WorldWideScience

Sample records for pathogens molecular mechanisms

  1. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  2. Elucidation of Molecular Pathogenic Mechanisms of Norrie Disease

    OpenAIRE

    Luhmann, Ulrich F.O.

    2010-01-01

    Summary Norrie disease (ND) is a rare X-linked recessive congenital blindness, sometimes associated with deafness and mental retardation. In this thesis the molecular pathogenic mechanisms of this syndrome should be elucidated using the Ndph knockout mouse model. Gene expression studies but also histology and protein biochemistry were used to characterize the affected organs, eye and brain. Gene expression analyses of eyes at p21 using cDNA subtrac...

  3. Molecular mechanism of extreme mechanostability in a pathogen adhesin.

    Science.gov (United States)

    Milles, Lukas F; Schulten, Klaus; Gaub, Hermann E; Bernardi, Rafael C

    2018-03-30

    High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy-based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective.

    Science.gov (United States)

    Bartoli, Claudia; Roux, Fabrice; Lamichhane, Jay Ram

    2016-02-01

    The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  5. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    Science.gov (United States)

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  6. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences

    Science.gov (United States)

    Tribble, Gena D; Kerr, Jennifer E; Wang, Bing-Yan

    2013-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that colonizes the human oral cavity. It is implicated in the development of periodontitis, a chronic periodontal disease affecting half of the adult population in the USA. To survive in the oral cavity, these bacteria must colonize dental plaque biofilms in competition with other bacterial species. Long-term survival requires P. gingivalis to evade host immune responses, while simultaneously adapting to the changing physiology of the host and to alterations in the plaque biofilm. In reflection of this highly variable niche, P. gingivalis is a genetically diverse species and in this review the authors summarize genetic diversity as it relates to pathogenicity in P. gingivalis. Recent studies revealing a variety of mechanisms by which adaptive changes in genetic content can occur are also reviewed. Understanding the genetic plasticity of P. gingivalis will provide a better framework for understanding the host–microbe interactions associated with periodontal disease. PMID:23642116

  7. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  8. COXIELLA BURNETII PATHOGENICITY MOLECULAR BASIS

    Directory of Open Access Journals (Sweden)

    Yu. A. Panferova

    2016-01-01

    Full Text Available Coxiella burnetii is an obligate intracellular gram-negative bacterial pathogen, an ethiological agent of Q-fever, a zoonotic disease, elapsing as an acute (mostly atypical pneumonia or a chronic (mostly endocarditis form. The host range is represented by wide range of mammal, avian and arthropod species, but the main source of human infection are farm animals. The main route of infection is aerosolic. In case of contact with organism pathogen binds with phagocytal monocytic-macrophagal cell line. C. burnetii promotes maturation of specific phagolysosome-like compartment in host cell, called coxiella-containing vacuole, within this vacuole pathogen becames metabolically activated and actively replicates. Coxiella persists as metabolically inactive spore-like form in environment. Internalisation of C. burnetii occurs using actin-mediated phagocytosis and zipper mechanism. After internalization of bacteria maturation of phagolysosome-like compartment and large coxiella-containing vacuole formation occure, and vacuole can occupy nearly the whole cytoplasm of the host cell. Survivance of infected cells is important for chronic infection with C. burnetii. C. burnetii elongate the viability of host cell by two ways: it actively inhibits apoptotic signal cascades and induce pro-survival factors. Exceptthat C. burnetii involves autophagic pathway during coxiella-containing vacuole formation, and induction of autophagy promotes pathogen replication. During infection C. burnetii translocates effector substrates from bacterial cytosole to euca ryotic host cell cytosole using type IV secretion system, where effectors modulate host cell proteins. Overall approximately 130 secreted effectors of type IV transport system, but function of most of them remains unknown to date. Specific sec reted proteins for variety of strains and isolates were identified, confirmed that certain pathotypes of C. burnetii can exist. Identification and

  9. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    Science.gov (United States)

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.

  10. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  11. Pathogenic mechanisms of pancreatitis

    Science.gov (United States)

    Manohar, Murli; Verma, Alok Kumar; Venkateshaiah, Sathisha Upparahalli; Sanders, Nathan L; Mishra, Anil

    2017-01-01

    Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-β/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1β, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for

  12. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  13. Cultural, morphological, pathogenic and molecular characterization ...

    African Journals Online (AJOL)

    Alternaria blotch (Alternaria mali) causes severe foliar damage to apple trees in Kashmir. Twenty one (21) isolates of A. mali were collected from different locations and characterized for cultural, morphological, pathogenic and molecular variations. A. mali colonies varied in their cultural behaviour ranging from velvety to ...

  14. Morphological, cultural, pathogenic and molecular variability ...

    African Journals Online (AJOL)

    Alternaria blight (Alternaria brassicae) causes severe foliar damage to Indian mustard in Uttarakhand. Ten (10) isolates of A. brassicae were collected from different hosts and characterized for cultural, morphological, pathogenic and molecular variations. A. brassicae colonies varied in their cultural behaviour ranging from ...

  15. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  16. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    Science.gov (United States)

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  17. Molecular Diagnostics for Soilborne Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    E.J. Paplomatas

    2004-08-01

    Full Text Available Several classical approaches have been developed to detect and identify soil fungal inhabitants through the years. Selective media have been devised to exclude the large number of soil organisms and allow growth of target fungi. However the advent of molecular biology has offered a number of revolutionary insights into the detection and enumeration of soilborne fungal pathogens and also has started to provide information on the identification of unknown species from DNA sequences. This review paper focuses on the application of various molecular techniques in the detection, identification, characterization and quantification of soilborne fungal plant pathogens. This is based on information from the literature and is combined with personal research findings of the author.

  18. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    Science.gov (United States)

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  19. Molecular Mechanisms of Preeclampsia.

    Science.gov (United States)

    Hod, Tammy; Cerdeira, Ana Sofia; Karumanchi, S Ananth

    2015-08-20

    Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension and proteinuria after 20 wk of gestation. It is a leading cause of maternal and fetal morbidity and mortality worldwide. Exciting discoveries in the last decade have contributed to a better understanding of the molecular basis of this disease. Epidemiological, experimental, and therapeutic studies from several laboratories have provided compelling evidence that an antiangiogenic state owing to alterations in circulating angiogenic factors leads to preeclampsia. In this review, we highlight the role of key circulating antiangiogenic factors as pathogenic biomarkers and in the development of novel therapies for preeclampsia. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Molecular Mechanisms of Preeclampsia

    Science.gov (United States)

    Hod, Tammy; Cerdeira, Ana Sofia; Karumanchi, S. Ananth

    2015-01-01

    Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension and proteinuria after 20 wk of gestation. It is a leading cause of maternal and fetal morbidity and mortality worldwide. Exciting discoveries in the last decade have contributed to a better understanding of the molecular basis of this disease. Epidemiological, experimental, and therapeutic studies from several laboratories have provided compelling evidence that an antiangiogenic state owing to alterations in circulating angiogenic factors leads to preeclampsia. In this review, we highlight the role of key circulating antiangiogenic factors as pathogenic biomarkers and in the development of novel therapies for preeclampsia. PMID:26292986

  1. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  2. Molecular Mechanisms of Preeclampsia

    Directory of Open Access Journals (Sweden)

    N. Vitoratos

    2012-01-01

    Full Text Available Preeclampsia is one of the leading causes of maternal morbidity/mortality. The pathogenesis of preeclampsia is still under investigation. The aim of this paper is to present the molecular mechanisms implicating in the pathway leading to preeclampsia.

  3. Investigating Ebola virus pathogenicity using molecular dynamics.

    Science.gov (United States)

    Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N

    2017-08-11

    Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.

  4. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence

    Science.gov (United States)

    Ghazaei, Ciamak

    2018-01-01

    Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species. PMID:29445617

  5. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  6. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D.

    2006-01-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In

  7. Molecular mechanisms in gliomagenesis

    DEFF Research Database (Denmark)

    Hulleman, Esther; Helin, Kristian

    2005-01-01

    Glioma, and in particular high-grade astrocytoma termed glioblastoma multiforme (GBM), is the most common primary tumor of the brain. Primarily because of its diffuse nature, there is no effective treatment for GBM, and relatively little is known about the processes by which it develops. Therefore......, in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal...... brain development, such as the differentiation of neural stem cells (NSCs) into astrocytes, might contribute to GBM formation. These pathways include growth factor-induced signal transduction routes and processes that control cell cycle progression, such as the p16-CDK4-RB and the ARF-MDM2-p53 pathways...

  8. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  9. Mechanisms of antimicrobial resistance among hospital-associated pathogens.

    Science.gov (United States)

    Khan, Ayesha; Miller, William R; Arias, Cesar A

    2018-04-01

    The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.

  10. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2018-02-01

    STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.

  11. Greasy tactics in the plant-pathogen molecular arms race.

    Science.gov (United States)

    Boyle, Patrick C; Martin, Gregory B

    2015-03-01

    The modification of proteins by the attachment of fatty acids is a targeting tactic involved in mechanisms of both plant immunity and bacterial pathogenesis. The plant plasma membrane (PM) is a key battleground in the war against disease-causing microbes. This membrane is armed with an array of sensor proteins that function as a surveillance system to detect invading pathogens. Several of these sensor proteins are directed to the plasma membrane through the covalent addition of fatty acids, a process termed fatty acylation. Phytopathogens secrete effector proteins into the plant cell to subvert these surveillance mechanisms, rendering the host susceptible to infection. The targeting of effectors to specific locales within plant cells, particularly the internal face of the host PM, is critical for their virulence function. Several bacterial effectors hijack the host fatty acylation machinery to be modified and directed to this contested locale. To find and fight these fatty acylated effectors the plant leverages lipid-modified intracellular sensors. This review provides examples featuring how fatty acylation is a battle tactic used by both combatants in the molecular arms race between plants and pathogens. Also highlighted is the exploitation of a specific form of host-mediated fatty acid modification, which appears to be exclusively employed by phytopathogenic effector proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Molecular techniques for characterisation of pathogens

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise

    Pathogens have always had a major interest to humans due to their central role in sickness and death. Influenza A annually kills at least 250,000 humans, and has been the cause of millions of further deaths during pandemic years in the past. Plague (Yersinia pestis) has been the cause of the Black...... capture for the detection of Y. pestis in samples from the Justinian plague (600 AD) as an attempt to detect this pathogen as a cause of death in the victims....

  13. Molecular mechanisms of cancer

    National Research Council Canada - National Science Library

    Weber, Georg F

    2007-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section I. General Mechanisms of Transformation 1. Theories of Carcinogenesis...

  14. Molecular diagnostics for the detection and characterization of microbial pathogens.

    Science.gov (United States)

    Procop, Gary W

    2007-09-01

    New and advanced methods of molecular diagnostics are changing the way we practice clinical microbiology, which affects the practice of medicine. Signal amplification and real-time nucleic acid amplification technologies offer a sensitive and specific result with a more rapid turnaround time than has ever before been possible. Numerous methods of postamplification analysis afford the simultaneous detection and differentiation of numerous microbial pathogens, their mechanisms of resistance, and the construction of disease-specific assays. The technical feasibility of these assays has already been demonstrated. How these new, often more expensive tests will be incorporated into routine practice and the impact they will have on patient care remain to be determined. One of the most attractive uses for such techniques is to achieve a more rapid characterization of the infectious agent so that a narrower-spectrum antimicrobial agent may be used, which should have an impact on resistance patterns.

  15. Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Estrada-Peňa, A.; Rego, Ryan O. M.; de la Fuente, J.

    2017-01-01

    Roč. 7, 13 March (2017), č. článku 74. ISSN 2235-2988 Institutional support: RVO:60077344 Keywords : tick-pathogen interactions * transcriptional reprogramming * epigenetics * ecological adaptation * Anaplasma phagocytophilum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.300, year: 2016

  16. Molecular Mechanisms of Preeclampsia

    OpenAIRE

    N. Vitoratos; D. Hassiakos; C. Iavazzo

    2012-01-01

    Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension and proteinuria after 20 wk of gestation. It is a leading cause of maternal and fetal morbidity and mortality worldwide. Exciting discoveries in the last decade have contributed to a better understanding of the molecular basis of this disease. Epidemiological, experimental, and therapeutic studies from several laboratories have provided compelling evidence that an antiangiogenic state owing to alterations in ...

  17. Molecular Diagnosis of Pathogenic Sporothrix Species.

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-12-01

    Full Text Available Sporotrichosis is a chronic (subcutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species emerge in the form of outbreaks. Large zoonoses and sapronoses are ongoing in Brazil and China, respectively. Current diagnostic methods based on morphology and physiology are inaccurate due to closely related phenotypes with overlapping components between pathogenic and non-pathogenic Sporothrix. There is a critical need for new diagnostic tools that are specific, sensitive, and cost-effective.We developed a panel of novel markers, based on calmodulin (CAL gene sequences, for the large-scale diagnosis and epidemiology of clinically relevant members of the Sporothrix genus, and its relative, Ophiostoma. We identified specific PCR-based markers for S. brasiliensis, S. schenckii, S. globosa, S. mexicana, S. pallida, and O. stenoceras. We employed a murine model of disseminated sporotrichosis to optimize a PCR assay for detecting Sporothrix in clinical specimens.Primer-BLAST searches revealed candidate sequences that were conserved within a single species. Species-specific primers showed no significant homology with human, mouse, or microorganisms outside the Sporothrix genus. The detection limit was 10-100 fg of DNA in a single round of PCR for identifying S. brasiliensis, S. schenckii, S. globosa, S. mexicana, and S. pallida. A simple, direct PCR assay, with conidia as a source of DNA, was effective for rapid, low-cost genotyping. Samples from a murine model of disseminated sporotrichosis confirmed the feasibility of detecting S. brasiliensis and S. schenckii DNA in spleen, liver, lungs, heart, brain, kidney, tail, and feces of infected animals.This PCR-based method could successfully detect and identify a single species in samples from cultures and from clinical

  18. Molecular Diagnosis of Pathogenic Sporothrix Species

    Science.gov (United States)

    Rodrigues, Anderson Messias; de Hoog, G. Sybren; de Camargo, Zoilo Pires

    2015-01-01

    Background Sporotrichosis is a chronic (sub)cutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species emerge in the form of outbreaks. Large zoonoses and sapronoses are ongoing in Brazil and China, respectively. Current diagnostic methods based on morphology and physiology are inaccurate due to closely related phenotypes with overlapping components between pathogenic and non-pathogenic Sporothrix. There is a critical need for new diagnostic tools that are specific, sensitive, and cost-effective. Methodology We developed a panel of novel markers, based on calmodulin (CAL) gene sequences, for the large-scale diagnosis and epidemiology of clinically relevant members of the Sporothrix genus, and its relative, Ophiostoma. We identified specific PCR-based markers for S. brasiliensis, S. schenckii, S. globosa, S. mexicana, S. pallida, and O. stenoceras. We employed a murine model of disseminated sporotrichosis to optimize a PCR assay for detecting Sporothrix in clinical specimens. Results Primer-BLAST searches revealed candidate sequences that were conserved within a single species. Species-specific primers showed no significant homology with human, mouse, or microorganisms outside the Sporothrix genus. The detection limit was 10–100 fg of DNA in a single round of PCR for identifying S. brasiliensis, S. schenckii, S. globosa, S. mexicana, and S. pallida. A simple, direct PCR assay, with conidia as a source of DNA, was effective for rapid, low-cost genotyping. Samples from a murine model of disseminated sporotrichosis confirmed the feasibility of detecting S. brasiliensis and S. schenckii DNA in spleen, liver, lungs, heart, brain, kidney, tail, and feces of infected animals. Conclusions This PCR-based method could successfully detect and identify a single species in samples

  19. Molecular mechanisms of carcinogenesis

    International Nuclear Information System (INIS)

    Hall, E.J.

    1997-01-01

    The possibility that chromosomal changes are responsible for neoplasia was proposed in the early years of this century. A combination of improved cytogenetics and the advent of recombinant technology has settled the issue. As recently as 20 years ago, however, the genetic and molecular basis of familiar predisposition to cancer were a mystery, and it is only in the last few years that light has been shed on a few specific types of malignancies. As the genetic basis of human cancer had been documented, a number of genes have been identified as functioning either as oncogenes which act in a dominant fashion to promote tumor growth when mutated, or as tumor suppressor genes which act in a recessive fashion

  20. Hepatocarcinoma: from pathogenic mechanisms to target therapy

    Directory of Open Access Journals (Sweden)

    Luigi Manzione

    2011-12-01

    Full Text Available Hepatocellular carcinoma (HCC is among the most prevalent and lethal cancers worldwide. It is currently estimated that there are 14,000–18,000 new cases of hepatocellular carcinoma in the United States each year. It is often difficult to identify individuals at risk for HCC. The main associated diseases are chronic hepatitis B and chronic hepatitis C viral infections. While a significant number of potential mutations have been generated including p53 and Insulin-like Growth Factor, our understanding of the molecular mechanisms driving the genesis and progression of HCC remain limited. HCC screening is recommended in high-risk patients. High-risk patients include virtually all patients with cirrhosis and some HBV-infected patients irrespective of cirrhosis (>40 years in men and >50 years in women. A diagnostic approach to HCC has been developed incorporating serology, cytohistology, and radiological characteristics. A precise staging of the disease may help decide on prognosis as well as choice of therapy with the greatest survival potential. Liver transplantation, in theory, is the optimal therapeutic option for HCC; it simultaneously removes the tumor and underlying cirrhosis thus minimizing the risk of HCC recurrence. When it is impossible for this to be performed, percutaneous ablation, chemoembolization, chemotherapy and the newer molecular therapies can be used. Sorafenib is the only drug registered today for the treatment of advanced HCC.

  1. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international

  2. Molecular aspects of avirulence and pathogenicity of the tomato pathogen Cladosporium fulvum

    NARCIS (Netherlands)

    Ackerveken, van den G.F.J.M.

    1993-01-01

    The molecular understanding of host-pathogen interactions and particularly of specificity forms the basis for studying plant resistance. Understanding why a certain plant species or cultivar is susceptible and why other species or cultivars are resistant is of great importance in order to

  3. Pathogen-avoidance mechanisms and the stigmatization of obese people

    NARCIS (Netherlands)

    Park, Justin H.; Schaller, Mark; Crandall, Christian S.

    2007-01-01

    Humans possess pathogen-avoidance mechanisms that respond to the visual perception of morphological anomalies in others. We investigated whether obesity may trigger these mechanisms. Study I revealed that people who are chronically concerned about pathogen transmission have more negative attitudes

  4. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  5. STATINS AND MYOPATHY: MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2012-01-01

    Full Text Available The safety of statin therapy is considered. In particular the reasons of a complication such as myopathy are discussed in detail. The molecular mechanisms of statin myopathy , as well as its risk factors are presented. The role of coenzyme Q10 in the myopathy development and coenzyme Q10 application for the prevention of this complication are considered. 

  6. Top 10 plant pathogenic bacteria in molecular plant pathology.

    Science.gov (United States)

    Mansfield, John; Genin, Stephane; Magori, Shimpei; Citovsky, Vitaly; Sriariyanum, Malinee; Ronald, Pamela; Dow, Max; Verdier, Valérie; Beer, Steven V; Machado, Marcos A; Toth, Ian; Salmond, George; Foster, Gary D

    2012-08-01

    Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10. © 2012 The Authors. Molecular Plant Pathology © 2012 BSPP and Blackwell Publishing Ltd.

  7. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings.

    Science.gov (United States)

    Kandan, A; Radjacommare, R; Ramanathan, A; Raguchander, T; Balasubramanian, P; Samiyappan, R

    2009-01-01

    The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10-13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future.

  8. Hyperinsulinemic Hypoglycemia ? The Molecular Mechanisms

    OpenAIRE

    Nessa, Azizun; Rahman, Sofia A.; Hussain, Khalid

    2016-01-01

    Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5–5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretio...

  9. Genetics of mechanisms controlling responses to two major pathogens in broiler and layer chickens

    DEFF Research Database (Denmark)

    Hamzic, Edin

    The objective of this thesis was to improve the understanding of molecular mechanisms controlling the response to two major pathogens, Eimeria maxima (coccidiosis) and infectious bronchitis virus (IBV), in broiler and layer chickens, respectively. Breeding for the improved response to the two...

  10. Pathogenic, morphological and molecular characteristics of Alternaria Tenuissima from soybean

    Directory of Open Access Journals (Sweden)

    Jasnić Stevan M.

    2011-01-01

    Full Text Available During 2008 and 2009 phytopathological isolations were done from soybean plants and seed samples from several localities in Serbia. A total of 19 isolates of Alternaria spp. were isolated, 13 from the seed and 3 from both leaf and stem. In order to determine and characterize isolates, cultural, morphological, molecular and pathogenic characteristics were thoroughly investigated. The slowest growth of the examined isolates was noted on Malt agar (MA with average colony diameter of 42.9 mm after 7 days of incubation. On other two media (V8 and PCA, colony growth was uniform and faster, with average diameter of 66.8 mm and 66.1 mm, respectively. Isolates of fungi form unbranched or poorly branched conidial chains on short unbranched conidiophores. Conidia are dark in colour, multicellular with transverse and longitudinal septae. They are of different size regarding the place of formation in the chain. Based on these characteristics, the tested isolates were determined as Alternaria tenuissima. Molecular identification with sequencing of ITS1-5.8S-ITS2 rDNA verified that investigated isolates belong to Alternaria tenuissima group. Pathogenicity test proved that all isolates were more or less virulent to soybean seed (12.5% to 40% of rotten seeds, while pathogenicity on plants was poorly expressed.

  11. Molecular prophage typing of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Kwon, Hyuk-Joon; Seong, Won-Jin; Kim, Jae-Hong

    2013-03-23

    Escherichia coli prophages confer virulence and resistance to physico-chemical, nutritional, and antibiotic stresses on their hosts, and they enhance the evolution of E. coli. Thus, studies on profiles of E. coli prophages are valuable to understand the population structure and evolution of E. coli pathogenicity. Large terminase genes participate in phage genome packaging and are one of the cornerstones for the identification of prophages. Thus, we designed primers to detect 16 types of large terminase genes and analyzed the genomes of 48 E. coli and Shigella reference strains for the prophage markers. We also investigated the distribution of the 16 prophage markers among 92 avian pathogenic E. coli (APEC) strains. APEC strains were classified into 61 prophage types (PPTs). Each strain was different from the reference strains as measured by the PPTs and from the frequency of each prophage marker. Investigation of the distribution of prophage-related serum resistance (bor), toxin (stx1 and cdtI), and T3SS effector (lom, espK, sopE, nleB, and ospG) genes revealed the presence of bor (44.1%), lom (95.5%) and cdtI (9.1%) in APEC strains with related prophages. Therefore, the molecular prophage typing method may be useful to understand population structure and evolution of E. coli pathogenicity, and further studies on the mobility of the prophages and the roles of virulence genes in APEC pathogenicity may be valuable. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Molecular detection of pathogens in water--the pros and cons of molecular techniques.

    Science.gov (United States)

    Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia

    2010-08-01

    Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.

  13. The Top 10 fungal pathogens in molecular plant pathology.

    Science.gov (United States)

    Dean, Ralph; Van Kan, Jan A L; Pretorius, Zacharias A; Hammond-Kosack, Kim E; Di Pietro, Antonio; Spanu, Pietro D; Rudd, Jason J; Dickman, Marty; Kahmann, Regine; Ellis, Jeff; Foster, Gary D

    2012-05-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  14. Molecular mechanisms of fluoride toxicity.

    Science.gov (United States)

    Barbier, Olivier; Arreola-Mendoza, Laura; Del Razo, Luz María

    2010-11-05

    Halfway through the twentieth century, fluoride piqued the interest of toxicologists due to its deleterious effects at high concentrations in human populations suffering from fluorosis and in in vivo experimental models. Until the 1990s, the toxicity of fluoride was largely ignored due to its "good reputation" for preventing caries via topical application and in dental toothpastes. However, in the last decade, interest in its undesirable effects has resurfaced due to the awareness that this element interacts with cellular systems even at low doses. In recent years, several investigations demonstrated that fluoride can induce oxidative stress and modulate intracellular redox homeostasis, lipid peroxidation and protein carbonyl content, as well as alter gene expression and cause apoptosis. Genes modulated by fluoride include those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications and signal transduction. The primary purpose of this review is to examine recent findings from our group and others that focus on the molecular mechanisms of the action of inorganic fluoride in several cellular processes with respect to potential physiological and toxicological implications. This review presents an overview of the current research on the molecular aspects of fluoride exposure with emphasis on biological targets and their possible mechanisms of involvement in fluoride cytotoxicity. The goal of this review is to enhance understanding of the mechanisms by which fluoride affects cells, with an emphasis on tissue-specific events in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Pathogenic Mechanisms of Atrial Fibrillation in Obesity

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2016-01-01

    Full Text Available Atrial fibrillation (AF is one of the most common arrhythmias. It reduces quality of life and its duration due to thromboembolic complications. Obesity contributes to the structural and electrical remodeling of atrial myocardium. This leads to occurrence of ectopic foci in the mouths of the pulmonary veins and the disruption of normal electrical conduction in the atria. Systemic inflammation, myocardial fibrosis, cardiomyocyte overload by Na+ and Ca2+ ions, accumulation in the cells of unoxidized metabolic products, imbalance of the autonomic regulation are considered as the main mechanisms of arrhythmogenic substrate formation. Hypertension, insulin resistance, and obstructive sleep apnea, associated with obesity, increase the risk of development and progression of the arrhythmia. Study of pathogenetic mechanisms of AF in obesity is necessary to develop new strategies for its prevention and the creation of more effective methods of treatment of these patients.

  16. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    Science.gov (United States)

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  17. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Molecular Mechanism of Somite Development

    Directory of Open Access Journals (Sweden)

    Gulfidan Coskun

    2013-06-01

    Full Text Available From third week of gestation, notochord and the neural folds begin to gather at the center of the embryo to form the paraxial mesoderm. Paraxial mesoderm separates into blocks of cells called somitomers at the lateral sides of the neural tube of the head region. At the beginning of the third week somitomeres take ring shapes and form blocks of somites from occipital region to caudal region. Although somites are transient structures, they are extremely important in organizing the segmental pattern of vertebrate embryos. Somites give rise to the cells that form the vertebrae and ribs, the dermis of the dorsal skin, the skeletal muscles of the back, and the skeletal muscles of the body wall and limbs. Somitogenesis are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt and fibroblast growth factor signaling pathways. The prevailing model of the mechanism governing somitogenesis is the “clock and wave front”. Somitogenesis has components of periodicity, separation, epithelialization and axial specification. According to this model, the clock causes cells to undergo repeated oscillations, with a particular phase of each oscillation defining the competency of cells in the presomitic mesoderm to form a somite. Any disruption in this mechanism can be cause of severe segmentation defects of the vertebrae and congenital anomalies. In this review, we discuss the molecular mechanisms underlying the somitogenesis which is an important part of morphogenesis. [Archives Medical Review Journal 2013; 22(3.000: 362-376

  19. Molecular and Genomic Characterization of Enteric Pathogens Circulating during Hajj

    KAUST Repository

    Alsomali, Mona

    2016-05-01

    Hajj, the annual Muslim pilgrimage to Mecca, Saudi Arabia is a unique mass gathering event that attracts approximately 3 million pilgrims from around the globe. This diverse pilgrim population coupled with the nature of the performed activities raise major public health concerns in the host country with potential global implications. Although gastroenteritis and diarrhea are common among the pilgrims performing Hajj, the microbial etiologies of these infections are still unknown. We used molecular and antigenic approaches to identify the main pathogens associated with Hajj diarrhea. 544 fecal samples from pilgrims suffering from diarrhea whilst performing Hajj during three consecutive seasons (2011-2013) and 99 control samples from 2011 were screened for 16 pathogens that include bacterial, parasitic and viral etiologies that are commonly associated with diarrheal infections. At least one of the screened pathogens could be detected in 42% (n=228) of the samples from the diarrheal cases. Bacteria were the main agents detected in 83% (n=189) of the positive samples, followed by viral and parasitic agents detected in 6% (n=14) and 5% (n=12) respectively. We have also standardized a 16S-based metagenomic approach to identify the gut microbiome in diarrheal cases and non-diarrheal controls in 76 samples. Also, we have standardized a shotgun metagenomics protocol for the direct characterization (diagnosis) of enteric pathogens without cultivation. This approach was used successfully to identify viral (adenovirus) and bacterial causes of Enterotoxigenic E. coli diarrhea from Hajj samples. The findings in this study fill in clear gaps in our knowledge of the etiologies associated with diarrheal infections during Hajj. Foodborne bacteria were the major contributors to Hajj-diarrheal infections. This was coupled with the increased incidences of antimicrobial resistance loci associated with the identified bacteria. These findings would help the public health policy makers to

  20. Molecular signatures of nicotinoid-pathogen synergy in the termite gut.

    Directory of Open Access Journals (Sweden)

    Ruchira Sen

    Full Text Available Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae, bacteria (Serratia marcescens or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.

  1. Molecular Mechanisms of Induced Pluripotency

    Science.gov (United States)

    Muchkaeva, I.A.; Dashinimaev, E.B.; Terskikh, V.V.; Sukhanov, Y.V.; Vasiliev, A.V.

    2012-01-01

    In this review the distinct aspects of somatic cell reprogramming are discussed. The molecular mechanisms of generation of induced pluripotent stem (iPS) cells from somatic cells via the introduction of transcription factors into adult somatic cells are considered. Particular attention is focused on the generation of iPS cells without genome modifications via the introduction of the mRNA of transcription factors or the use of small molecules. Furthermore, the strategy of direct reprogramming of somatic cells omitting the generation of iPS cells is considered. The data concerning the differences between ES and iPS cells and the problem of epigenetic memory are also discussed. In conclusion, the possibility of using iPS cells in regenerative medicine is considered. PMID:22708059

  2. Molecular toxicity mechanism of nanosilver

    Directory of Open Access Journals (Sweden)

    Danielle McShan

    2014-03-01

    Full Text Available Silver is an ancient antibiotic that has found many new uses due to its unique properties on the nanoscale. Due to its presence in many consumer products, the toxicity of nanosilver has become a hot topic. This review summarizes recent advances, particularly the molecular mechanism of nanosilver toxicity. The surface of nanosilver can easily be oxidized by O2 and other molecules in the environmental and biological systems leading to the release of Ag+, a known toxic ion. Therefore, nanosilver toxicity is closely related to the release of Ag+. In fact, it is difficult to determine what portion of the toxicity is from the nano-form and what is from the ionic form. The surface oxidation rate is closely related to the nanosilver surface coating, coexisting molecules, especially thiol-containing compounds, lighting conditions, and the interaction of nanosilver with nucleic acids, lipid molecules, and proteins in a biological system. Nanosilver has been shown to penetrate the cell and become internalized. Thus, nanosilver often acts as a source of Ag+ inside the cell. One of the main mechanisms of toxicity is that it causes oxidative stress through the generation of reactive oxygen species and causes damage to cellular components including DNA damage, activation of antioxidant enzymes, depletion of antioxidant molecules (e.g., glutathione, binding and disabling of proteins, and damage to the cell membrane. Several major questions remain to be answered: (1 the toxic contribution from the ionic form versus the nano-form; (2 key enzymes and signaling pathways responsible for the toxicity; and (3 effect of coexisting molecules on the toxicity and its relationship to surface coating.

  3. Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics

    International Nuclear Information System (INIS)

    Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.

    1992-09-01

    Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs

  4. Preliminary molecular characterization of the human pathogen Angiostrongylus cantonensis

    Directory of Open Access Journals (Sweden)

    He Ai

    2009-10-01

    Full Text Available Abstract Background Human angiostrongyliasis is an emerging food-borne public health problem, with the number of cases increasing worldwide, especially in mainland China. Angiostrongylus cantonensis is the causative agent of this severe disease. However, little is known about the genetics and basic biology of A. cantonensis. Results A cDNA library of A. cantonensis fourth-stage larvae was constructed, and ~1,200 clones were sequenced. Bioinformatic analyses revealed 378 cDNA clusters, 54.2% of which matched known genes at a cutoff expectation value of 10-20. Of these 378 unique cDNAs, 168 contained open reading frames encoding proteins containing an average of 238 amino acids. Characterization of the functions of these encoded proteins by Gene Ontology analysis showed enrichment in proteins with binding and catalytic activity. The observed pattern of enzymes involved in protein metabolism, lipid metabolism and glycolysis may reflect the central nervous system habitat of this pathogen. Four proteins were tested for their immunogenicity using enzyme-linked immunosorbent assays and histopathological examinations. The specificity of each of the four proteins was superior to that of crude somatic and excretory/secretory antigens of larvae, although their sensitivity was relatively low. We further showed that mice immunized with recombinant cystatin, a product of one of the four cDNA candidate genes, were partially protected from A. cantonensis infection. Conclusion The data presented here substantially expand the available genetic information about the human pathogen A. cantonensis, and should be a significant resource for angiostrongyliasis researchers. As such, this work serves as a starting point for molecular approaches for diagnosing and controlling human angiostrongyliasis.

  5. [Ultrastructure and molecular biochemistry on pathogenic fungal cells: the architecture of septal cell walls of dermatophytes].

    Science.gov (United States)

    Kitajima, Y

    2001-01-01

    This review provides abstracts of our research for which the year 2000 prize of The Japanese Society for Medical Mycology was awarded. The study consists of 4 fields: 1)Ultrastructure and biochemistry of the cell walls of dermatophytes. 2) Freeze-fracture electron microscopic study on the membrane systems of pathogenic fungi. 3) Action mechanisms of antifungal agents in terms of membrane structure and functions. 4) Dimorphism and virulence of pathogenic fungi in terms of molecular biology of membrane lipids. Since the detailed contents of these studies were reported in my previous review article (Jpn J Med Mycol 41: 211-217, 2000), I would like to mention these studies only briefly here, together with a detailed review of the septal cell wall architecture of dermatophytes, which I did not cover in my earlier articles.

  6. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  7. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum.

