WorldWideScience

Sample records for pathogenic rna viral

  1. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  2. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication.

    Directory of Open Access Journals (Sweden)

    Peng-Nien Huang

    2017-05-01

    Full Text Available Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR in host cells. This study found that enterovirus A71 (EVA71 utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1, a key endoplasmic reticulum protein (ER involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice. These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.

  3. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    OpenAIRE

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by...

  4. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection.

    Science.gov (United States)

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-11-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American

  5. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts.

    Science.gov (United States)

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2013-05-01

    Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.

  6. Viral pathogen discovery

    Science.gov (United States)

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  7. Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal

    OpenAIRE

    Narayanan, Krishna; Chen, Chun-Jen; Maeda, Junko; Makino, Shinji

    2003-01-01

    For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into vi...

  8. Rescue of foot-and-mouth disease viruses that are pathogenic for cattle from preserved viral RNA samples.

    Directory of Open Access Journals (Sweden)

    Graham J Belsham

    Full Text Available BACKGROUND: Foot and mouth disease is an economically important disease of cloven-hoofed animals including cattle, sheep and pigs. It is caused by a picornavirus, foot-and-mouth disease virus (FMDV, which has a positive sense RNA genome which, when introduced into cells, can initiate virus replication. PRINCIPAL FINDINGS: A system has been developed to rescue infectious FMDV from RNA preparations generated from clinical samples obtained under experimental conditions and then applied to samples collected in the "field". Clinical samples from suspect cases of foot-and-mouth disease (FMD were obtained from within Pakistan and Afghanistan. The samples were treated to preserve the RNA and then transported to National Veterinary Institute, Lindholm, Denmark. Following RNA extraction, FMDV RNA was quantified by real-time RT-PCR and samples containing significant levels of FMDV RNA were introduced into susceptible cells using electroporation. Progeny viruses were amplified in primary bovine thyroid cells and characterized using antigen ELISA and also by RT-PCR plus sequencing. FMD viruses of three different serotypes and multiple lineages have been successfully rescued from the RNA samples. Two of the rescued viruses (of serotype O and Asia 1 were inoculated into bull calves under high containment conditions. Acute clinical disease was observed in each case which spread rapidly from the inoculated calves to in-contact animals. Thus the rescued viruses were highly pathogenic. The availability of the rescued viruses enabled serotyping by antigen ELISA and facilitated genome sequencing. CONCLUSIONS: The procedure described here should improve the characterization of FMDVs circulating in countries where the disease is endemic and thus enhance disease control globally.

  9. Rescue of foot-and-mouth disease viruses that are pathogenic for cattle from preserved viral RNA samples

    DEFF Research Database (Denmark)

    Belsham, Graham; Jamal, Syed Muhammad; Tjørnehøj, Kirsten

    2011-01-01

    Background: Foot and mouth disease is an economically important disease of cloven-hoofed animals including cattle, sheep and pigs. It is caused by a picornavirus, foot-and-mouth disease virus (FMDV), which has a positive sense RNA genome which, when introduced into cells, can initiate virus...... replication. Principal Findings: A system has been developed to rescue infectious FMDV from RNA preparations generated from clinical samples obtained under experimental conditions and then applied to samples collected in the ‘‘field’’. Clinical samples from suspect cases of foot-and-mouth disease (FMD) were...... obtained from within Pakistan and Afghanistan. The samples were treated to preserve the RNA and then transported to National Veterinary Institute, Lindholm, Denmark. Following RNA extraction, FMDV RNA was quantified by real-time RT-PCR and samples containing significant levels of FMDV RNA were introduced...

  10. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  11. Viral evasion of intracellular DNA and RNA sensing

    Science.gov (United States)

    Chan, Ying Kai; Gack, Michaela U.

    2016-01-01

    The co-evolution of viruses with their hosts has led to the emergence of viral pathogens that are adept at evading or actively suppressing host immunity. Pattern recognition receptors (PRRs) are key components of antiviral immunity that detect conserved molecular features of viral pathogens and initiate signalling that results in the expression of antiviral genes. In this Review, we discuss the strategies that viruses use to escape immune surveillance by key intracellular sensors of viral RNA or DNA, with a focus on RIG-I-like receptors (RLRs), cyclic GMP–AMP synthase (cGAS) and interferon-γ (IFNγ)-inducible protein 16 (IFI16). Such viral strategies include the sequestration or modification of viral nucleic acids, interference with specific post-translational modifications of PRRs or their adaptor proteins, the degradation or cleavage of PRRs or their adaptors, and the sequestration or relocalization of PRRs. An understanding of viral immune-evasion mechanisms at the molecular level may guide the development of vaccines and antivirals. PMID:27174148

  12. Human viral pathogens are pervasive in wastewater treatment center aerosols.

    Science.gov (United States)

    Brisebois, Evelyne; Veillette, Marc; Dion-Dupont, Vanessa; Lavoie, Jacques; Corbeil, Jacques; Culley, Alexander; Duchaine, Caroline

    2018-05-01

    Wastewater treatment center (WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols, despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared. We detected four of the eleven viruses tested, including human adenovirus (hAdV), rotavirus, hepatitis A virus (HAV) and Herpes Simplex virus type 1 (HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance. Copyright © 2017. Published by Elsevier B.V.

  13. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2011-05-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  14. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  15. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Science.gov (United States)

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  16. Bloodborne Viral Pathogen Contamination in the Era of Laboratory Automation.

    Science.gov (United States)

    Bryan, Andrew; Cook, Linda; Atienza, Ederlyn E; Kuypers, Jane; Cent, Anne; Baird, Geoffrey S; Coombs, Robert W; Jerome, Keith R; Wener, Mark H; Butler-Wu, Susan M

    2016-07-01

    The CDC states that laboratory testing for persons under investigation for Ebola virus disease can be safely performed using automated laboratory instruments by adhering to bloodborne pathogen practices. We therefore sought to investigate the levels of viral contamination of a total laboratory automation (TLA) system to guide risk mitigation strategies for handling infectious agents. Environmental swabs followed by PCR for hepatitis B (HBV) and hepatitis C (HCV) viruses were taken from a chemistry TLA system during routine clinical use and after running a small number of high-titer HCV samples. Control experiments were performed to ensure the recovery of DNA and RNA viruses by swabs from a representative nonporous surface. Of 79 baseline swabs for nucleic acids performed on the TLA system, 10 were positive for HBV and 8 for HCV. Viral nucleic acid was consistently detected from swabs taken from the distal inside surface of the decapper discharge chute, with areas adjacent to the decapper instrument and the centrifuge rotor also positive for HBV or HCV nucleic acid. Contamination was occasionally detected on exposed surfaces in areas without protective barriers between samples and personnel. After running known HCV-positive samples, at least one additional site of contamination was detected on an exposed area of the line. A low level of viral contamination of automated clinical laboratory equipment occurs in clinical use. Given the risks associated with highly infectious agents, there is a need for risk-mitigation procedures when handling all samples. © 2016 American Association for Clinical Chemistry.

  17. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    Science.gov (United States)

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  18. Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis

    International Nuclear Information System (INIS)

    Kolakofsky, Daniel; Le Mercier, Philippe; Iseni, Frederic; Garcin, Dominique

    2004-01-01

    mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in that the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template

  19. siRNA as an alternative therapy against viral infections

    Directory of Open Access Journals (Sweden)

    Hana A. Pawestri

    2012-07-01

    Full Text Available siRNA (small interfering ribonucleic acid adalah sebuah metode yang dapat digunakan untuk mengatasi infeksi virus yang prinsip kerjanya berdasarkan metode komplementer dsRNA (double stranded RNA pada RNA virus sehingga menyebabkan kegagalan proses transkripsi (silencing.  Untuk lebih memahami bagaimana proses kerja dan ulasan penelitian siRNA yang terkini, di dalam tulisan ini ditinjau siRNA sebagai metoda yang dikembangkan untuk mengatasi infeksi dan meneliti efeknya pada replikasi beberapa virus seperti Hepatitis C, Influenza, Polio, dan HIV. Kami menemukan bahwa urutan basa nukleotida dari target siRNA sangat penting. Hal tersebut harus homolog dengan target RNA virus dan tidak menganggu RNA sel inang. Untuk mengurangi kegagalan terapi siRNA oleh adanya mutasi, digunakan beberapa siRNA yang sekaligus menjadi target RNA virus yang berbeda. Namun demikian, terapi siRNA masih menghadapi beberapa kesulitan seperti pengiriman (transfer khusus ke jaringan yang terinfeksi dan perlindungan siRNA dari perusakan oleh nuklease. Berdasarkan beberapa penelitian yang telah dilakukan, siRNA dapat digunakan sebagai alternatif untuk mengobati infeksi yang disebabkan oleh virus. Terapi tersebut direkomendasikan untuk dilakukan uji klinis dengan memperhatikan beberapa aspek seperti desain siRNA dan mekanisme transfer. (Health Science Indones 2010; 1: 58 - 65 Kata kunci: siRNA, infeksi virus, target virus, alternatif terapi Abstract SiRNA is a promising method to deal with viral infections. The principle of siRNA is based on the complementarily of (synthetic dsRNA to an RNA virus which, in consequence, will be silenced. Many studies are currently examining the effects of siRNA on replication of diverse virus types like Hepatitis C, polio and HIV. The choice of the siRNA target sequence is crucial. It has to be very homologous to the target RNA, but it cannot target RNA of the host cell. To reduce the possibility for the virus to escape from the siRNA therapy by

  20. Viral tRNA Mimicry from a Biocommunicative Perspective

    Directory of Open Access Journals (Sweden)

    Ascensión Ariza-Mateos

    2017-12-01

    Full Text Available RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA’s mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs’ internal tRNA-like signals, from their current significance to that

  1. Differential expression of miRNA-423-5p in serum from cattle challenged with bovine viral diarrhea virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that causes respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. However, microRNA profiles in cattle exposed to BVDV are currently nonexistent and few studies have been reported; therefore,...

  2. Potyviral VPg enhances viral RNA Translation and inhibits reporter mRNA translation in planta.

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I; Mäkinen, Kristiina

    2011-09-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.

  3. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta▿

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I.; Mäkinen, Kristiina

    2011-01-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5′ untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation. PMID:21697470

  4. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    2009-03-01

    Full Text Available Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes.

  5. Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA.

    Science.gov (United States)

    Neeleman, L; Olsthoorn, R C; Linthorst, H J; Bol, J F

    2001-12-04

    On entering a host cell, positive-strand RNA virus genomes have to serve as messenger for the translation of viral proteins. Efficient translation of cellular messengers requires interactions between initiation factors bound to the 5'-cap structure and the poly(A) binding protein bound to the 3'-poly(A) tail. Initiation of infection with the tripartite RNA genomes of alfalfa mosaic virus (AMV) and viruses from the genus Ilarvirus requires binding of a few molecules of coat protein (CP) to the 3' end of the nonpolyadenylated viral RNAs. Moreover, infection with the genomic RNAs can be initiated by addition of the subgenomic messenger for CP, RNA 4. We report here that extension of the AMV RNAs with a poly(A) tail of 40 to 80 A-residues permitted initiation of infection independently of CP or RNA 4 in the inoculum. Specifically, polyadenylation of RNA 1 relieved an apparent bottleneck in the translation of the viral RNAs. Translation of RNA 4 in plant protoplasts was autocatalytically stimulated by its encoded CP. Mutations that interfered with CP binding to the 3' end of viral RNAs reduced translation of RNA 4 to undetectable levels. Possibly, CP of AMV and ilarviruses stimulates translation of viral RNAs by acting as a functional analogue of poly(A) binding protein or other cellular proteins.

  6. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Jennifer L. [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Diamond, Michael S., E-mail: diamond@borcim.wustl.edu [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110 (United States); Pathology & Immunology, Washington University School of Medicine, St Louis., MO 63110 (United States); The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis., MO 63110 (United States)

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  7. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    Science.gov (United States)

    2016-05-26

    Chapter 14. Intracellular detection of viral transcription and replication using RNA FISH i. Summary/Abstract Many hemorrhagic fever viruses...only allow entirely new investigations into the replication of these viruses, but also how this method can be applied to any virus with a known...localization, TurboFISH, hemorrhagic fever virus replication 1. Introduction RNA FISH was developed as a method to visualize cellular RNA by binding a

  8. Role of RNase MRP in viral RNA degradation and RNA recombination.

    Science.gov (United States)

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  9. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    Science.gov (United States)

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  10. Anti-viral RNA silencing: do we look like plants ?

    Directory of Open Access Journals (Sweden)

    Lecellier Charles-Henri

    2006-01-01

    Full Text Available Abstract The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(miRNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (siRNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.

  11. Porcine semen as a vector for transmission of viral pathogens.

    Science.gov (United States)

    Maes, Dominiek; Van Soom, Ann; Appeltant, Ruth; Arsenakis, Ioannis; Nauwynck, Hans

    2016-01-01

    Different viruses have been detected in porcine semen. Some of them are on the list of the World Organization for Animal Health (OIE), and consequently, these pathogens are of socioeconomic and/or public health importance and are of major importance in the international trade of animals and animal products. Artificial insemination (AI) is one of the most commonly used assisted reproductive technologies in pig production worldwide. This extensive use has enabled pig producers to benefit from superior genetics at a lower cost compared to natural breeding. However, the broad distribution of processed semen doses for field AI has increased the risk of widespread transmission of swine viral pathogens. Contamination of semen can be due to infections of the boar or can occur during semen collection, processing, and storage. It can result in reduced semen quality, embryonic mortality, endometritis, and systemic infection and/or disease in the recipient female. The presence of viral pathogens in semen can be assessed by demonstration of viable virus, nucleic acid of virus, or indirectly by measuring serum antibodies in the boar. The best way to prevent disease transmission via the semen is to assure that the boars in AI centers are free from the disease, to enforce very strict biosecurity protocols, and to perform routine health monitoring of boars. Prevention of viral semen contamination should be the primary focus because it is easier to prevent contamination than to eliminate viruses once present in semen. Nevertheless, research and development of novel semen processing treatments such as single-layer centrifugation is ongoing and may allow in the future to decontaminate semen. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The application of bacteriophages as novel indicators of viral pathogens in wastewater treatment systems.

    Science.gov (United States)

    Dias, Edgard; Ebdon, James; Taylor, Huw

    2018-02-01

    Many wastewater treatment technologies have been shown to remove bacterial pathogens more effectively than viral pathogens and, in aquatic environments, levels of traditional faecal indicator bacteria (FIB) do not appear to correlate consistently with levels of human viral pathogens. There is, therefore, a need for novel viral indicators of faecal pollution and surrogates of viral pathogens, especially given the increasing importance of indirect and direct wastewater reuse. Potential candidates include bacteriophages (phages) and the study described here sought to elucidate the relationship between three groups of phages (somatic coliphages (SOMPH), F-RNA coliphages (F-RNAPH) and human-specific phages infecting B. fragilis (Bf124PH) - enumeration using double layer agar technique) and viral pathogens (human adenovirus (HuAdV) and norovirus (NoV) - enumeration using molecular methods) through full-scale municipal wastewater treatment processes. FIB (faecal coliforms (FC) and intestinal enterococci (ENT) - enumeration using membrane filtration) were also monitored. Samples were collected every fortnight, during a twelve-month period, at each stage of four full-scale wastewater treatment plants (WWTP) in southern England (two activated sludge (AS) and two trickling filter (TF) plants) (n = 360 samples). FIB and SOMPH were consistently found in all samples tested, whereas F-RNAPH, Bf124PH and HuAdV were less frequently detected, especially following AS treatment. The detection rate of NoV was low and consequently discussion of this group of viruses is limited. Concentrations of SOMPH and FIB were statistically higher (p value F-RNAPH, Bf124PH and HuAdV in raw wastewater. FIB were more effectively removed than phages in both systems. Removal rates of HuAdV were similar to those of phages at the secondary treatment stage of both systems. In TF systems, HuAdV were removed at the same rate as F-RNAPH, but at lower rates than SOMPH and Bf124PH. The findings suggest that

  13. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  14. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  15. Respiratory viral RNA on toys in pediatric office waiting rooms.

    Science.gov (United States)

    Pappas, Diane E; Hendley, J Owen; Schwartz, Richard H

    2010-02-01

    Toys in pediatric office waiting rooms may be fomites for transmission of viruses. Eighteen samples were taken from office objects on 3 occasions. Samples were tested for presence of picornavirus (either rhinovirus or enterovirus) on all 3 sample days; in addition, January samples were tested for respiratory syncytial virus and March samples were tested for influenza A and B. In addition, 15 samples were obtained from the sick waiting room before and after cleaning. Polymerase chain reaction was used to detect picornavirus, respiratory syncytial virus, and influenza A or B virus. Finally, 20 samples were obtained from the fingers of a researcher after handling different toys in the sick waiting room, and samples were then obtained from all the same toys; all samples were tested for picornavirus by polymerase chain reaction. Viral RNA was detected on 11 of 52 (21%) of toys sampled. Ten of the positives were picornavirus; 1 was influenza B virus. Three (30%) of 10 toys from the new toy bag, 6 of 30 (20%) in the sick child waiting room, and 2 of 12 (17%) in the well child waiting room were positive. Six (40%) of 15 toys in the sick waiting room were positive for picornaviral RNA before cleaning; after cleaning, 4 (27%) of 15 were positive in spite of the fact that RNA was removed from 4 of 6 of the original positives. Three (15%) of 20 toys in the sick waiting room were positive for picornaviral RNA, but RNA was not transferred to the fingers of the investigator who handled these toys. About 20% of the objects in a pediatric office may be contaminated with respiratory viral RNA, most commonly picornavirus RNA. Cleaning with a disinfectant cloth was only modestly effective in removing the viral RNA from the surfaces of toys, but transfer of picornaviral RNA from toys to fingers was inefficient.

  16. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    Science.gov (United States)

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  17. De novo identification of viral pathogens from cell culture hologenomes

    Directory of Open Access Journals (Sweden)

    Patowary Ashok

    2012-01-01

    Full Text Available Abstract Background Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. Findings We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. Conclusions Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

  18. Extended viral shedding of a low pathogenic avian influenza virus by striped skunks (Mephitis mephitis.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Root

    Full Text Available BACKGROUND: Striped skunks (Mephitis mephitis are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined. METHODOLOGY/PRINCIPAL FINDINGS: Striped skunks were experimentally infected with a low pathogenic (LP H4N6 avian influenza virus (AIV and monitored for 20 days post infection (DPI. All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤ 10(6.02 PCR EID50 equivalent/mL and ≤ 10(5.19 PCR EID50 equivalent/mL, respectively. Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI. CONCLUSIONS/SIGNIFICANCE: These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations.

  19. Who Regulates Whom? An Overview of RNA Granules and Viral Infections

    Directory of Open Access Journals (Sweden)

    Natalia Poblete-Durán

    2016-06-01

    Full Text Available After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs, which are translationally silent sites of RNA triage and processing bodies (PBs, which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs.

  20. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    Science.gov (United States)

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an

  1. MicroRNA Expression during Viral Infection or PolyI:C Stimulation in a Fish Model

    DEFF Research Database (Denmark)

    Kristensen, Lasse Bøgelund Juel; Schyth, Brian Dall; Lorenzen, Niels

    Fish are important as small vertebrate models for studying various aspects of development and disease. MicroRNA regulation in fish has so far received attention especially in studies of their expression and function during embryonic development. In the studies carried out at the National Veterinary...... Institute in Århus we aim at using fish models for studying microRNA regulation during viral infection. In the studies presented here we make use of a qPCR method to detect miRNAs in fish cells. We present results regarding the expression of the immunologically relevant microRNAs, miR-155, miR-146a and mi......R-146b in fish cells during infection with the fish pathogenic virus viral hemorrhagic septicemia virus (VHSV) and during immune stimulation with double stranded RNA (polyI:C). We highlight the need of finding stable normalization genes for microRNA detection....

  2. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA:Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged......Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...

  3. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense

    Directory of Open Access Journals (Sweden)

    Sheng-Rui Liu

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

  4. Heterogeneous nuclear ribonuclear protein K interacts with Sindbis virus nonstructural proteins and viral subgenomic mRNA

    International Nuclear Information System (INIS)

    Burnham, Andrew J.; Gong, Lei; Hardy, Richard W.

    2007-01-01

    Alphaviruses are a group of arthropod-borne human and animal pathogens that can cause epidemics of significant public health and economic consequence. Alphavirus RNA synthesis requires four virally encoded nonstructural proteins and probably a number of cellular proteins. Using comparative two-dimensional electrophoresis we were able to identify proteins enriched in cytoplasmic membrane fractions containing viral RNA synthetic complexes following infection with Sindbis virus. Our studies demonstrated the following: (i) the host protein hnRNP K is enriched in cytoplasmic membrane fractions following Sindbis virus infection, (ii) viral nonstructural proteins co-immunoprecipitate with hnRNP K, (iii) nsP2 and hnRNP K co-localize in the cytoplasm of Sindbis virus infected cells, (iv) Sindbis virus subgenomic mRNA, but not genomic RNA co-immunoprecipitates with hnRNP K, (v) viral RNA does not appear to be required for the interaction of hnRNP K with the nonstructural proteins. Potential functions of hnRNP K during virus replication are discussed

  5. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Science.gov (United States)

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  6. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens

    International Nuclear Information System (INIS)

    Pruss, Gail J.; Lawrence, Christopher B.; Bass, Troy; Li Qingshun Q.; Bowman, Lewis H.; Vance, Vicki

    2004-01-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms

  7. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens.

    Science.gov (United States)

    Pruss, Gail J; Lawrence, Christopher B; Bass, Troy; Li, Qingshun Q; Bowman, Lewis H; Vance, Vicki

    2004-03-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms.

  8. Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in ...

    African Journals Online (AJOL)

    Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in a tertiary health facility in Maiduguri, Northeastern Nigeria. ... This study aims to estimate the HIV-1 RNA viral load and impact of anti TB therapy (ATT) ... HOW TO USE AJOL.

  9. DEVELOPMENT OF BIOMARKER OF EXPOSURE TO VIRAL PATHOGENS

    Science.gov (United States)

    Interferon gamma (IFN-γ) was selected as a biomarker for a viral exposure study. Twelve-week-old BALB/c mice were intraperitoneally injected with 0.2ml of 104 PFU/ml of coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS on...

  10. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    Science.gov (United States)

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Baculovirus enhancins and their role in viral pathogenicity. Chapter 9

    Science.gov (United States)

    James M. Slavicek

    2012-01-01

    Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from the order Lepidoptera and also insects in the orders Hymenoptera and Diptera. Baculoviruses have been used to control insect pests on agricultural crops and forests around the world. Efforts have been ongoing for the last two decades to develop strains of baculoviruses with...

  13. Molecular Tracing of Viral Pathogen in Aquaculture (MOLTRAQ): a new EMIDA project

    DEFF Research Database (Denmark)

    Jensen, B. Bang; Aldrin, M.; Avarre, M. C.

    2012-01-01

    a generic approach to viral disease control by using information on epidemiological and phylogenetic attributes from several important aquatic animal viruses. The project will i) generate and use spatio-temporal epidemiological data, phylogeographic data and gene expression data for important host......-viral pathogen systems to identify important factors affecting the spread of diseases in aquaculture, and ii) integrate these in scenario simulation models to assess effects of various control strategies for selected host-pathogen systems. The project consists of six workpackages: WP 1: Project co...

  14. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins.

    Science.gov (United States)

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul

    2017-04-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins

    Science.gov (United States)

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann

    2017-01-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950

  16. Removal of phages and viral pathogens in a full-scale MBR: Implications for wastewater reuse and potable water.

    Science.gov (United States)

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2016-09-01

    The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

    Science.gov (United States)

    Herberg, Jethro A; Kaforou, Myrsini; Wright, Victoria J; Shailes, Hannah; Eleftherohorinou, Hariklia; Hoggart, Clive J; Cebey-López, Miriam; Carter, Michael J; Janes, Victoria A; Gormley, Stuart; Shimizu, Chisato; Tremoulet, Adriana H; Barendregt, Anouk M; Salas, Antonio; Kanegaye, John; Pollard, Andrew J; Faust, Saul N; Patel, Sanjay; Kuijpers, Taco; Martinón-Torres, Federico; Burns, Jane C; Coin, Lachlan J M; Levin, Michael

    Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript

  18. Influenza virus gene expression: viral RNA replication in vivo and in vitro

    International Nuclear Information System (INIS)

    Shapiro, G.I.

    1987-01-01

    To develop an overall scheme for the control of influenza virus gene expression, single-stranded M13 DNAs specific for the various genomic segments were used to analyze the synthesis of virus-specific RNAs in infected cells. The results showed that virus infection is divided into two distinct phases. During the early phase, the syntheses of specific virion RNAs (vRNAs), viral mRNAs, and viral proteins were coupled. This phase lasted for 2.5 hours in BHK-21 cells, the time when the rate of synthesis of all the viral mRNAs was maximal. During the late phase, the synthesis of all the vRNAs remained at or near maximum, whereas the rate of synthesis of all the viral mRNAs declined dramatically. Viral mRNA and protein syntheses were also not coupled, as the synthesis of all the viral proteins continued at maximum levels, indicating that protein synthesis during this phase was directed principally by previously synthesized viral mRNAs. Pulses with [ 3 H]uridine and nonaqueous fractionation of cells were used to show that influenza vRNA, like viral mRNAs, are synthesized in the nucleus and efficiently transported to the cytoplasm. In contrast, the full-length transcripts of the vRNAs, the templates for new vRNA synthesis, were synthesized only at early times, and remained sequestered in the nucleus to direct vRNA synthesis throughout infection

  19. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  20. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions

    Directory of Open Access Journals (Sweden)

    Daisy W. Leung

    2015-04-01

    Full Text Available During viral RNA synthesis, Ebola virus (EBOV nucleoprotein (NP alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48 that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.

  1. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions.

    Science.gov (United States)

    Leung, Daisy W; Borek, Dominika; Luthra, Priya; Binning, Jennifer M; Anantpadma, Manu; Liu, Gai; Harvey, Ian B; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed S; Chiu, Wah; Davey, Robert A; Otwinowski, Zbyszek; Basler, Christopher F; Amarasinghe, Gaya K

    2015-04-21

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  3. Presence of viral RNA and proteins in exosomes from the cellular clones resistant to Rift Valley Fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Noor eAhsan

    2016-02-01

    Full Text Available Rift Valley Fever Virus (RVFV is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent HIV-1 and HTLV-1 infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-кB pathway, leading to cell proliferation and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV. These clones contained normal markers (i.e. CD63 for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome. The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of recipient cells (T- cells and monocytic cells showed

  4. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  6. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

    Directory of Open Access Journals (Sweden)

    Sushmita Poddar

    2014-06-01

    Full Text Available To date the Simian Virus 40 (SV40 is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

  7. Impact of collection method on assessment of semen HIV RNA viral load.

    Directory of Open Access Journals (Sweden)

    Brendan J W Osborne

    Full Text Available The blood HIV RNA viral load is the best-defined predictor of HIV transmission, in part due to ease of measurement and the correlation of blood and genital tract (semen or cervico-vaginal viral load, although recent studies found semen HIV RNA concentration to be a stronger predictor of HIV transmission. There is currently no standardized method for semen collection when measuring HIV RNA concentration. Therefore, we compared two collection techniques in order to study of the impact of antiretroviral therapy on the semen viral load.Semen was collected by masturbation from HIV-infected, therapy-naïve men who have sex with men (MSM either undiluted (Visit 1 or directly into transport medium (Visit 2. Seminal plasma was then isolated, and the HIV RNA concentration obtained with each collection technique was measured and corrected for dilution if necessary. Collection of semen directly into transport medium resulted in a median HIV RNA viral load that was 0.4 log10 higher than undiluted samples.The method of semen collection is an important consideration when quantifying the HIV RNA viral load in this compartment.

  8. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  9. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus.

    Science.gov (United States)

    Wang, Fangquan; Li, Wenqi; Zhu, Jinyan; Fan, Fangjun; Wang, Jun; Zhong, Weigong; Wang, Ming-Bo; Liu, Qing; Zhu, Qian-Hao; Zhou, Tong; Lan, Ying; Zhou, Yijun; Yang, Jie

    2016-05-11

    Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21-24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  10. HIV-1 nef suppression by virally encoded microRNA

    Directory of Open Access Journals (Sweden)

    Brisibe Ebiamadon

    2004-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are 21~25-nucleotides (nt long and interact with mRNAs to trigger either translational repression or RNA cleavage through RNA interference (RNAi, depending on the degree of complementarity with the target mRNAs. Our recent study has shown that HIV-1 nef dsRNA from AIDS patients who are long-term non-progressors (LTNPs inhibited the transcription of HIV-1. Results Here, we show the possibility that nef-derived miRNAs are produced in HIV-1 persistently infected cells. Furthermore, nef short hairpin RNA (shRNA that corresponded to a predicted nef miRNA (~25 nt, miR-N367 can block HIV-1 Nef expression in vitro and the suppression by shRNA/miR-N367 would be related with low viremia in an LTNP (15-2-2. In the 15-2-2 model mice, the weight loss, which may be rendered by nef was also inhibited by shRNA/miR-N367 corresponding to suppression of nef expression in vivo. Conclusions These data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV-1 virulence through the RNAi pathway.

  11. Antiviral RNA silencing viral counter defense in plants

    NARCIS (Netherlands)

    Bucher, E.C.

    2006-01-01

    The research described in this thesis centres around the mechanism of RNA silencing in relation to virus-host interaction, an area of increasing importance. It shows how this recently disclosed mechanism can be used to produce virus-resistant plants. Based on the activity of the RNA silencing

  12. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-01-01

    Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants. PMID:15904535

  13. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues.

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-05-18

    Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  14. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Directory of Open Access Journals (Sweden)

    Aveling Terry

    2005-05-01

    Full Text Available Abstract Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  15. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.

  16. Torque teno virus: an improved indicator for viral pathogens in drinking waters.

    Science.gov (United States)

    Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C

    2008-10-03

    Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist

  17. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.

    Science.gov (United States)

    Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J

    2017-05-01

    Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    Directory of Open Access Journals (Sweden)

    Laura Hewitson

    2014-01-01

    Full Text Available In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV. Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA, was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR was conducted. The LLMDA technology was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae, Bacteroidaceae, and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.

  19. Equivalence of self- and staff-collected nasal swabs for the detection of viral respiratory pathogens.

    Directory of Open Access Journals (Sweden)

    Manas K Akmatov

    Full Text Available BACKGROUND: The need for the timely collection of diagnostic biosamples during symptomatic episodes represents a major obstacle to large-scale studies on acute respiratory infection (ARI epidemiology. This may be circumvented by having the participants collect their own nasal swabs. We compared self- and staff-collected swabs in terms of swabbing quality and detection of viral respiratory pathogens. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a prospective study among employees of our institution during the ARI season 2010/2011 (December-March. Weekly emails were sent to the participants (n = 84, reminding them to come to the study center in case of new symptoms. The participants self-collected an anterior nasal swab from one nostril, and trained study personnel collected one from the other nostril. The participants self-collected another two swabs (one from each nostril on a subsequent day. Human β-actin DNA concentration was determined in the swabs as a quality control. Viral respiratory pathogens were detected by multiplex RT-PCR (Seeplex RV15 kit, Seegene, Eschborn, Germany. Of 84 participants, 56 (67% reported at least one ARI episode, 18 participants two, and one participant three. Self-swabbing was highly accepted by the participants. The amount of β-actin DNA per swab was higher in the self- than in the staff-collected swabs (p = 0.008. β-actin concentration was lower in the self-swabs collected on day 1 than in those collected on a subsequent day (p<0.0001. A respiratory viral pathogen was detected in 31% (23/75 of staff- and in 35% (26/75 of self-collected swabs (p = 0.36. With both approaches, the most frequently identified pathogens were human rhinoviruses A/B/C (12/75 swabs, 16% and human coronavirus OC43 (4/75 swabs, 5%. There was almost perfect agreement between self- and staff-collected swabs in terms of pathogen detection (agreement = 93%, kappa = 0.85, p<0.0001. CONCLUSIONS/SIGNIFICANCE: Nasal self

  20. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins

    Directory of Open Access Journals (Sweden)

    Marcio Hedil

    2016-07-01

    Full Text Available The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  1. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins.

