Yiming; Chen, Zhi; Xu, X. George

    2017-01-01

    This paper evaluates effective dose (ED) of overweight and obese patients who undergo body computed tomography (CT) examinations. ED calculations were based on tissue weight factors in the International Commission on Radiological Protection Publication 103 (ICRP 103). ED per unit dose length product (DLP) are reported as a function of the tube voltage, body mass index (BMI) of patient. The VirtualDose software was used to calculate ED for male and female obese phantoms representing normal weight, overweight, obese 1, obese 2 and obese 3 patients. Five anatomic regions (chest, abdomen, pelvis, abdomen/pelvis and chest/abdomen/pelvis) were investigated for each phantom. The conversion factors were computed from the DLP, and then compared with data previously reported by other groups. It was observed that tube voltage and BMI are the major factors that influence conversion factors of obese patients, and that ED computed using ICRP 103 tissue weight factors were 24% higher for a CT chest examination and 21% lower for a CT pelvis examination than the ED using ICRP 60 factors. For body CT scans, increasing the tube voltage from 80 to 140 kVp would increase the conversion factors by as much as 19-54% depending on the patient's BMI. Conversion factor of female patients was ∼7% higher than the factors of male patients. DLP and conversion factors were used to estimate ED, where conversion factors depended on tube voltage, sex, BMI and tissue weight factors. With increasing number of obese individuals, using size-dependence conversion factors will improve accuracy, in estimating patient radiation dose. (authors)

  17. The calculation of electron depth-dose distributions in multilayer medium

    International Nuclear Information System (INIS)

    Wang Chuanshan; Xu Mengjie; Li Zhiliang; Feng Yongxiang; Li Panlin

    1989-01-01

    Energy deposition in multilayer medium and the depth dose distribution in the layers are studied. Based on semi-empirical calculation of electron energy absorption in matter with EDMULT program of Tabata and Ito, further work has been carried out to extend the computation to multilayer composite material. New program developed in this paper makes IBM-PC compatible with complicated electron dose calculations

  18. A novel method for measuring patients' adherence to insulin dosing guidelines: introducing indicators of adherence

    Directory of Open Access Journals (Sweden)

    Cahané Michel

    2008-12-01

    Full Text Available Abstract Background Diabetic type 1 patients are often advised to use dose adjustment guidelines to calculate their doses of insulin. Conventional methods of measuring patients' adherence are not applicable to these cases, because insulin doses are not determined in advance. We propose a method and a number of indicators to measure patients' conformance to these insulin dosing guidelines. Methods We used a database of logbooks of type 1 diabetic patients who participated in a summer camp. Patients used a guideline to calculate the doses of insulin lispro and glargine four times a day, and registered their injected doses in the database. We implemented the guideline in a computer system to calculate recommended doses. We then compared injected and recommended doses by using five indicators that we designed for this purpose: absolute agreement (AA: the two doses are the same; relative agreement (RA: there is a slight difference between them; extreme disagreement (ED: the administered and recommended doses are merely opposite; Under-treatment (UT and over-treatment (OT: the injected dose is not enough or too high, respectively. We used weighted linear regression model to study the evolution of these indicators over time. Results We analyzed 1656 insulin doses injected by 28 patients during a three weeks camp. Overall indicator rates were AA = 45%, RA = 30%, ED = 2%, UT = 26% and OT = 30%. The highest rate of absolute agreement is obtained for insulin glargine (AA = 70%. One patient with alarming behavior (AA = 29%, RA = 24% and ED = 8% was detected. The monitoring of these indicators over time revealed a crescendo curve of adherence rate which fitted well in a weighted linear model (slope = 0.85, significance = 0.002. This shows an improvement in the quality of therapeutic decision-making of patients during the camp. Conclusion Our method allowed the measurement of patients' adherence to their insulin adjustment guidelines. The indicators that we

  19. Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning.

    Science.gov (United States)

    Chamberland, Eve; Beaulieu, Luc; Lachance, Bernard

    2015-05-08

    The purpose of this study is to evaluate the accuracy of the electron Monte Carlo (eMC) dose calculation algorithm included in a commercial treatment planning system and compare its performance against an electron pencil beam algorithm. Several tests were performed to explore the system's behavior in simple geometries and in configurations encountered in clinical practice. The first series of tests were executed in a homogeneous water phantom, where experimental measurements and eMC-calculated dose distributions were compared for various combinations of energy and applicator. More specifically, we compared beam profiles and depth-dose curves at different source-to-surface distances (SSDs) and gantry angles, by using dose difference and distance to agreement. Also, we compared output factors, we studied the effects of algorithm input parameters, which are the random number generator seed, as well as the calculation grid size, and we performed a calculation time evaluation. Three different inhomogeneous solid phantoms were built, using high- and low-density materials inserts, to clinically simulate relevant heterogeneity conditions: a small air cylinder within a homogeneous phantom, a lung phantom, and a chest wall phantom. We also used an anthropomorphic phantom to perform comparison of eMC calculations to measurements. Finally, we proceeded with an evaluation of the eMC algorithm on a clinical case of nose cancer. In all mentioned cases, measurements, carried out by means of XV-2 films, radiographic films or EBT2 Gafchromic films. were used to compare eMC calculations with dose distributions obtained from an electron pencil beam algorithm. eMC calculations in the water phantom were accurate. Discrepancies for depth-dose curves and beam profiles were under 2.5% and 2 mm. Dose calculations with eMC for the small air cylinder and the lung phantom agreed within 2% and 4%, respectively. eMC calculations for the chest wall phantom and the anthropomorphic phantom also

  20. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  1. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    International Nuclear Information System (INIS)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach

  2. Is patient size important in dose determination and optimization in cardiology?

    International Nuclear Information System (INIS)

    Reay, J; Chapple, C L; Kotre, C J

    2003-01-01

    Patient dose determination and optimization have become more topical in recent years with the implementation of the Medical Exposures Directive into national legislation, the Ionising Radiation (Medical Exposure) Regulations. This legislation incorporates a requirement for new equipment to provide a means of displaying a measure of patient exposure and introduces the concept of diagnostic reference levels. It is normally assumed that patient dose is governed largely by patient size; however, in cardiology, where procedures are often very complex, the significance of patient size is less well understood. This study considers over 9000 cardiology procedures, undertaken throughout the north of England, and investigates the relationship between patient size and dose. It uses simple linear regression to calculate both correlation coefficients and significance levels for data sorted by both room and individual clinician for the four most common examinations, left ventrical and/or coronary angiography, single vessel stent insertion and single vessel angioplasty. This paper concludes that the correlation between patient size and dose is weak for the procedures considered. It also illustrates the use of an existing method for removing the effect of patient size from dose survey data. This allows typical doses and, therefore, reference levels to be defined for the purposes of dose optimization

  3. Technical basis for beta skin dose calculations at the Y-12 Plant

    International Nuclear Information System (INIS)

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations

  4. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    Science.gov (United States)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  5. SU-F-T-117: A Pilot Study of Organ Dose Reconstruction for Wilms Tumor Patients Treated with Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Makkia, R; Pelletier, C; Jung, J [East Carolina University, Greenville, NC (United States); Gopalakrishnan, M [Northwestern Memorial Hospital, Chicago, IL (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Mille, M; Lee, C [National Cancer Institute, Rockville, MD (United States); Kalapurakal, J [Northwestern University, Chicago, IL (United States)

    2016-06-15

    Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generate the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.

  6. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J [Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do (Korea, Republic of); Kim, J; Kim, H [Pusan National University, Busan (Korea, Republic of); Cho, M; Yun, S [Samsung electronics Co., Suwon, Gyeonggi-do (Korea, Republic of); Park, D; Kim, W; Ki, Y; Kim, D [Pusan National University Hospital, Busan (Korea, Republic of)

    2016-06-15

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  7. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    International Nuclear Information System (INIS)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J; Kim, J; Kim, H; Cho, M; Yun, S; Park, D; Kim, W; Ki, Y; Kim, D

    2016-01-01

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  8. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  9. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability.

    Science.gov (United States)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-12-23

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy -1.5 Gy; p AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans. Differences in dose distribution are observed with VMAT and CRT plans recalculated with AXB particularly within soft tissue at the tumour/lung interface, where AXB has been shown to more

  10. Probabilistic approach to external cloud dose calculations using onsite meteorological data

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Bander, T.J.; Kennedy, W.E.

    1976-01-01

    A method is described for calculation of external total body and skin doses from accidental atmospheric releases of radionuclides based on hourly onsite meteorological data. The method involves calculation of dose values from a finite size cloud for each hourly observation for a given radionuclide inventory. These values are then used to determine the probability of occurrence of dose levels for specified release times ranging from one hour to 30 days

  11. Determination of organ doses during radiological examinations and calculation of somatically significant dose

    International Nuclear Information System (INIS)

    Steiner, H.

    1980-01-01

    Examples are used to demonstrate that a shift in the point of emphasis is necessary with regard to radiation hazard in medicinal X-ray diagnosis. The parameters employed in this study to calculate somatic dose (SD) and somatically significant dose (SSD) may well be in need of modification; nevertheless the numerical estimation of SSD arrived at here appears to reflect the right order of magnitude for the estimation of somatic risk. The consideration of the threshold dose for somatic injury remains a problem. (orig./MG) [de

  12. DosedPet application for Nuclear Medicine: Calculation of the volume of medication needed for PET/CT patient; Aplicativo DosedPet para uso em Medicina Nuclear: calculo do volume de medicamento necessario para paciente de PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Pedro Augusto do; Rodrigues, Araken dos S. Werneck, E-mail: pedroan88@gmail.com [Universidade de Brasilia (UnB), DF (Brazil). Programa de Pos Graduacao em Ciencias e Tecnologias em Saude

    2016-07-01

    This paper presents the application (APP) DosePet that calculates the amount of medicament for PET / CT in patients according to the predetermined radiation dose. The software has been designed using the web MIT App Inventor2 tool for Android platform. The application allows the workers to simulate the amount of radiation still existing in the facilities after the applications, increasing security and reducing exposures, and enable greater efficiency in the use of the radiopharmaceutical. (author)

  13. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  14. Improved tissue assignment using dual-energy computed tomography in low-dose rate prostate brachytherapy for Monte Carlo dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Côté, Nicolas [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4 (Canada); Bedwani, Stéphane [Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada and Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada)

    2016-05-15

    Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HU of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D

  15. Dose calculation and isodose curves determination in brachytherapy

    International Nuclear Information System (INIS)

    Maranhao, Frederico B.; Lima, Fernando R.A.; Khoury, Helen J.

    2000-01-01

    Brachytherapy is a form of cancer treatment in which small radioactive sources are placed inside of, or close to small tumors, in order to cause tissue necrosis and, consequently, to interrupt the tumor growth process. A very important aspect to the planning of this therapy is the calculation of dose distributions in the tumor and nearby tissues, to avoid the unnecessary irradiation of healthy tissue. The objective of this work is to develop a computer program that will permit treatment planning for brachytherapy at low dose rates, minimizing the possible errors introduced when such calculations are done manually. Results obtained showed good agreement with those from programs such as BRA, which is widely used in medical practice. (author)

  16. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  17. [Evaluation of patient doses in interventional radiology].

    Science.gov (United States)

    Ropolo, R; Rampado, O; Isoardi, P; Gandini, G; Rabbia, C; Righi, D

    2001-01-01

    To verify the suitability of indicative quantities to evaluate the risk related to patient exposure, in abdominal and vascular interventional radiology, by the study of correlations between dosimetric quantities and other indicators. We performed in vivo measurements of entrance skin dose (ESD) and dose area product (DAP) during 48 procedures to evaluate the correlation among dosimetric quantities, and an estimation of spatial distribution of exposure and effective dose (E). To measure DAP we used a transmission ionization chamber and to evaluate ESD and its spatial distribution we used radiographic film packed in a single envelope and placed near the patient's skin. E was estimated by a calculation software using data from film digitalisation. From the data derived for measurements in 27 interventional procedures on 48 patients we obtained a DAP to E conversion factor of 0.15 mSv / Gy cm2, with an excellent correlation (r=.99). We also found a good correlation between DAP and exposure parameters such as fluoroscopy time and number of images. The greatest effective dose was evaluated for a multiple procedure in the hepatic region, with a DAP value of 425 Gy cm2. The greatest ESD was about 550 mGy. For groups of patients undergoing similar interventional procedures the correlation between ESD and DAP had conversion factors from 6 to 12 mGy Gy-1 cm-2. The evaluation of ESD and E by slow films represents a valid method for patient dosimetry in interventional radiology. The good correlation between DAP and fluoroscopy time and number of images confirm the suitability of these indicators as basic dosimetric information. All the ESD values found are lower than threshold doses for deterministic effects.

  18. A simple calculation for the determination of organ or tissue dose from medical x-ray diagnosis for stomach and chest

    International Nuclear Information System (INIS)

    Nishizawa, Kanae

    1984-01-01

    A simple calculation method has been developed to determine the organ or tissue doses of patients for typical X-ray diagnoses. The absorbed doses related to radiation-induced stochastic effects were calculated based on the dosimetric parameters experimentally determined and technical parameters for X-ray diagnostic examinations. The present method is principally based on the TRA method for the beam therapy. The dosimetric parameters such as percentage depth-dose curves and isodose curves were measured with ionization chambers in the MixDP phantom. The distance from the incident surface of X-ray beams to the organ or tissue of interest was determined with a mathematical phantom, which was the modified version of the MIRD phantom for the average Japanese adult. The absorbed doses were determined with a simple table look-up method using a computer. The calculated doses were tabulated for various technical parameters of stomach and chest X-ray examinations. The present calculation was applied to the Rando woman phantom to compare with the phantom measurements. The calculated values agree with the experimental doses within 20% discrepancy. It was concluded that the present calculation method can determine organ or tissue doses very simply for various X-ray examinations and that it was valuable for the estimation of population doses and risks from X-ray diagnoses. (author)

  19. New formula for calculation of cobalt-60 percent depth dose

    International Nuclear Information System (INIS)

    Tahmasebi Birgani, M. J.; Ghorbani, M.

    2005-01-01

    On the basis of percent depth dose calculation, the application of - dosimetry in radiotherapy has an important role to play in reducing the chance of tumor recurrence. The aim of this study is to introduce a new formula for calculating the central axis percent depth doses of Cobalt-60 beam. Materials and Methods: In the present study, based on the British Journal of Radiology table, nine new formulas are developed and evaluated for depths of 0.5 - 30 cm and fields of (4*4) - (45*45) cm 2 . To evaluate the agreement between the formulas and the table, the average of the absolute differences between the values was used and the formula with the least average was selected as the best fitted formula. The Microsoft Excel 2000 and the Data fit 8.0 soft wares were used to perform the calculations. Results: The results of this study indicated that one amongst the nine formulas gave a better agreement with the percent depth doses listed in the table of British Journal of Radiology . The new formula has two parts in terms of log (A/P). The first part as a linear function with the depth in the range of 0.5 to 5 cm and the other one as a second order polynomial with the depth in the range of 6 to 30 cm. The average of - the differences between the tabulated and the calculated data using the formula (Δ) is equal to 0.3 152. Discussion and Conclusion: Therefore, the calculated percent depth dose data based on this formula has a better agreement with the published data for Cobalt-60 source. This formula could be used to calculate the percent depth dose for the depths and the field sizes not listed in the British Journal of Radiology table

  20. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    International Nuclear Information System (INIS)

    Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G

    2008-01-01

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity

  1. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2008-04-21

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.

  2. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  3. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  4. Evaluation of radiation dose to pediatric patients during certain special procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Alzimami, K.; Elhag, B.; Babikir, E.; Alsafi, K.

    2014-01-01

    This study was intended to measure pediatric entrance surface air kerma (ESAK) and effective dose during micturating cystourethrography (MCU), intravenous urography (IVU) and barium studies (barium meal, enema, and swallow) and to propose a local diagnostic reference level (DRL). ESAK was measured for patients using calibrated thermoluminescent dosimeters (TLDs, GR200A). Effective doses (E) were calculated using the National Radiological Protection Board (NRPB) software. A total of 236 special pediatric procedures were investigated. 21.7% of the sample comprised barium procedures, 18.6% were MCU procedures while 59.5% of the sample were IVU procedures. The mean ESAK measurements (mGy) were 2.1±0.8, 3.0±23 and 1.2±0.2 for barium meal, enema and swallow in the same order. The mean patient dose for IVU procedures was 12.4±8.7 mGy per procedure and the mean patient dose per MCU procedure was 5.8±7 mGy. Local DRLs were proposed for all procedures. The patient doses in this study are within the reported values, suggesting that pediatric patients are adequately protected. - Highlights: • Pediatric radiation dose has been evaluated for three of the most common fluoroscopic procedures. • Radiation doses were measured using calibrated TLD GR200A. • Pediatric patients of concern and ESAK doses showed large variations. • The patient doses in this study are within the reported studies suggesting that the pediatric patients are adequately protected

  5. Cumulative doses analysis in young trauma patients: a single-centre experience.

    Science.gov (United States)

    Salerno, Sergio; Marrale, Maurizio; Geraci, Claudia; Caruso, Giuseppe; Lo Re, Giuseppe; Lo Casto, Antonio; Midiri, Massimo

    2016-02-01

    Multidetector computed tomography (MDCT) represents the main source of radiation exposure in trauma patients. The radiation exposure of young patients is a matter of considerable medical concern due to possible long-term effects. Multiple MDCT studies have been observed in the young trauma population with an increase in radiation exposure. We have identified 249 young adult patients (178 men and 71 women; age range 14-40 years) who had received more than one MDCT study between June 2010 and June 2014. According to the International Commission on Radiological Protection publication, we have calculated the cumulative organ dose tissue-weighting factors by using CT-EXPO software(®). We have observed a mean cumulative dose of about 27 mSv (range from 3 to 297 mSv). The distribution analysis is characterised by low effective dose, below 20 mSv, in the majority of the patients. However, in 29 patients, the effective dose was found to be higher than 20 mSv. Dose distribution for the various organs analysed (breasts, ovaries, testicles, heart and eye lenses) shows an intense peak for lower doses, but in some cases high doses were recorded. Even though cumulative doses may have long-term effects, which are still under debate, high doses are observed in this specific group of young patients.