    Science.gov (United States)

    Rivas, Susana; Thomas, Colwyn M

    2005-01-01

    The interaction between tomato and the leaf mold pathogen Cladosporium fulvum is controlled in a gene-for-gene manner. This interaction has provided useful insights to the molecular basis of recognition specificity in plant disease resistance (R) proteins, disease resistance (R) gene evolution, R-protein mediated signaling, and cellular responses to pathogen attack. Tomato Cf genes encode type I membrane-associated receptor-like proteins (RLPs) comprised predominantly of extracellular leucine-rich repeats (eLRRs) and which are anchored in the plasma membrane. Cf proteins recognize fungal avirulence (Avr) peptides secreted into the leaf apoplast during infection. A direct interaction of Cf proteins with their cognate Avr proteins has not been demonstrated and the molecular mechanism of Avr protein perception is not known. Following ligand perception Cf proteins trigger a hypersensitive response (HR) and the arrest of pathogen development. Cf proteins lack an obvious signaling domain, suggesting that defense response activation is mediated through interactions with other partners. Avr protein perception results in the rapid accumulation of active oxygen species (AOS), changes in cellular ion fluxes, activation of protein kinase cascades, changes in gene expression and, possibly, targeted protein degradation. Here we review our current understanding of Cf-mediated responses in resistance to C. fulvum.

  8. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    International Nuclear Information System (INIS)

    Hasan, Nor’Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-01-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management

  9. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    Science.gov (United States)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  10. Homeostasis-altering molecular processes as mechanisms of inflammasome activation.

    Science.gov (United States)

    Liston, Adrian; Masters, Seth L

    2017-03-01

    The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

  11. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  12. Molecular mechanisms of NCAM function

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Berezin, Vladimir; Bock, Elisabeth

    2004-01-01

    receptor that responds to both homophilic and heterophilic cues, as well as a mediator of cell-cell adhesion. This review describes NCAM function at the molecular level. We discuss recent models for extracellular ligand-interactions of NCAM, and the intracellular signaling cascade that follows to define...

  13. Molecular mechanisms of insulin resistance

    African Journals Online (AJOL)

    Review Article. ,. Molecular ... This review discusses recent advances in understanding of the structure and ... insulin action from receptor to the alteration of blood glucose. Hence, in ... the first protein to have its amino acid sequence determined;2 ... an integral membrane glycoprotein composed of two subunits, a and 13 ...

  14. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  15. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...

  16. Semiclassical mechanics with molecular applications

    CERN Document Server

    Child, M S

    2014-01-01

    Semiclassical mechanics, which stems from the old quantum theory, has seen a remarkable revival in recent years as a physically intuitive and computationally accurate scheme for the interpretation of modern experiments. The main text concentrates less on the mathematical foundations than on the global influence of the classical phase space structures on the quantum mechanical observables. Further mathematical detail is contained in the appendices. Worked problem sets are included as an aid to the student.

  17. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    Jung, T.

    2000-01-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [de

  18. Molecular mechanisms of crystal growth

    International Nuclear Information System (INIS)

    Pina, C. M.

    2000-01-01

    In this paper I present an example of the research that the Mineral Surface Group of the Munster University is conducting in the field of Crystal Growth. Atomic Force Microscopy (Am) in situ observations of different barite (BaSO4) faces growing from aqueous solutions, in combination with computer simulations of the surface attachment of growth units allows us to test crystal growth models. Our results demonstrate the strong structural control that a crystal can exert on its own growth, revealing also the limitation of the classical crystal growth theories (two dimensional nucleation and spiral growth models) in providing a complete explanation for the growth behaviour at a molecular scale. (Author) 6 refs

  19. Molecular mechanisms of induced pluripotency.

    Science.gov (United States)

    Kulcenty, Katarzyna; Wróblewska, Joanna; Mazurek, Sylwia; Liszewska, Ewa; Jaworski, Jacek

    2015-01-01

    Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.

  20. Molecular pathogenesis and mechanisms of thyroid cancer

    Science.gov (United States)

    Xing, Mingzhao

    2013-01-01

    Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. PMID:23429735

  1. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    Science.gov (United States)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  2. The Progress of Mitophagy and Related Pathogenic Mechanisms of the Neurodegenerative Diseases and Tumor

    Directory of Open Access Journals (Sweden)

    Ying Song

    2015-01-01

    Full Text Available Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases.

  3. Molecular Mechanisms of Renal Ischemic Conditioning Strategies

    DEFF Research Database (Denmark)

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V

    2015-01-01

    summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many...

  4. Molecular mechanisms of thyroid tumorigenesis

    International Nuclear Information System (INIS)

    Krause, K.; Fuehrer, D.

    2008-01-01

    Thyroid nodules are the most frequent endocrine disorder and occur in approximately 30% of the German population. Thyroid nodular disease constitutes a very heterogeneous entity. A striking diversity of possible functional and morphological features of a thyroid tumour derived from the same thyroid ancestor cell, is a hallmark of thyroid tumorigenesis and is due to specific genetic alterations. Defects in known candidate genes can be found in up to 70% of differentiated thyroid carcinomas and determine the respective cancer phenotype. Papillary thyroid cancers (PTC) harbour BRAF (or much less frequently RAS) mutations in sporadically occurring tumours, while radiation-induced PTC display chromosomal rearrangements such as RET, TRK, APR9 / BRAF. These genetic events results in constitutive MAPKinase activation. Follicular thyroid cancers (FTC) harbour RAS mutations or PAX8/ PPARγ rearrangements, both of which, however have also been identified in follicular adenoma. In addition, recent studies show, that activation of PI3K/AKT signalling occurs with high frequency in follicular thyroid tumours. Undifferentiated (anaplastic) thyroid cancers (ATC) display genetic features of FTC or PTC, in addition to aberant activation of multiple tyrosinkinase pathways (overexpression or mutations in PI3K and MAPK pathways). This underscores the concept of a sequential evolution of ATC from differentiated thyroid cancer, a process widely conceived to be triggered by p53 inactivation. In contrast, the molecular pathogenesis of benign thyroid tumours, in particular cold thyroid nodules is less known, except for toxic thyroid nodules, which arise from constitutive activation of cAMP signalling, predominantly through TSHR mutations. (orig.)

  5. Molecular Mechanisms of Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Ji Hee Yu

    2012-12-01

    Full Text Available The prevalence of obesity has been rapidly increasing worldwide over the last several decades and has become a major health problem in developed countries. The brain, especially the hypothalamus, plays a key role in the control of food intake by sensing metabolic signals from peripheral organs and modulating feeding behaviors. To accomplish these important roles, the hypothalamus communicates with other brain areas such as the brainstem and reward-related limbic pathways. The adipocyte-derived hormone leptin and pancreatic β-cell-derived insulin inform adiposity to the hypothalamus. Gut hormones such as cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide 1, and oxyntomodulin transfer satiety signals to the brain and ghrelin relays hunger signals. The endocannabinoid system and nutrients are also involved in the physiological regulation of food intake. In this article, we briefly review physiological mechanisms of appetite regulation.

  6. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Malick eMbengue

    2016-03-01

    Full Text Available Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum , the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.

  7. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    Science.gov (United States)

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  8. Pathogenic Leptospira spp. in bats: Molecular investigation in Southern Brazil.

    Science.gov (United States)

    Mayer, Fabiana Quoos; Dos Reis, Emily Marques; Bezerra, André Vinícius Andrade; Cerva, Cristine; Rosa, Júlio; Cibulski, Samuel Paulo; Lima, Francisco Esmaile Sales; Pacheco, Susi Missel; Rodrigues, Rogério Oliveira

    2017-06-01

    The present study aimed to investigate the frequency of pathogenic Leptospira spp. in Brazilian bats and to determine possible risk factors associated to it. Ninety two bats of 12 species were evaluated. Whole genomic DNA from kidneys was extracted and real-time PCR specific to pathogenic Leptospira spp. was applied. Association between the frequency of specimens positive for Leptospira spp. and sex, age, bat species or family, season of collection, geographic localization and feeding habits was evaluated. The results showed that 39.13% of analyzed bats were found positive for Leptospira spp. Nine bat species had at least one positive result. There was no association among the evaluated variables and frequency of pathogenic Leptospira spp. Although the limitations due to lack of Leptospira spp. isolation, leptospiral carriage was demonstrated in bats of different species from southern Brazil, which reinforces the need for surveillance of infectious agents in wild animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus.

    Science.gov (United States)

    O'Hanlon, Karen A; Margison, Geoffrey P; Hatch, Amy; Fitzpatrick, David A; Owens, Rebecca A; Doyle, Sean; Jones, Gary W

    2012-09-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system.

  10. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    Science.gov (United States)

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  11. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.

    Science.gov (United States)

    Marín, Macarena; Uversky, Vladimir N; Ott, Thomas

    2013-09-01

    Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.

  12. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo

    2009-11-01

    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  13. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    Science.gov (United States)

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  14. Molecular mechanisms of DNA photodamage

    Energy Technology Data Exchange (ETDEWEB)

    Starrs, S.M

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA){sub n} and (GA){sub n}, and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a

  15. Molecular mechanisms of DNA photodamage

    International Nuclear Information System (INIS)

    Starrs, S.M.

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA) n and (GA) n , and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a dimeric

  16. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

    DEFF Research Database (Denmark)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik

    2016-01-01

    )-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers......The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...

  17. Molecular mimicry modulates plant host responses to pathogens.

    Science.gov (United States)

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Progressive multiple sclerosis: from pathogenic mechanisms to treatment.

    Science.gov (United States)

    Correale, Jorge; Gaitán, María I; Ysrraelit, María C; Fiol, Marcela P

    2017-03-01

    During the past decades, better understanding of relapsing-remitting multiple sclerosis disease mechanisms have led to the development of several disease-modifying therapies, reducing relapse rates and severity, through immune system modulation or suppression. In contrast, current therapeutic options for progressive multiple sclerosis remain comparatively disappointing and challenging. One possible explanation is a lack of understanding of pathogenic mechanisms driving progressive multiple sclerosis. Furthermore, diagnosis is usually retrospective, based on history of gradual neurological worsening with or without occasional relapses, minor remissions or plateaus. In addition, imaging methods as well as biomarkers are not well established. Magnetic resonance imaging studies in progressive multiple sclerosis show decreased blood-brain barrier permeability, probably reflecting compartmentalization of inflammation behind a relatively intact blood-brain barrier. Interestingly, a spectrum of inflammatory cell types infiltrates the leptomeninges during subpial cortical demyelination. Indeed, recent magnetic resonance imaging studies show leptomeningeal contrast enhancement in subjects with progressive multiple sclerosis, possibly representing an in vivo marker of inflammation associated to subpial demyelination. Treatments for progressive disease depend on underlying mechanisms causing central nervous system damage. Immunity sheltered behind an intact blood-brain barrier, energy failure, and membrane channel dysfunction may be key processes in progressive disease. Interfering with these mechanisms may provide neuroprotection and prevent disability progression, while potentially restoring activity and conduction along damaged axons by repairing myelin. Although most previous clinical trials in progressive multiple sclerosis have yielded disappointing results, important lessons have been learnt, improving the design of novel ones. This review discusses mechanisms involved

  19. The Top 10 oomycete pathogens in molecular plant pathology.

    Science.gov (United States)

    Kamoun, Sophien; Furzer, Oliver; Jones, Jonathan D G; Judelson, Howard S; Ali, Gul Shad; Dalio, Ronaldo J D; Roy, Sanjoy Guha; Schena, Leonardo; Zambounis, Antonios; Panabières, Franck; Cahill, David; Ruocco, Michelina; Figueiredo, Andreia; Chen, Xiao-Ren; Hulvey, Jon; Stam, Remco; Lamour, Kurt; Gijzen, Mark; Tyler, Brett M; Grünwald, Niklaus J; Mukhtar, M Shahid; Tomé, Daniel F A; Tör, Mahmut; Van Den Ackerveken, Guido; McDowell, John; Daayf, Fouad; Fry, William E; Lindqvist-Kreuze, Hannele; Meijer, Harold J G; Petre, Benjamin; Ristaino, Jean; Yoshida, Kentaro; Birch, Paul R J; Govers, Francine

    2015-05-01

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  20. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  1. Molecular machines with bio-inspired mechanisms.

    Science.gov (United States)

    Zhang, Liang; Marcos, Vanesa; Leigh, David A

    2018-02-26

    The widespread use of molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular machines-which by and large function as switches-and the machines of the macroscopic world, which utilize the synchronized behavior of integrated components to perform more sophisticated tasks than is possible with any individual switch. Should we try to make molecular machines of greater complexity by trying to mimic machines from the macroscopic world or instead apply unfamiliar (and no doubt have to discover or invent currently unknown) mechanisms utilized by biological machines? Here we try to answer that question by exploring some of the advances made to date using bio-inspired machine mechanisms.

  2. Molecular mechanism of Endosulfan action in mammals

    Indian Academy of Sciences (India)

    Keywords. DNA damage; double-strand break; genomic instability; infertility; MMEJ; NHEJ; pesticides. Abstract. Endosulfan is a broad-spectrum organochlorine pesticide, speculated to be detrimental to human health in areas ofactive exposure. However, the molecular insights to its mechanism of action remain poorly ...

  3. [Neonatal hyperbilirubinemia and molecular mechanisms of jaundice].

    Science.gov (United States)

    Jirsa, M; Sticová, E

    2013-07-01

    The introductory summarises the classical path of heme degradation and classification of jaundice. Subsequently, a description of neonatal types of jaundice is given, known as Crigler Najjar, Gilberts, DubinJohnson and Rotor syndromes, emphasising the explanation of the molecular mechanisms of these metabolic disorders. Special attention is given to a recently discovered molecular mechanism of the Rotor syndrome. The mechanism is based on the inability of the liver to retrospectively uptake the conjugated bilirubin fraction primarily excreted into the blood, not bile. A reduced ability of the liver to uptake the conjugated bilirubin contributes to the development of hyperbilirubinemia in common disorders of the liver and bile ducts and to the toxicity of xenobiotics and drugs using transport proteins for conjugated bilirubin.

  4. Pathogenic mechanisms in chronic obstructive pulmonary disease due to biomass smoke exposure.

    Science.gov (United States)

    Silva, Rafael; Oyarzún, Manuel; Olloquequi, Jordi

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) mortality and morbidity have increased significantly worldwide in recent decades. Although cigarette smoke is still considered the main risk factor for the development of the disease, estimates suggest that between 25% and 33% of COPD patients are non-smokers. Among the factors that may increase the risk of developing COPD, biomass smoke has been proposed as one of the most important, affecting especially women and children in developing countries. Despite the epidemiological evidence linking exposure to biomass smoke with adverse health effects, the specific cellular and molecular mechanisms by which this pollutant can be harmful for the respiratory and cardiovascular systems remain unclear. In this article we review the main pathogenic mechanisms proposed to date that make biomass smoke one of the major risk factors for COPD. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  5. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    Science.gov (United States)

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  6. Molecular techniques for detection and identification of pathogens in food: advantages and limitations

    OpenAIRE

    Palomino-Camargo, Carolina; Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela. Caracas, Venezuela. Magíster en Ciencia y Tecnología de los Alimentos licenciada en Biología; González-Muñoz, Yuniesky; Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela. Caracas, Venezuela. Ministerio del Poder Popular para la Alimentación. Caracas, Venezuela. licenciado en Ciencias de los Alimentos.

    2014-01-01

    Foodborne diseases, caused by pathogenic microorganisms, are a major public health problem worldwide. Microbiological methods commonly used in the detection of these foodborne pathogens are laborious and time consuming. This situation, coupled with the demand for immediate results and with technological advances, has led to the development of a wide range of rapid methods in recent decades. On this basis, this review describes the advantages and limitations of the main molecular methods used ...

  7. [Pathogenic Mechanism and Diagnostic Testing for Drug Allergies].

    Science.gov (United States)

    Uno, Katsuji

    2018-01-01

     Three stages of the pathogenic mechanism of drug allergies can be considered: antigen formation, immune reaction and inflammation/disorder reaction. Drugs are thought to form 4 types of antigens: drug only, polymers, drug-carrier conjugates, and metabolite-carrier complexes. Antigens are recognized by B cell receptors and T cell receptors. Helper T cells (Th) are differentiated into four subsets, namely, Th1, Th2, Th17 and regulatory T cells (Treg). Th1 produces interleukin (IL)-2 and interferon (IFN)-γ, and activates macrophages and cytotoxic T cells (Tc). Macrophages induce type IV allergies, and Tc lead to serious type IV allergies. On the other hand, Th2 produces IL-4, IL-5, and IL-6, etc., and activates B cells. B cells produce IgE antibodies, and the IgE antibody affects mast cells and induces type I allergies. Activated eosinophil leads to the chronic state of type I allergy. Diagnostic testing for allergenic drugs is necessary for patients with drug allergies. Because in vivo diagnostic tests for allergenic drugs are associated with a risk and burden to the patient, in vitro allergy tests are recommended to identify allergenic drugs. In allergy tests performed in vitro, cytological tests are more effective than serological tests, and the leukocyte migration test (LMT) presently has the highest efficacy. An LMT-chamber is better than LMT-agarose in terms of usability and sensitivity, and it can detect about 80% of allergenic drugs.

  8. Molecular Mechanisms of Neuroplasticity: An Expanding Universe.

    Science.gov (United States)

    Gulyaeva, N V

    2017-03-01

    Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.

  9. Pathogenic mechanisms linking periodontal diseases with adverse pregnancy outcomes.

    Science.gov (United States)

    Cetin, I; Pileri, P; Villa, A; Calabrese, S; Ottolenghi, L; Abati, S

    2012-06-01

    In the last 2 decades, a large proportion of studies have focused on the relationship between maternal periodontal disease and poor obstetric outcomes. The aim of the present review is to summarize the current knowledge about human studies on the pathogenetic mechanisms linking periodontal diseases with adverse pregnancy outcomes. A search of the medical literature was conducted using NIH (National Institute of Health) Pubmed through April 2011. Articles were identified with the Medical Subject Heading (MeSH) and free text terms "small for gestational age (SGA)," "preeclampsia," "preterm labor," and "periodontal disease." Experimental human studies have shown that periodontal pathogens may disseminate toward placental and fetal tissues accompanied by an increase in inflammatory mediators in the placenta. As such, new inflammatory reactions within the placental tissues of the pregnant woman may occur, the physiological levels of prostaglandin E(2) (PGE(2)) and tumor necrosis factor-α (TNF-α) in the amniotic fluid may increase and eventually lead to premature delivery. Although many data from clinical trials suggest that periodontal disease may increase the adverse pregnancy outcome, the exact pathogenetic mechanism involved remains controversial. The findings explain the potential link between periodontal infections and adverse pregnancy outcomes. First, periodontal bacteria can directly cause infections both of the uteroplacenta and the fetus; second, systemic inflammatory changes induced by periodontal diseases can activate responses at the maternal-fetal interface. Of note, associative studies have produced different results in different population groups and no conclusive evidence has still been produced for the potential role of preventive periodontal care to reduce the risk factors of preterm birth.

  10. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  11. Molecular cloning and characterization of a pathogen- related ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    Dec 26, 2011 ... Genetic Engineering Research Center, Bioengineering College, Chongqing University, Chongqing, 400044, ... understand the mechanism of insect tolerance of ... in a total volume of 20 µl using the reverse transcription kit.

  12. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  13. Molecular mechanisms of aging and immune system regulation in Drosophila.

    Science.gov (United States)

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  14. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  15. Molecular mechanisms of fear learning and memory.

    Science.gov (United States)

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Iron uptake mechanisms in the fish pathogen Tenacibaculum maritimum.

    Science.gov (United States)

    Avendaño-Herrera, Ruben; Toranzo, Alicia E; Romalde, Jesús L; Lemos, Manuel L; Magariños, Beatriz

    2005-11-01

    We present here the first evidence of the presence of iron uptake mechanisms in the bacterial fish pathogen Tenacibaculum maritimum. Representative strains of this species, with different serotypes and origins, were examined. All of them were able to grow in the presence of the chelating agent ethylenediamine-di-(o-hydroxyphenyl acetic acid) (EDDHA) and also produced siderophores. Cross-feeding assays suggest that the siderophores produced are closely related. In addition, all T. maritimum strains utilized transferrin, hemin, hemoglobin, and ferric ammonic citrate as iron sources when added to iron-deficient media. Whole cells of all T. maritimum strains, grown under iron-supplemented or iron-restricted conditions, were able to bind hemin, indicating the existence of constitutive binding components located at the T. maritimum cell surface. This was confirmed by the observation that isolated total and outer membrane proteins from all of the strains, regardless of the iron levels of the media, were able to bind hemin, with the outer membranes showing the strongest binding. Proteinase K treatment of whole cells did not affect the hemin binding, indicating that, in addition to proteins, some protease-resistant components could also bind hemin. At least three outer membrane proteins were induced in iron-limiting conditions, and all strains, regardless of their serotype, showed a similar pattern of induced proteins. The results of the present study suggest that T. maritimum possesses at least two different systems of iron acquisition: one involving the synthesis of siderophores and another that allows the utilization of heme groups as iron sources by direct binding.

  17. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Silvia Sookoian

    Full Text Available The abnormal accumulation of fat in the liver is often related either to metabolic risk factors associated with metabolic syndrome in the absence of alcohol consumption (nonalcoholic fatty liver disease, NAFLD or to chronic alcohol consumption (alcoholic fatty liver disease, AFLD. Clinical and histological studies suggest that NAFLD and AFLD share pathogenic mechanisms. Nevertheless, current data are still inconclusive as to whether the underlying biological process and disease pathways of NAFLD and AFLD are alike. Our primary aim was to integrate omics and physiological data to answer the question of whether NAFLD and AFLD share molecular processes that lead to disease development. We also explored the extent to which insulin resistance (IR is a distinctive feature of NAFLD. To answer these questions, we used systems biology approaches, such as gene enrichment analysis, protein-protein interaction networks, and gene prioritization, based on multi-level data extracted by computational data mining. We observed that the leading disease pathways associated with NAFLD did not significantly differ from those of AFLD. However, systems biology revealed the importance of each molecular process behind each of the two diseases, and dissected distinctive molecular NAFLD and AFLD-signatures. Comparative co-analysis of NAFLD and AFLD clarified the participation of NAFLD, but not AFLD, in cardiovascular disease, and showed that insulin signaling is impaired in fatty liver regardless of the noxa, but the putative regulatory mechanisms associated with NAFLD seem to encompass a complex network of genes and proteins, plausible of epigenetic modifications. Gene prioritization showed a cancer-related functional map that suggests that the fatty transformation of the liver tissue is regardless of the cause, an emerging mechanism of ubiquitous oncogenic activation. In conclusion, similar underlying disease mechanisms lead to NAFLD and AFLD, but specific ones depict a

  18. Molecular Mechanisms in Exercise-Induced Cardioprotection

    Directory of Open Access Journals (Sweden)

    Saeid Golbidi

    2011-01-01

    Full Text Available Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.

  19. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  20. Molecular mechanism of Danshensu on platelet antiaggregation

    Science.gov (United States)

    Yu, Chen; Geng, Feng; Fan, Hua-Ying; Luan, Hai-Yun; Liu, Yue; Ji, Kai; Fu, Feng-Hua

    2018-04-01

    In this study, we detected the effect of Danshensu on PARs-PLCβsignaling pathway to elucidate molecular mechanism of Danshensu on platelet anti-aggregation. Our results demonstrate that Danshensu is able to decrease the levels of IP3, Ca2+ and AA secretion, which indicate that Danshensu may involve in PARs-PLCβ signaling pathways. Molecular docking study shows that Danshesu has similar polar interactions with PAR1 receptors as BMS200261 at the same position. The findings from our study enable a better understanding of Danshensu biological properties, which could ultimately lead to the development of multi-target antiplatelet natural medicine for the treatment and/or prevention of some thrombotic diseases.

  1. Measuring the mechanical properties of molecular conformers

    Science.gov (United States)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  2. Pitfall in quantum mechanical/molecular mechanical molecular dynamics simulation of small solutes in solution.

    Science.gov (United States)

    Hu, Hao; Liu, Haiyan

    2013-05-30

    Developments in computing hardware and algorithms have made direct molecular dynamics simulation with the combined quantum mechanical/molecular mechanical methods affordable for small solute molecules in solution, in which much improved accuracy can be obtained via the quantum mechanical treatment of the solute molecule and even sometimes water molecules in the first solvation shell. However, unlike the conventional molecular mechanical simulations of large molecules, e.g., proteins, in solutions, special care must be taken in the technical details of the simulation, including the thermostat of the solute/solvent system, so that the conformational space of the solute molecules can be properly sampled. We show here that the common setup for classical molecular mechanical molecular dynamics simulations, such as the Berendsen or single Nose-Hoover thermostat, and/or rigid water models could lead to pathological sampling of the solutes' conformation. In the extreme example of a methanol molecule in aqueous solution, improper and sluggish setups could generate two peaks in the distribution of the O-H bond length. We discuss the factors responsible for this somewhat unexpected result and evoke a simple and ancient technical fix-up to resolve this problem.

  3. Mechanically controllable break junctions for molecular electronics.

    Science.gov (United States)

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular mechanisms of action of bacterial exotoxins.

    Science.gov (United States)

    Balfanz, J; Rautenberg, P; Ullmann, U

    1996-07-01

    Toxins are one of the inventive strategies that bacteria have developed in order to survive. As virulence factors, they play a major role in the pathogenesis of infectious diseases. Recent discoveries have once more highlighted the effectiveness of these precisely adjusted bacterial weapons. Furthermore, toxins have become an invaluable tool in the investigation of fundamental cell processes, including regulation of cellular functions by various G proteins, cytoskeletal dynamics and neural transmission. In this review, the bacterial toxins are presented in a rational classification based on the molecular mechanisms of action.

  5. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  6. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    Science.gov (United States)

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  7. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    Science.gov (United States)

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  8. Molecular mechanisms in radiation damage to DNA

    International Nuclear Information System (INIS)

    Osman, R.

    1991-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypothesis regarding the processes of impairment of regulation of gene expression, alternation in DNA repair, and damage to DNA structure involved in cell death or cancer

  9. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  10. Molecular medicine of fragile X syndrome: based on known molecular mechanisms.

    Science.gov (United States)

    Luo, Shi-Yu; Wu, Ling-Qian; Duan, Ran-Hui

    2016-02-01

    Extensive research on fragile X mental retardation gene knockout mice and mutant Drosophila models has largely expanded our knowledge on mechanism-based treatment of fragile X syndrome (FXS). In light of these findings, several clinical trials are now underway for therapeutic translation to humans. Electronic literature searches were conducted using the PubMed database and ClinicalTrials.gov. The search terms included "fragile X syndrome", "FXS and medication", "FXS and therapeutics" and "FXS and treatment". Based on the publications identified in this search, we reviewed the neuroanatomical abnormalities in FXS patients and the potential pathogenic mechanisms to monitor the progress of FXS research, from basic studies to clinical trials. The pathological mechanisms of FXS were categorized on the basis of neuroanatomy, synaptic structure, synaptic transmission and fragile X mental retardation protein (FMRP) loss of function. The neuroanatomical abnormalities in FXS were described to motivate extensive research into the region-specific pathologies in the brain responsible for FXS behavioural manifestations. Mechanism-directed molecular medicines were classified according to their target pathological mechanisms, and the most recent progress in clinical trials was discussed. Current mechanism-based studies and clinical trials have greatly contributed to the development of FXS pharmacological therapeutics. Research examining the extent to which these treatments provided a rescue effect or FMRP compensation for the developmental impairments in FXS patients may help to improve the efficacy of treatments.

  11. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    Science.gov (United States)

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  12. Molecular Detection and Characterization of Tick-borne Pathogens in Dogs and Ticks from Nigeria

    Science.gov (United States)

    Kamani, Joshua; Baneth, Gad; Mumcuoglu, Kosta Y.; Waziri, Ndadilnasiya E.; Eyal, Osnat; Guthmann, Yifat; Harrus, Shimon

    2013-01-01

    Background Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. Methodology/Principal Findings Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi) collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%), Ehrlichia canis (12.7%), Rickettsia spp. (8.8%), Babesia rossi (6.6%), Anaplasma platys (6.6%), Babesia vogeli (0.6%) and Theileria sp. (0.6%) was detected in the blood samples. DNA of E. canis (23.7%), H. canis (21.1%), Rickettsia spp. (10.5%), Candidatus Neoehrlichia mikurensis (5.3%) and A. platys (1.9%) was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. Conclusions/Significance The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents. PMID:23505591

  13. Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria.

    Directory of Open Access Journals (Sweden)

    Joshua Kamani

    Full Text Available BACKGROUND: Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. METHODOLOGY/PRINCIPAL FINDINGS: Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%, Ehrlichia canis (12.7%, Rickettsia spp. (8.8%, Babesia rossi (6.6%, Anaplasma platys (6.6%, Babesia vogeli (0.6% and Theileria sp. (0.6% was detected in the blood samples. DNA of E. canis (23.7%, H. canis (21.1%, Rickettsia spp. (10.5%, Candidatus Neoehrlichia mikurensis (5.3% and A. platys (1.9% was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. CONCLUSIONS/SIGNIFICANCE: The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents.

  14. Programmed necrosis and necroptosis – molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Agata Giżycka

    2015-12-01

    Full Text Available Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.

  15. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  16. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    Science.gov (United States)

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-11-11

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.

  17. Phenotypic and molecular typing of Vibrio harveyi isolates and their pathogenicity to tiger shrimp larvae.

    Science.gov (United States)

    Alavandi, S V; Manoranjita, V; Vijayan, K K; Kalaimani, N; Santiago, T C

    2006-11-01

    The objective of the present study was to identify the biotype(s) and molecular type(s) of Vibrio harveyi associated with pathogenicity in tiger shrimp (Penaeus monodon) larvae. Five luminescent and four nonluminescent V. harveyi isolates were subjected to phenotyping and random amplified polymorphic DNA (RAPD) fingerprinting, and pathogenicity testing to P. monodon mysis. Four isolates induced 34-41% mortality of P. monodon mysis when challenged at the rate of 10(6) CFU ml(-1) within 60 h. Sucrose-fermenting biotypes of V. harveyi appeared to be associated with pathogenicity to larval shrimp. Higher temperature and salinity appeared to play a role on the onset of vibriosis and mortality in the challenged larval shrimp. Pathogenic isolates of V. harveyi could be demarcated as revealed by their clustering in the dendrogram constructed based on the RAPD fingerprints. Nonluminescent V. harveyi also appear to be important aetiological agents of vibriosis of shrimp larvae. Sucrose-fermenting biotypes are likely to be pathogenic. High temperature may trigger onset of vibriosis. Biotyping of V. harveyi isolates and looking for traits, such as ability to ferment sucrose may be helpful in identifying the pathogenic forms, and such approach requires to be investigated further with larger number of isolates.

  18. Developing hygiene protocols against mechanically transmitted pathogens in greenhouse tomato production systems

    Science.gov (United States)

    Greenhouse tomato propagation and production require intensive crop work that promotes the spread of mechanically transmitted pathogens (e.g. fungi, bacteria, viruses and viroids). Therefore, a clean seed program is very important to prevent any un-intentional introduction of seed-borne pathogens t...

  19. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF Fusarium SPECIES AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jelena Poštić

    2012-12-01

    Full Text Available From the root and lower stem parts of weeds and plant debris of maize, wheat, oat and sunflower we isolated 300 isolates of Fusarium spp. and performed morphological and molecular identification. With molecular identification using AFLP method we determined 14 Fusarium species: F. acuminatum, F. avenaceum, F. concolor, F. crookwellense, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans, F. venenatum and F. verticillioides.By comparing results of morphological and molecular identification we found out that determination of 16,7% isolates was incorrect. Out of 300 isolates identified with molecular methods, 50 did not belong to the species determined with morphological determination.With pathogenicity tests of 30 chosen Fusarium isolates we determined that many of them were pathogenic to wheat and maize seedlings and to wheat heads. The most pathogenic were isolates of F. graminearum from A. retroflexus, A. theophrasti and C. album, F. venenatum from maize debris and and A. theophrasti, F. crookwellense from A. lappa. Antifungal influence of 11 essential oils on mycelia growth and sporulation of chosen Fusarium isolates determined that essential oils of T. vulgaris, P. anisum and E. caryophyllus had the strongest effect on mycelial growth. Influence of essential oils on sporulation was not statistically significant.

  20. Modulation of Quorum Sensing in a Gram-Positive Pathogen by Linear Molecularly Imprinted Polymers with Anti-infective Properties.

    Science.gov (United States)

    Motib, Anfal; Guerreiro, Antonio; Al-Bayati, Firas; Piletska, Elena; Manzoor, Irfan; Shafeeq, Sulman; Kadam, Anagha; Kuipers, Oscar; Hiller, Luisa; Cowen, Todd; Piletsky, Sergey; Andrew, Peter W; Yesilkaya, Hasan

    2017-12-22

    We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti-infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae. The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross-linker is used. This results in soluble low-molecular-weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug-discovery platform and class of materials to target Gram-positive pathogens. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    Science.gov (United States)

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action. © 2014 John Wiley & Sons Ltd.

  2. Dissecting the molecular interactions between wheat and the fungal pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-04-01

    Full Text Available The Dothideomycete fungus Zymoseptoria tritici (previously known as Mycosphaerella graminicola and Septoria tritici is the causative agent of Septoria tritici leaf blotch (STB disease of wheat (Triticum aestivum L.. In Europe, STB is the most economically damaging disease of wheat, with an estimated ~€1 billion per year in fungicide expenditure directed towards its control. Here, an overview of our current understanding of the molecular events that occur during Z. tritici infection of wheat leaves is presented. On the host side, this includes the contribution of (1 the pathogen-associated molecular pattern-triggered immunity (PTI layer of the plant defence, and (2 major Stb resistance loci to Z. tritici resistance. On the pathogen side of the interaction, we consolidate evidence from recent bioinformatic, transcriptomic and proteomic studies that begin to explain the contribution of Z. tritici effector proteins to the biphasic lifestyle of the fungus. This includes the discovery of chitin-binding proteins in the Z. tritici secretome, which contribute to evasion of immune surveillance by this pathogen, and the possible existence of ‘necrotrophic’ effectors from Z. tritici, which may actively stimulate host recognition in a manner similar to related necrotrophic fungal pathogens. We finish by speculating on how some of these recent fundamental discoveries might be harnessed to help improve resistance to STB in the world’s second largest food crop.