    Science.gov (United States)

    Hedil, Marcio; Kormelink, Richard

    2016-07-23

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  2. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    Full Text Available MicroRNA (miRNA and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.

  3. Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Science.gov (United States)

    Spanò, M.; Lillo, F.; Miccichè, S.; Mantegna, R. N.

    2008-10-01

    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups, hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact, we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.

  4. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs

    Science.gov (United States)

    Lim, Chun Shen; Brown, Chris M.

    2018-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101

  5. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of a chick bioassay for determination of infectivity of viral pathogens in poultry litter.

    Science.gov (United States)

    Islam, A F M F; Walkden-Brown, S W; Groves, P J; Wells, B

    2013-01-01

    To develop a chicken bioassay to detect infective viral pathogens in poultry litter and to determine the effects of type of chicken and age of exposure, as well as the effect of simulated litter transportation, on the level of viral infectivity detected. A 5 × 2 × 2 factorial design, plus negative controls. Five chicken litters, including two with deliberate contamination (one transported and one not), two chicken types (specific-pathogen-free (SPF) Leghorns and Cobb broilers) and two ages at initial exposure (days 1 and 8). Two replicates of each treatment combination. The 10 chickens in each of 22 isolators were either exposed (20 isolators) or not (2 isolators) to 8 L of previously used or deliberately contaminated poultry litter in two deep scratch trays. At day 35 post-exposure, sera were assayed for antibodies against chicken anaemia virus (CAV), infectious bronchitis virus (IBV), infectious bursal disease virus (IBDV), Newcastle disease virus (NDV) and fowl adenovirus (FAV). Spleen samples were tested for Marek's disease virus (MDV) using real-time polymerase chain reaction. The bioassay detected CAV, IBDV and FAV, but not NDV, IBV or MDV, in chickens exposed to infected litters. Infection in SPF chickens was detected with greater sensitivity than in the broiler chickens. Sensitivity increased with age at exposure in broiler but not SPF chickens. Simulated transportation for 24 h had little effect on pathogen detection. A bioassay based on the exposure of day-old SPF chickens to poultry litter and measurement of seroconversion at day 35 post-exposure is a useful semi-quantitative assay for viral infectivity in poultry litter, with overnight transportation of litter having little effect on the level of viral infectivity detected. This bioassay has applications in research on litter treatment protocols. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  7. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  8. Evolution of Tertiary Structure of Viral RNA Dependent Polymerases

    Czech Academy of Sciences Publication Activity Database

    Černý, Jiří; Černá, B.; Valdés, James J.; Grubhoffer, Libor; Růžek, Daniel

    2014-01-01

    Roč. 9, č. 5 (2014), e96070 E-ISSN 1932-6203 R&D Projects: GA ČR GAP502/11/2116; GA ČR GAP302/12/2490; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Q-BETA replicase * C virus RNA * crystal structure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  9. 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection

    Directory of Open Access Journals (Sweden)

    Bruce W. Banfield

    2014-09-01

    Full Text Available In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field.

  10. Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors

    Science.gov (United States)

    Kaddis Maldonado, Rebecca J.; Parent, Leslie J.

    2016-01-01

    Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag–Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison. PMID:27657110

  11. Occurrence of viral pathogens in Penaeus monodon post-larvae from aquaculture hatcheries

    Directory of Open Access Journals (Sweden)

    Toms C. Joseph

    2015-09-01

    Full Text Available Viral pathogens appear to exert the most significant constraints on the growth and survival of crustaceans under culture conditions. The prevalence of viral pathogens White Spot Syndrome Virus (WSSV, Hepatopancreatic Parvo Virus (HPV, Monodon Baculo Virus (MBV and Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV in Penaeus monodon post-larvae was studied. Samples collected from different hatcheries and also samples submitted by farmers from Kerala were analyzed. Out of 104 samples collected, WSSV was detected in 12.5% of the post-larvae samples. Prevalence of concurrent infections by HPV, MBV and WSSV (either dual or triple infection was present in 60.6% of the total post-larvae tested. Out of the 51 double positives, 98% showed either HPV or IHHNV infection. HPV or IHHNV was detected in 11 post-larval samples showing triple viral infection. This is the first report of IHHNV from India. Result of this study reveals the lack of efficient screening strategies to eradicate viruses in hatchery reared post-larvae.

  12. Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging

    OpenAIRE

    Narayanan, Krishna; Makino, Shinji

    2001-01-01

    Murine coronavirus mouse hepatitis virus (MHV) produces a genome-length mRNA, mRNA 1, and six or seven species of subgenomic mRNAs in infected cells. Among these mRNAs, only mRNA 1 is efficiently packaged into MHV particles. MHV N protein binds to all MHV mRNAs, whereas envelope M protein interacts only with mRNA 1. This M protein-mRNA 1 interaction most probably determines the selective packaging of mRNA 1 into MHV particles. A short cis-acting MHV RNA packaging signal is necessary and suffi...

  13. Replicative homeostasis II: Influence of polymerase fidelity on RNA virus quasispecies biology: Implications for immune recognition, viral autoimmunity and other "virus receptor" diseases

    Directory of Open Access Journals (Sweden)

    Sallie Richard

    2005-08-01

    Full Text Available Abstract Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.

  14. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful

  15. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful molecular motor

  16. Multi-resistance strategy for viral diseases and short hairpin RNA verification method in pigs

    Directory of Open Access Journals (Sweden)

    Jong-nam Oh

    2018-04-01

    Full Text Available Objective Foot and mouth disease (FMD and porcine reproductive and respiratory syndrome (PRRS are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV and PRRS virus (PRRSV, the present study introduced two genetic modification techniques to porcine cells. Methods First, cluster of differentiation 163 (CD163, the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7 gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

  17. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    DEFF Research Database (Denmark)

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...

  18. Detection of Viral RNA in Tissues following Plasma Clearance from an Ebola Virus Infected Patient.

    Directory of Open Access Journals (Sweden)

    Mirella Biava

    2017-01-01

    Full Text Available An unprecedented Ebola virus (EBOV epidemic occurred in 2013-2016 in West Africa. Over this time the epidemic exponentially grew and moved to Europe and North America, with several imported cases and many Health Care Workers (HCW infected. Better understanding of EBOV infection patterns in different body compartments is mandatory to develop new countermeasures, as well as to fully comprehend the pathways of human-to-human transmission. We have longitudinally explored the persistence of EBOV-specific negative sense genomic RNA (neg-RNA and the presence of positive sense RNA (pos-RNA, including both replication intermediate (antigenomic-RNA and messenger RNA (mRNA molecules, in the upper and lower respiratory tract, as compared to plasma, in a HCW infected with EBOV in Sierra Leone, who was hospitalized in the high isolation facility of the National Institute for Infectious Diseases "Lazzaro Spallanzani" (INMI, Rome, Italy. We observed persistence of pos-RNA and neg-RNAs in longitudinally collected specimens of the lower respiratory tract, even after viral clearance from plasma, suggesting possible local replication. The purpose of the present study is to enhance the knowledge on the biological features of EBOV that can contribute to the human-to-human transmissibility and to develop effective intervention strategies. However, further investigation is needed in order to better understand the clinical meaning of viral replication and shedding in the respiratory tract.

  19. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status.

    Directory of Open Access Journals (Sweden)

    Anon Srikiatkhachorn

    Full Text Available Infection with dengue viruses (DENV causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF, to dengue hemorrhagic fever (DHF. The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known.The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR.Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells.B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC. Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis.

  20. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Directory of Open Access Journals (Sweden)

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  1. A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus.

    Science.gov (United States)

    Seo, Jang-Kyun; Kwon, Sun-Jung; Rao, A L N

    2012-06-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.

  2. Differential expression of viral PAMP receptors mRNA in peripheral blood of patients with chronic hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Riñón Marta

    2007-11-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMP receptors play a key role in the early host response to viruses. In this work, we determined mRNA levels of two members of the Toll-like Receptors family, (TLR3 and TLR7 and the helicase RIG-I, all of three recognizing viral RNA products, in peripheral blood of healthy donors and hepatitis C virus (HCV patients, to observe if their transcripts are altered in this disease. Methods IFN-α, TLR3, TLR7 and RIG-I levels in peripheral blood from healthy controls (n = 18 and chronic HCV patients (n = 18 were quantified by real-time polymerase chain reaction. Results Our results show that IFN-α, TLR3, TLR7 and RIG-I mRNA levels are significantly down-regulated in patients with chronic HCV infection when compared with healthy controls. We also found that the measured levels of TLR3 and TLR7, but not RIG-I, correlated significantly with those of IFN-α Conclusion Monitoring the expression of RNA-sensing receptors like TLR3, TLR7 and RIG-I during the different clinical stages of infection could bring a new source of data about the prognosis of disease.

  3. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  4. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    International Nuclear Information System (INIS)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-01-01

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5 binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis

  5. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    International Nuclear Information System (INIS)

    Tzeng, W.-P.; Frey, Teryl K.

    2005-01-01

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA

  6. Survival of viral pathogens in animal feed ingredients under transboundary shipping models

    Science.gov (United States)

    Bauermann, Fernando V.; Niederwerder, Megan C.; Singrey, Aaron; Clement, Travis; de Lima, Marcelo; Long, Craig; Patterson, Gilbert; Sheahan, Maureen A.; Stoian, Ana M. M.; Petrovan, Vlad; Jones, Cassandra K.; De Jong, Jon; Ji, Ju; Spronk, Gordon D.; Minion, Luke; Christopher-Hennings, Jane; Zimmerman, Jeff J.; Rowland, Raymond R. R.; Nelson, Eric; Sundberg, Paul; Diel, Diego G.

    2018-01-01

    The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between

  7. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  8. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC.

    Science.gov (United States)

    Kenesi, Erzsébet; Carbonell, Alberto; Lózsa, Rita; Vértessy, Beáta; Lakatos, Lóránt

    2017-07-27

    In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus

    International Nuclear Information System (INIS)

    Zhang Jing; Yamada, Osamu; Sakamoto, Takashi; Yoshida, Hiroshi; Iwai, Takahiro; Matsushita, Yoshihisa; Shimamura, Hideo; Araki, Hiromasa; Shimotohno, Kunitada

    2004-01-01

    Small interfering RNA (siRNA) is currently being evaluated not only as a powerful tool for functional genomics, but also as a potentially promising therapeutic agent for cancer and infectious diseases. Inhibitory effect of siRNA on viral replication has been demonstrated in multiple pathogenic viruses. However, because of the high sequence specificity of siRNA-mediated RNA degradation, antiviral efficacy of siRNA directed to viral genome will be largely limited by emergence of escape variants resistant to siRNA due to high mutation rates of virus, especially RNA viruses such as poliovirus and hepatitis C virus (HCV). To investigate the therapeutic feasibility of siRNAs specific for the putative cellular cofactors for HCV, we constructed adenovirus vectors expressing siRNAs against La, polypyrimidine tract-binding protein (PTB), subunit gamma of human eukaryotic initiation factors 2B (eIF2Bγ), and human VAMP-associated protein of 33 kDa (hVAP-33). Adenoviral-mediated expression of siRNAs markedly diminished expression of the endogenous genes, and silencing of La, PTB, and hVAP-33 by siRNAs substantially blocked HCV replication in Huh-7 cells. Thus, our studies demonstrate the feasibility and potential of adenoviral-delivered siRNAs specific for cellular cofactors in combating HCV infection, which can be used either alone or in combination with siRNA against viral genome to prevent the escape of mutant variants and provide additive or synergistic anti-HCV effects

  10. Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA Replication

    Science.gov (United States)

    Chase, Amanda J.; Daijogo, Sarah

    2014-01-01

    ABSTRACT Due to their small genome size, picornaviruses must utilize host proteins to mediate cap-independent translation and viral RNA replication. The host RNA-binding protein poly(rC) binding protein 2 (PCBP2) is involved in both processes in poliovirus infected cells. It has been shown that the viral proteinase 3CD cleaves PCBP2 and contributes to viral translation inhibition. However, cleaved PCBP2 remains active in viral RNA replication. This would suggest that both cleaved and intact forms of PCBP2 have a role in the viral RNA replication cycle. The picornavirus genome must act as a template for both translation and RNA replication. However, a template that is actively being translated cannot function as a template for RNA replication, suggesting that there is a switch in template usage from translation to RNA replication. We demonstrate that the cleavage of PCBP2 by the poliovirus 3CD proteinase is a necessary step for efficient viral RNA replication and, as such, may be important for mediating a switch in template usage from translation to RNA replication. IMPORTANCE Poliovirus, like all positive-strand RNA viruses that replicate in the cytoplasm of eukaryotic cells, uses its genomic RNA as a template for both viral protein synthesis and RNA replication. Given that these processes cannot occur simultaneously on the same template, poliovirus has evolved a mechanism(s) to facilitate the switch from using templates for translation to using them for RNA synthesis. This study explores one possible scenario for how the virus alters the functions of a host cell RNA binding protein to mediate, in part, this important transition. PMID:24371074

  11. Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response

    Directory of Open Access Journals (Sweden)

    Hiroyuki eOshiumi

    2016-05-01

    Full Text Available Type I interferon (IFN induces many antiviral factors in host cells. RIG-I-like receptors (RLRs are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and thus cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.

  12. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M; Goldin, R D; Ladva, S [Department of Histopathology, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom); Scheuer, P J [Department of Histopathology, Royal Free Hospital and School of Medicine, London (United Kingdom); Thomas, H C [Department of Medicine, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au).

  13. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    International Nuclear Information System (INIS)

    Taylor, M.; Goldin, R.D.; Ladva, S.; Scheuer, P.J.; Thomas, H.C.

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au)

  14. A viral microRNA functions as an ortholog of cellular miR-155

    Science.gov (United States)

    Gottwein, Eva; Mukherjee, Neelanjan; Sachse, Christoph; Frenzel, Corina; Majoros, William H.; Chi, Jen-Tsan A.; Braich, Ravi; Manoharan, Muthiah; Soutschek, Jürgen; Ohler, Uwe; Cullen, Bryan R.

    2008-01-01

    All metazoan eukaryotes express microRNAs (miRNAs), ∼22 nt regulatory RNAs that can repress the expression of mRNAs bearing complementary sequences1. Several DNA viruses also express miRNAs in infected cells, suggesting a role in viral replication and pathogenesis2. While specific viral miRNAs have been shown to autoregulate viral mRNAs3,4 or downregulate cellular mRNAs5,6, the function of the majority of viral miRNAs remains unknown. Here, we report that the miR-K12−11 miRNA encoded by Kaposi's Sarcoma Associated Herpesvirus (KSHV) shows significant homology to cellular miR-155, including the entire miRNA “seed” region7. Using a range of assays, we demonstrate that expression of physiological levels of miR-K12−11 or miR-155 results in the downregulation of an extensive set of common mRNA targets, including genes with known roles in cell growth regulation. Our findings indicate that viral miR-K12−11 functions as an ortholog of cellular miR-155 and has likely evolved to exploit a pre-existing gene regulatory pathway in B-cells. Moreover, the known etiological role of miR-155 in B-cell transformation8-10 suggests that miR-K12−11 may contribute to the induction of KSHV-positive B-cell tumors in infected patients. PMID:18075594

  15. Characterization of a defective interfering RNA that contains a mosaic of a plant viral genome

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.J.; Jackson, A.O.

    1991-01-01

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since then, we have also discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), a virus structurally related to TBSV. We proposed a thorough characterization of this unique class of symptom modulating RNAs with the overall objective of identifying viral RNA nucleotide, sequences involved in such fundamental processes as virus replication and encapsidation as well as the degree of symptom expression resulting from the viral-DI-host interaction. The proposed research focused on the molecular characterization of the DI RNAs and the helper virus. We had demonstrated that the DIs were collinear deletion mutants of the genome of a cherry strain of tomato bushy stunt virus (TBSV). We had also shown that these low molecular weight RNAs interfered with the helper plant virus and modulated disease expression by preventing the development of a lethal necrotic disease in susceptible host plants. We also suggested that by exploring the mechanisms associated with the symptom attenuation effect, we might be able to devise novel strategies useful for engineering viral disease resistance.

  16. A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics

    Directory of Open Access Journals (Sweden)

    Vladimir Reinharz

    2017-10-01

    Full Text Available The multiscale model of hepatitis C virus (HCV dynamics, which includes intracellular viral RNA (vRNA replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.

  17. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response.

    Directory of Open Access Journals (Sweden)

    Nicolas Tremblay

    2016-07-01

    Full Text Available Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pigmentosa 33 (RP33. Here we found that SNRNP200 promotes viral RNA sensing and IRF3 activation through the ability of its amino-terminal Sec63 domain (Sec63-1 to bind RNA and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cytoplasmic structures upon infection, in contrast to the RP33-associated S1087L mutant, which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This functional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-β production of knockdown cells was further confirmed in peripheral blood cells of RP33 patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV. This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate response.

  18. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency.

    Directory of Open Access Journals (Sweden)

    Max Schelker

    2016-10-01

    Full Text Available After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus.

  19. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  20. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach.

    Directory of Open Access Journals (Sweden)

    Shota Nakamura

    Full Text Available With the severe acute respiratory syndrome epidemic of 2003 and renewed attention on avian influenza viral pandemics, new surveillance systems are needed for the earlier detection of emerging infectious diseases. We applied a "next-generation" parallel sequencing platform for viral detection in nasopharyngeal and fecal samples collected during seasonal influenza virus (Flu infections and norovirus outbreaks from 2005 to 2007 in Osaka, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.1-0.25 ml of nasopharyngeal aspirates (N = 3 and fecal specimens (N = 5, and more than 10 microg of cDNA was synthesized. Unbiased high-throughput sequencing of these 8 samples yielded 15,298-32,335 (average 24,738 reads in a single 7.5 h run. In nasopharyngeal samples, although whole genome analysis was not available because the majority (>90% of reads were host genome-derived, 20-460 Flu-reads were detected, which was sufficient for subtype identification. In fecal samples, bacteria and host cells were removed by centrifugation, resulting in gain of 484-15,260 reads of norovirus sequence (78-98% of the whole genome was covered, except for one specimen that was under-detectable by RT-PCR. These results suggest that our unbiased high-throughput sequencing approach is useful for directly detecting pathogenic viruses without advance genetic information. Although its cost and technological availability make it unlikely that this system will very soon be the diagnostic standard worldwide, this system could be useful for the earlier discovery of novel emerging viruses and bioterrorism, which are difficult to detect with conventional procedures.

  1. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export.

    Science.gov (United States)

    Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M; Higgins, Christina A; Sherer, Nathan M

    2017-02-01

    HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide

  2. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available BACKGROUND: New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV infections. JEV requires an α-1 translational frameshift to synthesize the NS1' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae and isoflavonoid daidzin (Dai against JEV have not been described. METHODOLOGY/PRINCIPAL FINDINGS: The 50% cytotoxic concentration (CC(50 and 50% effective concentration (EC(50 against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC(50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC(50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent K(b value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could. CONCLUSIONS/SIGNIFICANCE: Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.

  3. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    Science.gov (United States)

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage

    Science.gov (United States)

    Breyta, Rachel; Brito, Ilana L.; Ferguson, Paige; Kurath, Gael; Naish, Kerry A.; Purcell, Maureen; Wargo, Andrew R.; LaDeau, Shannon L.

    2017-01-01

    This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000–2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV-infected cohorts was concentrated in two sub-regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%–55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%–78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%–74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio-temporal and genetic data is likely to yield greater insight in future studies.

  5. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.

    Science.gov (United States)

    Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D

    2015-03-01

    RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role

  6. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms.

    Science.gov (United States)

    Bitko, Vira; Musiyenko, Alla; Bayfield, Mark A; Maraia, Richard J; Barik, Sailen

    2008-08-01

    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.

  7. The double-stranded RNA-activated protein kinase mediates viral-induced encephalitis

    International Nuclear Information System (INIS)

    Scheuner, Donalyn; Gromeier, Matthias; Davies, Monique V.; Dorner, Andrew J.; Song Benbo; Patel, Rupali V.; Wimmer, Eckard J.; McLendon, Roger E.; Kaufman, Randal J.

    2003-01-01

    The double-stranded (ds) RNA-activated protein kinase (PKR) plays an important role in control of viral infections and cell growth. We have studied the role of PKR in viral infection in mice that are defective in the PKR signaling pathway. Transgenic mice were derived that constitutively express a trans-dominant-negative kinase-defective mutant PKR under control of the β-actin promoter. The trans-dominant-negative PKR mutant expressing transgenic mice do not have a detectable phenotype, similar to observations with PKR knock-out mice. The requirement for PKR in viral pathogenesis was studied by intracerebral infection of mice with a mouse-adapted poliovirus. Histopathological analysis revealed diffuse encephalomyelitis with severe inflammatory lesions throughout the central nervous system (CNS) in infected wild-type mice. In contrast, histopathological evaluation of virus-injected trans-dominant-negative PKR transgenic mice as well as PKR knock-out mice yielded no signs of tissue damage associated with inflammatory host responses. However, the virus did replicate in both models of PKR-deficient mice at a level equal to that observed in wild-type infected mice. Although the results indicate a clear difference in susceptibility to poliovirus-induced encephalitis, this difference manifests clinically as a slight delay in fatal neuropathy in trans-dominant-negative PKR transgenic and PKR knock-out animals. Our observations support the finding that viral-induced PKR activation may play a significant role in pathogenesis by mediating the host response to viral CNS infection. They support PKR to be an effective target to control tissue damage due to deleterious host responses to viral infection

  8. Endogenous MMTV proviruses induce susceptibility to both viral and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    2006-12-01

    Full Text Available Most inbred mice carry germline proviruses of the retrovirus, mouse mammary tumor virus (MMTV (called Mtvs, which have multiple replication defects. A BALB/c congenic mouse strain lacking all endogenous Mtvs (Mtv-null was resistant to MMTV oral and intraperitoneal infection and tumorigenesis compared to wild-type BALB/c mice. Infection of Mtv-null mice with an MMTV-related retrovirus, type B leukemogenic virus, also resulted in severely reduced viral loads and failure to induce T-cell lymphomas, indicating that resistance is not dependent on expression of a superantigen (Sag encoded by exogenous MMTV. Resistance to MMTV in Mtv-null animals was not due to neutralizing antibodies. Further, Mtv-null mice were resistant to rapid mortality induced by intragastric inoculation of the Gram-negative bacterium, Vibrio cholerae, but susceptibility to Salmonella typhimurium was not significantly different from BALB/c mice. Susceptibility to both MMTV and V. cholerae was reconstituted by the presence of any one of three endogenous Mtvs located on different chromosomes and was associated with increased pathogen load. One of these endogenous proviruses is known to encode only Sag. Therefore, Mtv-encoded Sag appears to provide a unique genetic susceptibility to specific viruses and bacteria. Since human endogenous retroviruses also encode Sags, these studies have broad implications for pathogen-induced responses in mice and humans.

  9. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Science.gov (United States)

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  10. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    Kaushik, Nidhi; Subramani, Chandru; Anang, Saumya; Muthumohan, Rajagopalan; Shalimar; Nayak, Baibaswata; Ranjith-Kumar, C T; Surjit, Milan

    2017-11-01

    Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection. IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used

  11. Comparison of tissue sample processing methods for harvesting the viral metagenome and a snapshot of the RNA viral community in a turkey gut.

    Science.gov (United States)

    Shah, Jigna D; Baller, Joshua; Zhang, Ying; Silverstein, Kevin; Xing, Zheng; Cardona, Carol J

    2014-12-01

    RNA viruses have been associated with enteritis in poultry and have been isolated from diseased birds. The same viral agents have also been detected in healthy flocks bringing into question their role in health and disease. In order to understand better eukaryotic viruses in the gut, this project focused on evaluating alternative methods to purify and concentrate viral particles, which do not involve the use of density gradients, for generating viral metagenome data. In this study, the sequence outcomes of three tissue processing methods have been evaluated and a data analysis pipeline has been established for RNA viruses from the gastrointestinal tract. In addition, with the use of the best method and increased sequencing depth, a glimpse of the RNA viral community in the gastrointestinal tract of a clinically normal 5-week old turkey is presented. The viruses from the Reoviridae and Astroviridae families together accounted for 76.3% of total viruses identified. The rarefaction curve at the species level further indicated that majority of the species diversity was included with the increased sequencing depth, implying that viruses from other viral families were present in very low abundance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  13. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8.

    Directory of Open Access Journals (Sweden)

    Yen-Chin Liu

    2014-06-01

    Full Text Available The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3D(pol enters the nucleus through the nuclear localization signal (NLS and targets the pre-mRNA processing factor 8 (Prp8 to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3D(pol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3D(pol complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.

  14. A 3'-end structure in RNA2 of a crinivirus is essential for viral RNA synthesis and contributes to replication-associated translation activity.

    Science.gov (United States)

    Mongkolsiriwattana, Chawin; Zhou, Jaclyn S; Ng, James C K

    2016-10-03

    The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3' terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5' and YSS-containing 3' terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons.

  15. Diagnosing acute HIV infection: The performance of quantitative HIV-1 RNA testing (viral load) in the 2014 laboratory testing algorithm.

    Science.gov (United States)

    Wu, Hsiu; Cohen, Stephanie E; Westheimer, Emily; Gay, Cynthia L; Hall, Laura; Rose, Charles; Hightow-Weidman, Lisa B; Gose, Severin; Fu, Jie; Peters, Philip J

    2017-08-01

    New recommendations for laboratory diagnosis of HIV infection in the United States were published in 2014. The updated testing algorithm includes a qualitative HIV-1 RNA assay to resolve discordant immunoassay results and to identify acute HIV-1 infection (AHI). The qualitative HIV-1 RNA assay is not widely available; therefore, we evaluated the performance of a more widely available quantitative HIV-1 RNA assay, viral load, for diagnosing AHI. We determined that quantitative viral loads consistently distinguished AHI from a false-positive immunoassay result. Among 100 study participants with AHI and a viral load result, the estimated geometric mean viral load was 1,377,793copies/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection

    Science.gov (United States)

    Doria, Margherita; Neri, Francesca; Gallo, Angela; Farace, Maria Giulia; Michienzi, Alessandro

    2009-01-01

    Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1. PMID:19651874

  17. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  18. A Novel, Highly Selective Inhibitor of Pestivirus Replication That Targets the Viral RNA-Dependent RNA Polymerase

    Science.gov (United States)

    Paeshuyse, Jan; Leyssen, Pieter; Mabery, Eric; Boddeker, Nina; Vrancken, Robert; Froeyen, Matheus; Ansari, Israrul H.; Dutartre, Hélène; Rozenski, Jef; Gil, Laura H. V. G.; Letellier, Carine; Lanford, Robert; Canard, Bruno; Koenen, Frank; Kerkhofs, Pierre; Donis, Ruben O.; Herdewijn, Piet; Watson, Julia; De Clercq, Erik; Puerstinger, Gerhard; Neyts, Johan

    2006-01-01

    We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 ± 0.01 μM. Comparable reduction of viral RNA synthesis (EC50 = 0.12 ± 0.02 μM) and production of infectious virus (EC50 = 0.074 ± 0.003 μM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was ∼2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed. PMID:16352539

  19. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    Science.gov (United States)

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829

  20. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication

    Directory of Open Access Journals (Sweden)

    Stacia L. Phillips

    2016-01-01

    Full Text Available Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches.

  1. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro.

    Science.gov (United States)

    Cristofari, Gaël; Ivanyi-Nagy, Roland; Gabus, Caroline; Boulant, Steeve; Lavergne, Jean-Pierre; Penin, François; Darlix, Jean-Luc

    2004-01-01

    The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.

  2. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    Science.gov (United States)

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

  3. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation.

    Science.gov (United States)

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco; Marcello, Alessandro

    2014-06-01

    Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1(-/-) mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR(-/-) fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1(-/-) mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites of flavivirus replication

  4. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    Science.gov (United States)

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  5. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    International Nuclear Information System (INIS)

    Bienz, K.; Egger, D.; Troxler, M.; Pasamontes, L.

    1990-01-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed

  6. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    International Nuclear Information System (INIS)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with 32 P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus

  7. Avian bornavirus in free-ranging waterfowl: prevalence of antibodies and cloacal shedding of viral RNA.

    Science.gov (United States)

    Delnatte, Pauline; Nagy, Éva; Ojkic, Davor; Leishman, David; Crawshaw, Graham; Elias, Kyle; Smith, Dale A

    2014-07-01

    We surveyed free-ranging Canada Geese (Branta canadensis), Trumpeter Swans (Cygnus buccinator), Mute Swans (Cygnus olor), and Mallards (Anas platyrhynchos) to estimate the prevalence of antibodies to avian bornavirus (ABV) and of cloacal shedding of ABV RNA in southern Ontario, Canada. Blood samples and cloacal swabs were collected from 206 free-ranging Canada Geese, 135 Trumpeter Swans, 75 Mute Swans, and 208 Mallards at 10 main capture sites between October 2010 and May 2012. Sera were assessed for antibodies against ABV by enzyme-linked immunosorbent assay and swabs were evaluated for ABV RNA using real-time reverse-transcription PCR. Serum antibodies were detected in birds from all four species and at each sampling site. Thirteen percent of the geese caught on the Toronto Zoo site shed ABV RNA in feces compared with 0% in geese sampled at three other locations. The proportions of shedders among Mute Swans, Trumpeter Swans, and Mallards were 9%, 0%, and 0%, respectively. Birds that were shedding viral RNA were more likely to have antibodies against ABV and to have higher antibody levels than those that were not, although many birds with antibodies were not shedding. We confirmed that exposure to, or infection with, ABV is widespread in asymptomatic free-ranging waterfowl in Canada; however, the correlation between cloacal shedding, presence of antibodies, and presence of disease is not fully understood.

  8. Comparison of viral RNA electrophoresis and indirect ELISA methods in the diagnosis of human rotavirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Avendano, L F; Dubinovsky, S; James, Jr, H D

    1984-01-01

    A total of 177 stool samples from Chilean diarrhea patients under two years of age were tested for rotavirus by two methods - the indirect enzyme-linked immunosorbent assay (indirect ELISA) and viral RNA electrophoresis in agarose gels (v RNA EPH). Fifty of the specimens came from patients with acute diarrhea and 127 came from patients with protracted diarrhea. The indirect ELISA testing was performed at the National Institutes of Health in the United States: the electrophoretic testing was carried out in Santiago, Chile by the authors. The electrophoretic method detected rotavirus in 36% of the acute samples and 25% of the samples from protracted cases, while the indirect ELISA method detected rotavirus in higher percentages of samples - 46% and 38%, respectively. These results support the conclusion that v RNA EPH is a less sensitive method for detecting rotavirus than the indirect ELISA. Nevertheless, the former method's high specificity, ease of application, and low cost make it a worthwhile alternative to indirect ELISA. Thus, considering the important role played by rotavirus in infant diarrhea and the need for a diagnostic technique that can be incorporated into the routines of medical center laboratories in developing countries, there is good reason to conclude that v RNA EPH is a useful tool for studying rotavirus diarrhea. 18 refs, 3 tabs. Also published in the Bol. Oficina Sanit. Panam. (1984) v. 97(1), p. 1-7 (In Spanish).

  9. Comparison of viral RNA electrophoresis and indirect ELISA methods in the diagnosis of human rotavirus infection

    International Nuclear Information System (INIS)

    Avendano, L.F.; Dubinovsky, S.