  6. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    Science.gov (United States)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  7. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    International Nuclear Information System (INIS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Xu, X George; Long, Daniel J; Bolch, Wesley E; Liu, Bob

    2015-01-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations. (paper)

  8. A comparison study for dose calculation in radiation therapy: pencil beam Kernel based vs. Monte Carlo simulation vs. measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Kwang-Ho; Suh, Tae-Suk; Lee, Hyoung-Koo; Choe, Bo-Young [The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Hoi-Nam; Yoon, Sei-Chul [Kangnam St. Mary' s Hospital, Seoul (Korea, Republic of)

    2002-07-01

    Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant. However in general clinical situation, pencil beam kernel based convolution algorithm is thought to be a valuable tool to calculate the dose.

  9. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  10. Patient dose in digital mammography

    International Nuclear Information System (INIS)

    Chevalier, Margarita; Moran, Pilar; Ten, Jose I.; Fernandez Soto, Jose M.; Cepeda, T.; Vano, Eliseo

    2004-01-01

    In the present investigation, we analyze the dose of 5034 patients (20 137 images) who underwent mammographic examinations with a full-field digital mammography system. Also, we evaluate the system calibration by analyzing the exposure factors as a function of breast thickness. The information relevant to this study has been extracted from the image DICOM header and stored in a database during a 3-year period (March 2001-October 2003). Patient data included age, breast thickness, kVp, mAs, target/filter combination, and nominal dose values. Entrance surface air kerma (ESAK) without backscatter was calculated from the tube output as measured for each voltage used under clinical conditions and from the tube loading (mAs) included in the DICOM header. Mean values for the patient age and compressed breast thickness were 56 years (SD: 11) and 52 mm (SD: 13), respectively. The majority of the images was acquired using the STD (for standard) automatic mode (98%). The most frequent target/filter combination automatically selected for breast smaller than 35 mm was Mo/Mo (75%); for intermediate thicknesses between 35 and 65 mm, the combinations were Mo/Rh (54%) and Rh/Rh (38.5%); Rh/Rh was the combination selected for 91% of the cases for breasts thicker than 65 mm. A wide kVp range was observed for each target/filter combination. The most frequent values were 28 kVp for Mo/Mo, 29 kVp for Mo/Rh, and 29 and 30 kV for Rh/Rh. Exposure times ranged from 0.2 to 4.2 s with a mean value of 1.1 s. Average glandular doses (AGD) per exposure were calculated by multiplying the ESAK values by the conversion factors tabulated by Dance for women in the age groups 50 to 64 and 40 to 49. This approach is based on the dependence of breast glandularity on breast thickness and age. The total mean average glandular dose (AGD T ) was calculated by summing the values associated with the pre-exposure and with the main exposure. Mean AGD T per exposure was 1.88 mGy (CI 0.01) and the mean AGD T per

  11. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    International Nuclear Information System (INIS)

    Liang, X.; Penagaricano, J.; Zheng, D.; Morrill, S.; Zhang, X.; Corry, P.; Griffin, R. J.; Han, E. Y.; Hardee, M.; Ratanatharathom, V.

    2016-01-01

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D 95% ) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower

  12. Parallel processing of dose calculation for external photon beam therapy

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Ando, Yutaka; Tsukamoto, Nobuhiro; Ito, Hisao; Kubo, Atsushi

    1994-01-01

    We implemented external photon beam dose calculation programs into a parallel processor system consisting of Transputers, 32-bit processors especially suitable for multi-processor configuration. Two network conformations, binary-tree and pipeline, were evaluated for rectangular and irregular field dose calculation algorithms. Although computation speed increased in proportion to the number of CPU, substantial overhead caused by inter-processor communication occurred when a smaller computation load was delivered to each processor. On the other hand, for irregular field calculation, which requires more computation capability for each calculation point, the communication overhead was still less even when more than 50 processors were involved. Real-time responses could be expected for more complex algorithms by increasing the number of processors. (author)

  13. Using FDG-PET activity as a surrogate for tumor cell density and its effect on equivalent uniform dose calculation

    International Nuclear Information System (INIS)

    Zhou Sumin; Wong, Terence Z.; Marks, Lawrence B.

    2004-01-01

    The concept of equivalent uniform dose (EUD) has been suggested as a means to quantitatively consider heterogeneous dose distributions within targets. Tumor cell density/function is typically assumed to be uniform. We herein propose to use 18 F-labeled 2-deoxyglucose (FDG) positron emission tomography (PET) tumor imaging activity as a surrogate marker for tumor cell density to allow the EUD concept to include intratumor heterogeneities and to study its effect on EUD calculation. Thirty-one patients with lung cancer who had computerized tomography (CT)-based 3D planning and PET imaging were studied. Treatment beams were designed based on the information from both the CT and PET scans. Doses were calculated in 3D based on CT images to reflect tissue heterogeneity. The EUD was calculated in two different ways: first, assuming a uniform tumor cell density within the tumor target; second, using FDG-PET activity (counts/cm 3 ) as a surrogate for tumor cell density at different parts of tumor to calculate the functional-imaging-weighted EUD (therefore will be labeled fEUD for convenience). The EUD calculation can be easily incorporated into the treatment planning process. For 28/31 patients, their fEUD and EUD differed by less than 6%. Twenty-one of these twenty-eight patients had tumor volumes 3 . In the three patients with larger tumor volume, the fEUD and EUD differed by 8%-14%. Incorporating information from PET imaging to represent tumor cell density in the EUD calculation is straightforward. This approach provides the opportunity to include heterogeneity in tumor function/metabolism into the EUD calculation. The difference between fEUD and EUD, i.e., whether including or not including the possible tumor cell density heterogeneity within tumor can be significant with large tumor volumes. Further research is needed to assess the usefulness of the fEUD concept in radiation treatment

  14. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    Science.gov (United States)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-07-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  15. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    International Nuclear Information System (INIS)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-01-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  16. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-31

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.

  17. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  18. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability

    International Nuclear Information System (INIS)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-01-01

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p < 0.05) for VMAT AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy −1.5 Gy; p < 0.05). An apparent difference in TCP of between 1.2% and 3.1% was found depending on the choice of TCP model. OAR mean dose was lower in the AXB recalculated plan than the AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans

  19. Doses mammography: from phantom to the patient

    Energy Technology Data Exchange (ETDEWEB)

    Cross, P [Gammasonic Radiological Services, Pty., Ltd., Five Dock, NSW (Australia)

    1994-02-01

    While the use of a reference phantom is essential for dosimetry in acceptance testing and in regular quality control checks of a mammographic X-ray unit, it is also of importance to be able to estimate the patient dose in each individual investigation. Radiographic and physical data were analysed for a total of 212 women who were screened at three locations participating in a breast screening programme. The radiologists made estimates of the individual breast composition (%glandular/adipose ratio) at the film reporting sessions, and then the glandular doses were calculated by the auditor according to the NCRP 85 methodology. Arising from the data analysis of this dosimetry survey, a method is proposed to determine objectively patient breast composition from the photo-timed mAs for a given film optical density setting. This permits the NCRP calculations to be extended from breasts of 'average' (50/50) composition to breasts of individually determined composition. The diversity of the results between the three locations emphasises the need for regular audits of a mammographic X-ray unit's performance by an experienced radiological physicists, at least annually or after any major interventional service on the unit. 11 refs., 6 tabs., 4 figs.

  20. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    International Nuclear Information System (INIS)

    Smith, F.

    2016-01-01

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 ''Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site''.

  1. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  2. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    International Nuclear Information System (INIS)

    Hsu, Shu-Hui; Moran, Jean M.; Chen Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-01-01

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5x5, 10x10, 20x20, and 30x30 cm 2 field sizes at 0 deg., 45 deg., and 70 deg. incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using γ and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning.

  3. Patient dose simulation in X-ray CT using a radiation treatment-planning system

    International Nuclear Information System (INIS)

    Nakae, Yasuo; Oda, Masahiko; Minamoto, Takahiro

    2003-01-01

    Medical irradiation dosage has been increasing with the development of new radiological equipment and new techniques like interventional radiology. It is fair to say that patient dose has been increased as a result of the development of multi-slice CT. A number of studies on the irradiation dose of CT have been reported, and the computed tomography dose index (CTDI) is now used as a general means of determining CT dose. However, patient dose distribution in the body varies with the patient's constitution, bowel gas in the body, and conditions of exposure. In this study, patient dose was analyzed from the viewpoint of dose distribution, using a radiation treatment-planning computer. Percent depth dose (PDD) and the off-center ratio (OCR) of the CT beam are needed to calculate dose distribution by the planning computer. Therefore, X-ray CT data were measured with various apparatuses, and beam data were sent to the planning computer. Measurement and simulation doses in the elliptical phantom (Mix-Dp: water equivalent material) were collated, and the CT irradiation dose was determined for patient dose simulation. The rotational radiation treatment technique was used to obtain the patient dose distribution of CT, and patient dose was evaluated through simulation of the dose distribution. CT images of the thorax were sent to the planning computer and simulated. The result was that the patient dose distribution of the thorax was obtained for CT examination. (author)

  4. The interpretation of animal data in the calculation of doses from new radiolabeled compounds

    International Nuclear Information System (INIS)

    Naylor, G.P.L.; Ellender, M.; Harrison, J.D.

    1992-01-01

    At NRPB, dose calculations are performed for pharmaceutical companies wishing to obtain approval for human volunteer experiments. Animal data from one or more species are used to estimate the radiation doses to humans that would result from the administration of novel radiolabeled compounds. The calculations themselves are straightforward, but the animal data can be interpreted in different ways, leading to variations in the calculated dose. Doses to the gut compartments usually dominate the committed effective dose equivalent, but retention in other tissues may be important for some compounds. Long-term retention components in tissues can affect doses considerably, and the binding of many radiopharmaceuticals to melanin means that doses to the eye are particularly important. The effect of these considerations on calculating doses are considered, as well as the effect of changes in risk estimates and tissue weighting factors

  5. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Li, JS; Fan, J; Ma, C-M [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom. MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.

  6. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    International Nuclear Information System (INIS)

    Li, JS; Fan, J; Ma, C-M

    2015-01-01

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom. MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc

  7. SU-C-202-03: A Tool for Automatic Calculation of Delivered Dose Variation for Off-Line Adaptive Therapy Using Cone Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Lee, S; Chen, S; Zhou, J; Prado, K; D’Souza, W; Yi, B [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: Monitoring the delivered dose is an important task for the adaptive radiotherapy (ART) and for determining time to re-plan. A software tool which enables automatic delivered dose calculation using cone-beam CT (CBCT) has been developed and tested. Methods: The tool consists of four components: a CBCT Colleting Module (CCM), a Plan Registration Moduel (PRM), a Dose Calculation Module (DCM), and an Evaluation and Action Module (EAM). The CCM is triggered periodically (e.g. every 1:00 AM) to search for newly acquired CBCTs of patients of interest and then export the DICOM files of the images and related registrations defined in ARIA followed by triggering the PRM. The PRM imports the DICOM images and registrations, links the CBCTs to the related treatment plan of the patient in the planning system (RayStation V4.5, RaySearch, Stockholm, Sweden). A pre-determined CT-to-density table is automatically generated for dose calculation. Current version of the DCM uses a rigid registration which regards the treatment isocenter of the CBCT to be the isocenter of the treatment plan. Then it starts the dose calculation automatically. The AEM evaluates the plan using pre-determined plan evaluation parameters: PTV dose-volume metrics and critical organ doses. The tool has been tested for 10 patients. Results: Automatic plans are generated and saved in the order of the treatment dates of the Adaptive Planning module of the RayStation planning system, without any manual intervention. Once the CTV dose deviates more than 3%, both email and page alerts are sent to the physician and the physicist of the patient so that one can look the case closely. Conclusion: The tool is capable to perform automatic dose tracking and to alert clinicians when an action is needed. It is clinically useful for off-line adaptive therapy to catch any gross error. Practical way of determining alarming level for OAR is under development.

  8. Calculation of the radial dose distribution around the trajectory of an ion

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1979-01-01

    The dose caused in polyester by incoming protons, alpha beams, 127 I ions, and 16 O ions has been calculated as a function of the distance perpendicularly to their trajectory. Based on simplified assumptions regarding the binding state of target electrons, emission of secondary electrons and their propagation in matter, it has been found that the dose depends on the distance to the ion trajectory (R) in the form Rsup(-l), l being about 2. The calculated radial dose distributions agree well with values calculated or measured by other authors

  9. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  10. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  11. Investigation on radiation doses to patients in digital radiography

    International Nuclear Information System (INIS)

    Qiu Zhengshuai; Deng Daping; Li Quantai; Song Gang; Su Xu

    2014-01-01

    Objective: To investigate the patients' radiation dose received in digital radiography(DR) and provide basic data for developing diagnostic reference levels. Methods: The patient's ESD was estimated using the TLDs and DAP was measured by the dose-area product meter. The E values were then calculated by the DAP using Monte Carlo data and RefDose software. Measurements were made for twelve types of examination: skull PA, skull LAT, chest PA, chest LAT, abdomen AP, pelvis AP, cervix spine PA, cervix spine LAT, thoracic spine PA, thoracic spine LAT, lumber spine PA and lumber spine LAT. Results: Both kV and mAs varied in the same type of examination for ESD, DAP and E(F = 33.47, 24.68, 43.19, P < 0.05). The dose each time for lumber spine LAT was the highest, reached 4.62 mGy in ESD and 2.26 Gy·cm 2 in DAP, respectively. The E of abdomen AP averaged as 0.59 mSv, higher than that of lumber spine LAT. Even for the same type of examination, the dose from each equipment was different. Conclusions: DR has the potential to reduce the patients' radiation doses. The guidance levels suitable for Chinese population should be established as soon as possible. (authors)

  12. Radiation dose to patients from the coronary angiography and percutaneous transluminal coronary angioplasty in interventional radiology procedures

    International Nuclear Information System (INIS)

    Zheng, Jun-Zheng; Bai, Mei; Liu, Bin

    2008-01-01

    Full text: Objective: To survey and assess radiation dose to patients from coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) in Beijing Xuanwu Hospital of Capital University of Medical Sciences. Methods: The dose-area product (DAP) values to the patient and cumulative dose (CD) were recorded from 84 coronary angiographies and 51 percutaneous transluminal coronary angioplasty. A Monte-Carlo based program PCXMC was used to calculate the effective dose from DAP values for each patient. Organ doses were also measured by thermoluminescent dosimeters (TLD) using a human-shaped phantom to compare the calculated organ dose from DAP. Results: The difference between the organ doses measured by TLDs and those from PCXMC software (P>0.05) were tolerable. The DAP value ranged from 7611∼60538 mGy·cm 2 for CA and 16423∼161973 mGy·cm 2 for PTCA. The effective dose for all procedures was determined to be in the range of 1.1∼6.9 mSv for CA and 2.3∼20.1 mSv for PTCA. CD ranged from 120.0 to 1016.0 mGy for CA and 287 to 2883 mGy for PTCA. Conversion factors between effective dose and DAP were 0.114∼0.139 mSv·Gy - 1·cm -2 for CA and 0.124∼0.142 mSv·Gy -1 ·cm -2 for PTCA; Conversion factors between organ dose and CD were derived for CA and PTCA, respectively. Conclusions: DAP and CD can be used as the dose indicator to calculate the organ dose and effective dose of patient based on Monte Carlo simulation. Using this method can provide important information of patient absorbed dose and enhance the radiation protection of patient in interventional radiology procedures. (author)

  13. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.

    1981-04-01

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested

  14. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1990-12-01

    The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The program was developed to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included). The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the methods of looping back to an input menu until there is no further no change. This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED - Revision 3 are only correct to the extent allowed by the mathematical models. 9 refs., 36 tabs

  15. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  16. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  17. Thyroid doses and risk to paediatric patients undergoing neck CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Spampinato, Maria Vittoria; Tipnis, Sameer; Huda, Walter [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Tavernier, Joshua [Medical University of South Carolina, College of Medicine, Charleston, SC (United States)

    2015-07-15

    To estimate thyroid doses and cancer risk for paediatric patients undergoing neck computed tomography (CT). We used average CTDI{sub vol} (mGy) values from 75 paediatric neck CT examinations to estimate thyroid dose in a mathematical anthropomorphic phantom (ImPACT Patient CT Dosimetry Calculator). Patient dose was estimated by modelling the neck as mass equivalent water cylinder. A patient size correction factor was obtained using published relative dose data as a function of water cylinder size. Additional correction factors included scan length and radiation intensity variation secondary to tube-current modulation. The mean water cylinder diameter that modelled the neck was 14 ± 3.5 cm. The mathematical anthropomorphic phantom has a 16.5-cm neck, and for a constant CT exposure, would have thyroid doses that are 13-17 % lower than the average paediatric patient. CTDI{sub vol} was independent of age and sex. The average thyroid doses were 31 ± 18 mGy (males) and 34 ± 15 mGy (females). Thyroid cancer incidence risk was highest for infant females (0.2 %), lowest for teenage males (0.01 %). Estimated absorbed thyroid doses in paediatric neck CT did not significantly vary with age and gender. However, the corresponding thyroid cancer risk is determined by gender and age. (orig.)

  18. Calculate the maximum expected dose for technical radio physicists a cobalt machine

    International Nuclear Information System (INIS)

    Avila Avila, Rafael; Perez Velasquez, Reytel; Gonzalez Lapez, Nadia

    2009-01-01

    Considering the daily operations carried out by technicians Radiophysics Medical Service Department of Radiation Oncology Hospital V. General Teaching I. Lenin in the city of Holguin, during a working week (Between Monday and Friday) as an important element in calculating the maximum expected dose (MDE). From the exponential decay law which is subject the source activity, we propose corrections to the cumulative doses in the weekly period, leading to obtaining a formula which takes into a cumulative dose during working days and sees no dose accumulation of rest days (Saturday and Sunday). The estimate factor correction is made from a power series expansion convergent is truncated at the n-th term coincides with the week period for which you want to calculate the dose. As initial condition is adopted ambient dose equivalent rate as a given, which allows estimate MDE in the moments after or before this. Calculations were proposed use of an Excel spreadsheet that allows simple and accessible processing the formula obtained. (author)

  19. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Karsten [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: k.pfeiffer at dkfz.de; Bendl, Rolf [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: r.bendl at dkfz.de

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach. (author)

  20. A formalism for independent checking of Gamma Knife dose calculations

    International Nuclear Information System (INIS)

    Tsai Jensan; Engler, Mark J.; Rivard, Mark J.; Mahajan, Anita; Borden, Jonathan A.; Zheng Zhen

    2001-01-01

    For stereotactic radiosurgery using the Leksell Gamma Knife system, it is important to perform a pre-treatment verification of the maximum dose calculated with the Leksell GammaPlan[reg] (D LGP ) stereotactic radiosurgery system. This verification can be incorporated as part of a routine quality assurance (QA) procedure to minimize the chance of a hazardous overdose. To implement this procedure, a formalism has been developed to calculate the dose D CAL (X,Y,Z,d av ,t) using the following parameters: average target depth (d av ), coordinates (X,Y,Z) of the maximum dose location or any other dose point(s) to be verified, 3-dimensional (3-dim) beam profiles or off-center-ratios (OCR) of the four helmets, helmet size i, output factor O i , plug factor P i , each shot j coordinates (x,y,z) i,j , and shot treatment time (t i,j ). The average depth of the target d av was obtained either from MRI/CT images or ruler measurements of the Gamma Knife Bubble Head Frame. D CAL and D LGP were then compared to evaluate the accuracy of this independent calculation. The proposed calculation for an independent check of D LGP has been demonstrated to be accurate and reliable, and thus serves as a QA tool for Gamma Knife stereotactic radiosurgery

  1. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Advantages of mesh tallying in MCNPX for 3D dose calculations in radiotherapy

    International Nuclear Information System (INIS)

    Jabbari, I.; Shahriari, M.; Aghamiri, S.M.R.; Monadi, S.