  3. Molecular investigation of tick-borne pathogens in dogs from Luanda, Angola.

    Science.gov (United States)

    Cardoso, Luís; Oliveira, Ana Cristina; Granada, Sara; Nachum-Biala, Yaarit; Gilad, Matan; Lopes, Ana Patrícia; Sousa, Sérgio Ramalho; Vilhena, Hugo; Baneth, Gad

    2016-05-10

    No molecular data have been available on tick-borne pathogens that infect dogs from Angola. The occurrence of agents from the genera Anaplasma, Babesia, Ehrlichia and Hepatozoon was assessed in 103 domestic dogs from Luanda, by means of the polymerase chain reaction (PCR) and DNA sequence analysis. Forty-six dogs (44.7 %) were positive for at least one pathogen. Twenty-one animals (20.4 %) were found infected with Anaplasma platys, 18 (17.5 %) with Hepatozoon canis, six (5.8 %) with Ehrlichia canis, six (5.8 %) with Babesia vogeli, one (1.0 %) with Babesia gibsoni and one (1.0 %) with an unnamed Babesia sp. The molecular frequency of single infections taken together was 37.9 % and that of co-infections with several combinations of two pathogens accounted for 6.8 % of the animals. This is the first report of A. platys, B. vogeli, B. gibsoni, E. canis and H. canis infections diagnosed by PCR in domestic dogs from Angola. The present study provides evidence that dogs in Luanda are widely exposed to, and at risk of becoming infected with, tick-borne pathogens. Further investigation is needed, including a larger number of animals, canine populations from other cities and provinces of the country, as well as potential vector ticks, aiming at better characterizing and controlling canine vector-borne diseases in Angola.

  4. Molecular Mechanisms of Mouse Skin Tumor Promotion

    International Nuclear Information System (INIS)

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion

  5. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  6. Molecular Mechanisms of DNA Replication Checkpoint Activation

    Directory of Open Access Journals (Sweden)

    Bénédicte Recolin

    2014-03-01

    Full Text Available The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.

  7. Molecular mechanism of the Syk activation switch.

    Science.gov (United States)

    Tsang, Emily; Giannetti, Anthony M; Shaw, David; Dinh, Marie; Tse, Joyce K Y; Gandhi, Shaan; Ho, Hoangdung; Wang, Sandra; Papp, Eva; Bradshaw, J Michael

    2008-11-21

    Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.

  8. Adverse pregnancy outcomes (APOs) and periodontal disease: pathogenic mechanisms.

    Science.gov (United States)

    Madianos, Phoebus N; Bobetsis, Yiorgos A; Offenbacher, Steven

    2013-04-01

    To evaluate the evidence on potential biological pathways underlying the possible association between periodontal disease (PD) and adverse pregnancy outcomes (APOs). Human, experimental and in vitro studies were evaluated. Periodontal pathogens/byproducts may reach the placenta and spread to the foetal circulation and amniotic fluid. Their presence in the foeto-placental compartment can stimulate a foetal immune/inflammatory response characterized by the production of IgM antibodies against the pathogens and the secretion of elevated levels of inflammatory mediators, which in turn may cause miscarriage or premature birth. Moreover, infection/inflammation may cause placental structural changes leading to pre-eclampsia and impaired nutrient transport causing low birthweight. Foetal exposure may also result in tissue damage, increasing the risk for perinatal mortality/morbidity. Finally, the elicited systemic inflammatory response may exacerbate local inflammatory responses at the foeto-placental unit and further increase the risk for APOs. Further investigation is still necessary to fully translate the findings of basic research into clinical studies and practice. Understanding the systemic virulence potential of the individual's oral microbiome and immune response may be a distinctly different issue from categorizing the nature of the challenge using clinical signs of PD. Therefore, a more personalized targeted therapy could be a more predictive answer to the current "one-size-fits-all" interventions.

  9. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  10. Molecular and cellular mechanisms of aortic stenosis.

    Science.gov (United States)

    Yetkin, Ertan; Waltenberger, Johannes

    2009-06-12

    Calcific aortic stenosis is the most common cause of aortic valve replacement in developed countries, and this condition increases in prevalence with advancing age. The fibrotic thickening and calcification are common eventual endpoint in both non-rheumatic calcific and rheumatic aortic stenoses. New observations in human aortic valves support the hypothesis that degenerative valvular aortic stenosis is the result of active bone formation in the aortic valve, which may be mediated through a process of osteoblast-like differentiation in these tissues. Additionally histopathologic evidence suggests that early lesions in aortic valves are not just a disease process secondary to aging, but an active cellular process that follows the classical "response to injury hypothesis" similar to the situation in atherosclerosis. Although there are similarities with the risk factor and as well as with the process of atherogenesis, not all the patients with coronary artery disease or atherosclerosis have calcific aortic stenosis. This review mainly focuses on the potential vascular and molecular mechanisms involved in the pathogenesis of aortic valve stenosis. Namely extracellular matrix remodeling, angiogenesis, inflammation, and eventually osteoblast-like differentiation resulting in bone formation have been shown to play a role in the pathogenesis of calcific aortic stenosis. Several mediators related to underlying mechanisms, including growth factors especially transforming growth factor-beta1 and vascular endothelial growth factors, angiogenesis, cathepsin enzymes, adhesion molecules, bone regulatory proteins and matrix metalloproteinases have been demonstrated, however the target to be attacked is not defined yet.

  11. Molecular Mechanisms of Insulin Resistance Development

    Directory of Open Access Journals (Sweden)

    Vsevolod Arsen'evich Tkachuk

    2014-05-01

    Full Text Available Insulin resistance (IR is a phenomenon associated with an impaired ability of insulin to stimulate glucose uptake by target cells and to reduce the blood glucose level. A response increase in insulin secretion by the pancreas and hyperinsulinemia are compensatory reactions of the body. The development of IR leads to the inability of target cells to respond to insulin that results in developing type 2 diabetes mellitus (T2DM and metabolic syndrome. For this reason, the metabolic syndrome is defined in practice as a combination of IR with one or more pathologies such as T2DM, arterial hypertension, dyslipidemia, abdominal obesity, non-alcoholic fatty liver disease, and some others. However, a combination of high blood glucose and insulin levels always serves as its physiological criterion.IR should be considered as a systemic failure of the endocrine regulation in the body. Physiological causes of IR are diverse. The main ones are nutritional overload and accumulation of certain lipids and their metabolites in cells, low physical activity, chronic inflammation and stress of various nature, including oxidative and endoplasmic reticulum stress (impairment of damaged protein degradation in the cell. Recent studies have demonstrated that these physiological mechanisms likely act through a single intracellular scenario. This is the impairment of signal transduction from the insulin receptor to its targets via the negative feedback mechanism in intracellular insulin-dependent signaling cascades.This review describes the physiological and intracellular mechanisms of insulin action and focuses on their abnormalities upon IR development. Finally, feasible trends in early molecular diagnosis and therapy of IR are discussed.

  12. Molecular Profiling of the Phytophthora plurivora Secretome: A Step towards Understanding the Cross-Talk between Plant Pathogenic Oomycetes and Their Hosts

    Science.gov (United States)

    Fleischmann, Frank; Dalio, Ronaldo J. D.; Di Maro, Antimo; Scognamiglio, Monica; Fiorentino, Antonio; Parente, Augusto; Osswald, Wolfgang; Chambery, Angela

    2014-01-01

    The understanding of molecular mechanisms underlying host–pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction

  13. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  14. Multiresolution molecular mechanics: Implementation and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biyikli, Emre; To, Albert C., E-mail: albertto@pitt.edu

    2017-01-01

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

  15. MOLECULAR-GENETIC BASIS OF PHYSIOLOGY AND PATHOGENICITY OF COXIELLA BURNETII

    Directory of Open Access Journals (Sweden)

    Yu. A. Panpherova

    2012-01-01

    Full Text Available Abstract. The agent of Q-fever Coxiella burnetii is unusual intracellular pathogen which is possessed of biggest transporting and metabolic abilities in compare with microorganisms with similar parasitic strategy. It is supposed that different strains of the pathogen exist in various stages of pathological adaption and have different potential of virulence. The structure of C. burnetii genome, characteristics of metabolic routes, mechanisms of interaction with host cells and possible virulence factors are discussed in the review. The special attention is paid to Coxiella genotyping methods and possible correlations between genomic polymorphism of different strains and their virulence potential.

  16. Molecular epidemiological survey of bacterial and parasitic pathogens in hard ticks from eastern China.

    Science.gov (United States)

    Liu, Xiang-Ye; Gong, Xiang-Yao; Zheng, Chen; Song, Qi-Yuan; Chen, Ting; Wang, Jing; Zheng, Jie; Deng, Hong-Kuan; Zheng, Kui-Yang

    2017-03-01

    Ticks are able to transmit various pathogens-viruses, bacteria, and parasites-to their host during feeding. Several molecular epidemiological surveys have been performed to evaluate the risk of tick-borne pathogens in China, but little is known about pathogens circulating in ticks from eastern China. Therefore, this study aimed to investigate the presence of bacteria and parasites in ticks collected from Xuzhou, a 11258km 2 region in eastern China. In the present study, ticks were collected from domestic goats and grasses in urban districts of Xuzhou region from June 2015 to July 2016. After tick species identification, the presence of tick-borne bacterial and parasitic pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi, Rickettsia sp., Bartonella sp., Babesia sp., and Theileria sp., was established via conventional or nested polymerase chain reaction assays (PCR) and sequence analysis. Finally, a total of 500 questing adult ticks, identified as Haemaphysalis longicornis, were investigated. Among them, 28/500 tick samples (5.6%) were infected with A. phagocytophilum, and 23/500 (4.6%) with Theileria luwenshuni, whereas co-infection with these pathogens was detected in only 1/51 (2%) of all infected ticks. In conclusion, H. longicornis is the dominant tick species in the Xuzhou region and plays an important role in zoonotic pathogen transmission. Both local residents and animals are at a significant risk of exposure to anaplasmosis and theileriosis, due to the high rates of A. phagocytophilum and T. luwenshuni tick infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanisms governing the responses to anthracnose pathogen in Juglans spp.

    Science.gov (United States)

    Pollegioni, P; Van der Linden, G; Belisario, A; Gras, M; Anselmi, N; Olimpieri, I; Luongo, L; Santini, A; Turco, E; Scarascia Mugnozza, G; Malvolti, M E

    2012-06-30

    Juglans nigra and Juglans regia are two highly economically important species for wood and fruit production that are susceptible to anthracnose caused by Gnomonia leptostyla. The identification of genotypes resistant to anthracnose could represent a valid alternative to agronomic and chemical management. In this study, we analyzed 72 walnut genotypes that showed a variety of resistance phenotypes in response to natural infection. According to the disease severity rating and microsatellite fingerprinting analysis, these genotypes were divided into three main groups: (40) J. nigra resistant, (1) J. nigra susceptible, and (31) J. regia susceptible. Data on leaf emergence rates and analysis of in vivo pathogenicity indicated that the incidence of anthracnose disease in the field might be partially conditioned by two key factors: the age and/or availability of susceptible leaves during the primary infection of fungus (avoidance by late flushing) and partial host resistance. NBS profiling approach, based on PCR amplification with an adapter primer for an adapter matching a restriction enzyme site and a degenerate primer targeting the conserved motifs present in the NBS domain of NBS-LRR genes, was applied. The results revealed the presence of a candidate marker that correlated to a reduction in anthracnose incidence in 72 walnut genotypes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.

    Science.gov (United States)

    Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng

    2015-07-01

    Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

  19. Molecular Epidemiologic Typing Systems of Bacterial Pathogens: Current Issues and Perpectives

    Directory of Open Access Journals (Sweden)

    Struelens Marc J

    1998-01-01

    Full Text Available The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s ? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection. Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

  20. Molecular mechanisms of intrauterine growth restriction.

    Science.gov (United States)

    Gurugubelli Krishna, Rao; Vishnu Bhat, B

    2017-07-10

    Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.

  1. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  2. Molecular mechanism of radiosensitization by nitro compounds

    International Nuclear Information System (INIS)

    Kagiya, T.; Wada, T.; Nishimoto, S.I.

    1984-01-01

    In this chapter a molecular mechanism of radiosensitization by electron-affinic nitro compounds is discussed, mainly on the basis of the results of the radiation-induced chemical studies of DNA-related compounds in aqueous solutions. In Section II the general aspects of the radiation chemistry of organic compounds in the absence and presence of oxygen in aqueous solution are shown in order to demonstrate characteristic differences between radiation chemical reactions in hypoxic and oxic cells. The effects of nitro compounds on the radiolysis yields of DNA-related compounds in aqueous solutions are described in Section III. In Section IV the retardation effects of misonidazole on the radiation chemical processes of DNA-related compounds are shown along with the reaction characteristics of misonidazole with hydroxyl radical ( . OH) and hydrated electron (e/sub aq/-bar) produced by the radiolysis of water. The promotion of radiation-induced oxidation of thymine into thymine glycol (TG) by nitro radiosensitizers in deoxygenated solution and the relations between the activity of nitro compound for the thymine glycol formation and the enhancement activity measured in vitro are described in Section V. Finally, the protection against radiation-induced damage of thymine by a sulfhydryl compound of glutathione and the ability of electron-affinic compounds to decompose the intracellular radioprotector are described in Section VI

  3. Sensory dysfunction in fibromyalgia patients with implications for pathogenic mechanisms.

    Science.gov (United States)

    Kosek, E; Ekholm, J; Hansson, P

    1996-12-01

    This study, addressing etiologic and pathogenic aspects of fibromyalgia (FM), aimed at examining whether sensory abnormalities in FM patients are generalized or confined to areas with spontaneous pain. Ten female FM patients and 10 healthy, age-matched females participated. The patients were asked to rate the intensity of ongoing pain using a visual analogue scale (VAS) at the site of maximal pain, the homologous contralateral site and two homologous sites with no or minimal pain. Quantitative sensory testing was performed for assessment of perception thresholds in these four sites. Von Frey filaments were used to test low-threshold mechanoreceptive function. Pressure pain sensitivity was assessed with a pressure algometer and thermal sensitivity with a Thermotest. In addition the stimulus-response curve of pain intensity as a function of graded nociceptive heat stimulation was studied at the site of maximal pain and at the homologous contralateral site. FM patients had increased sensitivity to non-painful warmth (P painful sites and a tendency to increased sensitivity to non-painful cold (P pain (P pain (P pain (P tested sites. The stimulus-response curve was parallely shifted to the left of the curve obtained from controls (P pain (P pain compared to the homologous contralateral site. These findings could be explained in terms of sensitization of primary afferent pathways or as a dysfunction of endogenous systems modulating afferent activity. However, the generalized increase in sensitivity found in FM patients was unrelated to spontaneous pain and thus most likely due to a central nervous system (CNS) dysfunction. The additional hyperphenomena related to spontaneous pain are probably dependent on disinhibition/facilitation of nociceptive afferent input from normal (or ischemic) muscles.

  4. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    Science.gov (United States)

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  5. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    Science.gov (United States)

    2015-03-04

    the cytoskeleton, in lysosomes , and in the nuclear lumen. These results were consistent with the experimentally observed pathogen interference with...RESEARCH ARTICLE Mining Host- Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms Vesna Memišević1, Nela...Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, United States of America * jaques.reifman.civ

  6. Celiac disease: progress towards diagnosis and definition of pathogenic mechanisms.

    Science.gov (United States)

    Rossi, Mauro; Bot, Adrian

    2011-08-01

    The current issue of the International Reviews of Immunology is dedicated entirely to Celiac Disease (CD). Recent development of additional biomarkers and diagnostics resulted in a sharp revision of the prevalence of this condition, with a previously unrecognized subclinical occurrence in the adult population. This was paralleled by groundbreaking progress in understanding its molecular pathogenesis: while gluten-derived peptides activate the innate immunity, post-translationally modified gluten elicits an adaptive immunity. These arms amplify each other, resulting in a self- perpetuating autoimmune condition, influenced by disturbances of the gut flora and mucus chemistry. The process evolves dramatically in a subset of patients with vulnerable immune homeostasis (eg. Treg cells) explaining the progressive, aggravating syndrome in the clinically overt version of CD. In depth understanding of the pathogenesis of CD thus creates the premises of developing novel, more accurate animal models that should support a rationale development of new prophylactic and therapeutic interventions.

  7. Detection of virulence factors and molecular typing of pathogenic Leptospira from capybara (Hydrochaeris hydrochaeris).

    Science.gov (United States)

    Jorge, Sérgio; Monte, Leonardo G; Coimbra, Marco Antonio; Albano, Ana Paula; Hartwig, Daiane D; Lucas, Caroline; Seixas, Fabiana K; Dellagostin, Odir A; Hartleben, Cláudia P

    2012-10-01

    Leptospirosis is a globally prevalent zoonosis caused by pathogenic Leptospira spp.; several serologic variants have reservoirs in synanthropic rodents. The capybara is the largest living rodent in the world, and it has a wide geographical distribution in Central and South America. This rodent is a significant source of Leptospira since the agent is shed via urine into the environment and is a potential public health threat. In this study, we isolated and identified by molecular techniques a pathogenic Leptospira from capybara in southern Brazil. The isolated strain was characterized by partial rpoB gene sequencing and variable-number tandem-repeats analysis as L. interrogans, serogroup Icterohaemorrhagiae. In addition, to confirm the expression of virulence factors, the bacterial immunoglobulin-like proteins A and B expression was detected by indirect immunofluorescence using leptospiral specific monoclonal antibodies. This report identifies capybaras as an important source of infection and provides insight into the epidemiology of leptospirosis.

  8. Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus

    Science.gov (United States)

    Barnett, Timothy C.; McArthur, Jason D.; Cole, Jason N.; Gillen, Christine M.; Henningham, Anna; Sriprakash, K. S.; Sanderson-Smith, Martina L.; Nizet, Victor

    2014-01-01

    SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority. PMID:24696436

  9. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    Science.gov (United States)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  10. Molecular mechanisms in radiation carcinogenesis: introduction

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1975-01-01

    Molecular studies of radiation carcinogenesis are discussed in relation to theories for extrapolating from cellular and animal models to man. Skin cancer is emphasized because of sunlight-induced photochemical damage to DNA. It is emphasized that cellular and animal models are needed as well as molecular theories for quantitative evaluation of hazardous environmental agents. (U.S.)

  11. [Genodiagnosis and molecular typing of the pathogens for plague, cholera, and anthrax].

    Science.gov (United States)

    Kutyrev, V V; Smirnova, N I

    2003-01-01

    The paper contains a survey of published data about the use of DNA-diagnostics in indicating and identifying the causative agents of highly dangerous infections like plague, cholera and anthrax. A discussion of data about the genetic relationship between strains of the mentioned causative agents isolated from different sources by using the molecular-typing methods as well as about the evolution ties between strains of different origins is in the focus of attention. Results of comparative studies of nucleotide sequences of genomes or of individual genomes in different Yersinia pestis, Vibrio cholerae and Bacillus anthracis strains, which are indicative of the evolution of their pathogenicity, are also under discussion.

  12. Molecular and cellular mechanisms of aldosterone producing adenoma development

    Directory of Open Access Journals (Sweden)

    Sheerazed eBoulkroun

    2015-06-01

    Full Text Available Primary aldosteronism (PA is the most common form of secondary hypertension with an estimated prevalence of ~10% in referred patients. PA occurs as a result of a dysregulation of the normal mechanisms controlling adrenal aldosterone production. It is characterized by hypertension with low plasma renin and elevated aldosterone and often associated with hypokalemia. The two major causes of PA are unilateral aldosterone producing adenoma (APA and bilateral adrenal hyperplasia, accounting together for ~95% of cases. In addition to the well-characterized effect of excess mineralocorticoids on blood pressure, high levels of aldosterone also have cardiovascular, renal and metabolic consequences. Hence, long-term consequences of PA include increased risk of coronary artery disease, myocardial infarction, heart failure and atrial fibrillation. Despite recent progress in the management of patients with PA, critical issues related to diagnosis, subtype differentiation and treatment of non-surgically correctable forms still persist. A better understanding of the pathogenic mechanisms of the disease should lead to the identification of more reliable diagnostic and prognostic biomarkers for a more sensitive and specific screening and new therapeutic options. In this review we will summarize our current knowledge on the molecular and cellular mechanisms of APA development. On one hand, we will discuss how various animal models have improved our understanding of the pathophysiology of excess aldosterone production. On the other hand, we will summarize the major advances made during the last few years in the genetics of APA due to transcriptomic studies and whole exome sequencing. The identification of recurrent and somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D and ATPases (ATP1A1 and ATP2B3 allowed highlighting the central role of calcium signaling in autonomous aldosterone production by the adrenal.

  13. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...... of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination....

  14. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.

    Science.gov (United States)

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-08-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30-50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.

  15. C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Michael TeKippe

    2010-07-01

    Full Text Available Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.

  16. Pathogenic mechanisms of Acute Graft versus Host Disease

    Directory of Open Access Journals (Sweden)

    Ferrara James L.M.

    2002-01-01

    Full Text Available Graft-versus-host-disease (GVHD is the major complication of allogeneic Bone Marrow Transplant (BMT. Older BMT recipients are a greater risk for acute GVHD after allogeneic BMT, but the causes of this association are poorly understood. Using well-characterized murine BMT models we have explored the mechanisms of increased GVHD in older mice. GVHD mortality and morbidity, and pathologic and biochemical indices were all worse in old recipients. Donor T cell responses were significantly increased in old recipients both in vivo and in vitro when stimulated by antigen-presenting cells (APCs from old mice. In a haploidential GVHD model, CD4+ donor T cells mediated more severe GVHD in old mice. We confirmed the role of aged APCs in GVHD using bone marrow chimera recipient created with either old or young bone marrow. APCs from these mice also stimulated greater responses from allogeneic cells in vitro. In a separate set of experiments we evaluated whether alloantigen expression on host target epithelium is essential for tissue damage induced by GVHD. Using bone marrow chimeras recipients in which either MHC II or MHC I alloantigen was expressed only on APCs, we found that acute GVHD does not require alloantigen expression on host target epithelium and that neutralization of tumor necrosis factor-alpha and interleukin-1 prevents acute GVHD. These results pertain to CD4-mediated GVHD and to a lesser extent in CD8-mediated GVHD, and confirm the central role of most APCs as well as inflammatory cytokines.

  17. Molecular Biosensors for Electrochemical Detection of Infectious Pathogens in Liquid Biopsies: Current Trends and Challenges.

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-11-03

    Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.

  18. Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease.

    Science.gov (United States)

    Decaro, Nicola; Mari, Viviana; Larocca, Vittorio; Losurdo, Michele; Lanave, Gianvito; Lucente, Maria Stella; Corrente, Marialaura; Catella, Cristiana; Bo, Stefano; Elia, Gabriella; Torre, Giorgio; Grandolfo, Erika; Martella, Vito; Buonavoglia, Canio

    2016-08-30

    A molecular survey for traditional and emerging pathogens associated with canine infectious respiratory disease (CIRD) was conducted in Italy between 2011 and 2013 on a total of 138 dogs, including 78 early acute clinically ill CIRD animals, 22 non-clinical but exposed to clinically ill CIRD dogs and 38 CIRD convalescent dogs. The results showed that canine parainfluenza virus (CPIV) was the most commonly detected CIRD pathogen, followed by canine respiratory coronavirus (CRCoV), Bordetella bronchiseptica, Mycoplasma cynos, Mycoplasma canis and canine pneumovirus (CnPnV). Some classical CIRD agents, such as canine adenoviruses, canine distemper virus and canid herpesvirus 1, were not detected at all, as were not other emerging respiratory viruses (canine influenza virus, canine hepacivirus) and bacteria (Streptococcus equi subsp. zooepidemicus). Most severe forms of respiratory disease were observed in the presence of CPIV, CRCoV and M. cynos alone or in combination with other pathogens, whereas single CnPnV or M. canis infections were detected in dogs with no or very mild respiratory signs. Interestingly, only the association of M. cynos (alone or in combination with either CRCoV or M. canis) with severe clinical forms was statistically significant. The study, while confirming CPIV as the main responsible for CIRD occurrence, highlights the increasing role of recently discovered viruses, such as CRCoV and CnPnV, for which effective vaccines are not available in the market. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Long non-coding RNAs as molecular players in plant defense against pathogens.

    Science.gov (United States)

    Zaynab, Madiha; Fatima, Mahpara; Abbas, Safdar; Umair, Muhammad; Sharif, Yasir; Raza, Muhammad Ammar

    2018-05-31

    Long non-coding RNAs (lncRNAs) has significant role in of gene expression and silencing pathways for several biological processes in eukaryotes. lncRNAs has been reported as key player in remodeling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Host lncRNAs are reckoned as compulsory elements of plant defense. In response to pathogen attack, plants protect themselves with the help of lncRNAs -dependent immune systems in which lncRNAs regulate pathogen-associated molecular patterns (PAMPs) and other effectors. Role of lncRNAs in plant microbe interaction has been studied extensively but regulations of several lncRNAs still need extensive research. In this study we discussed and provide as overview the topical advancements and findings relevant to pathogen attack and plant defense mediated by lncRNAs. It is hoped that lncRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases. Copyright © 2018. Published by Elsevier Ltd.

  20. Morphological and molecular characterization, sexual reproduction, and pathogenicity of Setosphaeria rostrata isolates from rice leaf spot.

    Science.gov (United States)

    Kusai, Nor Azizah; Azmi, Madihah Mior Zakuan; Zainudin, Nur Ain Izzati Mohd; Yusof, Mohd Termizi; Razak, Azmi Abd

    2016-09-01

    Setosphaeria rostrata, a common plant pathogen causing leaf spot disease, affects a wide range of plant species, mainly grasses. Fungi were isolated from brown spots on rice leaves throughout Peninsular Malaysia, and 45 isolates were identified as Setosphaeria rostrata The isolates were then characterized using morphological and molecular approaches. The mating type was determined using PCR amplification of the mating type alleles, and isolates of opposite mating types were crossed to examine sexual reproduction. Based on nuclear ribosomal DNA ITS1-5.8S-ITS2 region (ITS) and beta-tubulin (BT2) sequences, two phylogenetic trees were constructed using the maximum likelihood method; S. rostrata was clustered in one well-supported clade. Pathogenicity tests showed that S. rostrata isolates are pathogenic, suggesting that it is the cause of the symptoms. Mating-type analyses indicated that three isolates carried the MAT1-1 allele, and the other 42 isolates carried MAT1-2 After isolates with opposite mating types were crossed on Sach's medium and incubated for 3 wk, six crosses produced pseudothecia that contained eight mature ascospores, and 12 other crosses produced numerous pseudothecia with no ascospores. To our knowledge, this is the first report on S. rostrata isolated from leaf spots on rice. © 2016 by The Mycological Society of America.

  1. Pathogenicity and molecular analysis of an infectious bursal disease virus isolated from Malaysian village chickens.

    Science.gov (United States)

    Tan, D Y; Hair-Bejo, M; Omar, A R; Aini, I

    2004-01-01

    The characteristics of the pathogenic infectious bursal disease virus (IBDV) that infected avian species other than commercial chickens were largely unknown. In this study, by using in vivo and molecular methods, we had characterized an IBDV isolate (named 94268) isolated from an infectious bursal disease (IBD) outbreak in Malaysian village chickens--the adulterated descendant of the Southeast Asian jungle fowl (Gallus bankiva) that were commonly reared in the backyard. The 94268 isolate was grouped as the very virulent IBDV (vvIBDV) strain because it caused severe lesions and a high mortality rate in village chickens (>88%) and experimentally infected specific-pathogen-free chickens (>66%). In addition, it possessed all of the vvIBDV molecular markers in its VP2 gene. Phylogenetic analysis using distance, maximum parsimony, and maximum likelihood methods revealed that 94268 was monophyletic with other vvIBDV isolates and closely related to the Malaysian vvIBDV isolates. Given that the VP2 gene of 94268 isolate was almost identical and evolutionarily closely related to other field IBDV isolates that affected the commercial chickens, we therefore concluded that IBD infections had spread across the farm boundary. IBD infection in the village chicken may represent an important part of the IBD epidemiology because these birds could harbor the vvIBDV strain and should not be overlooked in the control and prevention of the disease.

  2. Quantum chemical approaches: semiempirical molecular orbital and hybrid quantum mechanical/molecular mechanical techniques.

    Science.gov (United States)

    Bryce, Richard A; Hillier, Ian H

    2014-01-01

    The use of computational quantum chemical methods to aid drug discovery is surveyed. An overview of the various computational models spanning ab initio, density function theory, semiempirical molecular orbital (MO), and hybrid quantum mechanical (QM)/molecular mechanical (MM) methods is given and their strengths and weaknesses are highlighted, focussing on the challenge of obtaining the accuracy essential for them to make a meaningful contribution to drug discovery. Particular attention is given to hybrid QM/MM and semiempirical MO methods which have the potential to yield the necessary accurate predictions of macromolecular structure and reactivity. These methods are shown to have advanced the study of many aspects of substrate-ligand interactions relevant to drug discovery. Thus, the successful parametrization of semiempirical MO methods and QM/MM methods can be used to model noncovalent substrate-protein interactions, and to lead to improved scoring functions. QM/MM methods can be used in crystal structure refinement and are particularly valuable for modelling covalent protein-ligand interactions and can thus aid the design of transition state analogues. An extensive collection of examples from the areas of metalloenzyme structure, enzyme inhibition, and ligand binding affinities and scoring functions are used to illustrate the power of these techniques.

  3. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition...... the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...

  4. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The cognitive life of mechanical molecular models.

    Science.gov (United States)

    Charbonneau, Mathieu

    2013-12-01

    The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence.

    Science.gov (United States)

    Frick, Winifred F; Cheng, Tina L; Langwig, Kate E; Hoyt, Joseph R; Janicki, Amanda F; Parise, Katy L; Foster, Jeffrey T; Kilpatrick, A Marm

    2017-03-01

    Disease dynamics during pathogen invasion and establishment determine the impacts of disease on host populations and determine the mechanisms of host persistence. Temporal progression of prevalence and infection intensity illustrate whether tolerance, resistance, reduced transmission, or demographic compensation allow initially declining populations to persist. We measured infection dynamics of the fungal pathogen Pseudogymnoascus destructans that causes white-nose syndrome in bats by estimating pathogen prevalence and load in seven bat species at 167 hibernacula over a decade as the pathogen invaded, became established, and some host populations stabilized. Fungal loads increased rapidly and prevalence rose to nearly 100% at most sites within 2 yr of invasion in six of seven species. Prevalence and loads did not decline over time despite huge reductions in colony sizes, likely due to an extensive environmental reservoir. However, there was substantial variation in fungal load among sites with persisting colonies, suggesting that both tolerance and resistance developed at different sites in the same species. In contrast, one species disappeared from hibernacula within 3 yr of pathogen invasion. Variable host responses to pathogen invasion require different management strategies to prevent disease-induced extinction and to facilitate evolution of tolerance or resistance in persisting populations. © 2016 by the Ecological Society of America.

  7. Chronic post-thoracotomy pain: a critical review of pathogenic mechanisms and strategies for prevention

    DEFF Research Database (Denmark)

    Wildgaard, Kim; Ravn, Jesper; Kehlet, Henrik

    2009-01-01

    Chronic pain complaints after thoracic surgery represent a significant clinical problem in 25-60% of patients. Results from thoracic and other surgical procedures suggest multiple pathogenic mechanisms that include pre-, intra-, and postoperative factors. This review attempts to analyse the metho...

  8. Quantum mechanics of molecular rate processes

    CERN Document Server

    Levine, Raphael D

    1999-01-01

    This survey of applications of the theory of collisions and rate processes to molecular problems explores collisions of molecules with internal structure, generalized Ehrenfest theorem, theory of reactive collisions, and role of symmetry. It also reviews partitioning technique, equivalent potentials and quasibound states, theory of direct reactions, more. 1969 edition.

  9. Oligodendroglioma: pathology, molecular mechanisms and markers

    NARCIS (Netherlands)

    Wesseling, P.; Bent, M. van den; Perry, A.

    2015-01-01

    For nearly a century, the diagnosis and grading of oligodendrogliomas and oligoastrocytomas has been based on histopathology alone. Roughly 20 years ago, the first glioma-associated molecular signature was found with complete chromosome 1p and 19q codeletion being particularly common in

  10. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    Science.gov (United States)

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  11. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria.

    Science.gov (United States)

    Maier, R J

    2005-02-01

    Molecular hydrogen is produced as a fermentation by-product in the large intestine of animals and its production can be correlated with the digestibility of the carbohydrates consumed. Pathogenic Helicobacter species (Helicobacter pylori and H. hepaticus) have the ability to use H(2) through a respiratory hydrogenase, and it was demonstrated that the gas is present in the tissues colonized by these pathogens (the stomach and the liver respectively of live animals). Mutant strains of H. pylori unable to use H(2) are deficient in colonizing mice compared with the parent strain. On the basis of available annotated gene sequence information, the enteric pathogen Salmonella, like other enteric bacteria, contains three putative membrane-associated H(2)-using hydrogenase enzymes. From the analysis of gene-targeted mutants it is concluded that each of the three membrane-bound hydrogenases of Salmonella enterica serovar Typhimurium are coupled with an H(2)-oxidizing respiratory pathway. From microelectrode probe measurements on live mice, H(2) could be detected at approx. 50 muM levels within the tissues (liver and spleen), which are colonized by Salmonella. The half-saturation affinity of whole cells of these pathogens for H(2) is much less than this, so it is expected that the (H(2)-utilizing) hydrogenase enzymes be saturated with the reducing substrate in vivo. All three enteric NiFe hydrogenase enzymes contribute to virulence of the bacterium in a typhoid fever-mouse model, and the combined removal of all three hydrogenases resulted in a strain that is avirulent and (in contrast with the parent strain) one that is not able to pass the intestinal tract to invade liver or spleen tissue. It is proposed that H(2) utilization and specifically its oxidation, coupled with a respiratory pathway, is required for energy production to permit growth and maintain efficient virulence of a number of pathogenic bacteria during infection of animals. These would be expected to include

  12. Molecular mechanisms involved in convergent crop domestication.

    Science.gov (United States)

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway.