    1984-01-01

    A total of 177 stool samples from Chilean diarrhea patients under two years of age were tested for rotavirus by two methods - the indirect enzyme-linked immunosorbent assay (indirect ELISA) and viral RNA electrophoresis in agarose gels (v RNA EPH). Fifty of the specimens came from patients with acute diarrhea and 127 came from patients with protracted diarrhea. The indirect ELISA testing was performed at the National Institutes of Health in the United States: the electrophoretic testing was carried out in Santiago, Chile by the authors. The electrophoretic method detected rotavirus in 36% of the acute samples and 25% of the samples from protracted cases, while the indirect ELISA method detected rotavirus in higher percentages of samples - 46% and 38%, respectively. These results support the conclusion that v RNA EPH is a less sensitive method for detecting rotavirus than the indirect ELISA. Nevertheless, the former method's high specificity, ease of application, and low cost make it a worthwhile alternative to indirect ELISA. Thus, considering the important role played by rotavirus in infant diarrhea and the need for a diagnostic technique that can be incorporated into the routines of medical center laboratories in developing countries, there is good reason to conclude that v RNA EPH is a useful tool for studying rotavirus diarrhea. (author)

  10. Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study

    Science.gov (United States)

    Pathak, Arup K.; Bandyopadhyay, Tusar

    2017-04-01

    Oral polio vaccine is considered to be the most thermolabile of all the common childhood vaccines. Despite heavy water (D2O) having been known for a long time to stabilise attenuated viral RNA against thermodegradation, the molecular underpinnings of its mechanism of action are still lacking. Whereas, understanding the basis of D2O action is an important step that might reform the way other thermolabile drugs are stored and could possibly minimize the cold chain problem. Here using a combination of parallel tempering and well-tempered metadynamics simulation in light water (H2O) and in D2O, we have fully described the free energy surface associated with the folding/unfolding of a RNA hairpin containing a non-canonical basepair motif, which is conserved within the 3'-untranslated region of poliovirus-like enteroviruses. Simulations reveal that in heavy water (D2O) there is a considerable increase of the stability of the folded basin as monitored through an intramolecular hydrogen bond (HB), size, shape, and flexibility of RNA structures. This translates into a higher melting temperature in D2O by 41 K when compared with light water (H2O). We have explored the hydration dynamics of the RNA, hydration shell around the RNA surface, and spatial dependence of RNA-solvent collective HB dynamics in the two water systems. Simulation in heavy water clearly showed that D2O strengthens the HB network in the solvent, lengthens inter-residue water-bridge lifetime, and weakens dynamical coupling of the hairpin to its solvation environment, which enhances the rigidity of solvent exposed sites of the native configurations. The results might suggest that like other added osmoprotectants, D2O can act as a thermostabilizer when used as a solvent.

  11. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy.

    Directory of Open Access Journals (Sweden)

    Jitka Holcakova

    Full Text Available Cyclin-dependent kinases (CDKs are key regulators of the cell cycle and RNA polymerase II mediated transcription. Several pharmacological CDK inhibitors are currently in clinical trials as potential cancer therapeutics and some of them also exhibit antiviral effects. Olomoucine II and roscovitine, purine-based inhibitors of CDKs, were described as effective antiviral agents that inhibit replication of a broad range of wild type human viruses. Olomoucine II and roscovitine show high selectivity for CDK7 and CDK9, with important functions in the regulation of RNA polymerase II transcription. RNA polymerase II is necessary for viral transcription and following replication in cells. We analyzed the effect of inhibition of CDKs by olomoucine II on gene expression from viral promoters and compared its effect to widely-used roscovitine. We found that both roscovitine and olomoucine II blocked the phosphorylation of RNA polymerase II C-terminal domain. However the repression of genes regulated by viral promoters was strongly dependent on gene localization. Both roscovitine and olomoucine II inhibited expression only when the viral promoter was not integrated into chromosomal DNA. In contrast, treatment of cells with genome-integrated viral promoters increased their expression even though there was decreased phosphorylation of the C-terminal domain of RNA polymerase II. To define the mechanism responsible for decreased gene expression after pharmacological CDK inhibitor treatment, the level of mRNA transcription from extrachromosomal DNA was determined. Interestingly, our results showed that inhibition of RNA polymerase II C-terminal domain phosphorylation increased the number of transcribed mRNAs. However, some of these mRNAs were truncated and lacked polyadenylation, which resulted in decreased translation. These results suggest that phosphorylation of RNA polymerase II C-terminal domain is critical for linking transcription and posttrancriptional

  12. First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data

    KAUST Repository

    Brüwer, Jan D.

    2018-03-01

    Current research posits that all multicellular organisms live in symbioses with associated microorganisms and form so-called metaorganisms or holobionts. Cnidarian metaorganisms are of specific interest given that stony corals provide the foundation of the globally threatened coral reef ecosystems. To gain first insight into viruses associated with the coral model system Aiptasia (sensu Exaiptasia pallida), we analyzed an existing RNA-Seq dataset of aposymbiotic, partially populated, and fully symbiotic Aiptasia CC7 anemones with Symbiodinium. Our approach included the selective removal of anemone host and algal endosymbiont sequences and subsequent microbial sequence annotation. Of a total of 297 million raw sequence reads, 8.6 million (∼3%) remained after host and endosymbiont sequence removal. Of these, 3,293 sequences could be assigned as of viral origin. Taxonomic annotation of these sequences suggests that Aiptasia is associated with a diverse viral community, comprising 116 viral taxa covering 40 families. The viral assemblage was dominated by viruses from the families Herpesviridae (12.00%), Partitiviridae (9.93%), and Picornaviridae (9.87%). Despite an overall stable viral assemblage, we found that some viral taxa exhibited significant changes in their relative abundance when Aiptasia engaged in a symbiotic relationship with Symbiodinium. Elucidation of viral taxa consistently present across all conditions revealed a core virome of 15 viral taxa from 11 viral families, encompassing many viruses previously reported as members of coral viromes. Despite the non-random selection of viral genetic material due to the nature of the sequencing data analyzed, our study provides a first insight into the viral community associated with Aiptasia. Similarities of the Aiptasia viral community with those of corals corroborate the application of Aiptasia as a model system to study coral holobionts. Further, the change in abundance of certain viral taxa across different

  13. Using the Hepatitis C Virus RNA-Dependent RNA Polymerase as a Model to Understand Viral Polymerase Structure, Function and Dynamics

    Directory of Open Access Journals (Sweden)

    Ester Sesmero

    2015-07-01

    Full Text Available Viral polymerases replicate and transcribe the genomes of several viruses of global health concern such as Hepatitis C virus (HCV, human immunodeficiency virus (HIV and Ebola virus. For this reason they are key targets for therapies to treat viral infections. Although there is little sequence similarity across the different types of viral polymerases, all of them present a right-hand shape and certain structural motifs that are highly conserved. These features allow their functional properties to be compared, with the goal of broadly applying the knowledge acquired from studying specific viral polymerases to other viral polymerases about which less is known. Here we review the structural and functional properties of the HCV RNA-dependent RNA polymerase (NS5B in order to understand the fundamental processes underlying the replication of viral genomes. We discuss recent insights into the process by which RNA replication occurs in NS5B as well as the role that conformational changes play in this process.

  14. RNA ‘Information Warfare’ in Pathogenic and Mutualistic Interactions

    NARCIS (Netherlands)

    Chaloner, Thomas; Kan, van Jan A.L.; Grant-Downton, Robert T.

    2016-01-01

    Regulatory non-coding RNAs are emerging as key players in host–pathogen interactions. Small RNAs such as microRNAs are implicated in regulating plant transcripts involved in immunity and defence. Surprisingly, RNAs with silencing properties can be translocated from plant hosts to various invading

  15. Mimic Phosphorylation of a βC1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant.

    Science.gov (United States)

    Zhong, Xueting; Wang, Zhan Qi; Xiao, Ruyuan; Cao, Linge; Wang, Yaqin; Xie, Yan; Zhou, Xueping

    2017-08-15

    Phosphorylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana However, how phosphorylation of TYLCCNB-βC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-βC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-βC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-βC1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-βC1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-βC1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-βC1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor. IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, βC1 (TYLCCNB-βC1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-βC1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N

  16. Double-stranded RNA viral infection of Trichomonas vaginalis (TVV1) in Iranian isolates.

    Science.gov (United States)

    Khanaliha, Khadijeh; Masoumi-Asl, Hossein; Bokharaei-Salim, Farah; Tabatabaei, Azardokht; Naghdalipoor, Mehri

    2017-08-01

    The Totiviridae family includes a number of viruses that can infect protozoan parasites such as Leishmania and Giardia and fungi like Saccharomyces cerevisiae. Some isolates of Trichomonas vaginalis are also infected with one or more double-stranded RNA (dsRNA) viruses. In this study, the frequency of Trichomonas vaginalis virus (TVV1) was evaluated in Iranian isolates of T. vaginalis in Tehran, Iran. One thousand five hundred vaginal samples were collected from patients attending obstetrics and gynaecology hospitals associated with Iran University of Medical Sciences in Tehran, Iran from October 2015 to September 2016. Trichomonas vaginalis isolates were cultured in Diamond's modified medium. Nucleic acids were extracted using a DNA/RNA extraction kit and RT-PCR was performed. Among 1500 collected vaginal samples, 8 (0.53%) cases of T. vaginalis infection were found. Half (4/8) of the T. vaginalis positive cases were infected with TVV1. Phylogenetic mapping indicated that the Iranian isolates were most closely related to TVV1-OC5, TVV1-UR1. Iranian isolates of T. vaginalis were infected with TVV1. The frequency of viral infection (TVV1) in T. vaginalis isolates found in this study is higher than previously reported in Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Molecular characterization of double-stranded RNA virus in Trichomonas vaginalis Egyptian isolates and its association with pathogenicity.

    Science.gov (United States)

    El-Gayar, Eman K; Mokhtar, Amira B; Hassan, Wael A

    2016-10-01

    Trichomoniasis is a common human sexually transmitted infection caused by Trichomonas vaginalis. The parasite can be infected with double-stranded RNA viruses (TVV). This viral infection may have important implications on trichomonal virulence and disease pathogenesis. This study aimed to determine the prevalence of T. vaginalis virus among isolates obtained from infected (symptomatic and asymptomatic) women in Ismailia City, Egypt, and to correlate the virus-infected isolates with the clinical manifestations of patients. In addition, the pathogenicity of TVV infected isolates on mice was also evaluated. T. vaginalis isolates were obtained from symptomatic and asymptomatic female patients followed by axenic cultivation in Diamond's TYM medium. The presence of T. vaginalis virus was determined from total extraction of nucleic acids (DNA-RNA) followed by reverse transcriptase-PCR. Representative samples were inoculated intraperitoneally in female albino/BALB mice to assess the pathogenicity of different isolates. A total of 110 women were examined; 40 (36.3 %) samples were positive for T. vaginalis infection. Of these 40 isolates, 8 (20 %) were infected by TVV. Five isolates contained TVV-2 virus species, and the remaining three isolates were infected withTVV-4 variant. A significant association was found between the presence of TVV and particular clinical manifestations of trichomoniasis. Experimental mice infection showed varying degrees of pathogenicity. This is the first report on T. vaginalis infection by TVV in Egypt. The strong association detected between TVV and particular clinical features of trichomoniasis and also the degree of pathogenicity in experimentally infected mice may indicate a possible clinical significance of TVV infection of T. vaginalis isolates.

  18. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA

    NARCIS (Netherlands)

    Langereis, Martijn A|info:eu-repo/dai/nl/304823597; Feng, Qian; Nelissen, Frank H T; Virgen-Slane, Richard; van der Heden van Noort, Gerbrand J; Maciejewski, Sonia; Filippov, Dmitri V; Semler, Bert L; van Delft, Floris L; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723

    Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for

  19. A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region

    Science.gov (United States)

    Gongora, Victor; Hartley, Dane; Oura, Christopher

    2018-01-01

    Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), avian metapneumovirus (aMPV), infectious bursal disease virus (IBDV), fowl adenovirus group 1 (FADV Gp1), and egg drop syndrome virus (EDSV) were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV), as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1). This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories. PMID:29373488

  20. A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region

    Directory of Open Access Journals (Sweden)

    Arianne Brown Jordan

    2018-01-01

    Full Text Available Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV, infectious bronchitis virus (IBV, Newcastle disease virus (NDV, infectious laryngotracheitis virus (ILTV, avian metapneumovirus (aMPV, infectious bursal disease virus (IBDV, fowl adenovirus group 1 (FADV Gp1, and egg drop syndrome virus (EDSV were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV, as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1. This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories.

  1. Seroprevalences to viral pathogens in free-ranging and captive cheetahs (Acinonyx jubatus) on Namibian Farmland.

    Science.gov (United States)

    Thalwitzer, Susanne; Wachter, Bettina; Robert, Nadia; Wibbelt, Gudrun; Müller, Thomas; Lonzer, Johann; Meli, Marina L; Bay, Gert; Hofer, Heribert; Lutz, Hans

    2010-02-01

    Cheetah populations are diminishing rapidly in their natural habitat. One reason for their decline is thought to be a high susceptibility to (infectious) diseases because cheetahs in zoos suffer from high disease-induced mortality. Data on the health status of free-ranging cheetahs are scarce, and little is known about their exposure and susceptibility to infectious diseases. We determined seroprevalences to nine key viruses (feline herpesvirus 1, feline calicivirus, feline parvovirus, feline coronavirus, canine distemper virus, feline immunodeficiency virus [FIV], puma lentivirus, feline leukemia virus, and rabies virus) in 68 free-ranging cheetahs on east-central Namibian farmland, 24 nonvaccinated Namibian captive cheetahs, and several other wild carnivore species and conducted necropsies of cheetahs and other wild carnivores. Eight of 11 other wild carnivores were seropositive for at least one of the viruses, including the first record of an FIV-like infection in a wild felid west of the Kalahari, the caracal (Felis caracal). Seroprevalences of the free-ranging cheetahs were below 5% for all nine viruses, which is significantly lower than seroprevalences in nonvaccinated captive cheetahs and those for five of seven viruses in previously studied free-ranging cheetahs from north-central Namibia (L. Munson, L. Marker, E. Dubovi, J. A. Spencer, J. F. Evermann, and S. J. O'Brien, J. Wildl. Dis. 40:23-31, 2004). There was no clinical or pathological evidence of infectious diseases in living or dead cheetahs. The results suggest that while free-ranging wild carnivores may be a source of pathogens, the distribution of seroprevalences across studies mirrored local human population density and factors associated with human habitation, probably reflecting contact opportunities with (nonvaccinated) domestic and feral cats and dogs. They also suggest that Namibian cheetahs respond effectively to viral challenges, encouraging consistent and sustainable conservation efforts.

  2. Seroprevalences to Viral Pathogens in Free-Ranging and Captive Cheetahs (Acinonyx jubatus) on Namibian Farmland▿

    Science.gov (United States)

    Thalwitzer, Susanne; Wachter, Bettina; Robert, Nadia; Wibbelt, Gudrun; Müller, Thomas; Lonzer, Johann; Meli, Marina L.; Bay, Gert; Hofer, Heribert; Lutz, Hans

    2010-01-01

    Cheetah populations are diminishing rapidly in their natural habitat. One reason for their decline is thought to be a high susceptibility to (infectious) diseases because cheetahs in zoos suffer from high disease-induced mortality. Data on the health status of free-ranging cheetahs are scarce, and little is known about their exposure and susceptibility to infectious diseases. We determined seroprevalences to nine key viruses (feline herpesvirus 1, feline calicivirus, feline parvovirus, feline coronavirus, canine distemper virus, feline immunodeficiency virus [FIV], puma lentivirus, feline leukemia virus, and rabies virus) in 68 free-ranging cheetahs on east-central Namibian farmland, 24 nonvaccinated Namibian captive cheetahs, and several other wild carnivore species and conducted necropsies of cheetahs and other wild carnivores. Eight of 11 other wild carnivores were seropositive for at least one of the viruses, including the first record of an FIV-like infection in a wild felid west of the Kalahari, the caracal (Felis caracal). Seroprevalences of the free-ranging cheetahs were below 5% for all nine viruses, which is significantly lower than seroprevalences in nonvaccinated captive cheetahs and those for five of seven viruses in previously studied free-ranging cheetahs from north-central Namibia (L. Munson, L. Marker, E. Dubovi, J. A. Spencer, J. F. Evermann, and S. J. O'Brien, J. Wildl. Dis. 40:23-31, 2004). There was no clinical or pathological evidence of infectious diseases in living or dead cheetahs. The results suggest that while free-ranging wild carnivores may be a source of pathogens, the distribution of seroprevalences across studies mirrored local human population density and factors associated with human habitation, probably reflecting contact opportunities with (nonvaccinated) domestic and feral cats and dogs. They also suggest that Namibian cheetahs respond effectively to viral challenges, encouraging consistent and sustainable conservation efforts

  3. Integrating large-scale data and RNA technology to protect crops from fungal pathogens

    Directory of Open Access Journals (Sweden)

    Ian Joseph Girard

    2016-05-01

    Full Text Available With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.

  4. Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity.

    Science.gov (United States)

    Huang, Chung-Hao; Hsiao, Weng-Rong; Huang, Ching-Wen; Chen, Kuan-Chun; Lin, Shih-Shun; Chen, Tsung-Chi; Raja, Joseph A J; Wu, Hui-Wen; Yeh, Shyi-Dong

    2015-01-01

    The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) ((109)KFTMHNQ(117)), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif ((397)IYFL(400)) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.

  5. Variable RNA expression from recently acquired, endogenous viral elements (EVE) of white spot syndrome virus (WSSV) in shrimp.

    Science.gov (United States)

    Utari, Heny Budi; Soowannayan, Chumporn; Flegel, Timothy W; Whityachumnarnkul, Boonsirm; Kruatrachue, Maleeya

    2017-11-01

    The viral accommodation hypothesis proposes that endogenous viral elements (EVE) from both RNA and DNA viruses are being continually integrated into the shrimp genome by natural host processes and that they can result in tolerance to viral infection by fortuitous production of antisense, immunospecific RNA (imRNA). Thus, we hypothesized that previously reported microarray results for the presence of white spot syndrome virus (WSSV) open reading frames (ORFs) formerly called 151, 366 and 427 in a domesticated giant tiger shrimp (Penaeus monodon) breeding stock might have represented expression from EVE, since the stock had shown uninterrupted freedom from white spot disease (WSD) for many generations. To test this hypothesis, 128 specimens from a current stock generation were confirmed for freedom from WSSV infection using two nested PCR detection methods. Subsequent nested-PCR testing revealed 33/128 specimens (26%) positive for at least one of the ORF at very high sequence identity (95-99%) to extant WSSV. Positive results for ORF 366 (now known to be a fragment of the WSSV capsid protein gene) dominated (28/33 = 84.8%), so 9 arbitrarily selected 366-positive specimens were tested by strand-specific, nested RT-PCR using DNase-treated RNA templates. This revealed variable RNA expression in individual shrimp including no RNA transcripts (n = 1), sense transcripts only (n = 1), antisense transcripts only (n = 2) or transcripts of both sense (n = 5). The latter 7 expression products indicated specimens producing putative imRNA. The variable types and numbers of the EVE and the variable RNA expression (including potential imRNA) support predictions of the viral accommodation hypothesis that EVE are randomly produced and expressed. Positive nested PCR test results for EVE of ORF 366 using DNA templates derived from shrimp sperm (germ cells), indicated that they were heritable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  7. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor.

    Science.gov (United States)

    Tang, Shuang; Bertke, Andrea S; Patel, Amita; Wang, Kening; Cohen, Jeffrey I; Krause, Philip R

    2008-08-05

    Latency-associated transcript (LAT) sequences regulate herpes simplex virus (HSV) latency and reactivation from sensory neurons. We found a HSV-2 LAT-related microRNA (miRNA) designated miR-I in transfected and infected cells in vitro and in acutely and latently infected ganglia of guinea pigs in vivo. miR-I is also expressed in human sacral dorsal root ganglia latently infected with HSV-2. miR-I is expressed under the LAT promoter in vivo in infected sensory ganglia. We also predicted and identified a HSV-1 LAT exon-2 viral miRNA in a location similar to miR-I, implying a conserved mechanism in these closely related viruses. In transfected and infected cells, miR-I reduces expression of ICP34.5, a key viral neurovirulence factor. We hypothesize that miR-I may modulate the outcome of viral infection in the peripheral nervous system by functioning as a molecular switch for ICP34.5 expression.

  8. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Science.gov (United States)

    Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-05-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  9. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  10. Integration, viral charge and E2 mRNA levels in the progresion of intraepitelial cervical lesions

    Directory of Open Access Journals (Sweden)

    Esperanza Trujillo

    2018-01-01

    Full Text Available It is important to distinguish among squamous intraepithelial lesions (SIL those associated with increased risk cervical cancer. Our aim was to evaluate if the expression level of gen E2 in women with SIL and evidence of viral integration is associated to the grade of lesion. Cervical scrapes HPV16 positive from 19 women with normal histology, 45 women with low-grade SIL (LSIL and 45 women with high-grade SIL (HSIL were analyzed. Real-time PCR was used to quantify the mRNA of E2 and E2 and E6 genes to calculate viral load (E6 and the ratio E2/E6 to assess viral integration. Similar frequencies of E2 expression were found in LSIL and HSIL15/45 (33 %, the frequency in women without SIL was lower 3/19 (15.8 %, and all cases with E2 gene expression had mixed episomal and integrated viral DNA. The viral load increased significantly with the grade of SIL (p= 0.049, while E2/E6 ratio decreased (p=0.049. The ROC analysis showed low capacity of the three viral parameters analyzed to distinguish between low and high grade SIL. In conclusion although SIL with mixed and integrated viral DNA with E2 expression could be at lower risk of progression, and viral load and integration were associated with higher severity of the lesion, its clinical value as biomarkers of HSIL is limited.

  11. Association between feline immunodeficiency virus (FIV) plasma viral RNA load, concentration of acute phase proteins and disease severity.

    Science.gov (United States)

    Kann, Rebecca K C; Seddon, Jennifer M; Kyaw-Tanner, Myat T; Henning, Joerg; Meers, Joanne

    2014-08-01

    Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging.

    Science.gov (United States)

    Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M

    2017-02-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. © 2017 Pocock et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Inactivation of the host lipin gene accelerates RNA virus replication through viral exploitation of the expanded endoplasmic reticulum membrane.

    Directory of Open Access Journals (Sweden)

    Chingkai Chuang

    2014-02-01

    Full Text Available RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs that drive viral replication. The host lipins (phosphatidate phosphatases are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase, which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.

  14. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method

    Directory of Open Access Journals (Sweden)

    Dan Dou

    2017-07-01

    Full Text Available Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.

  15. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Replication of wild type RNA 3 of alfalfa mosaic virus (AIMV) and mutants with frameshifts in the P3 or coat protein (CP) genes was studied in protoplasts from tobacco plants transformed with DNA copies of AIMV RNAs 1 and 2. Accumulation of viral plus and minus strand RNAs was monitored with

  16. Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis.

    Directory of Open Access Journals (Sweden)

    Ashish V Chintakuntlawar

    2010-04-01

    Full Text Available Human adenovirus (HAdV infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9 signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9(-/- mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD. These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins.

  17. Lack of the RNA chaperone Hfq attenuates pathogenicity of several Escherichia coli pathotypes towards Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Jakobsen, Henrik; Struve, Carsten

    2012-01-01

    as a model for virulence characterization and screening for novel antimicrobial entities. Several E. coli human pathotypes are also pathogenic towards C. elegans, and we show here that lack of the RNA chaperone Hfq significantly reduces pathogenicity of VTEC, EAEC, and UPEC in the nematode model. Thus, Hfq...... is intrinsically essential to pathogenic E. coli for survival and virulence exerted in the C. elegans host.......Escherichia coli is an important agent of Gram-negative bacterial infections worldwide, being one of the leading causes of diarrhoea and urinary tract infections. Strategies to understand pathogenesis and develop therapeutic compounds include the use of the nematode Caenorhabditis elegans...

  18. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Anna Lundin

    2014-05-01

    Full Text Available Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs, a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6, a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV, and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  19. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    Science.gov (United States)

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Haixu; Ji, Xinqin; Zhao, Jiafu; Xu, Houqiang; Hu, Yan; Deng, Shanshan; Hu, Shunlin; Liu, Xiufan

    2018-12-31

    The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336-433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.

  1. FishPathogens.eu/vhsv: a user-friendly viral haemorrhagic septicaemia virus isolate and sequence database

    DEFF Research Database (Denmark)

    Jonstrup, Søren Peter; Gray, Tanya; Kahns, Søren

    2009-01-01

    A database has been created, http://www.Fish Pathogens.eu, with the aim of providing a single repository for collating important information on significant pathogens of aquaculture, relevant to their control and management. This database will be developed, maintained and managed as part of the Eu......A database has been created, http://www.Fish Pathogens.eu, with the aim of providing a single repository for collating important information on significant pathogens of aquaculture, relevant to their control and management. This database will be developed, maintained and managed as part...... of the European Community Reference Laboratory for Fish Diseases function. This concept has been initially developed for viral haemorrhagic septicaemia virus and will be extended in future to include information on other significant aquaculture pathogens. Information included for each isolate comprises sequence...... to obtain data from any selected part of the genome of interest. The output of the sequence search can be readily retrieved as a FASTA file ready to be imported into a sequence alignment tool of choice, facilitating further molecular epidemiological study....

  2. Dual RNA-seq of the plant pathogen phytophthora ramorum and its tanoak host

    Science.gov (United States)

    Katherine J. Hayden; Matteo Garbelotto; Brian J. Knaus; Richard C. Cronn; Hardeep Rai; Jessica W. Wright

    2014-01-01

    Emergent diseases are an ever-increasing threat to forests and forest ecosystems and necessitate the development of research tools for species that often may have few preexisting resources. We sequenced the mRNA expressed by the sudden oak death pathogen Phytophthora ramorum and its most susceptible forest host, tanoak, within the same tissue at two time points after...

  3. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA.

    Science.gov (United States)

    Lanford, Robert E; Feng, Zongdi; Chavez, Deborah; Guerra, Bernadette; Brasky, Kathleen M; Zhou, Yan; Yamane, Daisuke; Perelson, Alan S; Walker, Christopher M; Lemon, Stanley M

    2011-07-05

    Hepatitis A virus (HAV) is an hepatotropic human picornavirus that is associated only with acute infection. Its pathogenesis is not well understood because there are few studies in animal models using modern methodologies. We characterized HAV infections in three chimpanzees, quantifying viral RNA by quantitative RT-PCR and examining critical aspects of the innate immune response including intrahepatic IFN-stimulated gene expression. We compared these infection profiles with similar studies of chimpanzees infected with hepatitis C virus (HCV), an hepatotropic flavivirus that frequently causes persistent infection. Surprisingly, HAV-infected animals exhibited very limited induction of type I IFN-stimulated genes in the liver compared with chimpanzees with acute resolving HCV infection, despite similar levels of viremia and 100-fold greater quantities of viral RNA in the liver. Minimal IFN-stimulated gene 15 and IFIT1 responses peaked 1-2 wk after HAV challenge and then subsided despite continuing high hepatic viral RNA. An acute inflammatory response at 3-4 wk correlated with the appearance of virus-specific antibodies and apoptosis and proliferation of hepatocytes. Despite this, HAV RNA persisted in the liver for months, remaining present long after clearance from serum and feces and revealing dramatic differences in the kinetics of clearance in the three compartments. Viral RNA was detected in the liver for significantly longer (35 to >48 wk) than HCV RNA in animals with acute resolving HCV infection (10-20 wk). Collectively, these findings indicate that HAV is far stealthier than HCV early in the course of acute resolving infection. HAV infections represent a distinctly different paradigm in virus-host interactions within the liver.

  4. Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA.

    Science.gov (United States)

    Moscardini, Mila; Pistello, Mauro; Bendinelli, M; Ficheux, Damien; Miller, Jennifer T; Gabus, Caroline; Le Grice, Stuart F J; Surewicz, Witold K; Darlix, Jean-Luc

    2002-04-19

    All lentiviruses and oncoretroviruses examined so far encode a major nucleic-acid binding protein (nucleocapsid or NC* protein), approximately 2500 molecules of which coat the dimeric RNA genome. Studies on HIV-1 and MoMuLV using in vitro model systems and in vivo have shown that NC protein is required to chaperone viral RNA dimerization and packaging during virus assembly, and proviral DNA synthesis by reverse transcriptase (RT) during infection. The human cellular prion protein (PrP), thought to be the major component of the agent causing transmissible spongiform encephalopathies (TSE), was recently found to possess a strong affinity for nucleic acids and to exhibit chaperone properties very similar to HIV-1 NC protein in the HIV-1 context in vitro. Tight binding of PrP to nucleic acids is proposed to participate directly in the prion disease process. To extend our understanding of lentiviruses and of the unexpected nucleic acid chaperone properties of the human prion protein, we set up an in vitro system to investigate replication of the feline immunodeficiency virus (FIV), which is functionally and phylogenetically distant from HIV-1. The results show that in the FIV model system, NC protein chaperones viral RNA dimerization, primer tRNA(Lys,3) annealing to the genomic primer-binding site (PBS) and minus strand DNA synthesis by the homologous FIV RT. FIV NC protein is able to trigger specific viral DNA synthesis by inhibiting self-priming of reverse transcription. The human prion protein was found to mimic the properties of FIV NC with respect to primer tRNA annealing to the viral RNA and chaperoning minus strand DNA synthesis. Copyright 2002 Elsevier Science Ltd.

  5. Identification and characterization of viral defective RNA genomes in influenza B virus.

    Science.gov (United States)

    Sheng, Zizhang; Liu, Runxia; Yu, Jieshi; Ran, Zhiguang; Newkirk, Simon J; An, Wenfeng; Li, Feng; Wang, Dan

    2018-04-01

    Influenza B virus (FLUBV) is an important pathogen that infects humans and causes seasonal influenza epidemics. To date, little is known about defective genomes of FLUBV and their roles in viral replication. In this study, by using a next-generation sequencing approach, we analyzed total mRNAs extracted from A549 cells infected with B/Brisbane/60/2008 virus (Victoria lineage), and identified four defective FLUBV genomes with two (PB1∆A and PB1∆B) from the polymerase basic subunit 1 (PB1) segment and the other two (M∆A and M∆B) from the matrix (M) protein-encoding segment. These defective genomes contained significant deletions in the central regions with each having the potential for encoding a novel polypeptide. Significantly, each of the discovered defective RNAs can potently inhibit the replication of B/Yamanashi/166/98 (Yamagata lineage). Furthermore, PB1∆A was able to interfere modestly with influenza A virus (FLUAV) replication. In summary, our study provides important initial insights into FLUBV defective-interfering genomes, which can be further explored to achieve better understanding of the replication, pathogenesis and evolution of FLUBV.

  6. Disruption of Claudin-1 Expression by miRNA-182 Alters the Susceptibility to Viral Infectivity in HCV Cell Models

    Directory of Open Access Journals (Sweden)

    Sarah E. Riad

    2018-03-01

    Full Text Available HCV entry involves a complex interplay between viral and host molecules. During post-binding interactions, the viral E2 complexes with CD81 receptor for delivery to the tight junction proteins CLDN1 and OCLN, which aid in viral internalization. Targeting HCV entry receptors represents an appealing approach to inhibit viral infectivity. This study aimed at investigating the impact of targeting CLDN1 by microRNAs on HCV infectivity. miR-155 was previously shown to target the 3′UTR of CLDN1 mRNA. Therefore, miR-155 was used as a control in this study. In-silico analysis and luciferase reporter assay were utilized to identify potential targeting miRNAs. The impact of the identified miRNAs on CLDN1 mRNA and protein expression was examined by qRT-PCR, indirect immunofluorescence and western blotting, respectively. The role of the selected miRNAs on HCV infectivity was assessed by measuring the viral load following the ectopic expression of the selected miRNAs. miR-182 was identified in-silico and by experimental validation to target CLDN1. Both miR-155 and miR-182 inhibited CLDN1 mRNA and protein expression in infected Huh7 cells. Ectopic expression of miR-155 increased, while miR-182 reduced the viral load. In conclusion, despite repressing CLDN1, the impact of miR-155 and miR-182 on HCV infectivity is contradictory. Ectopic miR-182 expression is suggested as an upstream regulator of the entry factor CLDN1, harnessing HCV infection.