    2012-01-01

    The energy deposition mesh tally option of MCNPX Monte Carlo code is very useful for 3-Dimentional (3D) dose calculations. In this study, the 3D dose calculation was done for CT-based Monte Carlo treatment planning in which the energy deposition mesh tally were superimposed on merged voxel model. The results were compared with those of obtained from the common energy deposition (*F8) tally method for all cells of non-merged voxel model. The results of these two tallies and their respective computational times are compared, and the advantages of the proposed method are discussed. For this purpose, a graphical user interface (GUI) application was developed for reading CT slice data of patient, creating voxelized model of patient, optionally merging adjacent cells with the same material to reduce the total number of cells, reading beam configuration from commercial treatment planning system transferred in DICOM-RT format, and showing the isodose distribution on the CT images. To compare the results of Monte Carlo calculated and TiGRT planning system (LinaTech LLC, USA), treatment head of the Siemens ONCOR Impression accelerator was also simulated and the phase-space data on the scoring plane just above the Y-jaws was created and used. The results for a real prostate intensity-modulated radiation therapy (IMRT) plan showed that the proposed method was fivefold faster while the precision was almost the same. (author)

  3. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    in the mean compositions of tissues affect low energy brachytherapy dosimetry. Dose differences between mean and one standard deviation of the mean composition increasing with distance from the source are observed. It is established that the {sup 125}I and {sup 131}Cs sources are the least sensitive to variations in elemental compositions while {sup 103}Pd is most sensitive. The EBS falls in between and exhibits complex behavior due to significant spectral hardening. Results from simulation (2) show that two prostate compositions are dosimetrically equivalent to water while the third shows D{sub 90} differences of up to 4%. Results from simulation (3) show that breast is more sensitive than prostate with dose variations of up to 30% from water for 70% adipose/30% gland breast. The variability of the breast composition adds a {+-}10% dose variation. Conclusions: Low energy brachytherapy dose distributions in tissue differ from water and are influenced by density, mean tissue composition, and patient-to-patient composition variations. The results support the use of a dose calculation algorithm accounting for heterogeneities such as MC. Since this work shows that variations in mean tissue compositions affect MC dosimetry and result in increased dose uncertainties, the authors conclude that imaging tools providing more accurate estimates of elemental compositions such as dual energy CT would be beneficial.

  4. The effect of increased body mass index on patient dose in paediatric radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ladia, Arsenoi P., E-mail: arsenoh@gmail.com; Skiadopoulos, Spyros G., E-mail: skiado@upatras.gr; Karahaliou, Anna N., E-mail: akarahaliou@upatras.gr; Messaris, Gerasimos A.T., E-mail: messaris@upatras.gr; Delis, Harry B., E-mail: hdelis@gmail.com; Panayiotakis, George S., E-mail: panayiot@upatras.gr

    2016-10-15

    Radiation protection is of particular importance in paediatric radiology. In this study, the influence of increased body mass index (BMI) in radiation dose and associated risk was investigated for paediatric patients aged 5–6.5 years, undergoing chest (64 patients) or abdomen (64 patients) radiography. Patients were categorized into normal and overweight, according to the BMI classification scheme. Entrance surface dose (ESD), organ dose, effective dose (ED) and risk of exposure induced cancer death (REID) were calculated using the Monte Carlo based code PCXMC 2.0. Statistically significant increase in patient radiation dose and REID was obtained for overweight patients as compared to normal ones, in both chest and abdomen examinations (Wilcoxon singed-rank test for paired data, p < 0.001). The percentage increase in overweight as compared to normal patients of ESD, organ dose (maximum value), ED and REID was 13.6%, 24.4%, 18.9% and 20.6%, respectively, in case of chest radiographs. Corresponding values in case of abdomen radiographs were 15.0%, 24.7%, 21.8% and 19.8%, respectively. An increased BMI results in increased patient radiation dose in chest and abdomen paediatric radiography.

  5. Patient and staff doses from digital Bi-plane coronary angiography

    International Nuclear Information System (INIS)

    Janeczek, J.; James, D.; Beal, A.

    2000-01-01

    Coronary angiography is the standard technique for imaging the left ventricle and coronary arteries and is a high radiation dose procedure. The number of these procedures has significantly increased in recent years with a resultant increase in radiation dose to staff and patients. When the new Philips Bi-plane BV-5000 digital angiography unit was installed in Tawam Hospital the assessment of staff and patient doses was undertaken as a part of ongoing program of quality assurance. In this study we examine the technique at Tawam Hospital to determine current practice and measure radiation dose to patient and staff resulting from coronary angiography examinations. Two sets of measurements were conducted: scattered radiation distribution around the unit and patient equivalent dose with additional entrance dose from LAT and AP fields. Prior to the measurements analysis of 10 cardiac procedures involving patients of average size (70-80 kg) was performed and their radiographic parameters recorded and averaged. Dose area product DAP were recorded during these procedures and were used as a reference in both measurements. TLD-100 and TLD-MCP were used for scatter radiation measurements. The former were positioned close to the patient and the latter (due to their higher sensitivity) further away. For patient entrance dose assessment TLD-100 were used. TLD chips were arranged in a 3-D structure positioned close to the patient to measure the scattered dose distribution at the place where the cardiologist, assistant cardiologist and nurse would stand. The other TLDs were placed on thin plastic poles 100 cm from the floor in the areas of interest. Dosimeters were calibrated in terms of absorbed dose to air and soft tissue. TLDs were placed positions and the cardiac procedure was recreated using a Rando Alderson phantom to simulate patient of average size. The mean total DAP calculated from the measurements recorded during 10 patient examinations was 11.8 Gy cm 2 . Using a

  6. Calculation of committed dose equivalent from intake of tritiated water

    International Nuclear Information System (INIS)

    Law, D.V.

    1978-08-01

    A new computerized method of calculating the committed dose equivalent from the intake of tritiated water at Harwell is described in this report. The computer program has been designed to deal with a variety of intake patterns and urine sampling schemes, as well as to produce committed dose equivalents corresponding to any periods for which individual monitoring for external radiation is undertaken. Details of retrospective doses are added semi-automatically to the Radiation Dose Records and committed dose equivalents are retained on a separate file. (author)

  7. Comparison between calculation methods of dose rates in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, E.A.; Biaggio, M.F.; D R, M.F.; Almeida, C.E. de

    1998-01-01

    In treatments with radiations for gynecologic tumors is necessary to evaluate the quality of the results obtained by different calculation methods for the dose rates on the points of clinical interest (A, rectal, vesicle). The present work compares the results obtained by two methods. The Manual Calibration Method (MCM) tri dimensional (Vianello E., et.al. 1998), using orthogonal radiographs for each patient in treatment, and the Theraplan/T P-11 planning system (Thratonics International Limited 1990) this last one verified experimentally (Vianello et.al. 1996). The results show that MCM can be used in the physical-clinical practice with a percentile difference comparable at the computerized programs. (Author)

  8. Patient-specific radiation dose and cancer risk for pediatric chest CT.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P

    2011-06-01

    To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011

  9. Verification of the calculation program for brachytherapy planning system of high dose rate (PLATO)

    International Nuclear Information System (INIS)

    Almansa, J.; Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, R. del; Ososrio, J. L.

    2011-01-01

    In our treatments are performed brachytherapy high dose rate since 2007. The procedures performed include gynecological intracavitary treatment and interstitial. The treatments are performed with a source of Ir-192 activity between 5 and 10 Ci such that small variations in treatment times can cause damage to the patient. In addition the Royal Decree 1566/1998 on Quality Criteria in radiotherapy establishes the need to verify the monitor units or treatment time in radiotherapy and brachytherapy. All this justifies the existence of a redundant system for brachytherapy dose calculation that can reveal any abnormality is present.

  10. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    International Nuclear Information System (INIS)

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-01-01

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of 125 I, 103 Pd, and 137 Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, Δ, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE preplan , in a 5x5x5 cm 3 volume for 125 I (Oncura 6711), 103 Pd (Theragenics 200), and 131 Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes (Δ=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE preplan for our edema model

  11. Clinical applicability of biologically effective dose calculation for spinal cord in fractionated spine stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jinho; Ahn, So Hyun; Lee, Seok Ho; Sung, Ki Hoon; Kil, Se Hee

    2015-01-01

    The aim of the study was to investigate whether biologically effective dose (BED) based on linear-quadratic model can be used to estimate spinal cord tolerance dose in spine stereotactic body radiation therapy (SBRT) delivered in 4 or more fractions. Sixty-three metastatic spinal lesions in 47 patients were retrospectively evaluated. The most frequently prescribed dose was 36 Gy in 4 fractions. In planning, we tried to limit the maximum dose to the spinal cord or cauda equina less than 50% of prescription or 45 Gy 2/2 . BED was calculated using maximum point dose of spinal cord. Maximum spinal cord dose per fraction ranged from 2.6 to 6.0 Gy (median 4.3 Gy). Except 4 patients with 52.7, 56.4, 62.4, and 67.9 Gy 2/2 , equivalent total dose in 2-Gy fraction of the patients was not more than 50 Gy 2/2 (12.1–67.9, median 32.0). The ratio of maximum spinal cord dose to prescription dose increased up to 82.2% of prescription dose as epidural spinal cord compression grade increased. No patient developed grade 2 or higher radiation-induced spinal cord toxicity during follow-up period of 0.5 to 53.9 months. In fractionated spine SBRT, BED can be used to estimate spinal cord tolerance dose, provided that the dose per fraction to the spinal cord is moderate, e.g. < 6.0 Gy. It appears that a maximum dose of up to 45–50 Gy 2/2 to the spinal cord is tolerable in 4 or more fractionation regimen

  12. Current evaluation of dose rate calculation - analytical method

    International Nuclear Information System (INIS)

    Tello, Marcos; Vilhena, Marco Tulio

    1996-01-01

    The accuracy of the dose calculations based on pencil beam formulas such as Fokker-Plank equations and Fermi equations for charged particle transport are studied and a methodology to solve the Boltzmann transport equation is suggested

  13. MO-F-CAMPUS-I-01: A System for Automatically Calculating Organ and Effective Dose for Fluoroscopically-Guided Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z; Vijayan, S; Rana, V; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to read data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.

  14. Dose survey of pediatric and adult patients in Sudan

    International Nuclear Information System (INIS)

    Mohamadain, K.E.M.; Azevedo, A.C.P.; And others

    2006-01-01

    A survey of radiation doses to children and adults from diagnostic radiography has been carried out in seven hospitals in Sudan. In four hospitals only pediatric examinations were died. In two hospitals only adult patients were recorded and in one hospital both kinds of patients (pediatric and adults) were evaluated. For pediatric patients only chest x-ray examination was evaluated and children were divided according to age ranges: from (0-1) and 5) years for chest AP only and from (5-10) and (10-15) for chest PA. For adult patients the examinations were chest AP and PA, abdomen AP and skull AP and PA. Entrance Surface Dose SD) and the Effective Dose (E) were calculated using the Dose Cal software. The mean ESD r children, measured in p.Gy, ranged from (45-53) and (53-56) for (0-1) and (1-5) years, respectively and from (55-71) and (68-85) for (5-10) and (10-15) years, respectively. In two of le pediatric hospitals the mean ESD values were greater than the CEC Reference Dose Levels. In El bulk and Si nar hospitals the values ranged from 167-261 and 186-308 μGy for the age ranges (0-1) and (1-5) respectively and 167-194 and 279-312 μGy for the age ranges of (5-10) and (10-15) respectively. For adult patients the ESD and E dose values evaluated in Alfisal hospital presented values comparable with the CEC Reference Dose Level. However for Alshorta hospital the values were higher for the chest AP and PA with results for ESD 0.446 and 0.551 mGy respectively

  15. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  16. Performance of a glucose meter with a built-in automated bolus calculator versus manual bolus calculation in insulin-using subjects.

    Science.gov (United States)

    Sussman, Allen; Taylor, Elizabeth J; Patel, Mona; Ward, Jeanne; Alva, Shridhara; Lawrence, Andrew; Ng, Ronald

    2012-03-01

    Patients consider multiple parameters in adjusting prandial insulin doses for optimal glycemic control. Difficulties in calculations can lead to incorrect doses or induce patients to administer fixed doses, rely on empirical estimates, or skip boluses. A multicenter study was conducted with 205 diabetes subjects who were on multiple daily injections of rapid/ short-acting insulin. Using the formula provided, the subjects manually calculated two prandial insulin doses based on one high and one normal glucose test result, respectively. They also determined the two doses using the FreeStyle InsuLinx Blood Glucose Monitoring System, which has a built-in, automated bolus calculator. After dose determinations, the subjects completed opinion surveys. Of the 409 insulin doses manually calculated by the subjects, 256 (63%) were incorrect. Only 23 (6%) of the same 409 dose determinations were incorrect using the meter, and these errors were due to either confirmed or potential deviations from the study instructions by the subjects when determining dose with meter. In the survey, 83% of the subjects expressed more confidence in the meter-calculated doses than the manually calculated doses. Furthermore, 87% of the subjects preferred to use the meter than manual calculation to determine prandial insulin doses. Insulin-using patients made errors in more than half of the manually calculated insulin doses. Use of the automated bolus calculator in the FreeStyle InsuLinx meter minimized errors in dose determination. The patients also expressed confidence and preference for using the meter. This may increase adherence and help optimize the use of mealtime insulin. © 2012 Diabetes Technology Society.

  17. Radiation doses to patients receiving computed tomography examinations in British Columbia

    International Nuclear Information System (INIS)

    Aldrich, J.E.; Bilawich, A.-M.; Mayo, J.R.

    2006-01-01

    To estimate the diagnostic reference levels and effective radiation dose to patients from routine computed tomography (CT) examinations in the province of British Columbia, Canada. The patient weight, height and computed tomography dose index or dose linear product (DLP) were recorded on study sheets for 1070 patients who were referred for clinically indicated routine CT examinations at 18 radiology departments in British Columbia. Sixteen of the scanners were multidetector row scanners. The average patient dose varied from hospital to hospital. The largest range was found for CT of the abdomen, for which the dose varied from 3.6 to 26.5 (average 10.1) mSv. For head CT, the range was 1.7 to 4.9 (average 2.8) mSv; for chest CT, it was 3.8 to 26 (average 9.3) mSv; for pelvis CT, it was 3.5 to 15.5 (average 9.0) mSv; and for abdomen/pelvis CT, it was 7.3 to 31.5 (average 16.3) mSv. Reference dose values were calculated for each exam. These DLP values are as follows: head, 1300 mGy cm; chest, 600 mGy cm; abdomen, 920 mGy cm; pelvis, 650 mGy cm; and abdomen/pelvis, 1100 mGy cm. Among hospitals, there was considerable variation in the DLP and patient radiation dose for a specific exam. Reference doses and patient doses were higher than those found in similar recent surveys carried out in the United Kingdom and the European Union. Patient doses were similar to those found in a recent survey in Germany. (author)

  18. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  19. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy

    Science.gov (United States)

    Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C.; Lomax, Antony J.; Zhang, Ye

    2018-03-01

    The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6× layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with > 5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation

  20. SU-E-I-42: Normalized Embryo/fetus Doses for Fluoroscopically Guided Pacemaker Implantation Procedures Calculated Using a Monte Carlo Technique

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, J; Stratakis, J; Solomou, G [University of Crete, Heraklion (Greece)

    2014-06-01

    Purpose: It is well known that pacemaker implantation is sometimes needed in pregnant patients with symptomatic bradycardia. To our knowledge, there is no reported experience regarding radiation doses to the unborn child resulting from fluoroscopy during pacemaker implantation. The purpose of the current study was to develop a method for estimating embryo/fetus dose from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all trimesters of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study. Three mathematical anthropomorphic phantoms representing the average pregnant patient at the first, second and third trimesters of gestation were generated using Bodybuilder software (White Rock science, White Rock, NM). The normalized embryo/fetus dose from the posteroanterior (PA), the 30° left-anterior oblique (LAO) and the 30° right-anterior oblique (RAO) projections were calculated for a wide range of kVp (50–120 kVp) and total filtration values (2.5–9.0 mm Al). Results: The results consist of radiation doses normalized to a) entrance skin dose (ESD) and b) dose area product (DAP) so that the dose to the unborn child from any fluoroscopic technique and x-ray device used can be calculated. ESD normalized doses ranged from 0.008 (PA, first trimester) to 2.519 μGy/mGy (RAO, third trimester). DAP normalized doses ranged from 0.051 (PA, first trimester) to 12.852 μGy/Gycm2 (RAO, third trimester). Conclusion: Embryo/fetus doses from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all stages of gestation can be estimated using the method developed in this study. This study was supported by the Greek Ministry of Education and Religious Affairs, General Secretariat for Research and Technology, Operational Program ‘Education and Lifelong Learning’, ARISTIA (Research project: CONCERT)

  1. SU-E-I-42: Normalized Embryo/fetus Doses for Fluoroscopically Guided Pacemaker Implantation Procedures Calculated Using a Monte Carlo Technique

    International Nuclear Information System (INIS)

    Damilakis, J; Stratakis, J; Solomou, G

    2014-01-01

    Purpose: It is well known that pacemaker implantation is sometimes needed in pregnant patients with symptomatic bradycardia. To our knowledge, there is no reported experience regarding radiation doses to the unborn child resulting from fluoroscopy during pacemaker implantation. The purpose of the current study was to develop a method for estimating embryo/fetus dose from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all trimesters of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study. Three mathematical anthropomorphic phantoms representing the average pregnant patient at the first, second and third trimesters of gestation were generated using Bodybuilder software (White Rock science, White Rock, NM). The normalized embryo/fetus dose from the posteroanterior (PA), the 30° left-anterior oblique (LAO) and the 30° right-anterior oblique (RAO) projections were calculated for a wide range of kVp (50–120 kVp) and total filtration values (2.5–9.0 mm Al). Results: The results consist of radiation doses normalized to a) entrance skin dose (ESD) and b) dose area product (DAP) so that the dose to the unborn child from any fluoroscopic technique and x-ray device used can be calculated. ESD normalized doses ranged from 0.008 (PA, first trimester) to 2.519 μGy/mGy (RAO, third trimester). DAP normalized doses ranged from 0.051 (PA, first trimester) to 12.852 μGy/Gycm2 (RAO, third trimester). Conclusion: Embryo/fetus doses from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all stages of gestation can be estimated using the method developed in this study. This study was supported by the Greek Ministry of Education and Religious Affairs, General Secretariat for Research and Technology, Operational Program ‘Education and Lifelong Learning’, ARISTIA (Research project: CONCERT)

  2. Radiation doses deriving from patients undergoing 111In-DTPA-d-Phe-1-octreotide scintigraphy

    International Nuclear Information System (INIS)

    Kurtaran, A.; Pfreitfellner, J.; Smith-Jones, P.; Schaffarich, P.; Niederle, B.; Raderer, M.; Virgolini, I.; Bergmann, H.; Havlik, E.