    Science.gov (United States)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter

    2017-01-01

    The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.

  14. Molecular mechanisms of induced-mutations

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1985-01-01

    The outcome of recent studies on mechanisms of induced-mutations is outlined with particular emphasis on the dependence of recA gene function in Escherichia coli. Genes involved in spontaneous mutation and x-ray- and chemical-induced mutation and genes involved in adaptive response are presented. As for SOS mutagenesis, SOS-induced regulation mechanisms and mutagenic routes are described. Furthermore, specificity of mutagens themselves are discussed in relation to mechanisms of base substitution, frameshift, and deletion mutagenesis. (Namekawa, K.)

  15. Molecular Mechanisms of Bacterial Superantigen Function

    National Research Council Canada - National Science Library

    Sadegh-Nasseri, Scheherazade

    2004-01-01

    ...) Vb domains and can result in systemic shock and death. Rational design of strategies for prevention or treatments of such diseases may only be possible if we have insights into the mechanisms of T cell activation by SEs...

  16. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Unknown

    progressive multiple symptoms of motor, cognitive dys- function and behavioural ..... using different types of neurons such as rodent cortical, hippocampal and ..... in the neocortex of rat via a mechanism involving CXCR4 chemokine receptor ...

  17. Mechanically magnified imaging of molecular interferograms

    International Nuclear Information System (INIS)

    Stibor, A.; Stefanov, A.; Goldfarb, F.; Reiger, E.; Arndt, M.

    2005-01-01

    Full text: Imaging of surface adsorbed molecules is presented as a valuable detection method for matter interferometry with fluorescent particles. A mechanical magnification scheme is implemented to circumvent the optical resolution limit. Mechanically magnified fluorescence imaging turns out to be an excellent tool for recording quantum interference patterns with high visibility. A unique advantage of this technique is its scalability: for certain classes of nanosized objects, the detection sensitivity will even increase significantly with increasing size of the particle. (author)

  18. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  19. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  20. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris.

    Science.gov (United States)

    Kordalewska, Milena; Zhao, Yanan; Lockhart, Shawn R; Chowdhary, Anuradha; Berrio, Indira; Perlin, David S

    2017-08-01

    Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. Copyright © 2017 Kordalewska et al.

  1. Molecular epidemiology of pathogenic Leptospira spp. among large ruminants in the Philippines.

    Science.gov (United States)

    Villanueva, Marvin A; Mingala, Claro N; Balbin, Michelle M; Nakajima, Chie; Isoda, Norikazu; Suzuki, Yasuhiko; Koizumi, Nobuo

    2016-12-01

    The extent of Leptospira infection in large ruminants resulting to economic problems in livestock industry in a leptospirosis-endemic country like the Philippines has not been extensively explored. Therefore, we determined the prevalence and carrier status of leptospirosis in large ruminants using molecular techniques and assessed the risk factors of acquiring leptospirosis in these animals. Water buffalo and cattle urine samples (n=831) collected from 21 farms during 2013-2015 were subjected to flaB-nested PCR to detect pathogenic Leptospira spp. Leptospiral flaB was detected in both species with a detection rate of 16.1%. Leptospiral DNA was detected only in samples from animals managed in communal farms. Sequence analysis of Leptospira flaB in large ruminants revealed the formation of three major clusters with L. borgpetersenii or L. kirschneri. One farm contained Leptospira flaB sequences from all clusters identified in this study, suggesting this farm was the main source of leptospires for other farms. This study suggested that these large ruminants are infected with various pathogenic Leptospira species causing possible major economic loss in the livestock industry as well as potential Leptospira reservoirs that can transmit infection to humans and other animals in the Philippines.

  2. The molecular mechanism of gene-radiotherapy of tumor

    International Nuclear Information System (INIS)

    Zhu Xian

    2004-01-01

    Gene-radiotherapy of tumor is a new method which is induced by ionizing radiation. The molecular mechanism is to activate various molecular target by many ways and induce the apoptosis of tumor cell. It is a gene therapy based on the radiation-inducible property of the Egr-1 gene. It has good application prospect in therapy of tumor

  3. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-26

    Mar 26, 2007 ... clients are essential nodes in signal transduction pathways and regulatory circuits, accounting for the .... respective contributions of genetics versus epigenetics ... authors succeeded in elucidating the molecular mechanism.

  4. Symposium on molecular and cellular mechanisms of mutagenesis

    International Nuclear Information System (INIS)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents

  5. What molecular mechanism is adapted by plants during salt stress ...

    African Journals Online (AJOL)

    What molecular mechanism is adapted by plants during salt stress tolerance? ... Salt stress harmfully shocks agricultural yield throughout the world affecting production whether it is for subsistence or economic outcomes. ... from 32 Countries:.

  6. Symposium on molecular and cellular mechanisms of mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  7. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments

    Directory of Open Access Journals (Sweden)

    Bas Verbruggen

    2016-01-01

    Full Text Available Since its emergence in the 1990s, White Spot Disease (WSD has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV, a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host–pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.

  8. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of

  9. [Development of molecular detection of food-borne pathogenic bacteria using miniaturized microfluidic devices].

    Science.gov (United States)

    Iván, Kristóf; Maráz, Anna

    2015-12-20

    Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.

  10. Molecular dynamics and Monte Carlo calculations in statistical mechanics

    International Nuclear Information System (INIS)

    Wood, W.W.; Erpenbeck, J.J.

    1976-01-01

    Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references

  11. Molecular and cellular mechanisms of pulmonary fibrosis

    Science.gov (United States)

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  12. Molecular and cellular mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  13. Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira.

    Directory of Open Access Journals (Sweden)

    Christian A Ganoza

    2006-08-01

    Full Text Available Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters.A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013. The concentration of pathogen-related Leptospira was higher in urban than rural water sources (approximately 10(3 leptospires/ml versus 0.5 x 10(2 leptospires/ml; F = 8.406, p < 0.05. Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates; human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates (chi-square analysis; p < 0.01. This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources.Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission

  14. Molecular mechanisms of synaptic remodeling in alcoholism.

    Science.gov (United States)

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  15. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  16. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    Science.gov (United States)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  17. Physical mechanisms of biological molecular motors

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H. Jr. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)], E-mail: jhmiller@uh.edu; Vajrala, Vijayanand; Infante, Hans L. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Claycomb, James R. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Department of Mathematics and Physics, Houston Baptist University, 7502 Fondren Road, Houston, TX 77074-3298 (United States); Palanisami, Akilan; Fang Jie; Mercier, George T. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)

    2009-03-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors.

  18. Physical mechanisms of biological molecular motors

    International Nuclear Information System (INIS)

    Miller, John H. Jr.; Vajrala, Vijayanand; Infante, Hans L.; Claycomb, James R.; Palanisami, Akilan; Fang Jie; Mercier, George T.

    2009-01-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors

  19. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa

    Science.gov (United States)

    Baig, Nameera; Polisetti, Sneha; Morales-Soto, Nydia; Dunham, Sage J. B.; Sweedler, Jonathan V.; Shrout, Joshua D.; Bohn, Paul W.

    2016-09-01

    Biofilms, such as those formed by the opportunistic human pathogen Pseudomonas aeruginosa are complex, matrix enclosed, and surface-associated communities of cells. Bacteria that are part of a biofilm community are much more resistant to antibiotics and the host immune response than their free-floating counterparts. P. aeruginosa biofilms are associated with persistent and chronic infections in diseases such as cystic fibrosis and HIV-AIDS. P. aeruginosa synthesizes and secretes signaling molecules such as the Pseudomonas quinolone signal (PQS) which are implicated in quorum sensing (QS), where bacteria regulate gene expression based on population density. Processes such as biofilms formation and virulence are regulated by QS. This manuscript describes the powerful molecular imaging capabilities of confocal Raman microscopy (CRM) and surface enhanced Raman spectroscopy (SERS) in conjunction with multivariate statistical tools such as principal component analysis (PCA) for studying the spatiotemporal distribution of signaling molecules, secondary metabolites and virulence factors in biofilm communities of P. aeruginosa. Our observations reveal that the laboratory strain PAO1C synthesizes and secretes 2-alkyl-4-hydroxyquinoline N-oxides and 2-alkyl-4-hydroxyquinolones in high abundance, while the isogenic acyl homoserine lactone QS-deficient mutant (ΔlasIΔrhlI) strain produces predominantly 2-alkyl-quinolones during biofilm formation. This study underscores the use of CRM, along with traditional biological tools such as genetics, for studying the behavior of microbial communities at the molecular level.

  20. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.

    Science.gov (United States)

    Campos-Calderón, Liliana; Ábrego-Sánchez, Leyda; Solórzano-Morales, Antony; Alberti, Alberto; Tore, Gessica; Zobba, Rosanna; Jiménez-Rocha, Ana E; Dolz, Gaby

    2016-10-01

    Although vector-borne diseases are globally widespread with considerable impact on animal production and on public health, few reports document their presence in Central America. This study focuses on the detection and molecular identification of species belonging to selected bacterial genera (Ehrlichia, Anaplasma and Rickettsia) in ticks sampled from dogs in Costa Rica by targeting several genes: 16S rRNA/dsb genes for Ehrlichia; 16S rRNA/groEL genes for Anaplasma, and ompA/gltA/groEL genes for Rickettsia. PCR and sequence analyses provides evidences of Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum infection in Rhipicephalus sanguineus s.l ticks, and allow establishing the presence of Rickettsia monacensis in Ixodes boliviensis. Furthermore, the presence of recently discovered Mediterranean A. platys-like strains is reported for the first time in Central America. Results provide new background on geographical distribution of selected tick-transmitted bacterial pathogens in Costa Rica and on their molecular epidemiology, and are pivotal to the development of effective and reliable diagnostic tools in Central America. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  2. Molecular mechanisms in radiation damage to DNA: Final report

    International Nuclear Information System (INIS)

    Osman, R.

    1996-01-01

    The objectives of this work were to elucidate the molecular mechanisms that were responsible for radiation-induced DNA damage. The studies were based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA

  3. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  4. Using next-generation sequencing to develop molecular diagnostics for Pseudoperonospora cubensis, the cucurbit downy mildew pathogen

    Science.gov (United States)

    Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...

  5. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  6. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  7. Molecular and neuroendocrine mechanisms of cancer cachexia.

    Science.gov (United States)

    Mendes, Maria Carolina S; Pimentel, Gustavo D; Costa, Felipe O; Carvalheira, José B C

    2015-09-01

    Cancer and its morbidities, such as cancer cachexia, constitute a major public health problem. Although cancer cachexia has afflicted humanity for centuries, its underlying multifactorial and complex physiopathology has hindered the understanding of its mechanism. During the last few decades we have witnessed a dramatic increase in the understanding of cancer cachexia pathophysiology. Anorexia and muscle and adipose tissue wasting are the main features of cancer cachexia. These apparently independent symptoms have humoral factors secreted by the tumor as a common cause. Importantly, the hypothalamus has emerged as an organ that senses the peripheral signals emanating from the tumoral environment, and not only elicits anorexia but also contributes to the development of muscle and adipose tissue loss. Herein, we review the roles of factors secreted by the tumor and its effects on the hypothalamus, muscle and adipose tissue, as well as highlighting the key targets that are being exploited for cancer cachexia treatment. © 2015 Society for Endocrinology.

  8. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    Science.gov (United States)

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  9. Cellular and molecular mechanisms coordinating pancreas development.

    Science.gov (United States)

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  10. Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study.

    Science.gov (United States)

    Ibrahim, Mahmoud A A

    2011-10-24

    The performance of semiempirical molecular-orbital methods--MNDO, MNDO-d, AM1, RM1, PM3 and PM6--in describing halogen bonding was evaluated, and the results were compared with molecular mechanical (MM) and quantum mechanical (QM) data. Three types of performance were assessed: (1) geometrical optimizations and binding energy calculations for 27 halogen-containing molecules complexed with various Lewis bases (Two of the tested methods, AM1 and RM1, gave results that agree with the QM data.); (2) charge distribution calculations for halobenzene molecules, determined by calculating the solvation free energies of the molecules relative to benzene in explicit and implicit generalized Born (GB) solvents (None of the methods gave results that agree with the experimental data.); and (3) appropriateness of the semiempirical methods in the hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme, investigated by studying the molecular inhibition of CK2 protein by eight halobenzimidazole and -benzotriazole derivatives using hybrid QM/MM molecular-dynamics (MD) simulations with the inhibitor described at the QM level by the AM1 method and the rest of the system described at the MM level. The pure MM approach with inclusion of an extra point of positive charge on the halogen atom approach gave better results than the hybrid QM/MM approach involving the AM1 method. Also, in comparison with the pure MM-GBSA (generalized Born surface area) binding energies and experimental data, the calculated QM/MM-GBSA binding energies of the inhibitors were improved by replacing the G(GB,QM/MM) solvation term with the corresponding G(GB,MM) term.

  11. Molecular mechanism for generation of antibody memory.

    Science.gov (United States)

    Shivarov, Velizar; Shinkura, Reiko; Doi, Tomomitsu; Begum, Nasim A; Nagaoka, Hitoshi; Okazaki, Il-Mi; Ito, Satomi; Nonaka, Taichiro; Kinoshita, Kazuo; Honjo, Tasuku

    2009-03-12

    Activation-induced cytidine deaminase (AID) is the essential enzyme inducing the DNA cleavage required for both somatic hypermutation and class switch recombination (CSR) of the immunoglobulin gene. We originally proposed the RNA-editing model for the mechanism of DNA cleavage by AID. We obtained evidence that fulfils three requirements for CSR by this model, namely (i) AID shuttling between nucleus and cytoplasm, (ii) de novo protein synthesis for CSR, and (iii) AID-RNA complex formation. The alternative hypothesis, designated as the DNA-deamination model, assumes that the in vitro DNA deamination activity of AID is representative of its physiological function in vivo. Furthermore, the resulting dU was removed by uracil DNA glycosylase (UNG) to generate a basic site, followed by phosphodiester bond cleavage by AP endonuclease. We critically examined each of these provisional steps. We identified a cluster of mutants (H48A, L49A, R50A and N51A) that had particularly higher CSR activities than expected from their DNA deamination activities. The most striking was the N51A mutant that had no ability to deaminate DNA in vitro but retained approximately 50 per cent of the wild-type level of CSR activity. We also provide further evidence that UNG plays a non-canonical role in CSR, namely in the repair step of the DNA breaks. Taking these results together, we favour the RNA-editing model for the function of AID in CSR.

  12. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ?-lactam antibiotics

    OpenAIRE

    Li, Bin; Ge, Mengyu; Zhang, Yang; Wang, Li; Ibrahim, Muhammad; Wang, Yanli; Sun, Guochang; Chen, Gongyou

    2016-01-01

    Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ?-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to A...

  13. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction.

    Science.gov (United States)

    Hudson, Jennifer; Gardiner, Melissa; Deshpande, Nandan; Egan, Suhelen

    2018-04-01

    Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae. © 2017 John Wiley & Sons Ltd.

  14. Enteric Pathogen-Plant Interactions: Molecular Connections Leading to Colonization and Growth and Implications for Food Safety

    OpenAIRE

    Martínez-Vaz, Betsy M.; Fink, Ryan C.; Diez-Gonzalez, Francisco; Sadowsky, Michael J.

    2014-01-01

    Leafy green vegetables have been identified as a source of foodborne illnesses worldwide over the past decade. Human enteric pathogens, such as Escherichia coli O157:H7 and Salmonella, have been implicated in numerous food poisoning outbreaks associated with the consumption of fresh produce. An understanding of the mechanisms responsible for the establishment of pathogenic bacteria in or on vegetable plants is critical for understanding and ameliorating this problem as well as ensuring the sa...

  15. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  16. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  17. Graph-drawing algorithms geometries versus molecular mechanics in fullereness

    Science.gov (United States)

    Kaufman, M.; Pisanski, T.; Lukman, D.; Borštnik, B.; Graovac, A.

    1996-09-01

    The algorithms of Kamada-Kawai (KK) and Fruchterman-Reingold (FR) have been recently generalized (Pisanski et al., Croat. Chem. Acta 68 (1995) 283) in order to draw molecular graphs in three-dimensional space. The quality of KK and FR geometries is studied here by comparing them with the molecular mechanics (MM) and the adjacency matrix eigenvectors (AME) algorithm geometries. In order to compare different layouts of the same molecule, an appropriate method has been developed. Its application to a series of experimentally detected fullerenes indicates that the KK, FR and AME algorithms are able to reproduce plausible molecular geometries.

  18. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  19. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Preston, Gail M

    2017-04-01

    One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens

  20. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    Science.gov (United States)

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  1. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pathogen Inactivating Properties and Increased Sensitivity in Molecular Diagnostics by PAXgene, a Novel Non-Crosslinking Tissue Fixative.

    Directory of Open Access Journals (Sweden)

    Martina Loibner

    Full Text Available Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene, was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples.Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV. Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays.All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity.PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment.

  3. Pathogen Inactivating Properties and Increased Sensitivity in Molecular Diagnostics by PAXgene, a Novel Non-Crosslinking Tissue Fixative.

    Science.gov (United States)

    Loibner, Martina; Buzina, Walter; Viertler, Christian; Groelz, Daniel; Hausleitner, Anja; Siaulyte, Gintare; Kufferath, Iris; Kölli, Bettina; Zatloukal, Kurt

    2016-01-01

    Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene), was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples. Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV). Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays. All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity. PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment.

  4. Search and molecular identification of two pathogenic bacteria (Salmonella and Listeria) in different food matrices

    International Nuclear Information System (INIS)

    Wislati, Mohamed Amine

    2010-01-01

    A food is a substance consumed in the natural state or after a cooking. The essential role of food is the apport of essential elements in the growth and in the energy needs as well as in the reserves of the body. Foodstuffs may be contaminated by microorganisms such as the viruses, the parasites, the bacteria at the different steps of production, transformation, transport and manipulation being able to engender food collective toxi-infections (T.I.A.C), infections. This study contains a research directed by two pathogenic germs; Listeria and Salmonella as food contaminants, ending at the man's respectively in two diseases: the Listeriosis and the Salmonellosis and the enumeration of the fecal coliform as indicators of lack of hygiene and a contamination of fecal origin. 90 samples of various types and origins are analyzed in the laboratory of biology and molecular microbiology of the (CNSTN) and are identified by Api (Listeria, 20E) and by PCR. Three origins of Listeria and four origins of Salmonella were isolated. Then, the healthiness of various lots was estimated (dairy products, produced meat-based and produced ready to be eaten) according to the plan of interpretation of the result (plan 2 classes) and (plan 3 classes).The obtained results confirm the contamination of our products taken from the market of public consumption. So the strengthen measures of prevention and health control are very important in the food industry.

  5. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-11-11

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  6. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat; Oliva, Romina M.; Chermak, Edrisse; De Cristofaro, Raimondo; Cavallo, Luigi

    2014-01-01

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  7. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  8. Molecular-based detection of the gastrointestinal pathogen Campylobacter ureolyticus in unpasteurized milk samples from two cattle farms in Ireland

    Directory of Open Access Journals (Sweden)

    Koziel Monika

    2012-11-01

    Full Text Available Abstract Campylobacter jejuni and coli are collectively regarded as the most prevalent cause of bacterial foodborne illness worldwide. An emerging species, Campylobacter ureolyticus has recently been detected in patients with gastroenteritis, however, the source of this organism has, until now, remained unclear. Herein, we describe the molecular-based detection of this pathogen in bovine faeces (1/20 and unpasteurized milk (6/47 but not in poultry (chicken wings and caeca. This is, to the best of our knowledge, the first report of the presence of this potential gastrointestinal pathogen in an animal source, possibly suggesting a route for its transmission to humans.

  9. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools.

    Science.gov (United States)

    Bittar, Fadi; Keita, Mamadou B; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-11-24

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.

  10. Molecular and cellular responses of the pathogenic fungus Lomentospora prolificans to the antifungal drug voriconazole.

    Directory of Open Access Journals (Sweden)

    Aize Pellon

    Full Text Available The filamentous fungus Lomentospora (Scedosporium prolificans is an emerging opportunistic pathogen associated with fatal infections in patients with disturbed immune function. Unfortunately, conventional therapies are hardly of any use against this fungus due to its intrinsic resistance. Therefore, we performed an integrated study of the L. prolificans responses to the first option to treat these mycoses, namely voriconazole, with the aim of unveiling mechanisms involved in the resistance to this compound. To do that, we used a wide range of techniques, including fluorescence and electron microscopy to study morphological alterations, ion chromatography to measure changes in cell-wall carbohydrate composition, and proteomics-based techniques to identify the proteins differentially expressed under the presence of the drug. Significantly, we showed drastic changes occurring in cell shape after voriconazole exposure, L. prolificans hyphae being shorter and wider than under control conditions. Interestingly, we proved that the architecture and carbohydrate composition of the cell wall had been modified in the presence of the drug. Specifically, L. prolificans constructed a more complex organelle with a higher presence of glucans and mannans. In addition to this, we identified several differentially expressed proteins, including Srp1 and heat shock protein 70 (Hsp70, as the most overexpressed under voriconazole-induced stress conditions. The mechanisms described in this study, which may be directly related to L. prolificans antifungal resistance or tolerance, could be used as targets to improve existing therapies or to develop new ones in order to successfully eliminate these mycoses.

  11. Molecular and cellular responses of the pathogenic fungus Lomentospora prolificans to the antifungal drug voriconazole.

    Science.gov (United States)

    Pellon, Aize; Ramirez-Garcia, Andoni; Buldain, Idoia; Antoran, Aitziber; Rementeria, Aitor; Hernando, Fernando L

    2017-01-01

    The filamentous fungus Lomentospora (Scedosporium) prolificans is an emerging opportunistic pathogen associated with fatal infections in patients with disturbed immune function. Unfortunately, conventional therapies are hardly of any use against this fungus due to its intrinsic resistance. Therefore, we performed an integrated study of the L. prolificans responses to the first option to treat these mycoses, namely voriconazole, with the aim of unveiling mechanisms involved in the resistance to this compound. To do that, we used a wide range of techniques, including fluorescence and electron microscopy to study morphological alterations, ion chromatography to measure changes in cell-wall carbohydrate composition, and proteomics-based techniques to identify the proteins differentially expressed under the presence of the drug. Significantly, we showed drastic changes occurring in cell shape after voriconazole exposure, L. prolificans hyphae being shorter and wider than under control conditions. Interestingly, we proved that the architecture and carbohydrate composition of the cell wall had been modified in the presence of the drug. Specifically, L. prolificans constructed a more complex organelle with a higher presence of glucans and mannans. In addition to this, we identified several differentially expressed proteins, including Srp1 and heat shock protein 70 (Hsp70), as the most overexpressed under voriconazole-induced stress conditions. The mechanisms described in this study, which may be directly related to L. prolificans antifungal resistance or tolerance, could be used as targets to improve existing therapies or to develop new ones in order to successfully eliminate these mycoses.

  12. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  13. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  14. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-01-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  15. Molecular detection of tick-borne pathogens in cattle from Southwestern Ethiopia.

    Directory of Open Access Journals (Sweden)

    Zerihun Hailemariam

    Full Text Available Tick-borne diseases (TBDs cause significant losses among livestock and impact the livelihoods of resource-poor farming communities worldwide. In Ethiopia, detailed studies on the epidemiology of tick-borne pathogens (TBPs in cattle using sensitive molecular detection methods are scarce. The objective of this study was to determine the prevalence and species composition of bovine TBPs of veterinary significance in local cattle populations. A comprehensive cross-sectional epidemiological study was conducted in cattle populations of Illubabor zone in Southwestern Ethiopia from June to August 2013. For this purpose, blood samples were collected from 392 cattle. A combination of polymerase chain reaction (PCR and a Reverse Line Blot (RLB hybridization assay was employed for the detection of TBPs in these samples. The PCR/RLB results of the 392 blood samples indicated a high overall prevalence of 96.9% for TBPs, including Theileria mutans (66.1%, Theileria orientalis (51.8%, Anaplasma sp. Omatjenne (25.5%, Anaplasma marginale (14.5%, Babesia bigemina (14.0% and Theileria velifera (13.0% and minor occurrences of Ehrlichia ruminantium (0.5% and Ehrlichia minasensis (0.26%. Moreover, three novel Anaplasma genotypes were detected in bovine blood samples. A phylogenetic analysis revealed that they most likely represent three, but at least two, new species. The prevalence of the three novel Anaplasma species, preliminary designated as Anaplasma sp. Hadesa, Anaplasma sp. Saso and Anaplasma sp. Dedessa, was 12.5%, 14.3% and 5.6%, respectively. Overall, a total of 227 cattle (57.9% were found to be co-infected with two or more TBPs simultaneously and 86 different species combinations were observed. The findings show a very high burden of infection of cattle with TBPs in Ethiopia. The high frequency of co-infections suggests that clinical manifestations might be complex. Further research is required to determine the pathogenicity, host cell types and vector of

  16. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    2009-04-01

    Full Text Available Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost.

  17. Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape.

    Science.gov (United States)

    Hancks, Dustin C; Hartley, Melissa K; Hagan, Celia; Clark, Nathan L; Elde, Nels C

    2015-05-01

    A diverse subset of pattern recognition receptors (PRRs) detects pathogen-associated nucleic acids to initiate crucial innate immune responses in host organisms. Reflecting their importance for host defense, pathogens encode various countermeasures to evade or inhibit these immune effectors. PRRs directly engaged by pathogen inhibitors often evolve under recurrent bouts of positive selection that have been described as molecular 'arms races.' Cyclic GMP-AMP synthase (cGAS) was recently identified as a key PRR. Upon binding cytoplasmic double-stranded DNA (dsDNA) from various viruses, cGAS generates the small nucleotide secondary messenger cGAMP to signal activation of innate defenses. Here we report an evolutionary history of cGAS with recurrent positive selection in the primate lineage. Recent studies indicate a high degree of structural similarity between cGAS and 2'-5'-oligoadenylate synthase 1 (OAS1), a PRR that detects double-stranded RNA (dsRNA), despite low sequence identity between the respective genes. We present comprehensive comparative evolutionary analysis of cGAS and OAS1 primate sequences and observe positive selection at nucleic acid binding interfaces and distributed throughout both genes. Our data revealed homologous regions with strong signatures of positive selection, suggesting common mechanisms employed by unknown pathogen encoded inhibitors and similar modes of evasion from antagonism. Our analysis of cGAS diversification also identified alternately spliced forms missing multiple sites under positive selection. Further analysis of selection on the OAS family in primates, which comprises OAS1, OAS2, OAS3 and OASL, suggests a hypothesis where gene duplications and domain fusion events result in paralogs that provide another means of escaping pathogen inhibitors. Together our comparative evolutionary analysis of cGAS and OAS provides new insights into distinct mechanisms by which key molecular sentinels of the innate immune system have adapted

  18. Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape.

    Directory of Open Access Journals (Sweden)

    Dustin C Hancks

    2015-05-01

    Full Text Available A diverse subset of pattern recognition receptors (PRRs detects pathogen-associated nucleic acids to initiate crucial innate immune responses in host organisms. Reflecting their importance for host defense, pathogens encode various countermeasures to evade or inhibit these immune effectors. PRRs directly engaged by pathogen inhibitors often evolve under recurrent bouts of positive selection that have been described as molecular 'arms races.' Cyclic GMP-AMP synthase (cGAS was recently identified as a key PRR. Upon binding cytoplasmic double-stranded DNA (dsDNA from various viruses, cGAS generates the small nucleotide secondary messenger cGAMP to signal activation of innate defenses. Here we report an evolutionary history of cGAS with recurrent positive selection in the primate lineage. Recent studies indicate a high degree of structural similarity between cGAS and 2'-5'-oligoadenylate synthase 1 (OAS1, a PRR that detects double-stranded RNA (dsRNA, despite low sequence identity between the respective genes. We present comprehensive comparative evolutionary analysis of cGAS and OAS1 primate sequences and observe positive selection at nucleic acid binding interfaces and distributed throughout both genes. Our data revealed homologous regions with strong signatures of positive selection, suggesting common mechanisms employed by unknown pathogen encoded inhibitors and similar modes of evasion from antagonism. Our analysis of cGAS diversification also identified alternately spliced forms missing multiple sites under positive selection. Further analysis of selection on the OAS family in primates, which comprises OAS1, OAS2, OAS3 and OASL, suggests a hypothesis where gene duplications and domain fusion events result in paralogs that provide another means of escaping pathogen inhibitors. Together our comparative evolutionary analysis of cGAS and OAS provides new insights into distinct mechanisms by which key molecular sentinels of the innate immune system

  19. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  20. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  1. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  2. Survival under stress: molecular mechanisms of metabolic rate ...

    African Journals Online (AJOL)

    Studies in my laboratory are analysing the molecular mechanisms and regulatory events that underlie transitions to and from hypometabolic states In systems including anoxia-tolerant turtles and molluscs, estivating snails and toads, hibernating small mammals, and freeze tolerant frogs and insects. Our newest research ...

  3. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila.

    Science.gov (United States)

    Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Quantum Mechanics/Molecular Mechanics Simulations Identify the Ring-Opening Mechanism of Creatininase.

    Science.gov (United States)

    Jitonnom, Jitrayut; Mujika, Jon I; van der Kamp, Marc W; Mulholland, Adrian J

    2017-12-05

    Creatininase catalyzes the conversion of creatinine (a biosensor for kidney function) to creatine via a two-step mechanism: water addition followed by ring opening. Water addition is common to other known cyclic amidohydrolases, but the precise mechanism for ring opening is still under debate. The proton donor in this step is either His178 or a water molecule bound to one of the metal ions, and the roles of His178 and Glu122 are unclear. Here, the two possible reaction pathways have been fully examined by means of combined quantum mechanics/molecular mechanics simulations at the SCC-DFTB/CHARMM22 level of theory. The results indicate that His178 is the main catalytic residue for the whole reaction and explain its role as proton shuttle during the ring-opening step. In the first step, His178 provides electrostatic stabilization to the gem-diolate tetrahedral intermediate. In the second step, His178 abstracts the hydroxyl proton of the intermediate and delivers it to the cyclic amide nitrogen, leading to ring opening. The latter is the rate-limiting step with a free energy barrier of 18.5 kcal/mol, in agreement with the experiment. We find that Glu122 must be protonated during the enzyme reaction, so that it can form a stable hydrogen bond with its neighboring water molecule. Simulations of the E122Q mutant showed that this replacement disrupts the H-bond network formed by three conserved residues (Glu34, Ser78, and Glu122) and water, increasing the energy barrier. Our computational studies provide a comprehensive explanation for previous structural and kinetic observations, including why the H178A mutation causes a complete loss of activity but the E122Q mutation does not.

  5. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    Science.gov (United States)

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  6. Quantitative Molecular Detection of Putative Periodontal Pathogens in Clinically Healthy and Periodontally Diseased Subjects

    Science.gov (United States)

    Göhler, André; Hetzer, Adrian; Holtfreter, Birte; Geisel, Marie Henrike; Schmidt, Carsten Oliver; Steinmetz, Ivo; Kocher, Thomas

    2014-01-01

    Periodontitis is a multi-microbial oral infection with high prevalence among adults. Putative oral pathogens are commonly found in periodontally diseased individuals. However, these organisms can be also detected in the oral cavity of healthy subjects. This leads to the hypothesis, that alterations in the proportion of these organisms relative to the total amount of oral microorganisms, namely their abundance, rather than their simple presence might be important in the transition from health to disease. Therefore, we developed a quantitative molecular method to determine the abundance of various oral microorganisms and the portion of bacterial and archaeal nucleic acid relative to the total nucleic acid extracted from individual samples. We applied quantitative real-time PCRs targeting single-copy genes of periodontal bacteria and 16S-rRNA genes of Bacteria and Archaea. Testing tongue scrapings of 88 matched pairs of periodontally diseased and healthy subjects revealed a significantly higher abundance of P. gingivalis and a higher total bacterial abundance in diseased subjects. In fully adjusted models the risk of being periodontally diseased was significantly higher in subjects with high P. gingivalis and total bacterial abundance. Interestingly, we found that moderate abundances of A. actinomycetemcomitans were associated with reduced risk for periodontal disease compared to subjects with low abundances, whereas for high abundances, this protective effect leveled off. Moderate archaeal abundances were health associated compared to subjects with low abundances. In conclusion, our methodological approach unraveled associations of the oral flora with periodontal disease, which would have gone undetected if only qualitative data had been determined. PMID:25029268

  7. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  8. A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood

    OpenAIRE

    Cartwright, Mark; Rottman, Martin; Shapiro, Nathan I.; Seiler, Benjamin; Lombardo, Patrick; Gamini, Nazita; Tomolonis, Julie; Watters, Alexander L.; Waterhouse, Anna; Leslie, Dan; Bolgen, Dana; Graveline, Amanda; Kang, Joo H.; Didar, Tohid; Dimitrakakis, Nikolaos

    2016-01-01

    Background: Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. Methods: An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, contai...

  9. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  11. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus. a molecular mechanics and molecular dynamics study

    DEFF Research Database (Denmark)

    da Graça Thrige, D; Buur, J R; Jørgensen, Flemming Steen

    1997-01-01

    cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme-substrate complex was determined by evaluation of nonbonded interaction energies between...... water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations...... the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular...