  7. Electrokinetically-controlled RNA-DNA hybridization assay for foodborne pathogens

    International Nuclear Information System (INIS)

    Weng, X.; Jiang, H.; Li, D.

    2012-01-01

    We have developed a microfluidic chip for use in an RNA-DNA hybridization assay for foodborne pathogens. Automatic sequential reagent dispensing and washing was realized with a programmable DC voltage sequencer. Signal detection was achieved with a miniaturized optical detection module. Salmonella and Listeria monocytogenes bacteria in different concentrations were quantitatively determined by this RNA-DNA hybridization assay in the microfluidic chip. The detection limit for the Salmonella and Listeria monocytogenes bacteria is 10 3 to 10 4 CFU mL -1 . The method excels by a significant reduction in the consumption of sample and reagent, and a short assay time. This automatic-operating microfluidic RNA-DNA hybridization assay is promising for on-site pathogen detection. (author)

  8. Viral RNA testing and automation on the bead-based CBNE detection microsystem.

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, Paul C.; Bourdon, Christopher Jay; Farrell, Cara M.; Rossito, Paul (University of California at Davis); McClain, Jaime L.; Derzon, Mark Steven; Cullor, James Sterling (University of California at Davis); Rahimian, Kamayar

    2008-09-01

    We developed prototype chemistry for nucleic acid hybridization on our bead-based diagnostics platform and we established an automatable bead handling protocol capable of 50 part-per-billion (ppb) sensitivity. We are working towards a platform capable of parallel, rapid (10 minute), raw sample testing for orthogonal (in this case nucleic acid and immunoassays) identification of biological (and other) threats in a single sensor microsystem. In this LDRD we developed the nucleic acid chemistry required for nucleic acid hybridization. Our goal is to place a non-cell associated RNA virus (Bovine Viral Diarrhea, BVD) on the beads for raw sample testing. This key pre-requisite to showing orthogonality (nucleic acid measurements can be performed in parallel with immunoassay measurements). Orthogonal detection dramatically reduces false positives. We chose BVD because our collaborators (UC-Davis) can supply samples from persistently infected animals; and because proof-of-concept field testing can be performed with modification of the current technology platform at the UC Davis research station. Since BVD is a cattle-prone disease this research dovetails with earlier immunoassay work on Botulinum toxin simulant testing in raw milk samples. Demonstration of BVD RNA detection expands the repertoire of biological macromolecules that can be adapted to our bead-based detection. The resources of this late start LDRD were adequate to partially demonstrate the conjugation of the beads to the nucleic acids. It was never expected to be adequate for a full live virus test but to motivate that additional investment. In addition, we were able to reduce the LOD (Limit of Detection) for the botulinum toxin stimulant to 50 ppb from the earlier LOD of 1 ppm. A low LOD combined with orthogonal detection provides both low false negatives and low false positives. The logical follow-on steps to this LDRD research are to perform live virus identification as well as concurrent nucleic acid and

  9. The Mechanism of Synchronous Precise Regulation of Two Shrimp White Spot Syndrome Virus Targets by a Viral MicroRNA

    Science.gov (United States)

    He, Yaodong; Ma, Tiantian; Zhang, Xiaobo

    2017-01-01

    MicroRNAs (miRNAs), important factors in animal innate immunity, suppress the expressions of their target genes by binding to target mRNA’s 3′ untranslated regions (3′UTRs). However, the mechanism of synchronous regulation of multiple targets by a single miRNA remains unclear. In this study, the interaction between a white spot syndrome virus (WSSV) miRNA (WSSV-miR-N32) and its two viral targets (wsv459 and wsv322) was characterized in WSSV-infected shrimp. The outcomes indicated that WSSV-encoded miRNA (WSSV-miR-N32) significantly inhibited virus infection by simultaneously targeting wsv459 and wsv322. The silencing of wsv459 or wsv322 by siRNA led to significant decrease of WSSV copies in shrimp, showing that the two viral genes were required for WSSV infection. WSSV-miR-N32 could mediate 5′–3′ exonucleolytic digestion of its target mRNAs, which stopped at the sites of target mRNA 3′UTRs close to the sequence complementary to the miRNA seed sequence. The complementary bases (to the target mRNA sequence) of a miRNA 9th–18th non-seed sequence were essential for the miRNA targeting. Therefore, our findings presented novel insights into the mechanism of miRNA-mediated suppression of target gene expressions, which would be helpful for understanding the roles of miRNAs in innate immunity of invertebrate. PMID:29230209

  10. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    Science.gov (United States)

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  11. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro

    Directory of Open Access Journals (Sweden)

    Wimmer Eckard

    2005-11-01

    Full Text Available Abstract Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.

  12. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Schembri, Mark A.; Sweet, Matthew J.

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  13. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  14. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA

    Directory of Open Access Journals (Sweden)

    Soros Vanessa

    2008-10-01

    Full Text Available Abstract HIV-1 structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which are transported to the cytoplasm by Crm1. It has been assumed that once in the cytoplasm, translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs. Previous analyses have demonstrated that Sam68 and a mutant thereof, Sam68ΔC, have dramatic effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis, respectively. While investigating the inhibition of incompletely spliced HIV-1 mRNAs by Sam68ΔC, we determined that the effect was independent of the perinuclear bundling of the viral RNA. Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA exported via the Tap/CTE export pathway was not blocked by Sam68ΔC. We demonstrate that inhibition of HIV expression by Sam68ΔC is correlated with a loss of PABP1 binding with no attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68ΔC to selectively inhibit translation of HIV-1 RNAs exported by Crm1 suggests that it is able to recognize unique characteristics of these viral RNPs, a property that could lead to new therapeutic approaches to controlling HIV-1 replication.

  15. Characterization of a defective interfering RNA that contains a mosaic of a plant viral genome. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.J.; Jackson, A.O.

    1991-12-31

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since then, we have also discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), a virus structurally related to TBSV. We proposed a thorough characterization of this unique class of symptom modulating RNAs with the overall objective of identifying viral RNA nucleotide, sequences involved in such fundamental processes as virus replication and encapsidation as well as the degree of symptom expression resulting from the viral-DI-host interaction. The proposed research focused on the molecular characterization of the DI RNAs and the helper virus. We had demonstrated that the DIs were collinear deletion mutants of the genome of a cherry strain of tomato bushy stunt virus (TBSV). We had also shown that these low molecular weight RNAs interfered with the helper plant virus and modulated disease expression by preventing the development of a lethal necrotic disease in susceptible host plants. We also suggested that by exploring the mechanisms associated with the symptom attenuation effect, we might be able to devise novel strategies useful for engineering viral disease resistance.

  16. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging.

    Science.gov (United States)

    Webb, Joseph A; Jones, Christopher P; Parent, Leslie J; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-08-01

    Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.

  17. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    Science.gov (United States)

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Viral kinetics of hepatitis C virus RNA in patients with chronic hepatitis C treated with 18 MU of interferon alpha daily

    NARCIS (Netherlands)

    Sentjens, Roel E.; Weegink, Christine J.; Beld, Marcel G.; Cooreman, Michel C.; Reesink, Henk W.

    2002-01-01

    BACKGROUND: A rapid decrease of hepatitis C virus (HCV) RNA is interferon (IFN) dose-dependent, and a 3-log decline of HCV-RNA is a strong predictor of sustained virological response. In this study, viral kinetics of HCV RNA in patients treated with 18 MU interferon alpha (IFN-alpha) daily for 2

  19. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges

    Directory of Open Access Journals (Sweden)

    Anna Kolliopoulou

    2017-06-01

    Full Text Available RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.

  20. RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America.

    Science.gov (United States)

    Rosario, Karyna; Capobianco, Heather; Ng, Terry Fei Fan; Breitbart, Mya; Polston, Jane E

    2014-01-01

    Whiteflies from the Bemisia tabaci species complex have the ability to transmit a large number of plant viruses and are some of the most detrimental pests in agriculture. Although whiteflies are known to transmit both DNA and RNA viruses, most of the diversity has been recorded for the former, specifically for the Begomovirus genus. This study investigated the total diversity of DNA and RNA viruses found in whiteflies collected from a single site in Florida to evaluate if there are additional, previously undetected viral types within the B. tabaci vector. Metagenomic analysis of viral DNA extracted from the whiteflies only resulted in the detection of begomoviruses. In contrast, whiteflies contained sequences similar to RNA viruses from divergent groups, with a diversity that extends beyond currently described viruses. The metagenomic analysis of whiteflies also led to the first report of a whitefly-transmitted RNA virus similar to Cowpea mild mottle virus (CpMMV Florida) (genus Carlavirus) in North America. Further investigation resulted in the detection of CpMMV Florida in native and cultivated plants growing near the original field site of whitefly collection and determination of its experimental host range. Analysis of complete CpMMV Florida genomes recovered from whiteflies and plants suggests that the current classification criteria for carlaviruses need to be reevaluated. Overall, metagenomic analysis supports that DNA plant viruses carried by B. tabaci are dominated by begomoviruses, whereas significantly less is known about RNA viruses present in this damaging insect vector.

  1. RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America.

    Directory of Open Access Journals (Sweden)

    Karyna Rosario

    Full Text Available Whiteflies from the Bemisia tabaci species complex have the ability to transmit a large number of plant viruses and are some of the most detrimental pests in agriculture. Although whiteflies are known to transmit both DNA and RNA viruses, most of the diversity has been recorded for the former, specifically for the Begomovirus genus. This study investigated the total diversity of DNA and RNA viruses found in whiteflies collected from a single site in Florida to evaluate if there are additional, previously undetected viral types within the B. tabaci vector. Metagenomic analysis of viral DNA extracted from the whiteflies only resulted in the detection of begomoviruses. In contrast, whiteflies contained sequences similar to RNA viruses from divergent groups, with a diversity that extends beyond currently described viruses. The metagenomic analysis of whiteflies also led to the first report of a whitefly-transmitted RNA virus similar to Cowpea mild mottle virus (CpMMV Florida (genus Carlavirus in North America. Further investigation resulted in the detection of CpMMV Florida in native and cultivated plants growing near the original field site of whitefly collection and determination of its experimental host range. Analysis of complete CpMMV Florida genomes recovered from whiteflies and plants suggests that the current classification criteria for carlaviruses need to be reevaluated. Overall, metagenomic analysis supports that DNA plant viruses carried by B. tabaci are dominated by begomoviruses, whereas significantly less is known about RNA viruses present in this damaging insect vector.

  2. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  3. Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis.

    Science.gov (United States)

    Liu, Long; Tian, Jiao; Nan, Hao; Tian, Mengmeng; Li, Yuan; Xu, Xiaodong; Huang, Baicheng; Zhou, Enmin; Hiscox, Julian A; Chen, Hongying

    2016-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of

  4. The 3D protein of duck hepatitis A virus type 1 binds to a viral genomic 3' UTR and shows RNA-dependent RNA polymerase activity.

    Science.gov (United States)

    Zhang, Yu; Cao, Qianda; Wang, Mingshu; Jia, Renyong; Chen, Shun; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Zhao, Xinxin; Chen, Xiaoyue; Cheng, Anchun

    2017-12-01

    To explore the RNA-dependent RNA polymerase (RdRP) function of the 3D protein of duck hepatitis A virus type 1 (DHAV-1), the gene was cloned into the pET-32a(+) vector for prokaryotic expression. The 3' untranslated region (3' UTR) of DHAV-1 together with a T7 promoter was cloned into the pMD19-T vector for in vitro transcription of 3' UTR RNA, which was further used as a template in RNA-dependent RNA polymerization. In this study, three methods were applied to analyze the RdRP function of the 3D protein: (1) ammonium molybdate spectrophotometry to detect pyrophosphate produced during polymerization; (2) quantitative reverse transcription PCR (RT-qPCR) to investigate the changes in RNA quantity during polymerization; and (3) electrophoresis mobility shift assay to examine the interaction between the 3D protein and 3' UTR. The results showed the 3D protein was successfully expressed in bacteria culture supernatant in a soluble form, which could be purified by affinity chromatography. In 3D enzymatic activity assays, pyrophosphate and RNA were produced, the amounts of which increased based on approximative kinetics, and binding of the 3D protein to the 3' UTR was observed. These results indicate that prokaryotically expressed soluble DHAV-13D protein can bind to a viral genomic 3' UTR and exhibit RdRP activity.

  5. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

    Science.gov (United States)

    Simone-Finstrom, Michael; Aronstein, Kate; Goblirsch, Michael; Rinkevich, Frank; de Guzman, Lilia

    2018-03-01

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity

  6. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping

    Science.gov (United States)

    Bain, Mark B.; Cornwell, Emily R.; Hope, Kristine M.; Eckerlin, Geofrey E.; Casey, Rufina N.; Groocock, Geoffrey H.; Getchell, Rodman G.; Bowser, Paul R.; Winton, James R.; Batts, William N.; Cangelosi, Allegra; Casey, James W.

    2010-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.

  7. [ALAT and viral RNA as risk factors in 68 blood donors with anti-hepatitis C antibodies].

    Science.gov (United States)

    Tullen, E; De Saussure, P; Soulier-Lauper, M

    1993-01-23

    Determine the risk factors in blood donors with anti hepatitis C antibodies (anti-HCV ab) possible liver involvement and evaluation of their infectious potential by a search for viral RNA in blood. Between July 1990 and October 1991, 19,632 blood donors were screened for hepatitis C. Antibodies to HCV were detected in 74 donors (2nd generation ELISA, Abbott). We evaluated the risk factors, determined ALAT levels and looked for circulating RNA virus by amplification of the non-coding region of the viral genome (RTPCR) in 68 of these 74 donors screened. A control was chosen arbitrarily from 103 donors with high ALAT levels, but with no antibodies to HCV nor detectable circulating viral DNA. The prevalence of anti-HCV ab in blood donors in 0.37%. No risk factor was found in 29 donors (43%). Parenteral exposure (former i.v. drug addiction and history of transfusions) was found to be the mode of transmission of hepatitis C in 23 donors (34%). History of NANB jaundice (non-post transfusion) was reported in 1 donor (1%). The remaining 15 donors (22%) were found to have minor risk factors - either isolated or in combination (exposure, tatoos, multiple sexual partners). Former i.v. drug addiction (p = 0.0000006) as well as a history of transfusions (p = 0.0071) are significantly more frequent in the group of donors with antibodies to HCV. None of the 35 sexual partners of the tested donors proved to be positive. 21 donors (30%) had high ALAT (+2 SD). Viral RNA was detected in blood of 26 donors (38%). The proportion of cases with positive viral RNA was 61% if only those donors with high ALAT levels were taken into consideration (13 positive of 21). Risk factors were found in 39 donors (57%) with antibodies to HCV. History of parenteral exposure was found to be significantly more frequent than in the control group (p = 0.0000054). Sexual transmission within couples was not demonstrated in the population tested. A positive PCR test is a probable indicator of a continuous

  8. A historical review of the key bacterial and viral pathogens of Scottish wild fish.

    Science.gov (United States)

    Wallace, I S; McKay, P; Murray, A G

    2017-12-01

    Thousands of Scottish wild fish were screened for pathogens by Marine Scotland Science. A systematic review of published and unpublished data on six key pathogens (Renibacterium salmoninarum, Aeromonas salmonicida, IPNV, ISAV, SAV and VHSV) found in Scottish wild and farmed fish was undertaken. Despite many reported cases in farmed fish, there was a limited number of positive samples from Scottish wild fish, however, there was evidence for interactions between wild and farmed fish. A slightly elevated IPNV prevalence was reported in wild marine fish caught close to Atlantic salmon, Salmo salar L., farms that had undergone clinical IPN. Salmonid alphavirus was isolated from wild marine fish caught near Atlantic salmon farms with a SAV infection history. Isolations of VHSV were made from cleaner wrasse (Labridae) used on Scottish Atlantic salmon farms and VHSV was detected in local wild marine fish. However, these pathogens have been detected in wild marine fish caught remotely from aquaculture sites. These data suggest that despite the large number of samples taken, there is limited evidence for clinical disease in wild fish due to these pathogens (although BKD and furunculosis historically occurred) and they are likely to have had a minimal impact on Scottish wild fish. © 2017 Crown Copyright. Journal of Fish Diseases © 2017 John Wiley & Sons Ltd.

  9. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication.

    Science.gov (United States)

    Pudupakam, R S; Kenney, Scott P; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A; Leroith, Tanya; Pierson, F William; Meng, Xiang-Jin

    2011-10-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.

  10. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    Science.gov (United States)

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  11. Viral protein Nef is detected in plasma of half of HIV-infected adults with undetectable plasma HIV RNA.

    Directory of Open Access Journals (Sweden)

    Jana Ferdin

    Full Text Available To address the role of translationally active HIV reservoir in chronic inflammation and non-AIDS related disorders, we first need a simple and accurate assay to evaluate viral protein expression in virally suppressed subjects.We optimized an HIV Nef enzyme-linked immunosorbent assay (ELISA and used it to quantify plasma Nef levels as an indicator of the leaky HIV reservoir in an HIV-infected cohort.This study accessed 134 plasma samples from a well-characterized cohort study of HIV-infected and uninfected adults in San Francisco (the SCOPE cohort. We optimized an ELISA for detection of plasma Nef in HIV-negative subjects and HIV-infected non-controllers, and evaluated its utility to quantify plasma Nef levels in a cross-sectional study of ART-suppressed and elite controller HIV-infected subjects.Here, we describe the performance of an optimized HIV Nef ELISA. When we applied this assay to the study cohort we found that plasma Nef levels were correlated with plasma HIV RNA levels in untreated disease. However, we were able to detect Nef in plasma of approximately half of subjects on ART or with elite control, despite the lack of detectable plasma HIV RNA levels using standard assays. Plasma Nef levels were not consistently associated with CD4+ T-cell count, CD8+ T-cell count, self-reported nadir CD4+ T-cell count or the CD4+/CD8+ T-cell ratio in HIV-infected subjects.Since plasma HIV RNA levels are undetectable in virally suppressed subjects, it is reasonable to assume that viral protein expression in leaky reservoir, and not plasma virions, is the source of Nef accumulating in plasma. To examine this further, improvements of the assay sensitivity, by lowering the background through improvements in the quality of Nef antibodies, and detailed characterization of the HIV reservoirs are needed.

  12. Forced selection of a human immunodeficiency virus type 1 variant that uses a non-self tRNA primer for reverse transcription: Involvement of viral RNA sequences and the reverse transcriptase enzyme

    NARCIS (Netherlands)

    Abbink, Truus E. M.; Beerens, Nancy; Berkhout, Ben

    2004-01-01

    Human immunodeficiency virus type 1 uses the tRNA(3)(Lys) molecule as a selective primer for reverse transcription. This primer specificity is imposed by sequence complementarity between the tRNA primer and two motifs in the viral RNA genome: the primer-binding site (PBS) and the primer activation

  13. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    International Nuclear Information System (INIS)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M.

    2007-01-01

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction

  14. Bacterial and viral pathogens in live oysters: 2007 United States market survey.

    Science.gov (United States)

    DePaola, Angelo; Jones, Jessica L; Woods, Jacquelina; Burkhardt, William; Calci, Kevin R; Krantz, Jeffrey A; Bowers, John C; Kasturi, Kuppuswamy; Byars, Robin H; Jacobs, Emily; Williams-Hill, Donna; Nabe, Khamphet

    2010-05-01

    Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries.

  15. Bacterial and Viral Pathogens in Live Oysters: 2007 United States Market Survey ▿

    Science.gov (United States)

    DePaola, Angelo; Jones, Jessica L.; Woods, Jacquelina; Burkhardt, William; Calci, Kevin R.; Krantz, Jeffrey A.; Bowers, John C.; Kasturi, Kuppuswamy; Byars, Robin H.; Jacobs, Emily; Williams-Hill, Donna; Nabe, Khamphet

    2010-01-01

    Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries. PMID:20190085

  16. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  17. MicroRNA Roles in the NF-κB Signaling Pathway during Viral Infections

    Directory of Open Access Journals (Sweden)

    Zeqian Gao

    2014-01-01

    Full Text Available NF-κB signaling network is a crucial component of innate immunity. miRNAs are a subtype of small noncoding RNAs, involved in regulation of gene expression at the posttranscriptional level. Increasing evidence has emerged that miRNAs play an important role in regulation of NF-κB signaling pathway during viral infections. Both host and viral miRNAs are attributed to modulation of NF-κB activity, thus affecting viral infection and clearance. Understandings of the mechanisms of these miRNAs will open a direction for development of novel antivirus drugs.

  18. High frequency of parasitic and viral stool pathogens in patients with active ulcerative colitis: report from a tropical country.

    Science.gov (United States)

    Banerjee, Debabrata; Deb, Rachana; Dar, Lalit; Mirdha, Bijay R; Pati, Sunil K; Thareja, Sandeep; Falodia, Sushil; Ahuja, Vineet

    2009-01-01

    Diarrhoeal relapses in patients with ulcerative colitis (UC) may be associated with enteric infections and its diagnosis may lessen avoidable exposure to corticosteroids and/or immunosuppressants. The purpose of this study was to assess the frequency of stool pathogens (parasitic and viral) in patients with active UC. This prospective cross-sectional study included 49 consecutive patients (32 M, 17 F, mean age 35.8+/-12 years) with active UC. Three stool samples were collected from each patient and examined for parasitic infection. Rectal biopsies were obtained during sigmoidoscopy to demonstrate cytomegalovirus (CMV) inclusion bodies and to conduct qualitative polymerase chain reaction (PCR) for CMV and herpes simplex virus (HSV) DNA detection. Median duration of illness was 3.9+/-3.7 years and 83.7% of the patients had moderate to severe disease. The prevalence of parasitic infections in UC was 12%. The organisms isolated were Strongyloides stercoralis in 4%, Ankylostoma duodenale in 4%, Cryptosporidium in 2% and Entamoeba histolytica in 2% of the patients. The prevalence of CMV and HSV in rectal biopsies using qualitative PCR was 8% and 10%, respectively. No predictive factor was identified with CMV superinfection in patients with active UC. In India there is a high prevalence of parasitic and viral infections in patients with active UC. The results of the study suggest that, in tropical countries with a known high prevalence of parasitic diseases, aggressive evaluation for parasitic and viral infections should be carried out, as early identification and prompt treatment of such infections can improve the clinical course of patients with active UC.

  19. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Maarit Neuvonen

    2011-11-01

    Full Text Available Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3 domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV, Sindbis (SINV, and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  20. Effects of F virus in Bombyx mori L., 1758 (Lep., bombycidae) and site determination of the viral RNA synthesis by auto-radiography

    International Nuclear Information System (INIS)

    Almeida, I.M.G. de.

    1980-01-01

    Some aspects of the pathological process of the infectious flacherie virus in the midgut epithelial cells of the silkworm (Bombyx mori L., 1758 (Lep., Bombycidae)) as well as the site of the viral RNA synthesis were investigated. Electron microscope observation of these inclusion bodies showed that they were surrounded by a single membrane and containing many vesicles and virus particles. The nucleus of the cells infected with the virus exhibited higher electron dense masses than the healthy ones. The site of the viral RNA synthesis. Actinomycin D, at the used concentration, selectively blocked the cell RNA synthesis without affecting the virus RNA synthesis. The inhibition found was about 60%. The data obtained indicated that the viral RNA synthesis occurs in the nucleus of the midgut epithelial cells of the silkworm larvae. (author)

  1. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor.

    Science.gov (United States)

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley; Ke, Ailong

    2011-05-03

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage 29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 Å resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of 29 DNA.

  2. Rapid detection of food pathogens using RNA aptamers-immobilized slide.

    Science.gov (United States)

    Maeng, Jin-Soo; Kim, Namsoo; Kim, Chong-Tai; Han, Seung Ryul; Lee, Young Ju; Lee, Seong-Wook; Lee, Myung-Hyun; Cho, Yong-Jin

    2012-07-01

    The purpose of this study was to develop a simple and rapid detection system for foodborne bacteria, which consisted of an optical microscope and its slide chip with artificial antibodies, or RNA aptamers. From an RNA pool, three each RNA aptamers were built by the method of SELEX (systematic evolution of ligands by exponential enrichment) for components of cell wall, LPS (lipopolysaccharide) from E. coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane protein of OmpC from Salmonella typhimurium, respectively. These aptamers were hybridized with thiol-conjugated 16 dT-linker molecules in order to be immobilized on silver surface which was, in advance, fabricated on glass slide, using a spin-coating method. To confirm that each aptamers retained its specific binding activities to their antigenic live bacteria, microscopic view of bound cells immobilized on silver film were observed. Furthermore, we observed the fluorescence-emitting bacteria-aptamer complex immobilized on silver film after adding RNA aptamers hybridized with fluorophore, FAM-conjugated 16 dT-linker molecules. As a result, the RNA aptamers-immobilized slide system developed in this study was a useful new tool to rapidly monitor individual food pathogens.

  3. Full Viral Suppression, Low-Level Viremia, and Quantifiable Plasma HIV-RNA at the End of Pregnancy in HIV-Infected Women on Antiretroviral Treatment.

    Science.gov (United States)

    Baroncelli, Silvia; Pirillo, Maria F; Tamburrini, Enrica; Guaraldi, Giovanni; Pinnetti, Carmela; Degli Antoni, Anna; Galluzzo, Clementina M; Stentarelli, Chiara; Amici, Roberta; Floridia, Marco

    2015-07-01

    There is limited information on full viral suppression and low-level HIV-RNA viremia in HIV-infected women at the end of pregnancy. We investigated HIV-RNA levels close to delivery in women on antiretroviral treatment in order to define rates of complete suppression, low-level viremia, and quantifiable HIV-RNA, exploring as potential determinants some clinical and viroimmunological variables. Plasma samples from a national study in Italy, collected between 2003 and 2012, were used. According to plasma HIV-RNA levels, three groups were defined: full suppression (target not detected), low-level viremia (target detected but HIV-RNA (≥37 copies/ml). Multivariable logistic regression was used to define determinants of full viral suppression and of quantifiable HIV-RNA. Among 107 women evaluated at a median gestational age of 35 weeks, 90 (84.1%) had HIV-RNA HIV-RNA was 109 copies/ml (IQR 46-251), with only one case showing resistance (mutation M184V; rate: 9.1%). In multivariable analyses, women with higher baseline HIV-RNA levels and with hepatitis C virus (HCV) coinfection were significantly more likely to have quantifiable HIV-RNA in late pregnancy. Full viral suppression was significantly more likely with nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens and significantly less likely with higher HIV-RNA in early pregnancy. No cases of HIV transmission occurred. In conclusion, HIV-infected pregnant women showed a high rate of viral suppression and a low resistance rate before delivery. In most cases no target HIV-RNA was detected in plasma, suggesting a low risk of subsequent virological rebound and development of resistance. Women with high levels of HIV-RNA in early pregnancy and those who have concomitant HCV infection should be considered at higher risk of having quantifiable HIV-RNA at the end of pregnancy.

  4. The fish pathogen Yersinia ruckeri produces holomycin and uses an RNA methyltransferase for self-resistance.

    Science.gov (United States)

    Qin, Zhiwei; Baker, Alexander Thomas; Raab, Andrea; Huang, Sheng; Wang, Tiehui; Yu, Yi; Jaspars, Marcel; Secombes, Christopher J; Deng, Hai

    2013-05-24

    Holomycin and its derivatives belong to a class of broad-spectrum antibacterial natural products containing a rare dithiolopyrrolone heterobicyclic scaffold. The antibacterial mechanism of dithiolopyrrolone compounds has been attributed to the inhibition of bacterial RNA polymerase activities, although the exact mode of action has not been established in vitro. Some dithiopyrrolone derivatives display potent anticancer activities. Recently the biosynthetic gene cluster of holomycin has been identified and characterized in Streptomyces clavuligerus. Here we report that the fish pathogen Yersinia ruckeri is a holomycin producer, as evidenced through genome mining, chemical isolation, and structural elucidation as well as genetic manipulation. We also identified a unique regulatory gene hom15 at one end of the gene cluster encoding a cold-shock-like protein that likely regulates the production of holomycin in low cultivation temperatures. Inactivation of hom15 resulted in a significant loss of holomycin production. Finally, gene disruption of an RNA methyltransferase gene hom12 resulted in the sensitivity of the mutant toward holomycin. A complementation experiment of hom12 restored the resistance against holomycin. Although the wild-type Escherichia coli BL21(DE3) Gold is susceptible to holomycin, the mutant harboring hom12 showed tolerance toward holomycin. High resolution liquid chromatography (LC)-ESI/MS analysis of digested RNA fragments demonstrated that the wild-type Y. ruckeri and E. coli harboring hom12 contain a methylated RNA fragment, whereas the mutated Y. ruckeri and the wild-type E. coli only contain normal non-methylated RNA fragments. Taken together, our results strongly suggest that this putative RNA methyltransferase Hom12 is the self-resistance protein that methylates the RNA of Y. ruckeri to reduce the cytotoxic effect of holomycin during holomycin production.

  5. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia.

    Directory of Open Access Journals (Sweden)

    Ans Timmermans

    Full Text Available Little is known about circulation of influenza and other respiratory viruses in remote populations along the Thai-Cambodia border in western Cambodia. We screened 586 outpatients (median age 5, range 1-77 presenting with influenza-like-illness (ILI at 4 sentinel sites in western Cambodia between May 2010 and December 2012. Real-time reverse transcriptase (rRT PCR for influenza was performed on combined nasal and throat specimens followed by viral culture, antigenic analysis, antiviral susceptibility testing and full genome sequencing for phylogenetic analysis. ILI-specimens negative for influenza were cultured, followed by rRT-PCR for enterovirus and rhinovirus (EV/RV and EV71. Influenza was found in 168 cases (29% and occurred almost exclusively in the rainy season from June to November. Isolated influenza strains had close antigenic and phylogenetic relationships, matching vaccine and circulating strains found elsewhere in Cambodia. Influenza vaccination coverage was low (<20%. Western Cambodian H1N1(2009 isolate genomes were more closely related to 10 earlier Cambodia isolates (94.4% genome conservation than to 13 Thai isolates (75.9% genome conservation, despite sharing the majority of the amino acid changes with the Thai references. Most genes showed signatures of purifying selection. Viral culture detected only adenovirus (5.7% and parainfluenza virus (3.8%, while non-polio enteroviruses (10.3% were detected among 164 culture-negative samples including coxsackievirus A4, A6, A8, A9, A12, B3, B4 and echovirus E6 and E9 using nested RT-PCR methods. A single specimen of EV71 was found. Despite proximity to Thailand, influenza epidemiology of these western Cambodian isolates followed patterns observed elsewhere in Cambodia, continuing to support current vaccine and treatment recommendations from the Cambodian National Influenza Center. Amino acid mutations at non-epitope sites, particularly hemagglutinin genes, require further investigation in

  6. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia.