    1997-01-01

    The purpose of this study was to estimate the radiation doses to nursing staff, other patients, accompanying persons and family members deriving from patients undergoing 111 In-DTPA-d-Phe-1-octreotide ( 111 In-OCT) scintigraphy. Dose rates were measured from 16 patients who had received an intravenous injection of 140±40 MBq 111 In-OCT. The measurements were performed at three different distances (0.5, 1 and 2 m) at 10-20 min, 5-7 h and 24 h (and in some cases, up to 48 h) after administration of 111 In-OCT. The effective half-lives of the biexponential decrease of the dose rates were estimated to be 2.94±0.27 h (T 1 ) and 65.17±0.58 h (T 2 ). The calculated maximum dose to other persons in the waiting area was 27.2 μSv, to family members 61.5 μSv, to nursing staff in a ward 24.1 μSv and to neighbouring patients in the ward 69.5 μSv. Our results clearly demonstrate that the calculated maximum radiation exposure to accompanying persons, personnel, family members and other patients is well below the maximum annual dose limit for non-professionally exposed persons. (orig.)

  3. A patient dose survey or femoral arteriogram diagnostic radiographic examinations using a dose-area product meter

    International Nuclear Information System (INIS)

    Thwaites, J.H.; Rafferty, M.W.; Gray, N.; Black, J.; Stock, B.

    1996-01-01

    We present a method for dealing with a complex radiographic procedure (which involves multiple radiographs and fluoroscopy) in an attempt to provide a simple way of calculating effective dose from which a general risk factor can be determined. A useful index of harm can be obtained by recording the number of radiographs in each region, and the fluoroscopy time, from which the effective dose may be easily calculated. A patient dose survey was carried out using a PTW diamentor for femoral arteriogram procedures in a large teaching hospital. The procedure involves fluoroscopy to the pelvic region to locate a guide wire and catheter, followed by a series of radiographs extending from the pelvic area to the feet to form a collage image of the entire arterial system. Radiographs are taken whilst a bolus of contrast media is injected into the arterial system. The measurements extend a continuing survey of doses for common diagnostic radiographic examinations which have previously included the simple examinations of lumbar spine, abdomen and pelvis. (Author)

  4. Assessing the effect of electron density in photon dose calculations

    International Nuclear Information System (INIS)

    Seco, J.; Evans, P. M.

    2006-01-01

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  5. Use of radiobiological indices to guide dose escalation of the prostate cancer patients

    International Nuclear Information System (INIS)

    Burman, Chandra; Happersett, Laura; Kutcher, Gerald; Leibel, Steven; Zelefsky, Michael; Fuks, Zvi; Ling, C. Clifton

    1997-01-01

    Purpose: In the radiation treatment of localized prostate carcinoma, a portion of the anterior rectal wall is included in the planning target volume (PTV). Thus, in dose escalation studies, radiation induced rectal complication may limit the dose that can be delivered safely. In this study we investigate the potential of increasing tumor control without increasing rectal complication by limiting the rectal volume receiving the high prescription dose. The evaluation is with the aid of radiobiological indices. Methods and Materials: Two types of 3D conformal treatment plans were performed for a group of ten patients, for prescription doses of 75.6 to 95.0 Gy. Type I plan involved 6 fields (2 lateral, 2 anterior oblique and 2 posterior oblique), with the dose prescribed to the maximum isodose line encompassing the PTV. Type II plan comprised a primary treatment (using the 6 fields of the first plan) of 72 Gy to the PTV, and a boost with 6 posterior obliques to deliver the additional dose, except to the portion of the rectal wall included by the PTV. Based on the composite 3D dose distribution, TCP and rectal NTCP were calculated with the Goitein and Lyman models, respectively, using parameters derived from our clinical experience and from the 1991 NCI Collaborating Work Group publication. Results: In the figure, the calculated values of TCP, NTCP and TCP * [1-NTCP] (or uncomplicated control), averaged over the 10 patients, are plotted against the prescription dose. The dotted and solid lines are for type I (with uniform PTV dose) and type II (with reduction in rectal dose for the boost) plans, respectively, and the error bars represent the range of computed values for the 10 patients. For type I plans, the increase in TCP, from 75% at 75.6 Gy to 98% at 95 Gy, must be balanced against the rise in rectal NTCP to >20%. The TCP for type II plan is slightly less, but with little increase in NTCP with prescription dose. Thus, the uncomplicated control continues to increase

  6. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  7. Beta and gamma dose calculations for PWR and BWR containments

    International Nuclear Information System (INIS)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 x 10 8 rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 x 10 8 rad equipment qualification test region. 8 refs., 23 figs., 12 tabs

  8. Calculation of dose distribution in the patient for verification of plans of intensity modulated radiation therapy; Calculo de la distribucion de dosis en el paciente para la verificacion de planes de radioterapia de intensidad modulada

    Energy Technology Data Exchange (ETDEWEB)

    Perez Moreno, J. M.; Zucca Aparicio, D.; Garcia Ruiz-Zorrila, J.; Fernandez Leton, J. P.; Minambres Moro, A.

    2013-07-01

    The precision in the delivery of radiation therapy treatments intensity modulated depends on, among other things, of the proper administration of the sequence of radiation calculated on the planning system. In recent years the electronic devices of imaging portal have shown as a useful tool for the measurement of dose distribution with high resolution. An algorithm has been developed to calculate the distribution of dose in the patient's Anatomy, using the accelerator as measuring equipment electronic imaging of portal In this way the acceptance criteria can be changed in the dosimetry verifications pretreatment of radiation therapy treatments, from those based on evaluation of gamma index to others based on the evaluation of the distribution of dose in the patient. (Author)

  9. A comparison of the calculation methods of the maze shielding dose

    International Nuclear Information System (INIS)

    Li Wenqian; Li Junli; Li Pengyu; Tao Yinghua

    2009-01-01

    This paper gives a theoretical calculating method for the dose rate of the maze of the low-energy accelerators or high-energy accelerators, based on the NCRP report Nos.49, 51 and 151. The multi-legged maze of the Miyun CT workshop of the NUCTECH Company Limited and the arc maze of the radiation laboratory of the Academy of Military Medical Sciences were calculated using this method. The calculating results were compared with the MCNP simulating results and the measured results. For the commonly estimation of the maze dose rate, as long as the parameters chosen properly, this method can give a conservative result, and save time from simulation. It's hoped that this work could offer a reference for the maze design and the dose estimation method in the aftertime. (authors)

  10. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDI{sub vol} underestimated dose to large organs in the scan coverage by 30%-48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by -57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by -63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients' clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols.

  11. Effective dose to patient during cardiac interventional procedures (Prague workplaces)

    International Nuclear Information System (INIS)

    Stisova, V.

    2004-01-01

    The aim of this study was to assess effective dose to a patient during cardiac procedures, such as coronary angiography (CA) and percutaneous transluminal angioplasty (PTCA). Measurements were performed on 185 patients in four catheterisation laboratories in three hospitals in Prague using the dose area product (DAP) meter. Calculations of surface and effective dose were performed with Monte-Carlo-based program PCXMC. The mean DAP value per procedure determined in all workplaces ranged between 25.0 and 54.5 Gy cm 2 for CA and 43.0-104.5 Gy cm 2 for PTCA. In three cases, the surface dose exceeded the 2 Gy level for occurrence of transient erythema. The mean effective dose per procedure in an workplaces was determined to be in the range of 2.7-8.8 mSv for CA and 5.7-15.3 mSv for CA + PTCA combined. The results presented are comparable with those published by other authors. (authors)

  12. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding

    International Nuclear Information System (INIS)

    Fogliata, A.; Clivio, A.; Vanetti, E.; Nicolini, G.; Belosi, M. F.; Cozzi, L.

    2013-01-01

    Purpose: The accuracy of photon dose calculation algorithms in out-of-field regions is often neglected, despite its importance for organs at risk and peripheral dose evaluation. The present work has assessed this for the anisotropic analytical algorithm (AAA) and the Acuros-XB algorithms implemented in the Eclipse treatment planning system. Specifically, the regions shielded by the jaw, or the MLC, or both MLC and jaw for flattened and unflattened beams have been studied.Methods: The accuracy in out-of-field dose under different conditions was studied for two different algorithms. Measured depth doses out of the field, for different field sizes and various distances from the beam edge were compared with the corresponding AAA and Acuros-XB calculations in water. Four volumetric modulated arc therapy plans (in the RapidArc form) were optimized in a water equivalent phantom, PTW Octavius, to obtain a region always shielded by the MLC (or MLC and jaw) during the delivery. Doses to different points located in the shielded region and in a target-like structure were measured with an ion chamber, and results were compared with the AAA and Acuros-XB calculations. Photon beams of 6 and 10 MV, flattened and unflattened were used for the tests.Results: Good agreement between calculated and measured depth doses was found using both algorithms for all points measured at depth greater than 3 cm. The mean dose differences (±1SD) were −8%± 16%, −3%± 15%, −16%± 18%, and −9%± 16% for measurements vs AAA calculations and −10%± 14%, −5%± 12%, −19%± 17%, and −13%± 14% for Acuros-XB, for 6X, 6 flattening-filter free (FFF), 10X, and 10FFF beams, respectively. The same figures for dose differences relative to the open beam central axis dose were: −0.1%± 0.3%, 0.0%± 0.4%, −0.3%± 0.3%, and −0.1%± 0.3% for AAA and −0.2%± 0.4%, −0.1%± 0.4%, −0.5%± 0.5%, and −0.3%± 0.4% for Acuros-XB. Buildup dose was overestimated with AAA, while Acuros-XB gave

  13. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  14. Software for the estimation of foetal radiation dose to patients and staff in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Osei, E K [Department of Radiation Physics, Princess Margaret Hospital, 610 University Avenue, Toronto ON M5G 2M9 (Canada); Darko, J B [Department of Radiation Physics, Princess Margaret Hospital, 610 University Avenue, Toronto ON M5G 2M9 (Canada); Faulkner, K [Quality Assurance Centre, Newcastle General Hospital, Westgate Road, Newcastle Upon Tyne NE4 6BE (United Kingdom); Kotre, C J [Regional Medical Physics Department, Newcastle General Hospital, Westgate Road, Newcastle Upon Tyne NE4 6BE (United Kingdom)

    2003-06-01

    Occasionally, it is clinically necessary to perform a radiological examination(s) on a woman who is known to be pregnant or an examination is performed on a woman who subsequently discovers that she was pregnant at the time. In radiological examinations, especially of the lower abdomen and pelvis area, the foetus is directly irradiated. It is therefore important to be able to determine the absorbed dose to the foetus in diagnostic radiology for pregnant patients as well as the foetal dose from occupational exposure of the pregnant worker. The determination of the absorbed dose to the unborn child in diagnostic radiology is of interest as a basis for risk estimates from medical exposure of the pregnant patient and occupational exposure of the pregnant worker. In this paper we describe a simple computer program, FetDose, which calculates the dose to the foetus from both medical and occupational exposures of the pregnant woman. It also calculates the risks of in utero exposure, compares calculated doses with published data in the literature and provides information on the natural spontaneous risks. The program will be a useful tool for the medical and paramedical personnel who are involved with foetal dose (and hence risks) calculations and counselling of pregnant women who may be concerned about in utero exposure of their foetuses.

  15. Software for the estimation of foetal radiation dose to patients and staff in diagnostic radiology

    International Nuclear Information System (INIS)

    Osei, E K; Darko, J B; Faulkner, K; Kotre, C J

    2003-01-01

    Occasionally, it is clinically necessary to perform a radiological examination(s) on a woman who is known to be pregnant or an examination is performed on a woman who subsequently discovers that she was pregnant at the time. In radiological examinations, especially of the lower abdomen and pelvis area, the foetus is directly irradiated. It is therefore important to be able to determine the absorbed dose to the foetus in diagnostic radiology for pregnant patients as well as the foetal dose from occupational exposure of the pregnant worker. The determination of the absorbed dose to the unborn child in diagnostic radiology is of interest as a basis for risk estimates from medical exposure of the pregnant patient and occupational exposure of the pregnant worker. In this paper we describe a simple computer program, FetDose, which calculates the dose to the foetus from both medical and occupational exposures of the pregnant woman. It also calculates the risks of in utero exposure, compares calculated doses with published data in the literature and provides information on the natural spontaneous risks. The program will be a useful tool for the medical and paramedical personnel who are involved with foetal dose (and hence risks) calculations and counselling of pregnant women who may be concerned about in utero exposure of their foetuses

  16. A pencil beam dose calculation model for CyberKnife system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen [Image Processing Center, Beihang University, Beijing 100191 (China); Xu, Shouping [Department of Radiation Oncology, PLA General Hospital, Beijing 100853 (China); Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensity profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation

  17. The Mayak Worker Dosimetry System (MWDS-2013): implementation of the dose calculations

    International Nuclear Information System (INIS)

    Zhdanov, A.; Vostrotin, V.; Efimov, A.; Birchall, A.; Puncher, M.

    2017-01-01

    The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. (authors)

  18. Radiation Dose to Patients and Medical Staff in Different Procedures of Nuclear Medicine

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.

    2015-01-01

    The aim of this study is to provide information on developing technologies and clinical techniques for Hybrid SPECT/CT imaging using ionizing radiation and their associated radiation dose to patients and medical staff. A thermoluminescent dosimeters (TLD) was used in this study to analyze the historic records of the external radiation doses to staff members working in our nuclear medicine department in 7 procedures, including elution of 99mTc from "9"9"mMo/"9"9"mTc generators, syringe preparation, radiopharmacy kit preparation, injection, accompanying patients, SPECT/CT scan, oral "1"3"1I preparation. These dosimeters was worn by the staff members at the level of the chest on the front part of the body. A retrospective review of 110 clinical studies of various nuclear medicine procedures ("9"9"mTc–MIBI–Tetrofosmin, "9"9"mTc–MDP bone scan, "9"9"mTc–Tektrotyd, "9"9"mTc–Thyroid imaging, "9"9"mTc–Nanocoll, "1"3"1I–Nal (diagnostic application 185 MBq) obtained on hybrid SPECT/CT systems was performed to calculate the effective radiation dose to patients. The results from this study showed that annual effective radiation doses to nuclear medicine department staff members were within permissible levels. The contribution of total effective radiation dose from SPECT component were calculated using the activity of the injected radiopharmaceutical and dose tables published by the conversion factors listed in ICRP 53 and ICRP 80. The radiation dose for CT was calculated by Dose Length Product method. According to the results of this study the dose in each procedure depends on different factors such as the education and experience of the staff members, usage of shielding and taking the radiation protection requirements into consideration. When SPECT–CT is being performed, all measures should be taken to reduce both the radiopharmaceutical dose and the CT effective dose following the ALARA principle. (author)

  19. Dose variations with varying calculation grid size in head and neck IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heeteak [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Jin, Hosang [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States); Suh, Tae-Suk [Department of Biomedical Engineering, Catholic University of Korea (Korea, Republic of); Kim, Siyong [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States)

    2006-10-07

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle{sup 3} TPS for two targets, one shallow ({approx}0.5 cm depth) and one deep ({approx}6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study.

  20. Dose variations with varying calculation grid size in head and neck IMRT

    International Nuclear Information System (INIS)

    Chung, Heeteak; Jin, Hosang; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2006-01-01

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle 3 TPS for two targets, one shallow (∼0.5 cm depth) and one deep (∼6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study

  1. A study to determine whether the volume-weighted computed tomography dose index gives reasonable estimates of organ doses for thai patients undergoing abdomen and pelvis computed tomography examinations

    Directory of Open Access Journals (Sweden)

    Supawitoo Sookpeng

    2017-01-01

    Full Text Available Introduction: Values for the CTDIvol, which is displayed on scanner consoles, give doses relative to a phantom much larger than most Thai patients, and the CTDIvoldoes not take account of differences in patient size, which affect organ doses. Objective: The purpose of this study was to evaluate relationships for size specific dose estimate (SSDE and volume weighted computed tomography (CT dose index (CTDIvol with patient size for CT scanners operating under automatic tube current modulation (ATCM. Methods: Retrospective data from 244 patients who had undergone abdomen and pelvis examination on GE and Siemens CT scanners were included in this study. The combination of anteroposterior (AP and lateral dimensions at the level of the first lumbar vertebra (L1 was used to represent patient size. Image noise within the liver was measured, and values of the absorbed dose for organs covered by the primary beam such as the liver, stomach and kidney were calculated using methods described in the literature. Values of CTDIvolwere recorded and SSDE calculated according to the American Association of Physics in Medicine (AAPM Report No.204. Linear regression models were used to evaluate the relationship between SSDE, CTDIvol, image noise and patient size. Results: SSDE is 20%-50% larger than the CTDIvol, with values for larger patients being more representative. Both the CTDIvoland image noise decreased with patient size for Siemens scanners, but the decline in SSDE was less significant. For the GE scanner, the CTDIvolwas a factor of 3-4 lower in small patients compared to larger ones, while the SSDE only decreased by a factor of two. Noise actually decreased slightly with patient size. Conclusion: Values of SSDE were similar to the doses calculated for the liver, stomach and kidney, which are covered by the primary beam, confirming that it provides a good estimate of organ-absorbed dose.