  12. Immunological orchestration of zinc homeostasis: The battle between host mechanisms and pathogen defenses.

    Science.gov (United States)

    Subramanian Vignesh, Kavitha; Deepe, George S

    2016-12-01

    The importance of Zn ions (Zn) in regulating development and functions of the immune system is well established. However, recent years have witnessed a surge in our knowledge of how immune cells choreograph Zn regulatory mechanisms to combat the persistence of pathogenic microbes. Myeloid and lymphoid populations manipulate intracellular and extracellular Zn metabolism via Zn binding proteins and transporters in response to immunological signals and infection. Rapid as well as delayed changes in readily exchangeable Zn, also known as free Zn and the Zn proteome are crucial in determining activation of immune cells, cytokine responses, signaling and nutritional immunity. Recent studies have unearthed distinctive Zn modulatory mechanisms employed by specialized immune cells and necessitate an understanding of the Zn handling behavior in immune responses to infection. The focus of this review, therefore, stems from novel revelations of Zn intoxication, sequestration and signaling roles deployed by different immune cells, with an emphasis on innate immunity, to challenge microbial parasitization and cope with pathogen insult. Published by Elsevier Inc.

  13. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    Science.gov (United States)

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  14. Molecular genetic analysis of the pathogenicity of the potato cyst nematode Globodera rostochiensis

    NARCIS (Netherlands)

    Qin, L.

    2001-01-01

    A new strategy to identify pathogenicity factors from the potato cyst nematode Globodera rostochiensis is developed. cDNA-AFLP technology and in situ hybridization allowed us to efficiently select putative pathogenicity factors among thousands of

  15. Recent Advances in Molecular Technologies and Their Application in Pathogen Detection in Foods with Particular Reference to Yersinia

    Directory of Open Access Journals (Sweden)

    Jin Gui

    2011-01-01

    Full Text Available Yersinia enterocolitica is an important zoonotic pathogen that can cause yersiniosis in humans and animals. Food has been suggested to be the main source of yersiniosis. It is critical for the researchers to be able to detect Yersinia or any other foodborne pathogen with increased sensitivity and specificity, as well as in real-time, in the case of a foodborne disease outbreak. Conventional detection methods are known to be labor intensive, time consuming, or expensive. On the other hand, more sensitive molecular-based detection methods like next generation sequencing, microarray, and many others are capable of providing faster results. DNA testing is now possible on a single molecule, and high-throughput analysis allows multiple detection reactions to be performed at once, thus allowing a range of characteristics to be rapidly and simultaneously determined. Despite better detection efficiencies, results derived using molecular biology methods can be affected by the various food matrixes. With the improvements in sample preparation, data analysis, and testing procedures, molecular detection techniques will likely continue to simplify and increase the speed of detection while simultaneously improving the sensitivity and specificity for tracking pathogens in food matrices.

  16. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    VERA A D POIATTI

    2009-01-01

    Full Text Available The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO and peroxidase (POX were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in

  17. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination.

    Science.gov (United States)

    Agaisse, Hervé

    2016-01-01

    The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.

  18. Molecular and Cellular mechanisms of Shigella flexneri dissemination

    Directory of Open Access Journals (Sweden)

    Herve eAgaisse

    2016-03-01

    Full Text Available The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs. VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS. The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post

  19. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  20. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins

    Directory of Open Access Journals (Sweden)

    De-Xing Hou

    2004-01-01

    Full Text Available Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK pathway and activator protein 1 (AP-1 factor; (ii suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB pathway and cyclooxygenase 2 (COX-2 gene; (iii apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS / c-Jun NH2-terminal kinase (JNK-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.

  1. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    Science.gov (United States)

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers.

    Science.gov (United States)

    Catrina, Sergiu-Bogdan; Zheng, Xiaowei

    2016-01-01

    Diabetic foot ulceration (DFU) is a chronic complication of diabetes that is characterized by impaired wound healing in the lower extremities. DFU remains a major clinical challenge because of poor understanding of its pathogenic mechanisms. Impaired wound healing in diabetes is characterized by decreased angiogenesis, reduced bone marrow-derived endothelial progenitor cell (EPC) recruitment, and decreased fibroblast and keratinocyte proliferation and migration. Recently, increasing evidence has suggested that increased hypoxic conditions and impaired cellular responses to hypoxia are essential pathogenic factors of delayed wound healing in DFU. Hypoxia-inducible factor-1 (HIF-1, a heterodimer of HIF-1α and HIF-1β) is a master regulator of oxygen homeostasis that mediates the adaptive cellular responses to hypoxia by regulating the expression of genes involved in angiogenesis, metabolic changes, proliferation, migration, and cell survival. However, HIF-1 signalling is inhibited in diabetes as a result of hyperglycaemia-induced HIF-1α destabilization and functional repression. Increasing HIF-1α expression and activity using various approaches promotes angiogenesis, EPC recruitment, and granulation, thereby improving wound healing in experimental diabetes. The mechanisms underlying HIF-1α regulation in diabetes and the therapeutic strategies targeting HIF-1 signalling for the treatment of diabetic wounds are discussed in this review. Further investigations of the pathways involved in HIF-1α regulation in diabetes are required to advance our understanding of the mechanisms underlying impaired wound healing in diabetes and to provide a foundation for developing novel therapeutic approaches to treat DFU. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.; Leung, Daisy W.

    2016-08-01

    The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most open reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.

  4. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia

    Directory of Open Access Journals (Sweden)

    Stephanie A. Amici

    2017-11-01

    Full Text Available Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.

  5. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    Science.gov (United States)

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  6. Molecular mechanisms of cisplatin resistance in cervical cancer

    Directory of Open Access Journals (Sweden)

    Zhu H

    2016-06-01

    Full Text Available Haiyan Zhu, Hui Luo, Wenwen Zhang, Zhaojun Shen, Xiaoli Hu, Xueqiong Zhu Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer. Keywords: cisplatin, epithelial–mesenchymal transition, microRNA, molecular mechanism, resistance

  7. Self-renewal molecular mechanisms of colorectal cancer stem cells.

    Science.gov (United States)

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

  8. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  9. Unraveling the mechanism of molecular doping in organic semiconductors.

    Science.gov (United States)

    Mityashin, Alexander; Olivier, Yoann; Van Regemorter, Tanguy; Rolin, Cedric; Verlaak, Stijn; Martinelli, Nicolas G; Beljonne, David; Cornil, Jérôme; Genoe, Jan; Heremans, Paul

    2012-03-22

    The mechanism by which molecular dopants donate free charge carriers to the host organic semiconductor is investigated and is found to be quite different from the one in inorganic semiconductors. In organics, a strong correlation between the doping concentration and its charge donation efficiency is demonstrated. Moreover, there is a threshold doping level below which doping simply has no electrical effect. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    International Nuclear Information System (INIS)

    Swygenhoven, H. van; Caro, A.

    1997-01-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young's modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs

  11. Radiotracer studies on molecular mechanisms of death and resuscitation

    International Nuclear Information System (INIS)

    Nikulin, V.J.; Pogossova, A.V.; Konikova, A.S.

    1980-01-01

    Tracer techniques and artificial circulation were applied to rabbits after death by anoxia and deep hypothermia in order to study molecular mechanisms. 60 min after death the biosynthesis and disintegration of protein RNA and DNA practically stopped in all organs. In animals cooled post mortem the process of biosynthesis and degradation of protein, RNA and DNA, as well as the physiological functions of the whole organism, were restored. (author)

  12. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    OpenAIRE

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-01-01

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon...

  13. Self-renewal molecular mechanisms of colorectal cancer stem cells

    OpenAIRE

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2016-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth facto...

  14. Molecular detection of blood pathogens and their impacts on levels of packed cell volume in stray dogs from Thailand

    Directory of Open Access Journals (Sweden)

    Supawadee Piratae

    2017-04-01

    Full Text Available Objective: To evaluate the prevalence of blood parasite infection in stray dogs by PCR technique and the association between levels of packed cell volume (PCV and blood parasitic infection in stray dogs. Methods: A total of 65 blood samples were collected from stray dogs in animal quarantine station from Mahasarakham, Thailand to evaluate the levels of PCV before molecular screening for tick-borne pathogens infection. Results: Stray dogs were positive with one or more pathogens in 44 (67.69% out of 65 blood samples. Ehrlichia canis [43.1%, 95% confidence interval (CI: 38.1–48.1] was the most common blood pathogen found infecting in stray dogs in Mahasarakham Province, followed by Anaplasma platys (29.2%, 95% CI: 24.2–34.2, Hepatozoon canis (12.3%, 95% CI: 7.3–17.3 and Babesia canis vogeli (6.2%, 95% CI: 1.2–11.2, respectively. Moreover, co-infections with two pathogens were identified in 11 (16.9% of dogs examined and two (2.9% dogs were coinfections with three pathogens. Statistically significant relationship between the PCV levels and Ehrlichia canis infection was found (P < 0.05. Conclusions: This study indicated that blood pathogens are spreading in stray dogs and they are potentially high risk of agent transmission to human via exposure with tick vectors. It was also the first report of Anaplasma platys infection in dogs in north-eastern part of Thailand.

  15. Combined quantum and molecular mechanics (QM/MM).

    Science.gov (United States)

    Friesner, Richard A

    2004-12-01

    We describe the current state of the art of mixed quantum mechanics/molecular mechanics (QM/MM) methodology, with a particular focus on modeling of enzymatic reactions. Over the past decade, the effectiveness of these methods has increased dramatically, based on improved quantum chemical methods, advances in the description of the QM/MM interface, and reductions in the cost/performance of computing hardware. Two examples of pharmaceutically relevant applications, cytochrome P450 and class C β-lactamase, are presented.: © 2004 Elsevier Ltd . All rights reserved.

  16. Lignin biodegradation: experimental evidence, molecular, biochemical and physiological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Monties, B

    1985-01-01

    A critical review is presented of English, French and some German language literature, mainly from 1983 onwards. It examines experimental evidence on the behaviour as barriers to biodegradation of lignins and phenolic polymers such as tannins and suberins. The different molecular mechanisms of lignolysis by fungi (mainly), actinomycetes and bacteria are examined. A new biochemical approach to the physiological mechanism of regulation of lignolytic activities is suggested based on the discoveries of ligniolytic enzymes: effects of nitrogen, oxygen and substrate are discussed. It is concluded that a better knowledge of the structure and reactivity of phenolic barriers is needed in order to control the process of lignolysis.

  17. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    Science.gov (United States)

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  18. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Saif Ahmad

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1 gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a regulation of SMN gene expression and (b degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.

  19. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology.

    Science.gov (United States)

    Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L

    2012-04-01

    Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  1. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    Science.gov (United States)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  2. A pseudobond parametrization for improved electrostatics in quantum mechanical/molecular mechanical simulations of enzymes.

    Science.gov (United States)

    Parks, Jerry M; Hu, Hao; Cohen, Aron J; Yang, Weitao

    2008-10-21

    The pseudobond method is used in quantum mechanical/molecular mechanical (QM/MM) simulations in which a covalent bond connects the quantum mechanical and classical subsystems. In this method, the molecular mechanical boundary atom is replaced by a special quantum mechanical atom with one free valence that forms a bond with the rest of the quantum mechanical subsystem. This boundary atom is modified through the use of a parametrized effective core potential and basis set. The pseudobond is designed to reproduce the properties of the covalent bond that it has replaced, while invoking as small a perturbation as possible on the system. Following the work of Zhang [J. Chem. Phys. 122, 024114 (2005)], we have developed new pseudobond parameters for use in the simulation of enzymatic systems. Our parameters yield improved electrostatics and deprotonation energies, while at the same time maintaining accurate geometries. We provide parameters for C(ps)(sp(3))-C(sp(3)), C(ps)(sp(3))-C(sp(2),carbonyl), and C(ps)(sp(3))-N(sp(3)) pseudobonds, which allow the interface between the quantum mechanical and molecular mechanical subsystems to be constructed at either the C(alpha)-C(beta) bond of a given amino acid residue or along the peptide backbone. In addition, we demonstrate the efficiency of our parametrization method by generating residue-specific pseudobond parameters for a single amino acid. Such an approach may enable higher accuracy than general purpose parameters for specific QM/MM applications.

  3. Pathogenicity Assay of Vibrio harveyi in Tiger Shrimp Larvae Employing Rifampicin-Resistant as A Molecular Marker

    Directory of Open Access Journals (Sweden)

    . Widanarni

    2007-12-01

    Full Text Available Rifampicin-resistant marker was employed as a reporter to assay pathogenicity of Vibrio harveyi  in shrimp larvae.  V. harveyi M. G3 and G7 that difference not schizotyping as shown by Pulsed-Filed Gel Electrophoresis (PFGE used in this study. Spontaneous mutation was conducted to generate V. harveyi resistant to rifampicin. Two groups of shrimp post-larvae (PL5 were immersed for 30 min in 106 CFU/ml of mutants and wild type of V. harveyi, respectively; and then placed in a 2 liter shrimp rearing tank for five days. A control group was immersed in sterile seawater. Growth curve analysis and pathogenicity assay of V. harveyi  showed that each of the V. harveyi mutant exhibited almost identical profiles to that of the wild type parental strain and did not show alteration in their pathogenicity. Sample from dead shrimp larvae showed that the dead shrimp larvae were infected by V. harveyi RfR, indicated that rifampicin-resistant marker effective as a reporter to assay pathogenicity of Vibrio harveyi in shrimp larvae. Key words: shrimp larvae, Vibrio harveyi, rifampicin-resistant, molecular marker

  4. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    Science.gov (United States)

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  5. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. epiPATH: an information system for the storage and management of molecular epidemiology data from infectious pathogens

    Directory of Open Access Journals (Sweden)

    González-Candelas Fernando

    2007-04-01

    Full Text Available Abstract Background Most research scientists working in the fields of molecular epidemiology, population and evolutionary genetics are confronted with the management of large volumes of data. Moreover, the data used in studies of infectious diseases are complex and usually derive from different institutions such as hospitals or laboratories. Since no public database scheme incorporating clinical and epidemiological information about patients and molecular information about pathogens is currently available, we have developed an information system, composed by a main database and a web-based interface, which integrates both types of data and satisfies requirements of good organization, simple accessibility, data security and multi-user support. Results From the moment a patient arrives to a hospital or health centre until the processing and analysis of molecular sequences obtained from infectious pathogens in the laboratory, lots of information is collected from different sources. We have divided the most relevant data into 12 conceptual modules around which we have organized the database schema. Our schema is very complete and it covers many aspects of sample sources, samples, laboratory processes, molecular sequences, phylogenetics results, clinical tests and results, clinical information, treatments, pathogens, transmissions, outbreaks and bibliographic information. Communication between end-users and the selected Relational Database Management System (RDMS is carried out by default through a command-line window or through a user-friendly, web-based interface which provides access and management tools for the data. Conclusion epiPATH is an information system for managing clinical and molecular information from infectious diseases. It facilitates daily work related to infectious pathogens and sequences obtained from them. This software is intended for local installation in order to safeguard private data and provides advanced SQL-users the

  7. Molecular mechanisms of fertilization: the role of male factor

    Directory of Open Access Journals (Sweden)

    Ewa Maria Kratz

    2011-11-01

    Full Text Available Fertilization, the fusion of male and female gametes, is an incompletely known, multistep, complex process, in which many factors participate. Fertilization is a precisely regulated, species-specific process, but some cellular mechanisms are similar for many mammal species. The studies of mechanisms of male and female gamete production enable understanding of fertilization issues and, as a result, make the analysis of the causes of infertility possible. Male and female infertility is a progressive phenomenon. The development of laboratory medicine enables the analysis of molecular aspects of the reactions between gametes, which may result in better diagnosis of many infertility cases and indicate the direction of therapeutic management. The fertilization process is accompanied by many biochemical reactions, in which glycoproteins present in human ejaculate play a very important role. Glycan structures enable glycoproteins to participate in the interactions between cells, including those between gametes. The analysis of the glycosylation profile and degree of ejaculate glycoproteins not only contributes to deepening the knowledge about mechanisms accompanying the fertilization process, but also may be useful as an additional diagnostic marker of male infertility.The aim of the present review is to approach selected molecular mechanisms occurring in the male genital tract, related to the fertilization process, as well as to analyze their influence on male fertility.

  8. Molecular models of zinc phthalocyanines: semi-empirical molecular orbital computations and physicochemical properties studied by molecular mechanics simulations

    International Nuclear Information System (INIS)

    Gantchev, Tsvetan G.; van Lier, Johan E.; Hunting, Darel J.

    2005-01-01

    To build 3D-molecular models of Zinc-phthalocyanines (ZnPc) and to study their diverse chemical and photosensitization properties, we performed quantum mechanical molecular orbital (MO) semi-empirical (AM1) computations of the ground, excited singlet and triplet states as well as free radical (ionic) species. RHF and UHF (open shell) geometry optimizations led to near-perfect symmetrical ZnPc. Predicted ionization potentials (IP), electron affinities (EA) and lowest electronic transitions of ZnPc are in good agreement with the published experimental and theoretical data. The computation-derived D 4h /D 2h -symmetry 3D-structures of ground and excited states and free radicals of ZnPc, together with the frontier orbital energies and Mulliken electron population analysis enabled us to build robust molecular models. These models were used to predict important chemical-reactivity entities such as global electronegativity (χ), hardness (η) and local softness based on Fukui-functions analysis. Examples of molecular mechanics (MM) applications of the 3D-molecular models are presented as approaches to evaluate solvation free energy (ΔG 0 ) solv and to estimate ground- and excited- state oxidation/reduction potentials as well as intermolecular interactions and stability of ground and excited state dimers (exciplexes) and radical ion-pairs

  9. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Dawei Xue

    2017-04-01

    Full Text Available Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  10. Mechanism by which DHA inhibits the aggregation of KLVFFA peptides: A molecular dynamics study

    Science.gov (United States)

    Zhou, Hong; Liu, Shengtang; Shao, Qiwen; Ma, Dongfang; Yang, Zaixing; Zhou, Ruhong

    2018-03-01

    Docosahexaenoic acid (DHA) is one of the omega-3 polyunsaturated fatty acids, which has shown promising applications in lowering Aβ peptide neurotoxicity in vitro by preventing aggregation of Aβ peptides and relieving accumulation of Aβ fibrils. Unfortunately, the underlying molecular mechanisms of how DHA interferes with the aggregation of Aβ peptides remain largely enigmatic. Herein, aggregation behaviors of amyloid-β(Aβ)16-21 peptides (KLVFFA) with or without the presence of a DHA molecule were comparatively studied using extensive all-atom molecular dynamics simulations. We found that DHA could effectively suppress the aggregation of KLVFFA peptides by redirecting peptides to unstructured oligomers. The highly hydrophobic and flexible nature of DHA made it randomly but tightly entangled with Leu-17, Phe-19, and Phe-20 residues to form unstructured but stable complexes. These lower-ordered unstructured oligomers could eventually pass through energy barriers to form ordered β-sheet structures through large conformational fluctuations. This study depicts a microscopic picture for understanding the role and mechanism of DHA in inhibition of aggregation of Aβ peptides, which is generally believed as one of the important pathogenic mechanisms of Alzheimer's disease.

  11. Analyzing the molecular mechanism of lipoprotein localization in Brucella.

    Science.gov (United States)

    Goolab, Shivani; Roth, Robyn L; van Heerden, Henriette; Crampton, Michael C

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  12. Analyzing the molecular mechanism of lipoprotein localization in Brucella

    Science.gov (United States)

    Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  13. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  14. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2017-02-27

    Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.

  15. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    International Nuclear Information System (INIS)

    Mathiazhagan, S.; Anup, S.

    2016-01-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  16. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  17. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  18. Molecular mechanisms of mutagenesis determined by the recombinant DNA technology

    International Nuclear Information System (INIS)

    Lee, W.R.

    1985-01-01

    A study of the alteration of the DNA in the mutant gene can determine mechanisms of mutation by distinguishing between mutations induced by transition, transversion, frameshifts of a single base and deletions involving many base pairs. The association of a specific pattern of response with a mutagen will permit detecting mutants induced by the mutagen with a reduced background by removing mutations induced by other mechanisms from the pool of potential mutants. From analyses of studies that have been conducted, it is quite apparent that there are substantial differences among mutagens in their modes of action. Of 31 x-ray induced mutants, 20 were large deletions while only 3 showed normal Southern blots. Only one mutant produced a sub-unit polypeptide of normal molecular weight and charge in the in vivo test whereas in vitro synthesis produced a second one. In contrast, nine of thirteen EMS induced mutants produced cross-reacting proteins with sub-unit polypeptide molecular weights equivalent to wild type. Two of three ENU induced mutants recently analyzed in our laboratory produced protein with sub-unit polypeptide molecular weight and electrical charge similar to the wild type stock in which the mutants were induced. One ENU induced mutation is a large deletion. 21 refs., 1 fig

  19. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  20. Epidemiological bases and molecular mechanisms linking obesity, diabetes, and cancer.

    Science.gov (United States)

    Gutiérrez-Salmerón, María; Chocarro-Calvo, Ana; García-Martínez, José Manuel; de la Vieja, Antonio; García-Jiménez, Custodia

    2017-02-01

    The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.

    Science.gov (United States)

    Silvestre, Jean-Sébastien; Smadja, David M; Lévy, Bernard I

    2013-10-01

    After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.

  2. Toward a molecular pathogenic pathway for Yersinia pestis YopM

    Directory of Open Access Journals (Sweden)

    Annette M. Uittenbogaard

    2012-12-01

    Full Text Available YopM is one of the six effector Yops of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24 to 48 h post infection (p.i.. To identify potential direct effects of YopM in vivo we tested for effects of YopM at 1h and 16-18h p.i. in mice infected systemically with 106 bacteria. At 16 h p.i., there was a robust host response to both parent and yopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b+ cells from spleens of infected mice produced more than 100-fold greater IFN. In the corresponding sera there were more than 100-fold greater amounts of IFN, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to yopM-1 Y. pestis. Microarray analysis of the CD11b+ cells did not identify consistent transcriptional differences of > 4 fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1 was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription.

  3. Molecular Tracing of Viral Pathogen in Aquaculture (MOLTRAQ): a new EMIDA project

    DEFF Research Database (Denmark)

    Jensen, B. Bang; Aldrin, M.; Avarre, M. C.

    2012-01-01

    a generic approach to viral disease control by using information on epidemiological and phylogenetic attributes from several important aquatic animal viruses. The project will i) generate and use spatio-temporal epidemiological data, phylogeographic data and gene expression data for important host......-viral pathogen systems to identify important factors affecting the spread of diseases in aquaculture, and ii) integrate these in scenario simulation models to assess effects of various control strategies for selected host-pathogen systems. The project consists of six workpackages: WP 1: Project co...

  4. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    Science.gov (United States)

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  5. Molecular mechanisms of cognitive dysfunction following traumatic brain injury.

    Science.gov (United States)

    Walker, Kendall R; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  6. Separating grain boundary migration mechanisms in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ulomek, Felix; Mohles, Volker

    2016-01-01

    In molecular dynamics (MD) simulations of grain boundary (GB) migration it is quite common to find a temperature dependence of GB mobility that deviates strongly from an Arrhenius-type dependence. This usually indicates that more than one mechanism is actually active. With the goal to separate different GB migration mechanisms we investigate a Σ7 <111> 38.2° GB by MD using an EAM potential for aluminium. To drive the GB with a well-known and adjustable force, the energy conserving orientational driving force (ECO DF) is used that had been introduced recently. The magnitude of the DF and the temperature are varied. This yielded a high and a low temperature range for the GB velocity, with a transition temperature that depends on the magnitude of the DF. A method is introduced which allows both a visual and a statistical characterization of GB motion on a per atom basis. These analyses reveal that two mechanisms are active in this GB, a shuffling mechanism and its initiation. These mechanisms operate in a sequential, coupled manner. Based on this, a simple model is introduced that describes all simulated GB velocities (and hence the mobility) very well, including the transition between the dominating mechanisms.

  7. Molecular mechanisms in compatibility and mechanical properties of Polyacrylamide/Polyvinyl alcohol blends.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Che, Yu; Yang, Mingming; Li, Xinpei; Zhang, Yingfeng

    2017-01-01

    The objectives of this study were to develop a computational model based on molecular dynamics technique to investigate the compatibility and mechanical properties of Polyacrylamide (PAM)/Polyvinyl alcohol (PVA) blends. Five simulation models of PAM/PVA with different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using molecular dynamics (MD) simulation. The interaction mechanisms of molecular chains in PAM/PVA blend system were elaborated from the aspects of the compatibility, mechanical properties, binding energy and pair correlation function, respectively. The computed values of solubility parameters for PAM and PVA indicate PAM has a good miscibility with PVA. The results of the static mechanical analysis, based on the equilibrium structures of blends with differing component ratios, shows us that the elastic coefficient, engineering modulus, and ductility are increased with the addition of PVA content, which is 4/0 PAM/PVAPVAPVAPVAPVA. Moreover, binding energy results indicate that a stronger interaction exists among PVA molecular chains comparing with PAM molecular chains, which is why the mechanical properties of blend system increasing with the addition of PVA content. Finally, the results of pair correlation functions (PCFs) between polar functional groups and its surrounding hydrogen atoms, indicated they interact with each other mainly by hydrogen bonds, and the strength of three types of polar functional groups has the order of O(-OH)>O(-C=O)>N(-NH 2 ). This further elaborates the root reason why the mechanical properties of blend system increase with the addition of PVA content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Quantum Interactomics and Cancer Molecular Mechanisms: I. Report Outline

    CERN Document Server

    Baianu, I C

    2004-01-01

    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quant...

  9. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    Science.gov (United States)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  10. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    Science.gov (United States)

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  12. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  13. Mechanism of Action of Electrospun Chitosan-Based Nanofibers against Meat Spoilage and Pathogenic Bacteria.

    Science.gov (United States)

    Arkoun, Mounia; Daigle, France; Heuzey, Marie-Claude; Ajji, Abdellah

    2017-04-06

    This study investigates the antibacterial mechanism of action of electrospun chitosan-based nanofibers (CNFs), against Escherichia coli , Salmonella enterica serovar Typhimurium, Staphylococcus aureus and Listeria innocua , bacteria frequently involved in food contamination and spoilage. CNFs were prepared by electrospinning of chitosan and poly(ethylene oxide) (PEO) blends. The in vitro antibacterial activity of CNFs was evaluated and the susceptibility/resistance of the selected bacteria toward CNFs was examined. Strain susceptibility was evaluated in terms of bacterial type, cell surface hydrophobicity, and charge density, as well as pathogenicity. The efficiency of CNFs on the preservation and shelf life extension of fresh red meat was also assessed. Our results demonstrate that the antibacterial action of CNFs depends on the protonation of their amino groups, regardless of bacterial type and their mechanism of action was bactericidal rather than bacteriostatic. Results also indicate that bacterial susceptibility was not Gram-dependent but strain-dependent, with non-virulent bacteria showing higher susceptibility at a reduction rate of 99.9%. The susceptibility order was: E. coli > L. innocua > S. aureus > S. Typhimurium. Finally, an extension of one week of the shelf life of fresh meat was successfully achieved. These results are promising and of great utility for the potential use of CNFs as bioactive food packaging materials in the food industry, and more specifically in meat quality preservation.

  14. Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

    Science.gov (United States)

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-01-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203

  15. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    Directory of Open Access Journals (Sweden)

    Stephanie Pitman

    2015-12-01

    Full Text Available The discovery of small noncoding regulatory RNAs (sRNAs in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described.

  16. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet

    Science.gov (United States)

    Fusarium oxysporum f. sp. betae (FOB) is an important pathogen of sugar beet worldwide causing leaf yellowing and vascular discoloration. The use of tolerant varieties is one of the most effective methods for managing this disease. In this study, a large germplasm collection,comprised of 29 sugar be...

  17. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY THE EMERGING PATHOGEN HEPATITIS E IN WATER SAMPLES

    Science.gov (United States)

    Hepatitis E virus (HEV) is an emerging pathogen that causes significant illness in the developing world. Like the hepatitis A virus, it is transmitted via the fecal-oral route and can cause short-term, acute hepatitis. In addition, hepatitis E has been found to cause a signific...

  18. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY THE MERGING PATHOGEN HEPATITIS E IN WATER SAMPLES

    Science.gov (United States)

    Hepatitis E virus (HEV) is an emerging pathogen that causes significant illness in the developing world. Like the hepatitis A virus, it is transmitted via the fecal-oral route and can cause short-term, acute hepatitis. In addition, hepatitis E has been found to cause a signific...

  19. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    Science.gov (United States)

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by

  20. Molecular Level Investigation of Staphylococci’s Resistance Mechanisms to Antibiotics

    Directory of Open Access Journals (Sweden)

    Lavinia Lorena PRUTEANU

    2017-09-01

    Full Text Available Polymerase chain reaction (PCR techniques development allows elaboration of many assays for identification of bacteria’s resistance mechanisms to antibiotics. Following this idea, the results of molecular level investigation of bacteria’s resistance mechanisms to antibiotics may give many opportunities to find more rapid methods for identifying the genes which are responsible for antibiotic resistance induction. The aim of this study was to investigate antibiotic resistance genes in Staphylococcus bacteria on molecular level. As classes of antibiotics it was used macrolides-lincosamides-streptogramin B (MLSB and beta-lactams. In the proposed study the bacterial strains are represented by 50 isolates of Staphylococcus. The bacterial strains were analyzed using polymerase chain reaction to identify the nuc, tuf, tst, sea, pathogenic activity genes. After this, the bacteria were tested for ermA, ermB, ermC genes and for mecA, femA which are involved in resistance to macrolides, lincosamides, streptogramin B and to beta-lactams, respectively. The presence or the absence of these genes confirms that tested strains are resistant to specific antibiotic or not. Bacteria pathogenic activity was emphasized by genes as follows: sea (enterotoxin which was found at all isolates, tst (toxic shock toxin gene was not detected in any of isolates and tuf gene (elongation factor was obtained with one pair of primers. Resistance to beta-lactams was evidenced by the presence of mecA in all isolates and femA in some strains. Each of ermC, ermA and ermB, macrolides-lincosamides-streptogramin B resistance genes, were detected.

  1. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways.

    Science.gov (United States)

    Vajjhala, Parimala R; Ve, Thomas; Bentham, Adam; Stacey, Katryn J; Kobe, Bostjan

    2017-06-01

    The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes. Copyright

  2. Molecular Epidemiology and Genetic Variation of Pathogenic Vibrio parahaemolyticus in Peru

    Science.gov (United States)

    Gavilan, Ronnie G.; Zamudio, Maria L.; Martinez-Urtaza, Jaime

    2013-01-01

    Vibrio parahaemolyticus is a foodborne pathogen that has become a public health concern at the global scale. The epidemiological significance of V. parahaemolyticus infections in Latin America received little attention until the winter of 1997 when cases related to the pandemic clone were detected in the region, changing the epidemic dynamics of this pathogen in Peru. With the aim to assess the impact of the arrival of the pandemic clone on local populations of pathogenic V. parahaemolyticus in Peru, we investigated the population genetics and genomic variation in a complete collection of non-pandemic strains recovered from clinical sources in Peru during the pre- and post-emergence periods of the pandemic clone. A total of 56 clinical strains isolated in Peru during the period 1994 to 2007, 13 strains from Chile and 20 strains from Asia were characterized by Multilocus Sequence Typing (MLST) and checked for the presence of Variable Genomic Regions (VGRs). The emergence of O3:K6 cases in Peru implied a drastic disruption of the seasonal dynamics of infections and a shift in the serotype dominance of pathogenic V. parahaemolyticus. After the arrival of the pandemic clone, a great diversity of serovars not previously reported was detected in the country, which supports the introduction of additional populations cohabitating with the pandemic group. Moreover, the presence of genomic regions characteristic of the pandemic clone in other non-pandemic strains may represent early evidence of genetic transfer from the introduced population to the local communities. Finally, the results of this study stress the importance of population admixture, horizontal genetic transfer and homologous recombination as major events shaping the structure and diversity of pathogenic V. parahaemolyticus. PMID:23696906

  3. Mixed 2D molecular systems: Mechanic, thermodynamic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Beno, Juraj [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Weis, Martin [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)], E-mail: Martin.Weis@stuba.sk; Dobrocka, Edmund [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 841 04-SK Bratislava (Slovakia); Hasko, Daniel [International Laser Centre, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)

    2008-08-15

    Study of Langmuir monolayers consisting of stearic acid (SA) and dipalmitoylphosphatidylcholine (DPPC) molecules was done by surface pressure-area isotherms ({pi}-A), the Maxwell displacement current (MDC) measurement, X-ray reflectivity (XRR) and atomic force microscopy (AFM) to investigate the selected mechanic, thermodynamic and dielectric properties based on orientational structure of monolayers. On the base of {pi}-A isotherms analysis we explain the creation of stable structures and found optimal monolayer composition. The dielectric properties represented by MDC generated monolayers were analyzed in terms of excess dipole moment, proposing the effect of dipole-dipole interaction. XRR and AFM results illustrate deposited film structure and molecular ordering.

  4. The mechanism of selective molecular capture in carbon nanotube networks.

    Science.gov (United States)

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  5. New insights on molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, R; Melk, A

    2012-11-01

    Long-term transplant outcome is importantly influenced by the age of the organ donor. The mechanisms how age carries out its pathophysiological impact on graft survival are still not understood. One major contributing factor for the observed poor performance of old donor kidneys seems in particular the age-related loss in renal regenerative capacity. In this review, we will summarize recent findings about the molecular basis of renal aging with specific focus on the potential role of somatic cellular senescence and mitochondrial aging in renal transplant outcome. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Molecular mechanisms of cisplatin resistance in cervical cancer.

    Science.gov (United States)

    Zhu, Haiyan; Luo, Hui; Zhang, Wenwen; Shen, Zhaojun; Hu, Xiaoli; Zhu, Xueqiong

    2016-01-01

    Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%-20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer.

  7. MCL and mincle: C-type lectin receptors that sense damaged self and pathogen associated molecular patterns

    Directory of Open Access Journals (Sweden)

    Mark B Richardson

    2014-06-01

    Full Text Available MCL (macrophage C-type lectin and mincle (macrophage inducible C-type lectin comprise part of an extensive repertoire of pattern recognition receptors with the ability to sense damage associated and pathogen associated molecular patterns. In this review we cover the discovery and molecular characterization of these C-type lectin receptors, and highlight recent advances in the understanding of their roles in orchestrating the response of the immune system to bacterial and fungal infection, and damaged self. We also discuss the identification and structure-activity relationships of activating ligands, particularly trehalose dimycolate (TDM and related mycobacterial glycolipids, which have significant potential in the development of TH1/TH17 vaccination strategies.