    Science.gov (United States)

    Timmermans, Ans; Melendrez, Melanie C; Se, Youry; Chuang, Ilin; Samon, Nou; Uthaimongkol, Nichapat; Klungthong, Chonticha; Manasatienkij, Wudtichai; Thaisomboonsuk, Butsaya; Tyner, Stuart D; Rith, Sareth; Horm, Viseth Srey; Jarman, Richard G; Bethell, Delia; Chanarat, Nitima; Pavlin, Julie; Wongstitwilairoong, Tippa; Saingam, Piyaporn; El, But Sam; Fukuda, Mark M; Touch, Sok; Sovann, Ly; Fernandez, Stefan; Buchy, Philippe; Chanthap, Lon; Saunders, David

    2016-01-01

    Little is known about circulation of influenza and other respiratory viruses in remote populations along the Thai-Cambodia border in western Cambodia. We screened 586 outpatients (median age 5, range 1-77) presenting with influenza-like-illness (ILI) at 4 sentinel sites in western Cambodia between May 2010 and December 2012. Real-time reverse transcriptase (rRT) PCR for influenza was performed on combined nasal and throat specimens followed by viral culture, antigenic analysis, antiviral susceptibility testing and full genome sequencing for phylogenetic analysis. ILI-specimens negative for influenza were cultured, followed by rRT-PCR for enterovirus and rhinovirus (EV/RV) and EV71. Influenza was found in 168 cases (29%) and occurred almost exclusively in the rainy season from June to November. Isolated influenza strains had close antigenic and phylogenetic relationships, matching vaccine and circulating strains found elsewhere in Cambodia. Influenza vaccination coverage was low (Cambodia isolates (94.4% genome conservation) than to 13 Thai isolates (75.9% genome conservation), despite sharing the majority of the amino acid changes with the Thai references. Most genes showed signatures of purifying selection. Viral culture detected only adenovirus (5.7%) and parainfluenza virus (3.8%), while non-polio enteroviruses (10.3%) were detected among 164 culture-negative samples including coxsackievirus A4, A6, A8, A9, A12, B3, B4 and echovirus E6 and E9 using nested RT-PCR methods. A single specimen of EV71 was found. Despite proximity to Thailand, influenza epidemiology of these western Cambodian isolates followed patterns observed elsewhere in Cambodia, continuing to support current vaccine and treatment recommendations from the Cambodian National Influenza Center. Amino acid mutations at non-epitope sites, particularly hemagglutinin genes, require further investigation in light of an increasingly important role of permissive mutations in influenza virus evolution

  7. Inhibition of bovine viral diarrhea virus RNA synthesis by thiosemicarbazone derived from 5,6-dimethoxy-1-indanone.

    Science.gov (United States)

    Castro, Eliana F; Fabian, Lucas E; Caputto, María E; Gagey, Dolores; Finkielsztein, Liliana M; Moltrasio, Graciela Y; Moglioni, Albertina G; Campos, Rodolfo H; Cavallaro, Lucía V

    2011-06-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV).

  8. Inhibition of Bovine Viral Diarrhea Virus RNA Synthesis by Thiosemicarbazone Derived from 5,6-Dimethoxy-1-Indanone▿

    Science.gov (United States)

    Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.

    2011-01-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053

  9. CD8 T cell memory to a viral pathogen requires trans cosignaling between HVEM and BTLA.

    Directory of Open Access Journals (Sweden)

    Rachel Flynn

    Full Text Available Defining the molecular interactions required to program activated CD8 T cells to survive and become memory cells may allow us to understand how to augment anti-viral immunity. HVEM (herpes virus entry mediator is a member of the tumor necrosis factor receptor (TNFR family that interacts with ligands in the TNF family, LIGHT and Lymphotoxin-α, and in the Ig family, B and T lymphocyte attenuator (BTLA and CD160. The Ig family members initiate inhibitory signaling when engaged with HVEM, but may also activate survival gene expression. Using a model of vaccinia virus infection, we made the unexpected finding that deficiency in HVEM or BTLA profoundly impaired effector CD8 T cell survival and development of protective immune memory. Mixed adoptive transfer experiments indicated that BTLA expressed in CD8α+ dendritic cells functions as a trans-activating ligand that delivers positive co-signals through HVEM expressed in T cells. Our data demonstrate a critical role of HVEM-BTLA bidirectional cosignaling system in antiviral defenses by driving the differentiation of memory CD8 T cells.

  10. Levels and patterns of HIV RNA viral load in untreated pregnant women

    DEFF Research Database (Denmark)

    NN, NN; Patel, Deven; Thorne, Claire

    2008-01-01

    OBJECTIVE: To assess pregnancy levels and patterns of HIV RNA in the absence of antiretroviral therapy, while appropriately adjusting for potential confounders, including maternal immune status and race. METHODS: Data on > or = 1 antenatal HIV RNA measurements were available for 333 untreated HIV......-infected pregnant women enrolled in the European Collaborative Study. CD4 counts and HIV RNA measurements were routinely collected from 1992 and 1998, respectively. Linear mixed effects models based on 246 women for whom complete data were available examined changes in HIV RNA levels over pregnancy, with a nested...... random effects term accounting for measurement variability within women and period of sample collection. RESULTS: The change in HIV RNA over pregnancy varied significantly by race (p=0.005): from the second trimester until delivery, HIV RNA decreased significantly by an estimated 0.019 log(10) copies...

  11. Development of a challenge-protective vaccine concept by modification of the viral RNA-dependent RNA polymerase of canine distemper virus.

    Science.gov (United States)

    Silin, D; Lyubomska, O; Ludlow, M; Duprex, W P; Rima, B K

    2007-12-01

    We demonstrate that insertion of the open reading frame of enhanced green fluorescent protein (EGFP) into the coding sequence for the second hinge region of the viral L (large) protein (RNA-dependent RNA polymerase) attenuates a wild-type canine distemper virus. Moreover, we show that single intranasal immunization with this recombinant virus provides significant protection against challenge with the virulent parental virus. Protection against wild-type challenge was gained either after recovery of cellular immunity postimmunization or after development of neutralizing antibodies. Insertion of EGFP seems to result in overattenuation of the virus, while our previous experiments demonstrated that the insertion of an epitope tag into a similar position did not affect L protein function. Thus, a desirable level of attenuation could be reached by manipulating the length of the insert (in the second hinge region of the L protein), providing additional tools for optimization of controlled attenuation. This strategy for controlled attenuation may be useful for a "quick response" in vaccine development against well-known and "new" viral infections and could be combined efficiently with other strategies of vaccine development and delivery systems.

  12. Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans

    Directory of Open Access Journals (Sweden)

    Tony Schountz

    2017-09-01

    Full Text Available Bats are reservoir hosts of many important viruses that cause substantial disease in humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus an explanation for the dichotomous outcomes of infections of humans and bat reservoirs remains to be determined. Bats appear to have a few unusual features that may account for these differences, including evidence of constitutive interferon (IFN activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation. We propose these features may, in part, account for why bats can host these viruses without disease and how they may contribute to the highly pathogenic nature of bat-borne viruses after spillover into humans. Because of the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. With large naive antibody repertoires, bats may control the limited virus replication without the need for rapid affinity maturation, and this may explain why bats typically have low antibody titers to viruses. However, because bat viruses have evolved in high IFN environments, they have enhanced countermeasures against the IFN response. Thus, upon infection of human cells, where the IFN response is not constitutive, the viruses overwhelm the IFN response, leading to abundant virus replication and pathology.

  13. Correlation of viral RNA biosynthesis with glucose-6-phosphate dehydrogenase activity and host resistance

    Czech Academy of Sciences Publication Activity Database

    Šindelář, Luděk; Šindelářová, Milada

    2002-01-01

    Roč. 215, - (2002), s. 862-869 ISSN 0032-0935 R&D Projects: GA ČR GA522/99/1264 Institutional research plan: CEZ:AV0Z5038910 Keywords : Glucose 6 phosphate dehydrogenase * Nicotiana (viral infection) * Plant viruses Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.960, year: 2002

  14. Full Viral Suppression, Low-Level Viremia, and Quantifiable Plasma HIV-RNA at the End of Pregnancy in HIV-Infected Women on Antiretroviral Treatment

    OpenAIRE

    Baroncelli, Silvia; Pirillo, Maria F.; Tamburrini, Enrica; Guaraldi, Giovanni; Pinnetti, Carmela; Antoni, Anna Degli; Galluzzo, Clementina M.; Stentarelli, Chiara; Amici, Roberta; Floridia, Marco

    2015-01-01

    There is limited information on full viral suppression and low-level HIV-RNA viremia in HIV-infected women at the end of pregnancy. We investigated HIV-RNA levels close to delivery in women on antiretroviral treatment in order to define rates of complete suppression, low-level viremia, and quantifiable HIV-RNA, exploring as potential determinants some clinical and viroimmunological variables. Plasma samples from a national study in Italy, collected between 2003 and 2012, were used. According ...

  15. Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process.

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-11-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5' end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3' end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.

  16. Genetic diversification of an emerging pathogen: A decade of mutation by the fish Viral Hemorrhagic Septicemia (VHS) virus in the Laurentian Great Lakes

    Science.gov (United States)

    Viral Hemorrhagic Septicemia virus (VHSv) is an RNA rhabdovirus, which causes one of the world's most serious fish diseases, infecting >80 freshwater and marine species across the Northern Hemisphere. A new, novel, and especially virulent substrain - VHSv-IVb - first appeared in the Laurentian Gre...

  17. Serologic Survey for Selected Viral and Bacterial Swine Pathogens in Colombian Collared Peccaries ( Pecari tajacu) and Feral Pigs ( Sus scrofa).

    Science.gov (United States)

    Montenegro, Olga L; Roncancio, Nestor; Soler-Tovar, Diego; Cortés-Duque, Jimena; Contreras-Herrera, Jorge; Sabogal, Sandra; Acevedo, Luz Dary; Navas-Suárez, Pedro Enrique

    2018-06-14

    In South America, wild populations of peccaries coexist with domestic and feral pigs, with poorly understood consequences. We captured 58 collared peccaries ( Pecari tajacu) and 15 feral pigs ( Sus scrofa) in locations of Colombia where coexistence of these species is known. Blood samples were tested for antibodies against four viral agents, classical swine fever virus (CSFV), Aujeszky's disease virus (ADV), porcine circovirus (PCV-2), and vesicular stomatitis virus (New Jersey and Indiana subtypes) and two bacterial agents, Brucella spp. and six serovars of Leptospira interrogans. The prevalence of CSFV was 5% (3/58) in collared peccaries and 7% (1/15) in feral pigs. The prevalence of PCV-2 was 7% (1/15) in collared peccaries and 67% (2/3) in feral pigs. Vesicular stomatitis prevalence was 33% (8/24) in collared peccaries and 67% (4/6) in feral pigs. Leptospira prevalence was 78% (39/50) in collared peccary and 100% (8/8) in feral pigs; bratislava, grippotyphosa, icterohaemorrhagiae, and pomona were the most frequent serovars. Also, the only white-lipped peccary ( Tayassu pecari) sampled was positive for L. interrogans serovar bratislava and for vesicular stomatitis virus, New Jersey strain. No samples were positive for ADV or Brucella. The seroprevalence of antibodies against L. interrogans was similar to that observed in other studies. Icterohaemorrhagiae appears to be a common serovar among in situ and ex situ peccary populations. Positive antibodies against PVC-2 represent a novel report of exposure to this pathogen in Colombian peccaries. Our results indicate the possible transmission of various pathogens, important for pig farms, in the studied pig and peccaries.

  18. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus.

    Science.gov (United States)

    Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair

    2016-07-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.

  19. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  20. Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems.

    Directory of Open Access Journals (Sweden)

    Abdimajid Osman

    Full Text Available Platelet concentrates (PCs are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets' nucleic acids. We previously reported that treatment of stored platelets with the PR system Intercept significantly reduced the level of half of the microRNAs that were monitored, induced platelet activation and compromised the platelet response to physiological agonists. Using genome-wide differential expression (DE RNA sequencing (RNA-Seq, we now report that Intercept markedly perturbs the mRNA transcriptome of human platelets and alters the expression level of >800 mRNAs (P<0.05 compared to other PR systems and control platelets. Of these, 400 genes were deregulated with DE corresponding to fold changes (FC ≥ 2. At the p-value < 0.001, as many as 147 genes were deregulated by ≥ 2-fold in Intercept-treated platelets, compared to none in the other groups. Finally, integrated analysis combining expression data for microRNA (miRNA and mRNA, and involving prediction of miRNA-mRNA interactions, disclosed several positive and inverse correlations between miRNAs and mRNAs in stored platelets. In conclusion, this study demonstrates that Intercept markedly deregulates the platelet mRNA transcriptome, concomitant with reduced levels of mRNA-regulatory miRNAs. These findings should enlighten authorities worldwide when considering the implementation of PR systems, that target nucleic acids and are not specific to pathogens, for the management of blood products.

  1. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    OpenAIRE

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. Th...

  2. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Science.gov (United States)

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  3. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis

    Science.gov (United States)

    Rey, Félix A.

    2017-01-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation. PMID:28151973

  4. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    Directory of Open Access Journals (Sweden)

    Danilo Dubrau

    2017-02-01

    Full Text Available The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132, which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  5. Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA.

    Science.gov (United States)

    Comas-Garcia, Mauricio; Datta, Siddhartha Ak; Baker, Laura; Varma, Rajat; Gudla, Prabhakar R; Rein, Alan

    2017-07-20

    Selective packaging of HIV-1 genomic RNA (gRNA) requires the presence of a cis -acting RNA element called the 'packaging signal' (Ψ). However, the mechanism by which Ψ promotes selective packaging of the gRNA is not well understood. We used fluorescence correlation spectroscopy and quenching data to monitor the binding of recombinant HIV-1 Gag protein to Cy5-tagged 190-base RNAs. At physiological ionic strength, Gag binds with very similar, nanomolar affinities to both Ψ-containing and control RNAs. We challenged these interactions by adding excess competing tRNA; introducing mutations in Gag; or raising the ionic strength. These modifications all revealed high specificity for Ψ. This specificity is evidently obscured in physiological salt by non-specific, predominantly electrostatic interactions. This nonspecific activity was attenuated by mutations in the MA, CA, and NC domains, including CA mutations disrupting Gag-Gag interaction. We propose that gRNA is selectively packaged because binding to Ψ nucleates virion assembly with particular efficiency.

  6. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication

    International Nuclear Information System (INIS)

    Sriram, Bandi; Thakral, Deepshi; Panda, Subrat Kumar

    2003-01-01

    The 3' end of hepatitis E virus (HEV) contains cis-acting regulatory element, which plays an important role in viral replication. To develop specific replication inhibitor at the molecular level, mono- and di-hammerhead ribozymes (Rz) were designed and synthesized against the conserved 3' end sequences of HEV, which cleave at nucleotide positions 7125 and 7112/7125, respectively. Di-hammerhead ribozyme with two catalytic motifs in tandem was designed to cleave simultaneously at two sites spaced 13 nucleotides apart, which increases the overall cleavage efficiency and prevents the development of escape mutants. Specific cleavage products were obtained with both the ribozymes in vitro at physiological conditions. The inactive control ribozymes showed no cleavage. The ribozymes showed specific inhibition of HEV 3' end fused-luciferase reporter gene expression by ∼37 and ∼60%, respectively in HepG2 cells. These results demonstrate a feasible approach to inhibit the HEV replication to a limited extent by targeting the cis-acting 3' end of HEV with hammerhead ribozymes

  7. Characterization of an Hfq dependent antisense sRNA in the Gram-positive human pathogen Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nielsen, Jesper Sejrup; Lei Kristensen, Lisbeth; Hanghøj Chrisitansen, Mie

    between sRNA and target mRNA rely on the RNA chaperone Hfq. Hfq is a ubiquitous protein found in almost all genres of bacterial life. However, so far its role as an RNA chaperone has only been described in Gram-negative species such as Escherichia coli and Salmonella (Vogel, J. 2009). We previously...... identified several Hfq-binding sRNAs in the Gram-positive human pathogen L. monocytogenes (Christiansen et al 2006). Through bioinformatics, we have identified a number of candidate targets for one of these sRNAs (LhrA). Here, we present the characterization of one of these targets. Our results suggest...

  8. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis.

    Science.gov (United States)

    Davis, William G; Blackwell, Jerry L; Shi, Pei-Yong; Brinton, Margo A

    2007-09-01

    RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3'(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3'(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3' SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3' SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3' SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3' end of the genome and the RC. eEF1A bound with similar efficiencies to the 3'-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.

  9. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication.

    Directory of Open Access Journals (Sweden)

    Deepika Bhullar

    Full Text Available Japanese encephalitis virus (JEV has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5'- and 3'-non-coding regions (NCRs. The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB interacts in vitro with both the 5'-NCR of the positive-sense genomic RNA--5NCR(+, and its complementary sequence in the negative-sense replication intermediate RNA--3NCR(-. The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(- RNA with viral RNA-dependent RNA polymerase (NS5 protein, an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.

  10. TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection

    Directory of Open Access Journals (Sweden)

    Jin Young-Hee

    2011-12-01

    Full Text Available Abstract Background We have previously shown that toll-like receptor 3 (TLR3-mediated signaling plays an important role in the induction of innate cytokine responses to Theiler's murine encephalomyelitis virus (TMEV infection. In addition, cytokine levels produced after TMEV infection are significantly higher in the glial cells of susceptible SJL mice compared to those of resistant C57BL/6 mice. However, it is not known whether TLR3-mediated signaling plays a protective or pathogenic role in the development of demyelinating disease. Methods SJL/J and B6;129S-Tlr3tm1Flv/J (TLR3KO-B6 mice, and TLR3KO-SJL mice that TLR3KO-B6 mice were backcrossed to SJL/J mice for 6 generations were infected with Theiler's murine encephalomyelitis virus (2 × 105 PFU with or without treatment with 50 μg of poly IC. Cytokine production and immune responses in the CNS and periphery of infected mice were analyzed. Results We investigated the role of TLR3-mediated signaling in the protection and pathogenesis of TMEV-induced demyelinating disease. TLR3KO-B6 mice did not develop demyelinating disease although they displayed elevated viral loads in the CNS. However, TLR3KO-SJL mice displayed increased viral loads and cellular infiltration in the CNS, accompanied by exacerbated development of demyelinating disease, compared to the normal littermate mice. Late, but not early, anti-viral CD4+ and CD8+ T cell responses in the CNS were compromised in TLR3KO-SJL mice. However, activation of TLR3 with poly IC prior to viral infection also exacerbated disease development, whereas such activation after viral infection restrained disease development. Activation of TLR3 signaling prior to viral infection hindered the induction of protective IFN-γ-producing CD4+ and CD8+ T cell populations. In contrast, activation of these signals after viral infection improved the induction of IFN-γ-producing CD4+ and CD8+ T cells. In addition, poly IC-pretreated mice displayed elevated PDL-1 and

  11. Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Directory of Open Access Journals (Sweden)

    Ristic Natalia

    2010-09-01

    Full Text Available Abstract Background The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1 sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants. Results HIV-1 lacking SL1 (NLΔSL1 did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K on day 18 postinfection and C1907T in the SP1 domain (P10L on day 11 postinfection. NLΔSL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLΔSL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLΔSL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLΔSL1

  12. SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization.

    Science.gov (United States)

    Kenyon, Julia C; Tanner, Sian J; Legiewicz, Michal; Phillip, Pretty S; Rizvi, Tahir A; Le Grice, Stuart F J; Lever, Andrew M L

    2011-08-01

    Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.

  13. Structure of Hepatitis E Virion-Sized Particle Reveals an RNA-Dependent Viral Assembly Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L.; Wall, J.; Li, T.-C.; Mayazaki, N.; Simon, M. N.; Moore, M.; Wang, C.-Y.; Takeda, N.; Wakita, T.; Miyamura, T.; Cheng, R. H.

    2010-10-22

    Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.

  14. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis

    International Nuclear Information System (INIS)

    Mu, J.-J.; Tsay, Y.-G.; Juan, L.-J.; Fu, T.-F.; Huang, W.-H.; Chen, D.-S.; Chen, P.-J.

    2004-01-01

    Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [ 3 H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication

  15. Leeches as a source of mammalian viral DNA and RNA - a study in medicinal leeches

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Schnell, Ida Bærholm; Jensen, Randi Holm

    2017-01-01

    V]) from nucleic acids extracted from medicinal leeches fed with blood spiked with each virus. All viruses except BHV showed a gradual decline in concentration from day 1 to 50, and all except BHV were detectable in at least half of the samples even after 50 days. BHV exhibited a rapid decline at day 27...... and was undetectable at day 50. Our findings in medicinal leeches indicate that leeches collected in the wild might be an untapped resource for detecting vertebrate viruses and could provide new opportunities to study wildlife viral diseases of rare species in challenging environments, where capturing and handling...

  16. Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress

    Science.gov (United States)

    Liang, Chaoqiong; Hao, Jianjun; Meng, Yan; Luo, Laixin; Li, Jianqiang

    2018-01-01

    Cucumber green mottle mosaic virus (CGMMV) is an economically important pathogen and causes significant reduction of both yield and quality of cucumber (Cucumis sativus). Currently, there were no satisfied strategies for controlling the disease. A better understanding of microRNA (miRNA) expression related to the regulation of plant-virus interactions and virus resistance would be of great assistance when developing control strategies for CGMMV. However, accurate expression analysis is highly dependent on robust and reliable reference gene used as an internal control for normalization of miRNA expression. Most commonly used reference genes involved in CGMMV-infected cucumber are not universally expressed depending on tissue types and stages of plant development. It is therefore crucial to identify suitable reference genes in investigating the role of miRNA expression. In this study, seven reference genes, including Actin, Tubulin, EF-1α, 18S rRNA, Ubiquitin, GAPDH and Cyclophilin, were evaluated for the most accurate results in analyses using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression was assayed on cucumber leaves, stems and roots that were collected at different days post inoculation with CGMMV. The expression data were analyzed using algorithms including delta-Ct, geNorm, NormFinder, and BestKeeper as well as the comparative tool RefFinder. The reference genes were subsequently validated using miR159. The results showed that EF-1α and GAPDH were the most reliable reference genes for normalizing miRNA expression in leaf, root and stem samples, while Ubiquitin and EF-1α were the most suitable combination overall. PMID:29543906

  17. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    NARCIS (Netherlands)

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  18. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis.

    Directory of Open Access Journals (Sweden)

    Robert N Kirchdoerfer

    2016-10-01

    Full Text Available Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP, a phosphoprotein (VP35 and a polymerase (L. However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  19. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.; Saphire, Erica Ollmann (Scripps)

    2016-10-18

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  20. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Science.gov (United States)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  1. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    Science.gov (United States)

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.

  2. Double stranded viral RNA induces inflammation and insulin resistance in skeletal muscle from pregnant women in vitro.

    Science.gov (United States)

    Lappas, Martha

    2015-05-01

    Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies complicated by pre-existing maternal obesity and gestational diabetes mellitus (GDM). There is now increasing evidence that activation of Toll-like receptor (TLR) signalling pathways by viral products may play a role in the pathophysiology of diabetes. Thus, the aim of this study was to assess the effect of the TLR3 ligand and viral dsRNA analogue polyinosinic polycytidilic acid (poly(I:C)) on inflammation and the insulin signalling pathway in skeletal muscle from pregnant women. Human skeletal muscle tissue explants were performed to determine the effect of poly(I:C) on the expression and secretion of markers of inflammation, and the insulin signalling pathway and glucose uptake. Poly(I:C) significantly increased the expression of a number of inflammatory markers in skeletal muscle from pregnant women. Specifically, there was an increase in the expression and/or secretion of the pro-inflammatory cytokines TNF-α, and IL-6 and the pro-inflammatory chemokines IL-8 and MCP-1. These effect of poly(I:C) appear to mediated via a number of signalling molecules including the pro-inflammatory transcription factor NF-κB, and the serine threonine kinases GSK3 and AMPKα. Additionally, poly(I:C) decreased insulin stimulated GLUT-4 expression and glucose uptake in skeletal muscle from pregnant women. The in vitro data presented in this study suggests that viral infection may contribute to the pathophysiology of pregnancies complicated by pre-existing maternal obesity and/or GDM. It should be noted that the in vitro studies cannot be directly used to infer the same outcomes in the intact subject. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor

    Directory of Open Access Journals (Sweden)

    Buchmeier Michael J

    2001-02-01

    Full Text Available Abstract Background Recent studies of viral entry proteins from influenza, measles, human immunodeficiency virus, type 1 (HIV-1, and Ebola virus have shown, first with molecular modeling, and then X-ray crystallographic or other biophysical studies, that these disparate viruses share a coiled-coil type of entry protein. Results Structural models of the transmembrane glycoproteins (GP-2 of the Arenaviruses, lymphochoriomeningitis virus (LCMV and Lassa fever virus, are presented, based on consistent structural propensities despite variation in the amino acid sequence. The principal features of the model, a hydrophobic amino terminus, and two antiparallel helices separated by a glycosylated, antigenic apex, are common to a number of otherwise disparate families of enveloped RNA viruses. Within the first amphipathic helix, demonstrable by circular dichroism of a peptide fragment, there is a highly conserved heptad repeat pattern proposed to mediate multimerization by coiled-coil interactions. The amino terminal 18 amino acids are 28% identical and 50% highly similar to the corresponding region of Ebola, a member of the Filovirus family. Within the second, charged helix just prior to membrane insertion there is also high similarity over the central 18 amino acids in corresponding regions of Lassa and Ebola, which may be further related to the similar region of HIV-1 defining a potent antiviral peptide analogue. Conclusions These findings indicate a common pattern of structure and function among viral transmembrane fusion proteins from a number of virus families. Such a pattern may define a viral transmembrane superfamily that evolved from a common precursor eons ago.

  4. MicroRNA-Related Polymorphisms in Infectious Diseases—Tiny Changes With a Huge Impact on Viral Infections and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Joel Henrique Ellwanger

    2018-06-01

    Full Text Available MicroRNAs (miRNAs are single-stranded sequences of non-coding RNA with approximately 22 nucleotides that act posttranscriptionally on gene expression. miRNAs are important gene regulators in physiological contexts, but they also impact the pathogenesis of various diseases. The role of miRNAs in viral infections has been explored by different authors in both population-based as well as in functional studies. However, the effect of miRNA polymorphisms on the susceptibility to viral infections and on the clinical course of these diseases is still an emerging topic. Thus, this review will compile and organize the findings described in studies that evaluated the effects of genetic variations on miRNA genes and on their binding sites, in the context of human viral diseases. In addition to discussing the basic aspects of miRNAs biology, we will cover the studies that investigated miRNA polymorphisms in infections caused by hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Epstein–Barr virus, and human papillomavirus. Finally, emerging topics concerning the importance of miRNA genetic variants will be presented, focusing on the context of viral infectious diseases.

  5. Cellular mRNA decay factors involved in the hepatitis C virus life cycle

    OpenAIRE

    Mina Ibarra, Leonardo Bruno

    2010-01-01

    The group of positive strand RNA ((+)RNA) viruses includes numerous plant, animal and human pathogens such as the hepatitis C virus (HCV). Their viral genomes mimic cellular mRNAs, however, besides acting as messengers for translation of viral proteins, they also act as templates for viral replication. Since these two functions are mutually exclusive, a key step in the replication of all (+) RNA viruses is the regulated exit of the genomic RNAs from the cellular translation machinery to the v...

  6. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water.

    Science.gov (United States)

    Chaidez, Cristobal; Moreno, Maria; Rubio, Werner; Angulo, Miguel; Valdez, Benigno

    2003-09-01

    Outbreaks of pathogenic bacteria infections associated with the consumption of fresh produce has occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of three commonly used disinfectants in packing-houses of Culiacan, Mexico (sodium hypochlorite [NaOCl], trichlor-s-triazinetrione [TST] and thrichlormelamine [TCM]) for inactivation of viral indicators and pathogenic bacteria inoculated onto produce wash water. Each microbial challenge consisted of 2 L of water containing approximately 8 log10 bacterial CFU ml(-1), and 8 log10 viral PFU ml(-1) treated with 100 and 300 mg l(-1) of total chlorine with modified turbidity. Water samples were taken after 2 min of contact with chlorine-based products and assayed for the particular microorganisms. TST and NaOCl were found to effectively reduce for bacterial pathogens and viral indicators 8 log10 and 7 log10, respectively (alpha=0.05). The highest inactivation rate was observed when the turbidity was low and the disinfectant was applied at 300 mg l(-1). TCM did not show effective results when compared with the TST and NaOCl (Pturbidity created by the organic and inorganic material present in the water tanks carried by the fresh produce may affect the efficacy of the chlorine-based products.

  7. 16S rRNA-based detection of oral pathogens in coronary atherosclerotic plaque

    Directory of Open Access Journals (Sweden)

    Mahendra Jaideep

    2010-01-01

    Full Text Available Background: Atherosclerosis develops as a response of the vessel wall to injury. Chronic bacterial infections have been associated with an increased risk for atherosclerosis and coronary artery disease. The ability of oral pathogens to colonize in coronary atheromatous plaque is well known. Aim: The aim of this study was to detect the presence of Treponema denticola, Porphyromonas gingivalis and Campylobacter rectus in the subgingival and atherosclerotic plaques of patients with coronary artery disease. Materials and Methods: Fifty-one patients in the age group of 40-80 years with coronary artery disease were selected for the study. DNA was extracted from the plaque samples. The specific primers for T. denticola, C. rectus and P. gingivalis were used to amplify a part of the 16S rRNA gene by polymerase chain reaction. Statistical Analysis Used: Chi-square analysis, correlation coefficient and prevalence percentage of the microorganisms were carried out for the analysis. Results: Of the 51 patients, T. denticola, C. rectus and P. gingivalis were detected in 49.01%, 21.51% and 45.10% of the atherosclerotic plaque samples. Conclusions: Our study revealed the presence of bacterial DNA of the oral pathogenic microorganisms in coronary atherosclerotic plaques. The presence of the bacterial DNA in the coronary atherosclerotic plaques in significant proportion may suggest the possible relationship between periodontal bacterial infection and genesis of coronary atherosclerosis.

  8. Felis catus gammaherpesvirus 1 (FcaGHV1 and coinfections with feline viral pathogens in domestic cats in Brazil

    Directory of Open Access Journals (Sweden)

    Jacqueline Kazue Kurissio

    2018-03-01

    Full Text Available ABSTRACT: Felis catus gammaherpesvirus 1 (FcaGHV1 may causes an asymptomatic infection that result in an efficient transmission and subsequently dissemination of the virus in feline population. This study used molecular detection by qPCR (quantitative PCR based on DNA polymerase gene fragment amplification to evaluate the occurrence of FcaGHV1 and its correlation with other feline viral pathogens, such as Carnivore protoparvovirus 1 (CPPV-1, Felid alphaherpesvirus 1 (FeHV-1, and feline retroviruses such as feline immunodeficiency virus (FIV and feline leukemia virus (FeLV. Of the 182 blood samples evaluated 23.6% (43/182 were positives for FcaGHV1. Approximately 37.9% (33/87 of the samples that tested positive for retrovirus were also were positive for FcaGHV1 infection (P0.66 or CPPV-1 (P>0.46 coinfection. All samples were negative for FeHV-1. Male felines were significantly associated to FcaGHV1 (P<0.0001 and their risk of infection with FcaGHV1 was about of 7.74 times greater compared to females. Kittens (≤ 1year were the least affected by FcaGHV1 infection, being verified a rate of 7.7% (4/52. Therefore, male cats over one year old and infected with FIV were considerably more likely to be infected with FcaGHV1. To our knowledge, this is the first study to report the occurrence and molecular detection of FcaGHV1 infection in domestic cats in Brazil and in South America.

  9. In Vitro and In Vivo Characterization of a Typical and a High Pathogenic Bovine Viral Diarrhea Virus Type II Strains

    Directory of Open Access Journals (Sweden)

    Dario Amilcar Malacari

    2018-04-01

    Full Text Available Non-cytopathic (ncp type 2 bovine viral diarrhea virus (BVDV-2 is widely prevalent in Argentina causing high mortality rates in cattle herds. In this study, we characterized an Argentinean ncp BVDV-2 field isolate (98-124 compared to a high-virulence reference strain (NY-93, using in silico analysis, in vitro assays, and in vivo infections of colostrum-deprived calves (CDC to compare pathogenic characters and virulence. In vitro infection of bovine peripheral blood mononuclear cells (PBMC with BVDV 98-124 induced necrosis shortly after infection while NY-93 strain increased the apoptotic rate in infected cells. Experimental infection of CDC (n = 4 each with these strains caused an enteric syndrome. High pyrexia was detected in both groups. Viremia and shedding were more prolonged in the CDC infected with the NY-93 strain. In addition, NY-93 infection elicited a severe lymphopenia that lasted for 14 days, whereas 98-124 strain reduced the leukocyte counts for 5 days. All infected animals had a diminished lymphoproliferation activity in response to a mitogen. Neutralizing and anti-NS3 antibodies were detected 3 weeks after infection in all infected calves. Virulence was associated with a more severe clinical score, prolonged immune-suppression, and a greater window for transmission. Studies of apoptosis/necrosis performed after in vitro PBMC infection also revealed differences between both strains that might be correlated to the in vivo pathogenesis. Our results identified 98-124 as a low-virulence strain.