  2. Modelling lateral beam quality variations in pencil kernel based photon dose calculations

    International Nuclear Information System (INIS)

    Nyholm, T; Olofsson, J; Ahnesjoe, A; Karlsson, M

    2006-01-01

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  3. Touch screen man machine interfere for emergency dose calculations

    International Nuclear Information System (INIS)

    Woodard, K.; Abrams, M.

    1987-01-01

    Emergency dose calculation systems generally use a keyboard to provide the interface between the user and the computer. This interface is preferred by users who work daily with computers; however, for many plant personnel who are not continuously involved with computer operations, the use of a keyboard can be cumbersome and time consuming. This is particularly true when the user is under pressure during a drill or an actual emergency. Experience in many applications of Pickard, Lowe and Garrick's PLG's Meteorological Information and Dose Assessment System (MIDAS) has shown that user friendliness is a key ingredient toward achieving acceptance of computerized systems. Hardware to support to touch screen interface is now available and has been implemented in MIDAS. Recent experience has demonstrated that selection times for dose calculations are reduced, data entry errors have been minimized, and confusion over appropriate entries has been avoided due to the built-in logic. A 10-yr search for an acceptable keyboard replacement has ended

  4. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms

    International Nuclear Information System (INIS)

    Bednarz, Bryan; Xu, X. George

    2008-01-01

    A Monte Carlo-based procedure to assess fetal doses from 6-MV external photon beam radiation treatments has been developed to improve upon existing techniques that are based on AAPM Task Group Report 36 published in 1995 [M. Stovall et al., Med. Phys. 22, 63-82 (1995)]. Anatomically realistic models of the pregnant patient representing 3-, 6-, and 9-month gestational stages were implemented into the MCNPX code together with a detailed accelerator model that is capable of simulating scattered and leakage radiation from the accelerator head. Absorbed doses to the fetus were calculated for six different treatment plans for sites above the fetus and one treatment plan for fibrosarcoma in the knee. For treatment plans above the fetus, the fetal doses tended to increase with increasing stage of gestation. This was due to the decrease in distance between the fetal body and field edge with increasing stage of gestation. For the treatment field below the fetus, the absorbed doses tended to decrease with increasing gestational stage of the pregnant patient, due to the increasing size of the fetus and relative constant distance between the field edge and fetal body for each stage. The absorbed doses to the fetus for all treatment plans ranged from a maximum of 30.9 cGy to the 9-month fetus to 1.53 cGy to the 3-month fetus. The study demonstrates the feasibility to accurately determine the absorbed organ doses in the mother and fetus as part of the treatment planning and eventually in risk management

  5. The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L K; Harding, N J; Warren, H; Mills, A; Thomson, W H [Dudley Road Hospital, Birmingham (UK)

    1990-01-01

    The radiation dose to accompanying nurses, relatives and other patients in a nuclear medicine department waiting room was assessed at 5 min intervals by observing the seating arrangement. The total radiation dose to each person was calculated, using fixed values of dose rate per 100 MBq activity for radionuclides, and applying the inverse square law. Radioactive decay and attenuation effects due to intervening persons were also taken into account. The median radiation doses to accompanying nurses, relatives and other patients were 2.3, 2.0 and 0.2 {mu}Sv with maximum values of 17, 33 and 5 {mu}Sv respectively. In all cases, the radiation dose received by patients was less than 0.2% of the radiation dose resulting from their own investigation. Also, the maximum radiation dose received by an accompanying norse or friend was less than 1% of their appropriate annual dose limit. Similar values were obtained with calculations based on a 15 min time interval. The radiation doses received by those in a nuclear medicine department waiting room are small, and separate waiting room facilities for radioactive patients are unnecessary. (author).

  6. Doses to patients and staff from endovascular treatment of abdominal aortic aneurysms - Preliminary results

    International Nuclear Information System (INIS)

    Bjoerklund, E.G.; Widmark, A.; Gjoelberg, T.; Bay, D.; Joergensen, J.J.; Staxrud, L.E.

    2001-01-01

    Patient radiation doses received during endovascular treatment of abdominal aortic aneurysms (AAA) can be significant and give rise to both deterministic and stochastic effects. Recording of dose-area product (DAP), fluoroscopy time and number of exposures together with calculations of effective dose, were performed for 8 patients. In addition, the entrance surface dose was measured for 3 of the patients. Typically, DAPs of 340 Gycm 2 , fluoroscopy times of 30 minutes and 310 exposures were obtained together with maximum entrance surface doses of 1,8 Gy and effective doses of 50 mSv. Finger doses to the staff performing the procedure were in the order of a few hundred μSv. Conversion factors (effective dose/DAP) and (maximum entrance surface does/DAP) of 0,61·10 -2 Gy/Gycm 2 and 0,15 mSv/Gycm 2 were obtained, respectively. (author)

  7. Pediatric patient and staff dose measurements in barium meal fluoroscopic procedures

    Science.gov (United States)

    Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Porto, L. E.; Ledesma, J. A.; Nascimento, E. X.; Legnani, A.; Andrade, M. E. A.; Khoury, H. J.

    2015-11-01

    This study investigates patient and staff dose measurements in pediatric barium meal series fluoroscopic procedures. It aims to analyze radiographic techniques, measure the air kerma-area product (PKA), and estimate the staff's eye lens, thyroid and hands equivalent doses. The procedures of 41 patients were studied, and PKA values were calculated using LiF:Mg,Ti thermoluminescent dosimeters (TLDs) positioned at the center of the patient's upper chest. Furthermore, LiF:Mg,Cu,P TLDs were used to estimate the equivalent doses. The results showed a discrepancy in the radiographic techniques when compared to the European Commission recommendations. Half of the results of the analyzed literature presented lower PKA and dose reference level values than the present study. The staff's equivalent doses strongly depends on the distance from the beam. A 55-cm distance can be considered satisfactory. However, a distance decrease of ~20% leads to, at least, two times higher equivalent doses. For eye lenses this dose is significantly greater than the annual limit set by the International Commission on Radiological Protection. In addition, the occupational doses were found to be much higher than in the literature. Changing the used radiographic techniques to the ones recommended by the European Communities, it is expected to achieve lower PKA values ​​and occupational doses.

  8. Performance of an automatic dose control system for CT. Patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Stumpp, P.; Gosch, D.; Kuehn, A.; Sorge, I.; Kahn, T. [Universitaetsklinikum Leipzig (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Weber, D. [St. Elisabeth-Krankenhaus Leipzig (Germany). Roentgendiagnostik; Lehmkuhl, L. [Leipzig Univ. - Herzzentrum (Germany). Diagnostische und Interventionelle Radiologie; Nagel, H.D. [Dr. HD Nagel, Wissenschaft und Technik fuer die Radiologie, Buchholz (Germany)

    2013-02-15

    Purpose: To study the effect of an automatic dose control (ADC) system with adequate noise characteristic on the individual perception of image noise and diagnostic acceptance compared to objectively measured image noise and the dose reductions achieved in a representative group of patients. Materials and Methods: In a retrospective study two matched cohorts of 20 patients each were identified: a manual cohort with exposure settings according to body size (small - regular - large) and an ADC cohort with exposure settings calculated by the ADC system (DoseRight 2.0 trademark, Philips Healthcare). For each patient, 12 images from 6 defined anatomic levels from contrast-enhanced scans of chest and abdomen/pelvis were analyzed by 4 independent readers concerning image noise and diagnostic acceptance on a five-point Likert scale and evaluated for objectively measured image noise. Radiation exposure was calculated from recorded exposure data. Results: Use of the ADC system reduced the average effective dose for patients by 36 % in chest scans (3.2 vs. 4.9 mSv) and by 17 % in abdomen/pelvis scans (7.6 vs. 8.3 mSv). Average objective noise was slightly lower in the manual cohort (11.1 vs. 12.8 HU), correlating with a slightly better rating in subjective noise score (4.4 vs. 4.2). However, diagnostic acceptance was rated almost equal in both cohorts with excellent image quality (4.6 vs. 4.5). Conclusion: Use of an ADC system with adequate noise characteristic leads to significant reductions in radiation exposure for patients while maintaining excellent image quality. (orig.)

  9. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  10. Calculation of the gamma-dose rate from a continuously emitted plume

    International Nuclear Information System (INIS)

    Huebschmann, W.; Papadopoulos, D.

    1975-06-01

    A computer model is presented which calculates the long term gamma dose rate caused by the radioactive off-gas continuously emitted from a stack. The statistical distribution of the wind direction and velocity and of the stability categories is taken into account. The emitted activity, distributed in the atmosphere according to this statistics, is assumed to be concentrated at the mesh points of a three-dimensional grid. The grid spacing and the integration limits determine the accuracy as well as the computer time needed. When calculating the dose rate in a given wind direction, the contribution of the activity emitted into the neighbouring sectors is evaluated. This influence is demonstrated in the results, which are calculated with a error below 3% and compared to the dose rate distribution curves of the submersion model and the model developed by K.J. Vogt. (orig.) [de

  11. Dosimetric comparison of lung stereotactic body radiotherapy treatment plans using averaged computed tomography and end-exhalation computed tomography images: Evaluation of the effect of different dose-calculation algorithms and prescription methods

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyoshi, Takamasa; Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp; Matsuo, Yukinori; Ueki, Nami; Nakamura, Akira; Iizuka, Yusuke; Mampuya, Wambaka Ange; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    The purpose of this article is to quantitatively evaluate differences in dose distributions calculated using various computed tomography (CT) datasets, dose-calculation algorithms, and prescription methods in stereotactic body radiotherapy (SBRT) for patients with early-stage lung cancer. Data on 29 patients with early-stage lung cancer treated with SBRT were retrospectively analyzed. Averaged CT (Ave-CT) and expiratory CT (Ex-CT) images were reconstructed for each patient using 4-dimensional CT data. Dose distributions were initially calculated using the Ave-CT images and recalculated (in the same monitor units [MUs]) by employing Ex-CT images with the same beam arrangements. The dose-volume parameters, including D{sub 95}, D{sub 90}, D{sub 50}, and D{sub 2} of the planning target volume (PTV), were compared between the 2 image sets. To explore the influence of dose-calculation algorithms and prescription methods on the differences in dose distributions evident between Ave-CT and Ex-CT images, we calculated dose distributions using the following 3 different algorithms: x-ray Voxel Monte Carlo (XVMC), Acuros XB (AXB), and the anisotropic analytical algorithm (AAA). We also used 2 different dose-prescription methods; the isocenter prescription and the PTV periphery prescription methods. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data were within 3 percentage points (%pts) employing the isocenter prescription method, and within 1.5%pts using the PTV periphery prescription method, irrespective of which of the 3 algorithms (XVMC, AXB, and AAA) was employed. The frequencies of dose-volume parameters differing by >1%pt when the XVMC and AXB were used were greater than those associated with the use of the AAA, regardless of the dose-prescription method employed. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data on patients who underwent lung SBRT were within 3%pts, regardless of the dose-calculation

  12. Dosimetric comparison of lung stereotactic body radiotherapy treatment plans using averaged computed tomography and end-exhalation computed tomography images: Evaluation of the effect of different dose-calculation algorithms and prescription methods

    International Nuclear Information System (INIS)

    Mitsuyoshi, Takamasa; Nakamura, Mitsuhiro; Matsuo, Yukinori; Ueki, Nami; Nakamura, Akira; Iizuka, Yusuke; Mampuya, Wambaka Ange; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    The purpose of this article is to quantitatively evaluate differences in dose distributions calculated using various computed tomography (CT) datasets, dose-calculation algorithms, and prescription methods in stereotactic body radiotherapy (SBRT) for patients with early-stage lung cancer. Data on 29 patients with early-stage lung cancer treated with SBRT were retrospectively analyzed. Averaged CT (Ave-CT) and expiratory CT (Ex-CT) images were reconstructed for each patient using 4-dimensional CT data. Dose distributions were initially calculated using the Ave-CT images and recalculated (in the same monitor units [MUs]) by employing Ex-CT images with the same beam arrangements. The dose-volume parameters, including D 95 , D 90 , D 50 , and D 2 of the planning target volume (PTV), were compared between the 2 image sets. To explore the influence of dose-calculation algorithms and prescription methods on the differences in dose distributions evident between Ave-CT and Ex-CT images, we calculated dose distributions using the following 3 different algorithms: x-ray Voxel Monte Carlo (XVMC), Acuros XB (AXB), and the anisotropic analytical algorithm (AAA). We also used 2 different dose-prescription methods; the isocenter prescription and the PTV periphery prescription methods. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data were within 3 percentage points (%pts) employing the isocenter prescription method, and within 1.5%pts using the PTV periphery prescription method, irrespective of which of the 3 algorithms (XVMC, AXB, and AAA) was employed. The frequencies of dose-volume parameters differing by >1%pt when the XVMC and AXB were used were greater than those associated with the use of the AAA, regardless of the dose-prescription method employed. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data on patients who underwent lung SBRT were within 3%pts, regardless of the dose-calculation algorithm or the

  13. Radiation dose rates from adult patients undergoing nuclear medicine investigations

    International Nuclear Information System (INIS)

    Mountford, P.J.; O'Doherty, M.J.; Forge, N.I.; Jeffries, A.; Coakley, A.J.

    1991-01-01

    Adult patients undergoing nuclear medicine investigations may subsequently come into close contact with members of the public and hospital staff. In order to expand the available dosimetry and derive appropriate recommendations, dose rates were measured at 0.1, 0.5 and 1.0 m from 80 adult patients just before they left the nuclear medicine department after undergoing one of eight 99 Tc m studies, an 123 I thyroid, an 111 In leucocyte or a 201 Tl cardiac scan. The maximum departure dose rates at these distances of 150, 30 and 7.3 μSv h -1 were greater than those found in similar published studies of adult and paediatric patients. To limit the dose to an infant to less than 1 mSv, an 111 In leucocyte scan is the only investigation for which it may be necessary to restrict close contact between the infant and a radioactive parent, depending on the dose rate near the surface of the patient, the parent's habits and how fretful is the infant. It is unlikely that a ward nurse will receive a dose of 60 μSv in a working day if caring for just one radioactive adult patient, unless the patient is classified as totally helpless and had undergone a 99 Tc m marrow, bone or brain scan. The data and revised calculations of effective exposure times based on a total close contact time of 9 h in every 24 h period should allow worst case estimates of radiation dose to be made and recommendations to be formulated for other circumstances, including any future legislative changes in dose limits or derived levels. (author)

  14. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  15. Tissue dose in thorotrast patients

    International Nuclear Information System (INIS)

    Kaul, A.; Noffz, W.

    1978-01-01

    Absorbed doses to the liver, spleen, red marrow, lungs, kidneys, and to various parts of bone tissue were calculated for long-term burdens of intravascularly injected Thorotrast. The estimates were performed for typical injection levels of 10, 30, 50 and 100 ml, based upon best estimates of 232 Th tissue distribution, and steady state activity ratios between the subsequent daughters. Correcting for the α-particle self absorption within Thorotrast aggregates, the mean α-dose to a standard 70-kg man at 30 yr after the injection 0f 25 ml of Thorotrast is 750 rad to the liver, 2100 rad to the spleen, 270 rad to the red marrow, 60-620 rad in various parts of the lung, and 13 rad to the kidneys. Dose rates to various parts of bone tissue (bone surface, compact, and cancellous bone) were estimated by applying the ICRP model on alkaline earth metabolism to the continuous translocation of thorium daughters to bone and to the formation of thorium daughters by decay within bone tissue. The average dose to calcified bone from translocated 224 Ra with its daughters is 18 rad at 30 yr after the injection of 25 ml of Thorotrast. Considering the Spiess-Mays risk coefficient of 0.9-1.7% bone sarcoma/ 100 rad of average skeletal dose from 224 Ra and its daughters, the induction of 1.6-3.1 bone sarcomas per 1000 Thorotrast patients is predicted. (author)

  16. Estimation of absorbed dose by newborn patients subjected to chest radiographs

    International Nuclear Information System (INIS)

    Bunick, Ana P.; Schelin, Hugo R.; Denyak, Valeriy

    2016-01-01

    The aim of this study is to present an estimate of the effective dose received by newborn patients hospitalized in NICU and subjected to X-ray examinations of the chest in the AP projection. Initially, were followed examinations chest X-rays performed on newborn patients and subsequently, simulated in a newborn simulator object. The ESAK values obtained by TLDs were used to calculate the effective dose obtained at each examination by Caldose_X software. The estimated values for the effective dose in the simulated exams in this study range from 2,3μSv the 10,7μSv. The results achieved are, generally, inferior to those reported for similar previous studies. (author)

  17. Average glandular dose in patients submitted to mammographic examinations

    International Nuclear Information System (INIS)

    Nogueira, M.S.; Silva, T.A. da; Oliveira, M. de; Joana, G.S.; Oliveira, A.L.K.

    2008-01-01

    Doses in mammography should be maintained as low as possible without reducing the high image quality needed to the early detection of the breast cancer. As the breast is composed of tissues with very soft composition and densities, it increases the difficulty to detect small changes in the normal anatomical structures that may be associated with breast cancer. To achieve the standards of resolution and contrast for mammography, the quality and intensity of the X-ray beam, the breast positioning and compression, the film screen system, and the film processing must be in optimal operational conditions. This study intended to evaluate the mean glandular dose of patients undergoing routine exams in one mammography unit. Patient image analyses were done by a radiologist doctor who took into account 10 evaluation criteria for each CC and MLO incidences. For estimating each patient glandular dose the radiographic technique parameters (kV and mAs) and the thickness of the compressed breast were recorded. European image quality criteria were adopted by the radiologist doctor to accept the image for diagnostic purpose. For breast densities of 50% adipose and 50% glandular tissues the incident air-kerma was measured and the glandular dose calculated considering the x-ray output during the exam. In the study of 50 patients the mean glandular dose varied from 0.90 to 3.27 mGy with a mean value of 1.98 mGy for CC incidences. For MLO incidences the mean glandular doses ranged from 0.97 to 3.98 mGy and a mean value of 2.60 mGy. (author)

  18. 131-I treatment in patients with hyperthyroidism using low fixed dose regimen

    International Nuclear Information System (INIS)

    Bochev, P.; Klisarova, A.; Chaushev, B.; Hristozov, K.; Tsvetanova, B.