  8. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    Czech Academy of Sciences Publication Activity Database

    de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas Cruz, Alejandro; Domingos, A.G.; Estrada-Peňa, A.; Johnson, N.; Kocan, K.M.; Mansfield, K. L.; Nijhof, A.M.; Papa, A.; Rudenko, Natalia; Villar, M.; Alberdi, P.; Torina, A.; Ayllón, N.; Vancová, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, S.; Fooks, A. R.; Gortazar, C.; Rego, Ryan O. M.

    2017-01-01

    Roč. 7, APR 7 (2017), č. článku 114. ISSN 2235-2988 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : tick * Anaplasma * flavivirus * Babesia * Borrelia * Microbiome * immunology * vaccine Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.300, year: 2016

  9. Molecular Mechanisms of Survival Strategies in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Federica Migliardo

    2012-12-01

    Full Text Available Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values.

  10. HBV DNA Integration: Molecular Mechanisms and Clinical Implications

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A.; Shackel, Nicholas A.; Urban, Stephan

    2017-01-01

    Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies. PMID:28394272

  11. Studies on Molecular Mechanisms Underlying Spinocerebellar Ataxia Type 3

    DEFF Research Database (Denmark)

    Kristensen, Line Vildbrad

    . Even though a range of mechanisms contributing to polyQ diseases have been uncovered, there is still no treatment available. One of the more common polyQ diseases is SCA3, which is caused by a polyQ expansion in the ataxin-3 protein that normally functions as a deubiquitinating enzyme involved...... in protein quality control. In SCA3 patients polyQ expanded ataxin-3 forms intranuclear inclusions in various brain areas, but why the polyQ expansion of ataxin-3 leads to neuronal dysfunction is still not well understood. This thesis describes molecular biological investigations of ataxin-3 biology, aimed...... at furthering our understanding of SCA3 disease mechanisms. In manuscript I, we investigated if post-translational modifications of ataxin-3 were changed by the polyQ expansion. The ubiquitin chain topology and ubiquitination pattern of ataxin-3 were unaltered by the polyQ expansion. In contrast...

  12. Molecular mechanisms in radiation damage to DNA. Progress report

    International Nuclear Information System (INIS)

    Osman, R.

    1994-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypotheses regarding the processes of impairment of regulation of gene expression, alteration in DNA repair, and damage to DNA structure involved in cell death or cancer

  13. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  14. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  15. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  16. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko....csml) Show Molecular mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title ...Molecular mechanisms of the anti-inflammatory functions of interferons. Authors K

  17. Molecular survey of arthropod-borne pathogens in sheep keds (Melophagus ovinus), Central Europe.

    Science.gov (United States)

    Rudolf, Ivo; Betášová, Lenka; Bischof, Vlastimil; Venclíková, Kristýna; Blažejová, Hana; Mendel, Jan; Hubálek, Zdeněk; Kosoy, Michael

    2016-10-01

    In the study, we screened a total of 399 adult sheep keds (Melophagus ovinus) for the presence of RNA and DNA specific for arboviral, bacterial, and protozoan vector-borne pathogens. All investigated keds were negative for flaviviruses, phleboviruses, bunyaviruses, Borrelia burgdorferi, Rickettsia spp., Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," and Babesia spp. All ked pools were positive for Bartonella DNA. The sequencing of the amplified fragments of the gltA and 16S-23S rRNA demonstrated a 100 % homology with Bartonella melophagi previously isolated from a sheep ked and from human blood in the USA. The identification of B. melophagi in sheep keds in Central Europe highlights needs extending a list of hematophagous arthropods beyond ticks and mosquitoes for a search of emerging arthropod-borne pathogens.

  18. Molecular mechanism and potential targets for bone metastasis

    International Nuclear Information System (INIS)

    Iguchi, Haruo

    2007-01-01

    The incidence of bone metastasis has been increasing in all cancers in recent years. Bone metastasis is associated with substantial morbidity, including bone pain, pathological fracture, neurological deficit and/or hypercalcemia. Thus, the management of bone metastasis in patients is a clinically significant issue. In the process of bone metastasis, the primary mechanism responsible for bone destruction is cancer cell-mediated stimulation of osteoclastic bone resorption, which results in osteolysis and release of various growth factors from the bone matrix. These growth factors are prerequisites for successful colonization and subsequent invasive growth of cancer cells in bone, which is called a 'vicious cycle.' Thus, it is important to elucidate what molecules are involved in this step of bone destruction, and the understanding of these molecular mechanisms could lead to develop molecular-target therapies for bone metastasis. Bisphosphonates introduced in the treatment for bone metastasis have been shown to reduce skeletal morbidity. In Japan, the most potent bisphosphonate, zoledronate (ZOMETA), was introduced in this past April, and a phase III clinical trial of humanized anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Denosumab) against bone metastasis is under way as a global study. These new agents, which are targeted to osteoclasts, are considered to be standard management in the care of bone metastasis patients in combination with chemotherapy and/or hormone therapy. (author)

  19. Molecular identification and pathogenicity of Citrobacter and Serratia species isolated from cultured Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Manal I. El-Barbary

    2017-09-01

    Full Text Available This study aimed to isolate and characterize some pathogenic bacterial strains belonging to the family Enterobacteriaceae. They had been isolated from gills, liver, kidney and skin of naturally infected Oreochromis niloticus and had been identified by biochemical test and 16S rRNA gene using four universal primers. Additionally, the isolates were tested for antimicrobial susceptibility, histopathological alterations of liver, kidney and gills and the pathogenicity of the identified isolates for O. niloticus. The results of phylogenetic analysis placed the isolates in the family Enterobacteriaceae (genera Serratia and Citrobacter based on 99% homology. The primer pair (17F and 1390R is the most appropriate pair of universal primers employed for the identification of 16S rRNA gene as it covers as much as possible of the variable regions (Vs. V1 and V2 regions of 16S rRNA gene presented weak evidence of the diversity of the genera Serratia. The mortality rate was 40–60% after challenging O. niloticus by identified isolates, which revealed its sensitivity to ciprofloxacin and norfloxacin. Histological changes showed dilation in sinusoids with severe vacuolar degeneration in the liver, tubular degeneration and hemorrhage between renal tubules with pyknotic nuclei in the kidney, epithelial hyperplasia, aneurism and evident epithelium interstitial edema in gills of O. niloticus. This study concluded that these isolates should be considered as an opportunistic pathogen of O. niloticus. The study also states that the sequencing of 16S rRNA is an important tool for the identification of unknown bacterial species of fish pathogen. Keywords: Citrobacter sp., Serratia sp., Phylogenetic analysis, Histology, Antibiotic sensitivity, Oreochromis niloticus

  20. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    Science.gov (United States)

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  2. Molecular characteristic and pathogenicity of Indonesian H5N1 clade 2.3.2 viruses

    Directory of Open Access Journals (Sweden)

    Dharmayanti NLPI

    2013-06-01

    Full Text Available The outbreak of disease in late 2012 in Indonesia caused high duck mortality. The agent of the disease was identified as H5N1 clade 2.3.2. The disease caused economic loss to the Indonesian duck farmer. The clade 2.3.2 of H5N1 virus has not previously been identified, so this study was conducted to characterize 4 of H5N1 clade 2.3.2 viruses by DNA sequencing in eight genes segment virus namely HA, NA, NS, M, PB1, PB2, PA and NP. The pathogenicity test of clade 2.3.2 viruses in ducks was compared to clade 2.1.3 viruses which predominat circulating in Indonesia. Results of phylogenetic tree analysis showed that the four of clade 2.3.2 viruses isolated in 2012 was the new introduced virus from abroad. Further analysis showed eight genes were in one group with the clade 2.3.2 viruses, especially those from VietNam and did not belong to Indonesia viruses group. The pathogenicity test in ducks showed that virus H5N1 clade 2.3.2 and clade 2.1.3 have similar clinical symptoms and pathogenicity and cause death in 75% of ducks on days 3-6 after infection.

  3. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea

    Directory of Open Access Journals (Sweden)

    Ali N. Khan

    2017-07-01

    Full Text Available Macrophomina phaseolina is the most devastating pathogen which causes charcoal rot and root rot diseases in various economically important crops. Three strains M. phaseolina 1156, M. phaseolina 1160, and M. phaseolina PCMC/F1 were tested for their virulence on sunflower (Helianthus annuus L. and chickpea (Cicer arietinum L.. The strains showed high virulence on both hosts with a disease score of 2 on chickpea and sunflower. The strains also increased the hydrogen per oxide (H2O2 content by 1.4- to 1.6-fold in root as well as shoot of chickpea and sunflower. A significant increase in antioxidant enzymes was observed in fungal infected plants which indicated prevalence of oxidative stress during pathogen propagation. The M. phaseolina strains also produced hydrolytic enzymes such as lipase, amylase, and protease with solubilization zone of 5–43 mm, 5–45 mm, and 12–35 mm, respectively. The M. phaseolina strains were identified by 18S rRNA and analyzed for genetic diversity by using random amplified polymorphic DNA (RAPD markers. The findings based on RAPD markers and 18S rRNA sequence analysis clearly indicate genetic variation among the strains collected from different hosts. The genetically diverse strains were found to be pathogenic to sunflower and chickpea.

  4. A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood.

    Science.gov (United States)

    Cartwright, Mark; Rottman, Martin; Shapiro, Nathan I; Seiler, Benjamin; Lombardo, Patrick; Gamini, Nazita; Tomolonis, Julie; Watters, Alexander L; Waterhouse, Anna; Leslie, Dan; Bolgen, Dana; Graveline, Amanda; Kang, Joo H; Didar, Tohid; Dimitrakakis, Nikolaos; Cartwright, David; Super, Michael; Ingber, Donald E

    2016-07-01

    Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, containing the Fc immunoglobulin domain linked to its carbohydrate recognition domain (FcMBL) was developed to quantify pathogen-associated molecular patterns (PAMPs) in whole blood. This assay was tested in rats and pigs to explore whether it can detect infections and monitor disease progression, and in prospectively enrolled, emergency room patients with suspected sepsis. These results were also compared with data obtained from non-infected patients with or without traumatic injuries. The FcMBL ELLecSA was able to detect PAMPS present on, or released by, 85% of clinical isolates representing 47 of 55 different pathogen species, including the most common causes of sepsis. The PAMP assay rapidly (animals, even when blood cultures were negative and bacteriocidal antibiotics were administered. In patients with suspected sepsis, the FcMBL ELLecSA detected infection in 55 of 67 patients with high sensitivity (>81%), specificity (>89%), and diagnostic accuracy of 0·87. It also distinguished infection from trauma-related inflammation in the same patient cohorts with a higher specificity than the clinical sepsis biomarker, C-reactive Protein. The FcMBL ELLecSA-based PAMP assay offers a rapid, simple, sensitive and specific method for diagnosing infections, even when blood cultures are negative and antibiotic therapy has been initiated. It may help to triage patients with suspected systemic infections, and serve as a companion diagnostic to guide administration of emerging dialysis-like sepsis therapies

  5. Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections.

    Directory of Open Access Journals (Sweden)

    Anne J M Loonen

    Full Text Available For patients suffering from bloodstream infections (BSI molecular diagnostics from whole blood holds promise to provide fast and adequate treatment. However, this approach is hampered by the need of large blood volumes. Three methods for pathogen DNA isolation from whole blood were compared, i.e. an enzymatic method (MolYsis, 1-5 ml, the novel non-enzymatic procedure (Polaris, 1-5 ml, and a method that does not entail removal of human DNA (Triton-Tris-EDTA EasyMAG, 200 µl. These methods were evaluated by processing blood spiked with 0-1000 CFU/ml of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Downstream detection was performed with real-time PCR assays. Polaris and MolYsis processing followed by real-time PCRs enabled pathogen detection at clinically relevant concentrations of 1-10 CFU/ml blood. By increasing sample volumes, concurrent lower cycle threshold (Ct values were obtained at clinically relevant pathogen concentrations, demonstrating the benefit of using larger blood volumes. A 100% detection rate at a concentration of 10 CFU/ml for all tested pathogens was obtained with the Polaris enrichment, whereas comparatively lower detection rates were measured for MolYsis (50-67% and EasyMAG (58-79%. For the samples with a concentration of 1 CFU/ml Polaris resulted in most optimal detection rates of 70-75% (MolYsis 17-50% and TTE-EasyMAG 20-36%. The Polaris method was more reproducible, less labour intensive, and faster (45 minutes (including Qiagen DNA extraction vs. 2 hours (MolYsis. In conclusion, Polaris and MolYsis enrichment followed by DNA isolation and real-time PCR enables reliable and sensitive detection of bacteria and fungi from 5 ml blood. With Polaris results are available within 3 hours, showing potential for improved BSI diagnostics.

  6. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth.

    Science.gov (United States)

    Kurthkoti, Krishna; Varshney, Umesh

    2012-04-01

    About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Increased BRAF Heterodimerization Is the Common Pathogenic Mechanism for Noonan Syndrome-Associated RAF1 Mutants

    Science.gov (United States)

    Wu, Xue; Yin, Jiani; Simpson, Jeremy; Kim, Kyoung-Han; Gu, Shengqing; Hong, Jenny H.; Bayliss, Peter; Backx, Peter H.

    2012-01-01

    Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1D486N. Raf1D486N/+ (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1D486N-expressing cells compared with controls. RAF1D486N, as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations. PMID:22826437

  9. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    Science.gov (United States)

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (Pacids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences.

  10. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  11. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    Directory of Open Access Journals (Sweden)

    Daniela Strobbe

    2018-03-01

    Full Text Available The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6. Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis.

  12. Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome.

    Science.gov (United States)

    Walkley, Steven U

    2007-04-01

    The view that lysosomes simply represent end organelles in the serial degradation of polymeric molecules derived from the cell surface and its interior has led to major misconceptions about the nature of lysosomal storage diseases and the pathogenic cascades that characterize them. Accordingly, lysosomal storage bodies are often considered 'inert', inducing cell dysfunction and death primarily through mechanical overcrowding of normal organelles or by other non-specific means leading to generalized cytotoxicity. However, modern studies of lysosomes and their component proteins provide evidence to support a far greater role for these organelles in cell metabolism. In intimate association with endosomal, autophagosomal and related vesicular systems, the greater lysosomal system can be conceptualized as a vital recycling centre that serves as a central metabolic coordinator, influencing literally every aspect of the cell, from signal transduction to regulation of gene expression. This broader view of the role of lysosomes in cells not only provides insight into how single gene defects impacting on lysosomal function can result in the plethora of complex cellular transformations characteristic of these diseases, but also suggests new and innovative therapies that may hold considerable promise for ameliorating disease progression.

  13. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    Science.gov (United States)

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-03

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.

  14. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens

    DEFF Research Database (Denmark)

    Mur, Luis A J; Sivakumaran, Anushen; Mandon, Julien

    2012-01-01

    Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both...

  15. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Thomas A. Milne

    2012-09-01

    Full Text Available Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  16. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, Erica; Milne, Thomas A., E-mail: thomas.milne@imm.ox.ac.uk [MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS (United Kingdom)

    2012-09-10

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  17. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    International Nuclear Information System (INIS)

    Ballabio, Erica; Milne, Thomas A.

    2012-01-01

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis

  18. Bacillus anthracis: una mirada molecular a un patógeno célebre Bacillus anthracis: a molecular look at a famous pathogen

    Directory of Open Access Journals (Sweden)

    María E Pavan

    2011-12-01

    molecular aspects of traditional virulence factors: capsule, protective antigen, lethal factor and edema factor are described in depth, together with virulence factors recently proposed, such as the siderophores petrobactin and bacillibactin, the S-layer adhesin and the MntA lipoprotein. It is detailed the molecular organization of megaplasmids pXO1 and pXO2, including the pathogenicity island of pXO1. The genetic skeleton of these plasmids has been observed in related species, and this could be attributed to lateral gene transfer. Finally, the two anthrax toxin protective antigen receptors, ANTXR1/TEM8 and ANTXR2/CMG2, essential for the interaction of the pathogen with the host, are presented. The molecular studies performed in recent years have greatly increased knowledge in different aspects of this microorganism and its relationship with the host, but at the same time they have raised new questions about this noted pathogen.

  19. Molecular mechanisms of acrolein toxicity: relevance to human disease.

    Science.gov (United States)

    Moghe, Akshata; Ghare, Smita; Lamoreau, Bryan; Mohammad, Mohammad; Barve, Shirish; McClain, Craig; Joshi-Barve, Swati

    2015-02-01

    Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer's disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Optimization and benchmarking of a perturbative Metropolis Monte Carlo quantum mechanics/molecular mechanics program.

    Science.gov (United States)

    Feldt, Jonas; Miranda, Sebastião; Pratas, Frederico; Roma, Nuno; Tomás, Pedro; Mata, Ricardo A

    2017-12-28

    In this work, we present an optimized perturbative quantum mechanics/molecular mechanics (QM/MM) method for use in Metropolis Monte Carlo simulations. The model adopted is particularly tailored for the simulation of molecular systems in solution but can be readily extended to other applications, such as catalysis in enzymatic environments. The electrostatic coupling between the QM and MM systems is simplified by applying perturbation theory to estimate the energy changes caused by a movement in the MM system. This approximation, together with the effective use of GPU acceleration, leads to a negligible added computational cost for the sampling of the environment. Benchmark calculations are carried out to evaluate the impact of the approximations applied and the overall computational performance.

  1. Molecular mechanisms of radioadaptive responses in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Kakimoto, Ayana; Taki, Keiko; Nakajima, Tetsuo

    2008-01-01

    Radioadaptive response is a biodefensive response observed in a variety of mammalian cells and animals where exposure to low dose radiation induces resistance against the subsequent high dose radiation. Elucidation of its mechanisms is important for risk estimation of low dose radiation because the radioadaptive response implies that low dose radiation affects cells/individuals in a different manner from high dose radiation. In the present study, we explored the molecular mechanisms of the radioadaptive response in human lymphoblastoid cells AHH-1 in terms of mutation at the hypoxanthine phosphoribosyltransferase (HPRT) gene locus. First we observed that preexposure to the priming dose in the range from 0.02 Gy to 0.2 Gy significantly reduced mutation frequency at HPRT gene locus after irradiation with 3 Gy of X rays. As no significant adaptive response was observed with the priming dose of 0.005 Gy, it was indicated that the lower limit of the priming dose to induce radioadaptive response may be between 0.005 Gy and 0.02 Gy. Second, we examined the effect of 3-amino-benzamide (3AB), an inhibitor of poly(ADP-ribose)polymerase1, which has been reported to inhibit the radioadaptive response in terms of chromosome aberration. However we could observe significant radioadaptive responses in terms of mutation even in the presence of 3AB. These findings suggested that molecular mechanisms of the radioadaptive response in terms of mutation may be different from that for radioadaptive responses in terms of chromosomal aberration, although we could not exclude a possibility that the differential effects of 3AB was due to cell type difference. Finally, by performing a comprehensive analysis of alterations in gene expression using high coverage expression profiling (HiCEP), we could identify 17 genes whose expressions were significantly altered 6 h after irradiation with 0.02 Gy. We also found 17 and 20 genes, the expressions of which were different with or without priming

  2. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  3. Antimicrobial mechanism of copper (II 1,10-phenanthroline and 2,2′-bipyridyl complex on bacterial and fungal pathogens

    Directory of Open Access Journals (Sweden)

    S. Chandraleka

    2014-12-01

    Full Text Available Copper based metallo drugs were prepared and their antibacterial, antifungal, molecular mechanism of [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O complexes were investigated. The [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O were derived from the Schiff base alanine salicylaldehyde. [Cu(SAlaPhen]·H2O showed noteworthy antibacterial and antifungal activity than the [Cu(SAlabpy]·H2O and ligand alanine, salicylaldehyde. The [Cu(SAlaPhen]·H2O complex showed significant antibacterial activity against Salmonella typhi, Staphylococcus aureus, Salmonella paratyphi and the antifungal activity against Candida albicans and Cryptococcus neoformans in well diffusion assay. The mode of action of copper (II complex was analyzed by DNA cleavage activity and in silico molecular docking. The present findings provide important insight into the molecular mechanism of copper (II complexes in susceptible bacterial and fungal pathogens. These results collectively support the use of [Cu(SAlaPhen]·H2O complex as a suitable drug to treat bacterial and fungal infections.

  4. Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms

    International Nuclear Information System (INIS)

    Wang Hongyun

    2005-01-01

    Molecular motors operate in an environment dominated by viscous friction and thermal fluctuations. The chemical reaction in a motor may produce an active force at the reaction site to directly move the motor forward. Alternatively a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations using free energy barriers established in the chemical reaction. The reaction cycle has many occupancy states, each having a different effect on the motor motion. The average effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The biggest advantage of studying the motor potential profile is that it can be reconstructed from the time series of motor positions measured in single-molecule experiments. In this paper, we use the motor potential profile to express the Stokes efficiency as the product of the chemical efficiency and the mechanical efficiency. We show that both the chemical and mechanical efficiencies are bounded by 100% and, thus, are properly defined efficiencies. We discuss implications of high efficiencies for motor mechanisms: a mechanical efficiency close to 100% implies that the motor potential profile is close to a constant slope; a chemical efficiency close to 100% implies that (i) the chemical transitions are not slower than the mechanical motion and (ii) the equilibrium constant of each chemical transition is close to one

  5. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    Science.gov (United States)

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in

  6. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Han Cong; Wang Qi; Dong Lei; Sun Haifang; Peng Shuying; Chen Jing; Yang Yiming; Yue Jianmin; Shen Xu; Jiang Hualiang

    2004-01-01

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K cat of 3.4 s -1 , K m of 1.7 mM, and K cat /K m of 2000 M -1 s -1 . HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co 2+ -containing HpPDF is apparently higher than that of Zn 2+ -containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  7. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori.

    Science.gov (United States)

    Han, Cong; Wang, Qi; Dong, Lei; Sun, Haifang; Peng, Shuying; Chen, Jing; Yang, Yiming; Yue, Jianmin; Shen, Xu; Jiang, Hualiang

    2004-07-09

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.

  8. Evolution and molecular characterization of tick-borne Anaplasmataceae and implications for pathogen diagnostics and control.

    OpenAIRE

    Cabezas Cruz, Alejandro

    2016-01-01

    Esta tesis se concentra en la caracterización molecular de patógenos transmitidos por garrapatas, los cuales han cobrado una gran importancia en los últimos años debido a su impacto en la economía agropecuaria, y en la salub pública de países tanto desarrollados como en vía de desarrollo (Perez y col., 2006; Rikihisa, 2010; Aubry y Geale, 2011). Particularmente la tesis usa una combinación de herramientas moleculares, bioinformaticas y filogenéticas para estudiar la variación genética de dos...

  9. Natural agents: cellular and molecular mechanisms of photoprotection.

    Science.gov (United States)

    Afaq, Farrukh

    2011-04-15

    The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Neuroprotection and its molecular mechanism following spinal cord injury☆

    Science.gov (United States)

    Liu, Nai-Kui; Xu, Xiao-Ming

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury. PMID:25624837

  11. Nanoparticles and potential neurotoxicity: focus on molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Davide Lovisolo

    2018-01-01

    Full Text Available The last decades have seen an explosive increase in the development of nanoparticles and in their use in consumer, industrial and medical applications. Their fast diffusion has also raised widespread concern about the potential toxic effects on living organisms, including humans: at the nanoscale, they can interact with subcellular components such as membranes, proteins, lipids, nucleic acids, thus inducing unpredicted functional perturbations in cells and tissues. The nervous tissue is a particular sensitive target, because its cellular components (mainly neurons and glial cells are tightly regulated and metabolically exigent biological entities. While the literature on the potential toxicity of nanoparticles has grown in parallel with their utilization, the available data on neurotoxicity are less abundant. In particular, information on the neuronal molecular targets of nanoparticles is still largely incomplete. A better understanding of this issue is highly relevant for the rational and controlled design of nanoparticles, both for their general utilization and more specifically for their use in the promising field of nanoneuromedicine. In this review, we will discuss the available information on the mechanisms involved in the interaction between nanoobjects and cells of the nervous system, focusing on the known molecular actors, both at the plasma membrane and in intracellular compartments.

  12. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  13. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    Science.gov (United States)

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  14. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. DNA replication stress: from molecular mechanisms to human disease.

    Science.gov (United States)

    Muñoz, Sergio; Méndez, Juan

    2017-02-01

    The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.

  16. The molecular mechanisms of offspring effects from obese pregnancy.

    LENUS (Irish Health Repository)

    Dowling, Daniel

    2013-01-01

    The incidence of obesity, increased weight gain and the popularity of high-fat \\/ high-sugar diets are seriously impacting upon the global population. Billions of individuals are affected, and although diet and lifestyle are of paramount importance to the development of adult obesity, compelling evidence is emerging which suggests that maternal obesity and related disorders may be passed on to the next generation by non-genetic means. The processes acting within the uteri of obese mothers may permanently predispose offspring to a diverse plethora of diseases ranging from obesity and diabetes to psychiatric disorders. This review aims to summarise some of the molecular mechanisms and active processes currently known about maternal obesity and its effect on foetal and neonatal physiology and metabolism. Complex and multifactorial networks of molecules are intertwined and culminate in a pathologically synergistic manner to cause disruption and disorganisation of foetal physiology. This altered phenotype may potentiate the cycle of intergenerational transmission of obesity and related disorders.

  17. Recent Advances in Methamphetamine Neurotoxicity Mechanisms and Its Molecular Pathophysiology

    Directory of Open Access Journals (Sweden)

    Shaobin Yu

    2015-01-01

    Full Text Available Methamphetamine (METH is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.

  18. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  19. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    Science.gov (United States)

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  20. A Hybrid Imperative and Functional Molecular Mechanics Application

    Directory of Open Access Journals (Sweden)

    Thomas Deboni

    1996-01-01

    Full Text Available Molecular mechanics applications model the interactions among large ensembles of discrete particles. They are used where probabilistic methods are inadequate, such as drug chemistry. This methodology is difficult to parallelize with good performance, due to its poor locality, uneven partitions, and dynamic behavior. Imperative programs have been written that attempt this on shared and distributed memory machines. Given such a program, the computational kernel can be rewritten in Sisal, a functional programming language, and integrated with the rest of the imperative program under the Sisal Foreign Language Interface. This allows minimal effort and maximal return from parallelization work, and leaves the work appropriate to imperative implementation in its original form. We describe such an effort, focusing on the parts of the application that are appropriate for Sisal implementation, the specifics of mixed-language programming, and the complex performance behavior of the resulting hybrid code.

  1. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  2. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    Science.gov (United States)

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen

    2002-01-01

    The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium...... and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...... sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins...

  4. Molecular mechanism for inhibition of twinfilin by phosphoinositides

    DEFF Research Database (Denmark)

    Hakala, Markku; Kalimeri, Maria; Enkavi, Giray

    2018-01-01

    actin-depolymerizing factor (ADF)/cofilin-like ADF homology domains of twinfilin bind phosphoinositides only with low affinity. Mutagenesis and biochemical experiments combined with atomistic molecular dynamics simulations reveal that the C-terminal tail of twinfilin interacts with membranes through......Membrane phosphoinositides control organization and dynamics of the actin cytoskeleton by regulating the activities of several key actin-binding proteins. Twinfilin is an evolutionarily conserved protein that contributes to cytoskeletal dynamics by interacting with actin monomers, filaments......, and the heterodimeric capping protein. Twinfilin also binds phosphoinositides, which inhibit its interactions with actin, but the underlying mechanism has remained unknown. Here, we show that the high-affinity binding site of twinfilin for phosphoinositides is located at the C-terminal tail region, whereas the two...

  5. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    Science.gov (United States)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  6. The Prenylflavonoid Xanthohumol Reduces Alzheimer-Like Changes and Modulates Multiple Pathogenic Molecular Pathways in the Neuro2a/APPswe Cell Model of AD

    Directory of Open Access Journals (Sweden)

    Xianfeng Huang

    2018-04-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder that has proved refractory to drug treatment. Given evidence of neuroprotection in animal models of ischemic stroke, we assessed the prenylflavonoid xanthohumol from the Common Hop (Humulus lupulus L. for therapeutic potential in murine neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APP, a well-characterized cellular model of AD. The ELISA and Western-blot analysis revealed that xanthohumol (Xn inhibited Aβ accumulation and APP processing, and that Xn ameliorated tau hyperphosphorylation via PP2A, GSK3β pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by Xn was also validated on HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis (2D-DIGE-coupled MS revealed a total of 30 differentially expressed lysate proteins in N2a/APP vs. wild-type (WT N2a cells (N2a/WT, and a total of 21 differentially expressed proteins in lysates of N2a/APP cells in the presence or absence of Xn. Generally, these 51 differential proteins could be classified into seven main categories according to their functions, including: endoplasmic reticulum (ER stress-associated proteins; oxidative stress-associated proteins; proteasome-associated proteins; ATPase and metabolism-associated proteins; cytoskeleton-associated proteins; molecular chaperones-associated proteins, and others. We used Western-blot analysis to validate Xn-associated changes of some key proteins in several biological/pathogenic processes. Taken together, we show that Xn reduces AD-related changes in stably transfected N2a/APP cells. The underlying mechanisms involve modulation of multiple pathogenic pathways, including those involved in ER stress, oxidative stress, proteasome molecular systems, and the neuronal cytoskeleton. These results suggest Xn may have potential for the treatment of AD and/or neuropathologically related

  7. Molecular mechanism and genetic determinants of buprofezin degradation.

    Science.gov (United States)

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-07-14

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and non-target insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond and the release of the heterocyclic ring 2- tert -butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. Comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. bfzA3A4A1A2 encodes a novel Rieske non-heme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation and aromatic ring cleavage of biphenyl, flavanone, flavone and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. Importance There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in natural environment

  8. [Molecular characterization of resistance mechanisms: methicillin resistance Staphylococcus aureus, extended spectrum β-lactamases and carbapenemases].

    Science.gov (United States)

    Oteo, Jesús; Belén Aracil, María

    2015-07-01

    Multi-drug resistance in bacterial pathogens increases morbidity and mortality in infected patients and it is a threat to public health concern by their high capacity to spread. For both reasons, the rapid detection of multi-drug resistant bacteria is critical. Standard microbiological procedures require 48-72 h to provide the antimicrobial susceptibility results, thus there is emerging interest in the development of rapid detection techniques. In recent years, the use of selective and differential culture-based methods has widely spread. However, the capacity for detecting antibiotic resistance genes and their low turnaround times has made molecular methods a reference for diagnosis of multidrug resistance. This review focusses on the molecular methods for detecting some mechanisms of antibiotic resistance with a high clinical and epidemiological impact: a) Enzymatic resistance to broad spectrum β-lactam antibiotics in Enterobacteriaceae, mainly extended spectrum β-lactamases (ESBL) and carbapenemases; and b) methicillin resistance in Staphylococcus aureus. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  9. Molecular Typing of Pathogenic Leptospira Serogroup Icterohaemorrhagiae Strains Circulating in China during the Past 50 Years

    Science.gov (United States)

    Zhang, Cuicai; Yang, Huimian; Li, Xiuwen; Cao, Zhiqiang; Zhou, Haijian; Zeng, Linzi; Xu, Jianmin; Xu, Yinghua; Chang, Yung-Fu; Guo, Xiaokui; Zhu, Yongzhang; Jiang, Xiugao

    2015-01-01

    Background Leptospirosis is one of the most important neglected tropical infectious diseases worldwide. Icterohaemorrhagiae has been throughout recent history, and still is, the predominant serogroup of this pathogen in China. However, very little in detail is known about the serovars or genotypes of this serogroup. Methodology/Principal Findings In this study, 120 epidemic strains from five geographically diverse regions in China collected over a 50 year period (1958~2008), and 8 international reference strains characterized by 16S rRNA sequencing and MLST analysis. 115, 11 and 2 strains were identified as L. interrogans, L. borgpetersenii, and L. kirschneri, respectively. 17 different STs were identified including 69 ST1 strains, 18 ST17, 18 ST128, 9 ST143 and 2 ST209. The remaining 12 strains belonged to 12 different STs. eBURST analysis demonstrated that, among the clonal complexes isolated (CCs), CC1 accounted for 73.3% (88/120) strains representing three STs: ST1, ST128 and ST98. ST1 was the most likely ancestral strain of this CC, followed by singleton CC17 (17/120) and CC143 (11/120). Further analysis of adding 116 serogroup Icterohaemorrhagiae strains in the MLST database and studies previously described using global eBURST analysis and MST dendrogram revealed relatively similar ST clustering patterns with five main CCs and 8 singletons among these 244 strains. CC17 was found to be the most prevalent clone of pathogenic Leptospira circulating worldwide. This is the first time, to our knowledge, that ST1 and ST17 strains were distributed among 4 distinct serovars, indicating a highly complicated relationship between serovars and STs. Conclusions/Significance Our studies demonstrated a high level of genetic diversity in the serogroup Icterohaemorrhagiae strains. Distinct from ST17 or ST37 circulating elsewhere, ST1 included in CC1, has over the past 50 years or so, proven to be the most prevalent ST of pathogenic leptospires isolated in China. Moreover, the

  10. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    Science.gov (United States)

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  11. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Ence Yang

    2014-10-01

    Full Text Available Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition

  12. Histone deacetylases: revealing the molecular base of dimorphism in pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2015-11-01

    Full Text Available Fungi, as every living organism, interact with the external world and have to adapt to its fluctuations. For pathogenic fungi, such interaction involves adapting to the hostile environment of their host. Survival depends on the capacity of fungi to detect and respond to external stimuli, which is achieved through a tight and efficient genetic control. Chromatin modifications represent a well-known layer of regulation that controls gene expression in response to environmental signals. However, less is known about the chromatin modifications that are involved in fungal virulence and the specific cues and signalling pathways that target chromatin modifications to specific genes. In a recently published study, our research group identified one such regulatory pathway. We demonstrated that the histone deacetylase (HDAC Hos2 is involved in yeast-to-hyphal transition (dimorphism and it is associated with the virulence of the maize pathogen Ustilago maydis, the causative agent of smut disease in corn. Hos2 activates mating-type genes by directly binding to their gene bodies. Furthermore, Hos2 acts downstream of the nutrient-sensing cyclic AMP-Protein Kinase A pathway. We also found that another HDAC, Clr3, contributes to this regulation, possibly in cooperation with Hos2. As a whole, our data suggest that there is a direct link between changes in the environment and acetylation of nucleosomes within certain genes. We propose that histone acetylation is critical to the proper timing and induction of transcription of the genes encoding factors that coordinate changes in morphology with pathogenesis.