  10. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    Directory of Open Access Journals (Sweden)

    Meng Shuang

    2010-06-01

    Full Text Available Abstract Background The hepatitis C virus (HCV genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM, at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP/COBAS TaqMan (CTM assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection.

  11. Prevalence of hepatitis A viral RNA and antibodies among Chinese blood donors.

    Science.gov (United States)

    Sun, P; Su, N; Lin, F Z; Ma, L; Wang, H J; Rong, X; Dai, Y D; Li, J; Jian, Z W; Tang, L H; Xiao, W; Li, C Q

    2015-12-09

    Like other developing countries, China was reported to have a relatively high seroprevalence of anti-hepatitis A antibodies (anti-HAV). However, no studies have evaluated the prevalence of anti-HAV and HAV RNA among voluntary blood donors with or without elevated serum alanine transaminase (ALT) levels. Anti-HAV antibodies were detected using an enzyme-linked immunosorbent assay, and reverse transcription quantitative polymerase chain reaction was carried out for detection of HAV RNA. In the current study, we analyzed a total of 450 serum samples with elevated ALT levels (≥40 U/L) and 278 serum samples with non-elevated ALT levels. Seroprevalence rates of anti-HAV were 51.6% in donors with elevated ALT and 41.4% in donors with non-elevated ALT; however, none of the samples was positive for HAV RNA. The results of our study showed lower seroprevalence rates of anti-HAV in blood donors (irrespective of ALT levels) than those in published data on Chinese populations. Although donors with elevated ALT had statistically higher prevalence rates of anti- HAV than did those with non-elevated ALT, none of the serum samples had detectable levels of the active virus. In conclusion, our results demonstrate that the transmission of hepatitis A by blood transfusion will occur rarely.

  12. The internal initiation of translation in bovine viral diarrhea virus RNA depends on the presence of an RNA pseudoknot upstream of the initiation codon

    Directory of Open Access Journals (Sweden)

    Moes Lorin

    2007-11-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV is the prototype representative of the pestivirus genus in the Flaviviridae family. It has been shown that the initiation of translation of BVDV RNA occurs by an internal ribosome entry mechanism mediated by the 5' untranslated region of the viral RNA 1. The 5' and 3' boundaries of the IRES of the cytopathic BVDV NADL have been mapped and it has been suggested that the IRES extends into the coding of the BVDV polyprotein 2. A putative pseudoknot structure has been recognized in the BVDV 5'UTR in close proximity to the AUG start codon. A pseudoknot structure is characteristic for flavivirus IRESes and in the case of the closely related classical swine fever virus (CSFV and the more distantly related Hepatitis C virus (HCV pseudoknot function in translation has been demonstrated. Results To characterize the BVDV IRESes in detail, we studied the BVDV translational initiation by transfection of dicistronic expression plasmids into mammalian cells. A region coding for the amino terminus of the BVDV SD-1 polyprotein contributes considerably to efficient initiation of translation. The translation efficiency mediated by the IRES of BVDV strains NADL and SD-1 approximates the poliovirus type I IRES directed translation in BHK cells. Compared to the poliovirus IRES increased expression levels are mediated by the BVDV IRES of strain SD-1 in murine cell lines, while lower levels are observed in human cell lines. Site directed mutagenesis revealed that a RNA pseudoknot upstream of the initiator AUG is an important structural element for IRES function. Mutants with impaired ability to base pair in stem I or II lost their translational activity. In mutants with repaired base pairing either in stem 1 or in stem 2 full translational activity was restored. Thus, the BVDV IRES translation is dependent on the pseudoknot integrity. These features of the pestivirus IRES are reminiscent of those of the classical

  13. The internal initiation of translation in bovine viral diarrhea virus RNA depends on the presence of an RNA pseudoknot upstream of the initiation codon.

    Science.gov (United States)

    Moes, Lorin; Wirth, Manfred

    2007-11-22

    Bovine viral diarrhea virus (BVDV) is the prototype representative of the pestivirus genus in the Flaviviridae family. It has been shown that the initiation of translation of BVDV RNA occurs by an internal ribosome entry mechanism mediated by the 5' untranslated region of the viral RNA 1. The 5' and 3' boundaries of the IRES of the cytopathic BVDV NADL have been mapped and it has been suggested that the IRES extends into the coding of the BVDV polyprotein 2. A putative pseudoknot structure has been recognized in the BVDV 5'UTR in close proximity to the AUG start codon. A pseudoknot structure is characteristic for flavivirus IRESes and in the case of the closely related classical swine fever virus (CSFV) and the more distantly related Hepatitis C virus (HCV) pseudoknot function in translation has been demonstrated. To characterize the BVDV IRESes in detail, we studied the BVDV translational initiation by transfection of dicistronic expression plasmids into mammalian cells. A region coding for the amino terminus of the BVDV SD-1 polyprotein contributes considerably to efficient initiation of translation. The translation efficiency mediated by the IRES of BVDV strains NADL and SD-1 approximates the poliovirus type I IRES directed translation in BHK cells. Compared to the poliovirus IRES increased expression levels are mediated by the BVDV IRES of strain SD-1 in murine cell lines, while lower levels are observed in human cell lines. Site directed mutagenesis revealed that a RNA pseudoknot upstream of the initiator AUG is an important structural element for IRES function. Mutants with impaired ability to base pair in stem I or II lost their translational activity. In mutants with repaired base pairing either in stem 1 or in stem 2 full translational activity was restored. Thus, the BVDV IRES translation is dependent on the pseudoknot integrity. These features of the pestivirus IRES are reminiscent of those of the classical swine fever virus, a pestivirus, and the

  14. Detection of chikungunya viral RNA in mosquito bodies on cationic (Q) paper based on innovations in synthetic biology.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Alto, Barry W; Kim, Myong Sang; Bradley, Andrea; Yaren, Ozlem; Benner, Steven A

    2017-08-01

    Chikungunya virus (CHIKV) represents a growing and global concern for public health that needs inexpensive and convenient methods to collect mosquitoes as potential carriers so that they can be preserved, stored and transported for later and/or remote analysis. Reported here is a cellulose-based paper, derivatized with quaternary ammonium groups ("Q-paper") that meets these needs. In a series of tests, infected mosquito bodies were squashed directly on Q-paper. Aqueous ammonia was then added on the mosquito bodies to release viral RNA that adsorbed on the cationic surface via electrostatic interactions. The samples were then stored (frozen) or transported. For analysis, the CHIKV nucleic acids were eluted from the Q-paper and PCR amplified in a workflow, previously developed, that also exploited two nucleic acid innovations, ("artificially expanded genetic information systems", AEGIS, and "self-avoiding molecular recognition systems", SAMRS). The amplicons were then analyzed by a Luminex hybridization assay. This procedure detected CHIKV RNA, if present, in each infected mosquito sample, but not in non-infected counterparts or ddH 2 O samples washes, with testing one week or ten months after sample collection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dynamic changes in HCV RNA levels and viral quasispecies in a patient with chronic hepatitis C after telaprevir-based treatment

    NARCIS (Netherlands)

    de Bruijne, Joep; Sullivan, James C.; Kieffer, Tara L.; Botfield, Martyn; Shames, Ben; Schinkel, Janke; Molenkamp, Richard; Weegink, Christine; Reesink, Henk

    2012-01-01

    Background: Telaprevir is a selective inhibitor of the hepatitis C virus NS3 center dot 4A serine protease. Treatment with telaprevir resulted in a rapid HCV-RNA decline in chronic hepatitis C genotype 1 patients. Objectives: To report the clinical and viral course of a patient treated with

  16. Effects of mutations in the VP2/VP4 cleavage site of Swine vesicular disease virus on RNA encapsidation and viral infectivity

    NARCIS (Netherlands)

    Rebel, J.M.J.; Leendertse, C.H.; Dekker, A.; Moormann, R.J.M.

    2003-01-01

    We studied VP0 cleavage of Swine vesicular disease virus (SVDV), a member of the Picornaviridae using a full-length cDNA copy of the Dutch SVDV isolate. The influences of mutations, introduced at the cleavage site of SVDV, on VP0 cleavage, RNA encapsidation and viral infection were studied. Double

  17. Amino acid substitutions affecting aspartic acid 605 and valine 606 decrease the interaction strength between the influenza virus RNA polymerase PB2 '627' domain and the viral nucleoprotein.

    Science.gov (United States)

    Hsia, Ho-Pan; Yang, Yin-Hua; Szeto, Wun-Chung; Nilsson, Benjamin E; Lo, Chun-Yeung; Ng, Andy Ka-Leung; Fodor, Ervin; Shaw, Pang-Chui

    2018-01-01

    The influenza virus RNA genome is transcribed and replicated in the context of the viral ribonucleoprotein (vRNP) complex by the viral RNA polymerase. The nucleoprotein (NP) is the structural component of the vRNP providing a scaffold for the viral RNA. In the vRNP as well as during transcription and replication the viral polymerase interacts with NP but it is unclear which parts of the polymerase and NP mediate these interactions. Previously the C-terminal '627' domain (amino acids 538-693) of PB2 was shown to interact with NP. Here we report that a fragment encompassing amino acids 146-185 of NP is sufficient to mediate this interaction. Using NMR chemical shift perturbation assays we show that amino acid region 601 to 607 of the PB2 '627' domain interacts with this fragment of NP. Substitutions of these PB2 amino acids resulted in diminished RNP activity and surface plasmon resonance assays showed that amino acids D605 was essential for the interaction with NP and V606 may also play a partial role in the interaction. Collectively these results reveal a possible interaction surface between NP and the PB2 subunit of the RNA polymerase complex.

  18. Dried blood spot HIV-1 RNA quantification: A useful tool for viral load monitoring among HIV-infected individuals in India

    Science.gov (United States)

    Neogi, Ujjwal; Gupta, Soham; Rodridges, Rashmi; Sahoo, Pravat Nalini; Rao, Shwetha D.; Rewari, Bharat B.; Shastri, Suresh; De Costa, Ayesha; Shet, Anita

    2012-01-01

    Background & objectives: Monitoring of HIV-infected individuals on antiretroviral treatment (ART) ideally requires periodic viral load measurements to ascertain adequate response to treatment. While plasma viral load monitoring is widely available in high-income settings, it is rarely used in resource-limited regions because of high cost and need for sophisticated sample transport. Dried blood spot (DBS) as source specimens for viral load measurement has shown promise as an alternative to plasma specimens and is likely to be a useful tool for Indian settings. The present study was undertaken to investigate the performance of DBS in HIV-1 RNA quantification against the standard plasma viral load assay. Methods: Between April-June 2011, 130 samples were collected from HIV-1-infected (n=125) and non-infected (n=5) individuals in two district clinics in southern India. HIV-1 RNA quantification was performed from DBS and plasma using Abbott m2000rt system after manual RNA extraction. Statistical analysis included correlation, regression and Bland-Altman analysis. Results: The sensitivity of DBS viral load was 97 per cent with viral loads >3.0 log10 copies/ml. Measurable viral load (>3.0 log 10 copies/ml) results obtained for the 74 paired plasma-DBS samples showed positive correlation between both the assays (r=0.96). For clinically acceptable viral load threshold values of >5,000 copies/ml, Bland-Altman plots showed acceptable limits of agreement (−0.21 to +0.8 log10 copies/ml). The mean difference was 0.29 log10 copies/ml. The cost of DBS was $2.67 lower compared to conventional plasma viral load measurement in the setting Interpretation & conclusions: The significant positive correlation with standard plasma-based assay and lower cost of DBS viral load monitoring suggest that DBS sampling can be a feasible and economical means of viral load monitoring in HIV-infected individual in India and in other resource-limited settings globally. PMID:23391790

  19. Comparison of sampling methods to measure HIV RNA viral load in female genital tract secretions.

    Science.gov (United States)

    Jaumdally, Shameem Z; Jones, Heidi E; Hoover, Donald R; Gamieldien, Hoyam; Kriek, Jean-Mari; Langwenya, Nontokozo; Myer, Landon; Passmore, Jo-Ann S; Todd, Catherine S

    2017-03-01

    How does menstrual cup (MC) compare to other genital sampling methods for HIV RNA recovery? We compared HIV RNA levels between MC, endocervical swab (ECS), and ECS-enriched cervicovaginal lavage (eCVL) specimens in 51 HIV-positive, antiretroviral therapy-naive women at enrollment, 3 and 6 months, with order rotated by visit. Paired comparisons were analyzed with McNemar's exact tests, signed-rank tests, and an extension of Somer's D for pooled analyses across visits. MC specimens had the highest proportion of quantifiable HIV VL at enrollment and month 3, but more MC specimens (n=12.8%) were insufficient for testing, compared with ECS (2%, P=0.006) and eCVL (0%, P<0.001). Among sufficient specimens, median VL was significantly higher for MC (2.62 log 10 copies/mL) compared to ECS (1.30 log 10 copies/mL, P<0.001) and eCVL (1.60 log 10 copies/mL, P<0.001) across visits. MC may be more sensitive than eCVL and CVS, provided insufficient specimens are reduced. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  1. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein.

    Directory of Open Access Journals (Sweden)

    Dorothee A Vogt

    Full Text Available The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web and assists viral assembly in the close vicinity of lipid droplets (LDs. To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1-31, a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47 as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon, indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47--via its interaction with NS5A--serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.

  2. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    Science.gov (United States)

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  3. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein.

    Directory of Open Access Journals (Sweden)

    Marie-Lise Blondot

    Full Text Available Respiratory syncytial virus (RSV protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.

  4. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  5. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  6. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE among Kaiser Permanente Member Populations in the United States, 2012-2013.

    Directory of Open Access Journals (Sweden)

    Scott P Grytdal

    Full Text Available Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE. However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0-98 years. Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested. In addition, 22 (2% of specimens were positive for rotavirus; 19 (2% were positive for sapovirus; and 7 (1% were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children 65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person-years. Outpatient incidence rates of rotavirus, sapovirus, and astrovirus were 2.0, 1.6, 0.6 per 1,000 person

  7. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    Science.gov (United States)

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  8. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  9. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation.

    Directory of Open Access Journals (Sweden)

    Francis Fieni

    Full Text Available HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1-9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA in the axillary lymph node (6.48 ± 0.50 were significantly higher than in the genital tract tissues: testis (3.67 ± 2.16; p<0.05, epididymis (3.08 ± 1.19; p<0.0001, prostate (3.36 ± 1.30; p<0.01, and seminal vesicle (2.67 ± 1.50; p<0.0001. Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.

  10. Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA

    Science.gov (United States)

    Loh, Yuin-Han; Yang, Jimmy Chen; De Los Angeles, Alejandro; Guo, Chunguang; Cherry, Anne; Rossi, Derrick J.; Park, In-Hyun; Daley, George Q.

    2012-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells provides an invaluable resource for cell therapy, in vitro modeling of human disease, and drug screening. To date, most human iPS cells have been generated with integrating retro- and lenti-viruses and are limited in their potential utility because residual transgene expression may alter their differentiation potential or induce malignant transformation. Alternatively, transgene-free methods using adenovirus and protein transduction are limited by low efficiency. This report describes a protocol for the generation of transgene-free human induced pluripotent stem cells using retroviral transfection of a single vector, which includes the coding sequences of human OCT4, SOX2, KLF4, and cMYC linked with picornaviral 2A plasmids. Moreover, after reprogramming has been achieved, this cassette can be removed using mRNA transfection of Cre recombinase. The method described herein to excise reprogramming factors with ease and efficiency facilitates the experimental generation and use of transgene-free human iPS cells. PMID:22605648

  11. Screening of Active Lyssavirus Infection in Wild Bat Populations by Viral RNA Detection on Oropharyngeal Swabs

    Science.gov (United States)

    Echevarría, Juan E.; Avellón, Ana; Juste, Javier; Vera, Manuel; Ibáñez, Carlos

    2001-01-01

    Brain analysis cannot be used for the investigation of active lyssavirus infection in healthy bats because most bat species are protected by conservation directives. Consequently, serology remains the only tool for performing virological studies on natural bat populations; however, the presence of antibodies merely reflects past exposure to the virus and is not a valid marker of active infection. This work describes a new nested reverse transcription (RT)-PCR technique specifically designed for the detection of the European bat virus 1 on oropharyngeal swabs obtained from bats but also able to amplify RNA from the remaining rabies-related lyssaviruses in brain samples. The technique was successfully used for surveillance of a serotine bat (Eptesicus serotinus) colony involved in a case of human exposure, in which 15 out of 71 oropharyngeal swabs were positive. Lyssavirus infection was detected on 13 oropharyngeal swabs but in only 5 brains out of the 34 animals from which simultaneous brain and oropharyngeal samples had been taken. The lyssavirus involved could be rapidly identified by automatic sequencing of the RT-PCR products obtained from 14 brains and three bat oropharyngeal swabs. In conclusion, RT-PCR using oropharyngeal swabs will permit screening of wild bat populations for active lyssavirus infection, for research or epidemiological purposes, in line not only with conservation policies but also in a more efficient manner than classical detection techniques used on the brain. PMID:11574590

  12. Short communication: identification of a novel HIV type 1 subtype H/J recombinant in Canada with discordant HIV viral load (RNA) values in three different commercial assays.

    Science.gov (United States)

    Kim, John E; Beckthold, Brenda; Chen, Zhaoxia; Mihowich, Jennifer; Malloch, Laurie; Gill, Michael John

    2007-11-01

    The presence of HIV-1 non-B subtypes is increasing worldwide. This poses challenges to commercial diagnostic and viral load (RNA) monitoring tests that are predominantly based on HIV-1 subtype B strains. Based on phylogenetic analysis of the gag, pol, and env gene regions, we describe the first HIV-1 H/J recombinant in Canada that presented divergent viral load values. DNA sequence analysis of the gag gene region further revealed that genetic diversity between this H/J recombinant and the primers and probes used in the bio-Merieux Nuclisens HIV-1 QT (Nuclisens) and Roche Amplicor Monitor HIV-1, v1.5 (Monitor) viral RNA assays can erroneously lead to undetectable viral load values. This observation appears to be more problematic in the Nuclisens assay. In light of increasing genetic diversity in HIV worldwide we recommend that DNA sequencing of HIV, especially in the gag gene region targeted by primers and probes used in molecular diagnostic and viral load tests, be incorporated into clinical monitoring practices.

  13. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  14. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.

    Directory of Open Access Journals (Sweden)

    Guorong Xu

    Full Text Available High-throughput RNA sequencing (RNA-seq has become an instrumental assay for the analysis of multiple aspects of an organism's transcriptome. Further, the analysis of a biological specimen's associated microbiome can also be performed using RNA-seq data and this application is gaining interest in the scientific community. There are many existing bioinformatics tools designed for analysis and visualization of transcriptome data. Despite the availability of an array of next generation sequencing (NGS analysis tools, the analysis of RNA-seq data sets poses a challenge for many biomedical researchers who are not familiar with command-line tools. Here we present RNA CoMPASS, a comprehensive RNA-seq analysis pipeline for the simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological specimens. RNA CoMPASS leverages existing tools and parallel computing technology to facilitate the analysis of even very large datasets. RNA CoMPASS has a web-based graphical user interface with intrinsic queuing to control a distributed computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq data sets from 45 B-cell samples. Twenty-two of these samples were derived from lymphoblastoid cell lines (LCLs generated by the infection of naïve B-cells with the Epstein Barr virus (EBV, while another 23 samples were derived from Burkitt's lymphomas (BL, some of which arose in part through infection with EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction of the BLs. Cluster analysis of the human transcriptome component of the RNA CoMPASS output clearly separated the BLs (which have a germinal center-like phenotype from the LCLs (which have a blast-like phenotype with evidence of activated MYC signaling and lower interferon and NF-kB signaling in the BLs. Together, this analysis illustrates the utility of RNA CoMPASS in the simultaneous analysis of transcriptome and metatranscriptome data. RNA CoMPASS is freely

  15. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    Science.gov (United States)

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  16. Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices.

    Science.gov (United States)

    Fowler, Veronica L; Bankowski, Bartlomiej M; Armson, Bryony; Di Nardo, Antonello; Valdazo-Gonzalez, Begoña; Reid, Scott M; Barnett, Paul V; Wadsworth, Jemma; Ferris, Nigel P; Mioulet, Valérie; King, Donald P

    2014-01-01

    Foot-and-mouth disease Virus (FMDV) is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD) is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs) for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates) representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.

  17. Long-term follow up of feline leukemia virus infection and characterization of viral RNA loads using molecular methods in tissues of cats with different infection outcomes.

    Science.gov (United States)

    Helfer-Hungerbuehler, A Katrin; Widmer, Stefan; Kessler, Yvonne; Riond, Barbara; Boretti, Felicitas S; Grest, Paula; Lutz, Hans; Hofmann-Lehmann, Regina

    2015-02-02

    It is a remarkable feature for a retrovirus that an infection with feline leukemia virus (FeLV) can result in various outcomes. Whereas some cats contain the infection and show a regressive course, others stay viremic and succumb to the infection within a few years. We hypothesized, that differences in the infection outcome might be causally linked to the viral RNA and provirus loads within the host and these loads therefore may give additional insight into the pathogenesis of the virus. Thus, the goals of the present study were to follow-up on experimentally infected cats and investigate tissues from cats with different infection outcomes using sensitive, specific TaqMan real-time PCR and reverse transcriptase (RT)-PCR. Nineteen experimentally FeLV-A/Glasgow-1-infected cats were categorized into having regressive, progressive or reactivated FeLV infection according to follow-up of FeLV p27 antigen detection in the blood. Remarkably, regressively infected cats showed detectable provirus and viral RNA loads in almost all of the 27 tested tissues, even many years after virus exposure. Moreover, some regressively infected cats reactivated the infection, and these cats had intermediate to high viral RNA and provirus tissue loads. The highest loads were found in viremic cats, independent of their health status. Tissues that represented sites of virus replication and shedding revealed the highest viral RNA and provirus loads, while the lowest loads were present in muscle and nerve tissues. A supplementary analysis of 20 experimentally infected cats with progressive infection revealed a median survival time of 3.1 years (range from 0.6 to 6.5 years); ∼70% (n=14) of these cats developed lymphoma, while leukemia and non-regenerative anemia were observed less frequently. Our results demonstrate that the different infection outcomes are associated with differences in viral RNA and provirus tissue loads. Remarkably, no complete clearance of FeLV viral RNA or provirus was

  18. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells

    NARCIS (Netherlands)

    Ortega, Alvaro D.; Quereda, Juan J; Pucciarelli, M Graciela; García-del Portillo, Francisco

    2014-01-01

    Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles

  19. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity

    Science.gov (United States)

    Ammayappan, Arun; Kurath, Gael; Thompson, Tarin M.; Vakharia, Vikram N.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.

  20. FishPathogens.eu/vhsv: A user-friendly Viral Haemorrhagic Septicaemia Virus (VHSV) isolate and sequence database

    DEFF Research Database (Denmark)

    Jonstrup, Søren Peter; Gray, Tanya; Kahns, Søren

    A database has been created, www.FishPathogens.eu, with the aim of providing a single repository for collating important information on significant pathogens of aquaculture, relevant to their control and management. This database will be developed, maintained and managed as part of the European...

  1. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    Science.gov (United States)

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  2. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    International Nuclear Information System (INIS)

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.

  3. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Chao, E-mail: liuchao9@mail.sysu.edu.cn [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Zhang, Hui [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China)

    2015-12-15

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.

  4. Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication ▿

    OpenAIRE

    Pudupakam, R. S.; Kenney, Scott P.; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A.; LeRoith, Tanya; Pierson, F. William; Meng, Xiang-Jin

    2011-01-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication...

  5. Persistence of ZIKV-RNA in the cellular fraction of semen is accompanied by a surrogate-marker of viral replication. Diagnostic implications for sexual transmission.

    Science.gov (United States)

    Biava, Mirella; Caglioti, Claudia; Castilletti, Concetta; Bordi, Licia; Carletti, Fabrizio; Colavita, Francesca; Quartu, Serena; Nicastri, Emanuele; Iannetta, Marco; Vairo, Francesco; Liuzzi, Giuseppina; Taglietti, Fabrizio; Ippolito, Giuseppe; Capobianchi, Maria Rosaria; Lalle, Eleonora

    2018-01-01

    As asymptomatic infections represent 80% of ZIKV-infected individuals, sexual transmission is a rising concern. Recent studies highlighted a preferential association of ZIKV with the cellular fraction (CF) of different specimen types. Our aim was to evaluate the presence of ZIKV-RNA in different body fluids, focusing on semen specimens to assess the ZIKV-RNA content in either the unfractionated sample, its CF or seminal plasma (SP). In addition, to establish if the presence of ZIKV genome was associated with active virus replication, we measured the levels of negative-strand ZIKV-RNA. ZIKV total-RNA was detected in blood, urine and unfractionated semen, and neg-RNA in semen CF and SP samples longitudinally collected from two ZIKV-positive men followed at the National Institute for Infectious Diseases "L. Spallanzani", Italy. In both patients, ZIKV total-RNA was detected in CF with ct values always lower than in the corresponding unfractionated samples, and was observed even in the CF from negative unfractionated semen samples. In Patient 2, neg-RNA was also detected in CF, suggesting ongoing viral replication. Our results demonstrate higher clinical sensitivity of CF as compared to whole semen testing, emphasizing the need to extend ZIKV-RNA testing to CF, to rule out virus presence and the possible risk of sexual transmission.

  6. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A tail at the 3'-end.

    Directory of Open Access Journals (Sweden)

    Shushan Harutyunyan

    Full Text Available Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3'-end. This suggests that packaging also occurs in an ordered manner resulting in the 3'-poly-(A tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruses.

  7. Species specific inhibition of viral replication using dicer substrate siRNAs (DsiRNAs) targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus (VHSV)

    DEFF Research Database (Denmark)

    Bohle, Harry; Lorenzen, Niels; Schyth, Brian Dall

    2011-01-01

    Gene knock down by the use of small interfering RNAs (siRNAs) is widely used as a method for reducing the expression of specific genes in eukaryotic cells via the RNA interference pathway. But, the effectivity of siRNA induced gene knock down in cells from fish has in several studies been...

  8. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  9. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.

    Directory of Open Access Journals (Sweden)

    Maikel L Colli

    2011-09-01

    Full Text Available The rise in type 1 diabetes (T1D incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA and a diabetogenic enterovirus (Coxsackievirus B5. Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1. Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.

  10. Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices.

    Directory of Open Access Journals (Sweden)

    Veronica L Fowler

    Full Text Available Foot-and-mouth disease Virus (FMDV is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.

  11. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  12. Viral RNA silencing suppression

    NARCIS (Netherlands)

    Hedil, Marcio; Kormelink, Richard

    2016-01-01

    The Bunyaviridae is a family of arboviruses including both plant-and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative

  13. Improved detection of Bovine Viral Diarrhea Virus in Bovine lymphoid cell lines using PrimeFlow RNA assay

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...

  14. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012-2013.

    Science.gov (United States)

    Grytdal, Scott P; DeBess, Emilio; Lee, Lore E; Blythe, David; Ryan, Patricia; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D; Hall, Aron J

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0-98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children age (outpatient incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person

  15. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012–2013

    Science.gov (United States)

    Grytdal, Scott P.; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D.; Hall, Aron J.

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0–98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person

  16. The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family

    NARCIS (Netherlands)

    van der Linden, Lonneke; Vives-Adrián, Laia; Selisko, Barbara; Ferrer-Orta, Cristina; Liu, Xinran; Lanke, Kjerstin; Ulferts, Rachel; De Palma, Armando M; Tanchis, Federica; Goris, Nesya; Lefebvre, David; De Clercq, Kris; Leyssen, Pieter; Lacroix, Céline; Pürstinger, Gerhard; Coutard, Bruno; Canard, Bruno; Boehr, David D; Arnold, Jamie J; Cameron, Craig E; Verdaguer, Nuria; Neyts, Johan; van Kuppeveld, Frank J M

    2015-01-01

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy.

  17. Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication ▿

    Science.gov (United States)

    Pudupakam, R. S.; Kenney, Scott P.; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A.; LeRoith, Tanya; Pierson, F. William; Meng, Xiang-Jin

    2011-01-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication. PMID:21775444

  18. Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot.

    Directory of Open Access Journals (Sweden)

    Jae-Su Moon

    Full Text Available The hepatitis C virus (HCV internal ribosome entry site (IRES that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts 277-343. Based on their antiviral activity, we mapped a druggable region (nts 313-343 where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5' or 3' direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens.

  19. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising

  20. Rapid detection and identification of viral and bacterial fish pathogens using a DNA array‐based multiplex assay

    DEFF Research Database (Denmark)

    Lievens, B.; Frans, I.; Heusdens, C.

    2011-01-01

    for the simultaneous detection and identification of all cyprinid herpesviruses (CyHV‐1, CyHV‐2 and CyHV‐3) and some of the most important fish pathogenic Flavobacterium species, including F. branchiophilum, F. columnare and F. psychrophilum. For virus identification, the DNA polymerase and helicase genes were...

  1. Increased pathogenicity of European porcine reproductive and respiratory syndrome virus is associated with enhanced adaptive responses and viral clearance

    NARCIS (Netherlands)

    Morgan, S.B.; Graham, S.P.; Salguero, F.J.; Sánchez Cordón, P.J.; Mokhtar, H.; Rebel, J.M.J.; Weesendorp, E.; Bodman-Smith, K.B.; Steinbach, F.; Frossard, J.P.

    2013-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine worldwide. Since its first emergence in 1987 the PRRS virus (PRRSV) has become particularly divergent with highly pathogenic strains appearing in both Europe and Asia. However, the

  2. A Tiny RNA that Packs a Big Punch: The Critical Role of a Viral miR-155 Ortholog in Lymphomagenesis in Marek’s Disease

    Directory of Open Access Journals (Sweden)

    Guoqing Zhuang

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that have been identified in animals, plants, and viruses. These small RNAs play important roles in post-transcriptional regulation of various cellular processes, including development, differentiation, and all aspects of cancer biology. Rapid-onset T-cell lymphoma of chickens, namely Marek’s disease (MD, induced by Gallid alphaherpesvirus 2 (GaHV2, could provide an ideal natural animal model for herpesvirus-related cancer research. GaHV2 encodes 26 mature miRNAs derived from 14 precursors assembled in three distinct gene clusters in the viral genome. One of the most highly expressed GaHV2 miRNAs, miR-M4-5p, shows high sequence similarity to the cellular miR-155 and the miR-K12-11 encoded by Kaposi’s sarcoma-associated herpesvirus, particularly in the miRNA “seed region.” As with miR-K12-11, miR-M4-5p shares a common set of host and viral target genes with miR-155, suggesting that they may target the same regulatory cellular networks; however, differences in regulatory function between miR-155 and miR-M4-5p may distinguish non-viral and viral mediated tumorigenesis. In this review, we focus on the functions of miR-M4-5p as the viral ortholog of miR-155 to explore how the virus mimics a host pathway to benefit the viral life cycle and trigger virus-induced tumorigenesis.

  3. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance.

    Science.gov (United States)

    Yang, Hui; Guo, He-Zhou; Li, Xian-Yang; Lin, Jian; Zhang, Wu; Zhao, Jun-Mei; Zhang, Hong-Xin; Chen, Sai-Juan; Chen, Zhu; Zhu, Jiang

    2017-07-01

    Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 + T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I -/- CD4 + T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I -/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. Circular viral DNA detection and junction sequence analysis from PBMC of SHIV-infected cynomolgus monkeys with undetectable virus plasma RNA

    International Nuclear Information System (INIS)

    Cara, Andrea; Maggiorella, Maria Teresa; Bona, Roberta; Sernicola, Leonardo; Baroncelli, Silvia; Negri, Donatella R.M.; Leone, Pasqualina; Fagrouch, Zahra; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara

    2004-01-01

    Extrachromosomal forms of human immunodeficiency virus (HIV)-1 can be detected in peripheral blood mononuclear cell (PBMC) from HIV-infected patients in the absence of detectable viral replication and are thought to be a sign of active but cryptic virus replication. No information, however, are available on whether these forms are also present in animal models for acquired immunodeficiency syndrome (AIDS) and on their relation with other methods of detection of virus replication. To this aim, a polymerase chain reaction (PCR) approach was used to detect and analyze unintegrated circular 2-LTR-containing forms in PBMC of simian human immunodeficiency virus (SHIV)89.6P infected cynomolgus monkeys with RNA levels ranging between 1.8x10 6 and less than 50 copies/ml of plasma. 2-LTR forms were detected in 96.5% of monkeys' samples above 50 copies/ml of plasma, whereas they were present in 75.8% of monkeys' samples below 50 copies/ml of plasma. Persistence of unintegrated viral DNA in monkeys with undetectable plasma RNA could indicate either stability in non-dividing cells or ongoing low levels of viral replication in dividing cells

  5. Mal de Río Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector.

    Science.gov (United States)

    de Haro, Luis A; Dumón, Analía D; Mattio, María F; Argüello Caro, Evangelina Beatriz; Llauger, Gabriela; Zavallo, Diego; Blanc, Hervé; Mongelli, Vanesa C; Truol, Graciela; Saleh, María-Carla; Asurmendi, Sebastián; Del Vas, Mariana

    2017-01-01

    Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae ) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.

  6. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  7. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: Implications for viral genomic RNA packaging

    OpenAIRE

    Webb, Joseph A.; Jones, Christopher P.; Parent, Leslie J.; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-01-01

    The mechanism underlying the selective packaging of genomic RNA into HIV-1 virions is not known. This paper provides important new biophysical insights into the nature of protein–RNA interactions responsible for HIV-1 genome packaging by quantifying the electrostatic and hydrophobic contributions to specific and nonspecific RNA.

  8. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    Science.gov (United States)

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  9. Down-regulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth

    Science.gov (United States)

    Li, Ming; Radvanyi, Laszlo; Yin, Bingnan; Li, Jia; Chivukula, Raghavender; Lin, Kevin; Lu, Yue; Shen, JianJun; Chang, David Z.; Li, Donghui; Johanning, Gary L.; Wang-Johanning, Feng

    2017-01-01

    Purpose We investigated the role of the human endogenous retrovirus type K (HERV-K) envelope (env) gene in pancreatic cancer (PC). Experimental Design shRNA was employed to knockdown (KD) the expression of HERV-K in PC cells. Results HERV-K env expression was detected in seven PC cell lines and in 80% of PC patient biopsies, but not in two normal pancreatic cell lines or uninvolved normal tissues. A new HERV-K splice variant was discovered in several PC cell lines. RT activity and virus-like particles were observed in culture media supernatant obtained from Panc-1 and Panc-2 cells. HERV-K viral RNA levels and anti-HERV-K antibody titers were significantly higher in PC patient sera (N=106) than in normal donor sera (N=40). Importantly, the in vitro and in vivo growth rates of three PC cell lines were significantly reduced after HERV-K KD by shRNA targeting HERV-K env, and there was reduced metastasis to lung after treatment. RNA-seq results revealed changes in gene expression after HERV-K env KD, including RAS and TP53. Furthermore, downregulation of HERV-K Env protein expression by shRNA also resulted in decreased expression of RAS, p-ERK, p-RSK, and p-AKT in several PC cells or tumors. Conclusion These results demonstrate that HERV-K influences signal transduction via the RAS-ERK-RSK pathway in PC. Our data highlight the potentially important role of HERV-K in tumorigenesis and progression of PC, and indicate that HERV-K viral proteins may be attractive biomarkers and/or tumor-associated antigens, as well as potentially useful targets for detection, diagnosis and immunotherapy of PC. PMID:28679769

  10. F-Specific RNA Bacteriophages, Especially Members of Subgroup II, Should Be Reconsidered as Good Indicators of Viral Pollution of Oysters.

    Science.gov (United States)

    Hartard, C; Leclerc, M; Rivet, R; Maul, A; Loutreul, J; Banas, S; Boudaud, N; Gantzer, C

    2018-01-01

    Norovirus (NoV) is the leading cause of gastroenteritis outbreaks linked to oyster consumption. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as indicators of viral contamination in oysters by focusing especially on FRNAPH subgroup II (FRNAPH-II). These viral indicators have been neglected because their behavior is sometimes different from that of NoV in shellfish, especially during the depuration processes usually performed before marketing. However, a significant bias needs to be taken into account. This bias is that, in the absence of routine culture methods, NoV is targeted by genome detection, while the presence of FRNAPH is usually investigated by isolation of infectious particles. In this study, by targeting both viruses using genome detection, a significant correlation between the presence of FRNAPH-II and that of NoV in shellfish collected from various European harvesting areas impacted by fecal pollution was observed. Moreover, during their depuration, while the long period of persistence of NoV was confirmed, a similar or even longer period of persistence of the FRNAPH-II genome, which was over 30 days, was observed. Such a striking genome persistence calls into question the relevance of molecular methods for assessing viral hazards. Targeting the same virus (i.e., FRNAPH-II) by culture and genome detection in specimens from harvesting areas as well as during depuration, we concluded that the presence of genomes in shellfish does not provide any information on the presence of the corresponding infectious particles. In view of these results, infectious FRNAPH detection should be reconsidered as a valuable indicator in oysters, and its potential for use in assessing viral hazard needs to be investigated. IMPORTANCE This work brings new data about the behavior of viruses in shellfish, as well as about the relevance of molecular methods for their detection and evaluation of the viral hazard. First, a strong

  11. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.

    Science.gov (United States)

    Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei

    2015-10-16

    Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression.

    Science.gov (United States)

    Bastian, Thomas W; Rice, Stephen A

    2009-01-01

    Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.

  14. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity.

    Science.gov (United States)

    Chiang, Jessica J; Sparrer, Konstantin M J; van Gent, Michiel; Lässig, Charlotte; Huang, Teng; Osterrieder, Nikolaus; Hopfner, Karl-Peter; Gack, Michaela U

    2018-01-01

    The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.

  16. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  17. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  18. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  19. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  20. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism.

    Science.gov (United States)

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P; Pino, Karla; Tischler, Nicole D; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-02-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.

  1. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    OpenAIRE

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand; Kumar, Aseem

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-strande...

  2. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Science.gov (United States)

    Calo, Silvia; Nicolás, Francisco E; Lee, Soo Chan; Vila, Ana; Cervantes, Maria; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2017-03-01

    Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  3. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Directory of Open Access Journals (Sweden)

    Silvia Calo

    2017-03-01

    Full Text Available Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip and a Sad-3-like helicase (rnhA, as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  4. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  5. RNA interference: its use as antiviral therapy

    NARCIS (Netherlands)

    Haasnoot, J.; Berkhout, B.

    2006-01-01

    RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more

  6. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies. PMID:23966403

  7. Enterovirus 71 encephalomyelitis and Japanese encephalitis can be distinguished by topographic distribution of inflammation and specific intraneuronal detection of viral antigen and RNA.

    Science.gov (United States)

    Wong, K T; Ng, K Y; Ong, K C; Ng, W F; Shankar, S K; Mahadevan, A; Radotra, B; Su, I J; Lau, G; Ling, A E; Chan, K P; Macorelles, P; Vallet, S; Cardosa, M J; Desai, A; Ravi, V; Nagata, N; Shimizu, H; Takasaki, T

    2012-08-01

    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished. Tissue sections from the central nervous system of infected cases were examined by light microscopy, immunohistochemistry and in situ hybridization. All 13 cases of EV71 encephalomyelitis collected from Asia and France invariably showed stereotyped distribution of inflammation in the spinal cord, brainstem, hypothalamus, cerebellar dentate nucleus and, to a lesser extent, cerebral cortex and meninges. Anterior pons, corpus striatum, thalamus, temporal lobe, hippocampus and cerebellar cortex were always uninflamed. In contrast, the eight JE cases studied showed inflammation involving most neuronal areas of the central nervous system, including the areas that were uninflamed in EV71 encephalomyelitis. Lesions in both infections were nonspecific, consisting of perivascular and parenchymal infiltration by inflammatory cells, oedematous/necrolytic areas, microglial nodules and neuronophagia. Viral inclusions were absent. Immunohistochemistry and in situ hybridization assays were useful to identify the causative virus, localizing viral antigens and RNA, respectively, almost exclusively to neurones. The stereotyped distribution of inflammatory lesions in EV71 encephalomyelitis appears to be very useful to help distinguish it from JE. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  8. Raw Sewage Harbors Diverse Viral Populations

    Science.gov (United States)

    Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.

    2011-01-01

    ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that

  9. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH interaction with 3' ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein

    Directory of Open Access Journals (Sweden)

    Chou Shih-Jie

    2009-04-01

    Full Text Available Abstract Replication of the Japanese encephalitis virus (JEV genome depends on host factors for successfully completing their life cycles; to do this, host factors have been recruited and/or relocated to the site of viral replication. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a cellular metabolic protein, was found to colocalize with viral RNA-dependent RNA polymerase (NS5 in JEV-infected cells. Subcellular fractionation further indicated that GAPDH remained relatively constant in the cytosol, while increasing at 12 to 24 hours postinfection (hpi and decreasing at 36 hpi in the nuclear fraction of infected cells. In contrast, the redistribution patterns of GAPDH were not observed in the uninfected cells. Co-immunoprecipitation of GAPDH and JEV NS5 protein revealed no direct protein-protein interaction; instead, GAPDH binds to the 3' termini of plus- and minus-strand RNAs of JEV by electrophoretic mobility shift assays. Accordingly, GAPDH binds to the minus strand more efficiently than to the plus strand of JEV RNAs. This study highlights the findings that infection of JEV changes subcellular localization of GAPDH suggesting that this metabolic enzyme may play a role in JEV replication.

  10. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    Science.gov (United States)

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  11. Functional analysis of the cloverleaf-like structure in the 3' untranslated region of bamboo mosaic potexvirus RNA revealed dual roles in viral RNA replication and long distance movement

    International Nuclear Information System (INIS)

    Chen, I-H.; Meng Hsiao; Hsu, Y.-H.; Tsai, C.-H.

    2003-01-01

    The 3' untranslated region (UTR) of bamboo mosaic potexvirus (BaMV) RNA was identified to fold into a tertiary structure comprising a cloverleaf-like structure designated ABC domain followed by a major stem-loop D, which in turn is followed by a pseudoknot E and a poly(A) tail. The coat protein accumulation level of the mutant, BaMV40A/ΔABC, lacking ABC domain was just 15% that of wild-type when inoculated into protoplasts of Nicotiana benthamiana. This suggested that ABC domain might play an important role in BaMV RNA replication. To define the precise role of each of the three stem-loops of ABC domain in RNA replication, three mutants BaMV40B and C each lacking stem-loop A, B, and C, respectively, were created. Our results showed that accumulation of viral products of mutants BaMV40B and C were not as efficient as wild-type. On the contrary, level of accumulation of viral products of BaMVA was similar to that of wild-type in protoplasts and inoculated leaves. Interestingly, the accumulation of viral products was not as efficient as that of wild-type in systemic leaves, implying that stem-loop A is dispensable for replication, but signifies a role in systemic accumulation. Using UV cross-linking and competition experiments, it was demonstrated that the E. coli expressed helicase domain of BaMV ORF1 can preferentially interact with the ABC domain

  12. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses.

    Directory of Open Access Journals (Sweden)

    Rajini Mudhasani

    2014-08-01

    Full Text Available High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362, which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their

  13. A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens.

    Directory of Open Access Journals (Sweden)

    Guillermo Rodrigo

    Full Text Available Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules.

  14. RNA.

    Science.gov (United States)

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  15. First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data

    KAUST Repository

    Brü wer, Jan D.; Voolstra, Christian R.

    2018-01-01

    of the globally threatened coral reef ecosystems. To gain first insight into viruses associated with the coral model system Aiptasia (sensu Exaiptasia pallida), we analyzed an existing RNA-Seq dataset of aposymbiotic, partially populated, and fully symbiotic

  16. SURVEILLANCE FOR VIRAL AND PARASITIC PATHOGENS IN A VULNERABLE AFRICAN LION (PANTHERA LEO) POPULATION IN THE NORTHERN TULI GAME RESERVE, BOTSWANA.

    Science.gov (United States)

    McDermid, Kimberly R; Snyman, Andrei; Verreynne, Frederick J; Carroll, John P; Penzhorn, Banie L; Yabsley, Michael J

    2017-01-01

    African lion ( Panthera leo ) numbers are decreasing rapidly and populations are becoming smaller and more fragmented. Infectious diseases are one of numerous issues threatening free-ranging lion populations, and low-density populations are particularly at risk. We collected data on the prevalence and diversity of viral and parasitic pathogens in a small lion population in eastern Botswana. During 2012 and 2014, blood samples were collected from 59% (n=13) of the adult-subadult lions in the Northern Tuli Game Reserve in eastern Botswana. One lion had antibodies to feline panleukopenia virus, two had antibodies to canine distemper virus, and two had feline calicivirus antibodies. Ten of the 13 had antibodies to feline immunodeficiency virus and 11 had feline herpesvirus antibodies. All lions were negative for antibodies to feline coronavirus. Blood samples from all lions were negative for Trypanosoma, Anaplasma, Theileria, and Ehrlichia spp. by molecular testing; however, all lions were positive for Babesia spp. by reverse line blot hybridization assay. Sequencing of amplicons from four lions revealed four groups of Babesia spp. including several genetic variants of Babesia felis , Babesia lengau, and Babesia canis and a group of novel Babesia sequences which were only 96% similar to other Babesia spp. Six lions were infested with four species of ticks (Rhipicentor nuttalli, Rhipicephalus simus, Rhipicephalus sulcatus, and Rhipicephalus appendiculatus). These data provide the first health assessment of this population and can be used to identify management and conservation strategies to decrease the impact of pathogens on this population. This is particularly important as there is an initiative to incorporate this population into a larger metapopulation of lions from adjacent South Africa and Zimbabwe.

  17. Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam.

    Science.gov (United States)

    Berto, A; Anh, P H; Carrique-Mas, J J; Simmonds, P; Van Cuong, N; Tue, N T; Van Dung, N; Woolhouse, M E; Smith, I; Marsh, G A; Bryant, J E; Thwaites, G E; Baker, S; Rabaa, M A

    2018-02-01

    Bats and rodents are being increasingly recognized as reservoirs of emerging zoonotic viruses. Various studies have investigated bat viruses in tropical regions, but to date there are no data regarding viruses with zoonotic potential that circulate in bat and rat populations in Viet Nam. To address this paucity of data, we sampled three bat farms and three wet markets trading in rat meat in the Mekong Delta region of southern Viet Nam. Faecal and urine samples were screened for the presence of RNA from paramyxoviruses, coronaviruses and filoviruses. Paramyxovirus RNA was detected in 4 of 248 (1%) and 11 of 222 (4.9%) bat faecal and urine samples, respectively. Coronavirus RNA was detected in 55 of 248 (22%) of bat faecal samples; filovirus RNA was not detected in any of the bat samples. Further, coronavirus RNA was detected in 12 of 270 (4.4%) of rat faecal samples; all samples tested negative for paramyxovirus. Phylogenetic analysis revealed that the bat paramyxoviruses and bat and rat coronaviruses were related to viruses circulating in bat and rodent populations globally, but showed no cross-species mixing of viruses between bat and rat populations within Viet Nam. Our study shows that potentially novel variants of paramyxoviruses and coronaviruses commonly circulate in bat and rat populations in Viet Nam. Further characterization of the viruses and additional human and animal surveillance is required to evaluate the likelihood of viral spillover and to assess whether these viruses pose a risk to human health. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  18. Recognition of Potentially Novel Human Disease-Associated Pathogens by Implementation of Systematic 16S rRNA Gene Sequencing in the Diagnostic Laboratory▿ †

    Science.gov (United States)

    Keller, Peter M.; Rampini, Silvana K.; Büchler, Andrea C.; Eich, Gerhard; Wanner, Roger M.; Speck, Roberto F.; Böttger, Erik C.; Bloemberg, Guido V.

    2010-01-01

    Clinical isolates that are difficult to identify by conventional means form a valuable source of novel human pathogens. We report on a 5-year study based on systematic 16S rRNA gene sequence analysis. We found 60 previously unknown 16S rRNA sequences corresponding to potentially novel bacterial taxa. For 30 of 60 isolates, clinical relevance was evaluated; 18 of the 30 isolates analyzed were considered to be associated with human disease. PMID:20631113

  19. Dual RNA-sequencing of Eucalyptus nitens during Phytophthora cinnamomi challenge reveals pathogen and host factors influencing compatibility

    Directory of Open Access Journals (Sweden)

    Febe Elizabeth Meyer

    2016-03-01

    Full Text Available Damage caused by Phytophthora cinnamomi Rands remains an important concern on forest tree species. The pathogen causes root and collar rot, stem cankers and dieback of various economically important Eucalyptus spp. In South Africa, susceptible cold tolerant Eucalyptus plantations have been affected by various Phytophthora spp. with P. cinnamomi considered one of the most virulent. The molecular basis of this compatible interaction is poorly understood. In this study, susceptible Eucalyptus nitens plants were stem inoculated with P. cinnamomi and tissue was harvested five days post inoculation. Dual RNA-sequencing, a technique which allows the concurrent detection of both pathogen and host transcripts during infection, was performed. Approximately 1% of the reads mapped to the draft genome of P. cinnamomi while 78% of the reads mapped to the Eucalyptus grandis genome. The highest expressed P. cinnamomi gene in planta was a putative crinkler effector (CRN1. Phylogenetic analysis indicated the high similarity of this P. cinnamomi CRN1 to that of Phytophthora infestans. Some CRN effectors are known to target host nuclei to suppress defense. In the host, over 1400 genes were significantly differentially expressed in comparison to mock inoculated trees, including suites of pathogenesis related (PR genes. In particular, a PR-9 peroxidase gene with a high similarity to a Carica papaya PR-9 ortholog previously shown to be suppressed upon infection by Phytophthora palmivora was down-regulated two-fold. This PR-9 gene may represent a cross-species effector target during P. cinnamomi infection. This study identified pathogenicity factors, potential manipulation targets and attempted host defense mechanisms activated by E. nitens that contributed to the susceptible outcome of the interaction.

  20. An accessory to the 'Trinity': SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses.

    Directory of Open Access Journals (Sweden)

    Stephanie J DeWitte-Orr

    2010-03-01

    Full Text Available Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (dsRNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNbeta. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II(-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as 'carriers', facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions.

  1. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    Science.gov (United States)

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  2. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    Science.gov (United States)

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  3. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    Directory of Open Access Journals (Sweden)

    Aleksandra eObrępalska-Stęplowska

    2015-10-01

    Full Text Available Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at 27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day on the accumulation rate of the virus and satellite RNA (satRNA in Nicotiana benthamiana plants infected by peanut stunt virus (PSV with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV+satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV+satRNA-infected plants the shift in the

  4. Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Amin, Anthony; Zaccardi, Joe; Mullen, Stanley; Olland, Stephane; Orlowski, Mark; Feld, Boris; Labonte, Patrick; Mak, Paul

    2003-01-01

    A class of disulfide constrained peptides containing a core motif FPWG was identified from a screen of phage displayed library using the HCV RNA-dependent RNA polymerase (NS5B) as a bait. Surface plasmon resonance studies showed that three highly purified synthetic constrained peptides bound to immobilized NS5B with estimated K d values ranging from 30 to 60 μM. In addition, these peptides inhibited the NS5B activity in vitro with IC 50 ranging from 6 to 48 μM, whereas in contrast they had no inhibitory effect on the enzymatic activities of calf thymus polymerase α, human polymerase β, RSV polymerase, and HIV reverse transcriptase in vitro. Two peptides demonstrated conformation-dependent inhibition since their synthetic linear versions were not inhibitory in the NS5B assay. A constrained peptide with the minimum core motif FPWG retained selective inhibition of NS5B activity with an IC 50 of 50 μM. Alanine scan analyses of a representative constrained peptide, FPWGNTW, indicated that residues F1 and W7 were critical for the inhibitory effect of this peptide, although residues P2 and N5 had some measurable inhibitory effect as well. Further analyses of the mechanism of inhibition indicated that these peptides inhibited the formation of preelongation complexes required for the elongation reaction. However, once the preelongation complex was formed, its activity was refractory to peptide inhibition. Furthermore, the constrained peptide FPWGNTW inhibited de novo initiated RNA synthesis by NS5B from a poly(rC) template. These data indicate that the peptides confer selective inhibition of NS5B activity by binding to the enzyme and perturbing an early step preceding the processive elongation step of RNA synthesis

  5. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Science.gov (United States)

    Galindo-González, Leonardo; Deyholos, Michael K

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced R PMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113 , and MYB108 ; the ethylene response factors ERF1 and ERF14 ; two genes involved in auxin/glucosinolate precursor synthesis ( CYP79B2 and CYP79B3 ); the flavonoid

  6. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L. to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Directory of Open Access Journals (Sweden)

    Leonardo Miguel Galindo-González

    2016-11-01

    Full Text Available Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars (CDC Bethune and Lutea, showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune was used for a full RNA-seq transcriptome study through a time-course at 2, 4, 8 and 18 days post-inoculation (DPI. While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signalling, activation of pathogenesis-related (PR genes, and changes in secondary metabolism. Among these several key genes, that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase (RIPK; transcription factors WRKY3, WRKY70, WRKY75, MYB113 and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3; the flavonoid

  7. Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...

  8. Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut.

    Directory of Open Access Journals (Sweden)

    Vincent Raquin

    2017-12-01

    Full Text Available Dengue virus (DENV causes more human infections than any other mosquito-borne virus. The current lack of antiviral strategies has prompted genome-wide screens for host genes that are required for DENV infectivity. Earlier transcriptomic studies that identified DENV host factors in the primary vector Aedes aegypti used inbred laboratory colonies and/or pools of mosquitoes that erase individual variation. Here, we performed transcriptome sequencing on individual midguts in a field-derived Ae. aegypti population to identify new candidate host factors modulating DENV replication. We analyzed the transcriptomic data using an approach that accounts for individual co-variation between viral RNA load and gene expression. This approach generates a prediction about the agonist or antagonist effect of candidate genes on DENV replication based on the sign of the correlation between gene expression and viral RNA load. Using this method, we identified 39 candidate genes that went undetected by conventional pairwise comparison of gene expression levels between DENV-infected midguts and uninfected controls. Only four candidate genes were detected by both methods, emphasizing their complementarity. We demonstrated the value of our approach by functional validation of a candidate agonist gene encoding a sterol regulatory element-binding protein (SREBP, which was identified by correlation analysis but not by pairwise comparison. We confirmed that SREBP promotes DENV infection in the midgut by RNAi-mediated gene knockdown in vivo. We suggest that our approach for transcriptomic analysis can empower genome-wide screens for potential agonist or antagonist factors by leveraging inter-individual variation in gene expression. More generally, this method is applicable to a wide range of phenotypic traits displaying inter-individual variation.

  9. Detection of high levels of European bat lyssavirus type-1 viral RNA in the thyroid gland of experimentally-infected Eptesicus fuscus bats.

    Science.gov (United States)

    Fooks, A R; Johnson, N; Müller, T; Vos, A; Mansfield, K; Hicks, D; Nunez, A; Freuling, C; Neubert, L; Kaipf, I; Denzinger, A; Franka, R; Rupprecht, C E

    2009-08-01

    Two common bat lyssavirus species have been identified in many European countries: European bat lyssavirus type-1 and -2 (EBLV-1 and EBLV-2). Only limited knowledge on the susceptibility of the natural EBLV-hosts, insectivorous bats, to lyssavirus infection is available. Our study was undertaken to evaluate the susceptibility and pathology associated with an EBLV-1 infection in Eptesicus fuscus following different routes of virus inoculation including intracranial (n = 6), intramuscular (n = 14), oral (n = 7) and intranasal (n = 7). Blood and saliva samples were collected from all bats on a monthly basis. Four bats inoculated intracranially developed rabies with a mean of 11 days to death, whilst seven bats inoculated intramuscularly developed rabies, with an extended incubation period prior to death. We did not observe any mortality in the oral (p.o.) or intranasal (i.n.) groups and both groups had detectable levels of virus neutralizing antibodies (data not shown). Virus shedding was demonstrated in the saliva by virus isolation and the detection of viral RNA in ill bats, particularly immediately prior to the development of disease. In addition, the presence of virus and viral RNA was detected in the thyroid gland in bats challenged experimentally with EBLV-1, which exceeded that detected in all other extra-neural tissue. The significance of detecting EBLV-1 in the thyroid gland of rabid bats is not well understood. We speculate that the infection of the thyroid gland may cause subacute thyroiditis, a transient form of thyroiditis causing hyperthyroidism, resulting in changes in adrenocortical activity that could lead to hormonal dysfunction, thereby distinguishing the clinical presentation of rabies in the rabid host.

  10. Evaluation of Nucleic Acid Stabilization Products for Ambient Temperature Shipping and Storage of Viral RNA and Antibody in a Dried Whole Blood Format

    Science.gov (United States)

    Dauner, Allison L.; Gilliland, Theron C.; Mitra, Indrani; Pal, Subhamoy; Morrison, Amy C.; Hontz, Robert D.; Wu, Shuenn-Jue L.

    2015-01-01

    Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6–97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing. PMID:25940193

  11. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses.

    NARCIS (Netherlands)

    Mierlo, J.T. van; Bronkhorst, A.W.; Overheul, G.J.; Sadanandan, S.A.; Ekstrom, J.O.; Heestermans, M.; Hultmark, D.; Antoniewski, C.; Rij, R.P. van

    2012-01-01

    RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus

  12. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  13. Microfluidic PCR Amplification and MiSeq Amplicon Sequencing Techniques for High-Throughput Detection and Genotyping of Human Pathogenic RNA Viruses in Human Feces, Sewage, and Oysters

    Directory of Open Access Journals (Sweden)

    Mamoru Oshiki

    2018-04-01

    Full Text Available Detection and genotyping of pathogenic RNA viruses in human and environmental samples are useful for monitoring the circulation and prevalence of these pathogens, whereas a conventional PCR assay followed by Sanger sequencing is time-consuming and laborious. The present study aimed to develop a high-throughput detection-and-genotyping tool for 11 human RNA viruses [Aichi virus; astrovirus; enterovirus; norovirus genogroup I (GI, GII, and GIV; hepatitis A virus; hepatitis E virus; rotavirus; sapovirus; and human parechovirus] using a microfluidic device and next-generation sequencer. Microfluidic nested PCR was carried out on a 48.48 Access Array chip, and the amplicons were recovered and used for MiSeq sequencing (Illumina, Tokyo, Japan; genotyping was conducted by homology searching and phylogenetic analysis of the obtained sequence reads. The detection limit of the 11 tested viruses ranged from 100 to 103 copies/μL in cDNA sample, corresponding to 101–104 copies/mL-sewage, 105–108 copies/g-human feces, and 102–105 copies/g-digestive tissues of oyster. The developed assay was successfully applied for simultaneous detection and genotyping of RNA viruses to samples of human feces, sewage, and artificially contaminated oysters. Microfluidic nested PCR followed by MiSeq sequencing enables efficient tracking of the fate of multiple RNA viruses in various environments, which is essential for a better understanding of the circulation of human pathogenic RNA viruses in the human population.

  14. NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting; Ren, Xiaoming; Adams, Rebecca L.; Pyle, Anna Marie; Ou, J. -H. James

    2017-10-25

    Hepatitis C viruses (HCV) encode a helicase enzyme that is essential for viral replication and assembly (nonstructural protein 3 [NS3]). This helicase has become the focus of extensive basic research on the general helicase mechanism, and it is also of interest as a novel drug target. Despite the importance of this protein, mechanistic work on NS3 has been conducted almost exclusively on variants from HCV genotype 1. Our understanding of NS3 from the highly active HCV strains that are used to study HCV genetics and mechanism in cell culture (such as JFH-1) is lacking. We therefore set out to determine whether NS3 from the replicatively efficient genotype 2a strain JFH-1 displays novel functional or structural properties. Using biochemical assays for RNA binding and duplex unwinding, we show that JFH-1 NS3 binds RNA much more rapidly than the previously studied NS3 variants from genotype 1b. Unlike NS3 variants from other genotypes, JFH-1 NS3 binds RNA with high affinity in a functionally active form that is capable of immediately unwinding RNA duplexes without undergoing rate-limiting conformational changes that precede activation. Unlike other superfamily 2 (SF2) helicases, JFH-1 NS3 does not require long 3' overhangs, and it unwinds duplexes that are flanked by only a few nucleotides, as in the folded HCV genome. To understand the physical basis for this, we solved the crystal structure of JFH-1 NS3, revealing a novel conformation that contains an open, positively charged RNA binding cleft that is primed for productive interaction with RNA targets, potentially explaining robust replication by HCV JFH-1.

    IMPORTANCEGenotypes of HCV are as divergent as different types of flavivirus, and yet mechanistic features of HCV variants are presumed to be held in common. One of the most well-studied components of the HCV replication complex is a helicase known as nonstructural protein 3 (NS3). We set out to determine whether this important

  15. Infection studies with two highly pathogenic avian influenza strains (Vietnamese and Indonesian) in Pekin ducks (Anas platyrhynchos), with particular reference to clinical disease, tissue tropism and viral shedding.

    Science.gov (United States)

    Bingham, John; Green, Diane J; Lowther, Sue; Klippel, Jessica; Burggraaf, Simon; Anderson, Danielle E; Wibawa, Hendra; Hoa, Dong Manh; Long, Ngo Thanh; Vu, Pham Phong; Middleton, Deborah J; Daniels, Peter W

    2009-08-01

    Pekin ducks were infected by the mucosal route (oral, nasal, ocular) with one of two strains of Eurasian lineage H5N1 highly pathogenic avian influenza virus: A/Muscovy duck/Vietnam/453/2004 and A/duck/Indramayu/BBVW/109/2006 (from Indonesia). Ducks were killed humanely on days 1, 2, 3, 5 and 7 after challenge, or whenever morbidity was severe enough to justify euthanasia. Morbidity was recorded by observation of clinical signs and cloacal temperatures; the disease was characterized by histopathology; tissue tropism was studied by immunohistochemistry and virus titration on tissue samples; and viral shedding patterns were determined by virus isolation and titration of oral and cloacal swabs. The Vietnamese strain caused severe morbidity with fever and depression; the Indonesian strain caused only transient fever. Both viruses had a predilection for a similar range of tissue types, but the quantity of tissue antigen and tissue virus titres were considerably higher with the Vietnamese strain. The Vietnamese strain caused severe myocarditis and skeletal myositis; both strains caused non-suppurative encephalitis and a range of other inflammatory reactions of varying severity. The principal epithelial tissue infected was that of the air sacs, but antigen was not abundant. Epithelium of the turbinates, trachea and bronchi had only rare infection with virus. Virus was shed from both the oral and cloacal routes; it was first detected 24 h after challenge and persisted until day 5 after challenge. The higher prevalence of virus from swabs from ducks infected with the Vietnamese strain indicates that this strain may be more adapted to ducks than the Indonesia strain.

  16. Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens.

    Directory of Open Access Journals (Sweden)

    Linxiang Chen

    Full Text Available Conventional Sanger sequencing remains time-consuming and laborious. In this study, we developed a rapid improved sequencing protocol of 16S rRNA for pathogens identification by using a new combination of SYBR Green I real-time PCR and Sanger sequencing with FTA® cards. To compare the sequencing quality of this method with conventional Sanger sequencing, 12 strains, including three kinds of strains (1 reference strain and 3 clinical strains, which were previously identified by biochemical tests, which have 4 Pseudomonas aeruginosa, 4 Staphyloccocus aureus and 4 Escherichia coli, were targeted. Additionally, to validate the sequencing results and bacteria identification, expanded specimens with 90 clinical strains, also comprised of the three kinds of strains which included 30 samples respectively, were performed as just described. The results showed that although statistical differences (P<0.05 were found in sequencing quality between the two methods, their identification results were all correct and consistent. The workload, the time consumption and the cost per batch were respectively light versus heavy, 8 h versus 11 h and $420 versus $400. In the 90 clinical strains, all of the Pseudomonas aeruginosa and Staphyloccocus aureus strains were correctly identified, but only 26.7% of the Escherichia coli strains were recognized as Escherichia coli, while 33.3% as Shigella sonnei and 40% as Shigella dysenteriae. The protocol described here is a rapid, reliable, stable and convenient method for 16S rRNA sequencing, and can be used for Pseudomonas aeruginosa and Staphyloccocus aureus identification, yet it is not completely suitable for discriminating Escherichia coli and Shigella strains.

  17. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    Science.gov (United States)

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells.

    Science.gov (United States)

    Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun

    2015-01-01

    Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

  19. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Luna, Joseph M; Liniger, Matthias

    2016-01-01

    , critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de...... immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries...

  20. Specific micro RNA-regulated TetR-KRAB transcriptional control of transgene expression in viral vector-transduced cells.

    Directory of Open Access Journals (Sweden)

    Virginie Pichard

    Full Text Available Precise control of transgene expression in a tissue-specific and temporally regulated manner is desirable for many basic and applied investigations gene therapy applications. This is important to regulate dose of transgene products and minimize unwanted effects. Previously described methods have employed tissue specific promoters, miRNA-based transgene silencing or tetR-KRAB-mediated suppression of transgene promoters. To improve on versatility of transgene expression control, we have developed expression systems that use combinations of a tetR-KRAB artificial transgene-repressor, endogenous miRNA silencing machinery and tissue specific promoters. Precise control of transgene expression was demonstrated in liver-, macrophage- and muscle-derived cells. Efficiency was also demonstrated in vivo in murine muscle. This multicomponent and modular regulatory system provides a robust and easily adaptable method for achieving regulated transgene expression in different tissue types. The improved precision of regulation will be useful for many gene therapy applications requiring specific spatiotemporal transgene regulation.

  1. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    International Nuclear Information System (INIS)

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory

    2007-01-01

    Frog virus 3 (FV3) is a large DNA virus that encodes ∼ 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-IIα). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-IIα triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins

  2. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  3. View and review on viral oncology research

    Directory of Open Access Journals (Sweden)

    Parolin Cristina

    2010-05-01

    Full Text Available Abstract To date, almost one and a half million cases of cancer are diagnosed every year in the US and nearly 560,000 Americans are expected to die of cancer in the current year, more than 1,500 people a day (data from the American Cancer Society at http://www.cancer.org/. According to the World Health Organization (WHO, roughly 20% of all cancers worldwide results from chronic infections; in particular, up to 15% of human cancers is characterized by a viral aetiology with higher incidence in Developing Countries. The link between viruses and cancer was one of the pivotal discoveries in cancer research during the past Century. Indeed, the infectious nature of specific tumors has important implications in terms of their prevention, diagnosis, and therapy. In the 21st Century, the research on viral oncology field continues to be vigorous, with new significant and original studies on viral oncogenesis and translational research from basic virology to treatment of cancer. This review will cover different viral oncology aspects, starting from the history of viral oncology and moving to the peculiar features of oncogenic RNA and DNA viruses, with a special focus on human pathogens.

  4. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone

    Science.gov (United States)

    Xia, Hongjie; Wang, Peipei; Wang, Guang-Chuan; Yang, Jie; Sun, Xianlin; Wu, Wenzhe; Qiu, Yang; Shu, Ting; Zhao, Xiaolu; Yin, Lei; Qin, Cheng-Feng; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our

  5. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets.

    Science.gov (United States)

    Watson, Mick; Schnettler, Esther; Kohl, Alain

    2013-08-01

    RNA interference (RNAi) is known to play an important part in defence against viruses in a range of species. Second-generation sequencing technologies allow us to assay these systems and the small RNAs that play a key role with unprecedented depth. However, scientists need access to tools that can condense, analyse and display the resulting data. Here, we present viRome, a package for R that takes aligned sequence data and produces a range of essential plots and reports. viRome is released under the BSD license as a package for R available for both Windows and Linux http://virome.sf.net. Additional information and a tutorial is available on the ARK-Genomics website: http://www.ark-genomics.org/bioinformatics/virome. mick.watson@roslin.ed.ac.uk.

  6. Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases.

    Directory of Open Access Journals (Sweden)

    Stefanie A Krumm

    Full Text Available Therapeutic targeting of host cell factors required for virus replication rather than of pathogen components opens new perspectives to counteract virus infections. Anticipated advantages of this approach include a heightened barrier against the development of viral resistance and a broadened pathogen target spectrum. Myxoviruses are predominantly associated with acute disease and thus are particularly attractive for this approach since treatment time can be kept limited. To identify inhibitor candidates, we have analyzed hit compounds that emerged from a large-scale high-throughput screen for their ability to block replication of members of both the orthomyxovirus and paramyxovirus families. This has returned a compound class with broad anti-viral activity including potent inhibition of different influenza virus and paramyxovirus strains. After hit-to-lead chemistry, inhibitory concentrations are in the nanomolar range in the context of immortalized cell lines and human PBMCs. The compound shows high metabolic stability when exposed to human S-9 hepatocyte subcellular fractions. Antiviral activity is host-cell species specific and most pronounced in cells of higher mammalian origin, supporting a host-cell target. While the compound induces a temporary cell cycle arrest, host mRNA and protein biosynthesis are largely unaffected and treated cells maintain full metabolic activity. Viral replication is blocked at a post-entry step and resembles the inhibition profile of a known inhibitor of viral RNA-dependent RNA-polymerase (RdRp activity. Direct assessment of RdRp activity in the presence of the reagent reveals strong inhibition both in the context of viral infection and in reporter-based minireplicon assays. In toto, we have identified a compound class with broad viral target range that blocks host factors required for viral RdRp activity. Viral adaptation attempts did not induce resistance after prolonged exposure, in contrast to rapid

  7. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    Science.gov (United States)

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most

  8. Tomato bushy stunt virus and DI RNAs as a model for studying mechanisms of RNA virus replication, pathogenicity and recombination. Final technical report for 1994--1997

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.J. [Univ. of Nebraska, Lincoln, NE (United States). School of Biological Sciences; Jackson, A.O. [Univ. of California, Berkeley, CA (United States). Dept. of Plant Biology

    1997-12-31

    Tomato bushy stunt virus (TBSV) is a small icosahedral virus with a very broad host-range. The symptoms of systemic infection range from mild mosaic to severe necrosis that often results in death. The genome of TBSV is composed of a single plus stranded RNA molecule with five genes. Two 5 inch genes are translated from the viral RNA, and the remaining three are translated from two subgenomic RNAs. Prior to the DOE supported studies, TBSV gene function had been assigned solely on the basis of sequence similarity with other virus genes of known function. The two 5 inch proximal genes (p33 and p92) were thought to be involved in viral replication, the middle gene encoded the capsid protein (p41), but no clear function was assigned to two nested 3 inch genes (p19 and p22), although it was suggested that at least one could be involved in movement. This research has determined the roles of each of the viral genes in the infection process, and the authors have obtained considerable genetic information pertinent to the contributions of the coat protein and the nested genes to the disease phenotypes observed in several host plants. They have also identified another genetic element with a short open reading frame in the 3 inch-noncoding region of the genome that provides a host-dependent replication function.

  9. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    OpenAIRE

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interactio...

  10. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  11. Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms.

    Directory of Open Access Journals (Sweden)

    J Michael Day

    Full Text Available There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels" placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and

  12. ACVP-02: Plasma SIV/SHIV RNA Viral Load Measurements through the AIDS and Cancer Virus Program Quantitative Molecular Diagnostics Core | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese

  13. RNA Encapsidation and Packaging in the Phleboviruses

    Directory of Open Access Journals (Sweden)

    Katherine E. Hornak

    2016-07-01

    Full Text Available The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV, severe fever with thrombocytopenia syndrome virus (SFTSV, Uukuniemi virus (UUKV, and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5–7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA are synthesized. The interaction between the vRNA and the viral nucleocapsid (N protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses.

  14. A search for RNA insertions and NS3 gene duplication in the genome of cytopathic isolates of bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    V.L. Quadros

    2006-07-01

    Full Text Available Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV and an antigenically identical but cytopathic virus (cpBVDV can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98% to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.

  15. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs.

    Science.gov (United States)

    Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2015-11-20

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Czech Academy of Sciences Publication Activity Database

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D. T. J.

    2015-01-01

    Roč. 8, JUN 19 2015 (2015), s. 336 ISSN 1756-3305 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR(CZ) GA15-14198S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:60077344 Keywords : Diplostomum (Platyhelminthes: Trematoda) * fish pathogens * mitochondrial genome * ribosomal RNA * illumina next-generation sequencing * phylogeny Subject RIV: EG - Zoology Impact factor: 3.234, year: 2015

  17. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Science.gov (United States)

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  18. Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems

    OpenAIRE

    Osman, Abdimajid; Hitzler, Walter E.; Ameur, Adam; Provost, Patrick

    2015-01-01

    Platelet concentrates (PCs) are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR) systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets' nucleic acids. We previously reported that treatment of stored platelets with the PR system Int...

  19. Prevalence of transfusion-transmitted viral pathogens among health-care workers and risk mitigation programme in a paediatric tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Charu Nayyar

    2017-01-01

    Full Text Available The health-care workers (HCWs are at an occupational risk of exposure to blood-borne pathogens, mainly, HIV, hepatitis B virus (HBV and hepatitis C virus. HBV is currently the only blood-borne virus for which a vaccine is available. All health-care institutions must encourage the HCWs to undergo screening for blood-borne pathogens.

  20. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  1. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV in macaques vaccinated with replication-deficient viral vectors

    Directory of Open Access Journals (Sweden)

    Strasak Alexander

    2009-06-01

    Full Text Available Abstract Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.

  2. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance

    Directory of Open Access Journals (Sweden)

    Richard J. Bingham

    2017-11-01

    Full Text Available The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  3. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance.

    Science.gov (United States)

    Bingham, Richard J; Dykeman, Eric C; Twarock, Reidun

    2017-11-17

    The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  4. Hibiscus Chlorotic Ringspot Virus Coat Protein Is Essential for Cell-to-Cell and Long-Distance Movement but Not for Viral RNA Replication

    Science.gov (United States)

    Niu, Shengniao; Gil-Salas, Francisco M.; Tewary, Sunil Kumar; Samales, Ashwin Kuppusamy; Johnson, John; Swaminathan, Kunchithapadam; Wong, Sek-Man

    2014-01-01

    Hibiscus chlorotic ringspot virus (HCRSV) is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP) functions on virus replication and movement in kenaf (Hibiscus cannabinus L.), two HCRSV mutants, designated as p2590 (A to G) in which the first start codon ATG was replaced with GTG and p2776 (C to G) in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G) were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G) was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G) inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro. PMID:25402344

  5. Hibiscus chlorotic ringspot virus coat protein is essential for cell-to-cell and long-distance movement but not for viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Shengniao Niu

    Full Text Available Hibiscus chlorotic ringspot virus (HCRSV is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP functions on virus replication and movement in kenaf (Hibiscus cannabinus L., two HCRSV mutants, designated as p2590 (A to G in which the first start codon ATG was replaced with GTG and p2776 (C to G in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro.

  6. Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of Immune Responses Against Pathogen Infection.

    Science.gov (United States)

    Chang, Ming Xian; Zhang, Jie

    2017-07-15

    Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.

  7. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus

    Science.gov (United States)

    Qiu, Xiu-Wen; Wu, Xiao-Qin; Huang, Lin; Ye, Jian-Ren

    2016-01-01

    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001) after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD. PMID:26797602

  8. Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing.

    Science.gov (United States)

    Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke

    2017-09-18

    Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B

  9. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  10. Genome-Wide Identification of circRNAs in Pathogenic Basidiomycetous Yeast Cryptococcus neoformans Suggests Conserved circRNA Host Genes over Kingdoms

    Directory of Open Access Journals (Sweden)

    Liang Huo

    2018-02-01

    Full Text Available Circular RNAs (circRNAs, a novel class of ubiquitous and intriguing noncoding RNA, have been found in a number of eukaryotes but not yet basidiomycetes. In this study, we identified 73 circRNAs from 39.28 million filtered RNA reads from the basidiomycete Cryptococcus neoformans JEC21 using next-generation sequencing (NGS and the bioinformatics tool circular RNA identification (CIRI. Furthermore, mapping of newly found circRNAs to the genome showed that 73.97% of the circRNAs originated from exonic regions, whereas 20.55% were from intergenic regions and 5.48% were from intronic regions. Enrichment analysis of circRNA host genes was conducted based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases. The results reveal that host genes are mainly responsible for primary metabolism and, interestingly, ribosomal protein production. Furthermore, we uncovered a high-level circRNA that was a transcript from the guanosine triphosphate (GTPase gene CNM01190 (gene ID: 3255052 in our yeast. Coincidentally, YPT5, CNM01190′s ortholog of the GTPase in Schizosaccharomyces pombe, protists, and humans, has already been proven to generate circRNAs. Additionally, overexpression of RNA debranching enzyme DBR1 had varied influence on the expression of circRNAs, indicating that multiple circRNA biosynthesis pathways exist in C. neoformans. Our study provides evidence for the existence of stable circRNAs in the opportunistic human pathogen C. neoformans and raises a question regarding their role related to pathogenesis in this yeast.

  11. Comparison of pathogenic domains of rabies and African rabies-related lyssaviruses and pathogenicity observed in mice

    Directory of Open Access Journals (Sweden)

    Joe Kgaladi

    2013-03-01

    Full Text Available Several lyssavirus species occur in Africa (Rabies virus, Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus and Ikoma lyssavirus, displaying a high sequence diversity between isolates belonging to the same species. There is limited information about comparative pathogenesis of these African lyssaviruses and this precludes authoritative opinion on the potential public and veterinary health impact. In this study, an analysis of representative African lyssaviruses attempted to correlate viral genomic sequence similarities and differences with the corresponding pathogenic profiles observed in mice. The study demonstrated that the virus isolates evaluated could be lethal to mice when introduced intramuscularly and that different isolates of the same lyssavirus species differ in their virulence. Using real-time polymerase chain reaction (PCR, viral RNA was detected in brain tissue, but no viral RNA was detected in the salivary glands or blood of mice that succumbed to infection. Comparison of known pathogenic domains indicated that pathogenicity is likely to be dependent on multiple domains. Cumulatively, our results re-emphasised the realisation that the pathogenicity of a lyssavirus species cannot be deduced based on studies of only a single isolate of the species or a single pathogenic domain.

  12. Viral Meningitis

    Science.gov (United States)

    ... better from treatment such as an antiviral medicine. Antibiotics do not help viral infections, so they are not useful in the treatment of viral meningitis. However, antibiotics do fight bacteria, so they are very important ...

  13. Pharyngitis - viral

    Science.gov (United States)

    ... throat is due to a viral infection. The antibiotics will not help. Using them to treat viral infections helps bacteria become resistant to antibiotics. With some sore throats (such as those caused ...

  14. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs

    NARCIS (Netherlands)

    Miesen, P.; Ivens, A.; Buck, A.H.; Rij, R.P. van

    2016-01-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of

  15. Inferring epidemiologic dynamics from viral evolution: 2014–2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America

    Science.gov (United States)

    Grear, Daniel R.; Hall, Jeffrey S.; Dusek, Robert; Ip, Hon S.

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  16. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement.

    Science.gov (United States)

    Cho, Sang-Yun; Cho, Won Kyong; Sohn, Seong-Han; Kim, Kook-Hyung

    2012-01-06

    Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Assembly of viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2014-01-01

    textabstractViral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow

  18. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    Science.gov (United States)

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  19. Genome-wide identification of microRNA targets in the neglected disease pathogens of the genus Echinococcus.

    Science.gov (United States)

    Macchiaroli, Natalia; Maldonado, Lucas L; Zarowiecki, Magdalena; Cucher, Marcela; Gismondi, María Inés; Kamenetzky, Laura; Rosenzvit, Mara Cecilia

    2017-06-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in biological processes such as development. MiRNAs silence target mRNAs by binding to complementary sequences in the 3'untranslated regions (3'UTRs). The parasitic helminths of the genus Echinococcus are the causative agents of echinococcosis, a zoonotic neglected disease. In previous work, we performed a comprehensive identification and characterization of Echinococcus miRNAs. However, current knowledge about their targets is limited. Since target prediction algorithms rely on complementarity between 3'UTRs and miRNA sequences, a major limitation is the lack of accurate sequence information of 3'UTR for most species including parasitic helminths. We performed RNA-seq and developed a pipeline that integrates the transcriptomic data with available genomic data of this parasite in order to identify 3'UTRs of Echinococcus canadensis. The high confidence set of 3'UTRs obtained allowed the prediction of miRNA targets in Echinococcus through a bioinformatic approach. We performed for the first time a comparative analysis of miRNA targets in Echinococcus and Taenia. We found that many evolutionarily conserved target sites in Echinococcus and Taenia may be functional and under selective pressure. Signaling pathways such as MAPK and Wnt were among the most represented pathways indicating miRNA roles in parasite growth and development. Genome-wide identification and characterization of miRNA target genes in Echinococcus provide valuable information to guide experimental studies in order to understand miRNA functions in the parasites biology. miRNAs involved in essential functions, especially those being absent in the host or showing sequence divergence with respect to host orthologs, might be considered as novel therapeutic targets for echinococcosis control. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Suppression of injuries caused by a lytic RNA virus (mengovirus) and their uncoupling from viral reproduction by mutual cell/virus disarmament.

    Science.gov (United States)

    Mikitas, Olga V; Ivin, Yuri Y; Golyshev, Sergey A; Povarova, Natalia V; Galkina, Svetlana I; Pletjushkina, Olga Y; Nadezhdina, Elena S; Gmyl, Anatoly P; Agol, Vadim I

    2012-05-01

    Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive ("security") viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L(-) mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases.

  1. Population Abundance of Potentially Pathogenic Organisms in Intestinal Microbiome of Jungle Crow (Corvus macrorhynchos Shown with 16S rRNA Gene-Based Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Isamu Maeda

    2013-01-01

    Full Text Available Jungle Crows (Corvus macrorhynchos prefer human habitats because of their versatility in feeding accompanied with human food consumption. Therefore, it is important from a public health viewpoint to characterize their intestinal microbiota. However, no studies have been involved in molecular characterization of the microbiota based on huge and reliable number of data acquisition. In this study, 16S rRNA gene-based microbial community analysis coupled with the next-generation DNA sequencing techniques was applied to the taxonomic classification of intestinal microbiome for three jungle crows. Clustering of the reads into 130 operational taxonomic units showed that at least 70% of analyzed sequences for each crow were highly homologous to Eimeria sp., which belongs to the protozoan phylum Apicomplexa. The microbiotas of three crows also contained potentially pathogenic bacteria with significant percentages, such as the genera Campylobacter and Brachyspira. Thus, the profiling of a large number of 16S rRNA gene sequences in crow intestinal microbiomes revealed the high-frequency existence or vestige of potentially pathogenic microorganisms.

  2. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) Infected With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With a DNA Vaccine Against VHSV

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Jørgensen, Hanne

    2011-01-01

    and are incorporated into the RNA-Induced Silencing Complex (RISC), which target specific mRNA sequences, causing either mRNA degradation or translation repression. This results in altered mRNA and protein profiles characteristic of a particular cellular phenotype or physiological state. By targeting immune relevant m...

  3. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    NARCIS (Netherlands)

    Jonge, de R.; Esse, van H.P.; Maruthachalam, K.; Bolton, M.D.; Santhanam, P.; Keykha Saber, M.; Zhang, Z.; Usami, T.; Lievens, B.; Subbarao, K.V.; Thomma, B.

    2012-01-01

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and

  4. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7 and swine-origin H1N1 (S-OIV

    Directory of Open Access Journals (Sweden)

    Schoop Roland

    2009-11-01

    Full Text Available Abstract Background Influenza virus (IV infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1, were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options

  5. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens.

    Science.gov (United States)

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D Timothy J

    2015-06-19

    The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology. Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared. We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its 'barcode' region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida. Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and

  6. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis

    Science.gov (United States)

    Zhou, Yun; Zhang, Ying; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhan S

    2014-01-01

    Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules. PMID:24965611

  7. Segal’s Law, 16S rRNA gene sequencing, and the perils of foodborne pathogen detection within the American Gut Project

    Directory of Open Access Journals (Sweden)

    James B. Pettengill

    2017-06-01

    Full Text Available Obtaining human population level estimates of the prevalence of foodborne pathogens is critical for understanding outbreaks and ameliorating such threats to public health. Estimates are difficult to obtain due to logistic and financial constraints, but citizen science initiatives like that of the American Gut Project (AGP represent a potential source of information concerning enteric pathogens. With an emphasis on genera Listeria and Salmonella, we sought to document the prevalence of those two taxa within the AGP samples. The results provided by AGP suggest a surprising 14% and 2% of samples contained Salmonella and Listeria, respectively. However, a reanalysis of those AGP sequences described here indicated that results depend greatly on the algorithm for assigning taxonomy and differences persisted across both a range of parameter settings and different reference databases (i.e., Greengenes and HITdb. These results are perhaps to be expected given that AGP sequenced the V4 region of 16S rRNA gene, which may not provide good resolution at the lower taxonomic levels (e.g., species, but it was surprising how often methods differ in classifying reads—even at higher taxonomic ranks (e.g., family. This highlights the misleading conclusions that can be reached when relying on a single method that is not a gold standard; this is the essence of Segal’s Law: an individual with one watch knows what time it is but an individual with two is never sure. Our results point to the need for an appropriate molecular marker for the taxonomic resolution of interest, and calls for the development of more conservative classification methods that are fit for purpose. Thus, with 16S rRNA gene datasets, one must be cautious regarding the detection of taxonomic groups of public health interest (e.g., culture independent identification of foodborne pathogens or taxa associated with a given phenotype.

  8. Segal's Law, 16S rRNA gene sequencing, and the perils of foodborne pathogen detection within the American Gut Project.

    Science.gov (United States)

    Pettengill, James B; Rand, Hugh

    2017-01-01

    Obtaining human population level estimates of the prevalence of foodborne pathogens is critical for understanding outbreaks and ameliorating such threats to public health. Estimates are difficult to obtain due to logistic and financial constraints, but citizen science initiatives like that of the American Gut Project (AGP) represent a potential source of information concerning enteric pathogens. With an emphasis on genera Listeria and Salmonella , we sought to document the prevalence of those two taxa within the AGP samples. The results provided by AGP suggest a surprising 14% and 2% of samples contained Salmonella and Listeria , respectively. However, a reanalysis of those AGP sequences described here indicated that results depend greatly on the algorithm for assigning taxonomy and differences persisted across both a range of parameter settings and different reference databases (i.e., Greengenes and HITdb). These results are perhaps to be expected given that AGP sequenced the V4 region of 16S rRNA gene, which may not provide good resolution at the lower taxonomic levels (e.g., species), but it was surprising how often methods differ in classifying reads-even at higher taxonomic ranks (e.g., family). This highlights the misleading conclusions that can be reached when relying on a single method that is not a gold standard; this is the essence of Segal's Law: an individual with one watch knows what time it is but an individual with two is never sure. Our results point to the need for an appropriate molecular marker for the taxonomic resolution of interest, and calls for the development of more conservative classification methods that are fit for purpose. Thus, with 16S rRNA gene datasets, one must be cautious regarding the detection of taxonomic groups of public health interest (e.g., culture independent identification of foodborne pathogens or taxa associated with a given phenotype).

  9. Molecular testing for viral and bacterial enteric pathogens: gold standard for viruses, but don't let culture go just yet?

    Science.gov (United States)

    Bloomfield, Maxim G; Balm, Michelle N D; Blackmore, Timothy K

    2015-04-01

    Contemporary diagnostic microbiology is increasingly adopting molecular methods as front line tests for a variety of samples. This trend holds true for detection of enteric pathogens (EP), where nucleic acid amplification tests (NAAT) for viruses are well established as the gold standard, and an increasing number of commercial multi-target assays are now available for bacteria and parasites. NAAT have significant sensitivity and turnaround time advantages over traditional methods, potentially returning same-day results. Multiplex panels offer an attractive 'one-stop shop' that may provide workflow and cost advantages to laboratories processing large sample volumes. However, there are a number of issues which need consideration. Reflex culture is required for antibiotic susceptibility testing and strain typing when needed for food safety and other epidemiological investigations. Surveillance systems will need to allow for differences in disease incidence due to the enhanced sensitivity of NAAT. Laboratories should be mindful of local epidemiology when selecting which pathogens to include in multiplex panels, and be thoughtful regarding which pathogens will not be detected. Multiplex panels may not be appropriate in certain situations, such as hospital-onset diarrhoea, where Clostridium difficile testing might be all that is required, and laboratories may wish to retain the flexibility to run single tests in such situations. The clinical impact of rapid results is also likely to be relatively minor, as infective diarrhoea is a self-limiting illness in the majority of cases. Laboratories will require strategies to assist users in the interpretation of the results produced by NAAT, particularly where pathogens are detected at low levels with uncertain clinical significance. These caveats aside, faecal NAAT are increasingly being used and introduce a new era of diagnosis of gastrointestinal infection.

  10. The RNA synthesis machinery of negative-stranded RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ortín, Juan, E-mail: jortin@cnb.csic.es [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid (Spain); Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es [Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid (Spain)

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  11. The RNA synthesis machinery of negative-stranded RNA viruses

    International Nuclear Information System (INIS)

    Ortín, Juan; Martín-Benito, Jaime

    2015-01-01

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes

  12. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    Science.gov (United States)

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-11

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12.

  13. Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants

    Science.gov (United States)

    Mitter, Neena; Koundal, Vikas; Williams, Sarah; Pappu, Hanu

    2013-01-01

    Background Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. Principal Findings Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. Significance Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral

  14. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants.

    Directory of Open Access Journals (Sweden)

    Neena Mitter

    Full Text Available BACKGROUND: Viral small RNAs (vsiRNAs in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV, a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS: Tomato spotted wilt virus (TSWV-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1 higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE: Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsi

  15. Viral diseases of marine invertebrates

    Science.gov (United States)

    Johnson, P. T.

    1984-03-01

    Approximately 40 viruses are known from marine sponges; turbellarian and monogenetic flatworms; cephalopod, bivalve, and gastropod mollusks; nereid polychaetes; and isopod and decapod crustaceans. Most of the viruses can be tentatively assigned to the Herpesviridae, Baculoviridae, Iridoviridae, Adenoviridae, Papovaviridae, Reoviridae, “Birnaviridae”, Bunyaviridae, Rhabdoviridae, and Picornaviridae. Viruslike particles found in oysters might be representatives of the Togaviridae and Retroviridae. Enveloped single-stranded RNA viruses from crustaceans have developmental and morphological characteristics intermediate between families, and some show evidence of relationships to the Paramyxoviridae as well as the Bunyaviridae or Rhabdoviridae. Certain small viruses of shrimp cannot be assigned, even tentatively, to a particular family. Some viruses cause disease in wild and captive hosts, others are associated with disease states but may not be primary instigators, and many occur in apparently normal animals. The frequency of viral disease in natural populations of marine invertebrates is unknown. Several viruses that cause disease in captive animals, with or without experimental intervention, have also been found in diseased wild hosts, including herpeslike viruses of crabs and oysters, iridovirus of octopus, and reolike and bunyalike viruses of crabs. Iridolike viruses have been implicated in massive mortalities of cultured oysters. Baculoviruses, and IHHN virus, which is of uncertain affinities, cause economically damaging diseases in cultured penaeid shrimp. Double or multiple viral infection is common in crabs. For example, a reolike virus and associated rhabdolike virus act synergistically to cause paralytic and fatal disease in Callinectes sapidus. Information on host range, most susceptible stage, and viral latency is available only for viruses of shrimp. One baculovirus attacks five species of New World penaeid shrimp. IHHN virus infects three species of

  16. Plasma HIV-1 RNA viral load rebound among people who inject drugs receiving antiretroviral therapy (ART) in a Canadian setting: an ethno-epidemiological study.

    Science.gov (United States)

    Small, Will; Milloy, M J; McNeil, Ryan; Maher, Lisa; Kerr, Thomas

    2016-01-01

    People who inject drugs (PWID) living with HIV often experience sub-optimal antiretroviral therapy (ART) treatment outcomes, including HIV plasma viral load (PVL) rebound. While previous studies have identified risk factors for PVL rebound among PWID, no study has examined the perspectives of PWID who have experienced PVL rebound episodes. We conducted an ethno-epidemiological study to investigate the circumstances surrounding the emergence of rebound episodes among PWID in Vancouver, BC, Canada. Comprehensive clinical records linked to a community-based prospective observational cohort of HIV-positive drug users were used to identify PWID who had recently experienced viral rebound. In-depth qualitative interviews with 16 male and 11 female participants explored participant perspectives regarding the emergence of viral rebound. A timeline depicting each participant's HIV viral load and adherence to ART was used to elicit discussion of circumstances surrounding viral rebound. Viral rebound episodes were shaped by interplay between various individual, social, and environmental factors that disrupted routines facilitating adherence. Structural-environmental influences resulting in non-adherence included housing transitions, changes in drug use patterns and intense drug scene involvement, and inadequate care for co-morbid health conditions. Social-environmental influences on ART adherence included poor interactions between care providers and patients producing non-adherence, and understandings of HIV treatment that fostered intentional treatment discontinuation. This study describes key pathways which led to rebound episodes among PWID receiving ART and illustrates how environmental forces may increase vulnerability for non-adherence leading to treatment failure. Our findings have potential to help inform interventions and supports that address social-structural forces that foster non-adherence among PWID.

  17. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  18. Eight-plex PCR and liquid-array detection of bacterial and viral pathogens in cerebrospinal fluid from patients with suspected meningitis

    DEFF Research Database (Denmark)

    Bøving, Mette Kusk; Pedersen, Lisbeth Nørum; Møller, Jens Kjølseth

    2009-01-01

    pneumoniae, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Streptococcus agalactiae, herpes simplex virus types 1 and 2, and varicella-zoster virus. The study was based on 1,187 samples, of which 55 were found to be positive by PCR. The assay was found to have an excellent sensitivity...... and an excellent specificity compared to the results of a "gold standard," defined by routine laboratory tests, for the two most important pathogens, S. pneumoniae (95 and 99.1%, respectively) and N. meningitidis (100 and 99.7%, respectively). The method provides a valuable supplement to the traditional microscopy...

  19. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) During Infection With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With an Anti-VHSV DNA Vaccine

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    fish. Linking mRNA and miRNA profiles with phenotypic, genotypic, and immunological data will provide an integrated view of the mechanisms of resistance and the strong protective immune responses provided by vaccination. This information is important in designing effective strategies to mitigate......-mediated) responses. MRNA and miRNA profiles will be correlated and combined with in vitro work in cell culture to describe target relationships between miRNAs and mRNAs and the effect of this targeting