    2007-01-01

    Treatment of hyperthyroidism is one of the major problems in thyroidology. The well known and widely exploited treatment modalities in patients with hyperthyroidism are antithyroid drugs, radioiodine treatment and thyroid surgery, the latter two being considered definitive. Radioiodine treatment is effective and well tolerated treating modality, which major disadvantage is the impossibility of exact calculation of the dose needed. Lots of dosage regimens are approved, including empirically chosen fixed dose regimen. The aim of the study is to define the overall success rate in patients with hyperthyroidism in subgroups Grave's disease and toxic nodular goiter treated with fixed dose 185MBq regimen. Of all treated patients a low fixed dose regimen was chosen in 43. All the patients were followed up clinically, with ultrasonography and hormone levels for a period of minimum 1 year. Part of the patients with persistent hyperthyroidism 6 months after the initial treatment receive a second dose of 185MBq 131-1. The overall success rate in the subgroup with Grave's disease was 87% by the time of the study, compared to a considerably lower success of 62% in patients with toxic nodular goiter. (authors)

  19. Measurements and calculations of doses from radioactive particles

    International Nuclear Information System (INIS)

    Leroux, J.B.; Herbaut, Y.

    1996-01-01

    Three Mile Island (TMI) and Tchernobyl reactor accidents have revealed the importance of the skin exposure to beta radiation produced by small high activity sources, named 'hot particles'. In nuclear power reactors, they may arise as small fragments of irradiated fuel or material which have been neutron activated by passing through the reactor co. In recent years, skin exposure to hot particles has been subject to different limitation criteria, formulated by AIEA, ICRP, NCRP working groups. The present work is the contribution of CEA Grenoble to a contract of the Commission of the European communities in cooperation with several laboratories: University of Birmingham, University of Toulouse and University of Montpellier with the main goal to check experiments and calculations of tissue dose from 60 Co radioactive particles. This report is split up into two parts: hot particle dosimetry close to a 60 Co spherical sample with an approximately 200 μm diameter, using a PTW extrapolation chamber model 233991; dose calculations from two codes: the Varskin Mod 2 computer code and the Hot 25 S2 Monte Carlo algorithm. The two codes lead to similar results; nevertheless there is a large discrepancy (of about 2) between calculations and PTW measurements which are higher by a factor of 1.9. At a 70 μm skin depth and for 1 cm 2 irradiated area, the total (β + γ) tissue dose rate delivered by a spherical ( φ = 200 μm) 60 Co source, in contact with skin, is of the order of 6.1 10 -2 nGy s -1 Bq -1 . (author)

  20. Deterministic calculations of radiation doses from brachytherapy seeds

    International Nuclear Information System (INIS)

    Reis, Sergio Carneiro dos; Vasconcelos, Vanderley de; Santos, Ana Maria Matildes dos

    2009-01-01

    Brachytherapy is used for treating certain types of cancer by inserting radioactive sources into tumours. CDTN/CNEN is developing brachytherapy seeds to be used mainly in prostate cancer treatment. Dose calculations play a very significant role in the characterization of the developed seeds. The current state-of-the-art of computation dosimetry relies on Monte Carlo methods using, for instance, MCNP codes. However, deterministic calculations have some advantages, as, for example, short computer time to find solutions. This paper presents a software developed to calculate doses in a two-dimensional space surrounding the seed, using a deterministic algorithm. The analysed seeds consist of capsules similar to IMC6711 (OncoSeed), that are commercially available. The exposure rates and absorbed doses are computed using the Sievert integral and the Meisberger third order polynomial, respectively. The software also allows the isodose visualization at the surface plan. The user can choose between four different radionuclides ( 192 Ir, 198 Au, 137 Cs and 60 Co). He also have to enter as input data: the exposure rate constant; the source activity; the active length of the source; the number of segments in which the source will be divided; the total source length; the source diameter; and the actual and effective source thickness. The computed results were benchmarked against results from literature and developed software will be used to support the characterization process of the source that is being developed at CDTN. The software was implemented using Borland Delphi in Windows environment and is an alternative to Monte Carlo based codes. (author)

  1. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans

    International Nuclear Information System (INIS)

    Simmer, Gregor

    2012-01-01

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  2. WAZA-ARI. A dose assessment system for patients in CT scan

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) are now developing WAZA-ARI for improvement of management of exposure doses due to CT examination under the joint research with the Oita University of Nursing and Health Sciences. The trial version of WAZA-ARI has been released on 21 December 2012. In trial version, users can perform dose assessment by using organ dose database based on the average adult Japanese male (JM-103) and female (JF-103) voxel phantoms and a 4 years old female voxel phantom (UFF4). The homepage of WAZA-ARI has been accessed over 1000 times per month and 28421 times by the end of September 2014. We are developing WAZA-ARI version 2 as the extension version of dose calculation functions of WAZA-ARI. WAZA-ARI version 2 will be released by the end of March 2015. In WAZA-ARI version 2. Users can upload dose calculation results to WAZA-ARI version 2 server, and utilize improvement of the dose management of patients and the optimization of CT scan conditions. (author)

  3. SU-F-J-217: Accurate Dose Volume Parameters Calculation for Revealing Rectum Dose-Toxicity Effect Using Deformable Registration in Cervical Cancer Brachytherapy: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, X; Chen, H; Liao, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Hrycushko, B; Albuquerque, K; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study the feasibility of employing deformable registration methods for accurate rectum dose volume parameters calculation and their potentials in revealing rectum dose-toxicity between complication and non-complication cervical cancer patients with brachytherapy treatment. Method and Materials: Data from 60 patients treated with BT including planning images, treatment plans, and follow-up clinical exam were retrospectively collected. Among them, 12 patients complained about hematochezia were further examined with colonoscopy and scored as Grade 1–3 complication (CP). Meanwhile, another 12 non-complication (NCP) patients were selected as a reference group. To seek for potential gains in rectum toxicity prediction when fractional anatomical deformations are account for, the rectum dose volume parameters D0.1/1/2cc of the selected patients were retrospectively computed by three different approaches: the simple “worstcase scenario” (WS) addition method, an intensity-based deformable image registration (DIR) algorithm-Demons, and a more accurate, recent developed local topology preserved non-rigid point matching algorithm (TOP). Statistical significance of the differences between rectum doses of the CP group and the NCP group were tested by a two-tailed t-test and results were considered to be statistically significant if p < 0.05. Results: For the D0.1cc, no statistical differences are found between the CP and NCP group in all three methods. For the D1cc, dose difference is not detected by the WS method, however, statistical differences between the two groups are observed by both Demons and TOP, and more evident in TOP. For the D2cc, the CP and NCP cases are statistically significance of the difference for all three methods but more pronounced with TOP. Conclusion: In this study, we calculated the rectum D0.1/1/2cc by simple WS addition and two DIR methods and seek for gains in rectum toxicity prediction. The results favor the claim that accurate dose

  4. Calculation of fast neutron dose in plastic-coated optical fibers

    International Nuclear Information System (INIS)

    Siebert, B.R.L.; Henschel, H.

    1998-01-01

    The dose of fast neutrons in optical fibers with hydrogen-containing coating materials is considerably increased by energetic recoil protons. Their contribution to the dose in a SiO 2 fiber core is calculated by the Monte Carlo method for different fiber geometries and a fiber optic cable. With 14 MeV neutrons the dose in a single fiber is increased by about 21%, whereas in fiber bundles the dose increase can reach about 170%. Maximum dose enhancement in fiber bundles (about 610%) occurs at neutron energies around 5.5 MeV. The dose increase caused by 14 MeV neutrons in the fiber of a typical laboratory cable is about 124%

  5. Intravenous Iron Therapy in Patients with Iron Deficiency Anemia: Dosing Considerations

    Directory of Open Access Journals (Sweden)

    Todd A. Koch

    2015-01-01

    Full Text Available Objective. To provide clinicians with evidence-based guidance for iron therapy dosing in patients with iron deficiency anemia (IDA, we conducted a study examining the benefits of a higher cumulative dose of intravenous (IV iron than what is typically administered. Methods. We first individually analyzed 5 clinical studies, averaging the total iron deficit across all patients utilizing a modified Ganzoni formula; we then similarly analyzed 2 larger clinical studies. For the second of the larger studies (Study 7, we also compared the efficacy and retreatment requirements of a cumulative dose of 1500 mg ferric carboxymaltose (FCM to 1000 mg iron sucrose (IS. Results. The average iron deficit was calculated to be 1531 mg for patients in Studies 1–5 and 1392 mg for patients in Studies 6-7. The percentage of patients who were retreated with IV iron between Days 56 and 90 was significantly (p<0.001 lower (5.6% in the 1500 mg group, compared to the 1000 mg group (11.1%. Conclusions. Our data suggests that a total cumulative dose of 1000 mg of IV iron may be insufficient for iron repletion in a majority of patients with IDA and a dose of 1500 mg is closer to the actual iron deficit in these patients.

  6. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  7. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    International Nuclear Information System (INIS)

    FOUST, D.J.

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering

  8. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J da [University of Cambridge, Cambridge, Cambridgeshire (United Kingdom)

    2014-06-15

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552.

  9. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    International Nuclear Information System (INIS)

    Silva, J da

    2014-01-01

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552

  10. Calculation of radiation exposures from patients to whom radioactive materials have been administered

    International Nuclear Information System (INIS)

    McCormack, J.; Shearer, J.

    1998-01-01

    Spreadsheet templates have been developed by the authors to calculate radiation exposures to others from patients to whom radioactive materials have been administered (or, indeed, from any source of radiation exposure) to be readily calculated. The time during which contact should be avoided, along with the residual activity at resumption of contact is also calculated using an iterative technique. These spreadsheets allow a great deal of flexibility in the specification of clearance rates and close contact patterns for individual patients. Estimates of doses, restriction times and residual activities for 131 l thyrotoxic therapy, for various contact patterns and group of patients, were calculated. The spreadsheets are implemented using Microsoft EXCEL for both PC and Macintosh computers, and are readily available from the authors

  11. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  12. Techniques and radiation dose in CT examinations of adult patients

    International Nuclear Information System (INIS)

    Elameen, S. E. A.

    2010-06-01

    The use of CT in medical diagnosis delivers radiation dose to patients that are higher than those from other radiological procedures. Lake of optimized protocols could be an additional source of increased dose. The aim of this study was to measure radiation doses in CT examination of the adults in three Sudanese hospitals. Details were obtained from approximately 160 CT examination carried out in 3 hospitals (3 CT scanners). Effective dose was calculated for each examination using CT dose indices. exposure related parameters and CT D1- to- effective dose conversion factors. CT air kerma index (CT D1) and dose length products (DLP) determined were below the established international reference dose levels. The mean effective doses in this study for the head, chest, and abdomen are 0.82, 3.7 and 5.4 mGy respectively. These values were observed that the effective dose per examination was lower in Sudan than in other countries. The report of a CT survey done in these centers indicates that the mean DLP values for adult patients were ranged from 272-460 mGy cm (head) 195-995 mGy cm (chest), 270-459 mGy cm (abdomen). There are a number of observed parameters that greatly need optimization, such as minimize the scan length, without missing any vital anatomical regions, modulation of exposure parameters (kV, mA, exposure time, and slice thickness) based on patient size and age. Another possible method is through use of contrast media only to optimize diagnostic yield. The last possible method is the use of radio protective materials for protection however, in order to achieve the above optimization strategies: there is great demand to educate CT personnel on the effects of scan parameter settings on radiation dose to patients and image quality required for accurate diagnosis. (Author)

  13. Dose rates from a C-14 source using extrapolation chamber and MC calculations

    International Nuclear Information System (INIS)

    Borg, J.

    1996-05-01

    The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14 C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a 14 C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs

  14. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  15. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, K; Araki, F; Ohno, T [Kumamoto University, Kumamoto, Kumamoto (Japan)

    2016-06-15

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photon and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.

  16. Radiation doses to patients in radiodiagnostic in five Spanish hospitals. First results

    International Nuclear Information System (INIS)

    Grupo Aula Salinas

    1995-01-01

    We present the first results obtained from a study of radiation doses received by patients in diagnostic radiology in real examinations performed with a transmission camera. The study is being carried out in several Spanish hospitals and their dependent specialist outpatient centres where a quality control programme is being applied. The hospitals have over 4,600 beds and attend a population of over 2 million. The dose-area product was measured and the patient surface dose was calculated from it. Median values are presented for both parameters for a number of simple frequently-performed explorations. For most of these, the reference surface-dose values recommended by the C.E.C. are available. Although the corresponding assessment of image quality has not yet been performed, the results indicate that recommendations are generally being satisfied. However, the lack of correlation in the variation of the two values leads us to conclude that use of a single parameter to indicate the dose received by patients is inadequate. 4 refs

  17. A computer-assisted procedure for estimating patient exposure and fetal dose in radiographic examinations

    International Nuclear Information System (INIS)

    Glaze, S.; Schneiders, N.; Bushong, S.C.

    1982-01-01

    A computer program for calculating patient entrance exposure and fetal dose for 11 common radiographic examinations was developed. The output intensity measured at 70 kVp and a 30-inch (76-cm) source-to-skin distance was entered into the program. The change in output intensity with changing kVp was examined for 17 single-phase and 12 three-phase x-ray units. The relationships obtained from a least squares regression analysis of the data, along with the technique factors for each examination, were used to calculate patient exposure. Fetal dose was estimated using published fetal dose in mrad (10 -5 Gy) per 1,000 mR (258 μC/kg) entrance exposure values. The computations are fully automated and individualized to each radiographic unit. The information provides a ready reference in large institutions and is particularly useful at smaller facilities that do not have available physicists who can make the calculations immediately

  18. A computer-assisted procedure for estimating patient exposure and fetal dose in radiographic examinations

    International Nuclear Information System (INIS)

    Glaze, S.; Schneiders, N.; Bushong, S.C.

    1982-01-01

    A computer program for calculating patient entrance exposure and fetal dose for 11 common radiographic examinations was developed. The output intensity measured at 70 kVp and a 30-inch (76-cm) source-to-skin distance was entered into the program. The change in output intensity with changing kVp was examined for 17 single-phase and 12 three-phase x-ray units. The relationships obtained from a least squares regression analysis of the data, along with the technique factors for each examination, were used to calculate patient exposure. Fetal dose was estimated using published fetal dose in mrad (10(-5) Gy) per 1,000 mR (258 microC/kg) entrance exposure values. The computations are fully automated and individualized to each radiographic unit. The information provides a ready reference in large institutions and is particularly useful at smaller facilities that do not have available physicians who can make the calculations immediately

  19. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, E; Kim, S; Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD (United States); Lee, C [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Pelletier, C; Jung, J [Department of Physics, East Carolina University Greenville, NC (United States); Jones, E [Radiology and Imaging Sciences Clinical Center, National Institutes of Health, Bethesda, MD (United States)

    2016-06-15

    Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.

  20. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients

    International Nuclear Information System (INIS)

    Mosher, E; Kim, S; Lee, C; Lee, C; Pelletier, C; Jung, J; Jones, E

    2016-01-01

    Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.

  1. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    Science.gov (United States)

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  2. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  3. Patient dose measurement and dose reduction in chest radiography

    Directory of Open Access Journals (Sweden)

    Milatović Aleksandra A.

    2014-01-01

    Full Text Available Investigations presented in this paper represent the first estimation of patient doses in chest radiography in Montenegro. In the initial stage of our study, we measured the entrance surface air kerma and kerma area product for chest radiography in five major health institutions in the country. A total of 214 patients were observed. We reported the mean value, minimum and third quartile values, as well as maximum values of surface air kerma and kerma area product of patient doses. In the second stage, the possibilities for dose reduction were investigated. Mean kerma area product values were 0.8 ± 0.5 Gycm2 for the posterior-anterior projection and 1.6 ± 0.9 Gycm2 for the lateral projection. The max/min ratio for the entrance surface air kerma was found to be 53 for the posterior-anterior projection and 88 for the lateral projection. Comparing the results obtained in Montenegro with results from other countries, we concluded that patient doses in our medical centres are significantly higher. Changes in exposure parameters and increased filtration contributed to a dose reduction of up to 36% for posterior-anterior chest examinations. The variability of the estimated dose values points to a significant space for dose reduction throughout the process of radiological practice optimisation.

  4. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Pan, Yuxi; Qiu, Rui; Ge, Chaoyong; Xie, Wenzhang; Li, Junli; Gao, Linfeng; Zheng, Junzheng

    2014-01-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations. (paper)

  5. Patient radiation dose in some dental radiography clinics in Khartoum, Sudan

    International Nuclear Information System (INIS)

    Mohamed, Aziza Hamed Abdelgadir

    2016-01-01

    Patient dose audit is an important tool for quality control and it is important for monitoring patient exposure. The DAP meter has proved to be an easy and accurate tool for patient dosimetry and for establishment of diagnostic reference levels in dental radiology. The objective of this study was measure patient dose in dental radiography in some dental radiography clinics in Khartoum. The study was performed in five dental clinics comprising six panoramic and six intraoral dental radiography devices in Khartoum state. The incident surface air kerma (k i ) and dose area product were measured for intraoral and panoramic dental examinations, respectively for digital and film imaging modalities. Incident surface air kerma (k i ) was measured using calibrated dose rate meter where dose area product were determined from dose width product (DWP) measured using 3 cc pencil type CT ionization chamber. For intraoral examinations, the maximum, average and minimum, (1.95, 1.48, and 1.24) mGy, (5.84, 4.54, and 3.6) mGy for digital and imaging, respectively. This result was lower in digital in traol and higher in film imaging. The result for panoramic examination calculated dose area product (DAP) mean value for adult and pediatric was (103, 70.42) mGy cm 2 , respectively, where the dose for digital imaging was highest in two centers, compared to previous study. Increased patient dose in intraoral dental radiography could partially be explained by the use of circular collimators. or intraoral x-ray equipment the downward trend in patient dose can only be continue, a through the adoption of digital imaging methods. Our results are relatively higher in digital panoramic dental examinations. It is important to point out that non of the dental units under study were covered by regular quality assurance programme.(Author)

  6. SU-F-T-157: Physics Considerations Regarding Dosimetric Accuracy of Analytical Dose Calculations for Small Field Proton Therapy: A Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Geng, C [Massachusetts General Hospital, Boston, MA (United States); Nanjing University of Aeronautics and Astronautics, Nanjing (China); Daartz, J; Cheung, K; Bussiere, M; Shih, H; Paganetti, H; Schuemann, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To evaluate the accuracy of dose calculations by analytical dose calculation methods (ADC) for small field proton therapy in a gantry based passive scattering facility. Methods: 50 patients with intra-cranial disease were evaluated in the study. Treatment plans followed standard prescription and optimization procedures of proton stereotactic radiosurgery. Dose distributions calculated with the Monte Carlo (MC) toolkit TOPAS were used to represent delivered treatments. The MC dose was first adjusted using the output factor (OF) applied clinically. This factor is determined from the field size and the prescribed range. We then introduced a normalization factor to measure the difference in mean dose between the delivered dose (MC dose with OF) and the dose calculated by ADC for each beam. The normalization was determined by the mean dose of the center voxels of the target area. We compared delivered dose distributions and those calculated by ADC in terms of dose volume histogram parameters and beam range distributions. Results: The mean target dose for a whole treatment is generally within 5% comparing delivered dose (MC dose with OF) and ADC dose. However, the differences can be as great as 11% for shallow and small target treated with a thick range compensator. Applying the normalization factor to the MC dose with OF can reduce the mean dose difference to less than 3%. Considering range uncertainties, the generally applied margins (3.5% of the prescribed range + 1mm) to cover uncertainties in range might not be sufficient to guarantee tumor coverage. The range difference for R90 (90% distal dose falloff) is affected by multiple factors, such as the heterogeneity index. Conclusion: This study indicates insufficient accuracy calculating proton doses using ADC. Our results suggest that uncertainties of target doses are reduced using MC techniques, improving the dosimetric accuracy for proton stereotactic radiosurgery. The work was supported by NIH/NCI under CA

  7. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Kusama, T.; Saito, K.

    2002-01-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated

  8. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, K.; Kai, M.; Kusama, T. [Oita Univ., of Nursing and Health Sciences, Oita-Ken (Japan); Saito, K. [JAERI, Ibaraki-ken (Japan)

    2002-07-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated.

  9. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma.

    Science.gov (United States)

    Kan, Monica W K; Leung, Lucullus H T; So, Ronald W K; Yu, Peter K N

    2013-03-01

    To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc(®) (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic(®) EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB_Dm) and dose-to-water (AXB_Dw) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans. Within the NP region where air and bone were present, the film measurements represented the dose close to unit density water

  10. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma

    International Nuclear Information System (INIS)

    Kan, Monica W. K.; Leung, Lucullus H. T.; So, Ronald W. K.; Yu, Peter K. N.

    2013-01-01

    Purpose: To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc ® (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Methods: Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic ® EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB Dm ) and dose-to-water (AXB Dw ) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. Results: For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB Dm , and AXB Dw , respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB Dm , and AXB Dw , respectively, averaged over all IMRT and RA plans. Within the NP region where air and bone were present, the film measurements represented the

  11. Patient dose, gray level and exposure index with a computed radiography system

    Science.gov (United States)

    Silva, T. R.; Yoshimura, E. M.

    2014-02-01

    Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.

  12. New model for mines and transportation tunnels external dose calculation using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Allam, Kh. A.

    2017-01-01

    In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)

  13. Target dose study of effects of changes in the AAA calculation resolution on lung SABR plan

    International Nuclear Information System (INIS)

    Kim, Dae Il; Son, Sang Jun; Ahn, Bum Seok; Jung, Chi Hoon; Yoo, Suk Hyun

    2014-01-01

    Changing the calculation grid of AAA in Lung SABR plan and to analyze the changes in target dose, and investigated the effects associated with it, and considered a suitable method of application. 4D CT image that was used to plan all been taken with Brilliance Big Bore CT (Philips, Netherlands) and in Lung SABR plan(Eclipse TM ver10.0.42, Varian, the USA), use anisotropic analytic algorithm(AAA, ver.10, Varian Medical Systems, Palo Alto, CA, USA) and, was calculated by the calculation grid 1.0, 3.0, 5.0 mm in each Lung SABR plan. Lung SABR plan of 10 cases are using each of 1.0 mm, 3.0 mm, 5.0 mm calculation grid, and in case of use a 1.0 mm calculation grid V98 of the prescribed dose is about 99.5%±1.5%, Dmin of the prescribed dose is about 92.5±1.5% and Homogeneity Index(HI) is 1.0489±0.0025. In the case of use a 3.0 mm calculation grid V98 dose of the prescribed dose is about 90±4.5% , Dmin of the prescribed dose is about 87.5±3% and HI is about 1.07±1. In the case of use a 5.0 mm calculation grid V98 dose of the prescribed dose is about 63±15%, Dmin of the prescribed dose is about 83±4% and HI is about 1.13±0.2, respectively. The calculation grid of 1.0 mm is better improves the accuracy of dose calculation than using 3.0 mm and 5.mm, although calculation times increase in the case of smaller PTV relatively. As lung, spread relatively large and low density and small PTV, it is considered and good to use a calculation grid of 1.0 mm

  14. FORTRAN Code for Glandular Dose Calculation in Mammography Using Sobol-Wu Parameters

    Directory of Open Access Journals (Sweden)

    Mowlavi A A

    2007-07-01

    Full Text Available Background: Accurate computation of the radiation dose to the breast is essential to mammography. Various the thicknesses of breast, the composition of the breast tissue and other variables affect the optimal breast dose. Furthermore, the glandular fraction, which refers to the composition of the breasts, as partitioned between radiation-sensitive glandular tissue and the adipose tissue, also has an effect on this calculation. Fatty or fibrous breasts would have a lower value for the glandular fraction than dense breasts. Breast tissue composed of half glandular and half adipose tissue would have a glandular fraction in between that of fatty and dense breasts. Therefore, the use of a computational code for average glandular dose calculation in mammography is a more effective means of estimating the dose of radiation, and is accurate and fast. Methods: In the present work, the Sobol-Wu beam quality parameters are used to write a FORTRAN code for glandular dose calculation in molybdenum anode-molybdenum filter (Mo-Mo, molybdenum anode-rhodium filter (Mo-Rh and rhodium anode-rhodium filter (Rh-Rh target-filter combinations in mammograms. The input parameters of code are: tube voltage in kV, half-value layer (HVL of the incident x-ray spectrum in mm, breast thickness in cm (d, and glandular tissue fraction (g. Results: The average glandular dose (AGD variation against the voltage of the mammogram X-ray tube for d = 4 cm, HVL = 0.34 mm Al and g=0.5 for the three filter-target combinations, as well as its variation against the glandular fraction of breast tissue for kV=25, HVL=0.34, and d=4 cm has been calculated. The results related to the average glandular absorbed dose variation against HVL for kV = 28, d=4 cm and g= 0.6 are also presented. The results of this code are in good agreement with those previously reported in the literature. Conclusion: The code developed in this study calculates the glandular dose quickly, and it is complete and

  15. SU-F-T-111: Investigation of the Attila Deterministic Solver as a Supplement to Monte Carlo for Calculating Out-Of-Field Radiotherapy Dose

    Energy Technology Data Exchange (ETDEWEB)

    Mille, M; Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD (United States); Failla, G [Varian Medical Systems, Gig Harbor, WA (United States)

    2016-06-15

    Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing average organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective

  16. SUBDOSA: a computer program for calculating external doses from accidental atmospheric releases of radionuclides

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Houston, J.R.

    1975-06-01

    A computer program, SUBDOSA, was developed for calculating external γ and β doses to individuals from the accidental release of radionuclides to the atmosphere. Characteristics of SUBDOSA are: doses from both γ and β radiation are calculated as a function of depth in tissue, summed and reported as skin, eye, gonadal, and total body dose; doses are calculated for releases within each of several release time intervals and nuclide inventories and atmospheric dispersion conditions are considered for each time interval; radioactive decay is considered during the release and/or transit using a chain decay scheme with branching to account for transitions to and from isomeric states; the dose from gamma radiation is calculated using a numerical integration technique to account for the finite size of the plume; and the program computes and lists the normalized air concentrations at ground level as a function of distance from the point of release. (auth)

  17. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    Science.gov (United States)

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases

  18. EFFDOS - a FORTRAN-77-code for the calculation of the effective dose equivalent

    International Nuclear Information System (INIS)

    Baer, M.; Honcu, S.; Huebschmann, W.

    1984-01-01

    The FORTRAN-77-code EFFDOS calculates the effective dose equivalent according to ICRP 26 due to the longterm emission of radionuclides into the atmosphere for the following exposure pathways: inhalation, ingestion, γ-ground irradiation (γ-irradiation by radionuclides deposited on the ground) and β- or γ-submersion (irradiation by the passing radioactive cloud). For calculating the effective dose equivalent at a single spot it is necessary to put in the diffusion factor and - if need be - the washout factor; otherwise EFFDOS calculates the input data for the computer codes ISOLA III and WOLGA-1, which then are enabled to compute the atmospheric diffusion, ground deposition and local dose equivalent distribution for the requested exposure pathway. Atmospheric diffusion, deposition and radionuclide transfer are calculated according to the ''Allgemeine Berechnungsgrundlage ....'' recommended by the German Fed. Ministry of Interior. A sample calculated is added. (orig.) [de

  19. Calculation of radiation dose rates from a spent nuclear fuel shipping cask

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Radiation doses from a spent nuclear fuel cask are usually from various phases of operations during handling, shipping, and storage of the casks. Assessment of such doses requires knowledge of external radiation dose rates at various locations surrounding a cask. Under current practices, dose rates from gamma photons are usually estimated by means of point- or line-source approaches incorporating the conventional buildup factors. Although such simplified approaches may at times be easy to use, their accuracy has not been verified. For example, those simplified methods have not taken into account influencing factors such as the geometry of the cask and the presence of the ground surface, and the effects of these factors on the calculated dose rates are largely unknown. Moreover, similar empirical equations for buildup factors currently do not exist for neutrons. The objective of this study is to use a more accurate approach in calculating radiation dose rates for both neutrons and gamma photons from a spent fuel cask. The calculation utilizes the more sophisticated transport method and takes into account the geometry of the cask and the presence of the ground surface. The results of a detailed study of dose rates in the near field (within 20 meters) are presented and, for easy application, the cask centerline dose rates are fitted into empirical equations at cask centerline distances up to 2000 meters from the surface of the cask

  20. Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion

    International Nuclear Information System (INIS)

    Gemmel, A; Rietzel, E; Kraft, G; Durante, M; Bert, C

    2011-01-01

    We present an algorithm suitable for the calculation of the RBE-weighted dose for moving targets with a scanned particle beam. For verification of the algorithm, we conducted a series of cell survival measurements that were compared to the calculations. Calculation of the relative biological effectiveness (RBE) with respect to tumor motion was included in the treatment planning procedure, in order to fully assess its impact on treatment delivery with a scanned ion beam. We implemented an algorithm into our treatment planning software TRiP4D which allows determination of the RBE including its dependence on target tissue, absorbed dose, energy and particle spectra in the presence of organ motion. The calculations are based on time resolved computed tomography (4D-CT) and the corresponding deformation maps. The principal of the algorithm is illustrated in in silico simulations that provide a detailed view of the different compositions of the energy and particle spectra at different target positions and their consequence on the resulting RBE. The calculations were experimentally verified with several cell survival measurements using a dynamic phantom and a scanned carbon ion beam. The basic functionality of the new dose calculation algorithm has been successfully tested in in silico simulations. The algorithm has been verified by comparing its predictions to cell survival measurements. Four experiments showed in total a mean difference (standard deviation) of −1.7% (6.3%) relative to the target dose of 9 Gy (RBE). The treatment planning software TRiP is now capable to calculate the patient relevant RBE-weighted dose in the presence of target motion and was verified against cell survival measurements.

  1. Patient doses in digital cardiac imaging

    International Nuclear Information System (INIS)

    Huda, W.; Ogden, K.M.; Roskopf, M.L.; Phadke, K.

    2001-01-01

    In this pilot study, we obtained estimates of entrance skin doses and the corresponding effective doses to patients undergoing digital cardiac imaging procedures on a GE Advantx LC/LP Plus system. Data were obtained for six patients undergoing diagnostic examinations and six patients who had interventional procedures. For each patient examination, radiographic techniques for fluoroscopic and digital cine imaging were recorded, together with the irradiation geometry. The projection with the highest exposure resulted in an average skin dose of 0.64 ± 0.41 Gy (maximum of 1.6 Gy). The average patient skin doses taking into account overlapping projections was 1.1 ± 0.8 Gy (maximum of 3.0 Gy). The exposure area product (EAP) incident on the patient was converted into the energy imparted to the patient and the corresponding effective dose. The average patient effective dose was 28 ± 14 mSv (maximum 62 mSv), with the resultant average fatal cancer risk estimated to be of the order of 8x10 -3 . Average doses for interventional procedures in cardiac imaging are higher than those associated with diagnostic examinations by approximately 50%. (author)

  2. Verification of absorbed dose calculation with XIO Radiotherapy Treatment Planning System

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M.; Frobe, A.; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.

    2013-01-01

    Modern radiotherapy relies on computerized treatment planning systems (TPS) for absorbed dose calculation. Most TPS require a detailed model of a given machine and therapy beams. International Atomic Energy Agency (IAEA) recommends acceptance testing for the TPS (IAEA-TECDOC-1540). In this study we present customization of those tests for measurements with the purpose of verification of beam models intended for clinical use in our department. Elekta Synergy S linear accelerator installation and data acquisition for Elekta CMS XiO 4.62 TPS was finished in 2011. After the completion of beam modelling in TPS, tests were conducted in accordance with the IAEA protocol for TPS dose calculation verification. The deviations between the measured and calculated dose were recorded for 854 points and 11 groups of tests in a homogenous phantom. Most of the deviations were within tolerance. Similar to previously published results, results for irregular L shaped field and asymmetric wedged fields were out of tolerance for certain groups of points.(author)

  3. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  4. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  5. Calculation of organ doses in x-ray examinations of premature babies

    International Nuclear Information System (INIS)

    Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke; Struelens, Lara; Vanhavere, Filip; Smet, Marleen; Bosmans, Hilde

    2008-01-01

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomical properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model

  6. Low-dose multislice CT in febrile neutropenic patients

    International Nuclear Information System (INIS)

    Wendel, F.; Jenett, M.; Hahn, D.; Sandstede, J.; Geib, A.

    2005-01-01

    Purpose: to define the value of low-dose multislice CT in a clinical setting for early detection of pneumonia in neutropenic patients with fever of unknown origin. Materials and methods: thirty-five neutropenic patients suffering from fever of unknown origin with normal chest X-ray underwent unenhanced low-dose CT of the chest (120 kV, 10 eff. mAs, collimation 4 x 1 mm) using a multislice CT scanner. Axial und frontal slices with a thickness of 5 mm were calculated. If no pneumonia was found, standard antibiotics were given and a repeated examination was performed if fever continued. In case of pneumonia, antimycotic therapy was added and a follow-up CT was performed within one week. Regression or progression of pneumonia at follow-up served as evidence of pneumonia; lowering of fever within 48 h or inconspicuous follow-up CT was regarded as absence of pneumonia. Results: ten of 35 patients had pneumonic infiltration, which decreased or increased on follow-up CT in 3 and 6 patients, respectively. One patient revealed leucemic infiltration by bronchoalveolar lavage. Twenty-five of 35 patients had no evidence of pneumonia. Twenty of these patients were free of fever within 48 h under antibiotics; one patient died due to his basic illness. Out of 4 patients with persisting fever, 3 patients had no pneumonia on repeated examination; one patient showed disseminated micronodular infiltration. Frontal reconstructions helped to differentiate infiltration from atelectasis in 4 patients. Sensitivity and specificity for the detection of pneumonia at the first examination were 90% and 96%, negative predictive value was 96%. Conclusion: low-dose multislice CT should be performed in neutropenic patients having a fever of unknown origin and normal chest X-ray. (orig.)

  7. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    Science.gov (United States)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  8. Dose and dose commitment calculations from groundwaterborne radio-active elements released from a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1983-05-01

    The turnover of radioactive matter entering the biosphere with groundwater has been studied with regard to exposure and doses to critical groups and populations. Two main recipients, a well and a lake, have been considered for the inflow of groundwaterborne nuclides. Mathematical models of a set of coupled ecosystems on regional, intermediate and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical treatment of the model is based upon compartment theory with first order kinetics and also includes products in decay chains. The time-dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from disposed fuel. Dose and dose commitment have been calculated for different episodes for inflow to the biosphere. (author)

  9. Study of 201 Non-Small Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence on Dose Calculation Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Kujtim, E-mail: Kujtim.Latifi@Moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Oliver, Jasmine [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Department of Physics, University of South Florida, Tampa, Florida (United States); Baker, Ryan [University of South Florida School of Medicine, Tampa, Florida (United States); Dilling, Thomas J.; Stevens, Craig W. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Kim, Jongphil; Yue, Binglin [Department of Biostatics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States); DeMarco, MaryLou; Zhang, Geoffrey G.; Moros, Eduardo G.; Feygelman, Vladimir [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States)

    2014-04-01

    Purpose: Pencil beam (PB) and collapsed cone convolution (CCC) dose calculation algorithms differ significantly when used in the thorax. However, such differences have seldom been previously directly correlated with outcomes of lung stereotactic ablative body radiation (SABR). Methods and Materials: Data for 201 non-small cell lung cancer patients treated with SABR were analyzed retrospectively. All patients were treated with 50 Gy in 5 fractions of 10 Gy each. The radiation prescription mandated that 95% of the planning target volume (PTV) receive the prescribed dose. One hundred sixteen patients were planned with BrainLab treatment planning software (TPS) with the PB algorithm and treated on a Novalis unit. The other 85 were planned on the Pinnacle TPS with the CCC algorithm and treated on a Varian linac. Treatment planning objectives were numerically identical for both groups. The median follow-up times were 24 and 17 months for the PB and CCC groups, respectively. The primary endpoint was local/marginal control of the irradiated lesion. Gray's competing risk method was used to determine the statistical differences in local/marginal control rates between the PB and CCC groups. Results: Twenty-five patients planned with PB and 4 patients planned with the CCC algorithms to the same nominal doses experienced local recurrence. There was a statistically significant difference in recurrence rates between the PB and CCC groups (hazard ratio 3.4 [95% confidence interval: 1.18-9.83], Gray's test P=.019). The differences (Δ) between the 2 algorithms for target coverage were as follows: ΔD99{sub GITV} = 7.4 Gy, ΔD99{sub PTV} = 10.4 Gy, ΔV90{sub GITV} = 13.7%, ΔV90{sub PTV} = 37.6%, ΔD95{sub PTV} = 9.8 Gy, and ΔD{sub ISO} = 3.4 Gy. GITV = gross internal tumor volume. Conclusions: Local control in patients receiving who were planned to the same nominal dose with PB and CCC algorithms were statistically significantly different. Possible

  10. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  11. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    International Nuclear Information System (INIS)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI vol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics

  12. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  13. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at [EBG MedAustron GmbH, 2700 Wiener Neustadt (Austria); Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz (Austria); Paganetti, Harald; Zhu, Mingyao; Winey, Brian A. [Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  14. Optimal medication dosing in patients with diabetes mellitus and chronic kidney disease.

    Science.gov (United States)

    MacCallum, Lori

    2014-10-01

    Diabetes mellitus is the leading cause of chronic kidney disease (CKD) in Canada. As rates of diabetes rise, so does the prevalence of CKD. Diabetes and CKD are chronic diseases that require multiple medications for their management. Many of the anticipated effects of these medications are altered by the physiologic changes that occur in CKD. Failure to individualize drug dosing in this population may lead to toxicity or decreased therapeutic response, leading to treatment failure. At times this can be challenging for a multitude of reasons, including the limitations of available calculations for estimating renal function, inconsistent dosing recommendations and the lack of dosing recommendations for some medications. Clinicians caring for these patients need to consider an approach of individualized drug therapy that will ensure optimal outcomes. The better understanding that clinicians have of these challenges, the more effective they will be at using the available information as a guide together with their own professional judgement to make appropriate dosing changes. This article discusses the following: 1) physiologic changes that occur in CKD and its impact on drug dosing; 2) advantages and disadvantages of various calculations used for estimating renal function; 3) pharmacokinetic and pharmacodynamic changes of some commonly used medications in diabetes, and finally, 4) an approach to individualized drug dosing for this patient population. Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  15. A practical guideline for the release of patients treated by I-131 based on Monte Carlo dose calculations for family members

    International Nuclear Information System (INIS)

    Han, Eun Young; Lee, Choonsik; Mcguire, Lynn; Bolch, Wesley E

    2014-01-01

    We recently published effective doses per time-integrated activity (mSv MBq −1  s −1 ) for paediatric and adult family members exposed to an adult patient released from hospital following I-131 therapy. In the present study, we intend to provide medical physicists with a methodology to estimate family member effective dose in daily clinical practice because the duration of post-radiation precautions for the patient–family member exposure scenario has not been explicitly delineated based on the effective dose. Four different exposure scenarios are considered in this study including (1) a patient and a family member standing face to face, (2) a patient and a family member lying side by side, (3) an adult female patient holding a newborn child to her chest and (4) a one-year-old child standing on the lap of an adult female patient following her I-131 therapy. The results of this study suggest that an adult female hyperthyroidism (HT) patient who was administered with 740 MBq should keep a distance of 100 cm from a 15-year-old child for six days and the same distance from other adults for seven days. The HT female patient should avoid holding a newborn against her chest for at least 16 days following hospital discharge, and a female patient treated with 5550 MBq for differentiated thyroid cancer should not hold her newborn child for at least 15 days following hospital discharge. This study also gives dose coefficients allowing one to predict age-specific effective doses to family members given the measured dose rate (mSv h −1 ) of the patient. In conclusion, effective dose-based patient release criteria with a modified NRC two-component model provide a site medical physicist with less restrictive and age-specific radiation precaution guidance as they fully consider a patient’s iodine biokinetics and photon attenuation within both the patient and the exposed family members. (note)

  16. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  17. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  18. Dose calculation at distance of irradiation beams: case of women treated for the Hodgkin disease; Calcul de la dose a distance des faisceaux d'irradiation: cas de patientes traitees pour la maladie de Hodgkin

    Energy Technology Data Exchange (ETDEWEB)

    Poupon, E.; Alziar, I.; Vathaire, F. de; Diallo, I. [Institut National de la Sante et de la Recherche Medicale (INSERM), 94 - Villejuif (France); Bridier, A.; Bonniaud, G.; Lefkopoulos, D. [Institut Gustave-Roussy, 94 - Villejuif (France); Ruaud, J.B.; Rousseau, V.; Kafrouni, H. [Dosisoft, 94 - Cachan (France)

    2007-11-15

    The interest of precise calculation of radiation doses distributions remote areas of irradiation is to open new prospects in the knowledge of the contribution of radiotherapy in the occurrence of iatrogenic early and delayed effects. (N.C.)

  19. Modeling for Dose Rate Calculation of the External Exposure to Gamma Emitters in Soil

    International Nuclear Information System (INIS)

    Allam, K. A.; El-Mongy, S. A.; El-Tahawy, M. S.; Mohsen, M. A.

    2004-01-01

    Based on the model proposed and developed in Ph.D thesis of the first author of this work, the dose rate conversion factors (absorbed dose rate in air per specific activity of soil in nGy.hr - 1 per Bq.kg - 1) are calculated 1 m above the ground for photon emitters of natural radionuclides uniformly distributed in the soil. This new and simple dose rate calculation software was used for calculation of the dose rate in air 1 m above the ground. Then the results were compared with those obtained by five different groups. Although the developed model is extremely simple, the obtained results of calculations, based on this model, show excellent agreement with those obtained by the above-mentioned models specially that one adopted by UNSCEAR. (authors)

  20. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  1. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    Science.gov (United States)

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  2. Variations of Patient Doses in Interventional Examinations at Different Angiographic Units

    International Nuclear Information System (INIS)

    Bor, Dogan; Toklu, Tuerkay; Olgar, Turan; Sancak, Tanzer; Cekirge, Saruhan; Onal, Baran; Bilgic, Sadik

    2006-01-01

    Purpose. We analyzed doses for various angiographic procedures using different X-ray systems in order to assess dose variations. Methods. Dose-area product (DAP), skin doses from thermoluminescent dosimeters and air kerma measurements of 308 patients (239 diagnostic and 69 interventional) were assessed for five different angiographic units. All fluoroscopic and radiographic exposure parameters were recorded online for single and multiprojection studies. Radiation outputs of each X-ray system were also measured for all the modes of exposure using standard protocols for such measurements. Results. In general, the complexity of the angiographic procedure was found to be the most important reason for high radiation doses. Skill of the radiologist, management of the exposure parameters and calibration of the system are the other factors to be considered. Lateral cerebral interventional studies carry the highest risk for deterministic effects on the lens of the eye. Effective doses were calculated from DAP measurements and maximum fatal cancer risk factors were found for carotid studies. Conclusions. Interventional radiologists should measure patient doses for their examinations. If there is a lack of necessary instrumentation for this purpose, then published dose reports should be used in order to predict the dose levels from some of the exposure parameters. Patient dose information should include not only the measured quantity but also the measured radiation output of the X-ray unit and exposure parameters used during radiographic and fluoroscopic exposures

  3. Patient doses and radiation risks in film-screen mammography in Finland

    International Nuclear Information System (INIS)

    Servomaa, A.; Parviainen, T.; Komppa, T.

    1995-01-01

    Screen-film mamography is the most sensitive method for the early detection of breast cancer. Breast doses in mamography should be measured for several reasons, especially for the evaluation of patient risk in a screening programme, but also for the assessment and comparison of imaging techniques and equipment performance. In this study, the factors affecting patient doses were assessed by making performance and patient dose measurements; about 50 mammographic units used for screening were included in the study. The lifetime risk as a function of age at exposure was calculated using the average glandular dose, the relative risk model shown in the BEIR V report, and the breast cancer mortality in Finland. The mean surface dose of a 4.5 cm thick phantom was 6.3 mGy, and the mean glandular dose 1.0 mGy. Analysis of the surface dose with respect to film optical density, relative speed of film processing, sensitivity of image receptors, and antiscatter grid showed that the mean surface dose could be decreased by more than 50%. For the screened age group of 50 to 59 years, the risk of exposure-induced death (REID) of breast cancer is about 1.4 x 10 -6 mSv -1 , and the average loss of life expectancy due to the radiation-induced breast cancer deaths (LLE/REID) is about 9.5 years. (Author)

  4. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-01-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time

  5. Dose indices: everybody wants a number

    International Nuclear Information System (INIS)

    Strauss, Keith J.

    2014-01-01

    This paper discusses the merits and weaknesses of the standard terms that have been developed to quantify CT dose: CT dose indices (CTDI), dose length product (DLP) and effective dose. The difference between the measured CTDI vol and the CTDI vol displayed on the CT scanner illustrates a clinical dilemma. Displayed CTDI vol represents the radiation dose delivered to a plastic phantom, which is significantly different from the dose delivered to the patient, depending on the size of the patient. Although effective dose is simple to calculate for an individual patient, it was never intended for this purpose. The need for a simple, appropriate method to estimate pediatric patient doses led to the development of the size-specific dose estimate (SSDE), the newest CT dose index. Here I compare SSDE and its merits to the use of effective dose to estimate patient dose. The discussion concludes with a few sample calculations and basic clinical applications of SSDE to better quantify pediatric patient dose from CT scans. (orig.)

  6. Calculating external doses from contaminated soil with the computer model SOILD

    International Nuclear Information System (INIS)

    Chen, Y.; LePoire, D.; Yu, C.

    1991-01-01

    The SOILD computer model was developed for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil. It is designed to assess external doses under various exposure scenarios that may be encountered in environmental restoration programs. The model's four major functional features address (a) dose versus source depth in soil, (b) shielding of clean cover soil, (c) area of contamination, and (d) nonuniform distribution of sources. The model can also adjust doses when there are variations in soil densities for both source and cover soils. It is supported by a data base of ∼500 radionuclides. A sample calculation was performed by SOILD to determine the effective dose equivalent for a uniform source distribution in soil. The soil density was assumed to be 1.6 g/cm 3 , and the source strength was assumed to be 1 pCi/cm 3 . The following radionuclides were studied: 60 C, 131 I, 137+D Cs, 238+D U, and 226+D Ra ('+D' denotes the parent nuclide and daughters)

  7. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Heming; Nelms, Benjamin E.; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 and Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-10-15

    Purpose: The purpose of this work is to explore the usefulness of the gamma passing rate metric for per-patient, pretreatment dose QA and to validate a novel patient-dose/DVH-based method and its accuracy and correlation. Specifically, correlations between: (1) gamma passing rates for three 3D dosimeter detector geometries vs clinically relevant patient DVH-based metrics; (2) Gamma passing rates of whole patient dose grids vs DVH-based metrics, (3) gamma passing rates filtered by region of interest (ROI) vs DVH-based metrics, and (4) the capability of a novel software algorithm that estimates corrected patient Dose-DVH based on conventional phan-tom QA data are analyzed. Methods: Ninety six unique ''imperfect'' step-and-shoot IMRT plans were generated by applying four different types of errors on 24 clinical Head/Neck patients. The 3D patient doses as well as the dose to a cylindrical QA phantom were then recalculated using an error-free beam model to serve as a simulated measurement for comparison. Resulting deviations to the planned vs simulated measured DVH-based metrics were generated, as were gamma passing rates for a variety of difference/distance criteria covering: dose-in-phantom comparisons and dose-in-patient comparisons, with the in-patient results calculated both over the whole grid and per-ROI volume. Finally, patient dose and DVH were predicted using the conventional per-beam planar data as input into a commercial ''planned dose perturbation'' (PDP) algorithm, and the results of these predicted DVH-based metrics were compared to the known values. Results: A range of weak to moderate correlations were found between clinically relevant patient DVH metrics (CTV-D95, parotid D{sub mean}, spinal cord D1cc, and larynx D{sub mean}) and both 3D detector and 3D patient gamma passing rate (3%/3 mm, 2%/2 mm) for dose-in-phantom along with dose-in-patient for both whole patient volume and filtered per-ROI. There was

  8. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)

    Science.gov (United States)

    Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah

    2017-11-01

    The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.

  9. SU-E-T-04: 3D Dose Based Patient Compensator QA Procedure for Proton Radiotherapy

    International Nuclear Information System (INIS)

    Zou, W; Reyhan, M; Zhang, M; Davis, R; Jabbour, S; Khan, A; Yue, N

    2015-01-01

    Purpose: In proton double-scattering radiotherapy, compensators are the essential patient specific devices to contour the distal dose distribution to the tumor target. Traditional compensator QA is limited to checking the drilled surface profiles against the plan. In our work, a compensator QA process was established that assess the entire compensator including its internal structure for patient 3D dose verification. Methods: The fabricated patient compensators were CT scanned. Through mathematical image processing and geometric transformations, the CT images of the proton compensator were combined with the patient simulation CT images into a new series of CT images, in which the imaged compensator is placed at the planned location along the corresponding beam line. The new CT images were input into the Eclipse treatment planning system. The original plan was calculated to the combined CT image series without the plan compensator. The newly computed patient 3D dose from the combined patientcompensator images was verified against the original plan dose. Test plans include the compensators with defects intentionally created inside the fabricated compensators. Results: The calculated 3D dose with the combined compensator and patient CT images reflects the impact of the fabricated compensator to the patient. For the test cases in which no defects were created, the dose distributions were in agreement between our method and the corresponding original plans. For the compensator with the defects, the purposely changed material and a purposely created internal defect were successfully detected while not possible with just the traditional compensator profiles detection methods. Conclusion: We present here a 3D dose verification process to qualify the fabricated proton double-scattering compensator. Such compensator detection process assesses the patient 3D impact of the fabricated compensator surface profile as well as the compensator internal material and structure changes

  10. Radiographic image quality and dose at thorax, abdomen and skull of patients at HC-FMB-UNESP

    International Nuclear Information System (INIS)

    Alvarez, Matheus; Giacomini, Guilherme; Bacchim Neto, Fernando A.; Alves, Allan F.F.; Velo, Alexandre F.; Miranda, Jose R.A.; Pina, Diana R. de

    2013-01-01

    ICRP 103 specifies reference dose levels to be used during radiographic exams. Usually, the radiographer qualitative determines the best radiographic technique (kV and mAs) in order to obtain better image quality with the lowest dose. The objective of this study was to evaluate the doses used in examination of the chest, abdomen and skull in patients of different physical sizes, and infer about the amount of dose required to maintain acceptable radiological contrast in patients of different physical sizes. Techniques used by experienced radiographers of HC-FMB-UNESP for examinations of the chest (PA), abdomen (AP) and skull (AP) for patients of different thickness (small, medium and thick body) were obtained. Dose measurements were performed referring to all kV/mAs combinations. PMMA phantoms were placed below the ionization chamber. The Signal Difference Noise Ratio (SDNR) of the images of the phantoms were calculated from an area of contrast and a region of normal tissue. The Figure of Merit (FoM) was calculated for each of the exam modality. Measured FoM decreased according to the thickness of the chest and abdomen, indicating the need to increase the dose level to maintain the same level of image contrast. Patients thicker usually end up getting more than twice the dose of lean patients. Required image quality levels for correct diagnosis should be obtained using dose levels as low as reasonably practicable examination. These factors highlight the need for a program of quality assurance and effective dose studies in actual service. (author)

  11. Applying the 'general principles of dose calculation' (ABG) in practice. Pt. 1

    International Nuclear Information System (INIS)

    Haubelt, R.

    1985-01-01

    Radiation doses are to be calculated for the main exposure pathways such as gamma submersion, beta submersion, gamma radiation at ground level, inhalation and ingestion of radionuclides. After the amendment of the German Radiation Protection Ordinance to include the latest ICRP Recommendations, the dose to be determined now is the effective dose equivalent, replacing the former whole-body dose equivalent. (DG) [de

  12. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    Science.gov (United States)

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  13. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  14. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction

    International Nuclear Information System (INIS)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-01-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  15. Investigation of the influence of the working procedure on patient dose in angiography of the lower limbs

    International Nuclear Information System (INIS)

    Struelens, L.; Vanhavere, F.; Bosmans, H.

    2002-01-01

    This document presents dose measurements on patients in the field of interventional angiography. We have restricted this study to a common IR procedure, namely diagnostic angiography of the lower limbs. In this examination, radiographs are made over 6 adjoining standard regions from abdomen to feet. The RX tube is moved from one region to another under fluoroscopic guidance. To visualise the arteries, contrast media is injected through a catheter that has been inserted in the abdominal artery. The positioning of the catheter is also controlled by fluoroscopy. Only typical procedures (without medical complications) in male and female patients were considered in this study. Within the scope of the optimisation of patient doses, we looked for the influence of both the working procedure and the exposure parameters on patient dose. Examinations as performed by different operators and in different hospitals were included in the study. The effective dose E is calculated with the use of calculated derived conversion factors, which link practical dose measurements under well-defined conditions with estimates of the effective dose. Measurements in 4 different hospitals, 2 university hospitals and 2 peripheral hospitals are compared

  16. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism

    International Nuclear Information System (INIS)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L.; Bertelli Neto, L.

    1999-01-01

    The dose absorbed by organs of patients with hyperthyroidism treated with 131 I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of 131 I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach

  17. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  18. Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations

  19. SKYSHIN: A computer code for calculating radiation dose over a barrier

    International Nuclear Information System (INIS)

    Atwood, C.L.; Boland, J.R.; Dickman, P.T.

    1986-11-01

    SKYSHIN is a computer code for calculating the radioactive dose (mrem), when there is a barrier between the point source and the receptor. The two geometrical configurations considered are: the source and receptor separated by a rectangular wall, and the source at the bottom of a cylindrical hole in the ground. Each gamma ray traveling over the barrier is assumed to be scattered at a single point. The dose to a receptor from such paths is numerically integrated for the total dose, with symmetry used to reduce the triple integral to a double integral. The buildup factor used along a straight line through air is based on published data, and extrapolated in a stable way to low energy levels. This buildup factor was validated by comparing calculated and experimental line-of-sight doses. The entire code shows good agreement to limited field data. The code runs on a CDC or on a Vax computer, and could be modified easily for others

  20. Effective Dose Calculation Program (EDCP) for the usage of NORM-added consumer product.

    Science.gov (United States)

    Yoo, Do Hyeon; Lee, Jaekook; Min, Chul Hee

    2018-04-09

    The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress. The results show that the annual effective dose calculated with EDCP was almost identical to that calculated using the reference mathematical algorithm in most of the assessment cases. With the assumption of the gamma energy of 1 MeV and activity of 1 MBq, the annual effective doses of pillow, waist supporter, sleeping mattress, and eye-patch determined using the reference algorithm were 3.444 mSv year -1 , 2.770 mSv year -1 , 4.629 mSv year -1 , and 3.567 mSv year -1 , respectively, while those calculated using EDCP were 3.561 mSv year -1 , 2.630 mSv year -1 , 4.740 mSv year -1 , and 3.780 mSv year -1 , respectively. The differences in the annual effective doses were less than 5%, despite the different calculation methods employed. The EDCP can therefore be effectively used for radiation protection management in the context of the usage of NORM-added consumer products. Additionally, EDCP can be used by members of the public through the GUI for various studies in the field of radiation protection, thus facilitating easy access to the program. Copyright © 2018. Published by Elsevier Ltd.