  13. Molecular detection of vector-borne pathogens in dogs and cats from Qatar.

    Science.gov (United States)

    Alho, Ana Margarida; Lima, Clara; Latrofa, Maria Stefania; Colella, Vito; Ravagnan, Silvia; Capelli, Gioia; Madeira de Carvalho, Luís; Cardoso, Luís; Otranto, Domenico

    2017-06-20

    Vector-borne diseases (VBDs) have been increasingly reported in dogs and cats worldwide. However, no data are currently available regarding canine and feline VBDs in Qatar and limited information is available from other Persian Gulf countries. Blood samples from 98 client-owned animals (i.e. 64 dogs and 34 cats) living in Doha (Qatar) were collected and the presence of genomic DNA of Anaplasma spp., Babesia spp., Dirofilaria spp., Ehrlichia spp., Hepatozoon spp., Mycoplasma spp. and Rickettsia spp. was assessed by polymerase chain reaction (PCR), real time-PCR (rt-PCR) and sequence analysis. Of the 64 dogs, 12 (18.8%) were infected with at least one pathogen (i.e. 7.8% with Mycoplasma spp., 4.7% with Babesia vogeli, 3.1% with Ehrlichia canis, and 1.6% with Anaplasma platys, Babesia gibsoni and Hepatozoon canis, each). One of the 12 dogs was co-infected with B. vogeli and E. canis. Of the 34 cats, seven (20.6%) animals were infected with at least one pathogen (i.e. 5.9% were positive for Mycoplasma spp., and 2.9% for Babesia felis, B. vogeli, E. canis, "Candidatus Mycoplasma haemominutum" and Mycoplasma haemofelis, each). No dogs or cats were positive for Dirofilaria spp. or Rickettsia spp. Although the sample sizes of dogs and cats herein analysed was moderately small, data from this study report the occurrence of A. platys, B. vogeli, B. gibsoni, E. canis, H. canis and Mycoplasma spp. in domestic dogs and of B. felis, B. vogeli, "Candidatus M. haemominutum", E. canis and M. haemofelis in domestic cats from Qatar. Further investigations along with prophylactic measures are strongly recommended in order to reduce the risk of dogs and cats acquiring VBDs in Qatar.

  14. Molecular and serological detection of tick-borne pathogens in donkeys (Equus asinus) in Italy.

    Science.gov (United States)

    Veronesi, Fabrizia; Morganti, Giulia; Ravagnan, Silvia; Laus, Fulvio; Spaterna, Andrea; Diaferia, Manuela; Moretti, Annabella; Fioretti, Daniela Piergili; Capelli, Gioia

    2014-10-10

    Donkeys, owing to the frequent outdoor activity, are exposed to a high risk of infection with tick-borne pathogens. This work aimed to detect exposure to Theileria equi, Babesia caballi, Anaplasma phagocytophilum and Borrelia burgdorferi s.l. of donkeys reared in Central Italy. For this purpose 122 adult donkeys were selected within 11 herds and submitted to blood collection. IgG antibodies to T. equi, B. caballi, A. phagocytophilum and B. burgdorferi s.l. were detected by IFAT. Conventional PCRs targeting the genes MSP2 and the flagellin were used for the detection of A. phagocytophilum and B. burgdorferi s.l. respectively and a Real Time PCR Sybr Green was used to detect Babesia/Theileria spp…. The species identity was determined by amplicons sequencing. Forty eight (39.3%) and 58 (47.5%) animals tested positive for T. equi and B. caballi antibodies, respectively; nine animals (7.4%) were found positive for antibodies against A. phagocytophilum whereas negative results were obtained for B. burgdorferi s.l. Twenty-six (21.3%) animals showed antibodies for both T. equi and B. caballi. Twenty-three (18.8%) donkeys were positive to Babesia/Theileria spp. PCR assay. Out of 21 sequenced amplicons, 20 were identified as T. equi, belonging to three main groups designated A, B and D and one as B. caballi group A. Neither A. phagocytophilum nor B. burgdorferi PCR results were positive. The study showed a high exposure of donkeys to tick-borne pathogens and provides information on the genetic identity of the T. equi strains circulating in Central Italy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen.

    Directory of Open Access Journals (Sweden)

    Pär Larsson

    2009-06-01

    Full Text Available Francisella tularensis is a potent mammalian pathogen well adapted to intracellular habitats, whereas F. novicida and F. philomiragia are less virulent in mammals and appear to have less specialized lifecycles. We explored adaptations within the genus that may be linked to increased host association, as follows. First, we determined the genome sequence of F. tularensis subsp. mediasiatica, the only subspecies that had not been previously sequenced. This genome, and those of 12 other F. tularensis isolates, were then compared to the genomes of F. novicida (three isolates and F. philomiragia (one isolate. Signs of homologous recombination were found in approximately 19.2% of F. novicida and F. philomiragia genes, but none among F. tularensis genomes. In addition, random insertions of insertion sequence elements appear to have provided raw materials for secondary adaptive mutations in F. tularensis, e.g. for duplication of the Francisella Pathogenicity Island and multiplication of a putative glycosyl transferase gene. Further, the five major genetic branches of F. tularensis seem to have converged along independent routes towards a common gene set via independent losses of gene functions. Our observations suggest that despite an average nucleotide identity of >97%, F. tularensis and F. novicida have evolved as two distinct population lineages, the former characterized by clonal structure with weak purifying selection, the latter by more frequent recombination and strong purifying selection. F. tularensis and F. novicida could be considered the same bacterial species, given their high similarity, but based on the evolutionary analyses described in this work we propose retaining separate species names.

  16. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    Science.gov (United States)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  17. Molecular Mechanisms of Liver Fibrosis in HIV/HCV Coinfection

    Directory of Open Access Journals (Sweden)

    Claudio M. Mastroianni

    2014-05-01

    Full Text Available Chronic hepatitis C virus (HCV infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV. Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.

  18. Cisplatin in cancer therapy: molecular mechanisms of action.

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-10-05

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is paid to its molecular mechanisms of action, and its undesirable side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Cellular and molecular mechanisms of metformin: an overview

    Science.gov (United States)

    Viollet, Benoit; Guigas, Bruno; Sanz Garcia, Nieves; Leclerc, Jocelyne; Foretz, Marc; Andreelli, Fabrizio

    2012-01-01

    Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycemic agent now recommended as the first line oral therapy for type 2 diabetes (T2D). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory-chain complex 1. In addition, the resulting decrease in hepatic energy status activates the AMP-activated protein kinase (AMPK), a cellular metabolic sensor, providing a generally accepted mechanism for metformin action on hepatic gluconeogenic program. The demonstration that the respiratory-chain complex 1, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin was reported to restore ovarian function in polycystic ovary syndrome, reduce fatty liver and to lower microvascular and macrovascular complications associated with T2D. Its use was also recently suggested as an adjuvant treatment for cancer or gestational diabetes, and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent data from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D. PMID:22117616

  20. Cisplatin in cancer therapy: molecular mechanisms of action

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-01-01

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is given to its molecular mechanisms of action, and its undesirable side effects. PMID:25058905

  1. Metschnikowia cf. typographi and other pathogens from the bark beetle Ips sexdentatus - Prevalence, histological and ultrastructural evidence, and molecular characterization

    DEFF Research Database (Denmark)

    Kleespies, Regina G; Lim, Young Woon; Tkaczuk, Cezary

    2017-01-01

    Ips sexdentatus (six-spined engraver beetle) from Austria and Poland were dissected and examined for the presence of pathogens. Specimens collected in Austria were found to contain the ascomycetous fungus Metschnikowia cf. typographi. Infection rates ranged from 3.6% to 26.8% at different...... collection sites. M. cf. typographi infected midguts were investigated by histological, ultrastructural and molecular techniques. Extraordinary ultrastructural details are shown, such as ascospores with bilateral flattened flanks resembling alar rims at both sides of their attenuating tube-like ends....... The eugregarine Gregarina typographi was diagnosed most frequently. Infection rates of all I. sexdentatus specimens ranged from 21.4% to 71.9% in Austria and 54.1% to 68.8% in Poland. Other entomopathogenic protists, bacteria, or viruses were not detected....

  2. Short communication: Molecular characteristics, antimicrobial susceptibility, and pathogenicity of clinical Nocardia cyriacigeorgica isolates from an outbreak of bovine mastitis.

    Science.gov (United States)

    Chen, Wei; Liu, Yongxia; Barkema, Herman W; Gao, Jian; De Buck, Jeroen; Kastelic, John P; Liu, Gang; Ali, Tariq; Shahid, Muhammad; Han, Bo

    2017-10-01

    The occurrence of nocardial mastitis, mostly in the context of outbreaks, has been reported in many countries. However, there is a paucity of reports regarding detailed characterization of Nocardia cyriacigeorgica from bovine mastitis. Thus, herein we report characteristics, antimicrobial susceptibility patterns, molecular identification, and pathogenicity of N. cyriacigeorgica isolated from an outbreak of clinical mastitis in a dairy herd in northern China. A total of 182 (80.2%) lactating cows had clinical mastitis with severe inflammation and firmness of the udder, reduced milk production, and anorexia, with no apparent clinical response to common antibiotics. Out of 22 mastitic milk samples submitted to our laboratory, 12 N. cyriacigeorgica were isolated and characterized using standard microbiological analysis, 16S rRNA gene sequencing, random amplified polymorphic DNA PCR analysis, biochemical assays, and antibiotic susceptibility testing. Additionally, in vivo experiments were done to determine pathogenicity of these clinical mastitis isolates. All isolates were resistant to ampicillin, amoxicillin-clavulanic acid, ciprofloxacin, minocycline, rifampicin, and aminoglycosides (type VI pattern). Additionally, intramammary inoculation of mice with N. cyriacigeorgica caused chronic inflammatory changes, including hyperemia, edema, and infiltration of lymphocytes and neutrophils, as well as hyperplasia of lymph nodules in mammary glands. Therefore, we concluded that N. cyriacigeorgica was involved in the current outbreak of mastitis. To our best knowledge, this is the first report to characterize N. cyriacigeorgica isolated from cases of bovine mastitis in China. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights:

  4. CARMA2sh and ULK2 control pathogen-associated molecular patterns recognition in human keratinocytes: psoriasis-linked CARMA2sh mutants escape ULK2 censorship.

    Science.gov (United States)

    Scudiero, Ivan; Mazzone, Pellegrino; D'Andrea, Luca E; Ferravante, Angela; Zotti, Tiziana; Telesio, Gianluca; De Rubis, Gabriele; Reale, Carla; Pizzulo, Maddalena; Muralitharan, Shanmugakonar; Vito, Pasquale; Stilo, Romania

    2017-02-23

    The molecular complexes formed by specific members of the family of CARMA proteins, the CARD domain-containing adapter molecule BCL10 and MALT1 (CBM complex) represent a central hub in regulating activation of the pleiotropic transcription factor NF-κB. Recently, missense mutations in CARMA2sh have been shown to cause psoriasis in a dominant manner and with high penetrancy. Here, we demonstrate that in human keratinocytes CARMA2sh plays an essential role in the signal transduction pathway that connects pathogen-associated molecular patterns recognition to NF-κB activation. We also find that the serine/threonine kinase ULK2 binds to and phosphorylates CARMA2sh, thereby inhibiting its capacity to activate NF-κB by promoting lysosomal degradation of BCL10, which is essential for CARMA2sh-mediated NF-κB signaling. Remarkably, CARMA2sh mutants associated with psoriasis escape ULK2 inhibition. Finally, we show that a peptide blocking CARD-mediated BCL10 interactions reduces the capacity of psoriasis-linked CARMA2sh mutants to activate NF-κB. Our work elucidates a fundamental signaling mechanism operating in human keratinocytes and opens to novel potential tools for the therapeutical treatment of human skin disorders.

  5. Molecular marker-assisted selection for resistance to pathogens in tomato

    International Nuclear Information System (INIS)

    Barone, A.; Frusciante, L.

    2007-01-01

    Since the 1980s, the use of molecular markers has been suggested to improve the efficiency of releasing resistant varieties, thus overcoming difficulties met with classical breeding. For tomato, a high-density molecular map is available in which more than 40 resistance genes are localized. Markers linked to these genes can be used to speed up gene transfer and pyramiding. Suitable PCR markers targeting resistance genes were constructed directly on the sequences of resistance genes or on restriction fragment length polymorphisms (RFLPs) tightly linked to them, and used to select resistant genotypes in backcross schemes. In some cases, the BC 5 generation was reached, and genotypes that cumulated two homozygous resistant genes were also obtained. These results supported the feasibility of using marker-assisted selection (MAS) in tomato and reinforcing the potential of this approach for other genes, which is today also driven by the development of new techniques and increasing knowledge about the tomato genome. (author)

  6. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  7. Survivin-T34A: molecular mechanism and therapeutic potential

    Directory of Open Access Journals (Sweden)

    Jonathan R Aspe

    2010-12-01

    Full Text Available Jonathan R Aspe, Nathan R WallCenter for Health Disparities Research and Molecular Medicine, Division of Biochemistry and Microbiology, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USAAbstract: The inhibitor of apoptosis protein survivin's threonine 34 to alanine (T34A mutation abolishes a phosphorylation site for p34(cdc2–cyclin B1, resulting in initiation of the mitochondrial apoptotic pathway in cancer cells; however, it has little known direct effects on normal cells. The possibility that targeting survivin in this way may provide a novel approach for selective cancer gene therapy has yet to be fully evaluated. Although a flurry of work was undertaken in the late 1990s and early 2000s, only minor advances on this mutant have recently taken place. We recently described that cells generated to express a stable form of the mutant protein released this survivin-T34A to the conditioned medium. When this conditioned medium was collected and deposited on naive tumor cells, conditioned medium T34A was as effective as some chemotherapeutics in the induction of tumor cell apoptosis, and when combined with other forms of genotoxic stressors potentiated their killing effects. We hope with this review to revitalize the T34A field, as there is still much that needs to be investigated. In addition to determining the therapeutic dose and the duration of drug therapy required at the disease site, a better understanding of other key factors is also important. These include knowledge of target cell populations, cell-surface receptors, changes that occur in the target tissue at the molecular and cellular level with progression of the disease, and the mechanism and site of therapeutic action.Keywords: survivin, T34A, apoptosis, proliferation, therapy

  8. Molecular mechanisms for sweet-suppressing effect of gymnemic acids.

    Science.gov (United States)

    Sanematsu, Keisuke; Kusakabe, Yuko; Shigemura, Noriatsu; Hirokawa, Takatsugu; Nakamura, Seiji; Imoto, Toshiaki; Ninomiya, Yuzo

    2014-09-12

    Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca(2+)]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  10. Molecular nucleation mechanisms and control strategies for crystal polymorph selection

    Science.gov (United States)

    van Driessche, Alexander E. S.; van Gerven, Nani; Bomans, Paul H. H.; Joosten, Rick R. M.; Friedrich, Heiner; Gil-Carton, David; Sommerdijk, Nico A. J. M.; Sleutel, Mike

    2018-04-01

    The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts, amyotrophic lateral sclerosis, sickle cell anaemia and Alzheimer’s disease. However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures, or are used as delivery vehicles for pharmaceutical applications. The physiochemical properties of crystals can vary substantially between different forms or structures (‘polymorphs’) of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation, in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein

  11. Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms.

    Science.gov (United States)

    Tonacchera, M; Vitti, P; Agretti, P; Ceccarini, G; Perri, A; Cavaliere, R; Mazzi, B; Naccarato, A G; Viacava, P; Miccoli, P; Pinchera, A; Chiovato, L

    1999-11-01

    The molecular biology of follicular cell growth in thyroid nodules is still poorly understood. Because gain-of-function (activating) mutations of the thyroid-stimulating hormone receptor (TShR) and/or Gs alpha genes may confer TSh-independent growth advantage to neoplastic thyroid cells, we searched for somatic mutations of these genes in a series of hyperfunctioning and nonfunctioning follicular thyroid adenomas specifically selected for their homogeneous gross anatomy (single nodule in an otherwise normal thyroid gland). TShR gene mutations were identified by direct sequencing of exons 9 and 10 of the TShR gene in genomic DNA obtained from surgical specimens. Codons 201 and 227 of the Gs alpha gene were also analyzed. At histology, all hyperfunctioning nodules and 13 of 15 nonfunctioning nodules were diagnosed as follicular adenomas. Two nonfunctioning thyroid nodules, although showing a prevalent microfollicular pattern of growth, had histological features indicating malignant transformation (a minimally invasive follicular carcinoma and a focal papillary carcinoma). Activating mutations of the TShR gene were found in 12 of 15 hyperfunctioning follicular thyroid adenomas. In one hyperfunctioning adenoma, which was negative for TShR mutations, a mutation in codon 227 of the Gs alpha gene was identified. At variance with hyperfunctioning thyroid adenomas, no mutation of the TShR or Gs alpha genes was detected in nonfunctioning thyroid nodules. In conclusion, our findings clearly define a different molecular pathogenetic mechanism in hyperfunctioning and nonfunctioning follicular thyroid adenomas. Activation of the cAMP cascade, which leads to proliferation but maintains differentiation of follicular thyroid cells, typically occurs in hyperfunctioning thyroid adenomas. Oncogenes other than the TShR and Gs alpha genes are probably involved in nonfunctioning follicular adenomas.

  12. Association between pathogens from tracheal aspirate and oral biofilm of patients on mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luana Carneiro Diniz SOUZA

    2017-06-01

    Full Text Available Abstract The aim of this study was to detect possible associations between respiratory pathogens from tracheal aspirate and oral biofilm samples in intubated patients in an intensive care unit (ICU, and to identify the most common respiratory pathogens in oral biofilm, particularly in patients that developed ventilator-associated pneumonia (VAP. Two oral biofilm samples were collected from the tongue of intubated patients (at admission and after 48 hours and analyzed by culture with the Antibiotic Sensitivity Test. The results from the tongue biofilm samples were compared with the tracheal secretions samples. A total of 59.37% of patients exhibited the same species of pathogens in their tracheal aspirate and oral biofilm, of which 8 (42.1% developed VAP, 10 (52.63% did not develop pneumonia and one (5.26% had aspiration pneumonia. There was a statistically significant association between presence of microorganisms in the tracheal and mouth samples for the following pathogens: Klebsiella pneumoniae, Candida albicans, Pseudomonas aeruginosa, Enterobacter gergoviae, Streptococcus spp and Serratia marcescens (p < 0.05. Pathogens that are present in tracheal aspirates of intubated patients can be detected in their oral cavity, especially in those who developed VAP or aspiration pneumonia. Thus, the results indicate that an improved oral care in these patients could decrease ICU pneumonia rates.

  13. Molecular Mechanisms in Amyotrophic Lateral Sclerosis: The Role of Angiogenin, a Secreted RNase

    Directory of Open Access Journals (Sweden)

    Isabela M. Aparicio-Erriu

    2012-11-01

    Full Text Available Amyotrophic lateral sclerosis is a fatal neurodegenerative disease caused by the loss of motoneurons. The precise molecular and cellular basis for neuronal death is not yet well established, but the contemporary view is that it is a culmination of multiple aberrant biological processes. Among the proposed mechanisms of motoneuron degeneration, alterations in the homeostasis of RNA binding proteins (RBP and the consequent changes in RNA metabolism have received attention recently.The ribonuclease, angiogenin was one of the first RBPs associated with familial and sporadic ALS. It is enriched in motoneurons under physiological conditions, and is required for motoneuron survival under stress conditions. Furthermore, delivery of angiogenin protects cultured motoneurons against stress-induced injury, and significantly increases the survival of motoneurons in SODG93A mice. In this overview on the role of angiogenin in RNA metabolism and in the control of motoneuron survival, we discuss potential pathogenic mechanisms of angiogenin dysfunction relevant to ALS and other neurodegenerative disorders. We also discuss recent evidence demonstrating that angiogenin secreted from stressed motoneurons may alter RNA metabolism in astrocytes.

  14. Molecular Mechanisms of Liver Injury and Hepatocarcinogenesis: Focusing on the Role of Stress-Activated MAPK

    Directory of Open Access Journals (Sweden)

    Hayato Nakagawa

    2012-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third most common cause of cancer mortality. Short-term prognosis of patients with HCC has improved recently due to advances in early diagnosis and treatment, but long-term prognosis is still unsatisfactory. Therefore, obtaining a further understanding of the molecular carcinogenic mechanisms and the unique pathogenic biology of HCC is important. The most characteristic process in hepatocarcinogenesis is underlying chronic liver injury, which leads to repeated cycles of hepatocyte death, inflammation, and compensatory proliferation and subsequently provides a mitogenic and mutagenic environment leading to the development of HCC. Recent in vivo studies have shown that the stress-activated mitogen-activated protein kinase (MAPK cascade converging on c-Jun NH2-terminal kinase (JNK and p38 plays a central role in these processes, and it has attracted considerable attention as a therapeutic target. However, JNK and p38 have complex functions and a wide range of cellular effects. In addition, crosstalk with each other and the nuclear factor-kappaB pathway further complicate these functions. A full understanding is essential to bring these observations into clinical settings. In this paper, we discuss the latest findings regarding the mechanisms of liver injury and hepatocarcinogenesis focusing on the role of the stress-activated MAPK pathway.

  15. Molecular variability in the maize grey leaf spot pathogens in Brazil

    Directory of Open Access Journals (Sweden)

    Kátia R. Brunelli

    2008-01-01

    Full Text Available Isolates of Cercospora species from leaves displaying symptoms of grey leaf spot were collected in maize-producing areas of south-central Brazil in 2001 and 2002. Restriction digests of the internal transcribed spacer region of rDNA detected the presence of the same two Cercospora species described on maize in the United States, namely C. zeae-maydis and the recently described species, C. zeina . Genetic variability among isolates was assessed by analysing 104 amplified fragment length polymorphism loci. Cluster analysis confirmed the genetic separation of isolates into two species with a mean similarity of 35%. Similarity levels within species were high, averaging 93% and 92% among isolates of C. zeae-maydis and C. zeina , respectively. The mean genetic similarity between C. zeae-maydis and C. zeina and two isolates of C. sorghi f. sp. maydis was 45% and 35%, respectively. Results of this study showed that populations of the grey leaf spot pathogens in Brazil are similar to those in the United States regarding species composition and that C. zeina is also present in Brazil.

  16. Molecular mechanism of APC/C activation by mitotic phosphorylation.

    Science.gov (United States)

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-05-12

    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our

  17. Instant Update: Considering the Molecular Mechanisms of Mutation & Natural Selection

    Science.gov (United States)

    Hubler, Tina; Adams, Patti; Scammell, Jonathan

    2015-01-01

    The molecular basis of evolution is an important concept to understand but one that students and teachers often find challenging. This article provides training and guidance for teachers on how to present molecular evolution concepts so that students will associate molecular changes with the evolution of form and function in organisms. Included…

  18. The blow fly, Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic bacteria in Northeast Thailand.

    Science.gov (United States)

    Chaiwong, T; Srivoramas, T; Sueabsamran, P; Sukontason, K; Sanford, M R; Sukontason, K L

    2014-06-01

    The Oriental latrine fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and the house fly, Musca domestica L., (Diptera: Muscidae) are synanthropic flies which are adapted to live in close association with human habitations, thereby making them likely mechanical vectors of several pathogens to humans. There were two main aims of this study. The first aim was to determine the prevalence of these two fly species from five types of human habitations including: fresh-food markets, garbage piles, restaurants, school cafeterias and paddy fields, in the Muang Ubon Ratchathani and Warinchamrap districts of Ubon Ratchathani province of Northeast Thailand. Flies collection were conducted monthly from September 2010-October 2011 using a reconstructable funnel trap, containing 1 day-tainted beef offal as bait. A total of 7 750 flies (6 401 C. megacephala and 1 349 M.domestica) were collected. The second aim was to examine the potential of these flies to carry pathogenic bacteria. Bacteria were isolated from 994 individual flies collected using a sweep net (555 C. megacephala and 439 M. domestica). A total of 15 bacterial genera were isolated from the external surfaces, comprising ten genera of gram-negative bacteria and five gram-positive bacteria. The most common bacteria isolated from both species were coagulase-negative staphylococci, followed by Streptococcus group D non-enterococci. Human pathogenic enteric bacteria isolated were Salmonella sp., Shigella sp., Escherichia coli O157:H7, Salmonella typhi, Bacillus sp., and Enterococcus sp., of which S. typhi is the first report of isolation from these fly species. Other human pathogens included Staphylococcus aureus and Pseudomonas aeruginosa. Not only were the number of C. megacephala positive for bacteria significantly higher than for M. domestica, but they were also carrying ~11-12 times greater bacterial load than M. domestica. These data suggest that both fly species should be considered potential

  19. Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Campos

    2010-01-01

    Full Text Available Microcystins (MC are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.

  20. Molecular Mechanisms of Curcumin Renoprotection in Experimental Acute Renal Injury

    Directory of Open Access Journals (Sweden)

    Youling Fan

    2017-12-01

    Full Text Available As a highly perfused organ, the kidney is especially sensitive to ischemia and reperfusion. Ischemia-reperfusion (IR-induced acute kidney injury (AKI has a high incidence during the perioperative period in the clinic and is an important link in ischemic acute renal failure (IARF. Therefore, IR-induced AKI has important clinical significance and it is necessary to explore to develop drugs to prevent and alleviate IR-induced AKI. Curcumin [diferuloylmethane, 1,7-bis(4-hydroxy-3-methoxiphenyl-1,6-heptadiene-3,5-dione] is a polyphenol compound derived from Curcuma longa (turmeric and was shown to have a renoprotective effect on ischemia-reperfusion injury (IRI in a previous study. However, the specific mechanisms underlying the protective role of curcumin in IR-induced AKI are not completely understood. APPL1 is a protein coding gene that has been shown to be involved in the crosstalk between the adiponectin-signaling and insulin-signaling pathways. In the study, to investigate the molecular mechanisms of curcumin effects in kidney ischemia/reperfusion model, we observed the effect of curcumin in experimental models of IR-induced AKI and we found that curcumin treatment significantly increased the expression of APPL1 and inhibited the activation of Akt after IR treatment in the kidney. Our in vitro results showed that apoptosis of renal tubular epithelial cells was exacerbated with hypoxia-reoxygenation (HR treatment compared to sham control cells. Curcumin significantly decreased the rate of apoptosis in renal tubular epithelial cells with HR treatment. Moreover, knockdown of APPL1 activated Akt and subsequently aggravated apoptosis in HR-treated renal tubular epithelial cells. Conversely, inhibition of Akt directly reversed the effects of APPL1 knockdown. In summary, our study demonstrated that curcumin mediated upregulation of APPL1 protects against ischemia reperfusion induced AKI by inhibiting Akt phosphorylation.

  1. Molecular mechanism of allosteric communication in Hsp70 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD modulate substrate recognition at the Substrate Binding Domain (SBD. Herein, a comparative analysis of an allosteric (Hsp70-DnaK and a non-allosteric structural homolog (Hsp110-Sse1 of the Hsp70 family is carried out through molecular dynamics simulations, starting from different conformations and ligand-states. Analysis of ligand-dependent modulation of internal fluctuations and local deformation patterns highlights the structural and dynamical changes occurring at residue level upon ATP-ADP exchange, which are connected to the conformational transition between closed and open structures. By identifying the dynamically responsive protein regions and specific cross-domain hydrogen-bonding patterns that differentiate Hsp70 from Hsp110 as a function of the nucleotide, we propose a molecular mechanism for the allosteric signal propagation of the ATP-encoded conformational signal.

  2. Molecular mechanisms associated with nosocomial carbapenem-resistant Acinetobacter baumannii in Mexico.

    Science.gov (United States)

    Alcántar-Curiel, María Dolores; García-Torres, Luis Francisco; González-Chávez, María Inés; Morfín-Otero, Rayo; Gayosso-Vázquez, Catalina; Jarillo-Quijada, Ma Dolores; Fernández-Vázquez, José Luis; Giono-Cerezo, Silvia; Rodríguez-Noriega, Eduardo; Santos-Preciado, José Ignacio

    2014-10-01

    Acinetobacter baumannii is an emerging pathogen worldwide that is most commonly associated with nosocomial infections and multi-drug resistance. In the present study we determined the mechanisms of carbapenem resistance and clonal diversity of A. baumannii nosocomial isolates in Hospital Civil de Guadalajara, Mexico. A total of 303 clinical isolates of A. baumannii identified during a period expanding from 2004-2011 were analyzed for carbapenem resistance using several microbiological and molecular methods. Clonal relatedness of these isolates was determined using pulsed-field gel electrophoresis. Of the 303 isolates, 84% were resistant to meropenem, 71.3% to imipenem and 78.3% the resistant isolates were positive for metallo-β-lactamases as determined by the phenotypic assay. In addition, 49.6% of carbapenem-intermediate or -resistant isolates carried the blaOXA-72 gene and 1.2% carried the blaVIM-1 gene. Efflux pump phenotype was responsible for reduced susceptibility to meropenem in 14.5% and to imipenem in 31.6% of the resistant isolates, respectively in the presence of the efflux pump inhibitor, carbonyl cyanide 3-chlorophenylhydrazone. Strains representing different carbapenem-resistant patterns exhibited reduced expression of 22, 29, 33, and 43 kDa OMPs. Among the bacterial collection studied, 48 different clones were identified, two of which were predominant and persistently transmitted. Carbapenemase production in combination with efflux pump expression, reduction in OMPs expression and the cross-transmission of clones appear to be major contributors to the high frequency of carbapenem-resistance observed in A. baumannii. To our knowledge, this is the first study to define the molecular mechanisms associated with carbapenem-resistance in A. baumannii in Mexico. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  3. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease

    Science.gov (United States)

    Harris, Steven A.; Harris, Elizabeth A.

    2018-01-01

    This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical

  4. Molecular Detection and Characterization of Zoonotic and Veterinary Pathogens in Ticks from Northeastern China

    Science.gov (United States)

    Wei, Feng; Song, Mingxin; Liu, Huanhuan; Wang, Bo; Wang, Shuchao; Wang, Zedong; Ma, Hongyu; Li, Zhongyu; Zeng, Zheng; Qian, Jun; Liu, Quan

    2016-01-01

    Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n = 1699), Haemaphysalis concinna (n = 412), Haemaphysalis longicornis (n = 390), Dermacentor nuttalli (n = 253), and Dermacentor silvarum (n = 204) ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. Anaplasma phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%), H. longicornis (1.9%), H. concinna (6.5%), D. nuttalli (1.7%), and D. silvarum (2.3%); Anaplasma bovis was detected in H. longicornis (0.3%) and H. concinna (0.2%); Ehrlichia muris was detected in I. persulcatus (2.5%) and H. concinna (0.2%); Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%). The Ehrlichia variant (GenBank access number KU921424), closely related to Ehrlichia ewingii, was found in H. longicornis (0.8%) and H. concinna (0.2%). I. persulcatus was infected with Babesia venatorum (1.2%), Babesia microti (0.6%), and Babesia divergens (0.6%). Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306) were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep, and cattle (B. gibsoni, B. motasi, and B. crassa). Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029) associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%). These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases. PMID:27965644

  5. Molecular detection and characterization of zoonotic and veterinary pathogens in ticks from northeastern China

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2016-11-01

    Full Text Available Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n=1699, Haemaphysalis concinna (n=412, Haemaphysalis longicornis (n=390, Dermacentor nuttalli (n=253, and Dermacentor silvarum (n=204 ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. A. phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%, H. longicornis (1.9%, H. concinna (6.5%, D. nuttalli (1.7%, and D. silvarum (2.3%; A. bovis was detected in H. longicornis (0.3% and H. concinna (0.2%; E. muris was detected in I. persulcatus (2.5% and H. concinna (0.2%; Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%. The Ehrlichia variant (GenBank access number KU921424, closely related to E. ewingii, was found in H. longicornis (0.8% and H. concinna (0.2%. I. persulcatus was infected with B. venatorum (1.2%, B. microti (0.6%, and B. divergens (0.6%. Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306 were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep and cattle (B. gibsoni, B. motasi, and B. crassa. Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029 associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%. These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases.

  6. Prevalence and Molecular Characteristics of Waterborne Pathogen Legionella in Industrial Cooling Tower Environments.

    Science.gov (United States)

    Li, Lijie; Qin, Tian; Li, Yun; Zhou, Haijian; Song, Hongmei; Ren, Hongyu; Li, Liping; Li, Yongguang; Zhao, Dong

    2015-10-12

    Cooling towers are a source of Legionnaires' disease. It is important from a public health perspective to survey industrial cooling towers for the presence of Legionella. Prospective surveillance of the extent of Legionella pollution was conducted at factories in Shijiazhuang, China between March 2011 and September 2012. Overall, 35.7% of 255 industrial cooling tower water samples showed Legionella-positive, and their concentrations ranged from 100 Colony-Forming Units (CFU)/liter to 88,000 CFU/liter, with an average concentration of 9100 CFU/liter. A total of 121 isolates were obtained. All isolates were L. pneumophila, and the isolated serogroups included serogroups 1 (68 isolates, 56.2%), 6 (25, 20.7%), 5 (12, 9.9%), 8 (8, 6.6%), 3 (6, 5.0%) and 9 (2, 1.6%). All 121 isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and 64 different patterns were obtained. All 121 isolates were analyzed sequence-based typing (SBT), a full 7-allele profile was obtained from 117 isolates. One hundred and seventeen isolates were divided into 49 sequence types. Two virulence genes, lvh and rtxA, are analyzed by polymerase chain reaction (PCR). 92.6% (112/121) and 98.3% (119/121) isolates carried lvh and rtxA respectively and 90.9% (110/121) of tested isolates carried both genes. Our results demonstrated high prevalence and genetic polymorphism of L. pneumophila in industrial cooling tower environments in Shijiazhang, China, and the SBT and virulence gene PCR results suggested that the isolates were pathogenic. Improved control and prevention strategies are urgently needed.

  7. Prevalence and Molecular Characteristics of Waterborne Pathogen Legionella in Industrial Cooling Tower Environments

    Directory of Open Access Journals (Sweden)

    Lijie Li

    2015-10-01

    Full Text Available Cooling towers are a source of Legionnaires’ disease. It is important from a public health perspective to survey industrial cooling towers for the presence of Legionella. Prospective surveillance of the extent of Legionella pollution was conducted at factories in Shijiazhuang, China between March 2011 and September 2012. Overall, 35.7% of 255 industrial cooling tower water samples showed Legionella-positive, and their concentrations ranged from 100 Colony-Forming Units (CFU/liter to 88,000 CFU/liter, with an average concentration of 9100 CFU/liter. A total of 121 isolates were obtained. All isolates were L. pneumophila, and the isolated serogroups included serogroups 1 (68 isolates, 56.2%, 6 (25, 20.7%, 5 (12, 9.9%, 8 (8, 6.6%, 3 (6, 5.0% and 9 (2, 1.6%. All 121 isolates were analyzed by pulsed-field gel electrophoresis (PFGE and 64 different patterns were obtained. All 121 isolates were analyzed sequence-based typing (SBT, a full 7-allele profile was obtained from 117 isolates. One hundred and seventeen isolates were divided into 49 sequence types. Two virulence genes, lvh and rtxA, are analyzed by polymerase chain reaction (PCR. 92.6% (112/121 and 98.3% (119/121 isolates carried lvh and rtxA respectively and 90.9% (110/121 of tested isolates carried both genes. Our results demonstrated high prevalence and genetic polymorphism of L. pneumophila in industrial cooling tower environments in Shijiazhang, China, and the SBT and virulence gene PCR results suggested that the isolates were pathogenic. Improved control and prevention strategies are urgently needed.

  8. Pandemics, pathogenicity and changing molecular epidemiology of cholera in the era of global warming.

    Science.gov (United States)

    Chowdhury, Fazle Rabbi; Nur, Zannatun; Hassan, Nazia; von Seidlein, Lorenz; Dunachie, Susanna

    2017-03-07

    Vibrio cholerae, a Gram-negative, non-spore forming curved rod is found in diverse aquatic ecosystems around the planet. It is classified according to its major surface antigen into around 206 serogroups, of which O1 and O139 cause epidemic cholera. A recent spatial modelling technique estimated that around 2.86 million cholera cases occur globally every year, and of them approximately 95,000 die. About 1.3 billion people are currently at risk of infection from cholera. Meta-analysis and mathematical modelling have demonstrated that due to global warming the burden of vector-borne diseases like malaria, leishmaniasis, meningococcal meningitis, viral encephalitis, dengue and chikungunya will increase in the coming years in the tropics and beyond. This review offers an overview of the interplay between global warming and the pathogenicity and epidemiology of V. cholerae. Several distinctive features of cholera survival (optimal thriving at 15% salinity, 30 °C water temperature, and pH 8.5) indicate a possible role of climate change in triggering the epidemic process. Genetic exchange (ctxAB, zot, ace, cep, and orfU) between strains and transduction process allows potential emergence of new toxigenic clones. These processes are probably controlled by precise environmental signals such as optimum temperature, sunlight and osmotic conditions. Environmental influences on phytoplankton growth and chitin remineralization will be discussed alongside the interplay of poor sanitary conditions, overcrowding, improper sewage disposal and global warming in promoting the growth and transmission of this deadly disease. The development of an effective early warning system based on climate data could help to prevent and control future outbreaks. It may become possible to integrate real-time monitoring of oceanic regions, climate variability and epidemiological and demographic population dynamics to predict cholera outbreaks and support the design of cost-effective public health

  9. Molecular mechanisms of circulatory dysfunction in cirrhotic portal hypertension

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Ho

    2015-04-01

    Full Text Available Acute or chronic insults to the liver are usually followed by a tissue repairing process. Unfortunately, this action, in most cases, is not effective enough to restore the normal hepatic structure and function. Instead, fibrogenesis and regenerative nodules formation ensue, which are relatively nonfunctioning. The common final stage of the process is liver cirrhosis with increased intrahepatic resistance to portal venous blood flow. Throughout the entire course, the extrahepatic circulatory dysfunction, including increased splanchnic blood flow, elevated portal venous blood flow and pressure, decreased splanchnic and peripheral vascular resistance, tachycardia, and increased cardiac output, are noted and denoted as portal hypertension with hyperdynamic circulatory dysfunction. When such a condition is established, patients may suffer from fatal complications such as gastroesophageal variceal hemorrhage, hepatic encephalopathy, or hepatorenal syndrome. The cause of such a circulatory dysfunction is not fully elucidated. Nevertheless, clarification of the pathophysiology definitely contributes to the control of portal hypertension-related complications. Herein, the molecular mechanism of this intriguing disaster is reviewed and discussed.

  10. Mechanical properties of irradiated nanowires – A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)

    2015-12-15

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.

  11. Molecular Mechanisms in the shock induced decomposition of FOX-7

    Science.gov (United States)

    Mishra, Ankit; Tiwari, Subodh C.; Nakano, Aiichiro; Vashishta, Priya; Kalia, Rajiv; CACS Team

    Experimental and first principle computational studies on FOX 7 have either involved a very small system consisting of a few atoms or they did not take into account the decomposition mechanisms under extreme conditions of temperature and pressure. We have performed a large-scale reactive MD simulation using ReaxFF-lg force field to study the shock decomposition of FOX 7. The chemical composition of the principal decomposition products correlates well with experimental observations. Furthermore, we observed that the production of N2 and H2O was inter molecular in nature and was through different chemical pathways. Moreover, the production of CO and CO2 was delayed due to production of large stable C,O atoms cluster. These critical insights into the initial processes involved in the shock induced decomposition of FOX-7 will greatly help in understanding the factors playing an important role in the insensitiveness of this high energy material. This research is supported by AFOSR Award No. FA9550-16-1-0042.

  12. The Molecular Mechanisms of Offspring Effects from Obese Pregnancy

    Directory of Open Access Journals (Sweden)

    Daniel Dowling

    2013-04-01

    Full Text Available The incidence of obesity, increased weight gain and the popularity of high-fat / high-sugar diets are seriously impacting upon the global population. Billions of individuals are affected, and although diet and lifestyle are of paramount importance to the development of adult obesity, compelling evidence is emerging which suggests that maternal obesity and related disorders may be passed on to the next generation by non-genetic means. The processes acting within the uteri of obese mothers may permanently predispose offspring to a diverse plethora of diseases ranging from obesity and diabetes to psychiatric disorders. This review aims to summarise some of the molecular mechanisms and active processes currently known about maternal obesity and its effect on foetal and neonatal physiology and metabolism. Complex and multifactorial networks of molecules are intertwined and culminate in a pathologically synergistic manner to cause disruption and disorganisation of foetal physiology. This altered phenotype may potentiate the cycle of intergenerational transmission of obesity and related disorders.

  13. Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation.

    Science.gov (United States)

    Sirish, Padmini; Li, Ning; Timofeyev, Valeriy; Zhang, Xiao-Dong; Wang, Lianguo; Yang, Jun; Lee, Kin Sing Stephen; Bettaieb, Ahmed; Ma, Sin Mei; Lee, Jeong Han; Su, Demetria; Lau, Victor C; Myers, Richard E; Lieu, Deborah K; López, Javier E; Young, J Nilas; Yamoah, Ebenezer N; Haj, Fawaz; Ripplinger, Crystal M; Hammock, Bruce D; Chiamvimonvat, Nipavan

    2016-05-01

    Atrial fibrillation represents the most common arrhythmia leading to increased morbidity and mortality, yet, current treatment strategies have proven inadequate. Conventional treatment with antiarrhythmic drugs carries a high risk for proarrhythmias. The soluble epoxide hydrolase enzyme catalyzes the hydrolysis of anti-inflammatory epoxy fatty acids, including epoxyeicosatrienoic acids from arachidonic acid to the corresponding proinflammatory diols. Therefore, the goal of the study is to directly test the hypotheses that inhibition of the soluble epoxide hydrolase enzyme can result in an increase in the levels of epoxyeicosatrienoic acids, leading to the attenuation of atrial structural and electric remodeling and the prevention of atrial fibrillation. For the first time, we report findings that inhibition of soluble epoxide hydrolase reduces inflammation, oxidative stress, atrial structural, and electric remodeling. Treatment with soluble epoxide hydrolase inhibitor significantly reduces the activation of key inflammatory signaling molecules, including the transcription factor nuclear factor κ-light-chain-enhancer, mitogen-activated protein kinase, and transforming growth factor-β. This study provides insights into the underlying molecular mechanisms leading to atrial fibrillation by inflammation and represents a paradigm shift from conventional antiarrhythmic drugs, which block downstream events to a novel upstream therapeutic target by counteracting the inflammatory processes in atrial fibrillation. © 2016 American Heart Association, Inc.

  14. Final Report - Molecular Mechanisms of Bacterial Mercury Transformation - UCSF

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M. [UCSF

    2014-04-24

    The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic Hg(II) and organic [RHg(II)]1+ mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate operon expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. In the current overall project we focused on two aspects of this system: (1) investigations of the energetics of Hg(II)-ligand binding interactions, and (2) both experimental and computational approaches to investigating the molecular mechanisms of Hg(II) acquisition by MerA and intramolecular transfer of Hg(II) prior to reduction within the MerA enzyme active site. Computational work was led by Prof. Jeremy Smith and took place at the University of Tennessee, while experimental work on MerA was led by Prof. Susan Miller and took place at the University of California San Francisco.

  15. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Florian eMüller-Dahlhaus

    2013-12-01

    Full Text Available Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i which neural structures are activated during TMS, (ii how does rTMS induce Hebbian plasticity, and (iii are other forms of plasticity (e.g., metaplasticity, structural plasticity induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.

  16. Cellular and molecular mechanisms of alcohol-induced osteopenia.

    Science.gov (United States)

    Luo, Zhenhua; Liu, Yao; Liu, Yitong; Chen, Hui; Shi, Songtao; Liu, Yi

    2017-12-01

    Alcoholic beverages are widely consumed, resulting in a staggering economic cost in different social and cultural settings. Types of alcohol consumption vary from light occasional to heavy, binge drinking, and chronic alcohol abuse at all ages. In general, heavy alcohol consumption is widely recognized as a major epidemiological risk factor for chronic diseases and is detrimental to many organs and tissues, including bones. Indeed, recent findings demonstrate that alcohol has a dose-dependent toxic effect in promoting imbalanced bone remodeling. This imbalance eventually results in osteopenia, an established risk factor for osteoporosis. Decreased bone mass and strength are major hallmarks of osteopenia, which is predominantly attributed not only to inhibition of bone synthesis but also to increased bone resorption through direct and indirect pathways. In this review, we present knowledge to elucidate the epidemiology, potential pathogenesis, and major molecular mechanisms and cellular effects that underlie alcoholism-induced bone loss in osteopenia. Novel therapeutic targets for correcting alcohol-induced osteopenia are also reviewed, such as modulation of proinflammatory cytokines and Wnt and mTOR signaling and the application of new drugs.

  17. Quantum mechanical simulations of polymers for molecular electronics and photonics

    International Nuclear Information System (INIS)

    Dupuis, M.; Villar, H.O.; Clementi, E.

    1987-01-01

    Ab initio quantum mechanical studies can play an important role in obtaining a detailed understanding of the electronic structure of existing materials, and in predicting the properties of new ones. In this article the authors give a general outline of their research activity in two areas dealing with new materials, specifically, conducting polymers and polymers with non-linear optical properties. The authors present the strategy followed for the study of these molecular systems, and an overview of their findings concerning the structure of the prototypical conducting polymer, i.e. pure and doped polyacetylene (PA). They focused attention on vibrational spectra and infrared and Raman intensities. The results of self-consistent-field (SCF) calculations on charged soliton-like molecules are consistent with experimental observation. In particular, they show that the theoretically established accidental mutual exclusion of infrared and Raman bands invalidates the requirement formulated on the basis of the interpretation of experimental data, that defects in PA must have local C/sub 2h/ symmetry. These conclusions are derived from extensive calculations for which supercomputer performance was imperative and carried out on the parallel supercomputer assembled at IBM-Kingston as a loosely coupled array of processors (LCAP). The authors briefly describe this computer system which has proven to be ideally suited to the methods of ab initio quantum chemistry

  18. Molecular Mechanisms of Anticancer Effects of Phytoestrogens in Breast Cancer.

    Science.gov (United States)

    Hsieh, Chia-Jung; Hsu, Ya-Ling; Huang, Ya-Fang; Tsai, Eing-Mei

    2018-01-01

    Phytoestrogens derived from plants exert estrogenic as well as antiestrogenic effects and multiple actions within breast cancer cells. Chemopreventive properties of phytoestrogens have emerged from epidemiological observations. In recent clinical research studies, phytoestrogens are safe and may even protect against breast cancer. In this brief review, the molecular mechanisms of phytoestrogens on regulation of cell cycle, apoptosis, estrogen receptors, cell signaling pathways, and epigenetic modulations in relation to breast cancer are discussed. Phytoestrogens have a preferential affinity for estrogen receptor (ER)-β, which appears to be associated with antiproliferative and anticarcinogenic effects. Moreover, while phytoestrogens not only inhibit ER-positive but also ER-negative breast cancer cells, the possibility of epigenetic modulation playing an important role is also discussed. In conclusion, as there are multiple targets and actions of phytoestrogens, extensive research is still necessary. However, due to low toxicity, low cost, and easy availability, their potent chemoprevention effects deserve further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Understanding the mechanisms of amorphous creep through molecular simulation.

    Science.gov (United States)

    Cao, Penghui; Short, Michael P; Yip, Sidney

    2017-12-26

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  20. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  1. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.

    2004-01-01

    of the (gg, gt and tg) rotamers of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol. respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error...

  2. Trends in nanoscale mechanics mechanics of carbon nanotubes, graphene, nanocomposites and molecular dynamics

    CERN Document Server

    2014-01-01

    This book contains a collection of the state-of-the-art reviews written by the leading researchers in the areas of nanoscale mechanics, molecular dynamics, nanoscale modeling of nanocomposites and mechanics of carbon nanotubes. No other book has reviews of the recent discoveries such as a nanoscale analog of the Pauli’s principle, i.e., effect of the spatial exclusion of electrons or the SEE effect, a new Registry Matrix Analysis for the nanoscale interfacial sliding and new data on the effective viscosity of interfacial electrons in nanoscale stiction at the interfaces. This volume is also an exceptional resource on the well tested nanoscale modeling of carbon nanotubes and nanocomposites, new nanoscale effects, unique evaluations of the effective thickness of carbon nanotubes under different loads, new data on which size of carbon nanotubes is safer and many other topics. Extensive bibliography concerning all these topics is included along with the lucid short reviews. Numerous illustrations are provided...

  3. Molecular diagnostics to identify fungal plant pathogens – A review of current methods

    OpenAIRE

    Bernreiter, Andreas

    2017-01-01

    La siguiente revisión ofrece una visión amplia de los métodos actuales utilizados para la identificación de hongos fitopatógenos. Además, se presentan estudios previos centrados en patógenos relevantes para el Ecuador y una breve discusión sobre el futuro del diagnóstico en fitopatología. En la actualidad, las herramientas de diagnóstico que aplican biología molecular se basan en la tecnología de reacción en cadena de la polimerasa (PCR). Se presenta una selección de tecnologías basadas en PC...

  4. Molecular Mechanisms of Host Cytoskeletal Rearrangements by Shigella Invasins

    Directory of Open Access Journals (Sweden)

    Jun Hyuck Lee

    2014-10-01

    Full Text Available Pathogen-induced reorganization of the host cell cytoskeleton is a common strategy utilized in host cell invasion by many facultative intracellular bacteria, such as Shigella, Listeria, enteroinvasive E. coli and Salmonella. Shigella is an enteroinvasive intracellular pathogen that preferentially infects human epithelial cells and causes bacillary dysentery. Invasion of Shigella into intestinal epithelial cells requires extensive remodeling of the actin cytoskeleton with the aid of pathogenic effector proteins injected into the host cell by the activity of the type III secretion system. These so-called Shigella invasins, including IpaA, IpaC, IpgB1, IpgB2 and IpgD, modulate the actin-regulatory system in a concerted manner to guarantee efficient entry of the bacteria into host cells.

  5. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens.

    Science.gov (United States)

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D Timothy J

    2015-06-19

    The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology. Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared. We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its 'barcode' region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida. Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and

  6. Association between pathogens from tracheal aspirate and oral biofilm of patients on mechanical ventilation.

    Science.gov (United States)

    Souza, Luana Carneiro Diniz; Mota, Vanise Barros Rodrigues da; Carvalho, Alícia Valéria Dos Santos Zaranza de; Corrêa, Rita da Graça Carvalhal Frazão; Libério, Silvana Amado; Lopes, Fernanda Ferreira

    2017-06-05

    The aim of this study was to detect possible associations between respiratory pathogens from tracheal aspirate and oral biofilm samples in intubated patients in an intensive care unit (ICU), and to identify the most common respiratory pathogens in oral biofilm, particularly in patients that developed ventilator-associated pneumonia (VAP). Two oral biofilm samples were collected from the tongue of intubated patients (at admission and after 48 hours) and analyzed by culture with the Antibiotic Sensitivity Test. The results from the tongue biofilm samples were compared with the tracheal secretions samples. A total of 59.37% of patients exhibited the same species of pathogens in their tracheal aspirate and oral biofilm, of which 8 (42.1%) developed VAP, 10 (52.63%) did not develop pneumonia and one (5.26%) had aspiration pneumonia. There was a statistically significant association between presence of microorganisms in the tracheal and mouth samples for the following pathogens: Klebsiella pneumoniae, Candida albicans, Pseudomonas aeruginosa, Enterobacter gergoviae, Streptococcus spp and Serratia marcescens (p aspirates of intubated patients can be detected in their oral cavity, especially in those who developed VAP or aspiration pneumonia. Thus, the results indicate that an improved oral care in these patients could decrease ICU pneumonia rates.

  7. Molecular characterization of the sweet potato peroxidase SWPA4 promoter which responds to abiotic stresses and pathogen infection.

    Science.gov (United States)

    Ryu, Sun-Hwa; Kim, Yun-Hee; Kim, Cha Young; Park, Soo-Young; Kwon, Suk-Yoon; Lee, Haeng-Soon; Kwak, Sang-Soo

    2009-04-01

    Previously, the swpa4 peroxidase gene has been shown to be inducible by a variety of abiotic stresses and pathogenic infections in sweet potato (Ipomoea batatas). To elucidate its regulatory mechanism at the transcriptional level under various stress conditions, we isolated and characterized the promoter region (2374 bp) of swpa4 (referred to as SWPA4). We performed a transient expression assay in tobacco protoplasts with deletions from the 5'-end of SWPA4 promoter fused to the beta-glucuronidase (GUS) reporter gene. The -1408 and -374 bp deletions relative to the transcription start site (+1) showed 8 and 4.5 times higher GUS expression than the cauliflower mosaic virus 35S promoter, respectively. In addition, transgenic tobacco plants expressing GUS under the control of -2374, -1408 or -374 bp region of SWPA4 promoter were generated and studied in various tissues under abiotic stresses and pathogen infection. Gel mobility shift assays revealed that nuclear proteins from sweet potato cultured cells specifically interacted with 60-bp fragment (-178/-118) in -374 bp promoter region. In silico analysis indicated that four kinds of cis-acting regulatory sequences, reactive oxygen species-related element activator protein 1 (AP1), CCAAT/enhancer-binding protein alpha element, ethylene-responsive element (ERE) and heat-shock element, are present in the -60 bp region (-178/-118), suggesting that the -60 bp region might be associated with stress inducibility of the SWPA4 promoter.

  8. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Fang, E-mail: jfwang@gordonlifescience.org [Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235 (China); Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130 (United States); Chou, Kuo-Chen [Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130 (United States)

    2009-12-18

    Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.

  9. Molecular diagnostics on the toxigenic potential of Fusarium spp. plant pathogens.

    Science.gov (United States)

    Dawidziuk, A; Koczyk, G; Popiel, D; Kaczmarek, J; Buśko, M

    2014-06-01

    We propose and test an efficient and rapid protocol for the detection of toxigenic Fusarium isolates producing three main types of Fusarium-associated mycotoxins (fumonisins, trichothecenes and zearelanone). The novel approach utilizes partially multiplexed markers based on genes essential for mycotoxin biosynthesis (fumonisin--fum6, fum8; trichothecenes--tri5, tri6; zearalenone, zea2) in Fusarium spp. The protocol has been verified by screening a collection of 96 isolates representing diverse species of filamentous fungi. Each Fusarium isolate was taxonomically identified through both molecular and morphological techniques. The results demonstrate a reliable detection of toxigenic potential for trichothecenes (sensitivity 100%, specificity 95%), zearalenone (sensitivity 100%, specificity 100%) and fumonisins (sensitivity 94%, specificity 88%). Both presence and identity of toxin biosynthetic genes were further confirmed by direct sequencing of amplification products. The cross-species-specific PCR markers for key biosynthetic genes provide a sensitive detection of toxigenic fungal isolates, contaminating biological material derived from agricultural fields. The conducted study shows that a PCR-based assay of biosynthetic genes is a reliable, cost-effective, early warning system against Fusarium contamination. Its future use as a high-throughput detection strategy complementing chemical assays enables effective targeted application of crop protection products. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  10. Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis.

    Directory of Open Access Journals (Sweden)

    Ashish V Chintakuntlawar

    2010-04-01

    Full Text Available Human adenovirus (HAdV infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9 signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9(-/- mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD. These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins.

  11. Molecular mechanisms underlying CD27-CD70 costimulation

    NARCIS (Netherlands)

    Peperzak, L.

    2010-01-01

    We are in a constant state of war, threatened by both exogenous enemies in the form of killing pathogens, or enemies from within in the form of tumor cells. The key for survival of our species amongst an overwhelming amount and diversity of microorganisms, such as viruses, bacteria and parasites is

  12. A quantum mechanical/molecular mechanical study of the hydroxylation of phenol and halogeneted derivatives by phenol hydroxylase

    NARCIS (Netherlands)

    Ridder, L.; Mulholland, A.J.; Rietjens, I.M.C.M.; Vervoort, J.

    2000-01-01

    A combined quantum mechanical and molecular mechanical (QM/MM) method (AM1/CHARMM) was used to investigate the mechanism of the aromatic hydroxylation of phenol by a flavin dependent phenol hydroxylase (PH), an essential reaction in the degradation of a wide range of aromatic compounds. The model

  13. Molecular mechanism of reduction in pregnenolone synthesis by cigarette smoke

    International Nuclear Information System (INIS)

    Bose, Mahuya; Whittal, Randy M.; Gairola, C. Gary; Bose, Himangshu S.

    2008-01-01

    Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane for the synthesis of pregnenolone. Here, we investigated the molecular mechanism of the reduction of pregnenolone synthesis by cigarette smoke condensate (CSC). Pre-exposure or post-exposure of cells with CSC led to reduced pregnenolone synthesis, in a fashion similar to its effect on isolated mitochondria. However, there was no difference in the expression of 30 kDa StAR in cells treated with moderately concentrated CSC by either regimen. The active form of 37 kDa StAR is degraded easily suggesting that the continuous presence of CSC reduces StAR expression. Mitochondrial import of 35 S-methionine-labeled StAR followed by extraction of the StAR-mitochondrial complex with 1% digitonin showed similarly sized complexes in the CSC-treated and untreated mitochondria. Further analysis by sucrose density gradient centrifugation showed a specific complex, 'complex 2', in the untreated mitochondria but absent in the CSC-treated mitochondria. Mass spectrometric analysis revealed that complex 2 is the outer mitochondrial protein, VDAC1. Knockdown of VDAC1 expression by siRNA followed by co-transfection with StAR resulted in a lack of pregnenolone synthesis and 37 kDa StAR expression with reduced expression of the intermediate, 32 kDa StAR. Taken together, these results suggest that in the absence of VDAC1, active StAR expression is reduced indicating that VDAC1 expression is essential for StAR activity. In the absence of VDAC1-StAR interaction, cholesterol cannot be transported into mitochondria; thus the interaction with VDAC1 is a mandatory step for initiating steroidogenesis

  14. Stability mechanisms of a thermophilic laccase probed by molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Niels J Christensen

    Full Text Available Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K, probing structural changes associated with enthalpy-entropy compensation. Approaching T opt (∼350 K from 300 K, this change correlated with a beginning "unzipping" of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive at 400 K, suggesting a general salt stabilization effect. In contrast, F(- (but not Cl(- specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(- intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes.

  15. On The Molecular Mechanism Of Positive Novolac Resists

    Science.gov (United States)

    Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost

    1989-08-01

    A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.

  16. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  17. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Science.gov (United States)

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  18. The Chernobyl accident: possible pathogenic mechanisms of origination of psychical and psychosomatic disadaptation

    International Nuclear Information System (INIS)

    Gelda, A.P

    1998-01-01

    The impact of the social-psychological and biological (low doze chronic irradiation, foods unbalance, local ecological hazards) factors increase a degree of pathogen influence on organism. It is known that chronic irradiation by low dozes promotes to an increase of sensitivity to damaging action other pathogenic factors. At the same time at the special functional condition (for example, stresses), radiosensitivity of organism and a number of non radiobiological agents in combined action with radiation enhances the radiobiological effect of irradiation. Predisposing factors have a certain significance. Taking into account a real social-psychological situation the problem of medico-biological consequences of the Chernobyl accident gets the special social-medical importance

  19. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    Science.gov (United States)

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  20. Mechanical feedback in the molecular ISM of luminous IR galaxies

    NARCIS (Netherlands)

    Loenen, A. F.; Spaans, M.; Baan, W. A.; Meijerink, R.

    Aims. Molecular emission lines originating in the nuclei of luminous infra-red galaxies are used to determine the physical properties of the nuclear ISM in these systems. Methods. A large observational database of molecular emission lines is compared with model predictions that include heating by UV

  1. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    OpenAIRE

    Yixin H Ye; Stephen F Chenoweth; Elizabeth A McGraw

    2009-01-01

    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide...

  2. Susceptibility to DNA damage as a molecular mechanism for non-syndromic cleft lip and palate.

    Directory of Open Access Journals (Sweden)

    Gerson Shigeru Kobayashi

    Full Text Available Non-syndromic cleft lip/palate (NSCL/P is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88×10(-2-5.02×10(-9. This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show for the first time that cellular defences against DNA damage may take part in determining the susceptibility to NSCL/P. These results are in accordance with the hypothesis of aetiological overlap between this malformation and cancer, and suggest a new pathogenic mechanism for the disease.

  3. Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs.

    Science.gov (United States)

    Quesne, Matthew G; Borowski, Tomasz; de Visser, Sam P

    2016-02-18

    Nature has developed large groups of enzymatic catalysts with the aim to transfer substrates into useful products, which enables biosystems to perform all their natural functions. As such, all biochemical processes in our body (we drink, we eat, we breath, we sleep, etc.) are governed by enzymes. One of the problems associated with research on biocatalysts is that they react so fast that details of their reaction mechanisms cannot be obtained with experimental work. In recent years, major advances in computational hardware and software have been made and now large (bio)chemical systems can be studied using accurate computational techniques. One such technique is the quantum mechanics/molecular mechanics (QM/MM) technique, which has gained major momentum in recent years. Unfortunately, it is not a black-box method that is easily applied, but requires careful set-up procedures. In this work we give an overview on the technical difficulties and caveats of QM/MM and discuss work-protocols developed in our groups for running successful QM/MM calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  5. Molecular mechanics and quantum mechanical modeling of hexane soot structure and interactions with pyrene

    Directory of Open Access Journals (Sweden)

    Kubicki JD

    2000-09-01

    Full Text Available Molecular simulations (energy minimizations and molecular dynamics of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1 were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2 and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3 force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH, such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.

  6. Study of effect of gamma radiation on molecular weight and mechanical properties of PHB and PHNV

    International Nuclear Information System (INIS)

    Fechine, Guilhermino J.M.; Terence, Mauro C.; Rabello, M.S.; Willen, Renate M.R.

    2011-01-01

    The effect of gamma radiation on molecular weight and mechanical properties (tensile and flexural) of PHB and PHBV samples was investigated. The values of stress and strain at the break point for both mechanical properties indicated that scission molecular reactions were predominant in PHB and PHBV samples submitted to gamma radiation. These results were confirmed by Size Exclusion Chromatography (SEC) analysis. (author)

  7. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  8. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, K.Y.; Zhang, G.Q.

    2010-01-01

    Molecular dynamics (MD) and molecular mechanical (MM) analysis are carried out to provide reliable and accurate model for emeraldine base polyaniline. This study validate the forcefields and model with the physical and mechanical properties of the polyaniline. The temperature effects on non-bond

  9. Prevalence of pathogens from Mollicutes class in cattle affected by respiratory diseases and molecular characteristics of Mycoplasma bovis field strains

    Directory of Open Access Journals (Sweden)

    Szacawa Ewelina

    2016-12-01

    Full Text Available Introduction: Mycoplasma bovis is one of the main pathogens involved in cattle pneumonia. Other mycoplasmas have also been directly implicated in respiratory diseases in cattle. The prevalence of different Mycoplasma spp. in cattle affected by respiratory diseases and molecular characteristics of M. bovis field strains were evaluated. Material and Methods: In total, 713 nasal swabs from 73 cattle herds were tested. The uvrC gene fragment was amplified by PCR and PCR products were sequenced. PCR/DGGE and RAPD were performed. Results: It was found that 39 (5.5% samples were positive for M. bovis in the PCR and six field strains had point nucleotide mutations. Additionally, the phylogenetic analysis of 20 M. bovis field strains tested with RAPD showed two distinct groups of M. bovis strains sharing only 3.8% similarity. PCR/DGGE analysis demonstrated the presence of bacteria belonging to the Mollicutes class in 79.1% of DNA isolates. The isolates were identified as: Mycoplasma bovirhinis, M. dispar, M. bovis, M. canis, M. arginini, M. canadense, M. bovoculi, M. alkalescens, and Ureaplasma diversum. Conclusion: Different Mycoplasma spp. strains play a crucial role in inducing respiratory diseases in cattle.

  10. A quantum-mechanics molecular-mechanics scheme for extended systems.

    Science.gov (United States)

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  11. A quantum-mechanics molecular-mechanics scheme for extended systems

    International Nuclear Information System (INIS)

    Hunt, Diego; Scherlis, Damián A; Sanchez, Veronica M

    2016-01-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car–Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO 2 anatase (1 0 1) solid–liquid interface. This investigation suggests that the inclusion of a second monolayer of H 2 O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces. (paper)

  12. Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study.

    Science.gov (United States)

    Zhang, Ruiming; Shi, Xiangli; Sun, Yanhui; Zhang, Qingzhu; Wang, Wenxing

    2018-05-17

    The present study delineated the dehydrogenation mechanism of cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDBPH) and cis-2,3-dihydro-2,3-dihydroxy-4,4'-dichlorobiphenyl (2,3-DD-4,4'-DBPH) by Pandoraea pnomenusa strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) in atomistic detail. The enzymatic process was investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Five different snapshots were extracted and calculated, which revealed that the Boltzmann-weighted average barriers of 2,3-DDBPH and 2,3-DD-4,4'-DBPH dehydrogenation processes are 10.7 and 11.5 kcal mol -1 , respectively. The established dehydrogenation mechanism provides new insight into the degradation processes of other chlorinated 2,3-DDBPH. In addition to Asn115, Ser142, and Lys149, the importance of Ile 89, Asn143, Pro184, Met 187, Thr189, and Lue 191 during the dehydrogenation process of 2,3-DDBPH and 2,3-DD-4,4'-DBPH were also highlighted to search for promising mutation targets for improving the catalytic efficiency of BphB. Copyright © 2018. Published by Elsevier Ltd.

  13. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  14. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.

    Science.gov (United States)

    Chapuy, Bjoern; Stewart, Chip; Dunford, Andrew J; Kim, Jaegil; Kamburov, Atanas; Redd, Robert A; Lawrence, Mike S; Roemer, Margaretha G M; Li, Amy J; Ziepert, Marita; Staiger, Annette M; Wala, Jeremiah A; Ducar, Matthew D; Leshchiner, Ignaty; Rheinbay, Ester; Taylor-Weiner, Amaro; Coughlin, Caroline A; Hess, Julian M; Pedamallu, Chandra S; Livitz, Dimitri; Rosebrock, Daniel; Rosenberg, Mara; Tracy, Adam A; Horn, Heike; van Hummelen, Paul; Feldman, Andrew L; Link, Brian K; Novak, Anne J; Cerhan, James R; Habermann, Thomas M; Siebert, Reiner; Rosenwald, Andreas; Thorner, Aaron R; Meyerson, Matthew L; Golub, Todd R; Beroukhim, Rameen; Wulf, Gerald G; Ott, German; Rodig, Scott J; Monti, Stefano; Neuberg, Donna S; Loeffler, Markus; Pfreundschuh, Michael; Trümper, Lorenz; Getz, Gad; Shipp, Margaret A

    2018-04-30

    Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.

  15. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    Science.gov (United States)

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  16. AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening

    Directory of Open Access Journals (Sweden)

    Pajeva Ilza

    2008-10-01

    Full Text Available Abstract Background Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization. Results The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection