WorldWideScience

Sample records for pathogenic rickettsia species

  1. Tropism and pathogenicity of rickettsiae

    Directory of Open Access Journals (Sweden)

    Tsuneo eUchiyama

    2012-06-01

    Full Text Available Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group and typhus group rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism towards cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and nonpathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and nonpathogenic species of spotted fever group rickettsiae in mammalian cells. The growth of nonpathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of nonpathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the nonpathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review.

  2. Anaplasma, Ehrlichia and Rickettsia species infections in cats

    NARCIS (Netherlands)

    Pennisi, Maria Grazia; Hofmann-Lehmann, Regina; Radford, Alan D; Tasker, Séverine; Belák, Sándor; Addie, Diane D; Boucraut-Baralon, Corine; Egberink, Herman; Frymus, Tadeusz; Gruffydd-Jones, Tim; Hartmann, Katrin; Horzinek, Marian C; Hosie, Margaret J; Lloret, Albert; Lutz, Hans; Marsilio, Fulvio; Thiry, Etienne; Truyen, Uwe; Möstl, Karin

    2017-01-01

    OVERVIEW: Anaplasma species, Ehrlichia species and Rickettsia species are vector-borne pathogens infecting a wide variety of mammals, but causing disease in very few of them. Infection in cats: Anaplasma phagocytophilum is the most important feline pathogen among these rickettsial organisms, and

  3. Rickettsia Species in African Anopheles Mosquitoes

    Science.gov (United States)

    Socolovschi, Cristina; Pages, Frédéric; Ndiath, Mamadou O.; Ratmanov, Pavel; Raoult, Didier

    2012-01-01

    Background There is higher rate of R. felis infection among febrile patients than in healthy people in Sub-Saharan Africa, predominantly in the rainy season. Mosquitoes possess a high vectorial capacity and, because of their abundance and aggressiveness, likely play a role in rickettsial epidemiology. Methodology/Principal Findings Quantitative and traditional PCR assays specific for Rickettsia genes detected rickettsial DNA in 13 of 848 (1.5%) Anopheles mosquitoes collected from Côte d’Ivoire, Gabon, and Senegal. R. felis was detected in one An. gambiae molecular form S mosquito collected from Kahin, Côte d’Ivoire (1/77, 1.3%). Additionally, a new Rickettsia genotype was detected in five An. gambiae molecular form S mosquitoes collected from Côte d’Ivoire (5/77, 6.5%) and one mosquito from Libreville, Gabon (1/88, 1.1%), as well as six An. melas (6/67, 9%) mosquitoes collected from Port Gentil, Gabon. A sequence analysis of the gltA, ompB, ompA and sca4 genes indicated that this new Rickettsia sp. is closely related to R. felis. No rickettsial DNA was detected from An. funestus, An. arabiensis, or An. gambiae molecular form M mosquitoes. Additionally, a BLAST analysis of the gltA sequence from the new Rickettsia sp. resulted in a 99.71% sequence similarity to a species (JQ674485) previously detected in a blood sample of a Senegalese patient with a fever from the Bandafassi village, Kedougou region. Conclusion R. felis was detected for the first time in An. gambiae molecular form S, which represents the major African malaria vector. The discovery of R. felis, as well as a new Rickettsia species, in mosquitoes raises new issues with respect to African rickettsial epidemiology that need to be investigated, such as bacterial isolation, the degree of the vectorial capacity of mosquitoes, the animal reservoirs, and human pathogenicity. PMID:23118963

  4. 'Candidatus Rickettsia nicoyana': A novel Rickettsia species isolated from Ornithodoros knoxjonesi in Costa Rica.

    Science.gov (United States)

    Moreira-Soto, Rolando D; Moreira-Soto, Andrés; Corrales-Aguilar, Eugenia; Calderón-Arguedas, Ólger; Troyo, Adriana

    2017-06-01

    Rickettsiae are intracellular bacteria commonly associated with hematophagous arthropods. Most of them have been described in hard ticks, but some have been found in soft ticks. Here we report the detection and isolation of a new Rickettsia from Ornithodoros knoxjonesi larvae collected from Balantiopteryx plicata (Emballonuridae) in Nicoya, Costa Rica. Two ticks were processed to detect Rickettsia spp. genes gltA, ompA, ompB, and htrA by PCR. Part of the macerate was also inoculated into Vero E6 and C6/36 cell lines, and cells were evaluated by Giménez stain, indirect immunofluorescence assay (IFA), and PCR. Both ticks were positive by PCR and rickettsial growth was successful in Vero E6 cells. Amplification and sequencing of near full length rrs, gltA, sca4 genes, and fragments of ompA and ompB showed that the Rickettsia sp. was different from described species. The highest homologies were with 'Candidatus Rickettsia wissemanii' and Rickettsia peacockii: 99.70% (1321/1325) with both sequences for rrs, 99.58% (1172/1177) and 99.76% (1246/1249) for gltA, 99.26% with both sequences (2948/2970 and 2957/2979) for sca4, 98.78% (485/491) and 98.39% (2069/2115) for ompA, and 98.58 (1453/1474) and 98.92% (1459/1475) for ompB; respectively. Bat blood, spleen, liver, and lung samples analyzed for Rickettsia detection were negative. Results demonstrate that the Rickettsia isolated from O. knoxjonesi is probably an undescribed species that belongs to the spotted fever group, for which 'Candidatus Rickettsia nicoyana' is proposed. Considering that B. plicata inhabits areas where contact with humans may occur and that human parasitism by Ornithodoros has been reported in the country, it will be important to continue with the characterization of this species and its pathogenic potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Rickettsia species in human-parasitizing ticks in Greece.

    Science.gov (United States)

    Papa, Anna; Xanthopoulou, Kyriaki; Kotriotsiou, Tzimoula; Papaioakim, Miltiadis; Sotiraki, Smaragda; Chaligiannis, Ilias; Maltezos, Efstratios

    2016-05-01

    Ticks serve as vectors and reservoirs for a variety of bacterial, viral and protozoan pathogens affecting humans and animals. Unusual increased tick aggressiveness was observed in 2008-2009 in northeastern Greece. The aim of the study was to check ticks removed from persons during 2009 for infection with Rickettsia species. A total of 159 ticks were removed from 147 persons who sought medical advice in a hospital. Tick identification was performed morphologically using taxonomic keys. DNA was extracted from each individual tick and a PCR assay targeting the rickettsial outer membrane protein A gene of Rickettsia spp. was applied. Most of the adult ticks (132/153, 86.3%) were Rhipicephalus sanguineus. Rickettsiae were detected in 23 of the 153 (15.0%) adult ticks. Five Rickettsiae species were identified: R. aeschlimannii, R. africae (n=6), R. massilae (4), R. monacensis (1), and Candidatus R. barbariae (1). To our knowledge, this is the first report of R. africae, R. monacensis, and Candidatus R. barbariae in Greece. Several Rickettsia species were identified in ticks removed from humans in Greece, including those that are prevalent in northern and southern latitudes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Prevalence and diversity of human pathogenic rickettsiae in urban versus rural habitats, Hungary.

    Science.gov (United States)

    Szekeres, Sándor; Docters van Leeuwen, Arieke; Rigó, Krisztina; Jablonszky, Mónika; Majoros, Gábor; Sprong, Hein; Földvári, Gábor

    2016-02-01

    Tick-borne rickettsioses belong to the important emerging infectious diseases worldwide. We investigated the potential human exposure to rickettsiae by determining their presence in questing ticks collected in an urban park of Budapest and a popular hunting and recreational forest area in southern Hungary. Differences were found in the infectious risk between the two habitats. Rickettsia monacensis and Rickettsia helvetica were identified with sequencing in questing Ixodes ricinus, the only ticks species collected in the city park. Female I. ricinus had a particularly high prevalence of R. helvetica (45%). Tick community was more diverse in the rural habitat with Dermacentor reticulatus ticks having especially high percentage (58%) of Rickettsia raoultii infection. We conclude that despite the distinct eco-epidemiological traits, the risk (hazard and exposure) of acquiring human pathogenic rickettsial infections in both the urban and the rural study sites exists.

  7. Rickettsia

    OpenAIRE

    Pramestuti, Nova

    2011-01-01

    Mungkin sebagian orang belum mengetahui bahkan baru mendengar tentang Rickettsia. Di Indonesia, skrining terhadap kasus Rickettsia ini masih jarang dan belum banyak dilakukan penelitian. Rickettsia sebenarnya merupakan bakteri yang mempunyai sifat parasit obligat intrasel uler, berukuran kecil (0,3-0,5 x 0,8-2,0 µm), mempunyai bentuk coccobacilli, gram negatif, tidak berflagel (kecuali Rickettsia prowazekii), dan mengalami pembelahan ganda dalam set pejamu. Rickettsia dianggap sebagai kelompo...

  8. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species

    Directory of Open Access Journals (Sweden)

    Gaasenbeek Cor

    2009-09-01

    Full Text Available Abstract Background Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years. Results The DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar. Conclusion Besides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.

  9. Electrotransformation and clonal isolation of Rickettsia species

    Science.gov (United States)

    Riley, Sean P; Macaluso, Kevin R; Martinez, Juan J

    2015-01-01

    Genetic manipulation of obligate intracellular bacteria of the genus Rickettsia is currently undergoing a rapid period of change. The development of viable genetic tools, including replicative plasmids, transposons, homologous recombination, fluorescent protein-encoding genes, and antibiotic selectable markers has provided the impetus for future research development. This unit is designed to coalesce the basic methods pertaining to creation of genetically modified Rickettsia. The unit describes a series of methods, from inserting exogenous DNA into Rickettsia to the final isolation of genetically modified bacterial clones. Researchers working towards genetic manipulation of Rickettsia or similar obligate intracellular bacteria will find these protocols to be a valuable reference. PMID:26528784

  10. Molecular Detection of Rickettsia Species Within Ticks (Acari: Ixodidae) Collected from Arkansas United States.

    Science.gov (United States)

    Trout Fryxell, R T; Steelman, C D; Szalanski, A L; Billingsley, P M; Williamson, P C

    2015-05-01

    Rocky Mountain spotted fever (RMSF), caused by the etiological agent Rickettsia rickettsii, is the most severe and frequently reported rickettsial illness in the United States, and is commonly diagnosed throughout the southeast. With the discoveries of Rickettsia parkeri and other spotted fever group rickettsiae (SFGR) in ticks, it remains inconclusive if the cases reported as RMSF are truly caused by R. rickettsii or other SFGR. Arkansas reports one of the highest incidence rates of RMSF in the country; consequently, to identify the rickettsiae in Arkansas, 1,731 ticks, 250 white-tailed deer, and 189 canines were screened by polymerase chain reaction (PCR) for the rickettsial genes gltA, rompB, and ompA. None of the white-tailed deer were positive, while two of the canines (1.1%) and 502 (29.0%) of the ticks were PCR positive. Five different tick species were PCR positive: 244 (37%) Amblyomma americanum L., 130 (38%) Ixodes scapularis Say, 65 (39%) Amblyomma maculatum (Koch), 30 (9%) Rhipicephalus sanguineus Latreille, 7 (4%) Dermacentor variabilis Say, and 26 (44%) unidentified Amblyomma ticks. None of the sequenced products were homologous to R. rickettsii. The most common Rickettsia via rompB amplification was Rickettsia montanensis and nonpathogenic Candidatus Rickettsia amblyommii, whereas with ompA amplification the most common Rickettsia was Ca. R. amblyommii. Many tick specimens collected in northwest Arkansas were PCR positive and these were commonly A. americanum harboring Ca. R. amblyommii, a currently nonpathogenic Rickettsia. Data reported here indicate that pathogenic R. rickettsii was absent from these ticks and suggest by extension that other SFGR are likely the causative agents for Arkansas diagnosed RMSF cases. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction

    Directory of Open Access Journals (Sweden)

    Audic Stéphane

    2009-04-01

    Full Text Available Abstract Background The Rickettsia genus includes 25 validated species, 17 of which are proven human pathogens. Among these, the pathogenicity varies greatly, from the highly virulent R. prowazekii, which causes epidemic typhus and kills its arthropod host, to the mild pathogen R. africae, the agent of African tick-bite fever, which does not affect the fitness of its tick vector. Results We evaluated the clonality of R. africae in 70 patients and 155 ticks, and determined its genome sequence, which comprises a circular chromosome of 1,278,540 bp including a tra operon and an unstable 12,377-bp plasmid. To study the genetic characteristics associated with virulence, we compared this species to R. prowazekii, R. rickettsii and R. conorii. R. africae and R. prowazekii have, respectively, the less and most decayed genomes. Eighteen genes are present only in R. africae including one with a putative protease domain upregulated at 37°C. Conclusion Based on these data, we speculate that a loss of regulatory genes causes an increase of virulence of rickettsial species in ticks and mammals. We also speculate that in Rickettsia species virulence is mostly associated with gene loss. The genome sequence was deposited in GenBank under accession number [GenBank: NZ_AAUY01000001].

  12. Rickettsia species in fleas collected from small mammals in Slovakia.

    Science.gov (United States)

    Špitalská, Eva; Boldiš, Vojtech; Mošanský, Ladislav; Sparagano, Olivier; Stanko, Michal

    2015-11-01

    Epidemiological and epizootiological studies of Rickettsia felis and other Rickettsia spp. are very important, because their natural cycle has not yet been established completely. In total, 315 fleas (Siphonaptera) of 11 species of Ceratophyllidae, Hystrichopsyllidae and Leptopsyllidae families were tested for the presence of Rickettsia species and Coxiella burnetii with conventional and specific quantitative real-time PCR assays. Fleas were collected from five rodent hosts (Myodes glareolus, Apodemus flavicollis, Apodemus agrarius, Microtus subterraneus, Microtus arvalis) and three shrew species (Sorex araneus, Neomys fodiens, Crocidura suaveolens) captured in Eastern and Southern Slovakia. Overall, Rickettsia spp. was found in 10.8% (34/315) of the tested fleas of Ctenophthalmus agyrtes, Ctenophthalmus solutus, Ctenophthalmus uncinatus and Nosopsyllus fasciatus species. Infected fleas were coming from A. flavicollis, A. agrarius, and M. glareolus captured in Eastern Slovakia. C. burnetii was not found in any fleas. R. felis, Rickettsia helvetica, unidentified Rickettsia, and rickettsial endosymbionts were identified in fleas infesting small mammals in the Košice region, Eastern Slovakia. This study is the first report of R. felis infection in C. solutus male flea collected from A. agrarius in Slovakia.

  13. New Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana.

    Science.gov (United States)

    Tahir, Djamel; Socolovschi, Cristina; Marié, Jean-Lou; Ganay, Gautier; Berenger, Jean-Michel; Bompar, Jean-Michel; Blanchet, Denis; Cheuret, Marie; Mediannikov, Oleg; Raoult, Didier; Davoust, Bernard; Parola, Philippe

    2016-10-01

    In French Guiana, located on the northeastern coast of South America, bats of different species are very numerous. The infection of bats and their ticks with zoonotic bacteria, especially Rickettsia species, is so far unknown. In order to improve knowledge of these zoonotic pathogens in this French overseas department, the presence and diversity of tick-borne bacteria was investigated with molecular tools in bat ticks. In the beginning of 2013, 32 bats were caught in Saint-Jean-du-Maroni, an area close to the coast of French Guiana, and the ticks of these animals were collected. A total of 354 larvae of Argasidae soft ticks (Ornithodoros hasei) from 12 bats (Noctilio albiventris) were collected and 107 of them were analysed. DNA was extracted from the samples and quantitative real-time PCR was carried out to detect Rickettsia spp., Bartonella spp., Borrelia spp. and Coxiella burnetii. All tested samples were negative for Bartonella spp., Borrelia spp. and Coxiella burnetii. Rickettsia DNA was detected in 31 (28.9%) ticks. An almost entire (1118 base pairs long) sequence of the gltA gene was obtained after the amplification of some positive samples on conventional PCR and sequencing. A Bayesian tree was constructed using concatenated rrs, gltA, ompA, ompB, and gene D sequences. The study of characteristic sequences shows that this Rickettsia species is very close (98.3-99.8%) genetically to R. peacockii. Nevertheless, the comparative analysis of sequences obtained from gltA, ompA, ompB, rrs and gene D fragments demonstrated that this Rickettsia is different from the other members of the spotted fever group. The sequences of this new species were deposited in GenBank as Candidatus Rickettsia wissemanii. This is the first report showing the presence of nucleic acid of Rickettsia in Ornithodoros hasei ticks from South American bats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Prevalence data of Rickettsia slovaca and other SFG Rickettsiae species in Dermacentor marginatus in the southeastern Iberian peninsula.

    Science.gov (United States)

    Márquez, F J; Rojas, A; Ibarra, V; Cantero, A; Rojas, J; Oteo, J A; Muniain, M A

    2006-10-01

    In southern Spain, Dermacentor marginatus ticks can be infected with several genospecies of spotted fever Group (SFG) Rickettsia. We developed a nested polymerase chain reaction assay by using a species-specific probe targeting the ompA gene to detect and differentiate between the two groups of rickettsiae previously described in D. marginatus. SFG rickettsia has been detected in 85.15% of ticks studied (26.7% of positives have been to R. slovaca, the causative agent of TIBOLA-DEBONEL, and 73.3% to SFG rickettsia closely related to strains RpA4-JL-02-DnS14-DnS28).

  15. Development of shuttle vectors for transformation of diverse Rickettsia species.

    Directory of Open Access Journals (Sweden)

    Nicole Y Burkhardt

    Full Text Available Plasmids have been identified in most species of Rickettsia examined, with some species maintaining multiple different plasmids. Three distinct plasmids were demonstrated in Rickettsia amblyommii AaR/SC by Southern analysis using plasmid specific probes. Copy numbers of pRAM18, pRAM23 and pRAM32 per chromosome in AaR/SC were estimated by real-time PCR to be 2.0, 1.9 and 1.3 respectively. Cloning and sequencing of R. amblyommii AaR/SC plasmids provided an opportunity to develop shuttle vectors for transformation of rickettsiae. A selection cassette encoding rifampin resistance and a fluorescent marker was inserted into pRAM18 yielding a 27.6 kbp recombinant plasmid, pRAM18/Rif/GFPuv. Electroporation of Rickettsia parkeri and Rickettsia bellii with pRAM18/Rif/GFPuv yielded GFPuv-expressing rickettsiae within 2 weeks. Smaller vectors, pRAM18dRG, pRAM18dRGA and pRAM32dRGA each bearing the same selection cassette, were made by moving the parA and dnaA-like genes from pRAM18 or pRAM32 into a vector backbone. R. bellii maintained the highest numbers of pRAM18dRGA (13.3 - 28.1 copies, and R. parkeri, Rickettsia monacensis and Rickettsia montanensis contained 9.9, 5.5 and 7.5 copies respectively. The same species transformed with pRAM32dRGA maintained 2.6, 2.5, 3.2 and 3.6 copies. pRM, the plasmid native to R. monacensis, was still present in shuttle vector transformed R. monacensis at a level similar to that found in wild type R. monacensis after 15 subcultures. Stable transformation of diverse rickettsiae was achieved with a shuttle vector system based on R. amblyommii plasmids pRAM18 and pRAM32, providing a new research tool that will greatly facilitate genetic and biological studies of rickettsiae.

  16. Francisella-Like Endosymbionts and Rickettsia Species in Local and Imported Hyalomma Ticks.

    Science.gov (United States)

    Azagi, Tal; Klement, Eyal; Perlman, Gidon; Lustig, Yaniv; Mumcuoglu, Kosta Y; Apanaskevich, Dmitry A; Gottlieb, Yuval

    2017-09-15

    Hyalomma ticks (Acari: Ixodidae) are hosts for Francisella -like endosymbionts (FLE) and may serve as vectors of zoonotic disease agents. This study aimed to provide an initial characterization of the interaction between Hyalomma and FLE and to determine the prevalence of pathogenic Rickettsia in these ticks. Hyalomma marginatum , Hyalomma rufipes , Hyalomma dromedarii , Hyalomma aegyptium , and Hyalomma excavatum ticks, identified morphologically and molecularly, were collected from different hosts and locations representing the distribution of the genus Hyalomma in Israel, as well as from migratory birds. A high prevalence of FLE was found in all Hyalomma species (90.6%), as well as efficient maternal transmission of FLE (91.8%), and the localization of FLE in Malpighian tubules, ovaries, and salivary glands in H. marginatum Furthermore, we demonstrated strong cophylogeny between FLE and their host species. Contrary to FLE, the prevalence of Rickettsia ranged from 2.4% to 81.3% and was significantly different between Hyalomma species, with a higher prevalence in ticks collected from migratory birds. Using ompA gene sequences, most of the Rickettsia spp. were similar to Rickettsia aeschlimannii , while a few were similar to Rickettsia africae of the spotted fever group (SFG). Given their zoonotic importance, 249 ticks were tested for Crimean Congo hemorrhagic fever virus infection, and all were negative. The results imply that Hyalomma and FLE have obligatory symbiotic interactions, indicating a potential SFG Rickettsia zoonosis risk. A further understanding of the possible influence of FLE on Hyalomma development, as well as on its infection with Rickettsia pathogens, may lead to novel ways to control tick-borne zoonoses. IMPORTANCE This study shows that Francisella -like endosymbionts were ubiquitous in Hyalomma , were maternally transmitted, and cospeciated with their hosts. These findings imply that the interaction between FLE and Hyalomma is of an obligatory

  17. Molecular Detection and Identification of Rickettsia Species in Ticks (Acari: Ixodidae) Collected From Belize, Central America.

    Science.gov (United States)

    Polsomboon, Suppaluck; Hoel, David F; Murphy, Jittawadee R; Linton, Yvonne-Marie; Motoki, Maysa; Robbins, Richard G; Bautista, Kim; Bricen O, Ireneo; Achee, Nicole L; Grieco, John P; Ching, Wei-Mei; Chao, Chien-Chung

    2017-11-07

    Little is known about tick-borne rickettsial pathogens in Belize, Central America. We tested ixodid ticks for the presence of Rickettsia species in three of the six northern and western Belizean districts. Ticks were collected from domestic animals and tick drags over vegetation in 23 different villages in November 2014, February 2015, and May 2015. A total of 2,506 collected ticks were identified to the following species: Dermacentor nitens Neumann (46.69%), Rhipicephalus sanguineus (Latreille) (19.55%), Rhipicephalus microplus (Canestrini) (19.47%), Amblyomma cajennense complex (9.74%), Amblyomma maculatum Koch (3.47%), Amblyomma ovale Koch (0.68%), Ixodes nr affinis (0.16%), Amblyomma nr maculatum (0.12%), and Amblyomma nr oblongoguttatum (0.12%). Ticks were pooled according to species, life stage (larva, nymph, or adult), and location (n = 509) for DNA extraction and screened for genus Rickettsia by quantitative real-time polymerase chain reaction (qPCR). All 42 positive pools were found to be positive for spotted fever group (SFG) Rickettsia in pools of A. cajennense complex (n = 33), A. maculatum (n = 4), A. nr maculatum (n = 1), A. ovale (n = 1), R. sanguineus (n = 1), and I. nr affinis (n = 2). Rickettsia amblyommatis was identified from A. cajennense complex and A. nr maculatum. Rickettsia parkeri was found in A. maculatum, and Rickettsia sp. endosymbiont was detected in I. nr affinis. The presence of infected ticks suggests a risk of tick-borne rickettsioses to humans and animals in Belize. This knowledge can contribute to an effective tick management and disease control program benefiting residents and travelers. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  18. Molecular Evidence of Different Rickettsia Species in Villeta, Colombia.

    Science.gov (United States)

    Faccini-Martínez, Álvaro A; Ramírez-Hernández, Alejandro; Forero-Becerra, Elkin; Cortés-Vecino, Jesús A; Escandón, Patricia; Rodas, Juan D; Palomar, Ana M; Portillo, Aránzazu; Oteo, José A; Hidalgo, Marylin

    2016-02-01

    The aim of this work was to detect and identify Rickettsia species in ticks collected in rural areas of Villeta, Colombia. Tick specimens were collected from domestic animals and walls of houses in five rural villages of Villeta town and from humans in Naranjal village (same town). Moreover, a flea collected from the same area was also processed. DNA was extracted and tested by conventional, semi-nested, and nested PCR reactions targeting rickettsial genes. In the ticks collected from humans from Naranjal village, a nymph of Amblyomma cajennense sensu lato was amplified using primers for ompA and sequenced (100% identity with "Candidatus Rickettsia amblyommii"). Last, three amplicons from the Ctenocephalides felis flea, corresponding to gltA, ompB, and 16S rRNA genes, showed high identity with R. felis (98.5%, 97.3%, and 99.2%, respectively) and "Candidatus Rickettsia asemboensis" (99.7% and 100%, respectively). To our knowledge, these results correspond to the first molecular detection in Colombia of "Candidatus Rickettsia amblyommii" and "Ca. Rickettsia asemboensis" in fleas.

  19. Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area

    Science.gov (United States)

    2014-01-01

    Background A few billion birds migrate annually between their breeding grounds in Europe and their wintering grounds in Africa. Many bird species are tick-infested, and as a result of their innate migratory behavior, they contribute significantly to the geographic distribution of pathogens, including spotted fever rickettsiae. The aim of the present study was to characterize, in samples from two consecutive years, the potential role of migrant birds captured in Europe as disseminators of Rickettsia-infected ticks. Methods Ticks were collected from a total of 14,789 birds during their seasonal migration northwards in spring 2009 and 2010 at bird observatories on two Mediterranean islands: Capri and Antikythira. All ticks were subjected to RNA extraction followed by cDNA synthesis and individually assayed with a real-time PCR targeting the citrate synthase (gltA) gene. For species identification of Rickettsia, multiple genes were sequenced. Results Three hundred and ninety-eight (2.7%) of all captured birds were tick-infested; some birds carried more than one tick. A total number of 734 ticks were analysed of which 353 ± 1 (48%) were Rickettsia-positive; 96% were infected with Rickettsia aeschlimannii and 4% with Rickettsia africae or unidentified Rickettsia species. The predominant tick taxon, Hyalomma marginatum sensu lato constituted 90% (n = 658) of the ticks collected. The remaining ticks were Ixodes frontalis, Amblyomma sp., Haemaphysalis sp., Rhipicephalus sp. and unidentified ixodids. Most ticks were nymphs (66%) followed by larvae (27%) and adult female ticks (0.5%). The majority (65%) of ticks was engorged and nearly all ticks contained visible blood. Conclusions Migratory birds appear to have a great impact on the dissemination of Rickettsia-infected ticks, some of which may originate from distant locations. The potential ecological, medical and veterinary implications of such Rickettsia infections need further examination. PMID:25011617

  20. A retrospective study of the characterization of Rickettsia species in ticks collected from humans.

    Science.gov (United States)

    Blanda, Valeria; Torina, Alessandra; La Russa, Francesco; D'Agostino, Rosalia; Randazzo, Kety; Scimeca, Salvatore; Giudice, Elisabetta; Caracappa, Santo; Cascio, Antonio; de la Fuente, José

    2017-06-01

    Rickettsiae (family Rickettsiaceae, order Rickettsiales) are obligate intracellular bacteria transmitted by arthropod vectors. Several Rickettsia species causing vector-borne rickettsioses belong to the spotted fever group (SFG). Traditionally, Rickettsia conorii has been considered as the main etiologic agent of Mediterranean spotted fever. However, the molecular characterization of rickettsiae allowed identifying other species involved in spotted fever in the Mediterranean region. In this study, 42 ticks collected from humans were subjected to morphological identification and molecular characterization of Rickettsia species potentially involved in human rickettsiosis in Sicily. Fourteen ticks positive to at least two Rickettsia spp. molecular markers were used in the study. Identified Rickettsia spp. included R. conorii, found in Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus, Rickettsia aeschlimannii found in Hyalomma marginatum, Hyalomma lusitanicum, Dermacentor marginatus and Ixodes ricinus, Rickettsia massiliae found in R. turanicus and R. sanguineus s.l., and Rickettsia slovaca found in D. marginatus and R. sanguineus s.l. Our results showed a great variety of zoonotic Rickettsia spp. in ticks collected from humans in Sicily. The Rickettsia spp. reported in this study were identified in previously recognized or new potential tick vectors in Europe, highlighting the risk of infection by different Rickettsia spp. for humans bitten by ticks in Sicily. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos

    DEFF Research Database (Denmark)

    Dittrich, Sabine; Rattanavong, Sayaphet; Lee, Sue J

    2015-01-01

    BACKGROUND: Scrub typhus (caused by Orientia tsutsugamushi), murine typhus (caused by Rickettsia typhi), and leptospirosis are common causes of febrile illness in Asia; meningitis and meningoencephalitis are severe complications. However, scarce data exist for the burden of these pathogens......, Neisseria meningitidis, Haemophilus influenzae, S suis) and O tsutsugamushi, Rickettsia typhi/Rickettsia spp, and Leptospira spp infections in blood or cerebrospinal fluid (CSF). We analysed and compared causes and clinical and CSF characteristics between patient groups. FINDINGS: 1051 (95%) of 1112...... patients who presented had CSF available for analysis, of whom 254 (24%) had a CNS infection attributable to a bacterial or fungal pathogen. 90 (35%) of these 254 infections were caused by O tsutsugamushi, R typhi/Rickettsia spp, or Leptospira spp. These pathogens were significantly more frequent than...

  2. A Novel Rickettsia Species Detected in Vole Ticks (Ixodes angustus) from Western Canada

    Science.gov (United States)

    Anstead, Clare A.

    2013-01-01

    The genomic DNA of ixodid ticks from western Canada was tested by PCR for the presence of Rickettsia. No rickettsiae were detected in Ixodes sculptus, whereas 18% of the I. angustus and 42% of the Dermacentor andersoni organisms examined were PCR positive for Rickettsia. The rickettsiae from each tick species were characterized genetically using multiple genes. Rickettsiae within the D. andersoni organisms had sequences at four genes that matched those of R. peacockii. In contrast, the Rickettsia present within the larvae, nymphs, and adults of I. angustus had novel DNA sequences at four of the genes characterized compared to the sequences available from GenBank for all recognized species of Rickettsia and all other putative species within the genus. Phylogenetic analyses of the sequence data revealed that the rickettsiae in I. angustus do not belong to the spotted fever, transitional, or typhus groups of rickettsiae but are most closely related to “Candidatus Rickettsia kingi” and belong to a clade that also includes R. canadensis, “Candidatus Rickettsia tarasevichiae,” and “Candidatus Rickettsia monteiroi.” PMID:24077705

  3. Prevalence of Rickettsia species in Dermacentor variabilis ticks from Ontario, Canada.

    Science.gov (United States)

    Wood, Heidi; Dillon, Liz; Patel, Samir N; Ralevski, Filip

    2016-07-01

    Relatively little is known about the prevalence of rickettsial species in Dermacentor ticks in eastern Canada. In this study, Dermacentor ticks from the province of Ontario, Canada, were tested for the presence of spotted fever group rickettsial (SFGR) species, Coxiella burnetii and Francisella tularensis. Rickettsia rickettsii was not detected in any ticks tested, but R. montanensis was detected at a prevalence of 2.2% in D. variabilis (17/778). Two other SFGR species, R. parkeri and Candidatus R. andeanae, were detected individually in 2 Amblyomma maculatum ticks. Rickettsia peacockii, a non-pathogenic endosymbiont, was detected in two D. andersonii ticks. Given the highly abundant nature of D. variabilis, surveillance for human pathogens in this species of tick has important public health implications, but the lack of detection of known human pathogens indicates a low risk of infection via this tick species in Ontario. However, the detection of R. parkeri in an adventive A. maculatum tick indicates that health care providers should be aware of the possibility of spotted fever rickettsioses in individuals with a history of travel outside of Ontario and symptoms compatible with a spotted fever rickettsiosis. Coxiella burnetii and Francisella tularensis, human pathogens also potentially transmitted by D. variabilis, were not detected in a subset of the ticks. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Pathogenic potential of a Costa Rican strain of 'Candidatus Rickettsia amblyommii' in guinea pigs (Cavia porcellus) and protective immunity against Rickettsia rickettsii.

    Science.gov (United States)

    Rivas, Juan J; Moreira-Soto, Andrés; Alvarado, Gilberth; Taylor, Lizeth; Calderón-Arguedas, Olger; Hun, Laya; Corrales-Aguilar, Eugenia; Morales, Juan Alberto; Troyo, Adriana

    2015-09-01

    'Candidatus Rickettsia amblyommii' is a spotted fever group rickettsia that is not considered pathogenic, although there is serologic evidence of possible infection in animals and humans. The aim of this study was to evaluate the pathogenic potential of a Costa Rican strain of 'Candidatus R. amblyommii' in guinea pigs and determine its capacity to generate protective immunity against a subsequent infection with a local strain of Rickettsia rickettsii isolated from a human case. Six guinea pigs were inoculated with 'Candidatus R. amblyommii' strain 9-CC-3-1 and two controls with cell culture medium. Health status was evaluated, and necropsies were executed at days 2, 4, and 13. Blood and tissues were processed by PCR to detect the gltA gene, and end titers of anti-'Candidatus R. amblyommii' IgG were determined by indirect immunofluorescence. To evaluate protective immunity, another 5 guinea pigs were infected with 'Candidatus R. amblyommii' (IGPs). After 4 weeks, these 5 IGPs and 3 controls (CGPs) were inoculated with pathogenic R. rickettsii. Clinical signs and titers of anti-Rickettsia IgG were determined. IgG titers reached 1:512 at day 13 post-infection with 'Candidatus R. amblyommii'. On day 2 after inoculation, two guinea pigs had enlarged testicles and 'Candidatus R. amblyommii' DNA was detected in testicles. Histopathology confirmed piogranulomatous orchitis with perivascular inflammatory infiltrate in the epididymis. In the protective immunity assay, anti-Rickettsia IgG end titers after R. rickettsii infection were lower in IGPs than in CGPs. IGPs exhibited only transient fever, while CGP showed signs of severe disease and mortality. R. rickettsii was detected in testicles and blood of CGPs. Results show that the strain 9-CC-3-1 of 'Candidatus R. amblyommii' was able to generate pathology and an antibody response in guinea pigs. Moreover, its capacity to generate protective immunity against R. rickettsii may modulate the epidemiology and severity of Rocky

  5. Isolation and characterization of a novel Rickettsia species (Rickettsia asembonensis sp. nov.) obtained from cat fleas (Ctenocephalides felis).

    Science.gov (United States)

    Maina, Alice N; Luce-Fedrow, Alison; Omulo, Sylvia; Hang, Jun; Chan, Teik-Chye; Ade, Fredrick; Jima, Dereje D; Ogola, Eric; Ge, Hong; Breiman, Robert F; Njenga, Moses K; Richards, Allen L

    2016-11-01

    A novel rickettsial agent, 'Candidatus Rickettsia asembonensis' strain NMRCiiT, was isolated from cat fleas, Ctenocephalides felis, from Kenya. Genotypic characterization of the new isolate based on sequence analysis of five rickettsial genes, rrs, gltA, ompA, ompB and sca4, indicated that this isolate clustered with Rickettsia felis URRWXCal2. The degree of nucleotide similarity demonstrated that isolate NMRCiiT belongs within the genus Rickettsia and fulfils the criteria for classification as a representative of a novel species. The name Rickettsia asembonensis sp. nov. is proposed, with NMRCiiT (=DSM 100172T=CDC CRIRC RAS001T=ATCC VR-1827T) as the type strain.

  6. Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species.

    Science.gov (United States)

    Li, Yi-Han; Ahmed, Muhammad Z; Li, Shao-Jian; Lv, Ning; Shi, Pei-Qiong; Chen, Xiao-Sheng; Qiu, Bao-Li

    2017-12-01

    A growing number of studies have revealed the presence of closely related endosymbionts in phylogenetically distant arthropods, indicating horizontal transmission of these bacteria. Here we investigated the interspecific horizontal transmission of Rickettsia between two globally invasive whitefly species, Bemisia tabaci MEAM1 and B. tabaci MED, via cotton plants. We found both scattered and confined distribution patterns of Rickettsia in these whiteflies. After entering cotton leaves, Rickettsia was restricted to the leaf phloem vessels and could be taken up by both species of the Rickettsia-free whitefly adults, but only the scattered pattern was observed in the recipient whiteflies. Both the relative quantity of Rickettsia and the efficiency of transmitting Rickettsia into cotton leaves were significantly higher in MEAM1 females than in MED females. The retention time of Rickettsia transmitted from MEAM1 into cotton leaves was at least 5 days longer than that of MED. Phylogenetic analysis based on 16S rRNA and gltA genes confirmed that the Rickettsia extracted from the donor MEAM1, the cotton leaves, the recipient MEAM1 and the recipient MED were all identical. We conclude that cotton plants can mediate horizontal transmission of Rickettsia between different insect species, and that the transmission dynamics of Rickettsia vary with different host whitefly species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Genetic variability of Rickettsia spp. in Ixodes persulcatus/Ixodes trianguliceps sympatric areas from Western Siberia, Russia: Identification of a new Candidatus Rickettsia species.

    Science.gov (United States)

    Igolkina, Yana P; Rar, Vera A; Yakimenko, Valeriy V; Malkova, Marina G; Tancev, Aleksey K; Tikunov, Artem Yu; Epikhina, Tamara I; Tikunova, Nina V

    2015-08-01

    Rickettsia spp. are the causative agents of a number of diseases in humans. These bacteria are transmitted by arthropods, including ixodid ticks. DNA of several Rickettsia spp. was identified in Ixodes persulcatus ticks, however, the association of Ixodes trianguliceps ticks with Rickettsia spp. is unknown. In our study, blood samples of small mammals (n=108), unfed adult I. persulcatus ticks (n=136), and I. persulcatus (n=12) and I. trianguliceps (n=34) ticks feeding on voles were collected in two I. persulcatus/I. trianguliceps sympatric areas in Western Siberia. Using nested PCR, ticks and blood samples were studied for the presence of Rickettsia spp. Three distinct Rickettsia species were found in ticks, but no Rickettsia species were found in the blood of examined voles. Candidatus Rickettsia tarasevichiae DNA was detected in 89.7% of unfed I. persulcatus, 91.7% of engorged I. persulcatus and 14.7% of I. trianguliceps ticks. Rickettsia helvetica DNA was detected in 5.9% of I. trianguliceps ticks. In addition, a new Rickettsia genetic variant was found in 32.4% of I. trianguliceps ticks. Sequence analysis of the 16S rRNA, gltA, ompA, оmpB and sca4 genes was performed and, in accordance with genetic criteria, a new Rickettsia genetic variant was classified as a new Candidatus Rickettsia species. We propose to name this species Candidatus Rickettsia uralica, according to the territory where this species was initially identified. Candidatus Rickettsia uralica was found to belong to the spotted fever group. The data obtained in this study leads us to propose that Candidatus Rickettsia uralica is associated with I. trianguliceps ticks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Exotic Rickettsiae in Ixodes ricinus: fact or artifact?

    NARCIS (Netherlands)

    Tijsse-Klasen, E.; Fonville, M.; Overbeek, van L.S.; Reimerink, J.H.J.; Sprong, H.

    2010-01-01

    Several pathogenic Rickettsia species can be transmitted via Ixodes ricinus ticks to humans and animals. Surveys of I. ricinus for the presence of Rickettsiae using part of its 16S rRNA gene yield a plethora of new and different Rickettsia sequences. Interpreting these data is sometimes difficult

  9. Coxiella burnetii and Rickettsia conorii: Two zoonotic pathogens in peridomestic rodents and their ectoparasites in Nigeria.

    Science.gov (United States)

    Kamani, Joshua; Baneth, Gad; Gutiérrez, Ricardo; Nachum-Biala, Yaarit; Mumcuoglu, Kosta Y; Harrus, Shimon

    2018-01-01

    Rodents are hosts of numerous pathogenic agents of public health importance globally. Their ability to harbor these pathogens without showing overt clinical signs of disease has epidemiologic consequences. In some rural settings in Nigeria, humans and rodents do not only share feeds and abode, but the latter may end up on the table of the former as a source of protein, thereby increasing the risks of disease transmission. Molecular assays were used to detect and characterize two agents of zoonotic importance, Coxiella burnetii and Rickettsia spp. in 194 peridomestic rodents captured in a peri-urban setting in Nigeria, and 32 pools of ectoparasites removed from them, to determine their possible role in the epidemiology of these diseases in this country. Targeting and characterizing the insertion sequence IS1111, C. burnetii DNA was detected in 4 out of 194 (2.1%) rodents comprising 3 out of 121 (2.5%) Rattus norvegicus and 1 out of 48 (2.1%) Rattus rattus screened in this study. Rickettsia spp. DNA was detected in two Rhipicephalus sanginueus sensu lato pools (i.e. RT1 and RT4) using the citrate synthase (gltA) gene and further characterized by amplification and sequence analysis of six genes to determine their identity. The RT1 sample consistently gave 98-100% identity to Rickettsia conorii str. Malish 7 for the various genes and loci studied. However, the identity of RT4 could not be definitively determined due to variable identities to different Rickettsia spp. according to the gene or loci under consideration. Further isolation study to determine if the RT4 characterized is a new variant or a mixture of sequences of different rickettsiae within the pool will be worthwhile. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Detection and identification of Rickettsia species in Ixodes tick populations from Estonia.

    Science.gov (United States)

    Katargina, Olga; Geller, Julia; Ivanova, Anna; Värv, Kairi; Tefanova, Valentina; Vene, Sirkka; Lundkvist, Åke; Golovljova, Irina

    2015-09-01

    A total of 1640 ticks collected in different geographical parts of Estonia were screened for the presence of Rickettsia species DNA by real-time PCR. DNA of Rickettsia was detected in 83 out of 1640 questing ticks with an overall prevalence of 5.1%. The majority of the ticks infected by rickettsiae were Ixodes ricinus (74 of 83), while 9 of the 83 positive ticks were Ixodes persulcatus. For rickettsial species identification, a part of the citrate synthase gltA gene was sequenced. The majority of the positive samples were identified as Rickettsia helvetica (81 out of 83) and two of the samples were identified as Rickettsia monacensis and Candidatus R. tarasevichiae, respectively. Genetic characterization based on the partial gltA gene showed that the Estonian sequences within the R. helvetica, R. monacensis and Candidatus R. tarasevichiae species demonstrated 100% similarity with sequences deposited in GenBank, originating from Rickettsia species distributed over large territories from Europe to Asia. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Detection of Rickettsia felis, Rickettsia typhi, Bartonella Species and Yersinia pestis in Fleas (Siphonaptera) from Africa.

    Science.gov (United States)

    Leulmi, Hamza; Socolovschi, Cristina; Laudisoit, Anne; Houemenou, Gualbert; Davoust, Bernard; Bitam, Idir; Raoult, Didier; Parola, Philippe

    2014-10-01

    Little is known about the presence/absence and prevalence of Rickettsia spp, Bartonella spp. and Yersinia pestis in domestic and urban flea populations in tropical and subtropical African countries. Fleas collected in Benin, the United Republic of Tanzania and the Democratic Republic of the Congo were investigated for the presence and identity of Rickettsia spp., Bartonella spp. and Yersinia pestis using two qPCR systems or qPCR and standard PCR. In Xenopsylla cheopis fleas collected from Cotonou (Benin), Rickettsia typhi was detected in 1% (2/199), and an uncultured Bartonella sp. was detected in 34.7% (69/199). In the Lushoto district (United Republic of Tanzania), R. typhi DNA was detected in 10% (2/20) of Xenopsylla brasiliensis, and Rickettsia felis was detected in 65% (13/20) of Ctenocephalides felis strongylus, 71.4% (5/7) of Ctenocephalides canis and 25% (5/20) of Ctenophthalmus calceatus calceatus. In the Democratic Republic of the Congo, R. felis was detected in 56.5% (13/23) of Ct. f. felis from Kinshasa, in 26.3% (10/38) of Ct. f. felis and 9% (1/11) of Leptopsylla aethiopica aethiopica from Ituri district and in 19.2% (5/26) of Ct. f. strongylus and 4.7% (1/21) of Echidnophaga gallinacea. Bartonella sp. was also detected in 36.3% (4/11) of L. a. aethiopica. Finally, in Ituri, Y. pestis DNA was detected in 3.8% (1/26) of Ct. f. strongylus and 10% (3/30) of Pulex irritans from the villages of Wanyale and Zaa. Most flea-borne infections are neglected diseases which should be monitored systematically in domestic rural and urban human populations to assess their epidemiological and clinical relevance. Finally, the presence of Y. pestis DNA in fleas captured in households was unexpected and raises a series of questions regarding the role of free fleas in the transmission of plague in rural Africa, especially in remote areas where the flea density in houses is high.

  12. Rickettsiae and rickettsial diseases in Croatia: Implications for travel medicine.

    Science.gov (United States)

    Dzelalija, Boris; Punda-Polic, Volga; Medic, Alan; Dobec, Marinko

    To review the current state of knowledge concerning rickettsiae and rickettsioses in Croatia and to discuss their implications for travellers. The PubMed database was searched from 1991 to 2015 by combining the words "rickettsia," "rickettsiosis", "travellers" and "Croatia". Since 1969, Croatia appears to be free of epidemic typhus (ET) caused by Rickettsia prowazekii and the last case of Brill-Zinsser disease was recorded in 2008. Mediterranean spotted fever (MSF) caused by Rickettsia conorii is the most frequent human rickettsial infection in Croatia, followed by murine typhus caused by Rickettsia typhi. Human cases of MSF and murine typhus have been predominantly observed along the eastern Adriatic coast from Zadar to Dubrovnik and between Zadar and Split, respectively. Rickettsia akari, etiologic agent of rickettsialpox, was isolated from blood of a patient diagnosed with MSF in Zadar, but no cases of rickettsialpox were reported. Several species of pathogenic (Rickettsia slovaca, Rickettsia aeschlimannii, Ricketsia helvetica, and Ricketsia raoultii) and species of undetermined pathogenicity (Ricketsia hoogstraalii sp. nov.) rickettsiae were identified in ticks collected in different ecological regions of Croatia. A search of the literature revealed no evidence of rickettsial infection in travellers visiting Croatia. Three imported cases of Rickettsia africae were observed in travellers returning from South Africa. Rickettsiae and rickettsial diseases continue to be present in Croatia. As they can be acquired while travelling, physicians should consider rickettsial infection in the differential diagnosis of patients returning from Croatia and presenting with febrile illness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Propagation of Arthropod-Borne Rickettsia spp. in Two Mosquito Cell Lines▿

    OpenAIRE

    Sakamoto, Joyce M.; Azad, Abdu F.

    2007-01-01

    Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they gr...

  14. Diversity of spotted fever group Rickettsia infection in hard ticks from Suifenhe, Chinese-Russian border.

    Science.gov (United States)

    Cheng, Cheng; Fu, Weiming; Ju, Wendong; Yang, Liwei; Xu, Ning; Wang, Yan-Mei; Li, Hui; Wang, Yan-Lu; Hu, Man-Xia; Wen, Jing; Jiao, Dan; Geng, Cong; Sun, Yi

    2016-07-01

    In order to investigate the diversity of spotted fever group (SFG) Rickettsia infection in hard ticks, ticks were harvested from the forest areas in Suifenhe city, along the Chinese-Russian border and conventional PCR was carried out using universal SFG Rickettsia primers targeting gltA and ompA genes to screen for their infection with SFG Rickettsia organisms. Results showed that of the 215 ticks belonging to Ixodes persulcatus, Haemaphysalis concinna and Haemaphysalis japonica Warburton, 1908 species, 138 (64.2%) were positive for SFG Rickettsia. Three species of SFG Rickettsia were detected, Rickettsia raoultii, Rickettsia heilongjiangensis and Candidatus Rickettsia tarasevichiae. No co-infection with different species of SFG Rickettsia was found in any individual tick among the three tick species. We detected more than one SFG Rickettsia species in ticks from each of the three tick species with an overlapping distribution and potentially similar transmission cycles of SFG Rickettsia in the areas surveyed. Consequently, different pathogenic rickettsial species may be involved in human cases of rickettsiosis after a bite of the three above-mentioned tick species in that area Rickettsia. Copyright © 2016. Published by Elsevier GmbH.

  15. Immunoproteomic profiling of Rickettsia parkeri and Rickettsia amblyommii.

    Science.gov (United States)

    Pornwiroon, Walairat; Bourchookarn, Apichai; Paddock, Christopher D; Macaluso, Kevin R

    2015-09-01

    Rickettsia parkeri is an Amblyomma-associated, spotted fever group Rickettsia species that causes an eschar-associated, febrile illness in multiple countries throughout the Western Hemisphere. Many other rickettsial species of known or uncertain pathogenicity have been detected in Amblyomma spp. ticks in the Americas, including Rickettsia amblyommii, "Candidatus Rickettsia andeanae" and Rickettsia rickettsii. In this study, we utilized an immunoproteomic approach to compare antigenic profiles of low-passage isolates of R. parkeri and R. amblyommii with serum specimens from patients with PCR- and culture-confirmed infections with R. parkeri. Five immunoreactive proteins of R. amblyommii and nine immunoreactive proteins of R. parkeri were identified by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry. Four of these, including the outer membrane protein (Omp) A, OmpB, translation initiation factor IF-2, and cell division protein FtsZ, were antigens common to both rickettsiae. Serum specimens from patients with R. parkeri rickettsiosis reacted specifically with cysteinyl-tRNA synthetase, DNA-directed RNA polymerase subunit alpha, putative sigma (54) modulation protein, chaperonin GroEL, and elongation factor Tu of R. parkeri which have been reported as virulence factors in other bacterial species. Unique antigens identified in this study may be useful for further development of the better serological assays for diagnosing infection caused by R. parkeri. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. High prevalence of Rickettsia typhi and Bartonella species in rats and fleas, Kisangani, Democratic Republic of the Congo

    NARCIS (Netherlands)

    Laudisoit, A.; Falay, D.; Amundala, N.; de Bellock, J.G.; van Houtte, N.; Breno, M.; Verheven, E.; Wilschut, Liesbeth; Parola, P.; Raoult, D.; C., Socolovschi

    2014-01-01

    The prevalence and identity of Rickettsia and Bartonella in urban rat and flea populations were evaluated in Kisangani, Democratic Republic of the Congo (DRC) by molecular tools. An overall prevalence of 17% Bartonella species and 13% Rickettsia typhi, the agent of murine typhus, was found in the

  17. Infection of Amblyomma ovale with Rickettsia species Atlantic rainforest in Serra do Mar, São Paulo State, Brazil.

    Science.gov (United States)

    Luz, Hermes Ribeiro; McIntosh, Douglas; Furusawa, Guilherme P; Flausino, Walter; Rozental, Tatiana; Lemos, Elba R S; Landulfo, Gabriel A; Faccini, João Luiz H

    2016-10-01

    Rickettsia rickettsii and Rickettsia sp. strain Atlantic rainforest, that is considered to represent a genetic variant of Rickettsia parkeri, are confirmed as being capable of infecting humans in Brazil. This study reports the detection and characterization, by PCR and nucleotide sequencing, of Rickettsia sp. strain Atlantic rain forest in Amblyomma ovale parasitizing a human, in ticks infesting dogs and in free-living ticks collected from the environment where the human infestation was recorded. The data contribute to our knowledge of infection rates in A. ovale with Rickettsia sp. strain Atlantic rainforest and identified an additional location in the state of São Paulo populated with ticks infected with this emerging pathogen. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species.

    NARCIS (Netherlands)

    Sprong, H.; Wielinga, P.R.; Fonville, M.; Reusken, C.; Brandenburg, A.H.; Borgsteede, F.H.M.

    2009-01-01

    Background - Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts.

  19. Detection of flea-borne Rickettsia species in the Western Himalayan region of India

    Directory of Open Access Journals (Sweden)

    R Chahota

    2015-01-01

    Full Text Available Human infections by various rickettsial species are frequently reported globally. We investigated a flea-borne rickettsial outbreak infecting 300 people in Western Himalayan region of India. Arthropod vectors (ticks and fleas and animal and human blood samples from affected households were analysed by gltA and ompB genes based polymerase chain reaction (PCR. Rat flea (Ceratophyllus fasciatus samples were found harbouring a Rickettsia sp. Phylogenetic analysis based on gltA gene using PHYLIP revealed that the detected Rickettsia sp. has 100% identity with SE313 and RF2125 strains of Rickettsia sp. of flea origin from Egypt and Thai-Myanmar border, respectively and cf1 and 5 strains from fleas and lice from the USA. But, the nucleotide sequence of genetically variable gene ompB of R14 strain was found closely related to cf9 strain, reported from Ctenocephalides felis fleas. These results highlight the public health importance of such newly discovered or less recognised Rickettsia species/strains, harboured by arthropod vectors like fleas.

  20. Rickettsia amblyommatis sp. nov., a spotted fever group Rickettsia associated with multiple species of Amblyomma ticks in North, Central and South America.

    Science.gov (United States)

    Karpathy, Sandor E; Slater, Kimetha S; Goldsmith, Cynthia S; Nicholson, William L; Paddock, Christopher D

    2016-12-01

    In 1973, investigators isolated a rickettsial organism, designated strain WB-8-2T, from an adult Amblyomma americanum tick collected at Land Between the Lakes National Recreation Area, TN, USA. This organism is now recognized as highly prevalent in A. americanum, as well as several other Amblyomma species found throughout the Western hemisphere. It has been suggested that cross-reactivity to WB-8-2T and similar strains contributes to the increasing number of spotted fever cases reported in the USA. In 1995, investigators provided preliminary evidence that this strain, as well as another strain from Missouri, represented a distinct taxonomic unit within the genus Rickettsia by evaluating sequences of the 16S rRNA and 17 kDa protein genes. However, the bacterium was never formally named, despite the use of the designation 'Rickettsia amblyommii' and later 'Candidatus Rickettsia amblyommii', for more than 20 years in the scientific literature. Herein, we provide additional molecular evidence to identify strain WB-8-2T as a representative strain of a unique rickettsial species and present a formal description for the species, with the proposed name modified to Rickettsia amblyommatis sp. nov. to conform to the International Code of Nomenclature of Prokaryotes. We also establish a pure culture of strain WB-8-2T and designate it as the type strain for the species. The type strain is WB-8-2T (=CRIRC RAM004T=CSURP2882T).

  1. Diversity of Babesia and Rickettsia species in questing Ixodes ricinus: a longitudinal study in urban, pasture, and natural habitats.

    Science.gov (United States)

    Overzier, Evelyn; Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-08-01

    In a previous study, our group investigated the Babesia spp. prevalence in questing Ixodes ricinus ticks from nine city parks in South Germany in the years 2009 and 2010. We showed predominant prevalence of B. venatorum (in previous literature also known as Babesia sp. EU1), especially in those parks in a more natural condition and with occurrence of large wild animals, such as roe deer. To obtain longitudinal data and to broaden the knowledge about this pathogen, further investigations were carried out in 2011 and 2012 in four of those city parks. Two additional habitat types were chosen for comparison of prevalence data and species analysis focusing on occurrence of potential reservoir hosts. A total of 10,303 questing I. ricinus were collected in four city parks, a pasture, and a natural area in Bavaria, and a representative number of samples were investigated for prevalence of DNA of Babesia spp. (n=4381) and Rickettsia spp. (n=2186) by PCR. In the natural and pasture area, a significantly higher Babesia spp. prevalence compared to the urban area was detected. The natural area revealed sequences of B. microti, B. venatorum, and B. capreoli. In the pasture and urban habitat, predominantly B. venatorum was found, whereas B. capreoli was less frequent and only one B. microti-infected tick was found. All B. microti sequences were 100% identical to the zoonotic Jena/Germany strain. For Rickettsia spp., the significantly highest prevalence was also detected in the natural and pasture areas, whereas lower prevalence was found in the urban area. Sequence analysis revealed R. helvetica (98%) and R. monacensis (2%). Prevalence rates and occurrence of Babesia spp. and Rickettsia spp. differed in urban, pasture and natural sites, most likely depending on the habitat structure (natural or cultivated) and therefore on the appearance and availability of reservoir hosts like roe deer or small mammals.

  2. Molecular detection of Rickettsia species in ticks collected from the southwestern provinces of the Republic of Korea.

    Science.gov (United States)

    Noh, Yoontae; Lee, Yeong Seon; Kim, Heung-Chul; Chong, Sung-Tae; Klein, Terry A; Jiang, Ju; Richards, Allen L; Lee, Hae Kyeong; Kim, Su Yeon

    2017-01-10

    Rickettsiae constitute a group of arthropod-borne, Gram-negative, obligate intracellular bacteria that are the causative agents of diseases ranging from mild to life threatening that impact on medical and veterinary health worldwide. A total of 6,484 ticks were collected by tick drag from June-October 2013 in the southwestern provinces of the Republic of Korea (ROK) (Jeollanam, n = 3,995; Jeollabuk, n = 680; Chungcheongnam, n = 1,478; and Chungcheongbuk, n = 331). Ticks were sorted into 311 pools according to species, collection site, and stage of development. DNA preparations of tick pools were assayed for rickettsiae by 17 kDa antigen gene and ompA nested PCR (nPCR) assays and the resulting amplicons sequenced to determine the identity and prevalence of spotted fever group rickettsiae (SFGR). Haemaphysalis longicornis (4,471; 52 adults, 123 nymphs and 4,296 larvae) were the most commonly collected ticks, followed by Haemaphysalis flava (1,582; 28 adults, 263 nymphs and 1,291 larvae), and Ixodes nipponensis (431; 25 adults, 5 nymphs and 401 larvae). The minimum field infection rate/100 ticks (assuming 1 positive tick/pool) was 0.93% for the 17 kDa antigen gene and 0.82% for the ompA nPCR assays. The partial 17 kDa antigen and ompA gene sequences from positive pools of H. longicornis were similar to: Rickettsia sp. HI550 (99.4-100%), Rickettsia sp. FUJ98 (99.3-100%), Rickettsia sp. HIR/D91 (99.3-100%), and R. japonica (99.7%). One sequence of the partial 17 kDa antigen gene for H. flava was similar to Rickettsia sp. 17kd-005 (99.7%), while seven sequences of the 17 kDa antigen gene obtained from I. nipponensis ticks were similar to R. monacensis IrR/Munich (98.7-100%) and Rickettsia sp. IRS3 (98.9%). SFG rickettsiae were detected in three species of ixodid ticks collected in the southwestern provinces of the ROK during 2013. A number of rickettsiae have been recently reported from ticks in Korea, some of which were identified as medically

  3. Cat fleas (Ctenocephalides felis) carrying Rickettsia felis and Bartonella species in Hong Kong.

    Science.gov (United States)

    Šlapeta, Jan; Lawrence, Andrea; Reichel, Michael P

    2018-04-01

    Fleas are commonly recorded on stray as well as domestic dogs and cats in Hong Kong. Fleas can be a major cause of pruritus in dogs and cats and also vectors of potentially zoonotic bacteria in the genera Rickettsia and Bartonella. Morphological examination of 174 fleas from dogs and cats living in Hong Kong revealed only cat fleas (Ctenocephalides felis). Cytochrome c oxidase subunit 1 gene (cox1) genotyping of 20 randomly selected specimens, revealed three cox1 haplotypes (HK-h1 to HK-h3). The most common haplotype was HK-h1 with 17 specimens (17/20, 85%). HK-h1 was identical to cox1 sequences of fleas in Thailand and Fiji. HK-h1 and HK-h2 form a distinct cat flea cox1 clade previously recognized as the Clade 3. HK-h3 forms a new Clade 6. A multiplex Bartonella and Rickettsia real-time PCR of DNA from 20 C. felis found Bartonella and Rickettsia DNA in three (15%) and ten (50%) C. felis, respectively. DNA sequencing confirmed the presence of R. felis, B. clarridgeiae and Bartonella henselae. This is the first reported study of that kind in Hong Kong, and further work is required to expand the survey of companion animals in the geographical region. The sampling of fleas on domestic cats and dogs in Hong Kong revealed them to be exclusively infested by the cat flea and to be harbouring pathogens of zoonotic potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of pathogenic potential of Rickettsia amblyommii in guinea pigs (Cavia porcellus) and protective immunity against Rickettsia rickettsii

    International Nuclear Information System (INIS)

    Rivas Mejias, Juan Jose

    2014-01-01

    The pathogenic potential of R. amblyommii 9-CC-3-1 is evaluated in guinea pigs, through measurements of temperature, weight and behavioral observations; also, the detection of bacteria in different organs. The protective immunity that this bacterium can offer in guinea pigs is evaluated, against a subsequent infection with pathogenic strain of R. rickettsii NRH-2010. The production of specific IgG antibodies, mild disease and the presence of the bacterium to testicular level in guinea pigs is evidenced, before experimental infection, with isolation of R. amblyommii 9-CC-3-1, indicating mild or localized infection and production of response immune against R. amblyommii. Immuno protection offered by the strain R. rickettsii NRH-2010 is evidenced to a subsequent infection of a pathogenic strain of R. rickettsii NRH-2010. The decrease of symptoms and severity of the disease has been evident; but, without prevent infection caused by R. rickettsii in guinea pigs. The tropism of R. amblyommii 9-CC-3-1 has been, possibly, a causative agent of infection and clinical pictures by spotted fevers [es

  5. Detection of Rickettsia Species in Fleas Collected from Cats in Regions Endemic and Nonendemic for Flea-Borne Rickettsioses in California.

    Science.gov (United States)

    Billeter, Sarah A; Diniz, Pedro Paulo Vissotto de Paiva; Jett, Lindsey A; Wournell, Andrea L; Kjemtrup, Anne M; Padgett, Kerry A; Yoshimizu, Melissa Hardstone; Metzger, Marco E; Barr, Margaret C

    2016-03-01

    Rickettsia typhi, transmitted by rat fleas, causes most human flea-borne rickettsioses worldwide. Another rickettsia, Rickettsia felis, found in cat fleas, Ctenocephalides felis, has also been implicated as a potential human pathogen. In the continental United States, human cases of flea-borne rickettsioses are reported primarily from the southern regions of Texas and California where the cat flea is considered the principal vector. In California, more than 90% of locally acquired human cases are reported from suburban communities within Los Angeles and Orange counties despite the almost ubiquitous presence of cat fleas and their hosts throughout the state. The objective of this study is to assess the presence and infection rate of Rickettsia species in cat fleas from selected endemic and nonendemic regions of California. Cat fleas were collected from cats in Los Angeles County (endemic region) and Sacramento and Contra Costa counties (nonendemic region). Sequencing of 17 amplicons confirmed the presence of R. felis in both the endemic and non-endemic regions with a calculated maximum likelihood estimation of 131 and 234 per 1000 fleas, respectively. R. typhi was not detected in any flea pools. Two R. felis-like genotypes were also detected in fleas from Los Angeles County; Genotype 1 was detected in 1 flea pool and Genotype 2 was found in 10 flea pools. Genotype 1 was also detected in a single flea pool from Sacramento County. Results from this study show that R. felis is widespread in cat flea populations in both flea-borne rickettsioses endemic and nonendemic regions of California, suggesting that a high prevalence of this bacterium in cat fleas does not predispose to increased risk of human infection. Further studies are needed to elucidate the role of R. felis and the two R. felis-like organisms as etiologic agents of human flea-borne rickettsioses in California.

  6. Molecular characterization of novel mosquito-borne Rickettsia spp. from mosquitoes collected at the Demilitarized Zone of the Republic of Korea.

    Science.gov (United States)

    Maina, Alice N; Klein, Terry A; Kim, Heung-Chul; Chong, Sung-Tae; Yang, Yu; Mullins, Kristin; Jiang, Ju; St John, Heidi; Jarman, Richard G; Hang, Jun; Richards, Allen L

    2017-01-01

    Rickettsiae are associated with a diverse range of invertebrate hosts. Of these, mosquitoes could emerge as one of the most important vectors because of their ability to transmit significant numbers of pathogens and parasites throughout the world. Recent studies have implicated Anopheles gambiae as a potential vector of Rickettsia felis. Herein we report that a metagenome sequencing study identified rickettsial sequence reads in culicine mosquitoes from the Republic of Korea. The detected rickettsiae were characterized by a genus-specific quantitative real-time PCR assay and sequencing of rrs, gltA, 17kDa, ompB, and sca4 genes. Three novel rickettsial genotypes were detected (Rickettsia sp. A12.2646, Rickettsia sp. A12.2638 and Rickettsia sp. A12.3271), from Mansonia uniformis, Culex pipiens, and Aedes esoensis, respectively. The results underscore the need to determine the Rickettsia species diversity associated with mosquitoes, their evolution, distribution and pathogenic potential.

  7. First report on the occurrence of Rickettsia slovaca and Rickettsia raoultii in Dermacentor silvarum in China

    Directory of Open Access Journals (Sweden)

    Tian Zhan-Cheng

    2012-01-01

    Full Text Available Abstract Background Rickettsioses are among both the longest known and most recently recognized infectious diseases. Although new spotted fever group rickettsiae have been isolated in many parts of the world including China, Little is known about the epidemiology of Rickettsia pathogens in ticks from Xinjiang Autonomous Region of China. Methods In an attempt to assess the potential risk of rickettsial infection after exposure to ticks in Xinjiang Uygur Autonomous Region of China, a total of 200 Dermacentor silvarum ticks collected in Xinyuan district were screened by polymerase chain reaction based on the outer membrane protein A gene. Results 22 of the 200 specimens (11% were found to be positive by PCR. Phylogenetic analysis of OmpA sequences identified two rickettsial species, Rickettsia raoultii (4.5% and Rickettsia slovaca (6.5%. Conclusions This study has reported the occurrence of Rickettsia raoultii and Rickettsia slovaca in Xinjiang Autonomous Region of China and suggests that Dermacentor silvarum could be involved in the transmission of rickettsial agents in China. Further studies on the characterization and culture of rickettsial species found in Dermacentor silvarum should be performed to further clarify this. Additionally, the screening of human specimens for rickettsial disease in this region will define the incidence of infection.

  8. Molecular Detection and Identification of Rickettsia Species in Ixodes pacificus in California

    Science.gov (United States)

    Phan, Jimmy Ninh; Lu, Casey Roy; Bender, William Garrett; Smoak, Robert Marion

    2011-01-01

    Abstract We amplified 16S rRNA, gltA, and ompA genes from Ixodes pacificus by polymerase chain reaction. Sequencing, BLAST analysis, and phylogenetic constructions indicated that two Rickettsia phylotypes are present in I. pacificus. While phylotype G021 has high homology to Ixodes scapularis endosymbiotic Rickettsia, phylotype G022 is a deeply branched novel spotted fever group Rickettsia. PMID:21413886

  9. Detection of a Novel Rickettsia From Leptotrombidium scutellare Mites (Acari: Trombiculidae) From Shandong of China.

    Science.gov (United States)

    Huang, Yuting; Zhao, Li; Zhang, Zhentang; Liu, Miaomiao; Xue, Zaifeng; Ma, Dongqiang; Sun, Xifeng; Sun, Yue; Zhou, Chuanmin; Qin, Xiangrong; Zhu, Yelei; Li, Wenqian; Yu, Hao; Yu, Xue-Jie

    2017-05-01

    Leptotrombidium scutellare mites, the vector of Orientia tsutsugamushi, have rarely been reported to associate with Rickettsia species. Three hundred nineteen chiggers were collected from the ears of 32 rodents captured in Huangdao District of Qingdao City, China, in October 2015. The chigger samples were tested for Rickettsia, severe fever with thrombocytopenia syndrome virus, and hantavirus by PCR or RT-PCR amplification. All mites were classified morphologically and molecularly as L. scutellare chiggers. Rickettsial DNA sequences were amplified for four genes including 16S rRNA, ompB, gltA, and 17 kD protein genes. The minimum infection rate (MIR; number of positive pools/total specimens tested) of the Rickettsia species in the chiggers were 2.8% (9/319). Phylogenetic analysis indicated that individual genes were closely related to different Rickettsia species including R. felis (with 16S rRNA gene), R. australis (with gltA gene), an unnamed Rickettsia sp. TwKM02 (with ompB gene), and Rickettsia endosymbiont of soft tick Ornithodoros erraticus (with 17 kD protein gene). Phylogenic analysis of the concatenated sequence of 16S rRNA, gltA, ompB, and 17 kD protein genes indicated that the Rickettsia species from L. scutellare chigger was most closely related to R. australis and R. akari. These results indicated that the Rickettsia species in chiggers was unique; it was named Candidatus Rickettsia leptotrombidium. Severe fever with thrombocytopenia syndrome virus and hantavirus were not amplified from the chiggers, suggesting lack of infection of these pathogens in the chiggers. A unique Rickettsia species was detected in L. scutellare, which expanded the knowledge on the vector distribution of Rickettsia. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Rickettsia vini n. sp. (Rickettsiaceae) infecting the tick Ixodes arboricola (Acari: Ixodidae).

    Science.gov (United States)

    Novakova, Marketa; Costa, Francisco B; Krause, Frantisek; Literak, Ivan; Labruna, Marcelo B

    2016-08-26

    Recently, a new rickettsia named 'Candidatus Rickettsia vini' belonging to the spotted fever group has been molecularly detected in Ixodes arboricola ticks in Spain, the Czech Republic, Slovakia and Turkey, with prevalence reaching up to 100 %. The aim of this study was to isolate this rickettsia in pure culture, and to describe it as a new Rickettsia species. A total of 148 ornitophilic nidicolous ticks Ixodes arboricola were collected in a forest near Breclav (Czech Republic) and examined for rickettsiae. Shell vial technique was applied to isolate rickettsiae in Vero cells. Rickettsial isolation was confirmed by optical microscopy and sequencing of partial sequences of the rickettsial genes gltA, ompA, ompB, and htrA. Laboratory guinea pigs and chickens were used for experimental infestations and infections. Animal blood sera were tested by immunofluorescence assay employing crude antigens of various rickettsiae. Rickettsia vini n. sp. was successfully isolated from three males of I. arboricola. Phylogenetic analysis of fragments of 1092, 590, 800, and 497 nucleotides of the gltA, ompA, ompB, and htrA genes, respectively, showed closest proximity of R. vini n. sp. to Rickettsia japonica and Rickettsia heilongjiangensis belonging to the spotted fever group. Experimental infection of guinea pigs and chickens with R. vini led to various levels of cross-reactions of R. vini-homologous antibodies with Rickettsia rickettsii, Rickettsia parkeri, 'Candidatus Rickettsia amblyommii', Rickettsia rhipicephali, Rickettsia bellii, and Rickettsia felis. Laboratory infestations by R. vini-infected I. arboricola larvae on chickens led to no seroconversion to R. vini n. sp., nor cross-reactions with R. rickettsii, R. parkeri, 'Ca. R. amblyommii', R. rhipicephali, R. bellii or R. felis. Our results suggest that R. vini n. sp. is possibly a tick endosymbiont, not pathogenic for guinea pigs and chickens. Regarding specific phenotypic characters and significant differences of DNA

  11. The Candida Pathogenic Species Complex

    Science.gov (United States)

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  12. Secretome of obligate intracellular Rickettsia

    Science.gov (United States)

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  13. Detection of Babesia Sp. EU1 and members of spotted fever group rickettsiae in ticks collected from migratory birds at Curonian Spit, North-Western Russia.

    Science.gov (United States)

    Movila, Alexandru; Reye, Anna L; Dubinina, Helen V; Tolstenkov, Oleg O; Toderas, Ion; Hübschen, Judith M; Muller, Claude P; Alekseev, Andrey N

    2011-01-01

    To reveal the prevalence of spotted fever group (SFG) rickettsiae and Babesia sp. in Ixodes ricinus (L.) ticks from migratory birds, 236 specimens represented 8 species of Passeriformes and were collected at Curonian Spit in Kaliningrad enclave of North-Western Russia. The ticks (total 126) being detached from four bird species, Turdus philomelos, Fringilla coelebs, Parus major, and Sturnus vulgaris, were investigated by PCR using the primers Rp CS.877p/Rp CS.1258n for the detection of Rickettsia and BJ1/BN2 for Babesia spp. Babesia spp. were detected in 2 of 126 (1.6%) ticks. The partial sequence of 18S rDNA had 100% similarity to human pathogenic Babesia sp. EU1. The SFG rickettsiae were detected in 19 of 126 (15.1%) ticks collected from the above-mentioned bird species. BLAST analysis of SFG rickettsia gltA assigned sequences to human pathogenic Rickettsia helvetica (10.3%), Rickettsia monacensis (3.9%), and Rickettsia japonica (0.8%) with 98%-100% sequence similarity. The SFG rickettsiae and Babesia sp. EU1 in ticks collected from the passerines in Russia were detected for the first time. The survey indicates that migratory birds may become a reservoir for Babesia spp. and SFG rickettsiae. Future investigations need to characterize the role of birds in the epidemiology of these human pathogens in the region.

  14. Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon.

    Science.gov (United States)

    Fernández de Mera, Isabel G; Blanda, Valeria; Torina, Alessandra; Dabaja, Mayssaa Fawaz; El Romeh, Ali; Cabezas-Cruz, Alejandro; de la Fuente, José

    2018-01-01

    Tick-borne diseases have become a world health concern, emerging with increasing incidence in recent decades. Spotted fever group (SFG) rickettsiae are tick-borne pathogens recognized as important agents of human tick-borne diseases worldwide. In this study, 88 adult ticks from the species Hyalomma anatolicum, Rhipicephalus annulatus, Rh. bursa, Rh. sanguineus sensu lato, and Rh. turanicus, were collected from farm ruminants in Lebanon, and SFG rickettsiae were molecularly identified and characterized in these ticks. The screening showed a prevalence of 68% for Rickettsia spp., including the species R. aeschlimannii, R. africae, R. massiliae and Candidatus R. barbariae, the latter considered an emerging member of the SFG rickettsiae. These findings contribute to a better knowledge of the distribution of these pathogens and demonstrate that SFG rickettsiae with public health relevance are found in ticks collected in Lebanon, where the widespread distribution of tick vectors and possible livestock animal hosts in contact with humans may favor transmission to humans. Few reports exist for some of the tick species identified here as being infected with SFG Rickettsia. Some of these tick species are proven vectors of the hosted rickettsiae, although this information is unknown for other of these species. Therefore, these results suggested further investigation on the vector competence of the tick species with unknown role in transmission of some of the pathogens identified in this study. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Ticks and rickettsiae from wildlife in Belize, Central America.

    Science.gov (United States)

    Lopes, Marcos G; May Junior, Joares; Foster, Rebecca J; Harmsen, Bart J; Sanchez, Emma; Martins, Thiago F; Quigley, Howard; Marcili, Arlei; Labruna, Marcelo B

    2016-02-02

    The agents of spotted fevers in Latin America are Rickettsia rickettsii, R. parkeri, Rickettsia sp. strain Atlantic rainforest, and R. massiliae. In Continental Central America, R. rickettsii remains the only known pathogenic tick-borne rickettsia. In the present study, ticks were collected from wild mammals in natural areas of Belize. Besides providing new data of ticks from Belize, we investigated rickettsial infection in some of these ticks. Our results provide ticks harboring rickettsial agents for the first time in Central America. Between 2010 and 2015, wild mammals were lived-trapped in the tropical broadleaf moist forests of central and southern Belize. Ticks were collected from the animals and identified to species by morphological and molecular analysis (DNA sequence of the tick mitochondrial 16S RNA gene). Some of the ticks were tested for rickettsial infection by molecular methods (DNA sequences of the rickettsial gltA and ompA genes). A total of 84 ticks were collected from 8 individual hosts, as follows: Amblyomma pacae from 3 Cuniculus paca; Amblyomma ovale and Amblyomma coelebs from a Nasua narica; A. ovale from an Eira Barbara; A. ovale, Amblyomma cf. oblongoguttatum, and Ixodes affinis from a Puma concolor; and A. ovale, A. coelebs, A. cf. oblongoguttatum, and I. affinis from two Panthera onca. Three rickettsial agents were detected: Rickettsia amblyommii in A. pacae, Rickettsia sp. strain Atlantic rainforest in A. ovale, and Rickettsia sp. endosymbiont in Ixodes affinis. The present study provides unprecedented records of ticks harboring rickettsial agents in the New World. An emerging rickettsial pathogen of South America, Rickettsia sp. strain Atlantic rainforest, is reported for the first time in Central America. Besides expanding the distribution of 3 rickettsial agents in Central America, our results highlight the possible occurrence of Rickettsia sp. strain Atlantic rainforest-caused spotted fever human cases in Belize, since its possible

  16. Rickettsia parkeri and "Candidatus Rickettsia andeanae" in Questing Amblyomma maculatum (Acari: Ixodidae) From Mississippi.

    Science.gov (United States)

    Lee, J K; Moraru, G M; Stokes, J V; Wills, R W; Mitchell, E; Unz, E; Moore-Henderson, B; Harper, A B; Varela-Stokes, A S

    2017-03-01

    Amblyomma maculatum Koch (Acari: Ixodidae), the primary vector for Rickettsia parkeri, may also be infected with a rickettsia of unknown pathogenicity, "Candidatus Rickettsia andeanae." Infection rates with these rickettsiae vary geographically, and coinfected ticks have been reported. In this study, infection rates of R. parkeri and "Ca. R. andeanae" were evaluated, and rickettsial DNA levels quantified, in 335 questing adult A. maculatum collected in 2013 (n = 95), 2014 (n = 139), and 2015 (n = 101) from Oktibbeha County, MS. Overall infection rates of R. parkeri and "Ca. R. andeanae" were 28.7% and 9.3%, respectively, with three additional A. maculatum (0.9%) coinfected. While R. parkeri-infected ticks were detected all three years (34.7% in 2013; 13.7% in 2014; 43.6% in 2015), "Ca. R. andeanae" was not detected in 2013, and was detected at rates of 10.8% in 2014, and 15.8% in 2015. Interestingly, rickettsial DNA levels in singly-infected ticks were significantly lower in "Ca. R. andeanae"-infected ticks compared to R. parkeri-infected ticks (P Rickettsia species in A. maculatum at the population level. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Serologic evidence of the exposure of small mammals to spotted-fever Rickettsia and Rickettsia bellii in Minas Gerais, Brazil.

    Science.gov (United States)

    Coelho, Marcella Gonçalves; Ramos, Vanessa do Nascimento; Limongi, Jean Ezequiel; de Lemos, Elba Regina Sampaio; Guterres, Alexandro; da Costa Neto, Sócrates Fraga; Rozental, Tatiana; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sérgio; Moraes-Filho, Jonas; Labruna, Marcelo Bahia; Szabó, Matias Pablo Juan

    2016-03-31

    Sources of pathogenic Rickettsia in wildlife are largely unknown in Brazil. In this work, potential tick vectors and seroreactivity of small mammals against four spotted-fever group Rickettsia (R. rickettsii, R. parkeri, R. amblyommii and R. rhipicephali) and Rickettsia bellii from peri-urban areas of Uberlândia, a major town in Brazil, are described for the first time. Small mammals were captured and blood samples collected. Ticks were collected from the surface of the host and the environment and posteriorly identified. Reactivity of small mammal sera to Rickettsia was tested by indirect immunofluorescence assay (IFA) using crude antigens from five Brazilian Rickettsia isolates. Information was obtained from 416 small mammals (48 Marsupialia and 368 Rodentia). Forty-eight animals were parasitized and two tick species, Ixodes loricatus and Amblyomma dubitatum, were found on several host species, with a few tick-host relationships described for the first time. From the 416 tested sera, 70 reacted to at least one Rickettsia antigen (prevalence of 16.8%) and from these, 19 (27.1%) reacted to two or more antigens. Seroprevalence was higher for marsupials (39.6%) than for rodents (13.8%). Marsupial and Rhipidomys spp. sera reacted mainly (highest seroprevalence and titers) to R. bellii, and that of Necromys lasiurus mainly to R. rickettsii. Although the serologic assays poorly discriminate between closely related spotted-fever group Rickettsia, the observed small mammal seroreactivity suggests the circulation of Rickettsia in the peri-urban area of Uberlândia, albeit at low levels.

  18. Genetic variability of Rickettsia spp. in Ixodes persulcatus ticks from continental and island areas of the Russian Far East.

    Science.gov (United States)

    Igolkina, Y; Bondarenko, E; Rar, V; Epikhina, T; Vysochina, N; Pukhovskaya, N; Tikunov, A; Ivanov, L; Golovljova, I; Ivanov, М; Tikunova, N

    2016-10-01

    Rickettsia spp. are intracellular Gram-negative bacteria transmitted by arthropods. Two potentially pathogenic rickettsiae, Candidatus Rickettsia tarasevichiae and Rickettsia helvetica, have been found in unfed adult Ixodes persulcatus ticks. The aim of this study was to assess the prevalence and genetic variability of Rickettsia spp. in I. persulcatus ticks collected from different locations in the Russian Far East. In total, 604 adult I. persulcatus ticks collected from four sites in the Khabarovsk Territory (continental area) and one site in Sakhalin Island were examined for the presence of Rickettsia spp. by real-time PCR. Nested PCR with species-specific primers and sequencing were used for genotyping of revealed rickettsiae. The overall prevalence of Rickettsia spp. in ticks collected in different sites varied from 67.9 to 90.7%. However, the proportion of different Rickettsia species observed in ticks from Sakhalin Island significantly differed from that in ticks from the Khabarovsk Territory. In Sakhalin Island, R. helvetica prevailed in examined ticks, while Candidatus R. tarasevichiae was predominant in the Khabarovsk Territory. For gltA and ompB gene fragments, the sequences obtained for Candidatus R. tarasevichiae from all studied sites were identical to each other and to the known sequences of this species. According to sequence analysis of gltA, оmpB and sca4 genes, R. helvetica isolates from Sakhalin Island and the Khabarovsk Territory were identical to each other, but they differed from R. helvetica from other regions and from those found in other tick species. For the first time, DNA of pathogenic Rickettsia heilongjiangensis was detected in I. persulcatus ticks in two sites from the Khabarovsk Territory. The gltA, ompA and оmpB gene sequences of R. heilongjiangensis were identical to or had solitary mismatches with the corresponding sequences of R. heilongjiangensis found in other tick species. Copyright © 2016 Elsevier GmbH. All rights

  19. Molecular detection of Rickettsia species in Amblyomma ticks collected from snakes in Thailand

    Czech Academy of Sciences Publication Activity Database

    Sumrandee, C.; Hirunkanokpun, S.; Doornbos, K.; Kitthawee, S.; Baimai, V.; Grubhoffer, Libor; Trinachartvanit, W.; Ahantarig, A.

    2014-01-01

    Roč. 5, č. 6 (2014), s. 632-640 ISSN 1877-959X Institutional support: RVO:60077344 Keywords : Tick * Rickettsia spp. * Amblyomma varanense * Amblyomma helvolum * Snake * Thailand Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.718, year: 2014

  20. Seroprevalence against Rickettsia and Borrelia Species in Patients with Uveitis: A Prospective Survey

    Directory of Open Access Journals (Sweden)

    Kim B. Madsen

    2017-01-01

    Full Text Available Vector-borne diseases such as Lyme borreliosis and rickettsioses have been associated with ocular inflammation. Our aim was to study patients with diagnosed uveitis to evaluate serological signs of infection or exposure to these tick-borne agents. Forty-eight patients were prospectively examined with serology together with medical records and a questionnaire concerning previous exposure, diseases, and treatments. Seven patients (14.6% showed seroconversion to Rickettsia spp. between acute and convalescent phase sera, which provides support for a positive Rickettsia diagnosis according to guidelines. The specificity was confirmed by Western blot. Additional 28 patients had stationary titres of which eight (16.6% had 1 : 256 or higher titre in the first serum, and another 13 patients were seronegative. No epidemiological risk factor or marker could be identified. For Borrelia, only three patients showed moderate IgG titres. A control group of 100 blood donors, 60 patients with rheumatic disease, and 56 patients seeking medical care were tested of which 2.0–7.1% showed low anti-Rickettsia titres and 3.0–8.3% anti-Borrelia titres. The findings are indicative for an association between infection or exposure to Rickettsia spp. and uveitis with a seropositivity among patients with recurrent uveitis in concordance with the spread of rickettsial exposure in a tick-exposed population.

  1. Seroprevalence against Rickettsia and Borrelia Species in Patients with Uveitis: A Prospective Survey

    Science.gov (United States)

    Madsen, Kim B.; Wallménius, Katarina; Fridman, Åke; Påhlson, Carl

    2017-01-01

    Vector-borne diseases such as Lyme borreliosis and rickettsioses have been associated with ocular inflammation. Our aim was to study patients with diagnosed uveitis to evaluate serological signs of infection or exposure to these tick-borne agents. Forty-eight patients were prospectively examined with serology together with medical records and a questionnaire concerning previous exposure, diseases, and treatments. Seven patients (14.6%) showed seroconversion to Rickettsia spp. between acute and convalescent phase sera, which provides support for a positive Rickettsia diagnosis according to guidelines. The specificity was confirmed by Western blot. Additional 28 patients had stationary titres of which eight (16.6%) had 1 : 256 or higher titre in the first serum, and another 13 patients were seronegative. No epidemiological risk factor or marker could be identified. For Borrelia, only three patients showed moderate IgG titres. A control group of 100 blood donors, 60 patients with rheumatic disease, and 56 patients seeking medical care were tested of which 2.0–7.1% showed low anti-Rickettsia titres and 3.0–8.3% anti-Borrelia titres. The findings are indicative for an association between infection or exposure to Rickettsia spp. and uveitis with a seropositivity among patients with recurrent uveitis in concordance with the spread of rickettsial exposure in a tick-exposed population. PMID:29318041

  2. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand.

    Science.gov (United States)

    Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2016-07-01

    A total of 79 ticks collected from Sambar deer (Cervus unicolor), Barking deer (Muntiacus muntjak) and Wild boar (Sus scrofa) were examined by PCR for the presence of Rickettsia, Anaplasma, Coxiella, and Francisella bacteria. Of the 79 ticks, 13% tested positive for Rickettsia, 15% tested positive for Anaplasma, 4% tested positive for Coxiella, and 3% tested positive for Francisella. Interestingly, triple infection with Anaplasma, Rickettsia and Francisella was determined in a Dermacentor auratus tick. Moreover, another triple infection with Rickettsia, Anaplasma, and Coxiella was found in a Haemaphysalis lagrangei tick. Double infection of Rickettsia with Coxiella was also detected in another H. lagrangei tick. From the phylogenetic analyses, we found a Rickettsia sp. with a close evolutionary relationship to Rickettsia bellii in the H. lagrangei tick. We also found the first evidence of a Rickettsia sp. that is closely related to Rickettsia tamurae in Rhipicephalus (Boophilus) microplus ticks from Thailand. H. lagrangei and Haemaphysalis obesa ticks collected from Sambar deer tested positive for Anaplasma species form the same clade with Anaplasma bovis. In contrast, other H. lagrangei ticks collected from Sambar deer and D. auratus ticks collected from Wild boar were also reported for the first time to be infected with an Anaplasma species that is closely related to Anaplasma platys. The phylogenetic analysis of the 16S rRNA gene of Coxiella bacteria revealed that Coxiella symbionts from H. lagrangei formed a distinctly different lineage from Coxiella burnetii (a human pathogen). Additionally, Francisella bacteria identified in D. auratus ticks were found to be distantly related to a group of pathogenic Francisella species. The identification of these bacteria in several feeding ticks suggests the risk of various emerging tick-borne diseases and endosymbionts in humans, wildlife, and domestic animals in Thailand. Copyright © 2016 Elsevier GmbH. All rights

  3. Investigations on Rickettsia in Ticks at the Sino-Russian and Sino-Mongolian Borders, China.

    Science.gov (United States)

    Liu, Lijuan; Chen, Qian; Yang, Yu; Wang, Jiancheng; Cao, Xiaomei; Zhang, Sheng; Li, Hong; Hou, Yong; Wang, Fuxiang; Xu, Baoliang

    2015-12-01

    To describe the prevalence of Rickettsia in ticks at the Sino-Russian and Sino-Mongolian borders, a total of 292 ticks were collected and tested by conventional PCR assays. The prevalence of Rickettsia was 53.4%, and phylogenetic analysis showed that they belonged to R. raoultii species after alignment for the ompA, ompB, and gltA genes, respectively. Coxiella burnetii DNA was detected for 14%, and no Ehrlichia, Borrelia burgdorferi, and Babesia species were found. Co-infection of two pathogens was 9.9%, and no co-infection with three or more pathogens was found. This study suggested Rickettsia was the most common pathogen in the ticks and co-infection was found. The findings might be helpful to provide advice on the prevention and control of tick-borne disease potential for tourists and residents.

  4. Molecular Detection and Identification of Spotted Fever Group Rickettsiae in Ticks Collected from the West Bank, Palestinian Territories.

    Directory of Open Access Journals (Sweden)

    Suheir Ereqat

    2016-01-01

    Full Text Available Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group (SFG rickettsiae. Although Spotted Fever is prevalent in the Middle East, no reports for the presence of tick-borne pathogens are available or any studies on the epidemiology of this disease in the West Bank. We aimed to identify the circulating hard tick vectors and genetically characterize SFG Rickettsia species in ixodid ticks from the West Bank-Palestinian territories.A total of 1,123 ixodid ticks belonging to eight species (Haemaphysalis parva, Haemaphysalis adleri, Rhipicephalus turanicus, Rhipicephalus sanguineus, Rhipicephalus bursa, Hyalomma dromedarii, Hyalomma aegyptium and Hyalomma impeltatum were collected from goats, sheep, camels, dogs, a wolf, a horse and a tortoise in different localities throughout the West Bank during the period of January-April, 2014. A total of 867 ticks were screened for the presence of rickettsiae by PCR targeting a partial sequence of the ompA gene followed by sequence analysis. Two additional genes, 17 kDa and 16SrRNA were also targeted for further characterization of the detected Rickettsia species. Rickettsial DNA was detected in 148 out of the 867 (17% tested ticks. The infection rates in Rh. turanicus, Rh. sanguineus, H. adleri, H. parva, H. dromedarii, and H. impeltatum ticks were 41.7, 11.6, 16.7, 16.2, 11.8 and 20%, respectively. None of the ticks, belonging to the species Rh. bursa and H. aegyptium, were infected. Four SFG rickettsiae were identified: Rickettsia massiliae, Rickettsia africae, Candidatus Rickettsia barbariae and Candidatus Rickettsia goldwasserii.The results of this study demonstrate the geographic distribution of SFG rickettsiae and clearly indicate the presence of at least four of them in collected ticks. Palestinian clinicians should be aware of emerging tick-borne diseases in the West Bank, particularly infections due to R. massiliae and R. africae.

  5. Multi-omics Analysis Sheds Light on the Evolution and the Intracellular Lifestyle Strategies of Spotted Fever Group Rickettsia spp.

    Science.gov (United States)

    El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier

    2017-01-01

    Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., omp A/B and rick A) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these

  6. Tick-borne zoonotic pathogens in ticks feeding on the common nightingale including a novel strain of Rickettsia sp

    Czech Academy of Sciences Publication Activity Database

    Dubská, L.; Literák, I.; Kverek, P.; Roubalová, Eva; Kocianova, E.; Taragelova, V.

    2012-01-01

    Roč. 3, č. 4 (2012), s. 265-268 ISSN 1877-959X Institutional support: RVO:60077344 Keywords : tick * Ixodes ricinus * Borrelia garinii * Anaplasma phagocytophilum * Rickettsia helvetica * Babesia sp. EU1 * Common nightingale Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.353, year: 2012 http://www.sciencedirect.com/science/article/pii/S1877959X12000556

  7. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated

    Science.gov (United States)

    Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Katzir, Nurit; Portnoy, Vitaly; Belausov, Eduard; Hunter, Martha S.; Zchori-Fein, Einat

    2012-01-01

    Bacteria in the genus Rickettsia, best known as vertebrate pathogens vectored by blood-feeding arthropods, can also be found in phytophagous insects. The presence of closely related bacterial symbionts in evolutionarily distant arthropod hosts presupposes a means of horizontal transmission, but no mechanism for this transmission has been described. Using a combination of experiments with live insects, molecular analyses and microscopy, we found that Rickettsia were transferred from an insect host (the whitefly Bemisia tabaci) to a plant, moved inside the phloem, and could be acquired by other whiteflies. In one experiment, Rickettsia was transferred from the whitefly host to leaves of cotton, basil and black nightshade, where the bacteria were restricted to the phloem cells of the plant. In another experiment, Rickettsia-free adult whiteflies, physically segregated but sharing a cotton leaf with Rickettsia-plus individuals, acquired the Rickettsia at a high rate. Plants can serve as a reservoir for horizontal transmission of Rickettsia, a mechanism which may explain the occurrence of phylogenetically similar symbionts among unrelated phytophagous insect species. This plant-mediated transmission route may also exist in other insect–symbiont systems and, since symbionts may play a critical role in the ecology and evolution of their hosts, serve as an immediate and powerful tool for accelerated evolution. PMID:22113034

  8. Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands

    Directory of Open Access Journals (Sweden)

    Reimerink Johan R

    2011-04-01

    Full Text Available Abstract Background Awareness for flea- and tick-borne infections has grown in recent years and the range of microorganisms associated with these ectoparasites is rising. Bartonella henselae, the causative agent of Cat Scratch Disease, and other Bartonella species have been reported in fleas and ticks. The role of Ixodes ricinus ticks in the natural cycle of Bartonella spp. and the transmission of these bacteria to humans is unclear. Rickettsia spp. have also been reported from as well ticks as also from fleas. However, to date no flea-borne Rickettsia spp. were reported from the Netherlands. Here, the presence of Bartonellaceae and Rickettsiae in ectoparasites was investigated using molecular detection and identification on part of the gltA- and 16S rRNA-genes. Results The zoonotic Bartonella clarridgeiae and Rickettsia felis were detected for the first time in Dutch cat fleas. B. henselae was found in cat fleas and B. schoenbuchensis in ticks and keds feeding on deer. Two Bartonella species, previously identified in rodents, were found in wild mice and their fleas. However, none of these microorganisms were found in 1719 questing Ixodes ricinus ticks. Notably, the gltA gene amplified from DNA lysates of approximately 10% of the questing nymph and adult ticks was similar to that of an uncultured Bartonella-related species found in other hard tick species. The gltA gene of this Bartonella-related species was also detected in questing larvae for which a 16S rRNA gene PCR also tested positive for "Candidatus Midichloria mitochondrii". The gltA-gene of the Bartonella-related species found in I. ricinus may therefore be from this endosymbiont. Conclusions We conclude that the risk of acquiring Cat Scratch Disease or a related bartonellosis from questing ticks in the Netherlands is negligible. On the other hand fleas and deer keds are probable vectors for associated Bartonella species between animals and might also transmit Bartonella spp. to humans.

  9. A novel spotted fever group Rickettsia infecting Amblyomma parvitarsum (Acari: Ixodidae) in highlands of Argentina and Chile.

    Science.gov (United States)

    Ogrzewalska, Maria; Nieri-Bastos, Fernanda A; Marcili, Arlei; Nava, Santiago; González-Acuña, Daniel; Muñoz-Leal, Sebastián; Ruiz-Arrondo, Ignacio; Venzal, José M; Mangold, Atilio; Labruna, Marcelo B

    2016-04-01

    The tick Amblyomma parvitarsum (Acari: Ixodidae) has established populations in Andean and Patagonic environments of South America. For the present study, adults of A. parvitarsum were collected in highland areas (elevation >3500 m) of Argentina and Chile during 2009-2013, and tested by PCR for rickettsial infection in the laboratory, and isolation of rickettsiae in Vero cell culture by the shell vial technique. Overall, 51 (62.2%) out of 82 A. parvitarsum adult ticks were infected by spotted fever group (SFG) rickettsiae, which generated DNA sequences 100% identical to each other, and when submitted to BLAST analysis, they were 99.3% identical to corresponding sequence of the ompA gene of Rickettsia sp. strain Atlantic rainforest. Rickettsiae were successfully isolated in Vero cell culture from two ticks, one from Argentina and one from Chile. DNA extracted from the third passage of the isolates of Argentina and Chile were processed by PCR, resulting in partial sequences for three rickettsial genes (gltA, ompB, ompA). These sequences were concatenated and aligned with rickettsial corresponding sequences available in GenBank. Phylogenetic analysis revealed that the A. pavitarsum rickettsial agent grouped under high bootstrap support in a clade composed by the SFG pathogens R. sibirica, R. africae, R. parkeri, Rickettsia sp. strain Atlantic rainforest, and two unnamed SFG agents of unknown pathogenicty, Rickettsia sp. strain NOD, and Rickettsia sp. strain ApPR. The pathogenic role of this A. parvitarsum rickettsia cannot be discarded, since several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections. Copyright © 2016. Published by Elsevier GmbH.

  10. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells.

    Science.gov (United States)

    Curto, Pedro; Simões, Isaura; Riley, Sean P; Martinez, Juan J

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated

  11. Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals

    Science.gov (United States)

    Kakumanu, Madhavi L.; Ponnusamy, Loganathan; Sutton, Haley T.; Meshnick, Steven R.; Nicholson, William L.

    2016-01-01

    A novel nested PCR assay was developed to detect Rickettsia spp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) of Rickettsia spp. The newly designed primers were evaluated using genomic DNA from 11 Rickettsia species belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to other Rickettsia-specific PCR targets (ompA, gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11 Rickettsia spp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from “Candidatus Rickettsia amblyommii.” Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adult Dermacentor variabilis ticks. The nested 23S-5S IGS assay detected Rickettsia DNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species of Rickettsia. The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species of Rickettsia in the ticks. “Candidatus Rickettsia amblyommii,” R. montanensis, R. felis, and R. bellii were frequently identified species, along with some potentially novel Rickettsia strains that were closely related to R. bellii and R. conorii. PMID:26818674

  12. Multispacer typing of Rickettsia isolates from humans and ticks in Tunisia revealing new genotypes.

    Science.gov (United States)

    Znazen, Abir; Khrouf, Fatma; Elleuch, Nihel; Lahiani, Dorra; Marrekchi, Chakib; M'Ghirbi, Youmna; Ben Jemaa, Mounir; Bouattour, Ali; Hammami, Adnene

    2013-12-31

    Rickettsioses are important remerging vector born infections. In Tunisia, many species have been described in humans and vectors. Genotyping is important for tracking pathogen movement between hosts and vectors. In this study, we characterized Rickettsia species detected in patients and vectors using multispacer typing (MST), proposed by Founier et al. and based on three intergenic spacers (dksA-xerC, rmpE- tRNA(fMet), mppA-pruC) sequencing. Our study included 25 patients hospitalized during 2009. Ticks and fleas were collected in the vicinity of confirmed cases. Serology was performed on serum samples by microimmunofluorescence using Rickettsia conorii and Rickettsia typhi antigens. To detect and identify Rickettsia species, PCR targeting ompA, ompB and gltA genes followed by sequencing was performed on 18 obtained skin biopsies and on all collected vectors. Rickettsia positive samples were further characterized using primers targeting three intergenic spacers (dksA-xerC, rmpE- tRNA(fMet) and mppA-purC). A rickettsial infection was confirmed in 15 cases (60%). Serology was positive in 13 cases (52%). PCR detected Rickettsia DNA in four biopsies (16%) allowing the identification of R. conorii subsp israelensis in three cases and R. conorii subsp conorii in one case. Among 380 collected ticks, nine presented positive PCR (2.4%) allowing the identification of six R. conorii subsp israelensis, two R. massiliae and one R. conorii subsp conorii. Among 322 collected fleas, only one was positive for R. felis. R. conorii subsp israelensis strains detected in humans and vectors clustered together and showed a new MST genotype. Similarly, R. conorii subsp conorii strains detected in a skin biopsy and a tick were genetically related and presented a new MST genotype. New Rickettsia spotted fever strain genotypes were found in Tunisia. Isolates detected in humans and vectors were genetically homogenous despite location differences in their original isolation suggesting

  13. Whole-Proteome Analysis of Twelve Species of Alphaproteobacteria Links Four Pathogens

    Directory of Open Access Journals (Sweden)

    Yunyun Zhou

    2013-11-01

    Full Text Available Thousands of whole-genome and whole-proteome sequences have been made available through advances in sequencing technology, and sequences of millions more organisms will become available in the coming years. This wealth of genetic information will provide numerous opportunities to enhance our understanding of these organisms including a greater understanding of relationships among species. Researchers have used 16S rRNA and other gene sequences to study the evolutionary origins of bacteria, but these strategies do not provide insight into the sharing of genes among bacteria via horizontal transfer. In this work we use an open source software program called pClust to cluster proteins from the complete proteomes of twelve species of Alphaproteobacteria and generate a dendrogram from the resulting orthologous protein clusters. We compare the results with dendrograms constructed using the 16S rRNA gene and multiple sequence alignment of seven housekeeping genes. Analysis of the whole proteomes of these pathogens grouped Rickettsia typhi with three other animal pathogens whereas conventional sequence analysis failed to group these pathogens together. We conclude that whole-proteome analysis can give insight into relationships among species beyond their phylogeny, perhaps reflecting the effects of horizontal gene transfer and potentially providing insight into the functions of shared genes by means of shared phenotypes.

  14. First Report of Rickettsia Identical to R. slovaca in Colony-Originated D. variabilis in the United States: Detection, Laboratory Animal Model, and Vector Competence of Ticks.

    Science.gov (United States)

    Zemtsova, Galina E; Killmaster, Lindsay F; Montgomery, Merrill; Schumacher, Lauren; Burrows, Matt; Levin, Michael L

    2016-02-01

    Ticks of the genus Dermacentor are known vectors of rickettsial pathogens in both the Old World and New World. In North America, Dermacentor variabilis and D. andersoni are vectors of Rickettsia rickettsii, while in Europe, D. marginatus and D. reticulatus transmit R. slovaca and R. raoultii, respectively. Neither the presence of R. slovaca in the Americas nor the ability of American tick species to maintain this pathogen have been reported. Here we describe detection of Rickettsia genetically identical to R. slovaca in D. variabilis, its molecular characterization, assessment of pathogenicity to guinea pigs, and vector competence of D. variabilis ticks. Ticks from a laboratory colony of D. variabilis, established from wild ticks and maintained on naïve NZW rabbits, tested positive for spotted fever group (SFG) Rickettsia by PCR. Analysis of 17 kDa gltA, rpoB, ompA, ompB, and sca4 genes revealed 100% identity to R. slovaca sequences available in the GenBank. New Zealand white rabbits fed upon by infected ticks seroconverted to SFG Rickettsia. Guinea pigs inoculated with the Rickettsia culture or infested by the infected ticks developed antibodies to SFG Rickettsia. The intensity of clinical signs and immune response were dependent on dose and route of infection. The identified Rickettsia was detected in all life stages of D. variabilis ticks, confirming transstadial and transovarial transmission. Thirty-six percent of uninfected larvae co-fed with infected nymphs on guinea pigs were PCR-positive and able to pass rickettsia to at least 11.7% of molted nymphs. To our knowledge, this is a first report of identification of a European pathogen R. slovaca or a highly similar agent in the American dog tick, D. variabilis. Considering pathogenicity of R. slovaca in humans, further laboratory and field studies are warranted to assess the relevance of the above findings to the public health and epidemiology of SFG rickettsioses in the United States.

  15. Spotted fever group rickettsiae in ticks of migratory birds in Romania.

    Science.gov (United States)

    Mărcuţan, Ioan-Daniel; Kalmár, Zsuzsa; Ionică, Angela Monica; D'Amico, Gianluca; Mihalca, Andrei Daniel; Vasile, Cozma; Sándor, Attila D

    2016-05-20

    Birds are important hosts and dispersers of parasitic arthropods and vector-borne zoonotic pathogens. Particularly migratory species may carry these parasites over long distances in short time periods. Migratory hotspots present ideal conditions to get a snapshot of parasite and pathogen diversity of birds migrating between continents. The aim of this study was to investigate the presence and diversity of Rickettsia spp. in ticks collected from birds at a migratory hot-spot in the Danube Delta, Romania, eastern Europe. DNA was extracted from ticks that were collected from migratory birds in the Danube Delta during migratory seasons in 2011-2012. Two 360 bp  fragments of the 16S ribosomal RNA gene and a 381 bp  fragment Gene gltA were PCR amplified and analyzed by sequence analysis (performed at Macrogen Europe, Amsterdam, The Netherlands). Nucleotide sequences were compared to reference sequences available in the GenBank database, using Basic Local Alignment Search Tool. Four hundred ticks of four different species were found on 11 bird species. The prevalence of Rickettsia spp. infection was 14 % (56/400, CI: 11.7-29.1), with significantly more nymphs hosting rickettsial infection compared to larvae (48 vs 7; P birds migrating through eastern Europe may carry ticks infected with a high diversity of rickettsial pathogens, with four Rickettsia spp. recorded. Migratory direction was important for pathogen burden, with seasonal differences in the occurrence of individual Rickettsia species. Here we report the first individual records of different Rickettsia spp. in H. concinna (R. monacensis), I. arboricola (R. helvetica, R. massiliae) and I. redikorzevi (R. helvetica) and also the first geographical record of occurrence of R. massiliae in Romania, representing the easternmost observation on the continent.

  16. Detection of Rickettsia in Rhipicephalus sanguineus Ticks and Ctenocephalides felis Fleas from Southeastern Tunisia by Reverse Line Blot Assay

    Science.gov (United States)

    Khrouf, Fatma; M'Ghirbi, Youmna; Znazen, Abir; Ben Jemaa, Mounir; Hammami, Adnene

    2014-01-01

    Ticks (n = 663) and fleas (n = 470) collected from domestic animals from southeastern Tunisia were screened for Rickettsia infection using reverse line blot assay. Evidence of spotted fever group Rickettsia was obtained. We detected Rickettsia felis in fleas, Rickettsia massiliae Bar 29 and the Rickettsia conorii Israeli spotted fever strain in ticks, and Rickettsia conorii subsp. conorii and Rickettsia spp. in both arthropods. The sensitivity of the adopted technique allowed the identification of a new association between fleas and R. conorii subsp. conorii species. The presence of these vector-borne Rickettsia infections should be considered when diagnosing this disease in humans in Tunisia. PMID:24226919

  17. Rickettsia parkeri in Gulf Coast Ticks, Southeastern Virginia, USA

    Science.gov (United States)

    2011-05-01

    Rickettsia parkeri in Gulf Coast Ticks, Southeastern Virginia, USA Chelsea L. Wright, Robyn M. Nadolny, Ju Jiang, Allen L. Richards, Daniel E...Virginia. We found that 43.1% of the adult Gulf Coast ticks collected in the summer of 2010 carried Rickettsia parkeri, suggesting that persons living in...or visiting southeastern Virginia are at risk for infection with this pathogen. Rickettsia parkeri is an obligate intracellular bacterium belonging

  18. Molecular Diagnosis of Pathogenic Sporothrix Species.

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-12-01

    Full Text Available Sporotrichosis is a chronic (subcutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species emerge in the form of outbreaks. Large zoonoses and sapronoses are ongoing in Brazil and China, respectively. Current diagnostic methods based on morphology and physiology are inaccurate due to closely related phenotypes with overlapping components between pathogenic and non-pathogenic Sporothrix. There is a critical need for new diagnostic tools that are specific, sensitive, and cost-effective.We developed a panel of novel markers, based on calmodulin (CAL gene sequences, for the large-scale diagnosis and epidemiology of clinically relevant members of the Sporothrix genus, and its relative, Ophiostoma. We identified specific PCR-based markers for S. brasiliensis, S. schenckii, S. globosa, S. mexicana, S. pallida, and O. stenoceras. We employed a murine model of disseminated sporotrichosis to optimize a PCR assay for detecting Sporothrix in clinical specimens.Primer-BLAST searches revealed candidate sequences that were conserved within a single species. Species-specific primers showed no significant homology with human, mouse, or microorganisms outside the Sporothrix genus. The detection limit was 10-100 fg of DNA in a single round of PCR for identifying S. brasiliensis, S. schenckii, S. globosa, S. mexicana, and S. pallida. A simple, direct PCR assay, with conidia as a source of DNA, was effective for rapid, low-cost genotyping. Samples from a murine model of disseminated sporotrichosis confirmed the feasibility of detecting S. brasiliensis and S. schenckii DNA in spleen, liver, lungs, heart, brain, kidney, tail, and feces of infected animals.This PCR-based method could successfully detect and identify a single species in samples from cultures and from clinical

  19. Molecular Diagnosis of Pathogenic Sporothrix Species

    Science.gov (United States)

    Rodrigues, Anderson Messias; de Hoog, G. Sybren; de Camargo, Zoilo Pires

    2015-01-01

    Background Sporotrichosis is a chronic (sub)cutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species emerge in the form of outbreaks. Large zoonoses and sapronoses are ongoing in Brazil and China, respectively. Current diagnostic methods based on morphology and physiology are inaccurate due to closely related phenotypes with overlapping components between pathogenic and non-pathogenic Sporothrix. There is a critical need for new diagnostic tools that are specific, sensitive, and cost-effective. Methodology We developed a panel of novel markers, based on calmodulin (CAL) gene sequences, for the large-scale diagnosis and epidemiology of clinically relevant members of the Sporothrix genus, and its relative, Ophiostoma. We identified specific PCR-based markers for S. brasiliensis, S. schenckii, S. globosa, S. mexicana, S. pallida, and O. stenoceras. We employed a murine model of disseminated sporotrichosis to optimize a PCR assay for detecting Sporothrix in clinical specimens. Results Primer-BLAST searches revealed candidate sequences that were conserved within a single species. Species-specific primers showed no significant homology with human, mouse, or microorganisms outside the Sporothrix genus. The detection limit was 10–100 fg of DNA in a single round of PCR for identifying S. brasiliensis, S. schenckii, S. globosa, S. mexicana, and S. pallida. A simple, direct PCR assay, with conidia as a source of DNA, was effective for rapid, low-cost genotyping. Samples from a murine model of disseminated sporotrichosis confirmed the feasibility of detecting S. brasiliensis and S. schenckii DNA in spleen, liver, lungs, heart, brain, kidney, tail, and feces of infected animals. Conclusions This PCR-based method could successfully detect and identify a single species in samples

  20. Rickettsia spp. among wild mammals and their respective ectoparasites in Pantanal wetland, Brazil.

    Science.gov (United States)

    de Sousa, Keyla Carstens Marques; Herrera, Heitor Miraglia; Rocha, Fabiana Lopes; Costa, Francisco Borges; Martins, Thiago Fernandes; Labruna, Marcelo Bahia; Machado, Rosangela Zacarias; André, Marcos Rogério

    2018-01-01

    The genus Rickettsia comprises obligatory intracellular bacteria, well known to cause zoonotic diseases around the world. The present work aimed to investigate the occurrence of Rickettsia spp. in wild animals, domestic dogs and their respective ectoparasites in southern Pantanal region, central-western Brazil, by molecular and serological techniques. Between August 2013 and March 2015, serum, whole blood and/or spleen samples were collected from 31 coatis, 78 crab-eating foxes, seven ocelots, 42 dogs, 110 wild rodents, and 30 marsupials. Serum samples from canids, felids, rodents and marsupials were individually tested by indirect fluorescent antibody test (IFAT) in order to detect IgG antibodies to Rickettsia rickettsii, Rickettsia parkeri and Rickettsia amblyommatis. DNA samples from mammals and ectoparasites were submitted to a multiplex qPCR assay in order to detect and quantify spotted fever group (SFG) and typhus group (TG) rickettsiae and Orientia tsutsugamushi. Positive samples in qPCR assays were submitted to conventional PCR assays targeting gltA, ompA, ompB and htrA genes, followed by sequencing and phylogenetic analyses. The ticks collected (1582) from animals belonged to the species Amblyomma sculptum, Amblyomma parvum, Amblyomma ovale, Amblyomma tigrinum, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus sensu lato and Amblyomma auricularium. Overall, 27 (64.2%) dogs, 59 (75.6%) crab-eating foxes and six (85.7%) ocelots were seroreactive (titer≥64) to at least one Rickettsia species. For 17 (40.4%) dogs, 33 (42.3%) crab-eating foxes, and two (33.3%) ocelots, homologous reactions to R. amblyommatis or a closely related organism were suggested. One hundred and sixteen (23.5%) tick samples and one (1.2%) crab-eating fox blood sample showed positivity in qPCR assays for SFG Rickettsia spp. Among SFG Rickettsia-positive ticks samples, 93 (80.2%) belonged to A. parvum, 14 (12%) belonged to A. sculptum species, three (2.5%) belonged to A

  1. Molecular detection of Rickettsia conorii and other zoonotic spotted fever group rickettsiae in ticks, Romania.

    Science.gov (United States)

    Ionita, Mariana; Silaghi, Cornelia; Mitrea, Ioan Liviu; Edouard, Sophie; Parola, Philippe; Pfister, Kurt

    2016-02-01

    The diverse tick fauna as well as the abundance of tick populations in Romania represent potential risks for both human and animal health. Spotted fever group (SFG) rickettsiae are recognized as important agents of emerging human tick-borne diseases worldwide. However, the epidemiology of rickettsial diseases has been poorly investigated in Romania. In urban habitats, companion animals which are frequently exposed to tick infestation, play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Therefore, the aim of the present study was to investigate the occurrence of SFG rickettsiae in ticks infesting dogs in a greater urban area in South-eastern Romania. Adult ixodid ticks (n=205), including Rhipicephalus sanguineus sensu lato (n=120), Dermacentor reticulatus (n=76) and Ixodes ricinus (n=9) were collected from naturally infested dogs and were screened for SFG rickettsiae using conventional PCR followed by sequencing. Additionally, ticks were screened for DNA of Babesia spp., Hepatozoon spp., Ehrlichia canis, and Anaplasma platys. Four zoonotic SFG rickettsiae were identified: Rickettsia raoultii (16%) and Rickettsia slovaca (3%) in D. reticulatus, Rickettsia monacensis (11%) in I. ricinus, and Rickettsia conorii (0.8%) in Rh. sanguineus s.l. Moreover, pathogens of veterinary importance, such as B. canis (21%) in D. reticulatus and E. canis (7.5%) in Rh. sanguineus s.l. were identified. The findings expand the knowledge on distribution of SFG rickettsiae as well as canine pathogens in Romania. Additionally, this is the first report describing the molecular detection of R. conorii in ticks from Romania. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    Full Text Available BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs of open reading frames (ORFs will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs. METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications and 259 non-representative (at least one gene duplication rickettsial OGs. While the highly reductive (approximately 1.2 MB Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group, TG (typhus group, TRG (transitional group, and SFG (spotted fever group rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and

  3. Fusarium species as pathogen on orchids.

    Science.gov (United States)

    Srivastava, Shikha; Kadooka, Chris; Uchida, Janice Y

    2018-03-01

    The recent surge in demand for exotic ornamental crops such as orchids has led to a rise in international production, and a sharp increase in the number of plant and plant products moving between countries. Along with the plants, diseases are also being transported and introduced into new areas. Fusarium is one of the major diseases causing pathogens infecting orchids that is spreading through international trade. Studies have identified several species of Fusarium associated with orchids, some are pathogenic and cause symptoms such as leaf and flower spots, leaf or sheath blights, pseudostem or root rots, and wilts. Infection and damage caused by Fusarium reduces the quality of plants and flowers, and can cause severe economic losses. This review documents the current status of the Fusarium-orchid interaction, and illustrates challenges and future perspectives based on the available literature. This review is the first of Fusarium and orchid interactions, and integrates diverse results that both furthers the understanding and knowledge of this disease complex, and will enable the development of effective disease management practices. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Detection of Rickettsia and Anaplasma from hard ticks in Thailand.

    Science.gov (United States)

    Malaisri, Premnika; Hirunkanokpun, Supanee; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2015-12-01

    We collected a total of 169 adult hard ticks and 120 nymphs from under the leaves of plants located along tourist nature trails in ten localities. The results present data examining the vector competence of ticks of different genera and the presence of Rickettsia and Anaplasma species. The ticks belonged to three genera, Amblyomma, Dermacentor, and Haemaphysalis, comprising 11 species. Rickettsia bacteria were detected at three collection sites, while Anaplasma bacteria were detected at only one site. Phylogenetic analysis revealed new rickettsia genotypes from Thailand that were closely related to Rickettsia tamurae, Rickettsia monacensis, and Rickettsia montana. This study was also the first to show that Anaplasma bacteria are found in Haemaphysalis shimoga ticks and are closely related evolutionarily to Anaplasma bovis. These results provide additional information for the geographical distribution of tick species and tick-borne bacteria in Thailand and can therefore be applied for ecotourism management. © 2015 The Society for Vector Ecology.

  5. Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli.

    Directory of Open Access Journals (Sweden)

    Damon W Ellison

    Full Text Available Rickettsiae are strict obligate intracellular pathogens that alternate between arthropod and mammalian hosts in a zoonotic cycle. Typically, pathogenic bacteria that cycle between environmental sources and mammalian hosts adapt to the respective environments by coordinately regulating gene expression such that genes essential for survival and virulence are expressed only upon infection of mammals. Temperature is a common environmental signal for upregulation of virulence gene expression although other factors may also play a role. We examined the transcriptional responses of Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, to a variety of environmental signals expected to be encountered during its life cycle. R. rickettsii exposed to differences in growth temperature (25 degrees C vs. 37 degrees C, iron limitation, and host cell species displayed nominal changes in gene expression under any of these conditions with only 0, 5, or 7 genes, respectively, changing more than 3-fold in expression levels. R. rickettsii is not totally devoid of ability to respond to temperature shifts as cold shock (37 degrees C vs. 4 degrees C induced a change greater than 3-fold in up to 56 genes. Rickettsiae continuously occupy a relatively stable environment which is the cytosol of eukaryotic cells. Because of their obligate intracellular character, rickettsiae are believed to be undergoing reductive evolution to a minimal genome. We propose that their relatively constant environmental niche has led to a minimal requirement for R. rickettsii to respond to environmental changes with a consequent deletion of non-essential transcriptional response regulators. A minimal number of predicted transcriptional regulators in the R. rickettsii genome is consistent with this hypothesis.

  6. Detection of Rickettsia spp in Ticks by MALDI-TOF MS

    Science.gov (United States)

    Yssouf, Amina; Almeras, Lionel; Terras, Jérôme; Socolovschi, Cristina; Raoult, Didier; Parola, Philippe

    2015-01-01

    Background Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown to be an effective tool for the rapid identification of arthropods, including tick vectors of human diseases. Methodology/Principal Findings The objective of the present study was to evaluate the use of MALDI-TOF MS to identify tick species, and to determine the presence of rickettsia pathogens in the infected Ticks. Rhipicephalus sanguineus and Dermacentor marginatus Ticks infected or not by R. conorii conorii or R. slovaca, respectively, were used as experimental models. The MS profiles generated from protein extracts prepared from tick legs exhibited mass peaks that distinguished the infected and uninfected Ticks, and successfully discriminated the Rickettsia spp. A blind test was performed using Ticks that were laboratory-reared, collected in the field or removed from patients and infected or not by Rickettsia spp. A query against our in-lab arthropod MS reference database revealed that the species and infection status of all Ticks were correctly identified at the species and infection status levels. Conclusions/Significance Taken together, the present work demonstrates the utility of MALDI-TOF MS for a dual identification of tick species and intracellular bacteria. Therefore, MALDI-TOF MS is a relevant tool for the accurate detection of Rickettsia spp in Ticks for both field monitoring and entomological diagnosis. The present work offers new perspectives for the monitoring of other vector borne diseases that present public health concerns. PMID:25659152

  7. Multi-omics Analysis Sheds Light on the Evolution and the Intracellular Lifestyle Strategies of Spotted Fever Group Rickettsia spp.

    Directory of Open Access Journals (Sweden)

    Khalid El Karkouri

    2017-07-01

    Full Text Available Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s, compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in

  8. Multi-omics Analysis Sheds Light on the Evolution and the Intracellular Lifestyle Strategies of Spotted Fever Group Rickettsia spp.

    Science.gov (United States)

    El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier

    2017-01-01

    Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae

  9. Development of a Rickettsia bellii-Specific TaqMan Assay Targeting the Citrate Synthase Gene.

    Science.gov (United States)

    Hecht, Joy A; Allerdice, Michelle E J; Krawczak, Felipe S; Labruna, Marcelo B; Paddock, Christopher D; Karpathy, Sandor E

    2016-11-01

    Rickettsia bellii is a rickettsial species of unknown pathogenicity that infects argasid and ixodid ticks throughout the Americas. Many molecular assays used to detect spotted fever group (SFG) Rickettsia species do not detect R. bellii, so that infection with this bacterium may be concealed in tick populations when assays are used that screen specifically for SFG rickettsiae. We describe the development and validation of a R. bellii-specific, quantitative, real-time PCR TaqMan assay that targets a segment of the citrate synthase (gltA) gene. The specificity of this assay was validated against a panel of DNA samples that included 26 species of Rickettsia, Orientia, Ehrlichia, Anaplasma, and Bartonella, five samples of tick and human DNA, and DNA from 20 isolates of R. bellii, including 11 from North America and nine from South America. A R. bellii control plasmid was constructed, and serial dilutions of the plasmid were used to determine the limit of detection of the assay to be one copy per 4 µl of template DNA. This assay can be used to better determine the role of R. bellii in the epidemiology of tick-borne rickettsioses in the Western Hemisphere. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  10. Possible Rickettsia massiliae Infection in Greece: an Imported Case.

    Science.gov (United States)

    Chochlakis, Dimosthenis; Bongiorni, Christine; Partalis, Nikolaos; Tselentis, Yannis; Psaroulaki, Anna

    2016-07-22

    Tick-borne rickettsioses are endemic in Greece; however, until recently, only Rickettsia typhi and R. conorii were tested routinely in human samples arriving at the National Reference Center. During the last few years, the identification of different rickettsia species in ticks led to the introduction of other spotted fever group rickettsiae in routine analysis. Under the new scheme, R. massiliae is now tested routinely in human samples; herein, we describe a human case of this infection.

  11. The microbiome of Haemaphysalis lemuris (Acari: Ixodidae), a possible vector of pathogens of endangered lemur species in Madagascar.

    Science.gov (United States)

    Lado, Paula; Qurollo, Barbara; Williams, Cathy; Junge, Randall; Klompen, Hans

    2018-05-02

    Lemurs are primate species that are endemic to Madagascar. At present, about 90% of lemur species are endangered, and 5 species are among the 25 most endangered primates worldwide. Health status is a major factor impacting the viability of wild populations of many endangered species including lemurs. Given this context, we analyzed the microbiome of 24 specimens of Haemaphysalis lemuris, the most common tick parasitizing lemurs in their native habitats. Ticks were collected from 6 lemur species and microbiomes analyzed using next-generation sequencing. Our results show that the H. lemuris microbiome is highly diverse, including over 500 taxa, 267 of which were identified to genus level. Analysis of the microbiome also shows that there is a distinct "host" (lemur species) component when explaining the differences among and between microbial communities of H. lemuris. This "host" component seems to overwhelm any "locality" (geographic origin of the sample) component. In addition to the microbiome data, targeted PCR was used to test for the presence of three pathogens recently detected in the blood of wild lemurs: Borrelia sp., Candidatus Neoehrlichia sp., and Babesia sp. Overall, the presence of DNA of Rickettsia spp., Bartonella spp., Francisella spp., and a Babesia sp., in H. lemuris, is consistent with the hypothesis that these ectoparasites may act as vector for these pathogens. Further studies assessing vector competence are needed to confirm this hypothesis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Seroprevalence of Rickettsia bellii and Rickettsia felis in dogs, São José dos Pinhais, State of Paraná, Brazil Soroprevalência de Rickettsia bellii e Rickettsia felis em cães, São José dos Pinhais, Paraná, Brasil

    Directory of Open Access Journals (Sweden)

    Fernanda Silva Fortes

    2010-12-01

    Full Text Available Brazilian spotted fever (BSF is a vector-borne zoonosis caused by Rickettsia rickettsii bacteria. Dogs can be host sentinels for this bacterium. The aim of the study was to determine the presence of antibodies against Rickettsia spp. in dogs from the city of São José dos Pinhais, State of Paraná, Southern Brazil, where a human case of BSF was first reported in the state. Between February 2006 and July 2007, serum samples from 364 dogs were collected and tested at 1:64 dilutions by indirect immunofluorescence assay (IFA against R. rickettsii and R. parkeri. All sera that reacted at least to one of Rickettsia species were tested against the six main Rickettsia species identified in Brazil: R. rickettsii, R. parkeri, R. bellii, R. rhipicephali, R. amblyommii and R. felis. Sixteen samples (4.4% reacted to at least one Rickettsia species. Among positive animals, two dogs (15.5% showed suggestive titers for R. bellii exposure. One sample had a homologous reaction to R. felis, a confirmed human pathogen. Although Rickettsia spp. circulation in dogs in the area studied may be considered at low prevalence, suggesting low risk of human infection, the present data demonstrate for the first time the exposure of dogs to R. bellii and R. felis in Southern Brazil.A febre maculosa brasileira (FMB é uma zoonose veiculada por carrapatos e causada pela bactéria Rickettsia rickettsii, podendo os cães ser hospedeiros sentinelas para essa bactéria. O objetivo do estudo foi determinar a presença de anticorpos contra Rickettsia spp. em cães de São José dos Pinhais, estado do Paraná, Sul do Brasil. Entre fevereiro de 2006 e julho de 2007, amostras séricas de 364 cães foram coletadas e testadas na diluição de 1:64 por Reação de Imunofluorescência Indireta (RIFI contra R. rickettsii e R. parkeri. Todos os soros reagentes para pelo menos uma espécie de Rickettsia foram testados contra as seis principais espécies de Rickettsia identificadas no Brasil: R

  13. Genotypic and biological characteristics of non-identified strain of spotted fever group rickettsiae isolated in Crimea.

    Science.gov (United States)

    Balayeva, N M; Demkin, V V; Rydkina, E B; Ignatovich, V F; Artemiev, M I; Lichoded LYa; Genig, V A

    1993-12-01

    A strain of rickettsiae, designated Crimea-108, was isolated from ticks Dermacentor marginatus in the Crimea in 1977. Its immunobiological characteristics involve low pathogenicity for experimental animals, moderate infectivity for chick embryos, and antigenic relatedness to spotted fever group (SFG) rickettsiae (R. sibirica, R. conorii, R. akari), especially to R. sibirica. The genotypic characterization of the strain Crimea-108 was carried out in comparison with SFG and typhus group rickettsiae by using restriction fragment length polymorphism (RFLP) analysis and DNA-probe hybridization. The marked similarity was detected between DNA restriction patterns of the strains Crimea-108, R. sibirica and R. conorii, but each of them besides comigrating fragments had specific ones. Genotypic analysis of the strain Crimea-108, the SFG and typhus group rickettsiae by three independent DNA probes, based on R. prowazekii DNA, gave unique hybridization patterns for the Crimea-108 strain with all probes. The obtained data show that the Crimea-108 isolate does not belong to the species of R. sibirica, R. conorii, R. akari. The strain Crimea-108 is a novel strain of SFG rickettsiae for the Crimea region.

  14. Rickettsia species infecting Amblyomma ticks from an area endemic for Brazilian spotted fever in Brazil Rickettsia infectando carrapatos Amblyomma de uma área endêmica para febre maculosa Brasileira no Brasil

    Directory of Open Access Journals (Sweden)

    Elizângela Guedes

    2011-12-01

    Full Text Available This study reports rickettsial infection in Amblyomma cajennense and Amblyomma dubitatum ticks collected in an area of the state of Minas Gerais, Brazil, where Brazilian spotted fever is considered endemic. For this purpose, 400 adults of A. cajenennse and 200 adults of A. dubitatum, plus 2,000 larvae and 2,000 nymphs of Amblyomma spp. were collected from horses and from the vegetation. The ticks were tested for rickettsial infection through polymerase chain reaction (PCR protocols targeting portions of three rickettsial genes (gltA, ompA, and ompB. Only two free-living A. cajennense adult ticks, and four pools of free-living Amblyomma spp. nymphs were shown to contain rickettsial DNA. PCR products from the two A. cajennense adult ticks were shown to be identical to corresponding sequences of the Rickettsia rickettsii strain Sheila Smith. DNA sequences of gltA-PCR products of the four nymph pools of Amblyomma spp. revealed a new genotype, which was shown to be closest (99.4% to the corresponding sequence of Rickettsia tamurae. Our findings of two R. rickettsii-infected A. cajennense ticks corroborate the endemic status of the study area, where human cases of BSF were reported recently. In addition, we report for the first time a new Rickettsia genotype in Brazil.Este trabalho relata infecção por Rickettsia em carrapatos Amblyomma cajennense e Amblyomma dubitatum, colhidos numa área do Estado de Minas Gerais, onde a febre maculosa brasileira (FMB é considerada endêmica. Para esse estudo, 400 adultos de A. cajennense, 200 adultos de A. dubitatum, 2.000 larvas e 2.000 ninfas de Amblyomma spp. foram colhidas de equinos e da vegetação. Os carrapatos foram testados para infecção por rickettsia através de reação em cadeia pela polimerase (PCR direcionada a fragmentos de três genes de rickettsia (gltA, ompA, e ompB. Apenas 2 A. cajennense adultos de vida livre, e 4 grupos de ninfas de Amblyomma spp. continham DNA de rickettsia. Os produtos

  15. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors.

    Directory of Open Access Journals (Sweden)

    Roderick F Felsheim

    2009-12-01

    Full Text Available Rickettsia peacockii, also known as the East Side Agent, is a non-pathogenic obligate intracellular bacterium found as an endosymbiont in Dermacentor andersoni ticks in the western USA and Canada. Its presence in ticks is correlated with reduced prevalence of Rickettsia rickettsii, the agent of Rocky Mountain Spotted Fever. It has been proposed that a virulent SFG rickettsia underwent changes to become the East Side Agent. We determined the genome sequence of R. peacockii and provide a comparison to a closely related virulent R. rickettsii. The presence of 42 chromosomal copies of the ISRpe1 transposon in the genome of R. peacockii is associated with a lack of synteny with the genome of R. rickettsii and numerous deletions via recombination between transposon copies. The plasmid contains a number of genes from distantly related organisms, such as part of the glycosylation island of Pseudomonas aeruginosa. Genes deleted or mutated in R. peacockii which may relate to loss of virulence include those coding for an ankyrin repeat containing protein, DsbA, RickA, protease II, OmpA, ScaI, and a putative phosphoethanolamine transferase. The gene coding for the ankyrin repeat containing protein is especially implicated as it is mutated in R. rickettsii strain Iowa, which has attenuated virulence. Presence of numerous copies of the ISRpe1 transposon, likely acquired by lateral transfer from a Cardinium species, are associated with extensive genomic reorganization and deletions. The deletion and mutation of genes possibly involved in loss of virulence have been identified by this genomic comparison. It also illustrates that the introduction of a transposon into the genome can have varied effects; either correlating with an increase in pathogenicity as in Francisella tularensis or a loss of pathogenicity as in R. peacockii and the recombination enabled by multiple transposon copies can cause significant deletions in some genomes while not in others.

  16. Detection of Rickettsia hoogstraalii, Rickettsia helvetica, Rickettsia massiliae, Rickettsia slovaca and Rickettsia aeschlimannii in ticks from Sardinia, Italy.

    Science.gov (United States)

    Chisu, Valentina; Leulmi, Hamza; Masala, Giovanna; Piredda, Mariano; Foxi, Cipriano; Parola, Philippe

    2017-03-01

    Tick-borne diseases represent a large proportion of infectious diseases that have become a world health concern. The presence of Rickettsia spp. was evaluated by standard PCR and sequencing in 123 ticks collected from several mammals and vegetation in Sardinia, Italy. This study provides the first evidence of the presence of Rickettsia hoogstralii in Haemaphysalis punctata and Haemaphysalis sulcata ticks from mouflon and Rickettsia helvetica in Ixodes festai ticks from hedgehog. In addition, Rickettsia massiliae, Rickettsia slovaca and Rickettsia aeschlimannii were detected in Rhipicephalus sanguineus, Dermacentor marginatus and Hyalomma marginatum marginatum ticks from foxes, swine, wild boars, and mouflon. The data presented here increase our knowledge of tick-borne diseases in Sardinia and provide a useful contribution toward understanding their epidemiology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Investigating the Adult Ixodid Tick Populations and Their Associated Anaplasma, Ehrlichia, and Rickettsia Bacteria at a Rocky Mountain Spotted Fever Hotspot in Western Tennessee.

    Science.gov (United States)

    Trout Fryxell, Rebecca T; Hendricks, Brain M; Pompo, Kimberly; Mays, Sarah E; Paulsen, Dave J; Operario, Darwin J; Houston, Allan E

    2017-08-01

    Ehrlichiosis and rickettsiosis are two common bacterial tick-borne diseases in the southeastern United States. Ehrlichiosis is caused by ehrlichiae transmitted by Amblyomma americanum and rickettsiosis is caused by rickettsiae transmitted by Amblyomma maculatum and Dermacentor variabilis. These ticks are common and have overlapping distributions in the region. The objective of this study was to identify Anaplasma, Ehrlichia, and Rickettsia species associated with questing ticks in a Rocky Mountain spotted fever (RMSF) hotspot, and identify habitats, time periods, and collection methods for collecting questing-infected ticks. Using vegetation drags and CO 2 -baited traps, ticks were collected six times (May-September 2012) from 100 sites (upland deciduous, bottomland deciduous, grassland, and coniferous habitats) in western Tennessee. Adult collections were screened for Anaplasma and Ehrlichia (simultaneous polymerase chain reaction [PCR]) and Rickettsia using genus-specific PCRs, and resulting positive amplicons were sequenced. Anaplasma and Ehrlichia were only identified within A. americanum (Ehrlichia ewingii, Ehrlichia chaffeensis, Panola Mountain Ehrlichia, and Anaplasma odocoilei sp. nov.); more Ehrlichia-infected A. americanum were collected at the end of June regardless of habitat and collection method. Rickettsia was identified in three tick species; "Candidatus Rickettsia amblyommii" from A. americanum, R. parkeri and R. andeanae from A. maculatum, and R. montanensis ( = montana) from D. variabilis. Overall, significantly more Rickettsia-infected ticks were identified as A. americanum and A. maculatum compared to D. variabilis; more infected-ticks were collected from sites May-July and with dragging. In this study, we report in the Tennessee RMSF hotspot the following: (1) Anaplasma and Ehrlichia are only found in A. americanum, (2) each tick species has its own Rickettsia species, (3) a majority of questing-infected ticks are collected May-July, (4) A

  18. Rickettsia ‘In’ and ‘Out’: Two Different Localization Patterns of a Bacterial Symbiont in the Same Insect Species

    Science.gov (United States)

    Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Mouton, Laurence; Hunter, Martha S.; Zchori-Fein, Einat

    2011-01-01

    Intracellular symbionts of arthropods have diverse influences on their hosts, and their functions generally appear to be associated with their localization within the host. The effect of localization pattern on the role of a particular symbiont cannot normally be tested since the localization pattern within hosts is generally invariant. However, in Israel, the secondary symbiont Rickettsia is unusual in that it presents two distinct localization patterns throughout development and adulthood in its whitefly host, Bemisia tabaci (B biotype). In the “scattered” pattern, Rickettsia is localized throughout the whitefly hemocoel, excluding the bacteriocytes, where the obligate symbiont Portiera aleyrodidarum and some other secondary symbionts are housed. In the “confined” pattern, Rickettsia is restricted to the bacteriocytes. We examined the effects of these patterns on Rickettsia densities, association with other symbionts (Portiera and Hamiltonella defensa inside the bacteriocytes) and on the potential for horizontal transmission to the parasitoid wasp, Eretmocerus mundus, while the wasp larvae are developing within the whitefly nymph. Sequences of four Rickettsia genes were found to be identical for both localization patterns, suggesting that they are closely related strains. However, real-time PCR analysis showed very different dynamics for the two localization types. On the first day post-adult emergence, Rickettsia densities were 21 times higher in the “confined” pattern vs. “scattered” pattern whiteflies. During adulthood, Rickettsia increased in density in the “scattered” pattern whiteflies until it reached the “confined” pattern Rickettsia density on day 21. No correlation between Rickettsia densities and Hamiltonella or Portiera densities were found for either localization pattern. Using FISH technique, we found Rickettsia in the gut of the parasitoid wasps only when they developed on whiteflies with the “scattered” pattern. The

  19. Plasmids and rickettsial evolution: insight from Rickettsia felis.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    2007-03-01

    Full Text Available The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG or spotted fever group (SFG rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria.Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives also occur in AG (but not SFG rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly.Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the

  20. Neorickettsia risticii, Rickettsia sp. and Bartonella sp. in Tadarida brasiliensis bats from Buenos Aires, Argentina.

    Science.gov (United States)

    Cicuttin, Gabriel L; De Salvo, María N; La Rosa, Isabel; Dohmen, Federico E Gury

    2017-06-01

    Bats are potential reservoirs of many vector-borne bacterial pathogens. The aim of the present study was to detect species of Anaplasma, Ehrlichia, Neorickettsia, Rickettsia, Borrelia and Bartonella in Brazilian free-tailed bats (Tadarida brasiliensis, Molossidae) from Buenos Aires city, Argentina. Between 2012 and 2013, 61 T. brasiliensis from urban areas of Buenos Aires city were studied. The samples were molecularly screened by PCR and sequencing. Five bats (8.2%) were positive to Neorickettsia risticii, one (1.6%) was positive to Rickettsia sp. and three bats (4.9%) to Bartonella sp. For molecular characterization, the positive samples were subjected to amplification and sequencing of a fragment of p51 gene for N. risticii, a fragment of citrate synthase gene (gltA) for Rickettsia genus and a fragment of gltA for Bartonella genus. Phylogenetic tree was constructed using the maximum-likelihood method. Phylogenetic analysis of N. risticii detect in our study revealed that it relates to findings in the USA West Coast; Rickettsia sp. detected is phylogenetically within R. bellii group, which also includes many other Rickettsia endosymbionts of insects; and Bartonella sp. found is related to various Bartonella spp. described in Vespertilionidae bats, which are phylogenetically related to Molossidae. Our results are in accordance to previous findings, which demonstrate that insectivorous bats could be infected with vector-borne bacteria representing a potential risk to public health. Future research is necessary to clarify the circulation of these pathogens in bats from Buenos Aires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular evidence of Rickettsia spp. in ixodid ticks and rodents in suburban, natural and rural habitats in Slovakia.

    Science.gov (United States)

    Minichová, Lenka; Hamšíková, Zuzana; Mahríková, Lenka; Slovák, Mirko; Kocianová, Elena; Kazimírová, Mária; Škultéty, Ľudovít; Štefanidesová, Katarína; Špitalská, Eva

    2017-03-24

    Natural foci of tick-borne spotted fever group (SFG) rickettsiae of public health concern have been found in Slovakia, but the role of rodents in their circulation is unclear. Ticks (Ixodes ricinus, Ixodes trianguliceps, Dermacentor marginatus, Dermacentor reticulatus, Haemaphysalis concinna and Haemaphysalis inermis) and tissues of rodents (Apodemus flavicollis, Apodemus sylvaticus, Myodes glareolus, Microtus arvalis, Microtus subterraneus and Micromys minutus) were examined for the presence of SFG rickettsiae and Coxiella burnetii by molecular methods. Suburban, natural and rural habitats were monitored to acquire information on the role of ticks and rodents in the agents' maintenance in various habitat types of Slovakia. The overall prevalence of rickettsial infection in questing I. ricinus and D. marginatus was 6.6% and 21.4%, respectively. Rickettsia helvetica, R. monacensis and non-identified rickettsial species were detected in I. ricinus, whereas R. slovaca and R. raoultii were identified in D. marginatus. Rickettsia spp.-infected I. ricinus occurred during the whole tick questing period. Rickettsia helvetica dominated (80.5%) followed by R. monacensis (6.5%). The species were present in all studied habitats. Rickettsia slovaca (66.7%) and R. raoultii (33.3%) were identified in D. marginatus from the rural habitat. Apodemus flavicollis was the most infested rodent species with I. ricinus, but My. glareolus carried the highest proportion of Rickettsia-positive I. ricinus larvae. Only 0.5% of rodents (A. flavicollis) and 5.2% of engorged I. ricinus removed from My. glareolus, A. flavicollis and M. arvalis were R. helvetica- and R. monacensis-positive. Coxiella burnetii was not detected in any of the tested samples. We hypothesize that rodents could play a role as carriers of infected ticks and contribute to the maintenance of rickettsial pathogens in natural foci. Long-term presence of SFG Rickettsia spp. was confirmed in questing ticks from different habitat

  2. Molecular Diagnosis of Pathogenic Sporothrix Species

    NARCIS (Netherlands)

    Rodrigues, Anderson Messias; de Hoog, G Sybren; de Camargo, Zoilo Pires

    2015-01-01

    BACKGROUND: Sporotrichosis is a chronic (sub)cutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species

  3. Parasites and pathogens of ticks ( Rhipicephalus species Acari ...

    African Journals Online (AJOL)

    The interaction of ticks with its environment as well as its natural hosts predisposes it to acquiring pathogens that could pose animal and human health risks. Identifying these pathogens could alert dog owners and others to reassess the predisposing factors and ensure control. The aim of the study was to identify the species ...

  4. Two Pathogens and One Disease: Detection and Identification of Flea-Borne Rickettsiae in Areas Endemic for Murine Typhus in California

    Science.gov (United States)

    EREMEEVA, MARINA E.; KARPATHY, SANDOR E.; KRUEGER, LAURA; HAYES, ERICA K.; WILLIAMS, ASHLEY M.; ZALDIVAR, YAMITZEL; BENNETT, STEPHEN; CUMMINGS, ROBERT; TILZER, ART; VELTEN, ROBERT K.; KERR, NELSON; DASCH, GREGORY A.; HU, RENJIE

    2018-01-01

    Results of an environmental assessment conducted in a newly emergent focus of murine typhus in southern California are described. Opossums, Didelphis virginiana Kerr, infested with cat fleas, Ctenocephalides felis Buché, in the suburban area were abundant. Animal and flea specimens were tested for the DNA of two flea-borne rickettsiae, Rickettsia typhi and Rickettsia felis. R. felis was commonly detected in fleas collected throughout this area while R. typhi was found at a much lower prevalence in the vicinity of just 7 of 14 case-patient homes identified. DNA of R. felis, but not R. typhi, was detected in renal, hepatic, and pulmonary tissues of opossums. In contrast, there were no hematologic polymerase chain reaction findings of R. felis or R. typhi in opossums, rats, and cats within the endemic area studied. Our data suggest a significant probability of human exposure to R. felis in the area studied; however, disease caused by this agent is not recognized by the medical community and may be misdiagnosed as murine typhus using nondiscriminatory serologic methods. PMID:23270180

  5. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.

    Science.gov (United States)

    Oliveira, Alberto; Oliveira, Leticia C; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B; Silva, Arthur; Figueiredo, Henrique C P; Ghosh, Preetam; Portela, Ricardo W; De Carvalho Azevedo, Vasco A; Wattam, Alice R

    2017-01-01

    This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium , exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium . Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.

  6. Combinatorial stresses kill pathogenic Candida species

    Science.gov (United States)

    Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.

    2012-01-01

    Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109

  7. Molecular diagnosis of Rickettsia infection in patients from Tunisia.

    Science.gov (United States)

    Khrouf, Fatma; Sellami, Hanene; Elleuch, Emna; Hattab, Zouhour; Ammari, Lamia; Khalfaoui, Moncef; Souissi, Jihed; Harrabi, Hejer; M'ghirbi, Youmna; Tiouiri, Hanene; Ben Jemaa, Mounir; Hammami, Adnene; Letaief, Amel; Bouattour, Ali; Znazen, Abir

    2016-07-01

    Diagnosis of rickettsioses had largely benefited from the development of molecular techniques. Unfortunately, in Tunisia, despite the large number of rickettsial cases registered every year, the Rickettsia species remain unidentified. In this study, we aimed to detect the Rickettsia species in clinical samples using molecular tests. A study was established to analyze skin biopsies, cutaneous swabs, and cerebrospinal fluid samples taken from clinically suspected patients to have rickettsial infection. Two molecular techniques were used to detect Rickettsia DNA: quantitative real time PCR (qPCR) and reverse line blot test (RLB). An analysis of the RLB hybridization assay results revealed the presence of Rickettsia DNA in skin biopsies (40.6%) and swabs (46.7%). Rickettsia conorii was the most prevalent identified species among tested samples. Other species of interest include Rickettsia typhi and Rickettsia massiliae. Using qPCR positivity rates in skin biopsies was 63.7% against 80% in swabs. R. conorii was the most frequently detected species, followed by R. typhi. The agreement between the two techniques was 68.6% (kappa=0.33). Molecular tests, especially using specific probes qPCR, allow for a rapid, better and confident diagnosis in clinical practice. They improve the survey of Mediterranean spotted fever which is considered to be the most important rickettsial infection in humans in Tunisia. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Rickettsia massiliae infection and SENLAT syndrome in Romania.

    Science.gov (United States)

    Zaharia, Mihaela; Popescu, Corneliu Petru; Florescu, Simin Aysel; Ceausu, Emanoil; Raoult, Didier; Parola, Philippe; Socolovschi, Cristina

    2016-07-01

    The purpose of this prospective study is to describe the clinical and epidemiological characteristics of rickettsioses in Romania, where only Rickettsia conorii is known by clinicians but new Rickettsia species have been identified recently in ticks. A total of eight patients, including a nine-year-old child, were included between June 2011 and June 2012, in the Hospital for Infectious and Tropical Diseases, Bucharest, Romania. Seven cases presented during summer months and one in spring. Six patients presented a generalized rash with fever, myalgia and skin eschar. The last two patients presented a typical SENLAT syndrome, characterized by scalp eschar and neck lymphadenopathy. Using serological tools, we confirmed for the first time two cases of Rickettsia massiliae, the agent of spotted fever disease, and one case of Rickettsia slovaca, and one case of R. slovacaRickettsia raoultii the agents of SENLAT syndrome. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Antibodies to Rickettsia spp. and Borrelia burgdorferi in Spanish Wild Red Foxes (Vulpes vulpes).

    Science.gov (United States)

    Lledó, Lourdes; Serrano, José Luis; Isabel Gegúndez, María; Giménez-Pardo, Consuelo; Saz, José Vicente

    2016-01-01

    We examined 314 red foxes (Vulpes vulpes) from the province of Soria, Spain, for Rickettsia typhi, Rickettsia slovaca, and Borrelia burgdorferi infection. Immunofluorescence assays showed 1.9% had antibodies to R. typhi, 6.7% had antibodies to R. slovaca, and 8.3% had antibodies to B. burgdorferi. Serostatus was not correlated with sex or age. Because red foxes can be infected by Rickettsiae and B. burgdorferi, presence of red foxes may be and indicator for the presence of these pathogens.

  10. The natural infection of birds and ticks feeding on birds with Rickettsia spp. and Coxiella burnetii in Slovakia.

    Science.gov (United States)

    Berthová, Lenka; Slobodník, Vladimír; Slobodník, Roman; Olekšák, Milan; Sekeyová, Zuzana; Svitálková, Zuzana; Kazimírová, Mária; Špitalská, Eva

    2016-03-01

    Ixodid ticks (Acari: Ixodidae) are known as primary vectors of many pathogens causing diseases in humans and animals. Ixodes ricinus is a common ectoparasite in Europe and birds are often hosts of subadult stages of the tick. From 2012 to 2013, 347 birds belonging to 43 species were caught and examined for ticks in three sites of Slovakia. Ticks and blood samples from birds were analysed individually for the presence of Rickettsia spp. and Coxiella burnetii by PCR-based methods. Only I. ricinus was found to infest birds. In total 594 specimens of bird-attached ticks were collected (451 larvae, 142 nymphs, 1 female). Altogether 37.2% (16/43) of bird species were infested by ticks and some birds carried more than one tick. The great tit, Parus major (83.8%, 31/37) was the most infested species. In total, 6.6 and 2.7% of bird-attached ticks were infected with Rickettsia spp. and C. burnetii, respectively. Rickettsia helvetica predominated (5.9%), whereas R. monacensis (0.5%) was only sporadically detected. Coxiella burnetii was detected in 0.9%, Rickettsia spp. in 8.9% and R. helvetica in 4.2% of bird blood samples. The great tit was the bird species most infested with I. ricinus, carried R. helvetica and C. burnetti positive tick larvae and nymphs and was found to be rickettsaemic in its blood. Further studies are necessary to define the role of birds in the circulation of rickettsiae and C. burnetii in natural foci.

  11. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  12. Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells

    Directory of Open Access Journals (Sweden)

    Pedro Curto

    2016-07-01

    Full Text Available Spotted fever group (SFG rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (R. conorii and Rocky Mountain spotted fever (R. rickettsii. Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen and R. montanensis (a non-virulent member of SFG to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with

  13. Distribution of Plasmids in Distinct Leptospira Pathogenic Species.

    Science.gov (United States)

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-11-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  14. Ticks and tick-borne pathogens and putative symbionts of black bears (Ursus americanus floridanus) from Georgia and Florida.

    Science.gov (United States)

    Yabsley, Michael J; Nims, Todd N; Savage, Mason Y; Durden, Lance A

    2009-10-01

    Ticks were collected from 38 black bears (Ursus americanus floridanus) from northwestern Florida (n = 18) from 2003 to 2005 and southern Georgia (n = 20) in 2006. Five species (Amblyomma americanum, A. maculatum, Dermacentor variabilis, Ixodes scapularis, and I. affinis) were collected from Florida bears, and 4 species (A. americanum, A. maculatum, D. variabilis, I. scapularis) were collected from bears in Georgia. Ixodes scapularis was the most frequently collected tick, followed by D. variabilis, A. americanum, A. maculatum, and I. affinis. The collection of I. affinis from a Florida bear represents a new host record. A subset of ticks was screened for pathogens and putative symbionts by polymerase chain reaction (PCR). The zoonotic tick-borne pathogens Ehrlichia chaffeensis and Rickettsia parkeri were detected in 1 of 23 (4.3%) A. americanum and 1 of 12 (8.3%) A. maculatum, respectively. The putative zoonotic pathogen "Rickettsia amblyommii" was detected in 4 (17.4%) A. americanum and 1 (8.3%) A. maculatum. Other putative symbiotic rickettsiae detected included R. bellii and R. montanensis in D. variabilis, a Rickettsia cooleyi-like sp. and Rickettsia sp. Is-1 in I. scapularis, and Rickettsia TR39-like sp. in I. scapularis and A. americanum. All ticks were PCR-negative for Anaplasma phagocytophilum, Panola Mountain Ehrlichia sp., E. ewingii, Francisella tularensis, and Borrelia spp.

  15. Comparative vertical transmission of Rickettsia by Dermacentor variabilis and Amblyomma maculatum.

    Science.gov (United States)

    Harris, Emma K; Verhoeve, Victoria I; Banajee, Kaikhushroo H; Macaluso, Jacqueline A; Azad, Abdu F; Macaluso, Kevin R

    2017-06-01

    The geographical overlap of multiple Rickettsia and tick species coincides with the molecular detection of a variety of rickettsial agents in what may be novel tick hosts. However, little is known concerning transmissibility of rickettsial species by various tick hosts. To examine the vertical transmission potential between select tick and rickettsial species, two sympatric species of ticks, Dermacentor variabilis and Amblyomma maculatum, were exposed to five different rickettsial species, including Rickettsia rickettsii, Rickettsia parkeri, Rickettsia montanensis, Rickettsia amblyommatis, or flea-borne Rickettsia felis. Fitness-related metrics including engorgement weight, egg production index, nutrient index, and egg hatch percentage were then assessed. Subsamples of egg clutches and unfed larvae, nymphs, and adults for each cohort were assessed for transovarial and transstadial transmission of rickettsiae by qPCR. Rickettsial exposure had a minimal fitness effect in D. variabilis and transovarial transmission was observed for all groups except R. rickettsii. In contrast, rickettsial exposure negatively influenced A. maculatum fitness and transovarial transmission of rickettsiae was demonstrated only for R. amblyommatis- and R. parkeri-exposed ticks. Sustained maintenance of rickettsiae via transstadial transmission was diminished from F 1 larvae to F 1 adults in both tick species. The findings of this study suggest transovarial transmission specificity may not be tick species dependent, and sustained vertical transmission is not common. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species.

    Science.gov (United States)

    Rothenburger, Jamie L; Himsworth, Chelsea H; Nemeth, Nicole M; Pearl, David L; Jardine, Claire M

    2017-09-01

    Knowledge of pathogen ecology, including the impacts of environmental factors on pathogen and host dynamics, is essential for determining the risk that zoonotic pathogens pose to people. This review synthesizes the scientific literature on environmental factors that influence the ecology and epidemiology of zoonotic microparasites (bacteria, viruses and protozoa) in globally invasive urban exploiter wildlife species (i.e., rock doves [Columba livia domestica], European starlings [Sturnus vulgaris], house sparrows [Passer domesticus], Norway rats [Rattus norvegicus], black rats [R. rattus] and house mice [Mus musculus]). Pathogen ecology, including prevalence and pathogen characteristics, is influenced by geographical location, habitat, season and weather. The prevalence of zoonotic pathogens in mice and rats varies markedly over short geographical distances, but tends to be highest in ports, disadvantaged (e.g., low income) and residential areas. Future research should use epidemiological approaches, including random sampling and robust statistical analyses, to evaluate a range of biotic and abiotic environmental factors at spatial scales suitable for host home range sizes. Moving beyond descriptive studies to uncover the causal factors contributing to uneven pathogen distribution among wildlife hosts in urban environments may lead to targeted surveillance and intervention strategies. Application of this knowledge to urban maintenance and planning may reduce the potential impacts of urban wildlife-associated zoonotic diseases on people.

  17. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes.

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2014-08-01

    Full Text Available Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a

  18. A Rickettsia Genome Overrun by Mobile Genetic Elements Provides Insight into the Acquisition of Genes Characteristic of an Obligate Intracellular Lifestyle

    Science.gov (United States)

    Joardar, Vinita; Williams, Kelly P.; Driscoll, Timothy; Hostetler, Jessica B.; Nordberg, Eric; Shukla, Maulik; Walenz, Brian; Hill, Catherine A.; Nene, Vishvanath M.; Azad, Abdu F.; Sobral, Bruno W.; Caler, Elisabet

    2012-01-01

    We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ∼35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity. PMID:22056929

  19. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    Science.gov (United States)

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms.

  20. Estimated seroprevalence of Anaplasma spp. and spotted fever group Rickettsia exposure among herders and livestock in Mongolia.

    Science.gov (United States)

    von Fricken, Michael E; Lkhagvatseren, Sukhbaatar; Boldbaatar, Bazartseren; Nymadawa, Pagbajab; Weppelmann, Thomas A; Baigalmaa, Bekh-Ochir; Anderson, Benjamin D; Reller, Megan E; Lantos, Paul M; Gray, Gregory C

    2018-01-01

    To better understand the epidemiology of tick-borne disease in Mongolia, a comprehensive seroprevalence study was conducted investigating exposure to Anaplasma spp. and spotted fever group (SFG) Rickettsia spp. in nomadic herders and their livestock across three provinces from 2014 to 2015. Blood was collected from 397 herders and 2370 livestock, including sheep, goats, cattle, horses and camels. Antibodies against Anaplasma spp. and SFG Rickettsia were determined by indirect immunofluorescence using commercially available slides coated with Anaplasma phagocytophilum and Rickettsia rickettsii antigens. Logistic regression was used to determine if the odds of previous exposure differed by gender, location, and species, with or without adjustment for age. To examine the association between seroprevalence and environmental variables we used ArcGIS to circumscribe the five major clusters where human and animal data were collected. Anaplasma spp. exposure was detected in 37.3% (136/365) of humans and 47.3% (1120/2370) of livestock; SFG Rickettsia exposure was detected in 19.5% (73/374) humans and 20.4% (478/2342) livestock. Compared to the southern province (aimag) of Dornogovi, located in the Gobi Desert, humans were significantly more likely to be exposed to Anaplasma spp. and SFG Rickettsia in the northern provinces of Tov (OR=7.3, 95% CI: 3.5, 15.1; OR=3.3, 95% CI: 1.7, 7.5), and Selenge (OR=6.9, 95% CI: 3.4, 14.0; OR=2.2, 95% CI: 1.1, 4.8). The high seroprevalence of Anaplasma spp. and SFG Rickettsia in humans and livestock suggests that exposure to tick-borne pathogens may be common in herders and livestock in Mongolia, particularly in the more northern regions of the country. Until more is known about these pathogens in Mongolia, physicians and veterinarians in the countryside should consider testing for Anaplasma and SFG Rickettsia infections and treating clinically compatible cases, while public health authorities should expand surveillance efforts for these

  1. Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species.

    Science.gov (United States)

    Patra, Kailash P; Choudhury, Biswa; Matthias, Michael M; Baga, Sheyenne; Bandyopadhya, Keya; Vinetz, Joseph M

    2015-10-30

    Lipopolysaccharides (LPS) are complex, amphipathic biomolecules that constitute the major surface component of Gram-negative bacteria. Leptospira, unlike other human-pathogenic spirochetes, produce LPS, which is fundamental to the taxonomy of the genus, involved in host-adaption and also the target of diagnostic antibodies. Despite its significance, little is known of Leptospira LPS composition and carbohydrate structure among different serovars. LPS from Leptospira interrogans serovar Copenhageni strain L1-130, a pathogenic species, and L. licerasiae serovar Varillal strain VAR 010, an intermediately pathogenic species, were studied. LPS prepared from aqueous and phenol phases were analyzed separately. L. interrogans serovar Copenhageni has additional sugars not found in L. licerasiae serovar Varillal, including fucose (2.7%), a high amount of GlcNAc (12.3%), and two different types of dideoxy HexNAc. SDS-PAGE indicated that L. interrogans serovar Copenhageni LPS had a far higher molecular weight and complexity than that of L. licerasiae serovar Varillal. Chemical composition showed that L. interrogans serovar Copenhageni LPS has an extended O-antigenic polysaccharide consisting of sugars, not present in L. licerasiae serovar Varillal. Arabinose, xylose, mannose, galactose and L-glycero-D-mannoheptose were detected in both the species. Fatty acid analysis by gas chromatography-mass spectrometry (GC-MS) showed the presence of hydroxypalmitate (3-OH-C16:0) only in L. interrogans serovar Copenhageni. Negative staining electron microscopic examination of LPS showed different filamentous morphologies in L. interrogans serovar Copenhageni vs. L. licerasiae serovar Varillal. This comparative biochemical analysis of pathogenic and intermediately pathogenic Leptospira LPS reveals important carbohydrate and lipid differences that underlie future work in understanding the mechanisms of host-adaptation, pathogenicity and vaccine development in leptospirosis.

  2. Inhibitory potential of nine mentha species against pathogenic bacteria strains

    International Nuclear Information System (INIS)

    Hussain, A.; Ahmad, N.; Rashid, M.; Ikram, A. U.; Shinwari, Z. K.

    2015-01-01

    Plants produce secondary metabolites, which are used in their growth and defense against pathogenic agents. These plant based metabolites can be used as natural antibiotics against pathogenic bacteria. Synthetic antibiotics caused different side effects and become resistant to bacteria. Therefore the main objective of the present study was to investigate the inhibitory potential of nine Mentha species extracts against pathogenic bacteria. The methanolic leaves extracts of nine Mentha species (Mentha arvensis, Mentha longifolia, Mentha officinalis, Mentha piperita, Mentha citrata, Mentha pulegium, Mentha royleana, Mentha spicata and Mentha suareolens) were compared for antimicrobial activities. These Mentha species showed strong antibacterial activity against four microorganisms tested. Mentha arvensis showed 25 mm and 30 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover, Mentha longifolia showed 24 mm zone of inhibition against Staphylococcus aureus. Mentha officinalis showed 30 mm zone of inhibition against Staphylococcus aureus. 25 mm inhibitory zone was recorded against Staphylococcus aureus by Mentha piperita. Mentha royleana showed 25 mm zone of inhibition against Vibrio cholera, while Mentha spicata showed 21 mm, 22 mm and 23 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover most of the Mentha species showed zone of inhibition in the range of 10-20 mm. (author)

  3. First isolation of Rickettsia monacensis from a patient in South Korea.

    Science.gov (United States)

    Kim, Yeon-Sook; Choi, Yeon-Joo; Lee, Kyung-Min; Ahn, Kyu-Joong; Kim, Heung-Chul; Klein, Terry; Jiang, Ju; Richards, Allen; Park, Kyung-Hee; Jang, Won-Jong

    2017-07-01

    A Rickettsia sp. was isolated from the blood of a patient with an acute febrile illness using the shell vial technique; the isolate was named CN45Kr and was identified by molecular assay as Rickettsia monacensis, which was first recognized as a pathogen in Spain. Sequencing analysis showed that the gltA sequence of the isolate was identical to that of Rickettsia sp. IRS3. The ompA-5mp fragment sequence showed 100% identity to those of R. monacensis and Rickettsia sp. In56 and ompA-3pA In56 and 100% identity to that of Rickettsia sp. IRS3. The ompB sequence was found to have 99.9% similarity to that of R. monacensis IrR/Munich. This study confirms the pathogenicity of this agent and provides additional information about its geographic distribution. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  4. Development of a Novel Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Rickettsia spp.

    Science.gov (United States)

    Hanaoka, Nozomu; Matsutani, Minenosuke; Satoh, Masaaki; Ogawa, Motohiko; Shirai, Mutsunori; Ando, Shuji

    2017-01-24

    We developed a novel loop-mediated isothermal amplification (LAMP) method to detect Rickettsia spp., including Rickettsia prowazekii and R. typhi. Species-specific LAMP primers were developed for orthologous genes conserved among Rickettsia spp. The selected modified primers could detect all the Rickettsia spp. tested. The LAMP method was successfully used to detect 100 DNA copies of Rickettsia spp. within approximately 60 min at 63℃. Therefore, this method may be an excellent tool for the early diagnosis of rickettsiosis in a laboratory or in the field.

  5. Multiple infections of rodents with zoonotic pathogens in Austria.

    Science.gov (United States)

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  6. Chronological aging in conidia of pathogenic Aspergillus: Comparison between species.

    Science.gov (United States)

    Oliveira, Manuela; Pereira, Clara; Bessa, Cláudia; Araujo, Ricardo; Saraiva, Lucília

    2015-11-01

    Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus and Aspergillus niger are common airborne fungi, and the most frequent causative agents of human fungal infections. However, the resistance and lifetime persistence of these fungi in the atmosphere, and the mechanism of aging of Aspergillus conidia are unknown.With this work, we intended to study the processes underlying conidial aging of these four relevant and pathogenic Aspergillus species. Chronological aging was therefore evaluated in A. fumigatus, A. flavus, A. terreus and A. niger conidia exposed to environmental and human body temperatures. The results showed that the aging process in Aspergillus conidia involves apoptosis,with metacaspase activation, DNA fragmentation, and reactive oxygen species production, associated with secondary necrosis. Distinct results were observed for the selected pathogenic species. At environmental conditions, A. niger was the species with the highest resistance to aging, indicating a higher adaption to environmental conditions, whereas A. flavus followed by A. terreus were the most sensitive species. At higher temperatures (37 °C), A. fumigatus presented the longest lifespan, in accordance with its good adaptation to the human body temperature. Altogether,with this work new insights regarding conidia aging are provided, which may be useful when designing treatments for aspergillosis.

  7. Molecular detection of Rickettsia aeschlimannii in Hyalomma spp. ticks from camels (Camelus dromedarius) in Nigeria, West Africa.

    Science.gov (United States)

    Kamani, J; Baneth, G; Apanaskevich, D A; Mumcuoglu, K Y; Harrus, S

    2015-06-01

    Several species of the spotted fever group rickettsiae have been identified as emerging pathogens throughout the world, including in Africa. In this study, 197 Hyalomma ticks (Ixodida: Ixodidae) collected from 51 camels (Camelus dromedarius) in Kano, northern Nigeria, were screened by amplification and sequencing of the citrate synthase (gltA), outer membrane protein A (ompA) and 17-kDa antigen gene fragments. Rickettsia sp. gltA fragments were detected in 43.3% (42/97) of the tick pools tested. Rickettsial ompA gene fragments (189 bp and 630 bp) were detected in 64.3% (n = 27) and 23.8% (n = 10) of the gltA-positive tick pools by real-time and conventional polymerase chain reaction (PCR), respectively. The amplicons were 99-100% identical to Rickettsia aeschlimannii TR/Orkun-H and R. aeschlimannii strain EgyRickHimp-El-Arish in GenBank. Furthermore, 17-kDa antigen gene fragments of 214 bp and 265 bp were detected in 59.5% (n = 25) and 38.1% (n = 16), respectively, of tick pools, and sequences were identical to one another and 99-100% identical to those of the R. aeschlimannii strain Ibadan A1 in GenBank. None of the Hyalomma impressum ticks collected were positive for Rickettsia sp. DNA. Rickettsia sp. gltA fragments (133 bp) were detected in 18.8% of camel blood samples, but all samples were negative for the other genes targeted. This is the first report to describe the molecular detection of R. aeschlimannii in Hyalomma spp. ticks from camels in Nigeria. © 2015 The Royal Entomological Society.

  8. Phylogenetic Variants of Rickettsia africae, and Incidental Identification of "Candidatus Rickettsia Moyalensis" in Kenya.

    Science.gov (United States)

    Kimita, Gathii; Mutai, Beth; Nyanjom, Steven Ger; Wamunyokoli, Fred; Waitumbi, John

    2016-07-01

    Rickettsia africae, the etiological agent of African tick bite fever, is widely distributed in sub-Saharan Africa. Contrary to reports of its homogeneity, a localized study in Asembo, Kenya recently reported high genetic diversity. The present study aims to elucidate the extent of this heterogeneity by examining archived Rickettsia africae DNA samples collected from different eco-regions of Kenya. To evaluate their phylogenetic relationships, archived genomic DNA obtained from 57 ticks a priori identified to contain R. africae by comparison to ompA, ompB and gltA genes was used to amplify five rickettsial genes i.e. gltA, ompA, ompB, 17kDa and sca4. The resulting amplicons were sequenced. Translated amino acid alignments were used to guide the nucleotide alignments. Single gene and concatenated alignments were used to infer phylogenetic relationships. Out of the 57 DNA samples, three were determined to be R. aeschlimanii and not R. africae. One sample turned out to be a novel rickettsiae and an interim name of "Candidatus Rickettsia moyalensis" is proposed. The bonafide R. africae formed two distinct clades. Clade I contained 9% of the samples and branched with the validated R. africae str ESF-5, while clade II (two samples) formed a distinct sub-lineage. This data supports the use of multiple genes for phylogenetic inferences. It is determined that, despite its recent emergence, the R. africae lineage is diverse. This data also provides evidence of a novel Rickettsia species, Candidatus Rickettsia moyalensis.

  9. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    Science.gov (United States)

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Ixodes pacificus Ticks Maintain Embryogenesis and Egg Hatching after Antibiotic Treatment of Rickettsia Endosymbiont

    Science.gov (United States)

    Kurlovs, Andre H.; Li, Jinze; Cheng, Du; Zhong, Jianmin

    2014-01-01

    Rickettsia is a genus of intracellular bacteria that causes a variety of diseases in humans and other mammals and associates with a diverse group of arthropods. Although Rickettsia appears to be common in ticks, most Rickettsia-tick relationships remain generally uncharacterized. The most intimate of these associations is Rickettsia species phylotype G021, a maternally and transstadially transmitted endosymbiont that resides in 100% of I. pacificus in California. We investigated the effects of this Rickettsia phylotype on I. pacificus reproductive fitness using selective antibiotic treatment. Ciprofloxacin was 10-fold more effective than tetracycline in eliminating Rickettsia from I. pacificus, and quantitative PCR results showed that eggs from the ciprofloxacin-treated ticks contained an average of 0.02 Rickettsia per egg cell as opposed to the average of 0.2 in the tetracycline-treated ticks. Ampicillin did not significantly affect the number of Rickettsia per tick cell in adults or eggs compared to the water-injected control ticks. We found no relationship between tick embryogenesis and rickettsial density in engorged I. pacificus females. Tetracycline treatment significantly delayed oviposition of I. pacificus ticks, but the antibiotic’s effect was unlikely related to Rickettsia. We also demonstrated that Rickettsia-free eggs could successfully develop into larvae without any significant decrease in hatching compared to eggs containing Rickettsia. No significant differences in the incubation period, egg hatching rate, and the number of larvae were found between any of the antibiotic-treated groups and the water-injected tick control. We concluded that Rickettsia species phylotype G021 does not have an apparent effect on embryogenesis, oviposition, and egg hatching of I. pacificus. PMID:25105893

  11. Rickettsia parkeri Rickettsiosis, Arizona, USA.

    Science.gov (United States)

    Herrick, Kristen L; Pena, Sandra A; Yaglom, Hayley D; Layton, Brent J; Moors, Amanda; Loftis, Amanda D; Condit, Marah E; Singleton, Joseph; Kato, Cecilia Y; Denison, Amy M; Ng, Dianna; Mertins, James W; Paddock, Christopher D

    2016-05-01

    In the United States, all previously reported cases of Rickettsia parkeri rickettsiosis have been linked to transmission by the Gulf Coast tick (Amblyomma maculatum). Here we describe 1 confirmed and 1 probable case of R. parkeri rickettsiosis acquired in a mountainous region of southern Arizona, well beyond the recognized geographic range of A. maculatum ticks. The likely vector for these 2 infections was identified as the Amblyomma triste tick, a Neotropical species only recently recognized in the United States. Identification of R. parkeri rickettsiosis in southern Arizona demonstrates a need for local ecologic and epidemiologic assessments to better understand geographic distribution and define public health risk. Education and outreach aimed at persons recreating or working in this region of southern Arizona would improve awareness and promote prevention of tickborne rickettsioses.

  12. Pathogenicity of Virulent Species of Group C Streptococci in Human

    Directory of Open Access Journals (Sweden)

    Marta Kłos

    2017-01-01

    Full Text Available Group C streptococci (GCS are livestock pathogens and they often cause zoonotic diseases in humans. They are Gram-positive, in mostly β-hemolytic and facultative anaerobes. Because of their close evolutionary kinship with group A streptococci (GAS, GCS share many common virulence factors with GAS and cause a similar range of diseases. Due to the exchange of genetic material with GAS, GCS belong to bacteria that are difficult to be distinguished from group A streptococci; GCS are often treated in microbiological diagnostics as contamination of the culture. This report focuses mainly on the pathogenicity of virulent species of GCS and their association with human diseases. The condition that is most frequently quoted is pharyngitis. In this paper, the virulence factors have also been mentioned and an interesting link has been made between GCS and the pathogenesis of rheumatic diseases among the native people of India and Aboriginal populations.

  13. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion

    Science.gov (United States)

    Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.

    2015-01-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  14. Rickettsia conorii transcriptional response within inoculation eschar.

    Directory of Open Access Journals (Sweden)

    Patricia Renesto

    Full Text Available BACKGROUND: Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211 of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. CONCLUSION/SIGNIFICANCE: Because eschar is a site for rickettsial

  15. Detection of a novel Rickettsia sp. in soft ticks (Acari: Argasidae) in Algeria.

    Science.gov (United States)

    Lafri, Ismail; Leulmi, Hamza; Baziz-Neffah, Fadhila; Lalout, Reda; Mohamed, Chergui; Mohamed, Karakallah; Parola, Philippe; Bitam, Idir

    2015-01-01

    Argasid ticks are vectors of viral and bacterial agents that can infect humans and animals. In Africa, relapsing fever borreliae are neglected arthropod-borne pathogens that cause mild to deadly septicemia and miscarriage. It would be incredibly beneficial to be able to simultaneous detect and identify other pathogens transmitted by Argasid ticks. From 2012 to 2014, we conducted field surveys in 4 distinct areas of Algeria. We investigated the occurrence of soft ticks in rodent burrows and yellow-legged gull (Larus michahellis) nests in 10 study sites and collected 154 soft ticks. Molecular identification revealed the occurrence of two different soft tick genera and five species, including Carios capensis in yellow-legged gull nests and Ornithodoros occidentalis, Ornithodoros rupestris, Ornithodoros sonrai, Ornithodoros erraticus in rodent burrows. Rickettsial DNA was detected in 41/154, corresponding to a global detection rate of 26.6%. Sequences of the citrate synthase (gltA) gene suggest that this agent is a novel spotted fever group Rickettsia. For the first time in Algeria, we characterize a novel Rickettsia species by molecular means in soft ticks. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Challenges posed by tick-borne rickettsiae: eco-epidemiology and public health implications.

    Science.gov (United States)

    Eremeeva, Marina E; Dasch, Gregory A

    2015-01-01

    Rickettsiae are obligately intracellular bacteria that are transmitted to vertebrates by a variety of arthropod vectors, primarily by fleas and ticks. Once transmitted or experimentally inoculated into susceptible mammals, some rickettsiae may cause febrile illness of different morbidity and mortality, and which can manifest with different types of exhanthems in humans. However, most rickettsiae circulate in diverse sylvatic or peridomestic reservoirs without having obvious impacts on their vertebrate hosts or affecting humans. We have analyzed the key features of tick-borne maintenance of rickettsiae, which may provide a deeper basis for understanding those complex invertebrate interactions and strategies that have permitted survival and circulation of divergent rickettsiae in nature. Rickettsiae are found in association with a wide range of hard and soft ticks, which feed on very different species of large and small animals. Maintenance of rickettsiae in these vector systems is driven by both vertical and horizontal transmission strategies, but some species of Rickettsia are also known to cause detrimental effects on their arthropod vectors. Contrary to common belief, the role of vertebrate animal hosts in maintenance of rickettsiae is very incompletely understood. Some clearly play only the essential role of providing a blood meal to the tick while other hosts may supply crucial supplemental functions for effective agent transmission by the vectors. This review summarizes the importance of some recent findings with known and new vectors that afford an improved understanding of the eco-epidemiology of rickettsiae; the public health implications of that information for rickettsial diseases are also described. Special attention is paid to the co-circulation of different species and genotypes of rickettsiae within the same endemic areas and how these observations may influence, correctly or incorrectly, trends, and conclusions drawn from the surveillance of

  17. Novel Rickettsia in Ticks, Tasmania, Australia

    OpenAIRE

    Izzard, Leonard; Graves, Stephen; Cox, Erika; Fenwick, Stan; Unsworth, Nathan; Stenos, John

    2009-01-01

    A novel rickettsia was detected in Ixodes tasmani ticks collected from Tasmanian devils. A total of 55% were positive for the citrate synthase gene by quantitative PCR. According to current criteria for rickettsia speciation, this new rickettsia qualifies as Candidatus Rickettsia tasmanensis, named after the location of its detection.

  18. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    Science.gov (United States)

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. First report of a Rickettsia asembonensis related infecting fleas in Brazil.

    Science.gov (United States)

    Silva, Arannadia Barbosa; Vizzoni, Vinicius Figueiredo; Costa, Andréa Pereira; Costa, Francisco Borges; Moraes-Filho, Jonas; Labruna, Marcelo Bahia; Gazêta, Gilberto Salles; de Maria Seabra Nogueira, Rita

    2017-08-01

    The present study was performed in a non-endemic area for spotted fever (SF) in Imperatriz microregion, state of Maranhão, Brazil. Blood samples and ectoparasites were collected from 300 dogs of the Imperatriz microregion. Canine serum samples were tested individually by indirect immunofluorescence assay (IFA), using five Rickettsia isolates from Brazil. Antibodies reactive to at least one of the five species of Rickettsia were detected in 1.6% of the dogs (5/300). These sera were considered reactive to Rickettsia rickettsii and Rickettsia amblyommatis or very closely related species. The ticks (Acari: Ixodidae), identified as Rhipicephalus sanguineus sensu lato (Latreille), and the fleas, identified as Ctenocephalides felis, were tested by polymerase chain reaction (PCR) for detection of rickettsial DNA. More than 78% (83/106) of the C. felis fleas were found to be infected with Rickettsia species using gltA as rickettsial PCR targets, whereas no evidence of Rickettsia spp. was found in R. sanguineus s. l. Genetic analysis based on genes gltA, htrA and ompB showed that the detected strain, is most closely related to Rickettsia asembonensis (formerly Candidatus Rickettsia asemboensis). The present study is the first report of a R. asembonensis related infecting C. felis fleas in Brazil. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High Prevalence of Rickettsia spp. Infections in Small Mammals in Taiwan

    Science.gov (United States)

    Kuo, Chi-Chien; Shu, Pei-Yun; Mu, Jung-Jung

    2015-01-01

    Abstract Surveillance for Rickettsia spp. is urgently needed due to the recent emergence of many novel rickettsioses around the globe, but previous studies in Taiwan have been limited to small areas and no investigation of infections in vertebrate hosts has ever been attempted. We surveyed rickettsial infections systematically in small-mammal hosts trapped between 2006 and 2010 throughout Taiwan. Fragments of ompB and gltA genes in the liver, spleen, and kidney of mammals were targeted by nested polymerase chain reaction. We trapped 1375 individuals of 10 species, among which Rattus losea was the most common (54.6%), followed by Suncus murinus (20.6%) and Mus caroli (10.6%). The overall rate of Rickettsia infections in the liver, spleen, or kidney of 309 assayed small mammals was 60.5%, with a rate of infection ≥50% for each mammal species. DNA nucleotide sequences of 184 successfully sequenced genes were most similar to nine Rickettsia species: Rickettsia conorii, R. felis, R. japonica, R. raoultii, R. rickettsii, Rickettsia sp. IG-1, Rickettsia sp. TwKM01, Rickettsia sp. TwKM02, and R. typhi. Our results suggest that several novel Rickettsia spp. are common and widespread across various habitats throughout Taiwan and suggest the need for further study of emerging rickettsioses in Taiwan. PMID:25629776

  1. Experimental infection of Rickettsia parkeri in the Rhipicephalus microplus tick.

    Science.gov (United States)

    Cordeiro, Matheus Dias; de Azevedo Baêta, Bruna; Cepeda, Patricia Barizon; Teixeira, Rafaella Câmara; Ribeiro, Carla Carolina Dias Uzedo; de Almeida Valim, Jaqueline Rodrigues; Pinter, Adriano; da Fonseca, Adivaldo Henrique

    2018-01-01

    This study aimed to evaluate, by means of artificial feeding, the interaction between a pathogenic rickettsia and the hard tick R. microplus. We used partially engorged females fed on calves free of Rickettsia spp. Group 1 (G1), containing 20 ticks, was fed bovine blood only. Group 2 (G2), containing 20 ticks, was fed blood containing uninfected VERO cells, and group 3 (G3), containing 40 ticks, was fed blood containing VERO cells infected with Rickettsia parkeri. Biological parameters of the non-parasitic phase and a possible bacterial transmission to the tick eggs and to guinea pigs were evaluated. At the end of oviposition, all G3 females were PCR-positive for genes specific for the genus Rickettsia. Although no guinea pigs were infected, the experimental infection of R. microplus by R. parkeri caused a deleterious effect on the oviposition and provided the first report of transovarian transmission of rickettsia in this tick. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Rickettsia gravesii sp. nov.: a novel spotted fever group rickettsia in Western Australian Amblyomma triguttatum triguttatum ticks.

    Science.gov (United States)

    Abdad, Mohammad Y; Abdallah, Rita Abou; Karkouri, Khalid El; Beye, Mamadou; Stenos, John; Owen, Helen; Unsworth, Nathan; Robertson, Ian; Blacksell, Stuart D; Nguyen, Thi-Tien; Nappez, Claude; Raoult, Didier; Fenwick, Stan; Fournier, Pierre-Edouard

    2017-09-01

    A rickettsial organism harboured by Amblyomma triguttatum ticks on Barrow Island, Western Australia, was discovered after reports of possible rickettsiosis among local workers. Subsequent isolation of this rickettsia (strain BWI-1) in cell culture and analysis of its phylogenetic, genotypic and phenotypic relationships with type strains of Rickettsia species with standing in nomenclature suggested that it was sufficiently divergent to warrant its classification as a new species. Multiple gene comparison of strain BWI-1 revealed degrees of sequence similarity with Rickettsia raoultii, its closest relative, of 99.58, 98.89, 97.03, 96.93 and 95.73 % for the 16S rRNA, citrate synthase, ompA, ompB and sca4 genes, respectively. Serotyping in mice also demonstrated that strain BWI-1T was distinct from Rickettsia raoultii. Thus, we propose the naming of a new species, Rickettsia gravesii sp. nov., based on its novel genotypic and phenotypic characteristics. Strain BWI-1T was deposited in the ATCC, CSUR and ARRL collections under reference numbers VR-1664, CSUR R172 and RGBWI-1, respectively.

  3. Prevalence of infection with Rickettsia helvetica in Ixodes ricinus ticks feeding on non-rickettsiemic rodent hosts in sylvatic habitats of west-central Poland.

    Science.gov (United States)

    Biernat, Beata; Stańczak, Joanna; Michalik, Jerzy; Sikora, Bożena; Wierzbicka, Anna

    2016-02-01

    Ixodes ricinus is the most prevalent and widely distributed tick species in European countries and plays a principal role in transmission of a wide range of microbial pathogens. It is also a main vector and reservoir of Rickettsia spp. of the spotted fever group with the infection level ranging in Poland from 1.3% to 11.4%. Nevertheless, little research has been conducted so far to identify reservoir hosts for these pathogens. A survey was undertaken to investigate the presence of Rickettsia spp. in wild small rodents and detached I. ricinus. Rodents, Apodemus flavicollis mice and Myodes glareolus voles were captured in typically sylvatic habitats of west-central Poland. Blood samples and collected ticks were analyzed by conventional, semi-nested and nested PCRs. Rickettsial species were determined by sequence analysis of obtained fragments of gltA and 16S rRNA genes. A total of 2339 immature I. ricinus (mostly larvae) were collected from 158 animals. Proportion of hosts carrying ticks was 84%, being higher for A. flavicollis than for M. glareolus. Rickettsia helvetica, the only species identified, was detected in 8% of 12 nymphs and in at least 10.7% (MIR) of 804 larvae investigated. Prevalence of infected ticks on both rodent species was comparable (10.8 vs. 9%). None of blood samples tested was positive for Rickettsia spp. The results showed that in sylvatic habitats the level of infestation with larval I. ricinus was higher in A. flavicollis mice in comparison with M. glareolus voles. They show that R. helvetica frequently occurred in ticks feeding on rodents. Positive immature ticks were collected from non-rickettsiemic hosts what might suggest a vertical route of their infection (transovarial and/or transstadial) or a very short-lasting rickettsiemia in rodents. A natural vertebrate reservoir host for R. helvetica remains to be determined. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Investigation of Rickettsia, Coxiella burnetii and Bartonella in ticks from animals in South Africa.

    Science.gov (United States)

    Halajian, Ali; Palomar, Ana M; Portillo, Aránzazu; Heyne, Heloise; Luus-Powell, Wilmien J; Oteo, José A

    2016-03-01

    Ticks are involved in the epidemiology of several human pathogens including spotted fever group (SFG) Rickettsia spp., Coxiella burnetii and Bartonella spp. Human diseases caused by these microorganisms have been reported from South Africa. The presence of SFG Rickettsia spp., C. burnetii and Bartonella spp. was investigated in 205 ticks collected from domestic and wild animals from Western Cape and Limpopo provinces (South Africa). Rickettsia massiliae was detected in 10 Amblyomma sylvaticum and 1 Rhipicephalus simus whereas Rickettsia africae was amplified in 7 Amblyomma hebraeum. Neither C. burnetii nor Bartonella spp. was found in the examined ticks. This study demonstrates the presence of the tick borne pathogen R. massiliae in South Africa (Western Cape and Limpopo provinces), and corroborates the presence of the African tick-bite fever agent (R. africae) in this country (Limpopo province). Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. The occurrence of Spotted Fever Group (SFG) Rickettsiae in Ixodes ricinus ticks (Acari: Ixodidae) in northern Poland.

    Science.gov (United States)

    Stańczak, Joanna

    2006-10-01

    Ixodes ricinus, the most commonly observed tick species in Poland, is known vector of microorganisms pathogenic for humans as TBE virus, Borrelia burgdorferi s.1., Anaplasma phagocytophilum and Babesia sp. in this country. Our study aimed to find out whether this tick can also transmit also rickettsiae of the spotted fever group (SFG). DNA extracts from 560 ticks (28 females, 34 males, and 488 nymphs) collected in different wooded areas in northern Poland were examined by PCR for the detection of Rickettsia sp., using a primer set RpCS.877p and RpCS.1258n designated to amplify a 381-bp fragment of gltA gene. A total of 2.9% ticks was found to be positive. The percentage of infected females and males was comparable (10.5% and 11.8%, respectively) and 6.6-7.6 times higher than in nymphs (1.6%). Sequences of four PCR-derived DNA fragments (acc. no. DQ672603) demonstrated 99% similarity with the sequence of Rickettsia helvetica deposited in GenBank. The results obtained suggest the possible role of I. ricinus as a source of a microorganism, which recently has been identified as an agent of human rickettsioses in Europe.

  6. Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura)

    Science.gov (United States)

    Allen, Julie M.; Koga, Ryuichi; Fukatsu, Takema; Sweet, Andrew D.; Johnson, Kevin P.; Reed, David L.

    2016-01-01

    ABSTRACT Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights

  7. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid screening of ticks and fleas for spotted fever group rickettsia.

    Science.gov (United States)

    Noden, Bruce H; Martin, Jaclyn; Carrillo, Yisel; Talley, Justin L; Ochoa-Corona, Francisco M

    2018-01-01

    The importance of tick and flea-borne rickettsia infections is increasingly recognized worldwide. While increased focus has shifted in recent years to the development of point-of-care diagnostics for various vector-borne diseases in humans and animals, little research effort has been devoted to their integration into vector surveillance and control programs, particularly in resource-challenged countries. One technology which may be helpful for large scale vector surveillance initiatives is loop-mediated isothermal amplification (LAMP). The aim of this study was to develop a LAMP assay to detect spotted fever group (SFG) rickettsia DNA from field-collected ticks and fleas and compare with published end-point PCR results. A Spotted Fever Group rickettsia-specific loop-mediated isothermal amplification (SFGR-LAMP) assay was developed using primers based on a region of the R. rickettsii 17kDa protein gene. The sensitivity, specificity, and reproducibility of the assay were evaluated. The assay was then compared with the results of end-point PCR assays for pooled tick and flea samples obtained from field-based surveillance studies. The sensitivity of the SFGR-LAMP assay was 0.00001 ng/μl (25μl volume) which was 10 times more sensitive than the 17kDa protein gene end-point PCR used as the reference method. The assay only recognized gDNA from SFG and transitional group (TRG) rickettsia species tested but did not detect gDNA from typhus group (TG) rickettsia species or closely or distantly related bacterial species. The SFGR-LAMP assay detected the same positives from a set of pooled tick and flea samples detected by end-point PCR in addition to two pooled flea samples not detected by end-point PCR. To our knowledge, this is the first study to develop a functional LAMP assay to initially screen for SFG and TRG rickettsia pathogens in field-collected ticks and fleas. With a high sensitivity and specificity, the results indicate the potential use as a field

  8. Sequencing and comparison of the Rickettsia genomes from the whitefly Bemisia tabaci Middle East Asia Minor I.

    Science.gov (United States)

    Zhu, Dan-Tong; Xia, Wen-Qiang; Rao, Qiong; Liu, Shu-Sheng; Ghanim, Murad; Wang, Xiao-Wei

    2016-08-01

    The whitefly, Bemisia tabaci, harbors the primary symbiont 'Candidatus Portiera aleyrodidarum' and a variety of secondary symbionts. Among these secondary symbionts, Rickettsia is the only one that can be detected both inside and outside the bacteriomes. Infection with Rickettsia has been reported to influence several aspects of the whitefly biology, such as fitness, sex ratio, virus transmission and resistance to pesticides. However, mechanisms underlying these differences remain unclear, largely due to the lack of genomic information of Rickettsia. In this study, we sequenced the genome of two Rickettsia strains isolated from the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex in China and Israel. Both Rickettsia genomes were of high coding density and AT-rich, containing more than 1000 coding sequences, much larger than that of the coexisted primary symbiont, Portiera. Moreover, the two Rickettsia strains isolated from China and Israel shared most of the genes with 100% identity and only nine genes showed sequence differences. The phylogenetic analysis using orthologs shared in the genus, inferred the proximity of Rickettsia in MEAM1 and Rickettsia bellii. Functional analysis revealed that Rickettsia was unable to synthesize amino acids required for complementing the whitefly nutrition. Besides, a type IV secretion system and a number of virulence-related genes were detected in the Rickettsia genome. The presence of virulence-related genes might benefit the symbiotic life of the bacteria, and hint on potential effects of Rickettsia on whiteflies. The genome sequences of Rickettsia provided a basis for further understanding the function of Rickettsia in whiteflies. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  9. Selfish DNA in protein-coding genes of Rickettsia.

    Science.gov (United States)

    Ogata, H; Audic, S; Barbe, V; Artiguenave, F; Fournier, P E; Raoult, D; Claverie, J M

    2000-10-13

    Rickettsia conorii, the aetiological agent of Mediterranean spotted fever, is an intracellular bacterium transmitted by ticks. Preliminary analyses of the nearly complete genome sequence of R. conorii have revealed 44 occurrences of a previously undescribed palindromic repeat (150 base pairs long) throughout the genome. Unexpectedly, this repeat was found inserted in-frame within 19 different R. conorii open reading frames likely to encode functional proteins. We found the same repeat in proteins of other Rickettsia species. The finding of a mobile element inserted in many unrelated genes suggests the potential role of selfish DNA in the creation of new protein sequences.

  10. A Case of Human Infection by Rickettsia slovaca in Greece.

    Science.gov (United States)

    Kostopoulou, Vasiliki; Chochlakis, Dimosthenis; Kanta, Chrysoula; Katsanou, Andromachi; Rossiou, Konstantina; Rammos, Aidonis; Papadopoulos, Spyridon-Filippos; Katsarou, Theodora; Tselentis, Yannis; Psaroulaki, Anna; Boukas, Chrysostomos

    2016-07-22

    Although tick-borne rickettsiosis is endemic in Greece, until recently, human samples arriving at the National Reference Centre under suspicion of rickettsial infection were routinely tested only for Rickettsia typhi and R. conorii. However, identification of additional rickettsia species in ticks prompted revision of the protocol in 2010. Until that year, all human samples received by the laboratory were tested for antibodies against R. conorii and R. typhi only. Now, tests for R. slovaca, R. felis, and R. mongolotimonae are all included in routine analysis. The current description of a human R. slovaca case is possible as a result of these changes in routine testing.

  11. Infections and Coinfections of Questing Ixodes ricinus Ticks by Emerging Zoonotic Pathogens in Western Switzerland

    Science.gov (United States)

    Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle

    2012-01-01

    In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688

  12. Amblyomma imitator Ticks as Vectors of Rickettsia rickettsii, Mexico

    Science.gov (United States)

    Oliveira, Karla A.; Pinter, Adriano; Medina-Sanchez, Aaron; Boppana, Venkata D.; Wikel, Stephen K.; Saito, Tais B.; Shelite, Thomas; Blanton, Lucas; Popov, Vsevolod; Teel, Pete D.; Walker, David H.; Galvao, Marcio A.M.; Mafra, Claudio

    2010-01-01

    Real-time PCR of Amblyomma imitator tick egg masses obtained in Nuevo Leon State, Mexico, identified a Rickettsia species. Sequence analyses of 17-kD common antigen and outer membrane protein A and B gene fragments showed to it to be R. rickettsii, which suggested a potential new vector for this bacterium. PMID:20678325

  13. Rickettsia sibirica mongolitimonae Infection, France, 2010-2014.

    Science.gov (United States)

    Angelakis, Emmanouil; Richet, Herve; Raoult, Didier

    2016-05-01

    To further characterize human infections caused by Rickettsia sibirica mongolitimonae, we tested skin biopsy and swab samples and analyzed clinical, epidemiologic, and diagnostic characteristics of patients with a rickettsiosis. The most common (38%) indigenous species was R. sibirica mongolitimonae. Significantly more cases of R. sibirica mongolitimonae infection occurred during spring and summer.

  14. Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals.

    Science.gov (United States)

    Kakumanu, Madhavi L; Ponnusamy, Loganathan; Sutton, Haley T; Meshnick, Steven R; Nicholson, William L; Apperson, Charles S

    2016-04-01

    A novel nested PCR assay was developed to detectRickettsiaspp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) ofRickettsiaspp. The newly designed primers were evaluated using genomic DNA from 11Rickettsiaspecies belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to otherRickettsia-specific PCR targets (ompA,gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11Rickettsiaspp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from "CandidatusRickettsia amblyommii." Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adultDermacentor variabilisticks. The nested 23S-5S IGS assay detectedRickettsiaDNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species ofRickettsia The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species ofRickettsiain the ticks. "CandidatusRickettsia amblyommii,"R. montanensis,R. felis, andR. belliiwere frequently identified species, along with some potentially novelRickettsiastrains that were closely related toR. belliiandR. conorii. Copyright © 2016 Kakumanu et al.

  15. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan.

    Science.gov (United States)

    Andoh, Masako; Sakata, Akiko; Takano, Ai; Kawabata, Hiroki; Fujita, Hiromi; Une, Yumi; Goka, Koichi; Kishimoto, Toshio; Ando, Shuji

    2015-01-01

    One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the presence of Rickettsia and Ehrlichia spp. genes in ticks associated with reptiles and amphibians originating from outside Japan. Ninety-three ticks representing nine tick species (genera Amblyomma and Hyalomma) were isolated from at least 28 animals spanning 10 species and originating from 12 countries (Ghana, Jordan, Madagascar, Panama, Russia, Sri Lanka, Sudan, Suriname, Tanzania, Togo, Uzbekistan, and Zambia). None of the nine tick species are indigenous in Japan. The genes encoding the common rickettsial 17-kDa antigen, citrate synthase (gltA), and outer membrane protein A (ompA) were positively detected in 45.2% (42/93), 40.9% (38/93), and 23.7% (22/93) of the ticks, respectively, by polymerase chain reaction (PCR). The genes encoding ehrlichial heat shock protein (groEL) and major outer membrane protein (omp-1) were PCR-positive in 7.5% (7/93) and 2.2% (2/93) of the ticks, respectively. The p44 gene, which encodes the Anaplasma outer membrane protein, was not detected. Phylogenetic analysis showed that several of the rickettsial and ehrlichial sequences isolated in this study were highly similar to human pathogen genes, including agents not previously detected in Japan. These data demonstrate the global transportation of pathogenic Rickettsia and Ehrlichia through reptile- and amphibian-associated ticks. These imported animals have potential to transfer pathogens into human life. These results highlight the need to control the international transportation of known and

  16. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan.

    Directory of Open Access Journals (Sweden)

    Masako Andoh

    Full Text Available One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the presence of Rickettsia and Ehrlichia spp. genes in ticks associated with reptiles and amphibians originating from outside Japan. Ninety-three ticks representing nine tick species (genera Amblyomma and Hyalomma were isolated from at least 28 animals spanning 10 species and originating from 12 countries (Ghana, Jordan, Madagascar, Panama, Russia, Sri Lanka, Sudan, Suriname, Tanzania, Togo, Uzbekistan, and Zambia. None of the nine tick species are indigenous in Japan. The genes encoding the common rickettsial 17-kDa antigen, citrate synthase (gltA, and outer membrane protein A (ompA were positively detected in 45.2% (42/93, 40.9% (38/93, and 23.7% (22/93 of the ticks, respectively, by polymerase chain reaction (PCR. The genes encoding ehrlichial heat shock protein (groEL and major outer membrane protein (omp-1 were PCR-positive in 7.5% (7/93 and 2.2% (2/93 of the ticks, respectively. The p44 gene, which encodes the Anaplasma outer membrane protein, was not detected. Phylogenetic analysis showed that several of the rickettsial and ehrlichial sequences isolated in this study were highly similar to human pathogen genes, including agents not previously detected in Japan. These data demonstrate the global transportation of pathogenic Rickettsia and Ehrlichia through reptile- and amphibian-associated ticks. These imported animals have potential to transfer pathogens into human life. These results highlight the need to control the international transportation of known

  17. Pathogenicity of Phytophthora species isolated from rhizosphere soil in the eastern United States

    Science.gov (United States)

    Y. Balci; S. Balci; W.L. MacDonald; K.W. Gottschalk

    2008-01-01

    Pathogenicity of seven Phytophthora species was assessed by inoculation of stem and foliar tissues of oak species (Quercus spp.) native to the eastern United States. Phytophthora cambivora, P. cinnamomi, P. citricola, P. europaea, P. quercina...

  18. Analyzing the Differences and Preferences of Pathogenic and Nonpathogenic Prokaryote Species

    Science.gov (United States)

    Nolen, L.; Duong, K.; Heim, N. A.; Payne, J.

    2015-12-01

    A limited amount of knowledge exists on the large-scale characteristics and differences of pathogenic species in comparison to all prokaryotes. Pathogenic species, like other prokaryotes, have attributes specific to their environment and lifestyles. However, because they have evolved to coexist inside their hosts, the conditions they occupy may be more limited than those of non-pathogenic species. In this study we investigate the possibility of divergent evolution between pathogenic and non-pathogenic species by examining differences that may have evolved as a result of the need to adapt to their host. For this research we analyzed data collected from over 1900 prokaryotic species and performed t-tests using R to quantify potential differences in preferences. To examine the possible divergences from nonpathogenic bacteria, we focused on three variables: cell biovolume, preferred environmental pH, and preferred environmental temperature. We also looked at differences between pathogenic and nonpathogenic species belonging to the same phylum. Our results suggest a strong divergence in abiotic preferences between the two groups, with pathogens occupying a much smaller range of temperatures and pHs than their non-pathogenic counterparts. However, while the median biovolume is different when comparing pathogens and nonpathogens, we cannot conclude that the mean values are significantly different from each other. In addition, we found evidence of convergent evolution, as the temperature and pH preferences of pathogenic bacteria species from different phlya all approach the same values. Pathogenic species do not, however, all approach the same biovolume values, suggesting that specific pH and temperature preferences are more characteristic of pathogens than certain biovolumes.

  19. The genomic organization of plant pathogenicity in Fusarium species

    NARCIS (Netherlands)

    Rep, M.; Kistler, H.C.

    2010-01-01

    Comparative genomics is a powerful tool to infer the molecular basis of fungal pathogenicity and its evolution by identifying differences in gene content and genomic organization between fungi with different hosts or modes of infection. Through comparative analysis, pathogenicity-related chromosomes

  20. 'Candidatus Rickettsia mendelii', a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic.

    Science.gov (United States)

    Hajduskova, Eva; Literak, Ivan; Papousek, Ivo; Costa, Francisco B; Novakova, Marketa; Labruna, Marcelo B; Zdrazilova-Dubska, Lenka

    2016-04-01

    A novel rickettsial sequence in the citrate synthase gltA gene indicating a novel Rickettsia species has been detected in 7 out of 4524 Ixodes ricinus ticks examined within several surveys performed in the Czech Republic from 2005 to 2009. This new Candidatus Rickettsia sp. sequence has been found in 2 nymphs feeding on wild birds (Luscinia megarhynchos and Erithacus rubecula), in a male tick from vegetation, and 4 ticks feeding on a dog (3 males, 1 female tick). Portions of the ompA, ompB, sca4, and htrA genes were not amplifiable in these samples. A maximum likelihood tree of rickettsiae based on comparisons of partial amino acid sequences of citrate synthase and nucleotide sequences of 16S rDNA genes and phylogenetic analysis revealed a basal position of the novel species in the proximity of R. bellii and R. canadensis. The novel species has been named 'Candidatus Rickettsia mendelii' after the founder of genetics, Gregor Mendel. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains.

    Science.gov (United States)

    Hendry, Tory A; Hunter, Martha S; Baltrus, David A

    2014-12-01

    Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia , arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail. Copyright © 2017 Driscoll et al.

  3. Genotypic characterization of Rickettsiae by DNA probes generated from Rickettsia Prowazekii DNA

    International Nuclear Information System (INIS)

    Demkin, V.V.; Rydkina, E.B.; Likhoded, L.Ya.; Ignatovich, V.F.; Genig, V.A.; Balayeva, N.M.

    1994-01-01

    Southern blot analysis of HindIII-cleaved rickettsial DNA was used for genotypic characterization of the typhus group (TG) species (R. prowazekii, R. typhi, R. canada) and a few species were of the spotted fever group (SFG)rickettsiae (R. sibirica, R. conorii, R. akari). Four different DNA probes were employed. PBH11 and PBH13 probes were morphospecific HindIII fragment of R prowazekii DNA. MW218 probe contained the gene for 51 K antigen and MW264 probe contained the citrate synthase gene of R. prowazekii. All the probes hybridized with the tested TG and SFG rickettsial DNAs, forming from 1 to 5 bands, but they did not with R. tsutsudamushi or C. burnetii DNAs. All the probes demonstrated specific hybridization pattern with TG species and R. akari. PBH11. PBH13 and MW264 probes clearly distinguished R. sibirica and R. conorii from the other tested rickettsiae, but not from each other. However, these two species differed slightly with MW218 probe. Several strains of each species were analyzed in this way and except for strains of R. conorii identical intra-species pattern were obtained. These data lead us to consider the obtained hybridization patterns as criteria for genotypic identification. (author)

  4. Rickettsia parkeri in Amblyomma dubitatum ticks in a spotted fever focus from the Brazilian Pampa.

    Science.gov (United States)

    Weck, Bárbara; Dall'Agnol, Bruno; Souza, Ugo; Webster, Anelise; Stenzel, Bárbara; Klafke, Guilherme; Martins, João Ricardo; Reck, José

    2017-07-01

    Spotted fever is an acute febrile illness, which is considered severely underreported and misdiagnosed in the Brazilian Pampa, caused by tick-borne Rickettsiae. Here, we report an eco-epidemiological investigation of Rickettsia spp. in ticks from a spotted fever focus in Toropi, southern Brazil. Ticks were collected from capybara carcasses and processed individually to obtain genomic DNA. Rickettsia was investigated using PCR that amplified the rickettsial fragments of the gltA, ompA and htrA genes. DNA from Rickettsia parkeri was found in four of 14 Amblyomma dubitatum ticks collected from capybara carcasses in Toropi and the nearby municipality of Quevedos. We also tested 210A. dubitatum ticks obtained from road-killed capybaras of other localities from the Pampa biome; none of them were positive for Rickettsiae. Thus, in Rio Grande do Sul, two Rickettsia species can be potentially associated to spotted fever: Rickettsia sp. strain Atlantic Rainforest, associated with Amblyomma ovale ticks in the Atlantic Rainforest biome, and R. parkeri, associated both with Amblyomma tigrinum and A. dubitatum ticks in the Pampa biome. Our results reinforce that R. parkeri may be the agent associated with spotted fever in the Brazilian Pampa. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.

    Science.gov (United States)

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima

    2017-07-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite

  6. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines.

    Science.gov (United States)

    Speck, Stephanie; Kern, Tanja; Aistleitner, Karin; Dilcher, Meik; Dobler, Gerhard; Essbauer, Sandra

    2018-02-01

    Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.

  7. Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan.

    Science.gov (United States)

    Akter, Arzuba; Ooka, Tadasuke; Gotoh, Yasuhiro; Yamamoto, Seigo; Fujita, Hiromi; Terasoma, Fumio; Kida, Kouji; Taira, Masakatsu; Nakadouzono, Fumiko; Gokuden, Mutsuyo; Hirano, Manabu; Miyashiro, Mamoru; Inari, Kouichi; Shimazu, Yukie; Tabara, Kenji; Toyoda, Atsushi; Yoshimura, Dai; Itoh, Takehiko; Kitano, Tomokazu; Sato, Mitsuhiko P; Katsura, Keisuke; Mondal, Shakhinur Islam; Ogura, Yoshitoshi; Ando, Shuji; Hayashi, Tetsuya

    2017-01-01

    Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as "spotted fevers". The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Science.gov (United States)

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  9. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2016-02-01

    Full Text Available Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1 the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2 genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12 autotrophy as a bacterial virulence factor; 3 CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4 finding Leptospira pathogen-specific specialized protein secretion systems; 5 novel virulence-related genes/gene families such as the Virulence Modifying (VM (PF07598 paralogs proteins and pathogen-specific adhesins; 6 discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7 and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately

  10. INFECTION BY Rickettsia felis IN OPOSSUMS (Didelphis sp.) FROM YUCATAN, MEXICO.

    Science.gov (United States)

    Peniche-Lara, Gaspar; Ruiz-Piña, Hugo A; Reyes-Novelo, Enrique; Dzul-Rosado, Karla; Zavala-Castro, Jorge

    2016-01-01

    Rickettsia felis is an emergent pathogen and the causative agent of a typhus-like rickettsiosis in the Americas. Its transmission cycle involves fleas as biological vectors (mainly Ctenocephalides felis) and multiple domestic and synanthropic mammal hosts. Nonetheless, the role of mammals in the cycle of R. felis is not well understood and many efforts are ongoing in different countries of America to clarify it. The present study describes for the first time in Mexico the infection of two species of opossum (Didelphis virginiana and D. marsupialis) by R. felis. A diagnosis was carried out from blood samples by molecular methods through the gltA and 17 kDa genes and sequence determination. Eighty-seven opossum samples were analyzed and 28 were found to be infected (32.1%) from five out of the six studied localities of Yucatan. These findings enable recognition of the potential epidemiological implications for public health of the presence of infected synanthropic Didelphis in households.

  11. Widespread Rickettsia spp. Infections in Ticks (Acari: Ixodoidea) in Taiwan.

    Science.gov (United States)

    Kuo, Chi-Chien; Shu, Pei-Yun; Mu, Jung-Jung; Lee, Pei-Lung; Wu, Yin-Wen; Chung, Chien-Kung; Wang, Hsi-Chieh

    2015-09-01

    Ticks are second to mosquitoes as the most important disease vectors, and recent decades have witnessed the emergence of many novel tick-borne rickettsial diseases, but systematic surveys of ticks and tick-borne rickettsioses are generally lacking in Asia. We collected and identified ticks from small mammal hosts between 2006 and 2010 in different parts of Taiwan. Rickettsia spp. infections in ticks were identified by targeting ompB and gltA genes with nested polymerase chain reaction. In total, 2,732 ticks were collected from 1,356 small mammals. Rhipicephalus haemaphysaloides Supino (51.8% of total ticks), Haemaphysalis bandicota Hoogstraal & Kohls (28.0%), and Ixodes granulatus Supino (20.0%) were the most common tick species, and Rattus losea Swinhoe (44.7% of total ticks) and Bandicota indica Bechstein (39.9%) were the primary hosts. The average Rickettsia infective rate in 329 assayed ticks was 31.9% and eight Rickettsia spp. or closely related species were identified. This study shows that rickettsiae-infected ticks are widespread in Taiwan, with a high diversity of Rickettsia spp. circulating in the ticks. Because notifiable rickettsial diseases in Taiwan only include mite-borne scrub typhus and flea-borne murine typhus, more studies are warranted for a better understanding of the real extent of human risks to rickettsioses in Taiwan. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. THE DISTRIBUTION OF RICKETTSIA IN THE TISSUES OF INSECTS AND ARACHNIDS.

    Science.gov (United States)

    Cowdry, E V

    1923-03-31

    In the absence of a satisfactory definition of Rickettsia the observations herein recorded were arbitrarily limited to bacterium-like organisms which are intracellular and Gram-negative. Rickettsia of this type were found in the following species: Amblyomma americana, Amblyomma hebraeum, Boophilus decoloratus, Atomus sp., Casinaria infesta, Chrysopa oculata, Ctenocephalus canis, Dermacentor variabilis, Lepisma saccharina, Lucoppia curviseta, Margaropus annulatus, Margaropus annulatus australis, Ornithodoros turicata, Pulex irritans, Rhipicephalus sanguineus, Rhipicephalus evertsi, and Salticus scenicus. Since intracellular, Gram-negative Rickettsia have been recorded in the literature as existing in Cimex lectularius, Dermacentor venustus, Melophagus ovinus, and Pediculus humanus, the occasional occurrence of such bodies must be conceded in the following groups not closely related phylogenetically: Attidae, Trombidiidae, Argasidae, lxodidae, Cinura, Acanthiidae, Pediculidae, Hippoboscidae, Chrysopidae, Pulicidae, and Ichneumonidae. The species which harbor Rickettsia differ widely in diet and habitat. One such species is insectivorous throughout life, two are insectivorous in larval stages, becoming vegetarian in the adult condition, one is chiefly vegetarian but partakes of some animal products, and two are usually entirely vegetarian; while the remainder subsist wholly upon a diet of mammalian blood. Rickettsia are associated, in only a few cases, with diseases in mammals. The evidence at hand does not lead beyond the conclusion that the Rickettsia mentioned above are true Gram-negative microorganisms, easily distinguishable from mitochondria and all other cytoplasmic and nuclear granulations, rather completely adapted to an intracellular existence, exhibiting in some cases a remarkable degree of host specificity, and often inherited through the eggs.

  13. Diagnostic Assay for Rickettsia japonica

    Science.gov (United States)

    Hanaoka, Nozomu; Matsutani, Minenosuke; Kawabata, Hiroki; Yamamoto, Seigo; Fujita, Hiromi; Sakata, Akiko; Azuma, Yoshinao; Ogawa, Motohiko; Takano, Ai; Watanabe, Haruo; Kishimoto, Toshio; Shirai, Mutsunori; Kurane, Ichiro

    2009-01-01

    We developed a specific and rapid detection system for Rickettsia japonica and R. heilongjiangensis, the causative agents of spotted fever, using a TaqMan minor groove binder probe for a particular open reading frame (ORF) identified by the R. japonica genome project. The target ORF was present only in R. japonica–related strains. PMID:19961684

  14. Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium.

    NARCIS (Netherlands)

    de Hoog, S.; van Diepeningen, A.D.

    2015-01-01

    The genus Fusarium includes more than 200 species of which 73 have been isolated from human infections. Fusarium species are opportunistic human pathogens with variable aetiology. Species determination is best made with the combined phylogeny of protein-coding genes such as elongation factor (TEF1),

  15. Diversity of aquatic Pseudomonas species and their activity against the fish pathogenic oomycete Saprolegnia

    NARCIS (Netherlands)

    Liu, Y.; Rzeszutek, E.; Voort, van der M.; Wu, C.H.; Thoen, E.; Skaar, I.; Bulone, V.; Dorrestein, P.C.; Raaijmakers, J.M.; Bruijn, de I.

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of

  16. Detection of a Rickettsia Closely Related to Rickettsia aeschlimannii, “Rickettsia heilongjiangensis,” Rickettsia sp. Strain RpA4, and Ehrlichia muris in Ticks Collected in Russia and Kazakhstan

    OpenAIRE

    Shpynov, Stanislav; Fournier, Pierre-Edouard; Rudakov, Nikolay; Tankibaev, Marat; Tarasevich, Irina; Raoult, Didier

    2004-01-01

    Using PCR, we screened 411 ticks from four genera collected in Russia and Kazakhstan for the presence of rickettsiae and ehrlichiae. In Russia, we detected “Rickettsia heilongjiangensis,” Rickettsia sp. strain RpA4, and Ehrlichia muris. In Kazakhstan, we detected Rickettsia sp. strain RpA4 and a rickettsia closely related to Rickettsia aeschlimannii. These agents should be considered in a differential diagnosis of tick-borne infections in these areas.

  17. Bacteria of the genera Ehrlichia and Rickettsia in ticks of the family Ixodidae with medical importance in Argentina.

    Science.gov (United States)

    Sebastian, Patrick S; Tarragona, Evelina L; Bottero, María N Saracho; Mangold, Atilio J; Mackenstedt, Ute; Nava, Santiago

    2017-01-01

    The aim of this study was to get an overview about the occurrence of bacteria from the genus Ehrlichia and Rickettsia in ixodid ticks with medical importance in Argentina. Therefore, in 2013 and 2014, free-living ticks were collected in different provinces of northern Argentina. These ticks were determined as Amblyomma sculptum, Amblyomma neumanni, Amblyomma parvum, Amblyomma triste, Amblyomma ovale, Amblyomma tonelliae and Haemaphysalis juxtakochi. All samples were tested to determine the infection with Ehrlichia spp. and Rickettsia spp. by PCR assays. Rickettsial DNA was detected in all tested tick species, with the exception of A. tonelliae. 'Candidatus Rickettsia amblyommii', 'Candidatus Rickettsia andeanae', and Rickettsia parkeri were found in A. neumanni, A. parvum, and A. triste, respectively. Another rickettsial species, Rickettsia bellii, was found in A. sculptum, A. ovale and H. juxtakochi. None of the tested ticks showed infection with Ehrlichia. The results of the study demonstrate that Rickettsia species belonging to the spotted fever group are associated with various species of Amblyomma throughout a wide area of northern Argentina, where cases of Amblyomma ticks biting humans are common.

  18. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati

    Science.gov (United States)

    Frisvad, Jens C.; Larsen, Thomas O.

    2016-01-01

    Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species. PMID:26779142

  19. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Human Infection with Rickettsia felis, Kenya

    Science.gov (United States)

    2010-07-01

    Human Infection with Rickettsia felis, Kenya Allen L. Richards, Ju Jiang, Sylvia Omulo, Ryan Dare, Khalif Abdirah~a~, P:bdile Ali, Shanaaz K...infection with obligate intracellular rickettsiae , which are transmitted to humans by arthropod vectors (e.g., lice, fleas, ticks, and mites... Rickettsiae are associated with arthropods for a least a part of their life cycle and are passed to other arthropods by transovarial transmission or

  1. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    Science.gov (United States)

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  2. Some South African Rubiaceae Tree Leaf Extracts Have Antimycobacterial Activity Against Pathogenic and Non-pathogenic Mycobacterium Species.

    Science.gov (United States)

    Aro, Abimbola O; Dzoyem, Jean P; Hlokwe, Tiny M; Madoroba, Evelyn; Eloff, Jacobus N; McGaw, Lyndy J

    2015-07-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Many plant species contain antimycobacterial compounds, which may serve as template molecules for new anti-TB drugs. The Rubiaceae family is the largest family of trees in southern Africa, and preliminary evidence revealed antimycobacterial activity in several species of the genus, motivating further studies. Leaf extracts of 15 tree species from the Rubiaceae family were screened for antimycobacterial activity against pathogenic M. tuberculosis and non-pathogenic Mycobacterium smegmatis, Mycobacterium aurum and Mycobacterium bovis BCG (Bacillus Calmette-Guérin) using a twofold serial microdilution assay. Cytotoxicity was determined using a tetrazolium-based colorimetric assay against C3A liver cells and Vero kidney cells. Minimum inhibitory concentration values as low as 0.04 mg/mL against M. smegmatis and M. tuberculosis were recorded. Activity against M. aurum was the best predictor of activity against pathogenic M. tuberculosis (correlation coefficient = 0.9). Bioautography indicated at least 40 different antimycobacterial compounds in the extracts. Cytotoxicity of the extracts varied, and Oxyanthus speciosus had the most promising selectivity index values. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Rickettsia amblyommatis infecting ticks and exposure of domestic dogs to Rickettsia spp. in an Amazon-Cerrado transition region of northeastern Brazil.

    Science.gov (United States)

    Costa, Francisco B; da Costa, Andréa P; Moraes-Filho, Jonas; Martins, Thiago F; Soares, Herbert S; Ramirez, Diego G; Dias, Ricardo A; Labruna, Marcelo B

    2017-01-01

    This study was performed in Maranhão state, a transition area two Brazilian biomes, Amazon and Cerrado. During 2011-2013, 1,560 domestic dogs were sampled for collection of serum blood samples and ticks in eight counties (3 within the Amazon and 5 within the Cerrado). A total of 959 ticks were collected on 150 dogs (9.6%). Rhipicephalus sanguineus sensu lato (s.l.) was the most abundant tick (68% of all collected specimens), followed by Amblyomma cajennense sensu lato (s.l.) (12.9%), Amblyomma parvum (9.2%), and Amblyomma ovale (5.2%). Other less abundant species (Rickettsia species: Rickettsia amblyommatis in 1% (1/100) A. cajennense s.l., 'Candidatus Rickettsia andeanae' in 20.7% (12/58) A. parvum, Rickettsia bellii in 6.8% (3/44) A. ovale and 100% (1/1) A. rotundatum ticks. An additional collection of A. sculptum from horses in a Cerrado area, and A. cajennense s.s. from pigs in an Amazon area revealed R. amblyommatis infecting only the A. cajennense s.s. ticks. Serological analysis of the 1,560 canine blood samples revealed 12.6% canine seroreactivity to Rickettsia spp., with the highest specific seroreactivity rate (10.2%) for R. amblyommatis. Endpoint titers to R. amblyommatis were significantly higher than those for the other Rickettsia antigens, suggesting that most of the seroreactive dogs were exposed to R. amblyommatis-infected ticks. Highest canine seroreactivity rates per locality (13.1-30.8%) were found in Amazon biome, where A. cajennense s.s. predominated. Lowest seroreactivity rates (1.9-6.5%) were found in Cerrado localities that were further from the Amazon, where A. sculptum predominated. Multivariate analyses revealed that canine seroreactivity to Rickettsia spp. or R. amblyommatis was statistically associated with rural dogs, exposed to Amblyomma ticks.

  4. Pathogenicity, Epidemiology and Virulence Factors of Salmonella species: A Review

    Directory of Open Access Journals (Sweden)

    Tamègnon Victorien DOUGNON

    2017-12-01

    Full Text Available Salmonella infections are major public health problems worldwide. The hereby review aimed to establish an overview on the pathogenicity, epidemiology and virulence factors of Salmonella spp. in the world. A systematic search was conducted online using the keywords ‘Salmonella’, ‘Salmonella spp.’, ‘Salmonella spp. Epidemiology’, ‘virulence factors of Salmonella spp. in the world’, ‘bacteria responsible for the contamination of meat products’, ‘non-typhoid salmonella’. These keywords were entered into databases such as PubMed and Google Scholar using mainly French language. The obtained articles were included based on the reliability of their source, the study area (usually Benin and Africa and the subject. The review revealed that Salmonella spp. is motile Gram-negative rod-shaped bacteria, of the family Enterobacteriaceae, currently counting more than 2,600 serovars. Human contamination occurs through the ingestion of contaminated water and food and can cause gastroenteritis or typhoid fever, which are two serious public health problems. A gene set constituting the pathogenicity islands determines the pathogenesis of Salmonella spp. The diagnosis is based on bacteriological, serological and molecular techniques. Salmonella infections are usually treated using antibiotics; however, emergence of antibiotic resistance in these microorganisms suggests that the anti-salmonella control should explore new sources such as medicinal plants

  5. Disposal of Hospital Wastes Containing Pathogenic Organisms

    Science.gov (United States)

    1979-09-01

    virus African swine fever virus Besnoitia besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus...Sindbis virus Tensaw virus Turlock virus Vaccinia virus Varicella virus Vole rickettsia Yellow fever virus, 17D vaccinL strain 163 Class 3 AlastruLn...Rickettsia - all species except Vole rickettsia when used for transmission or animal inoculation experiments Vesicular stomatitis virus Yellow fever virus

  6. Identification and characterization of pathogenic Pestalotiopsis species to pecan tree in Brazil

    Directory of Open Access Journals (Sweden)

    Marília Lazarotto

    2014-06-01

    Full Text Available The objective of this work was to characterize and cluster isolates of Pestalotiopsis species and to identify those that are pathogenic to pecan, based on morphological and molecular characters. Pestalotiopsis spp. isolates were identified by sequencing the internal transcribed spacer (ITS and β?tubulin regions. Identification methods were compared to indicate the key morphological characters for species characterization. Thirteen isolates were used for the pathogenicity tests. Morphological characterization was performed using the following variables: mycelial growth rate, sporulation, colony pigmentation, and conidial length and width. Ten pathogenic isolates were identified, three as -tubulin regions. Identification methods were compared to indicate the key morphological characters for species characterization. Thirteen isolates were used for the pathogenicity tests. Morphological characterization was performed using the following variables: mycelial growth rate, sporulation, colony pigmentation, and conidial length and width. Ten pathogenic isolates were identified, three as Pestalotiopsis clavispora and three as P. cocculi. The other isolates remained as an undefined species. The morphological characters were efficient for an initial separation of the isolates, which were grouped according to differences at species level, mainly colony diameter, which was identified as an important morphological describer. Beta-tubulin gene sequencing was less informative than the ITS region sequencing for species identification.

  7. Pathogenicity of Leptographium Species Associated with Loblolly Pine Decline

    Science.gov (United States)

    L. G. Eckhardt; J. P. Jones; Kier D. Klepzig

    2004-01-01

    Freshly lifted seedlings and 21-year-old trees of loblolly pine were wound-inoculated with Leptographium species recovered from the soil and/or roots of trees with loblolly decline symptoms in central Alabama. Seedlings inoculated with L. procerum in the greenhouse produced significantly fewer root initials and a smaller root mass than control...

  8. Variability of Germinative Potential among Pathogenic Species of Aspergillus

    OpenAIRE

    Araujo, Ricardo; Rodrigues, Acacio Gonçalves

    2004-01-01

    The objective of our study was to evaluate parameters influencing the germination of Aspergillus conidia. Inoculum concentration and age significantly influenced germination. Different incubation temperatures revealed significant differences among Aspergillus species. The internal human milieu provides the ideal conditions for the development of invasive disease by Aspergillus fumigatus but restricts invasion by Aspergillus flavus and Aspergillus niger.

  9. Short Communication Occurrence of pathogenic yersinia species in ...

    African Journals Online (AJOL)

    Three (3) samples of Yersinia species were isolated indicating a 1% occurrence rate. Only Yersinia enterocolitica was implicated in this study. Serotyping revealed that all strains were of serotype 0:9 which is one of the two most common serotypes representing the most virulent worldwide causes of yersiniosis. The results of ...

  10. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    International Nuclear Information System (INIS)

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-01-01

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by 51 Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes

  11. The Detection of Spotted Fever Group Rickettsia DNA in Tick Samples From Pastoral Communities in Kenya.

    Science.gov (United States)

    Koka, Hellen; Sang, Rosemary; Kutima, Helen Lydia; Musila, Lillian

    2017-05-01

    In this study, ticks from pastoral communities in Kenya were tested for Rickettsia spp. infections in geographical regions where the presence of tick-borne arboviruses had previously been reported. Rickettsial and arbovirus infections have similar clinical features which makes differential diagnosis challenging when both diseases occur. The tick samples were tested for Rickettsia spp. by conventional PCR using three primer sets targeting the gltA, ompA, and ompB genes followed by amplicon sequencing. Of the tick pools screened, 25% (95/380) were positive for Rickettsia spp. DNA using the gltA primer set. Of the tick-positive pools, 60% were ticks collected from camels. Rickettsia aeschlimannii and R. africae were the main Rickettsia spp. detected in the tick pools sequenced. The findings of this study indicate that multiple Rickettsia species are circulating in ticks from pastoral communities in Kenya and could contribute to the etiology of febrile illness in these areas. Diagnosis and treatment of rickettsial infections should be a public health priority in these regions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Amblyomma maculatum Feeding Augments Rickettsia parkeri Infection in a Rhesus Macaque Model: A Pilot Study

    Science.gov (United States)

    Banajee, Kaikhushroo H.; Embers, Monica E.; Langohr, Ingeborg M.; Doyle, Lara A.; Hasenkampf, Nicole R.; Macaluso, Kevin R.

    2015-01-01

    Rickettsia parkeri is an emerging eschar-causing human pathogen in the spotted fever group of Rickettsia and is transmitted by the Gulf coast tick, Amblyomma maculatum. Tick saliva has been shown to alter both the cellular and humoral components of the innate and adaptive immune systems. However, the effect of this immunomodulation on Rickettsia transmission and pathology in an immunocompetent vertebrate host has not been fully examined. We hypothesize that, by modifying the host immune response, tick feeding enhances infection and pathology of pathogenic spotted fever group Rickettsia sp. In order to assess this interaction in vivo, a pilot study was conducted using five rhesus macaques that were divided into three groups. One group was intradermally inoculated with low passage R. parkeri (Portsmouth strain) alone (n = 2) and another group was inoculated during infestation by adult, R. parkeri-free A. maculatum (n = 2). The final macaque was infested with ticks alone (tick feeding control group). Blood, lymph node and skin biopsies were collected at several time points post-inoculation/infestation to assess pathology and quantify rickettsial DNA. As opposed to the tick-only animal, all Rickettsia-inoculated macaques developed inflammatory leukograms, elevated C-reactive protein concentrations, and elevated TH1 (interferon-γ, interleukin-15) and acute phase inflammatory cytokines (interleukin-6) post-inoculation, with greater neutrophilia and interleukin-6 concentrations in the tick plus R. parkeri group. While eschars formed at all R. parkeri inoculation sites, larger and slower healing eschars were observed in the tick feeding plus R. parkeri group. Furthermore, dissemination of R. parkeri to draining lymph nodes early in infection and increased persistence at the inoculation site were observed in the tick plus R. parkeri group. This study indicates that rhesus macaques can be used to model R. parkeri rickettsiosis, and suggests that immunomodulatory factors

  13. Four Pathogenic Candida Species Differ in Salt Tolerance

    Czech Academy of Sciences Publication Activity Database

    Krauke, Yannick; Sychrová, Hana

    2010-01-01

    Roč. 61, č. 4 (2010), s. 335-339 ISSN 0343-8651 R&D Projects: GA MŠk(CZ) LC531 Grant - others:EC(XE) MRTN-CT-2004-512481 Institutional research plan: CEZ:AV0Z50110509 Keywords : candida species * salt tolerance * potassium homeostasis Subject RIV: EE - Microbiology , Virology Impact factor: 1.510, year: 2010

  14. Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia

    Directory of Open Access Journals (Sweden)

    Ivan Milenković

    2018-06-01

    Full Text Available During a survey in three declining and three healthy poplar plantations in Serbia, six different Phytophthora species were obtained. Phytophthora plurivora was the most common, followed by P. pini, P. polonica, P. lacustris, P. cactorum, and P. gonapodyides. Pathogenicity of all isolated species to four-month and one-year-old cuttings of Populus hybrid clones I-214 and Pánnonia, respectively, was tested using both a soil infestation and stem inoculation test. Isolates of P. polonica, P. × cambivora, P. cryptogea, and P. × serendipita from other host plants were included as a comparison. In the soil infestation test, the most aggressive species to clone I-214 were P. plurivora, P. × serendipita, and P. pini. On clone Pánnonia, P. gonapodyides and P. pini were the most aggressive, both causing 100% mortality, followed by P. cactorum, P. × cambivora, and P. polonica. In the underbark inoculation test, the susceptibility of both poplar clones to the different Phytophthora species was largely similar, as in the soil infestation test, with the exception of P. polonica, which proved to be only weakly pathogenic to poplar bark. The most aggressive species to clone I-214 was P. pini, while on clone Pánnonia, the longest lesions and highest disease incidence were caused by P. gonapodyides. Phytophthora cactorum and P. plurivora were pathogenic to both clones, whereas P. × cambivora showed only weak pathogenicity. The implications of these findings and possible pathways of dispersion of the pathogens are discussed.

  15. Genetic islands in pome fruit pathogenic and nonpathogenic Erwinia species and related plasmids

    Directory of Open Access Journals (Sweden)

    Pablo eLlop

    2015-08-01

    Full Text Available New pathogenic bacteria species belonging to the genus Erwinia associated with pome fruit trees (Erwinia pyrifoliae, E. piriflorinigrans, E. uzenensis have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc. show a high intraspecies homogeneity (i.e. among E. amylovora strains and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with nonpathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  16. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Abramyan, John; Stajich, Jason E

    2012-01-01

    Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide

  17. Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands

    NARCIS (Netherlands)

    Tijsse-Klasen, E.; Fonville, M.; Gassner, F.; Nijhof, A.M.; Hovius, E.K.E.; Jongejan, F.; Takken, W.; Reimerink, J.R.; Overgaauw, P.A.M.; Sprong, H.

    2011-01-01

    Background: Awareness for flea-and tick-borne infections has grown in recent years and the range of microorganisms associated with these ectoparasites is rising. Bartonella henselae, the causative agent of Cat Scratch Disease, and other Bartonella species have been reported in fleas and ticks. The

  18. Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands

    NARCIS (Netherlands)

    Tijsse-Klasen, E.; Fonville, M.; Gassner, F.; Nijhof, A.M.; Hovius, E.K.; Jongejan, F.; Takken, F.; Reimerink, J.R.; Overgaauw, P.A.M.; Sprong, H.

    2011-01-01

    BACKGROUND: Awareness for flea- and tick-borne infections has grown in recent years and the range of microorganisms associated with these ectoparasites is rising. Bartonella henselae, the causative agent of Cat Scratch Disease, and other Bartonella species have been reported in fleas and ticks. The

  19. Comparison of three methods for identification of pathogenic Neisseria species

    Energy Technology Data Exchange (ETDEWEB)

    Appelbaum, P.C.; Lawrence, R.B.

    1979-05-01

    A radiometric procedure was compared with the Minitek and Cystine Trypticase Agar sugar degradation methods for identification of 113 Neisseria species (58 Neisseria meningitidis, 51 Neisseria gonorrhoeae, 2 Neisseria lactamica, 2 Neisseria sicca). Identification of meningococci and gonoccoi was confirmed by agglutination and fluorescent antibody techniques, respectively. The Minitek method identified 97% of meningococci, 92% of gonococci, and 100% of other Neisseria after 4 h of incubation. The radiometric (Bactec) procedure identified 100% of gonococci and 100% of miscellaneous Neisseria after 3 h, but problems were encountered with meningococci: 45% of the later strains yielded index values for fructose between 20 and 28 (recommended negative cut-off point, less than 20), with strongly positive (greater than 100) glucose and maltose and negative o-nitrophenyl-beta-0-galactopyranoside reactions in all 58 strains. The Cystine Trypticase Agar method identified 91% of meningococci, ases.

  20. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  1. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  2. Serological and molecular evidence for spotted fever group Rickettsia and Borrelia burgdorferi sensu lato co-infections in The Netherlands.

    Science.gov (United States)

    Koetsveld, Joris; Tijsse-Klasen, Ellen; Herremans, Tineke; Hovius, Joppe W R; Sprong, Hein

    2016-03-01

    Only a few reported cases indicate that Rickettsia helvetica and Rickettsia monacensis can cause disease in humans. Exposure to these two spotted fever group (SFG) rickettsiae occurs through bites of Ixodes ricinus, also the primary vector of Lyme borreliosis in Europe. To date, it is unclear how often exposure to these two microorganisms results in infection or disease. We show that of all the Borrelia burgdorferi s.l.-positive ticks, 25% were co-infected with rickettsiae. Predominantly R. helvetica was detected while R. monacensis was only found in approximately 2% of the ticks. In addition, exposure to tick-borne pathogens was compared by serology in healthy blood donors, erythema migrans (EM)-patients, and patients suspected of Lyme neuroborreliosis (LNB). As could be expected, seroreactivity against B. burgdorferi sensu lato was lower in blood donors (6%) compared to EM patients (34%) and suspected LNB cases (64%). Interestingly, seroreactivity against SFG Rickettsia antigens was not detected in serum samples from blood donors (0%), but 6% of the EM patients and 21% of the LNB suspects showed anti-rickettsial antibodies. Finally, the presence of B. burgdorferi s.l. and Rickettsia spp. in cerebrospinal fluid samples of a large cohort of patients suspected of LNB (n=208) was investigated by PCR. DNA of B. burgdorferi s.l., R. helvetica and R. monacensis was detected in seventeen, four and one patient, respectively. In conclusion, our data show that B. burgdorferi s.l. and SFG rickettsiae co-infection occurs in Dutch I. ricinus and that Lyme borreliosis patients, or patients suspected of Lyme borreliosis, are indeed exposed to both tick-borne pathogens. Whether SFG rickettsiae actually cause disease, and whether co-infections alter the clinical course of Lyme borreliosis, is not clear from our data, and warrants further investigation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Fusarium proliferatum isolated from garlic in Spain: identification, toxigenic potential and pathogenicity on related Allium species

    Directory of Open Access Journals (Sweden)

    Daniel PALMERO

    2012-05-01

    Full Text Available Fusarium proliferatum has been reported on garlic in the Northwest USA, Spain and Serbia, causing water-soaked tan-colored lesions on cloves. In this work, Fusarium proliferatum was isolated from 300 symptomatic garlic bulbs. Morphological identification of Fusarium was confirmed using species-specific PCR assays and EF-1α sequencing. Confirmation of pathogenicity was conducted with eighteen isolates. Six randomly selected F. proliferatum isolates from garlic were tested for specific pathogenicity and screened for fusaric acid production. Additionally, pathogenicity of each F. proliferatum isolate was tested on healthy seedlings of onion (Allium cepa, leek (A. porrum, scallions (A. fistulosum, chives (A. schoenoprasum and garlic (A. sativum. A disease severity index (DSI was calculated as the mean severity on three plants of each species with four test replicates. Symptoms on onion and garlic plants were observed three weeks after inoculation. All isolates tested produced symptoms on all varieties inoculated. Inoculation of F. proliferatum isolates from diseased garlic onto other Allium species provided new information on host range and pathogenicity. The results demonstrated differences in susceptibility with respect to host species and cultivar. The F. proliferatum isolates tested all produced fusaric acid (FA; correlations between FA production and isolate pathogenicity are discussed. Additionally, all isolates showed the presence of the FUM1 gene suggesting the ability of Spanish isolates to produce fumonisins.

  4. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  5. Rickettsia parkeri Rickettsiosis in Different Ecological Regions of Argentina and Its Association with Amblyomma tigrinum as a Potential Vector

    Science.gov (United States)

    Romer, Yamila; Nava, Santiago; Govedic, Francisco; Cicuttin, Gabriel; Denison, Amy M.; Singleton, Joseph; Kelly, Aubree J.; Kato, Cecilia Y.; Paddock, Christopher D.

    2014-01-01

    Rickettsia parkeri, a newly recognized tick-borne pathogen of humans in the Americas, is a confirmed cause of spotted fever group rickettsiosis in Argentina. Until recently, almost all cases of R. parkeri rickettsiosis in Argentina have originated from the Paraná River Delta, where entomological surveys have identified populations of R. parkeri-infected Amblyomma triste ticks. In this report, we describe confirmed cases of R. parkeri rickettsiosis from Córdoba and La Rioja provinces, which are located several hundred kilometers inland, and in a more arid ecological region, where A. triste ticks do not occur. Additionally, we identified questing A. tigrinum ticks naturally infected with R. parkeri in Córdoba province. These data provide evidence that another human-biting tick species serves as a potential vector of R. parkeri in Argentina and possibly, other countries of South America. PMID:25349376

  6. Novel Rickettsia raoultii strain isolated and propagated from Austrian Dermacentor reticulatus ticks

    Directory of Open Access Journals (Sweden)

    Michiel Wijnveld

    2016-11-01

    Full Text Available Abstract Background Continuous culture of tick cell lines has proven a valuable asset in isolating and propagating several different vector-borne pathogens, making it possible to study these microorganisms under laboratory conditions and develop serological tests to benefit public health. We describe a method for effective, cost- and labor-efficient isolation and propagation of Rickettsia raoultii using generally available laboratory equipment and Rhipicephalus microplus cells, further demonstrating the usefulness of continuous tick cell lines. R. raoultii is one of the causative agents of tick-borne lymphadenopathy (TIBOLA and is, together with its vector Dermacentor reticulatus, emerging in novel regions of Europe, giving rise to an increased threat to general public health. Methods Dermacentor reticulatus ticks were collected in the Donau-Auen (Lobau national park in Vienna, Austria. The hemolymph of ten collected ticks was screened by PCR-reverse line blot for the presence of rickettsial DNA. A single tick tested positive for R. raoultii DNA and was used to infect Rhipicephalus microplus BME/CTVM2 cells. Results Sixty-five days after infection of the tick-cell line with an extract from a R. raoultii-infected tick, we observed intracellular bacteria in the cultured cells. On the basis of microscopy we suspected that the intracellular bacteria were a species of Rickettsia; this was confirmed by several PCRs targeting different genes. Subsequent sequencing showed 99–100 % identity with R. raoultii. Cryopreservation and resuscitation of R. raoultii was successful. After 28 days identical intracellular bacteria were microscopically observed. Conclusions R. raoultii was successfully isolated and propagated from D. reticulatus ticks using R. microplus BME/CTVM2 cells. The isolated strain shows significant molecular variation compared to currently known sequences. Furthermore we show for the first time the successful cryopreservation and

  7. Novel Rickettsia raoultii strain isolated and propagated from Austrian Dermacentor reticulatus ticks.

    Science.gov (United States)

    Wijnveld, Michiel; Schötta, Anna-Margarita; Pintér, Adriano; Stockinger, Hannes; Stanek, Gerold

    2016-11-03

    Continuous culture of tick cell lines has proven a valuable asset in isolating and propagating several different vector-borne pathogens, making it possible to study these microorganisms under laboratory conditions and develop serological tests to benefit public health. We describe a method for effective, cost- and labor-efficient isolation and propagation of Rickettsia raoultii using generally available laboratory equipment and Rhipicephalus microplus cells, further demonstrating the usefulness of continuous tick cell lines. R. raoultii is one of the causative agents of tick-borne lymphadenopathy (TIBOLA) and is, together with its vector Dermacentor reticulatus, emerging in novel regions of Europe, giving rise to an increased threat to general public health. Dermacentor reticulatus ticks were collected in the Donau-Auen (Lobau) national park in Vienna, Austria. The hemolymph of ten collected ticks was screened by PCR-reverse line blot for the presence of rickettsial DNA. A single tick tested positive for R. raoultii DNA and was used to infect Rhipicephalus microplus BME/CTVM2 cells. Sixty-five days after infection of the tick-cell line with an extract from a R. raoultii-infected tick, we observed intracellular bacteria in the cultured cells. On the basis of microscopy we suspected that the intracellular bacteria were a species of Rickettsia; this was confirmed by several PCRs targeting different genes. Subsequent sequencing showed 99-100 % identity with R. raoultii. Cryopreservation and resuscitation of R. raoultii was successful. After 28 days identical intracellular bacteria were microscopically observed. R. raoultii was successfully isolated and propagated from D. reticulatus ticks using R. microplus BME/CTVM2 cells. The isolated strain shows significant molecular variation compared to currently known sequences. Furthermore we show for the first time the successful cryopreservation and resuscitation of R. raoultii.

  8. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations.

    Science.gov (United States)

    Stam, Remco; Scheikl, Daniela; Tellier, Aurélien

    2017-01-01

    Wild tomatoes are a valuable source of disease resistance germplasm for tomato ( Solanum lycopersicum ) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense , both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense . We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens ( Alternaria solani , Phytophthora infestans and a Fusarium sp .) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense , resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.

  9. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations

    Directory of Open Access Journals (Sweden)

    Remco Stam

    2017-01-01

    Full Text Available Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp. and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.

  10. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations

    Science.gov (United States)

    Scheikl, Daniela; Tellier, Aurélien

    2017-01-01

    Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved. PMID:28133579

  11. A single multilocus sequence typing (MLST) scheme for seven pathogenic Leptospira species

    NARCIS (Netherlands)

    Boonsilp, Siriphan; Thaipadungpanit, Janjira; Amornchai, Premjit; Wuthiekanun, Vanaporn; Bailey, Mark S.; Holden, Matthew T. G.; Zhang, Cuicai; Jiang, Xiugao; Koizumi, Nobuo; Taylor, Kyle; Galloway, Renee; Hoffmaster, Alex R.; Craig, Scott; Smythe, Lee D.; Hartskeerl, Rudy A.; Day, Nicholas P.; Chantratita, Narisara; Feil, Edward J.; Aanensen, David M.; Spratt, Brian G.; Peacock, Sharon J.

    2013-01-01

    The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. We modified the existing scheme by replacing one of the

  12. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  13. Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany

    Directory of Open Access Journals (Sweden)

    Mahling Monia

    2011-07-01

    Full Text Available Abstract Background Only limited information is available about the occurrence of ticks and tick-borne pathogens in public parks, which are areas strongly influenced by human beings. For this reason, Ixodes ricinus were collected in public parks of different Bavarian cities in a 2-year survey (2009 and 2010 and screened for DNA of Babesia spp., Rickettsia spp. and Bartonella spp. by PCR. Species identification was performed by sequence analysis and alignment with existing sequences in GenBank. Additionally, coinfections with Anaplasma phagocytophilum were investigated. Results The following prevalences were detected: Babesia spp.: 0.4% (n = 17, including one pool of two larvae in 2009 and 0.5 to 0.7% (n = 11, including one pool of five larvae in 2010; Rickettsia spp.: 6.4 to 7.7% (n = 285, including 16 pools of 76 larvae in 2009. DNA of Bartonella spp. in I. ricinus in Bavarian public parks could not be identified. Sequence analysis revealed the following species: Babesia sp. EU1 (n = 25, B. divergens (n = 1, B. divergens/capreoli (n = 1, B. gibsoni-like (n = 1, R. helvetica (n = 272, R. monacensis IrR/Munich (n = 12 and unspecified R. monacensis (n = 1. The majority of coinfections were R. helvetica with A. phagocytophilum (n = 27, but coinfections between Babesia spp. and A. phagocytophilum, or Babesia spp. and R. helvetica were also detected. Conclusions I. ricinus ticks in urban areas of Germany harbor several tick-borne pathogens and coinfections were also observed. Public parks are of particularly great interest regarding the epidemiology of tick-borne pathogens, because of differences in both the prevalence of pathogens in ticks as well as a varying species arrangement when compared to woodland areas. The record of DNA of a Babesia gibsoni-like pathogen detected in I. ricinus suggests that I. ricinus may harbor and transmit more Babesia spp. than previously known. Because of their high recreational value for human beings, urban green

  14. Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany.

    Science.gov (United States)

    Schorn, Sabine; Pfister, Kurt; Reulen, Holger; Mahling, Monia; Silaghi, Cornelia

    2011-07-15

    Only limited information is available about the occurrence of ticks and tick-borne pathogens in public parks, which are areas strongly influenced by human beings. For this reason, Ixodes ricinus were collected in public parks of different Bavarian cities in a 2-year survey (2009 and 2010) and screened for DNA of Babesia spp., Rickettsia spp. and Bartonella spp. by PCR. Species identification was performed by sequence analysis and alignment with existing sequences in GenBank. Additionally, coinfections with Anaplasma phagocytophilum were investigated. The following prevalences were detected: Babesia spp.: 0.4% (n = 17, including one pool of two larvae) in 2009 and 0.5 to 0.7% (n = 11, including one pool of five larvae) in 2010; Rickettsia spp.: 6.4 to 7.7% (n = 285, including 16 pools of 76 larvae) in 2009. DNA of Bartonella spp. in I. ricinus in Bavarian public parks could not be identified. Sequence analysis revealed the following species: Babesia sp. EU1 (n = 25), B. divergens (n = 1), B. divergens/capreoli (n = 1), B. gibsoni-like (n = 1), R. helvetica (n = 272), R. monacensis IrR/Munich (n = 12) and unspecified R. monacensis (n = 1). The majority of coinfections were R. helvetica with A. phagocytophilum (n = 27), but coinfections between Babesia spp. and A. phagocytophilum, or Babesia spp. and R. helvetica were also detected. I. ricinus ticks in urban areas of Germany harbor several tick-borne pathogens and coinfections were also observed. Public parks are of particularly great interest regarding the epidemiology of tick-borne pathogens, because of differences in both the prevalence of pathogens in ticks as well as a varying species arrangement when compared to woodland areas. The record of DNA of a Babesia gibsoni-like pathogen detected in I. ricinus suggests that I. ricinus may harbor and transmit more Babesia spp. than previously known. Because of their high recreational value for human beings, urban green areas are likely to remain in the research focus on

  15. Characterization and pathogenicity of Fusarium species associated with leaf spot of mango (Mangifera indica L.).

    Science.gov (United States)

    Omar, Nurul Husna; Mohd, Masratulhawa; Mohamed Nor, Nik Mohd Izham; Zakaria, Latiffah

    2018-01-01

    Leaf spot diseases are mainly caused by fungi including Fusarium. In the present study several species of Fusarium were isolated from the leaf spot lesion of mango (Mangifera indica L.) Based on morphological characteristics, TEF-1α sequences and phylogenetic analysis, five species were identified as F. proliferatum, F. semitectum, F. mangiferae, F. solani and F. chlamydosporum. Pathogenicity test indicated that representative isolates of F. proliferatum, F. semitectum and F. chlamydosporum were pathogenic on mango leaves causing leaf spot with low to moderate virulence. Nevertheless, abundance of spots on the leaf can disrupt photosynthesis which in turn reduced growth, and lead to susceptibility to infection by opportunistic pathogens due to weakening of the plant. Fusarium solani and F. mangiferae were non-pathogenic and it is possible that both species are saprophyte which associated with nutrient availability on the surface of the leaf through decaying leave tissues. The occurrence of Fusarium spp. on the leaf spot lesion and the effect from the disease needs to be considered when developing disease management method of mango cultivation as numerous spot on the leaves could effect the photosynthesis process and finally giving low yield and less quality of mango. Copyright © 2017. Published by Elsevier Ltd.

  16. Development of oligonucleotide microarrays for simultaneous multi-species identification of Phellinus tree-pathogenic fungi.

    Science.gov (United States)

    Tzean, Yuh; Shu, Po-Yao; Liou, Ruey-Fen; Tzean, Shean-Shong

    2016-03-01

    Polyporoid Phellinus fungi are ubiquitously present in the environment and play an important role in shaping forest ecology. Several species of Phellinus are notorious pathogens that can affect a broad variety of tree species in forest, plantation, orchard and urban habitats; however, current detection methods are overly complex and lack the sensitivity required to identify these pathogens at the species level in a timely fashion for effective infestation control. Here, we describe eight oligonucleotide microarray platforms for the simultaneous and specific detection of 17 important Phellinus species, using probes generated from the internal transcribed spacer regions unique to each species. The sensitivity, robustness and efficiency of this Phellinus microarray system was subsequently confirmed against template DNA from two key Phellinus species, as well as field samples collected from tree roots, trunks and surrounding soil. This system can provide early, specific and convenient detection of Phellinus species for forestry, arboriculture and quarantine inspection, and could potentially help to mitigate the environmental and economic impact of Phellinus-related diseases. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis

    Science.gov (United States)

    Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  18. Dynamics of Exposure to Rickettsia parkeri in Cattle in the Paraná River Delta, Argentina.

    Science.gov (United States)

    Monje, L D; Costa, F B; Colombo, V C; Labruna, M B; Antoniazzi, L R; Gamietea, I; Nava, S; Beldomenico, P M

    2016-05-01

    Several cases of human rickettsiosis caused by Rickettsia parkeri were recently documented in the Paraná River delta of Argentina, where the tick vector is Amblyomma triste Koch. As cattle suffer recurrent A. triste infestations, they are at risk of becoming infected with R. parkeri Herein we investigated the dynamics of R. parkeri and its A. triste vector in a herd of beef cattle. Cattle were followed for 18 mo and samples were analyzed for the presence of antibodies against four Rickettsia species (R. parkeri, Rickettsia bellii, Rickettsia amblyommii, and Rickettsia felis) and also for the presence of rickettsial DNA. Additionally, cattle were examined for attached ticks and questing adult ticks were collected. All ticks were analyzed for the presence of rickettsial DNA. No evidence of rickettsemia was found in any cow, but the high R. parkeri infection rate documented in A. triste both questing in the study area (13.9%) and feeding on cattle (19.8%) and the identification of antibodies against R. parkeri antigen in 90% of cattle are evidence that infection is taking place. Altogether, our data suggest that A. triste ticks are capable of naturally exposing cattle to R. parkeri However, the progress of R. parkeri infection and its impact on bovine health and production remain to be established. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Dynamics of actin-based movement by Rickettsia rickettsii in vero cells.

    Science.gov (United States)

    Heinzen, R A; Grieshaber, S S; Van Kirk, L S; Devin, C J

    1999-08-01

    Actin-based motility (ABM) is a virulence mechanism exploited by invasive bacterial pathogens in the genera Listeria, Shigella, and Rickettsia. Due to experimental constraints imposed by the lack of genetic tools and their obligate intracellular nature, little is known about rickettsial ABM relative to Listeria and Shigella ABM systems. In this study, we directly compared the dynamics and behavior of ABM of Rickettsia rickettsii and Listeria monocytogenes. A time-lapse video of moving intracellular bacteria was obtained by laser-scanning confocal microscopy of infected Vero cells synthesizing beta-actin coupled to green fluorescent protein (GFP). Analysis of time-lapse images demonstrated that R. rickettsii organisms move through the cell cytoplasm at an average rate of 4.8 +/- 0.6 micrometer/min (mean +/- standard deviation). This speed was 2.5 times slower than that of L. monocytogenes, which moved at an average rate of 12.0 +/- 3.1 micrometers/min. Although rickettsiae moved more slowly, the actin filaments comprising the actin comet tail were significantly more stable, with an average half-life approximately three times that of L. monocytogenes (100.6 +/- 19.2 s versus 33.0 +/- 7.6 s, respectively). The actin tail associated with intracytoplasmic rickettsiae remained stationary in the cytoplasm as the organism moved forward. In contrast, actin tails of rickettsiae trapped within the nucleus displayed dramatic movements. The observed phenotypic differences between the ABM of Listeria and Rickettsia may indicate fundamental differences in the mechanisms of actin recruitment and polymerization.

  20. Surfing pathogens and the lessons learned for actin polymerization.

    Science.gov (United States)

    Frischknecht, F; Way, M

    2001-01-01

    A number of unrelated bacterial species as well as vaccinia virus (ab)use the process of actin polymerization to facilitate and enhance their infection cycle. Studies into the mechanism by which these pathogens hijack and control the actin cytoskeleton have provided many interesting insights into the regulation of actin polymerization in migrating cells. This review focuses on what we have learnt from the actin-based motilities of Listeria, Shigella and vaccinia and discusses what we would still like to learn from our nasty friends, including enteropathogenic Escherichia coli and Rickettsia

  1. Abalone farm discharges the withering syndrome pathogen into the wild

    Directory of Open Access Journals (Sweden)

    Kevin eLafferty

    2013-12-01

    Full Text Available An intracellular bacterium Candidatus Xenohaliotis californiensis, also called Withering-Syndrome Rickettsia-Like Organism (WS-RLO, is the cause of mass mortalities that are the chief reason for endangerment of black abalone (Haliotis cracherodii. Using a real-time PCR assay, we found that a shore-based abalone farm in Santa Barbara, California, discharged WS-RLO DNA into the ocean. Several other shore-based abalone farms discharge effluent into critical habitat for black abalone in California and this might affect the recovery of wild black abalone. Existing regulatory frameworks exist that could help protect wild species from pathogens released from shore-based aquaculture.

  2. Abalone farm discharges the withering syndrome pathogen into the wild.

    Science.gov (United States)

    Lafferty, Kevin D; Ben-Horin, Tal

    2013-01-01

    An intracellular bacterium Candidatus Xenohaliotis californiensis, also called Withering-Syndrome Rickettsia-Like Organism (WS-RLO), is the cause of mass mortalities that are the chief reason for endangerment of black abalone (Haliotis cracherodii). Using a real-time PCR assay, we found that a shore-based abalone farm (AF) in Santa Barbara, CA, USA discharged WS-RLO DNA into the ocean. Several other shore-based AFs discharge effluent into critical habitat for black abalone in California and this might affect the recovery of wild black abalone. Existing regulatory frameworks exist that could help protect wild species from pathogens released from shore-based aquaculture.

  3. Identification of tick-borne pathogens in ticks feeding on humans in Turkey.

    Directory of Open Access Journals (Sweden)

    Ömer Orkun

    2014-08-01

    Full Text Available The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara.A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph and Ha. parva.This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey

  4. Prevalence of potentially pathogenic Vibrio species in the seafood marketed in Malaysia.

    Science.gov (United States)

    Elhadi, Nasreldin; Radu, Son; Chen, Chien-Hsien; Nishibuchi, Mitsuaki

    2004-07-01

    Seafood samples obtained in seafood markets and supermarkets at 11 sites selected from four states in Malaysia were examined for the presence of nine potentially pathogenic species from the genus Vibrio between July 1998 and June 1999. We examined 768 sample sets that included shrimp, squid, crab, cockles, and mussels. We extensively examined shrimp samples from Selangor State to determine seasonal variation of Vibrio populations. Eight potentially pathogenic Vibrio species were detected, with overall incidence in the samples at 4.6% for V. cholerae, 4.7% for V. parahaemolyticus, 6.0% for V. vulnificus, 11% for V. alginolyticus, 9.9% for V. metschnikovii, 1.3% for V. mimicus, 13% for V. damsela, 7.6% for V. fluvialis, and 52% for a combined population of all of the above. As many as eight Vibrio species were detected in shrimp and only four in squid and peel mussels. The overall percent incidence of any of the eight vibrios was highest (82%) in cockles (Anadara granosa) among the seafoods examined and was highest (100%) in Kuching, Sarawak State, and lowest (25%) in Penang, Pulau Penang State, among the sampling sites. Of 97 strains of V. cholerae isolated, one strain belonged to the O1 serotype and 14 to the O139 serotype. The results indicate that the various seafood markets in Malaysia are contaminated with potentially pathogenic Vibrio species regardless of the season and suggest that there is a need for adequate consumer protection measures.

  5. Paramecium species ingest and kill the cells of the human pathogenic fungus Cryptococcus neoformans.

    Science.gov (United States)

    Frager, Shalom Z; Chrisman, Cara J; Shakked, Rachel; Casadevall, Arturo

    2010-08-01

    A fundamental question in the field of medical mycology is the origin of virulence in those fungal pathogens acquired directly from the environment. In recent years, it was proposed that the virulence of certain environmental animal-pathogenic microbes, such as Cryptococcus neoformans, originated from selection pressures caused by species-specific predation. In this study, we analyzed the interaction of C. neoformans with three Paramecium spp., all of which are ciliated mobile protists. In contrast to the interaction with amoebae, some Paramecium spp. rapidly ingested C. neoformans and killed the fungus. This study establishes yet another type of protist-fungal interaction supporting the notion that animal-pathogenic fungi in the environment are under constant selection by predation.

  6. New records of tick-associated spotted fever group Rickettsia in an Amazon-Savannah ecotone, Brazil.

    Science.gov (United States)

    Aguirre, A A R; Garcia, Marcos Valério; Costa, Ivaneide Nunes da; Csordas, Bárbara Guimarães; Rodrigues, Vinícius da Silva; Medeiros, Jansen Fernandes; Andreotti, Renato

    2018-05-01

    Human rickettsiosis has been recorded in the Amazon Biome. However, the epidemiological cycle of causative rickettsiae has not been fully accounted for in the Amazon region. This study investigates the presence of spotted fever group (SFG) Rickettsia spp. in free-living unfed ticks of the Amblyomma genus. The study was conducted in seven municipalities in Rondonia State, Brazil, where the main biomes are Amazon forest, Brazilian Savannah and their ecotones (areas of ecological tension between open ombrophilous forest and savannah). The following tick species were collected: Amblyomma cajennense (sensu lato) s.l., A. cajennense (sensu stricto) s.s., A. coelebs, A. naponense, A. oblongoguttatum, A. romitii, A. scalpturatum and A. sculptum. A total of 167 adults, 248 nymphs and 1004 larvae were subjected to DNA extraction and polymerase chain reaction (PCR) to determine the presence of SFG Rickettsia spp. PCR-positive samples included: one A. cajennense s.s. female and one A. cajennense s.l. male from a rural area in Vilhena Municipality; 10 nymphs and a sample of larvae of A. cajennense s.l. from a peri-urban area in Cacoal Municipality; and an A. oblongoguttatum adult male from a rural area of Pimenta Bueno Municipality. All sequences obtained exhibited 100% identity with Rickettsia amblyommatis sequences. This is the first confirmation of SFG Rickettsia in an A. oblongoguttatum tick. Furthermore, this is the first record of SFG Rickettsia in the municipalities targeted by this study. These results warn that SFG Rickettsia circulation poses a threat in Rondonia State (among Amazon-Savannah ecotones), and that this threat is increased by the fact that SFG Rickettsia infect a human-biting tick species hitherto unconfirmed as a vector. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Species or Genotypes? Reassessment of Four Recently Described Species of the Ceratocystis Wilt Pathogen, Ceratocystis fimbriata, on Mangifera indica.

    Science.gov (United States)

    Oliveira, Leonardo S S; Harrington, Thomas C; Ferreira, Maria A; Damacena, Michelle B; Al-Sadi, Abdullah M; Al-Mahmooli, Issa H S; Alfenas, Acelino C

    2015-09-01

    Ceratocystis wilt is among the most important diseases on mango (Mangifera indica) in Brazil, Oman, and Pakistan. The causal agent was originally identified in Brazil as Ceratocystis fimbriata, which is considered by some as a complex of many cryptic species, and four new species on mango trees were distinguished from C. fimbriata based on variation in internal transcribed spacer sequences. In the present study, phylogenetic analyses using DNA sequences of mating type genes, TEF-1α, and β-tubulin failed to identify lineages corresponding to the four new species names. Further, mating experiments found that the mango isolates representing the new species were interfertile with each other and a tester strain from sweet potato (Ipomoea batatas), on which the name C. fimbriata is based, and there was little morphological variation among the mango isolates. Microsatellite markers found substantial differentiation among mango isolates at the regional and population levels, but certain microsatellite genotypes were commonly found in multiple populations, suggesting that these genotypes had been disseminated in infected nursery stock. The most common microsatellite genotypes corresponded to the four recently named species (C. manginecans, C. acaciivora, C. mangicola, and C. mangivora), which are considered synonyms of C. fimbriata. This study points to the potential problems of naming new species based on introduced genotypes of a pathogen, the value of an understanding of natural variation within and among populations, and the importance of phenotype in delimiting species.

  8. Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium.

    Science.gov (United States)

    Al-Hatmi, Abdullah M S; Van Den Ende, A H G Gerrits; Stielow, J Benjamin; Van Diepeningen, Anne D; Seifert, Keith A; McCormick, Wayne; Assabgui, Rafik; Gräfenhan, Tom; De Hoog, G Sybren; Levesque, C André

    2016-02-01

    The genus Fusarium includes more than 200 species of which 73 have been isolated from human infections. Fusarium species are opportunistic human pathogens with variable aetiology. Species determination is best made with the combined phylogeny of protein-coding genes such as elongation factor (TEF1), RNA polymerase (RPB2) and the partial β-tubulin (BT2) gene. The internal transcribed spacers 1, 2 and 5.8S rRNA gene (ITS) have also been used, however, ITS cannot discriminate several closely related species and has nonorthologous copies in Fusarium. Currently, morphological approaches and tree-building methods are in use to define species and to discover hitherto undescribed species. Aftter a species is defined, DNA barcoding approaches can be used to identify species by the presence or absence of discrete nucleotide characters. We demonstrate the potential of two recently discovered DNA barcode loci, topoisomerase I (TOP1) and phosphoglycerate kinase (PGK), in combination with other routinely used markers such as TEF1, in an analysis of 144 Fusarium strains belonging to 52 species. Our barcoding study using TOP1 and PKG provided concordance of molecular data with TEF1. The currently accepted Fusarium species sampled were well supported in phylogenetic trees of both new markers. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    Science.gov (United States)

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.

  10. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    Science.gov (United States)

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.

  11. RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii.

    Directory of Open Access Journals (Sweden)

    Premanand Balraj

    Full Text Available BACKGROUND: Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG. The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. METHODOLOGY/PRINCIPAL FINDINGS: Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. CONCLUSION/SIGNIFICANCE: These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.

  12. Bovine digital dermatitis: Possible pathogenic consortium consisting of Dichelobacter nodosus and multiple Treponema species

    DEFF Research Database (Denmark)

    Rasmussen, Marianne; Capion, Nynne; Schou, Kirstine Klitgaard

    2012-01-01

    not colonized by bacteria while only four samples were found normal. We hypothesise that external noxious stimuli allow D. nodosus to break down the epidermal barrier creating a suitable environment for the secondary invaders, Treponema species, which gradually take over the infection site. The variety...... and different distribution of treponemes in the DD lesions observed in this study, suggests that most of the Treponema phylotypes have the potential to be pathogenic....

  13. Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Chriél, Mariann; Isbrand, Anastasia

    2017-01-01

    From a migrating golden jackal (Canis aureus), we retrieved 21 live male Dermacentor reticulatus ticks, a species not previously reported from wildlife in Denmark. We identified Rickettsia raoultii from 18 (86%) of the ticks. This bacterium is associated with scalp eschar and neck lymphadenopathy...

  14. A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species

    Science.gov (United States)

    Amornchai, Premjit; Wuthiekanun, Vanaporn; Bailey, Mark S.; Holden, Matthew T. G.; Zhang, Cuicai; Jiang, Xiugao; Koizumi, Nobuo; Taylor, Kyle; Galloway, Renee; Hoffmaster, Alex R.; Craig, Scott; Smythe, Lee D.; Hartskeerl, Rudy A.; Day, Nicholas P.; Chantratita, Narisara; Feil, Edward J.; Aanensen, David M.; Spratt, Brian G.; Peacock, Sharon J.

    2013-01-01

    Background The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. Methodology and Findings We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated. Conclusion The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis. PMID:23359622

  15. Differences in pathogenicity of three animal isolates of Mycobacterium species in a mouse model.

    Directory of Open Access Journals (Sweden)

    Haodi Dong

    Full Text Available Animal mycobacterioses are among the most important zoonoses worldwide. These are generally caused by either Mycobacterium tuberculosis (MTB, M. bovis (MBO or M. avium (MAV. To test the hypothesis that different species of pathogenic mycobacteria isolated from varied anatomic locations or animal species differ in virulence and pathogenicity, we performed experiments with three mycobacteria strains (NTSE-3(MTB, NTSE-4(MBO and NTSE-5 (MAV obtained from animal species. Spoligotyping analysis was used to confirm both MTB and MBO strains while the MAV strain was confirmed by 16s rDNA sequencing. BALB/c mice were intranasally infected with the three strains at low and high CFU doses to evaluate variations in pathogenicity. Clinical and pathological parameters were assessed. Infected mice were euthanized at 80 days post-inoculation (dpi. Measures of lung and body weights indicated that the MBO infected group had higher mortality, more weight loss, higher bacterial burden and more severe lesions in lungs than the other two groups. Cytokine profiles showed higher levels of TNF-α for MBO versus MTB, while MAV had the highest amounts of IFN-β in vitro and in vivo. In vitro levels of other cytokines such as IL-1β, IL-10, IL-12, IL-17, and IFN-β showed that Th1 cells had the strongest response in MBO infected mice and that Th2 cells were inhibited. We found that the level of virulence among the three isolates decreased in the following order MBO>MTB>MAV.

  16. Association of Borrelia and Rickettsia spp. and bacterial loads in Ixodes ricinus ticks.

    Science.gov (United States)

    Raulf, Marie-Kristin; Jordan, Daniela; Fingerle, Volker; Strube, Christina

    2018-01-01

    In recent years, awareness of coinfections has increased as synergistic or antagonistic effects on interacting bacteria have been observed. To date, several reports on coinfections of ticks with Rickettsia and Borrelia spp. are available. However, associations are rarely described and studies are based on rather low sample sizes. In the present study, coinfections of Ixodes ricinus with these pathogens were investigated by determining their association in a meta-analysis. A total of 5079 tick samples examined for Rickettsia and Borrelia spp. via probe-based quantitative real-time PCR in previous prevalence studies or as submitted diagnostic material were included. In Borrelia-positive ticks, genospecies were determined by Reverse Line Blot. Determination of bacterial loads resulted in an increase between developmental tick stages with highest mean bacterial loads in female ticks (7.96×10 4 in Borrelia single-infected, 4.87×10 5 in Rickettsia single-infected and 3.22×10 5 in Borrelia-Rickettsia coinfected females). The determined Borrelia-Rickettsia tick coinfection rate was 12.3% (626/5079) with a significant difference to the expected coinfection rate of 9.0% (457/5079). A significant slight association as well as correlation between Borrelia and Rickettsia were determined. In addition, a significant interrelation of the bacterial load in coinfected ticks was shown. At the level of Borrelia genospecies, significant weak associations with Rickettsia spp. were detected for B. afzelii, B. garinii/bavariensis, B. valaisiana and B. lusitaniae. The positive association provides evidence for interactions between Borrelia and Rickettsia spp. in the tick vector, presumably resulting in higher bacterial replication rates in the tick vector and possibly the reservoir host. However, coinfection may impact the vector negatively as indicated by an absent increase in coinfection rates from nymphs to adults. Future studies are needed to investigate the underlying mechanisms of

  17. Multiple Origins of the Pathogenic Yeast Candida orthopsilosis by Separate Hybridizations between Two Parental Species.

    Science.gov (United States)

    Schröder, Markus S; Martinez de San Vicente, Kontxi; Prandini, Tâmara H R; Hammel, Stephen; Higgins, Desmond G; Bagagli, Eduardo; Wolfe, Kenneth H; Butler, Geraldine

    2016-11-01

    Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.

  18. Multiple Origins of the Pathogenic Yeast Candida orthopsilosis by Separate Hybridizations between Two Parental Species.

    Directory of Open Access Journals (Sweden)

    Markus S Schröder

    2016-11-01

    Full Text Available Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.

  19. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species.

    Science.gov (United States)

    Lee, Kim-Chung; Tam, Emily W T; Lo, Ka-Ching; Tsang, Alan K L; Lau, Candy C Y; To, Kelvin K W; Chan, Jasper F W; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2015-06-17

    Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii) and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu-Glu-Leu-Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxy)benzoic acid possesses a structure similar to those of aspirin [2-(acetoxy)benzoic acid] and salicylic acid (2-hydroxybenzoic acid). Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu-Glu-Leu-Glu, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid are virulent factors of the pathogenic Aspergillus species.

  20. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens

    Directory of Open Access Journals (Sweden)

    Delfina Popiel

    2013-12-01

    Full Text Available Fusarium-ear blight is a destructive disease in various cereal-growing regions and leads to significant yield and quality losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and derivatives, zearalenone and moniliformin. Fusarium pathogens grow well and produce significant inoculum on crop resiudues. Reduction of mycotoxins production and pathogen sporulation may be influenced by saprophytic fungi, exhibiting antagonistic effect. Dual culture bioassays were used to examine the impact of 92 isolates (belonging to 29 fungal species against three toxigenic species, i.e. Fusarium avenaceum (Corda Saccardo, F. culmorum (W.G.Smith Saccardo and F. graminearum Schwabe. Both F.culmorum and F. graminearum isolates produce trichothecene mycotoxins and mycohormone zearalenone and are considered to be the most important cereal pathogens worldwide. Infection with those pathogens leads to accumulation of mycotoxins: deoxynivalenol (DON and zearalenone (ZEA in grains. Fusarium avenaceum isolates are producers of moniliformin (MON and enniatins. Isolates of Trichoderma sp. were found to be the most effective ones to control the growth of examined Fusarium species. The response of Fusarium isolates to antagonistic activity of Trichoderma isolates varied and also the isolates of Trichoderma differed in their antagonistic activity against Fusarium isolates. The production of MON by two isolates of F. avenaceum in dual culture on rice was reduced by 95% to 100% by T. atroviride isolate AN 35. The same antagonist reduced the amount of moniliformin from 100 μg/g to 6.5 μg/g when inoculated to rice culture contaminated with MON, which suggests the possible decomposition of this mycotoxin.

  1. Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Venclíková, Kristýna; Rudolf, Ivo; Mendel, Jan; Betášová, Lenka; Hubálek, Zdeněk

    2014-01-01

    Roč. 5, č. 2 (2014), s. 135-138 ISSN 1877-959X Institutional support: RVO:68081766 Keywords : Ixodes ricinus * Anaplasma phagocytophilum * Rickettsia spp. * Rickettsia helvetica * Rickettsia monacensis * Candidatus Neoehrlichia mikurensis Subject RIV: EE - Microbiology, Virology Impact factor: 2.718, year: 2014

  2. 21 CFR 866.3500 - Rickettsia serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rickettsia serological reagents. 866.3500 Section... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3500 Rickettsia serological reagents. (a) Identification. Rickettsia serological reagents are devices that consist of antigens...

  3. Unique Strain of Rickettsia parkeri Associated with the Hard Tick Dermacentor parumapertus Neumann in the Western United States.

    Science.gov (United States)

    Paddock, Christopher D; Allerdice, Michelle E J; Karpathy, Sandor E; Nicholson, William L; Levin, Michael L; Smith, Travis C; Becker, Tom; Delph, Robert J; Knight, Robert N; Ritter, Jana M; Sanders, Jeanine H; Goddard, Jerome

    2017-05-01

    In 1953, investigators at the Rocky Mountain Laboratories in Hamilton, MT, described the isolation of a spotted fever group Rickettsia (SFGR) species from Dermacentor parumapertus ticks collected from black-tailed jackrabbits ( Lepus californicus ) in northern Nevada. Several decades later, investigators characterized this SFGR (designated the parumapertus agent) by using mouse serotyping methods and determined that it represented a distinct rickettsial serotype closely related to Rickettsia parkeri ; nonetheless, the parumapertus agent was not further characterized or studied. To our knowledge, no isolates of the parumapertus agent remain in any rickettsial culture collection, which precludes contemporary phylogenetic placement of this enigmatic SFGR. To rediscover the parumapertus agent, adult-stage D. parumapertus ticks were collected from black-tailed jackrabbits shot or encountered as roadkills in Arizona, Utah, or Texas from 2011 to 2016. A total of 339 ticks were collected and evaluated for infection with Rickettsia species. Of 112 D. parumapertus ticks collected in south Texas, 16 (14.3%) contained partial ompA sequences with the closest identity (99.6%) to Rickettsia sp. strain Atlantic rainforest Aa46, an SFGR that is closely related or identical to an SFGR species that causes a mild rickettsiosis in several states of Brazil. A pure isolate, designated strain Black Gap, was cultivated in Vero E6 cells, and sequence analysis of the rrs , gltA , sca0 , sca5 , and sca4 genes also revealed the closest genetic identity to Rickettsia sp. Atlantic rainforest Aa46. Phylogenetic analysis of the five concatenated rickettsial genes place Rickettsia sp. strain Black Gap and Rickettsia sp. Atlantic rainforest Aa46 with R. parkeri in a distinct and well-supported clade. IMPORTANCE We suggest that Rickettsia sp. Black Gap and Rickettsia sp. Atlantic rainforest Aa46 represent nearly identical strains of R. parkeri and that Rickettsia sp. Black Gap or a very similar

  4. A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the Fusarium graminearum Species Complex

    Directory of Open Access Journals (Sweden)

    Haruhisha Suga

    2016-12-01

    Full Text Available Members of the Fusarium graminearum species complex (Fg complex or FGSC are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022 was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.

  5. Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives.

    Directory of Open Access Journals (Sweden)

    Jaime E Blair

    Full Text Available To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based "supergene" approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred.

  6. Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives.

    Science.gov (United States)

    Blair, Jaime E; Coffey, Michael D; Martin, Frank N

    2012-01-01

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based "supergene" approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred.

  7. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF Fusarium SPECIES AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jelena Poštić

    2012-12-01

    Full Text Available From the root and lower stem parts of weeds and plant debris of maize, wheat, oat and sunflower we isolated 300 isolates of Fusarium spp. and performed morphological and molecular identification. With molecular identification using AFLP method we determined 14 Fusarium species: F. acuminatum, F. avenaceum, F. concolor, F. crookwellense, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans, F. venenatum and F. verticillioides.By comparing results of morphological and molecular identification we found out that determination of 16,7% isolates was incorrect. Out of 300 isolates identified with molecular methods, 50 did not belong to the species determined with morphological determination.With pathogenicity tests of 30 chosen Fusarium isolates we determined that many of them were pathogenic to wheat and maize seedlings and to wheat heads. The most pathogenic were isolates of F. graminearum from A. retroflexus, A. theophrasti and C. album, F. venenatum from maize debris and and A. theophrasti, F. crookwellense from A. lappa. Antifungal influence of 11 essential oils on mycelia growth and sporulation of chosen Fusarium isolates determined that essential oils of T. vulgaris, P. anisum and E. caryophyllus had the strongest effect on mycelial growth. Influence of essential oils on sporulation was not statistically significant.

  8. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.

    Science.gov (United States)

    Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung

    2017-07-01

    Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

  9. Transport of Ixodid ticks and tick-borne pathogens by migratory birds.

    Directory of Open Access Journals (Sweden)

    Gunnar eHasle

    2013-09-01

    Full Text Available Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.

  10. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans.

    Directory of Open Access Journals (Sweden)

    Erica M Goss

    Full Text Available Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c.

  11. 'Candidatus Rickettsia mendelii', a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hajdušková, Eva; Literák, I.; Papoušek, I.; Costa, F.B.; Nováková, M.; Labruna, M. B.; Zdražilová-Dubská, L.

    2016-01-01

    Roč. 7, č. 3 (2016), s. 482-486 ISSN 1877-959X Institutional support: RVO:60077344 Keywords : Rickettsiae * Candidatus Rickettsia mendelii * Ixodes ricinus * basal group rickettsiae * ticks * Czech Republic Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.230, year: 2016

  12. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes'

    Directory of Open Access Journals (Sweden)

    Saunders Nigel J

    2006-05-01

    Full Text Available Abstract Background Neisseria meningitidis causes the life-threatening diseases meningococcal meningitis and meningococcal septicemia. Neisseria gonorrhoeae is closely related to the meningococcus, but is the cause of the very different infection, gonorrhea. A number of genes have been implicated in the virulence of these related yet distinct pathogens, but the genes that define and differentiate the species and their behaviours have not been established. Further, a related species, Neisseria lactamica is not associated with either type of infection in normally healthy people, and lives as a harmless commensal. We have determined which of the genes so far identified in the genome sequences of the pathogens are also present in this non-pathogenic related species. Results Thirteen unrelated strains of N. lactamica were investigated using comparative genome hybridization to the pan-Neisseria microarray-v2, which contains 2845 unique gene probes. The presence of 127 'virulence genes' was specifically addressed; of these 85 are present in N. lactamica. Of the remaining 42 'virulence genes' only 11 are present in all four of the sequenced pathogenic Neisseria. Conclusion Assessment of the complete dataset revealed that the vast majority of genes present in the pathogens are also present in N. lactamica. Of the 1,473 probes to genes shared by all four pathogenic genome sequences, 1,373 hybridize to N. lactamica. These shared genes cannot include genes that are necessary and sufficient for the virulence of the pathogens, since N. lactamica does not share this behaviour. This provides an essential context for the interpretation of gene complement studies of the pathogens.

  13. Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives.

    Science.gov (United States)

    Brun, Sophie; Madrid, Hugo; Gerrits Van Den Ende, Bert; Andersen, Birgitte; Marinach-Patrice, Carine; Mazier, Dominique; De Hoog, G Sybren

    2013-01-01

    The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species-complexes of morphologically similar taxa. This study aimed to assess if strains of four closely-related plant pathogens, i.e., accurately Alternaria dauci (ten strains), Alternaria porri (six), Alternaria solani (ten), and Alternaria tomatophila (ten) could be identified using multilocus phylogenetic analysis and Matrix-Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) profiling of proteins. Phylogenetic analyses were performed on three loci, i.e., the internal transcribed spacer (ITS) region of rRNA, and the glyceraldehyde-3-phosphate dehydrogenase (gpd) and Alternaria major antigen (Alt a 1) genes. Phylogenetic trees based on ITS sequences did not differentiate strains of A. solani, A. tomatophila, and A. porri, but these three species formed a clade separate from strains of A. dauci. The resolution improved in trees based on gpd and Alt a 1, which distinguished strains of the four species as separate clades. However, none provided significant bootstrap support for all four species, which could only be achieved when results for the three loci were combined. MALDI-TOF-based dendrograms showed three major clusters. The first comprised all A. dauci strains, the second included five strains of A. porri and one of A. solani, and the third included all strains of A. tomatophila, as well as all but one strain of A. solani, and one strain of A. porri. Thus, this study shows the usefulness of MALDI-TOF mass spectrometry as a promising tool for identification of these four species of Alternaria which are closely-related plant pathogens. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States

    Science.gov (United States)

    Betsy A. Bancroft; Barbara A. Han; Catherine L. Searle; Lindsay M. Biga; Deanna H. Olson; Lee B. Kats; Joshua J. Lawler; Andrew R. Blaustein

    2011-01-01

    Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, ...

  15. Rickettsia infection in five areas of the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Maurício C Horta

    2007-11-01

    Full Text Available This study investigated rickettsial infection in animals, humans, ticks, and fleas collected in five areas of the state of São Paulo. Eight flea species (Adoratopsylla antiquorum antiquorum, Ctenocephalides felis felis, Polygenis atopus, Polygenis rimatus, Polygenis roberti roberti, Polygenis tripus, Rhopalopsyllus lugubris, and Rhopalopsyllus lutzi lutzi, and five tick species (Amblyomma aureolatum, Amblyomma cajennense, Amblyomma dubitatum, Ixodes loricatus, and Rhipicephalus sanguineus were collected from dogs, cats, and opossums. Rickettsia felis was the only rickettsia found infecting fleas, whereas Rickettsia bellii was the only agent infecting ticks, but no animal or human blood was shown to contain rickettsial DNA. Testing animal and human sera by indirect immunofluorescence assay against four rickettsia antigens (R. rickettsii, R. parkeri, R. felis, and R. bellii, some opossum, dog, horse, and human sera reacted to R. rickettsii with titers at least four-fold higher than to the other three rickettsial antigens. These sera were considered to have a predominant antibody response to R. rickettsii. Using the same criteria, opossum, dog, and horse sera showed predominant antibody response to R. parkeri or a very closely related genotype. Our serological results suggest that both R. rickettsii and R. parkeri infected animals and/or humans in the studied areas.

  16. Survey for hantaviruses, tick-borne encephalitis virus, and Rickettsia spp. in small rodents in Croatia.

    Science.gov (United States)

    Svoboda, Petra; Dobler, Gerhard; Markotić, Alemka; Kurolt, Ivan-Christian; Speck, Stephanie; Habuš, Josipa; Vucelja, Marko; Krajinović, Lidija Cvetko; Tadin, Ante; Margaletić, Josip; Essbauer, Sandra

    2014-07-01

    In Croatia, several rodent- and vector-borne agents are endemic and of medical importance. In this study, we investigated hantaviruses and, for the first time, tick-borne encephalitis virus (TBEV) and Rickettsia spp. in small wild rodents from two different sites (mountainous and lowland region) in Croatia. In total, 194 transudate and tissue samples from 170 rodents (A. flavicollis, n=115; A. agrarius, n=2; Myodes glareolus, n=53) were tested for antibodies by indirect immunofluorescence assays (IIFT) and for nucleic acids by conventional (hantaviruses) and real-time RT-/PCRs (TBEV and Rickettsia spp.). A total of 25.5% (24/94) of the rodents from the mountainous area revealed specific antibodies against hantaviruses. In all, 21.3% (20/94) of the samples from the mountainous area and 29.0% (9/31) from the lowland area yielded positive results for either Puumala virus (PUUV) or Dobrava-Belgrade virus (DOBV) using a conventional RT-PCR. All processed samples (n=194) were negative for TBEV by IIFT or real-time RT-PCR. Serological evidence of rickettsial infection was detected in 4.3% (4/94) rodents from the mountainous region. Another 3.2% (3/94) rodents were positive for Rickettsia spp. by real-time PCR. None of the rodents (n=76) from the lowland area were positive for Rickettsia spp. by real-time PCR. Dual infection of PUUV and Rickettsia spp. was found in one M. glareolus from the mountainous area by RT-PCR and real-time PCR, respectively. To our knowledge, this is the first detection of Rickettsia spp. in small rodents from Croatia. Phylogenetic analyses of S- and M-segment sequences obtained from the two study sites revealed well-supported subgroups in Croatian PUUV and DOBV. Although somewhat limited, our data showed occurrence and prevalence of PUUV, DOBV, and rickettsiae in Croatia. Further studies are warranted to confirm these data and to determine the Rickettsia species present in rodents in these areas.

  17. Phylogenetic, Morphological, and Pathogenic Characterization of Alternaria Species Associated with Fruit Rot of Blueberry in California.

    Science.gov (United States)

    Zhu, X Q; Xiao, C L

    2015-12-01

    Fruit rot caused by Alternaria spp. is one of the most important factors affecting the postharvest quality and shelf life of blueberry fruit. The aims of this study were to characterize Alternaria isolates using morphological and molecular approaches and test their pathogenicity to blueberry fruit. Alternaria spp. isolates were collected from decayed blueberry fruit in the Central Valley of California during 2012 and 2013. In total, 283 isolates were obtained and five species of Alternaria, including Alternaria alternata, A. tenuissima, A. arborescens, A. infectoria, and A. rosae, were identified based on DNA sequences of the plasma membrane ATPase, Alt a1 and Calmodulin gene regions in combination with morphological characters of the culture and sporulation. Of the 283 isolates, 61.5% were identified as A. alternata, 32.9% were A. arborescens, 5.0% were A. tenuissima, and only one isolate of A. infectoria and one isolate of A. rosae were found. These fungi were able to grow at temperatures from 0 to 35°C, and mycelial growth was arrested at 40°C. Optimal radial growth occurred between 20 to 30°C. Pathogenicity tests showed that all five Alternaria spp. were pathogenic on blueberry fruit at 0, 4, and 20°C, with A. alternata, A. arborescens, and A. tenuissima being the most virulent species, followed by A. infectoria and A. rosae. Previously A. tenuissima has been reported to be the primary cause of Alternaria fruit rot of blueberry worldwide. Our results indicated that the species composition of Alternaria responsible for Alternaria fruit rot in blueberry can be dependent on geographical region. A. alternata, A. arborescens, A. infectoria, and A. rosae are reported for the first time on blueberry in California. This is also the first report of A. infectoria and A. rosae infecting blueberry fruit.

  18. INFECTION BY Rickettsia felis IN OPOSSUMS (Didelphis sp. FROM YUCATAN, MEXICO

    Directory of Open Access Journals (Sweden)

    Gaspar PENICHE-LARA

    2016-01-01

    Full Text Available Rickettsia felis is an emergent pathogen and the causative agent of a typhus-like rickettsiosis in the Americas. Its transmission cycle involves fleas as biological vectors (mainly Ctenocephalides felis and multiple domestic and synanthropic mammal hosts. Nonetheless, the role of mammals in the cycle of R. felis is not well understood and many efforts are ongoing in different countries of America to clarify it. The present study describes for the first time in Mexico the infection of two species of opossum (Didelphis virginiana and D. marsupialis by R. felis. A diagnosis was carried out from blood samples by molecular methods through the gltAand 17 kDa genes and sequence determination. Eighty-seven opossum samples were analyzed and 28 were found to be infected (32.1% from five out of the six studied localities of Yucatan. These findings enable recognition of the potential epidemiological implications for public health of the presence of infected synanthropic Didelphis in households.

  19. Detection of pathogenic Leptospira species associated with phyllostomid bats (Mammalia: Chiroptera) from Veracruz, Mexico.

    Science.gov (United States)

    Ballados-González, G G; Sánchez-Montes, S; Romero-Salas, D; Colunga Salas, P; Gutiérrez-Molina, R; León-Paniagua, L; Becker, I; Méndez-Ojeda, M L; Barrientos-Salcedo, C; Serna-Lagunes, R; Cruz-Romero, A

    2018-06-01

    The genus Leptospira encompass 22 species of spirochaetes, with ten pathogenic species that have been recorded in more than 160 mammals worldwide. In the last two decades, the numbers of records of these agents associated with bats have increased exponentially, particularly in America. Although order Chiroptera represents the second most diverse order of mammals in Mexico, and leptospirosis represents a human and veterinary problem in the country, few studies have been conducted to identify potential wildlife reservoirs. The aim of this study was to detect the presence and diversity of Leptospira sp. in communities of bats in an endemic state of leptospirosis in Mexico. During January to September 2016, 81 bats of ten species from three localities of Veracruz, Mexico, were collected with mist nets. Kidney samples were obtained from all specimens. For the detection of Leptospira sp., we amplified several genes using specific primers. Amplicons of the expected size were submitted to sequencing, and sequences recovered were compared with those of reference deposited in GenBank using the BLAST tool. To identify their phylogenetic position, we realized a reconstruction using maximum-likelihood (ML) method. Twenty-five samples from three bat species (Artibeus lituratus, Choeroniscus godmani and Desmodus rotundus) showed the presence of Leptospira DNA. Sequences recovered were close to Leptospira noguchii, Leptospira weilii and Leptospira interrogans. Our results include the first record of Leptospira in bats from Mexico and exhibit a high diversity of these pathogens circulating in the state. Due to the finding of a large number of positive wild animals, it is necessary to implement a surveillance system in populations of the positive bats as well as in related species, in order to understand their role as carriers of this bacterial genus. © 2018 Blackwell Verlag GmbH.

  20. Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Ana Carolina Alves de Paula e Silva

    2014-01-01

    Full Text Available This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14 compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action.

  1. Guidelines for the Detection of Rickettsia spp.

    Science.gov (United States)

    Portillo, Aránzazu; de Sousa, Rita; Santibáñez, Sonia; Duarte, Ana; Edouard, Sophie; Fonseca, Isabel P; Marques, Cátia; Novakova, Marketa; Palomar, Ana M; Santos, Marcos; Silaghi, Cornelia; Tomassone, Laura; Zúquete, Sara; Oteo, José A

    2017-01-01

    The genus Rickettsia (Rickettsiales: Rickettsiaceae) includes Gram-negative, small, obligate intracellular, nonmotile, pleomorphic coccobacilli bacteria transmitted by arthropods. Some of them cause human and probably also animal disease (life threatening in some patients). In these guidelines, we give clinical practice advices (microscopy, serology, molecular tools, and culture) for the microbiological study of these microorganisms in clinical samples. Since in our environment rickettsioses are mainly transmitted by ticks, practical information for the identification of these arthropods and for the study of Rickettsia infections in ticks has also been added.

  2. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion.

    Science.gov (United States)

    Arroyo-López, Francisco N; Blanquet-Diot, Stéphanie; Denis, Sylvain; Thévenot, Jonathan; Chalancon, Sandrine; Alric, Monique; Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Jiménez-Díaz, Rufino; Garrido-Fernández, Antonio

    2014-01-01

    The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933) and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, L. pentosus TOMC-LAB2, and L. pentosus TOMC-LAB4) during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum) resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  3. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species

    Directory of Open Access Journals (Sweden)

    Luca Ruiu

    2013-09-01

    Full Text Available Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity.

  4. Study on the Biocontrol Activities of Trichoderma species in Greengram with Infected Fungal Pathogens

    International Nuclear Information System (INIS)

    May Waine Wityi Htun; Myat Thu; Saw Sandar Maw

    2011-12-01

    Seven species of Trichoderma were isolated from rhizospheric soil sources and studied by cultural morphology and microscopic examinations. In dual plate assay, antifungal effects of seven Trichoderma strains were screened against three plant pathogenic fungi (Fusarium oxysporum, Rhizoctonia solani and Pythium sp.) on PDA medium and T-5 isolate showed a wide percentage of inhibitory effects on target pathogens with PIRG value. All Trichoderma strains exhibited a clear zone formation on minimal synthetic medium supplemented with 1% colloidal chitin. T-2 and T-5 were the best chitinase producer strains. In vitro screening for protease activity, the highest protease producing activity of Trichoderma isolate (T-2) were observed in pH indicator medium after 7 days incubation. In pot trial experiment, only T-5 strain exhibited more fungal suppression efficiency on green gram plant than commercial fungicide, Trisan and the other strains. So, it can be said that the effective strain was T-5 strain only which have been more antifungal producing power on three fungal pathogens than Trisan and the resting strains.

  5. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    Directory of Open Access Journals (Sweden)

    Francisco Noé eArroyo López

    2014-10-01

    Full Text Available The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933 and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, Lactobacillus pentosus TOMC-LAB2 and Lactobacillus pentosus TOMC-LAB4 during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  6. First report of Rickettsia raoultii and Rickettsia helvetica in Dermacentor reticulatus ticks from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Rudolf, I.; Venclíková, Kristýna; Blažejová, H.; Betášová, L.; Mendel, J.; Hubálek, Z.; Parola, P.

    2016-01-01

    Roč. 7, č. 6 (2016), s. 1222-1224 ISSN 1877-959X Institutional support: RVO:61389013 Keywords : Rickettsia spp. * Dermacentor spp. * DEBONEL Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.230, year: 2016

  7. Molecular detection of Bartonella spp. and Rickettsia spp. in bat ectoparasites in Brazil.

    Science.gov (United States)

    do Amaral, Renan Bressianini; Lourenço, Elizabete Captivo; Famadas, Kátia Maria; Garcia, Amanda Barbosa; Machado, Rosangela Zacarias; André, Marcos Rogério

    2018-01-01

    The family Streblidae comprises a monophyletic group of Hippoboscoidea, hematophagous dipterans that parasitize bats. Bartonella spp. and Rickettsia spp. have been reported in bats sampled in Europe, Africa, Asia, North, Central and South America. However, there are few reports on the Bartonella and Rickettsia bacteria infecting Hippoboscoidea flies and mites. While Spinturnicidae mites are ectoparasites found only in bats, those belonging to the family Macronyssidae comprise mites that also parasitize other mammal species. This study investigates the occurrence and assesses the phylogenetic positioning of Bartonella spp. and Rickettsia spp. found in Streblidae flies and Spinturnicidae and Macronyssidae mites collected from bats captured in Brazil. From May 2011 to April 2012 and September 2013 to December 2014, 400 Streblidae flies, 100 Macronyssidaes, and 100 Spinturnicidae mites were collected from bats captured in two sites in northeastern Nova Iguaçu, Rio de Janeiro, southeastern Brazil. Forty (19.8%) out of 202 Streblidae flies were positive for Bartonella spp. in qPCR assays based on the nuoG gene. Among the flies positive for the bacterium, six (18%) were Paratrichobius longicrus, seven (29%) Strebla guajiro, two (40%) Aspidoptera phyllostomatis, five (11%) Aspidoptera falcata, one (10%) Trichobius anducei, one (25%) Megistopoda aranea, and 18 (32%) Trichobius joblingi, and collected from bats of the following species: Artibeus lituratus, Carollia perspicillata, Artibeus planirostris, Sturnira lilium, and Artibeus obscurus. Six sequences were obtained for Bartonella (nuoG [n = 2], gltA [n = 2], rpoB [n = 1], ribC = 1]). The phylogenetic analysis based on gltA (750pb) gene showed that the Bartonella sequences clustered with Bartonella genotypes detected in bats and ectoparasites previously sampled in Latin America, including Brazil. Only one sample (0.49%) of the species Trichobius joblingi collected from a specimen of Carollia perspicillata was positive

  8. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    Science.gov (United States)

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species.

    Science.gov (United States)

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-11-15

    The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the

  10. Rickettsia bellii, Rickettsia amblyommii, and Laguna Negra hantavirus in an Indian reserve in the Brazilian Amazon

    OpenAIRE

    de Barros Lopes, Lívia; Guterres, Alexandro; Rozental, Tatiana; Carvalho de Oliveira, Renata; Mares-Guia, Maria Angélica; Fernandes, Jorlan; Figueredo, José Ferreira; Anschau, Inês; de Jesus, Sebastião; V Almeida, Ana Beatriz M; Cristina da Silva, Valéria; Gomes de Melo Via, Alba Valéria; Bonvicino, Cibele Rodrigues; D’Andrea, Paulo Sérgio; Barreira, Jairo Dias

    2014-01-01

    Background The purpose of this study was to identify the presence of rickettsia and hantavirus in wild rodents and arthropods in response to an outbreak of acute unidentified febrile illness among Indians in the Halataikwa Indian Reserve, northwest of the Mato Grosso state, in the Brazilian Amazon. Where previously surveillance data showed serologic evidence of rickettsia and hantavirus human infection. Methods The arthropods were collected from the healthy Indian population and by flagging v...

  11. Molecular identification and pathogenicity of Citrobacter and Serratia species isolated from cultured Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Manal I. El-Barbary

    2017-09-01

    Full Text Available This study aimed to isolate and characterize some pathogenic bacterial strains belonging to the family Enterobacteriaceae. They had been isolated from gills, liver, kidney and skin of naturally infected Oreochromis niloticus and had been identified by biochemical test and 16S rRNA gene using four universal primers. Additionally, the isolates were tested for antimicrobial susceptibility, histopathological alterations of liver, kidney and gills and the pathogenicity of the identified isolates for O. niloticus. The results of phylogenetic analysis placed the isolates in the family Enterobacteriaceae (genera Serratia and Citrobacter based on 99% homology. The primer pair (17F and 1390R is the most appropriate pair of universal primers employed for the identification of 16S rRNA gene as it covers as much as possible of the variable regions (Vs. V1 and V2 regions of 16S rRNA gene presented weak evidence of the diversity of the genera Serratia. The mortality rate was 40–60% after challenging O. niloticus by identified isolates, which revealed its sensitivity to ciprofloxacin and norfloxacin. Histological changes showed dilation in sinusoids with severe vacuolar degeneration in the liver, tubular degeneration and hemorrhage between renal tubules with pyknotic nuclei in the kidney, epithelial hyperplasia, aneurism and evident epithelium interstitial edema in gills of O. niloticus. This study concluded that these isolates should be considered as an opportunistic pathogen of O. niloticus. The study also states that the sequencing of 16S rRNA is an important tool for the identification of unknown bacterial species of fish pathogen. Keywords: Citrobacter sp., Serratia sp., Phylogenetic analysis, Histology, Antibiotic sensitivity, Oreochromis niloticus

  12. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  13. Evaluation of different enrichment methods for pathogenic Yersinia species detection by real time PCR

    Science.gov (United States)

    2014-01-01

    Background Yersiniosis is a zoonotic disease reported worldwide. Culture and PCR based protocols are the most common used methods for detection of pathogenic Yersinia species in animal samples. PCR sensitivity could be increased by an initial enrichment step. This step is particularly useful in surveillance programs, where PCR is applied to samples from asymptomatic animals. The aim of this study was to evaluate the improvement in pathogenic Yersinia species detection using a suitable enrichment method prior to the real time PCR (rtPCR). Nine different enrichment protocols were evaluated including six different broth mediums (CASO, ITC, PSB, PBS, PBSMSB and PBSSSB). Results The analysis of variance showed significant differences in Yersinia detection by rtPCR according to the enrichment protocol used. These differences were higher for Y. pseudotuberculosis than for Y. enterocolitica. In general, samples incubated at lower temperatures yielded the highest detection rates. The best results were obtained with PBSMSB and PBS2. Application of PBSMSB protocol to free-ranging wild board samples improved the detection of Y. enterocolitica by 21.2% when compared with direct rtPCR. Y. pseudotuberculosis detection was improved by 10.6% when results obtained by direct rtPCR and by PBSMSB enrichment before rtPCR were analyzed in combination. Conclusions The data obtained in the present study indicate a difference in Yersinia detection by rtPCR related to the enrichment protocol used, being PBSMSB enrichment during 15 days at 4°C and PBS during 7 days at 4°C the most efficient. The use of direct rtPCR in combination with PBSMSB enrichment prior to rtPCR resulted in an improvement in the detection rates of pathogenic Yersinia in wild boar and could be useful for application in other animal samples. PMID:25168886

  14. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  15. Implication of the Bacterial Endosymbiont Rickettsia spp. in Interactions of the Whitefly Bemisia tabaci with Tomato yellow leaf curl virus

    Science.gov (United States)

    Kliot, Adi; Cilia, Michelle; Czosnek, Henryk

    2014-01-01

    ABSTRACT Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. We report here that infection with Rickettsia spp., a facultative endosymbiont of whiteflies, altered TYLCV-B. tabaci interactions. A B. tabaci strain infected with Rickettsia acquired more TYLCV from infected plants, retained the virus longer, and exhibited nearly double the transmission efficiency compared to an uninfected B. tabaci strain with the same genetic background. Temporal and spatial antagonistic relationships were discovered between Rickettsia and TYLCV within the whitefly. In different time course experiments, the levels of virus and Rickettsia within the insect were inversely correlated. Fluorescence in situ hybridization analysis of Rickettsia-infected midguts provided evidence for niche exclusion between Rickettsia and TYLCV. In particular, high levels of the bacterium in the midgut resulted in higher virus concentrations in the filter chamber, a favored site for virus translocation along the transmission pathway, whereas low levels of Rickettsia in the midgut resulted in an even distribution of the virus. Taken together, these results indicate that Rickettsia, by infecting the midgut, increases TYLCV transmission efficacy, adding further insights into the complex association between persistent plant viruses, their insect vectors, and microorganism tenants that reside within these insects. IMPORTANCE Interest in bacterial endosymbionts in arthropods and many aspects of their host biology in agricultural and human health systems has been increasing. A recent and relevant studied example is the influence of Wolbachia on dengue virus transmission by mosquitoes. In parallel with our recently studied whitefly-Rickettsia-TYLCV system, other studies have shown that dengue virus levels in the mosquito vector are inversely correlated with

  16. First detection of Candidatus Rickettsia barbariae in the flea Vermipsylla alakurt from north-western China.

    Science.gov (United States)

    Zhao, Shan-Shan; Li, Hong-Yu; Yin, Xiao-Ping; Liu, Zhi-Qiang; Chen, Chuang-Fu; Wang, Yuan-Zhi

    2016-06-07

    Vermipsylla is a genus of the family Vermipsyllidae within the order Siphonaptera of fleas. Vermipsylla alakurt is mainly distributed in alpine pastoral areas of Kazakhstan, Mongolia, China and Nepal, and infests sheep, yaks and horses, causing irritation, poor condition, anaemia and even death. However, to date, no rickettsial agents have been reported in V. alakurt. A total of 133 fleas were collected directly from the tails of three sheep flocks (n = 335) in Minfeng County, Xinjiang Uygur Autonomous Region, north-western China. Of these, 55 fleas were identified by morphological examination and molecular analysis of four loci (the ribosomal 18S and 28S rDNA genes and the mitochondrial genes cytochrome  c oxidase subunit II and elongation factor 1-alpha). Eight Rickettsia-specific gene fragments originated from seven genes: the 17-kilodalton antigen gene (17-kDa), citrate synthase gene (gltA), 16S rRNA gene (rrs), outer membrane protein A gene (ompA), surface cell antigen 1 gene (sca1), PS120 protein gene (gene D), and outer membrane protein B gene (ompB, two fragments), were used to identify the species of Rickettsia in 53 fleas. The amplified products were sequenced and included in a phylogenetic analysis to verify the taxonomic identification of the rickettsial agents. Based on morphological and molecular evidence, the flea was identified as Vermipsylla alakurt. Nine samples were positive (16.98 %, 9/53) for Rickettsia spp. The phylogenetic tree revealed that the rickettsial agents found in V. alakurt cluster with Candidatus Rickettsia barbariae. Our study suggests that: (i) V. alakurt may serve as a carrier for Candidatus R. barbariae; and (ii) Candidatus R. barbariae, previously reported in Israel, is the eighth newly discovered validated Rickettsia species in China. This finding extends our knowledge of the distribution of Candidatus R. barbariae and the profile of carriers, which not only comprise ticks but also fleas.

  17. Rickettsia sibirica mongolitimonae Infection, Turkey, 2016.

    Science.gov (United States)

    Kuscu, Ferit; Orkun, Omer; Ulu, Aslihan; Kurtaran, Behice; Komur, Suheyla; Inal, A Seza; Erdogan, Damla; Tasova, Yesim; Aksu, Hasan S Z

    2017-07-01

    In 2016, Rickettsia sibirica mongolitimonae was diagnosed for a man in Turkey. He had been bitten by a Hyalomma marginatum tick, from which PCR detected rickettsial DNA. Sequence analysis of the DNA identified R. sibirica mongolitimonae. Immunofluorescence assay of patient serum indicated R. conorii, which cross-reacts. PCR is recommended for rickettsiosis diagnoses.

  18. Pathogenesis of Cell Injury by Rickettsia conorii.

    Science.gov (United States)

    1984-06-15

    infected soldiers in the Viet Nam War. These rickettsiae have continued to attract research support. Although R. conorii has received far less...principally for reasons of location related to cosmetic concern or proximity to vital structures, e.g., carotid artery. Other patients had boutonneuse fever

  19. In Vitro Activities of Telithromycin (HMR 3647) against Rickettsia rickettsii, Rickettsia conorii, Rickettsia africae, Rickettsia typhi, Rickettsia prowazekii, Coxiella burnetii, Bartonella henselae, Bartonella quintana, Bartonella bacilliformis, and Ehrlichia chaffeensis

    OpenAIRE

    Rolain, Jean-Marc; Maurin, Max; Bryskier, André; Raoult, Didier

    2000-01-01

    In vitro activities of telithromycin compared to those of erythromycin against Rickettsia spp., Bartonella spp., Coxiella burnetii, and Ehrlichia chaffeensis were determined. Telithromycin was more active than erythromycin against Rickettsia, Bartonella, and Coxiella burnetii, with MICs of 0.5 μg/ml, 0.003 to 0.015 μg/ml, and 1 μg/ml, respectively, but was inactive against Ehrlichia chaffeensis.

  20. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens

    NARCIS (Netherlands)

    Olff, H.; Hoorens, B.; De Goede, R.G.M.; Van der Putten, W.H.; Gleichman, J.M.

    2000-01-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carer

  1. Small-scale shifting mosaics of two dominant grassland species : the possible role of soil-borne pathogens

    NARCIS (Netherlands)

    Olff, H.; Hoorens, B.; Goede, R.G.M. de; Putten, W.H. van der; Gleichman, J.M.

    2000-01-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex

  2. Skin microbiota in frogs from the Brazilian Atlantic Forest: Species, forest type, and potential against pathogens.

    Science.gov (United States)

    Assis, Ananda Brito de; Barreto, Cristine Chaves; Navas, Carlos Arturo

    2017-01-01

    The cutaneous microbiota of amphibians can be defined as a biological component of protection, since it can be composed of bacteria that produce antimicrobial compounds. Several factors influence skin microbial structure and it is possible that environmental variations are among one of these factors, perhaps through physical-chemical variations in the skin. This community, therefore, is likely modified in habitats in which some ecophysiological parameters are altered, as in fragmented forests. Our research goal was to compare the skin bacterial community of four anuran species of the Atlantic Forest of Brazil in landscapes from two different environments: continuous forest and fragmented forest. The guiding hypotheses were: 1) microbial communities of anuran skin vary among sympatric frog species of the Atlantic forest; 2) the degree to which forested areas are intact affects the cutaneous bacterial community of amphibians. If the external environment influences the skin microbiota, and if such influences affect microorganisms capable of inhibiting the colonization of pathogens, we expect consequences for the protection of host individuals. We compared bacterial communities based on richness and density of colony forming units; investigated the antimicrobial potential of isolated strains; and did the taxonomic identification of isolated morphotypes. We collected 188 individual frogs belonging to the species Proceratophrys boiei, Dendropsophus minutus, Aplastodiscus leucopygius and Phyllomedusa distincta, and isolated 221 bacterial morphotypes. Our results demonstrate variation in the skin microbiota of sympatric amphibians, but only one frog species exhibited differences in the bacterial communities between populations from fragmented and continuous forest. Therefore, the variation we observed is probably derived from both intrinsic aspects of the host amphibian species and extrinsic aspects of the environment occupied by the host. Finally, we detected

  3. Pathogenic and Saprophytic Leptospira Species in Water and Soils from Selected Urban Sites in Peninsular Malaysia

    Science.gov (United States)

    Benacer, Douadi; Woh, Pei Yee; Mohd Zain, Siti Nursheena; Amran, Fairuz; Thong, Kwai Lin

    2013-01-01

    Leptospira species were studied in water and soils from selected urban sites in Malaysia. A total of 151 water (n=121) and soil (n=30) samples were collected from 12 recreational lakes and wet markets. All samples were filtered and inoculated into semi-solid Ellinghausen and McCullough modified by Johnson and Harris (EMJH) media supplemented with additional 5-fluorouracil. The cultures were then incubated at 30°C and observed under a dark field microscope with intervals of 10 days. A PCR assay targeting the rrs gene was used to confirm the genus Leptospira among the isolates. Subsequently, the pathogenic status of the isolates was determined using primer sets G1/G2 and Sapro1/Sapro2, which target the secY and rrs genes, respectively. The isolates were identified at serogroup level using the microscopic agglutination test (MAT) while their genetic diversity was assessed by pulsed field gel electrophoresis (PFGE). Based on dark field microscopy, 23.1% (28/121) water and 23.3% (7/30) soil cultures were positive for Leptospira spp. Of the 35 positive cultures, only 8 were pure and confirmed as Leptospira genus by PCR assay. Two out of 8 isolates were confirmed as pathogenic, 5 were saprophytic and one was intermediate. These 8 isolates were negative for the 25 reference hyperimmune rabbit sera tested in the MAT. PFGE showed that all 8 of these environmental Leptospira spp. were genetically diverse. In conclusion, the presence of pathogenic Leptospira spp. in the urban Malaysian environment may indicate and highlight the importance of water screening, especially in recreational lakes, in order to minimize any chance of Leptospira infection. PMID:23363618

  4. PCR Amplification of Ribosomal DNA for Species Identification in the Plant Pathogen Genus Phytophthora

    Science.gov (United States)

    Ristaino, Jean B.; Madritch, Michael; Trout, Carol L.; Parra, Gregory

    1998-01-01

    We have developed a PCR procedure to amplify DNA for quick identification of the economically important species from each of the six taxonomic groups in the plant pathogen genus Phytophthora. This procedure involves amplification of the 5.8S ribosomal DNA gene and internal transcribed spacers (ITS) with the ITS primers ITS 5 and ITS 4. Restriction digests of the amplified DNA products were conducted with the restriction enzymes RsaI, MspI, and HaeIII. Restriction fragment patterns were similar after digestions with RsaI for the following species: P. capsici and P. citricola; P. infestans, P. cactorum, and P. mirabilis; P. fragariae, P. cinnamomi, and P. megasperma from peach; P. palmivora, P. citrophthora, P. erythroseptica, and P. cryptogea; and P. megasperma from raspberry and P. sojae. Restriction digests with MspI separated P. capsici from P. citricola and separated P. cactorum from P. infestans and P. mirabilis. Restriction digests with HaeIII separated P. citrophthora from P. cryptogea, P. cinnamomi from P. fragariae and P. megasperma on peach, P. palmivora from P. citrophthora, and P. megasperma on raspberry from P. sojae. P. infestans and P. mirabilis digests were identical and P. cryptogea and P. erythroseptica digests were identical with all restriction enzymes tested. A unique DNA sequence from the ITS region I in P. capsici was used to develop a primer called PCAP. The PCAP primer was used in PCRs with ITS 1 and amplified only isolates of P. capsici, P. citricola, and P. citrophthora and not 13 other species in the genus. Restriction digests with MspI separated P. capsici from the other two species. PCR was superior to traditional isolation methods for detection of P. capsici in infected bell pepper tissue in field samples. The techniques described will provide a powerful tool for identification of the major species in the genus Phytophthora. PMID:9501434

  5. Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a Phytophthora Species With Downy Mildew-Like Characteristics.

    Science.gov (United States)

    Ye, Wenwu; Wang, Yang; Shen, Danyu; Li, Delong; Pu, Tianhuizi; Jiang, Zide; Zhang, Zhengguang; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2016-07-01

    On the basis of its downy mildew-like morphology, the litchi downy blight pathogen was previously named Peronophythora litchii. Recently, however, it was proposed to transfer this pathogen to Phytophthora clade 4. To better characterize this unusual oomycete species and important fruit pathogen, we obtained the genome sequence of Phytophthora litchii and compared it to those from other oomycete species. P. litchii has a small genome with tightly spaced genes. On the basis of a multilocus phylogenetic analysis, the placement of P. litchii in the genus Phytophthora is strongly supported. Effector proteins predicted included 245 RxLR, 30 necrosis-and-ethylene-inducing protein-like, and 14 crinkler proteins. The typical motifs, phylogenies, and activities of these effectors were typical for a Phytophthora species. However, like the genome features of the analyzed downy mildews, P. litchii exhibited a streamlined genome with a relatively small number of genes in both core and species-specific protein families. The low GC content and slight codon preferences of P. litchii sequences were similar to those of the analyzed downy mildews and a subset of Phytophthora species. Taken together, these observations suggest that P. litchii is a Phytophthora pathogen that is in the process of acquiring downy mildew-like genomic and morphological features. Thus P. litchii may provide a novel model for investigating morphological development and genomic adaptation in oomycete pathogens.

  6. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia.

    Directory of Open Access Journals (Sweden)

    Yiying Liu

    Full Text Available Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (microbiological and sustainable means to mitigate oomycete diseases in aquaculture.

  7. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia

    Science.gov (United States)

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C.; Raaijmakers, Jos M.; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture. PMID:26317985

  8. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    Science.gov (United States)

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  9. Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid.

    Science.gov (United States)

    Gualtieri, Liberata; Nugnes, Francesco; Nappo, Anna G; Gebiola, Marco; Bernardo, Umberto

    2017-07-01

    The incidence of horizontal transmission as a route for spreading symbiont infections is still being debated, but a common view is that horizontal transfers require intimate between-species relationships. Here we study a system that meets ideal requirements for horizontal transmission: the gall wasp Leptocybe invasa and its parasitoid Quadrastichus mendeli (Hymenoptera: Eulophidae). These wasps belong to the same subfamily, spend most of their lives inside the same minute gall and are both infected by Rickettsia, a maternally inherited endosymbiotic bacteria that infects several arthropods, sometimes manipulating their reproduction, like inducing thelytokous parthenogenesis in L. invasa. Despite intimate contact, close phylogenetic relationship and the parasitoid's host specificity, we show that host and parasitoid do not share the same Rickettsia. We provide indirect evidence that Rickettsia infecting Q. mendeli may be inducing thelytokous parthenogenesis, as the symbiont is densely present in the reproductive apparatus and is vertically transmitted. Phylogenetic analyses based on 16S and gltA placed this symbiont in the leech group. The confirmed and presumed parthenogenesis-inducing Rickettsia discovered so far only infect eulophid wasps, and belong to three different groups, suggesting multiple independent evolution of the parthenogenesis inducing phenotype. We also show some degree of cospeciation between Rickettsia and their eulophid hosts. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The occurrence and pathogenicity of Phoma exigua Desm. var. exigua for selected species of herbs

    Directory of Open Access Journals (Sweden)

    Zofia Machowicz-Stefaniak

    2012-12-01

    Full Text Available P. exigua var. exigua was isolated from underground and aboveground organs of different herb plant species in the years 1998-2006. Pathogenicity tests of three randomly chosen isolates of the fungus T 299, T 261 and T 277 for thyme and of three isolates M 1657, M 1193 and M 1635 for lemon balm were carried out. The effect of water suspension of fungus spores on the germination ability of schizocarps and of infected soil on sprouting and seedling health was studied. The study of microscopic structures of the fungus developing on plants, isolation of the fungus on artificial media and macro- and microscopic analysis on standard media are essential for the correct identification of P. exigua var. exigua. The polyphagous nature of the fungus is confirmed by the obtained results. The tested isolates were found to be occasional pathogens of thyme and lemon balm in the studied conditions. The harmfulness of the tested isolates pointed to inhibition of schizocarp germination, sprouting of plants and the ability to cause necrosis of germs, roots and epicotyl.

  11. Caracterização de Rickettsia spp. circulante em foco silencioso de febre maculosa brasileira no Município de Caratinga, Minas Gerais, Brasil Characterization of Rickettsia spp. circulating in a silent peri-urban focus for Brazilian spotted fever in Caratinga, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Daniele Cardoso

    2006-03-01

    samples were tested by indirect fluorescent antibody (IFA using R. rickettsii antigen. Only three of the equine sera tested (17.0% had positive antibody titers. Molecular detection of rickettsiae species potentially pathogenic to humans in arthropod vectors and the presence of seroreactivity to SFRG in horses show the risk of transmission of rickettsiosis in this area and the need to maintain continuous epidemiological surveillance for rickettsial diseases.

  12. Bacteria of the genus Rickettsia in ticks (Acari: Ixodidae) collected from birds in Costa Rica.

    Science.gov (United States)

    Ogrzewalska, Maria; Literák, Ivan; Capek, Miroslav; Sychra, Oldřich; Calderón, Víctor Álvarez; Rodríguez, Bernardo Calvo; Prudencio, Carlos; Martins, Thiago F; Labruna, Marcelo B

    2015-06-01

    The aim of this study was to document the presence of Rickettsia spp. in ticks parasitizing wild birds in Costa Rica. Birds were trapped at seven locations in Costa Rica during 2004, 2009, and 2010; then visually examined for the presence of ticks. Ticks were identified, and part of them was tested individually for the presence of Rickettsia spp. by polymerase chain reaction (PCR) using primers targeting fragments of the rickettsial genes gltA and ompA. PCR products were DNA-sequenced and analyzed in BLAST to determine similarities with previously reported rickettsial agents. A total of 1878 birds were examined, from which 163 birds (9%) were infested with 388 ticks of the genera Amblyomma and Ixodes. The following Amblyomma (in decreasing order of abundance) were found in immature stages (larvae and nymphs): Amblyomma longirostre, Amblyomma calcaratum, Amblyomma coelebs, Amblyomma sabanerae, Amblyomma varium, Amblyomma maculatum, and Amblyomma ovale. Ixodes ticks were represented by Ixodes minor and two unclassified species, designated here as Ixodes sp. genotype I, and Ixodes sp. genotype II. Twelve of 24 tested A. longirostre ticks were found to be infected with 'Candidatus Rickettsia amblyommii', and 2 of 4 A. sabanerae were found to be infected with Rickettsia bellii. Eight of 10 larval Ixodes minor were infected with an endosymbiont (a novel Rickettsia sp. agent) genetically related to the Ixodes scapularis endosymbiont. No rickettsial DNA was found in A. calcaratum, A. coelebs, A. maculatum, A. ovale, A. varium, Ixodes sp. I, and Ixodes sp. II. We report the occurrence of I. minor in Costa Rica for the first time and a number of new bird host-tick associations. Moreover, 'Candidatus R. amblyommii' and R. bellii were found in A. longirostre and A. sabanerae, respectively, in Costa Rica for the first time. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Occurrence and species distribution of pathogenic Mucorales in unselected soil samples from France.

    Science.gov (United States)

    Mousavi, B; Costa, J M; Arné, P; Guillot, J; Chermette, R; Botterel, F; Dannaoui, E

    2018-04-01

    Mucormycosis is a life-threatening invasive fungal disease that affects a variety of patient groups. Although Mucorales are mostly opportunistic pathogens originating from soil or decaying vegetation, there are currently few data on prevalence of this group of fungi in the environment. The aim of the present study was to assess the prevalence and diversity of species of Mucorales from soil samples collected in France. Two grams of soil were homogenized in sterile saline and plated on Sabouraud dextrose agar and RPMI agar supplemented with itraconazole or voriconazole. Both media contained chloramphenicol and gentamicin. The plates were incubated at 35 ± 2 °C and checked daily for fungal growth for a maximum of 7 d. Mucorales were subcultured for purity. Each isolate was identified phenotypically and molecular identification was performed by ITS sequencing. A total of 170 soil samples were analyzed. Forty-one isolates of Mucorales were retrieved from 38 culture-positive samples. Among the recovered isolates, 27 Rhizopus arrhizus, 11 Mucor circinelloides, one Lichtheimia corymbifera, one Rhizopus microsporus and one Cunninghamella bertholletiae were found. Positive soil samples came from cultivated fields but also from other types of soil such as flower beds. Mucorales were retrieved from samples obtained in different geographical regions of France. Voriconazole-containing medium improved the recovery of Mucorales compared with other media. The present study showed that pathogenic Mucorales are frequently recovered from soil samples in France. Species diversity should be further analyzed on a larger number of soil samples from different geographic areas in France and in other countries.

  14. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.

    Science.gov (United States)

    Campos-Calderón, Liliana; Ábrego-Sánchez, Leyda; Solórzano-Morales, Antony; Alberti, Alberto; Tore, Gessica; Zobba, Rosanna; Jiménez-Rocha, Ana E; Dolz, Gaby

    2016-10-01

    Although vector-borne diseases are globally widespread with considerable impact on animal production and on public health, few reports document their presence in Central America. This study focuses on the detection and molecular identification of species belonging to selected bacterial genera (Ehrlichia, Anaplasma and Rickettsia) in ticks sampled from dogs in Costa Rica by targeting several genes: 16S rRNA/dsb genes for Ehrlichia; 16S rRNA/groEL genes for Anaplasma, and ompA/gltA/groEL genes for Rickettsia. PCR and sequence analyses provides evidences of Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum infection in Rhipicephalus sanguineus s.l ticks, and allow establishing the presence of Rickettsia monacensis in Ixodes boliviensis. Furthermore, the presence of recently discovered Mediterranean A. platys-like strains is reported for the first time in Central America. Results provide new background on geographical distribution of selected tick-transmitted bacterial pathogens in Costa Rica and on their molecular epidemiology, and are pivotal to the development of effective and reliable diagnostic tools in Central America. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees.

    Science.gov (United States)

    Llop, Pablo; Barbé, Silvia; López, María M

    The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees ( E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae , which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.

  16. Detecting Rickettsia parkeri Infection from Eschar Swab Specimens

    Science.gov (United States)

    2013-05-01

    Detecting Rickettsia parkeri Infection from Eschar Swab Specimens Todd Myers, Tahaniyat Lalani, Mike Dent, Ju Jiang, Patrick L. Daly, Jason D...Maguire, and Allen L. Richards The typical clinical presentation of several spotted fever group Rickettsia infections includes eschars. Clinical...diagnosis by using an eschar swab specimen from patients infected with Rickettsia parkeri. Until 2004, all confirmed cases of tick-borne spotted

  17. Molecular Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans

    Science.gov (United States)

    2010-01-01

    Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans Ju Jiang~ Tamasin Yarina~ Melissa K. Miller,2 Ellen Y. Stromdahl? and...protein B gene (ompB) of Rickettsia amblyommii was employed to assess the threat of R. amblyommii exposure to humans parasitized by Amblyomma americanum...infection of and possibly disease in humans. Key Words: Amblyomma americanum-Lone star ticks-Real-time PCR- Rickettsia amblyommii. Introduction R

  18. First molecular evidence of Anaplasma ovis and Rickettsia spp. in keds (Diptera: Hippoboscidae) of sheep and wild ruminants.

    Science.gov (United States)

    Hornok, Sándor; de la Fuente, José; Biró, Nóra; Fernández de Mera, Isabel G; Meli, Marina L; Elek, Vilmos; Gönczi, Eniko; Meili, Theres; Tánczos, Balázs; Farkas, Róbert; Lutz, Hans; Hofmann-Lehmann, Regina

    2011-10-01

    To evaluate the presence of rickettsial agents in hippoboscid flies with molecular methods, 81 sheep keds (Melophagus ovinus) were collected from 23 sheep, 144 deer keds (Lipoptena cervi) were caught in the environment, and a further 463 and 59 individuals of the latter species were obtained from fresh carcasses of 29 red deer and 17 roe deer, respectively. DNA was extracted individually or in pools. Anaplasma ovis was demonstrated in all examined sheep keds, and from one pool of free-living deer keds. Rickettsia helvetica or other, unidentified rickettsiae were also present in one pool of sheep keds, and in four pools of deer keds from both red deer and roe deer. This is the first account of polymerase chain reaction positivity of hippoboscid flies for A. ovis and rickettsiae. These results raise the possibility that-apart from cattle and roe deer as already reported-sheep and red deer might also play a reservoir role in the epidemiology of rickettsioses.

  19. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).

    Science.gov (United States)

    Leydet, Brian F; Liang, Fang-Ting

    2013-04-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Rapid identification of emerging human-pathogenic Sporothrix species with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-12-01

    Full Text Available Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 x 10 6 copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0, supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies.

  1. Transcriptional control of drug resistance, virulence and immune system evasion in pathogenic fungi: a cross-species comparison.

    Directory of Open Access Journals (Sweden)

    Pedro Pais

    2016-10-01

    Full Text Available Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  2. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison.

    Science.gov (United States)

    Pais, Pedro; Costa, Catarina; Cavalheiro, Mafalda; Romão, Daniela; Teixeira, Miguel C

    2016-01-01

    Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis , and Candida tropicalis . Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  3. First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked.

    Science.gov (United States)

    Liu, Dan; Wang, Yuan-Zhi; Zhang, Huan; Liu, Zhi-Qiang; Wureli, Ha-Zi; Wang, Shi-Wei; Tu, Chang-Chun; Chen, Chuang-Fu

    2016-11-25

    Melophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. In this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA). Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa), 16S rRNA gene (rrs), surface cell antigen 4 gene (sca4), citrate synthase gene (gltA), and outer membrane protein A and B genes (ompA and ompB). The amplified products were confirmed by sequencing and BLAST analysis ( https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome ). According to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus, with 100% identity to M. ovinus from St. Kilda, Australia (FN666411). DNA of Rickettsia spp. were found in 12 M. ovinus samples (12.63%, 12/95). Rickettsia raoultii and R. slovaca were confirmed based on phylogenetic analysis, although the genetic markers of these two rickettsial agents amplified in this study showed molecular diversity. This is the first report of R. raoultii and R. slovaca DNA in M. ovinus. Rickettsia slovaca was found for the first time around the Taklimakan Desert located in China. This finding extends the geographical range of spotted fever group

  4. First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2016-11-01

    Full Text Available Abstract Background Melophagus ovinus (Diptera: Hippoboscidae, a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. Methods In this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA. Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa, 16S rRNA gene (rrs, surface cell antigen 4 gene (sca4, citrate synthase gene (gltA, and outer membrane protein A and B genes (ompA and ompB. The amplified products were confirmed by sequencing and BLAST analysis ( https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome . Results According to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus, with 100% identity to M. ovinus from St. Kilda, Australia (FN666411. DNA of Rickettsia spp. were found in 12 M. ovinus samples (12.63%, 12/95. Rickettsia raoultii and R. slovaca were confirmed based on phylogenetic analysis, although the genetic markers of these two rickettsial agents amplified in this study showed molecular diversity. Conclusions This is the first report of R. raoultii and R. slovaca DNA in M. ovinus. Rickettsia slovaca was found for the first time around the Taklimakan Desert located in China. This finding

  5. First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked

    OpenAIRE

    Liu, Dan; Wang, Yuan-Zhi; Zhang, Huan; Liu, Zhi-Qiang; Wureli, Ha-zi; Wang, Shi-Wei; Tu, Chang-Chun; Chen, Chuang-Fu

    2016-01-01

    Background Melophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. Methods In this study, a total of 95 sheep keds were collected in Kuqa...

  6. [Fusarium species associated with basal rot of garlic in North Central Mexico and its pathogenicity].

    Science.gov (United States)

    Delgado-Ortiz, Juan C; Ochoa-Fuentes, Yisa M; Cerna-Chávez, Ernesto; Beltrán-Beache, Mariana; Rodríguez-Guerra, Raúl; Aguirre-Uribe, Luis A; Vázquez-Martínez, Otilio

    Garlic in Mexico is one of the most profitable vegetable crops, grown in almost 5,451ha; out of which more than 83% are located in Zacatecas, Guanajuato, Sonora, Puebla, Baja California and Aguascalientes. Blossom-end rot caused by Fusarium spp is widely distributed worldwide and has been a limiting factor in onion and garlic production regions, not only in Mexico but also in other countries. The presence of Fusarium oxysporum has been reported in Guanajuato and Aguascalientes. Fusarium culmorum has been reported in onion cultivars of Morelos; and Fusarium proliferatum, Fusarium verticillioides, Fusarium solani and Fusarium acuminatum have been previously reported in Aguascalientes. The goal of this work was identifying the Fusarium species found in Zacatecas, Guanajuato and Aguascalientes, to assess their pathogenicity. Plants with disease symptoms were collected from hereinabove mentioned States. The samples resulted in the identification of: F. oxysporum, F. proliferatum, F. verticillioides, F. solani and F. acuminatum species; out of which Aguascalientes AGS1A (F. oxysporum), AGS1B (F. oxysporum) and AGSY-10 (F. acuminatum) strains showed higher severity under greenhouse conditions. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. 'Candidatus Megaira polyxenophila' gen. nov., sp. nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae.

    Directory of Open Access Journals (Sweden)

    Martina Schrallhammer

    Full Text Available "Neglected Rickettsiaceae" (i.e. those harboured by non-hematophagous eukaryotic hosts display greater phylogenetic variability and more widespread dispersal than pathogenic ones; yet, the knowledge about their actual host range and host shift mechanism is scarce. The present work reports the characterization following the full-cycle rRNA approach (SSU rRNA sequence, specific in situ hybridization, and ultrastructure of a novel rickettsial bacterium, herewith proposed as 'Candidatus Megaira polyxenophila' gen. nov., sp. nov. We found it in association with four different free-living ciliates (Diophrys oligothrix, Euplotes octocarinatus, Paramecium caudatum, and Spirostomum sp., all belonging to Alveolata, Ciliophora; furthermore it was recently observed as intracellular occurring in Carteria cerasiformis and Pleodorina japonica (Chlorophyceae, Chlorophyta. Phylogenetic analyses demonstrated the belonging of the candidate new genus to the family Rickettsiaceae (Alphaproteobacteria, Rickettsiales as a sister group of the genus Rickettsia. In situ observations revealed the ability of the candidate new species to colonize either nuclear or cytoplasmic compartments, depending on the host organism. The presence of the same bacterial species within different, evolutionary distant, hosts indicates that 'Candidatus Megaira polyxenophila' recently underwent several distinct host shifts, thus suggesting the existence of horizontal transmission pathways. We consider these findings as indicative of an unexpected spread of rickettsial infections in aquatic communities, possibly by means of trophic interactions, and hence propose a new interpretation of the origin and phylogenetic diversification of rickettsial bacteria.

  8. Tick-borne pathogens in ticks collected from birds in Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Chien Kuo

    2017-11-01

    Full Text Available Abstract Background A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Methods Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Results Nineteen ticks (all larvae were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus. A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Conclusion Our study demonstrates the paucity of information on ticks of

  9. Permeability of Rickettsia prowazekii to NAD

    International Nuclear Information System (INIS)

    Atkinson, W.H.; Winkler, H.H.

    1989-01-01

    Rickettsia prowazekii accumulated radioactivity from [adenine-2,8-3H]NAD but not from [nicotinamide-4-3H]NAD, which demonstrated that NAD was not taken up intact. Extracellular NAD was hydrolyzed by rickettsiae with the products of hydrolysis, nicotinamide mononucleotide and AMP, appearing in the incubation medium in a time- and temperature-dependent manner. The particulate (membrane) fraction contained 90% of this NAD pyrophosphatase activity. Rickettsiae which had accumulated radiolabel after incubation with [adenine-2,8-3H]NAD were extracted, and the intracellular composition was analyzed by chromatography. The cells contained labeled AMP, ADP, ATP, and NAD. The NAD-derived intracellular AMP was transported via a pathway distinct from and in addition to the previously described AMP translocase. Exogenous AMP (1 mM) inhibited uptake of radioactivity from [adenine-2,8-3H]NAD and hydrolysis of extracellular NAD. AMP increased the percentage of intracellular radiolabel present as NAD. Nicotinamide mononucleotide was not taken up by the rickettsiae, did not inhibit hydrolysis of extracellular NAD, and was not a good inhibitor of the uptake of radiolabel from [adenine-2,8-3H]NAD. Neither AMP nor ATP (both of which are transported) could support the synthesis of intracellular NAD. The presence of intracellular [adenine-2,8-3H]NAD within an organism in which intact NAD could not be transported suggested the resynthesis from AMP of [adenine-2,8-3H]NAD at the locus of NAD hydrolysis and translocation

  10. Pathogenicity in six Australian reptile species following experimental inoculation with Bohle iridovirus.

    Science.gov (United States)

    Ariel, E; Wirth, W; Burgess, G; Scott, J; Owens, L

    2015-08-20

    Ranaviruses are able to infect multiple species of fish, amphibian and reptile, and some strains are capable of interclass transmission. These numerous potential carriers and reservoir species compound efforts to control and contain infections in cultured and wild populations, and a comprehensive knowledge of susceptible species and life stage is necessary to inform such processes. Here we report on the challenge of 6 water-associated reptiles with Bohle iridovirus (BIV) to investigate its potential pathogenicity in common native reptiles of the aquatic and riparian fauna of northern Queensland, Australia. Adult tortoises Elseya latisternum and Emydura krefftii, snakes Boiga irregularis, Dendrelaphis punctulatus and Amphiesma mairii, and yearling crocodiles Crocodylus johnstoni were exposed via intracoelomic inoculation or co-habitation with infected con-specifics, but none were adversely affected by the challenge conditions applied here. Bohle iridovirus was found to be extremely virulent in hatchling tortoises E. latisternum and E. krefftii via intracoelomic challenge, as demonstrated by distinct lesions in multiple organs associated with specific immunohistochemistry staining and a lethal outcome (10/17) of the challenge. Virus was re-isolated from 2/5 E. latisternum, 4/12 E. krefftii and 1/3 brown tree snakes B. irregularis. Focal necrosis, haemorrhage and infiltration of granulocytes were frequently observed histologically in the pancreas, liver and sub-mucosa of the intestine of challenged tortoise hatchlings. Immunohistochemistry demonstrated the presence of ranavirus antigens in the necrotic lesions and in individual cells of the vascular endothelium, the connective tissue and in granulocytes associated with necrosis or present along serosal surfaces. The outcome of this study confirms hatchling tortoises are susceptible to BIV, thereby adding Australian reptiles to the host range of ranaviruses. Additionally, given that BIV was originally isolated from an

  11. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations.

    Science.gov (United States)

    Cordes, Nils; Huang, Wei-Fone; Strange, James P; Cameron, Sydney A; Griswold, Terry L; Lozier, Jeffrey D; Solter, Leellen F

    2012-02-01

    Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Rickettsiae of the Spotted Fever group in dogs, horses and ticks: an epidemiological study in an endemic region of the State of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Nathalie Costa da Cunha

    2014-09-01

    Full Text Available ABSTRACT. Cunha N.C., Lemos E.R.S., Rozental T., Teixeira R.C., Cordeiro M.D., Lisbôa R.S., Favacho A.R., Barreira J.D., Rezende J. & Fonseca A.H. Rickettsiae of the Spotted Fever group in dogs, horses and ticks: an epidemiological study in an endemic region of the State of Rio de Janeiro, Brazil. [Rickettsias do grupo da febre maculosa em cães, equinos e carrapatos: um estudo epidemiológico em região endêmica do estado do Rio de Janeiro, Brasil.] Revista Brasileira de Medicina Veterinária, 36(3:294-300, 2014. Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, Seropédica, RJ 23890-000, Brasil. E-mail: adivaldo@ufrrj.br Spotted fever is a disease of which Rickettsia rickettsii is the most pathogenic agent. Its transmission is by tick bites and the infected ticks can act as vectors, reservoirs or amplifiers. The purpose of this paper is to assess the potential of dogs and horses as sentinels for brazilian spotted fever (BSF emergence and become acquainted with the tick species in a municipal region of Resende, Rio de Janeiro State, Brazil, where five BSF cases in man were registered. Dog and horse blood samples were collected from rural and periurban properties to assess IgG anti-Rickettsia rickettsii, using the indirect immunofluorescence assay (IFA. First, an analysis was conducted to detect association between IFA results and answers obtained from a questionnaire. Afterwards, a multivariate investigation was undertaken that presented significant statistical differences. Ticks were collected directly from dogs and horses for taxonomic identification. Out of the 107 canine serum samples, 30 (28.0% were reactive, with titers varying from 1:64 to 1:4096, and 77 (72.0% were not reactive. Of 96 animals in the serum analysis of horses, 9 (9.4% were reactive, all with titers of 1:64, and 87 (90.6% were non-reactive. The tick species collected from dogs were

  13. Rickettsia (Rickettsiales: Rickettsiaceae) Vector Biodiversity in High Altitude Atlantic Forest Fragments Within a Semiarid Climate: A New Endemic Area of Spotted-Fever in Brazil.

    Science.gov (United States)

    Moerbeck, Leonardo; Vizzoni, Vinícius F; Machado-Ferreira, Erik; Cavalcante, Robson C; Oliveira, Stefan V; Soares, Carlos A G; Amorim, Marinete; Gazêta, Gilberto S

    2016-11-01

    Rickettsioses are re-emerging vector-borne zoonoses with a global distribution. Recently, Rickettsia sp. strain Atlantic rainforest has been associated with new human spotted-fever (SF) cases in Brazil, featuring particular clinical signs: eschar formation and lymphadenopathy. These cases have been associated with the tick species, Amblyomma ovale From 2010 until 2015, the Brazilian Health Department confirmed 11 human SF cases in the Maciço de Baturité region, Ceará, Brazil. The present study reports the circulation of Rickettsia spp. in vectors from this entirely new endemic area for SF. A total of 1,727 ectoparasites were collected in this area from the environment, humans, and wild and domestic animals. Samples (n = 887) were screened by polymerase chain reaction (PCR), targeting the gltA and ompA rickettsial genes. Sequencing and phylogenetic analyses of gltA gene amplicons were carried out for 13 samples positive for both screening PCRs. Fragments of gltA and ompA from three samples were cloned, sequenced, and analyzed further. A. ovale and Rhipicephalus sanguineus specimens, collected from dogs, were found to be infected with Rickettsia sp. str. Atlantic rainforest, suggesting the importance of dogs in the epidemic cycle. Candidatus Rickettsia andeanae, Rickettsia felis, and Rickettsia bellii were also found infecting ticks and fleas in five municipalities, demonstrating the broad diversity of rickettsiae in circulation in the studied area. This study reports, for the first time, evidence of infection with Rickettsia sp. strain Atlantic rainforest in A. ovale and R. sanguineus in Ceará, and Ca. R. andeanae in an Atlantic rainforest environment of Brazil. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Genome-wide identification and comprehensive analyses of the kinomes in four pathogenic microsporidia species.

    Directory of Open Access Journals (Sweden)

    Zhi Li

    Full Text Available Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia—Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae—was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide

  15. Rickettsia bellii, Rickettsia amblyommii, and Laguna Negra hantavirus in an Indian reserve in the Brazilian Amazon.

    Science.gov (United States)

    de Barros Lopes, Lívia; Guterres, Alexandro; Rozental, Tatiana; Carvalho de Oliveira, Renata; Mares-Guia, Maria Angélica; Fernandes, Jorlan; Figueredo, José Ferreira; Anschau, Inês; de Jesus, Sebastião; V Almeida, Ana Beatriz M; Cristina da Silva, Valéria; Gomes de Melo Via, Alba Valéria; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sérgio; Barreira, Jairo Dias; Sampaio de Lemos, Elba Regina

    2014-04-17

    The purpose of this study was to identify the presence of rickettsia and hantavirus in wild rodents and arthropods in response to an outbreak of acute unidentified febrile illness among Indians in the Halataikwa Indian Reserve, northwest of the Mato Grosso state, in the Brazilian Amazon. Where previously surveillance data showed serologic evidence of rickettsia and hantavirus human infection. The arthropods were collected from the healthy Indian population and by flagging vegetation in grassland or woodland along the peridomestic environment of the Indian reserve. Wild rodents were live-trapped in an area bordering the reserve limits, due the impossibility of capturing wild animals in the Indian reserve. The wild rodents were identified based on external and cranial morphology and karyotype. DNA was extracted from spleen or liver samples of rodents and from invertebrate (tick and louse) pools, and the molecular characterization of the rickettsia was through PCR and DNA sequencing of fragments of two rickettsial genes (gltA and ompA). In relation to hantavirus, rodent serum samples were serologically screened by IgG ELISA using the Araraquara-N antigen and total RNA was extracted from lung samples of IgG-positive rodents. The amplification of the complete S segment was performed. A total of 153 wild rodents, 121 louse, and 36 tick specimens were collected in 2010. Laguna Negra hantavirus was identified in Calomys callidus rodents and Rickettsia bellii, Rickettsia amblyommii were identified in Amblyomma cajennense ticks. Zoonotic diseases such as HCPS and spotted fever rickettsiosis are a public health threat and should be considered in outbreaks and acute febrile illnesses among Indian populations. The presence of the genome of rickettsias and hantavirus in animals in this Indian reserve reinforces the need to include these infectious agents in outbreak investigations of febrile cases in Indian populations.

  16. Zoonotic pathogens in Atlantic Forest wild rodents in Brazil: Bartonella and Coxiella infections.

    Science.gov (United States)

    Rozental, Tatiana; Ferreira, Michelle Santos; Guterres, Alexandro; Mares-Guia, Maria Angélica; Teixeira, Bernardo R; Gonçalves, Jonathan; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sergio; de Lemos, Elba Regina Sampaio

    2017-04-01

    Zoonotic pathogens comprise a significant and increasing fraction of all emerging and re-emerging infectious diseases that plague humans. Identifying host species is one of the keys to controlling emerging infectious diseases. From March 2007 until April 2012, we collected a total of 131 wild rodents in eight municipalities of Rio de Janeiro, Brazil. We investigated these rodents for infection with Coxiella burnetii, Bartonella spp. and Rickettsia spp. In total, 22.1% (29/131) of the rodents were infected by at least one pathogen; co-infection was detected in 1.5% (2/131) of rodents. Coxiella burnetii was detected in 4.6% (6/131) of the wild animals, 17.6% of the rodents harbored Bartonella spp. No cases of Rickettsia were identified. Bartonella doshiae and Bartonella vinsonii were the species found on the wild mammals. This report is the first to note C. burnetii, B. doshiae and B. vinsonii natural infections in Atlantic Forest wild rodents in Brazil. Our work highlights the potential risk of transmission to humans, since most of the infected specimens belong to generalist species that live near human dwellings. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    Science.gov (United States)

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  18. Molecular Diversity of Anthracnose Pathogen Populations Associated with UK Strawberry Production Suggests Multiple Introductions of Three Different Colletotrichum Species.

    Directory of Open Access Journals (Sweden)

    Riccardo Baroncelli

    Full Text Available Fragaria × ananassa (common name: strawberry is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l. is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production.

  19. Natural history of zoonotic Ehrlichia species in the United States and discovery of a novel ehrlichial pathogen

    NARCIS (Netherlands)

    Loftis, A.D.

    2008-01-01

    Ehrlichia are obligate intracellular pathogens, transmitted by ixodid ticks, of both animals and humans. Ehrlichiae are emerging diseases in the USA, and the discovery of new species proceeds more rapidly than the development of models to study these agents. Laboratory animals were evaluated as

  20. Molecular Diversity of Anthracnose Pathogen Populations Associated with UK Strawberry Production Suggests Multiple Introductions of Three Different Colletotrichum Species

    Science.gov (United States)

    Baroncelli, Riccardo; Zapparata, Antonio; Sarrocco, Sabrina; Sukno, Serenella A.; Lane, Charles R.; Thon, Michael R.; Vannacci, Giovanni; Holub, Eric; Sreenivasaprasad, Surapareddy

    2015-01-01

    Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production. PMID:26086351

  1. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    Science.gov (United States)

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  2. Differentiation of the emerging human pathogens Trichosporon asahii and Trichosporon asteroides from other pathogenic yeasts and moulds by using species-specific monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Genna E Davies

    Full Text Available The fungal genus Trichosporon contains emerging opportunistic pathogens of humans, and is the third most commonly isolated non-candidal yeast from humans. Trichosporon asahii and T. asteroides are the most important species causing disseminated disease in immunocompromised patients, while inhalation of T. asahii spores is the most important cause of summer-type hypersensitivity pneumonitis in healthy individuals. Trichosporonosis is misdiagnosed as candidiasis or cryptococcosis due to a lack of awareness and the ambiguity of diagnostic tests for these pathogens. In this study, hybridoma technology was used to produce two murine monoclonal antibodies (MAbs, CA7 and TH1, for detection and differentiation of Trichosporon from other human pathogenic yeasts and moulds. The MAbs react with extracellular antigens from T. asahii and T. asteroides, but do not recognise other related Trichosporon spp., or unrelated pathogenic yeasts and moulds including Candida, Cryptococcus, Aspergillus, Fusarium, and Scedosporium spp., or the etiologic agents of mucormycosis. Immunofluorescence and Western blotting studies show that MAb CA7, an immunoglobulin G1 (IgG1, binds to a major 60 kDa glycoprotein antigen produced on the surface of hyphae, while TH1, an immunoglobulin M (IgM, binds to an antigen produced on the surface of conidia. The MAbs were used in combination with a standard mycological growth medium (Sabouraud Dextrose Agar to develop an enzyme-linked immunosorbent assay (ELISA for differentiation of T. asahii from Candida albicans and Cryptococcus neoformans in single and mixed species cultures. The MAbs represent a major advance in the identification of T. asahii and T. asteroides using standard mycological identification methods.

  3. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens.

    Science.gov (United States)

    Olff, H; Hoorens, B; de Goede, R G M; van der Putten, W H; Gleichman, J M

    2000-10-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex arenaria locally alternated in abundance, with different sites close together behaving out of phase, resulting in a shifting mosaic. The net effect of killing all soil biota on the growth of these two species was investigated in a greenhouse experiment using gamma radiation, controlling for possible effects of sterilization on soil chemistry. Both plant species showed a strong net positive response to soil sterilization, indicating that pathogens (e.g., nematodes, pathogenic fungi) outweighed the effect of mutualists (e.g., mycorrhizae). This positive growth response towards soil sterilization appeared not be due to effects of sterilization on soil chemistry. Growth of Carex was strongly reduced by soil-borne pathogens (86% reduction relative to its growth on sterilized soil) on soil from a site where this species decreased during the last decade (and Festuca increased), while it was reduced much less (50%) on soil from a nearby site where it increased in abundance during the last decade. Similarly, Festuca was reduced more (67%) on soil from the site where it decreased (and Carex increased) than on soil from the site where it increased (55%, the site where Carex decreased). Plant-feeding nematodes showed high small-scale variation in densities, and we related this variation to the observed growth reductions in both plant species. Carex growth on unsterilized soil was significantly more reduced at higher densities of plant-feeding nematodes, while the growth reduction in Festuca was independent of plant-feeding nematode densities. At high plant-feeding nematode densities, growth of Carex was reduced more than Festuca, while at low nematode densities the opposite was found

  4. Detection of Rickettsia helvetica in Ixodes ricinus infesting wild and domestic animals and in a botfly larva (Cephenemyia stimulator) infesting roe deer in Germany.

    Science.gov (United States)

    Scheid, Patrick; Speck, Stephanie; Schwarzenberger, Rafael; Litzinger, Mark; Balczun, Carsten; Dobler, Gerhard

    2016-10-01

    Ixodes ricinus is a well-known vector of different human pathogens including Rickettsia helvetica. The role of wild mammals in the distribution and probable maintenance of Rickettsia in nature is still to be determined. We therefore investigated various parasites from different wild mammals as well as companion animals for the presence of Rickettsia. A total of 606 I. ricinus, 38 Cephenemyia stimulator (botfly larvae), one Dermacentor reticulatus, 24 Haematopinus suis (hog lice) and 30 Lipoptena cervi (deer flies) were collected from free-ranging animals during seasonal hunting, and from companion animals. Sample sites included hunting leases at three main sampling areas and five additional areas in West and Central Germany. All collected parasites were screened for Rickettsia spp. and I. ricinus were investigated for tick-borne encephalitis virus (TBEV) in addition. While no TBEV was detected, the minimum infection rate (MIR) of I. ricinus with Rickettsia was 4.1% referring to all sampling sites and up to 6.9% at the main sampling site in Koblenz area. Sequencing of a fragment of the ompB gene identified R. helvetica. Approximately one third (29.5%) of the animals carried Rickettsia-positive ticks and the MIR in ticks infesting wild mammals ranged from 4.1% (roe deer) to 9.5%. These data affirm the widespread distribution of R. helvetica in Germany. One botfly larva from roe deer also harboured R. helvetica. Botfly larvae are obligate parasites of the nasal cavity, pharynx and throat of cervids and feed on cell fragments and blood. Based on this one might hypothesise that R. helvetica likely induces rickettsemia in cervids thus possibly contributing to maintenance and distribution of this rickettsia in the field. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Vectors of rickettsiae in Africa.

    Science.gov (United States)

    Bitam, Idir

    2012-12-01

    Vector-borne diseases are caused by parasites, bacteria, or viruses transmitted by the bites of hematophagous arthropods. In Africa, there has been a recent emergence of new diseases and the re-emergence of existing diseases, usually with changes in disease epidemiology (e.g., geographical distribution, prevalence, and pathogenicity). In Africa, rickettsioses are recognized as important emerging vector-borne infections in humans. Rickettsial diseases are transmitted by different types of arthropods, ticks, fleas, lice, and mites. This review will examine the roles of these different arthropod vectors and their geographical distributions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. River Networks As Ecological Corridors for Species, Populations and Pathogens of Water-Borne Disease

    Science.gov (United States)

    Rinaldo, A.

    2014-12-01

    River basins are a natural laboratory for the study of the integration of hydrological, ecological and geomorphological processes. Moving from morphological and functional analyses of dendritic geometries observed in Nature over a wide range of scales, this Lecture addresses essential ecological processes that take place along dendritic structures, hydrology-driven and controlled, like e.g.: population migrations and human settlements, that historically proceeded along river networks to follow water supply routes; riparian ecosystems composition that owing to their positioning along streams play crucial roles in their watersheds and in the loss of biodiversity proceeding at unprecedented rates; waterborne disease spreading, like epidemic cholera that exhibits epidemic patterns that mirror those of watercourses and of human mobility and resurgences upon heavy rainfall. Moreover, the regional incidence of Schistosomiasis, a parasitic waterborne disease, and water resources developments prove tightly related, and proliferative kidney disease in fish thrives differently in pristine and engineered watercourses: can we establish quantitatively the critical linkages with hydrologic drivers and controls? How does connectivity within a river network affect community composition or the spreading mechanisms? Does the river basin act as a template for biodiversity or for species' persistence? Are there hydrologic controls on epidemics of water-borne disease? Here, I shall focus on the noteworthy scientific perspectives provided by spatially explicit eco-hydrological studies centered on river networks viewed as ecological corridors for species, populations and pathogens of waterborne disease. A notable methodological coherence is granted by the mathematical description of river networks as the support for reactive transport. The Lecture overviews a number of topics idiosyncratically related to my own research work but ideally aimed at a coherent body of materials and methods. A

  7. Molecular Detection of Rickettsia africae in Amblyomma variegatum Collected from Sudan.

    Science.gov (United States)

    Nakao, Ryo; Qiu, Yongjin; Salim, Bashir; Hassan, Shawgi Mohamed; Sugimoto, Chihiro

    2015-05-01

    Despite the increasing awareness of the importance of emerging vector-borne diseases, human tick-borne diseases, particularly rickettsial infections, are overlooked, especially in the countries such as Sudan with limited resources to perform molecular-based surveys. This study aimed at detection and genetic characterization of Rickettsia spp. in ticks collected from Sudan. The samples were first screened for the presence of rickettsial agents by gltA real-time PCR and subsequently characterized by gltA and ompA PCR and size-based multispacer typing. The results demonstrated the wide distribution of Rickettsia africae and/or closely related species across Sudan. The results of this report highlight the need for careful consideration of rickettsial infections in patients with nonmalarial febrile illness in this country. Nationwide surveillance on ticks associated with human rickettsial infections in Sudan is warranted.

  8. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA.

    Science.gov (United States)

    da Silva, Ludmila Bezerra; Miragaia, Lidia Dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima; Barbosa, Angela Silva

    2015-03-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database.

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E

    2017-01-04

    The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species

    Science.gov (United States)

    Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.

    2016-01-01

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232

  11. “Candidatus Rickettsia andeanae” en Amblyomma tigrinum, San Luis, Argentina

    Directory of Open Access Journals (Sweden)

    Gabriel CICUTTIN

    2016-11-01

    Full Text Available El objetivo del estudio fue detectar especies del género Rickettsia en garrapatas de la especie Amblyomma tigrinum colectadas sobre carnívoros domésticos y en sangre de caninos domésticos de la provincia de San Luis (Argentina. Entre 2013 y 2015 se colectaron 56 garrapatas adultas de la especie A. tigrinum sobre caninos y felinos domésticos, y se obtuvieron 65 muestras sanguíneas de caninos. Tres garrapatas resultaron positivas mediante la amplificación de un fragmento del espacio intergénico 23S-5S ARNr del género Rickettsia, lográndose secuenciar uno de los productos positivos. La muestra positiva secuenciada también resultó positiva por PCRs de los fragmentos de los genes gltA y ompA. Las secuencias obtenidas resultaron tener una identidad del 100 % de identidad con “Candidatus Rickettsia andeanae”. Todas las muestras sanguíneas resultaron negativas. “Ca. R. andeanae” no ha sido asociada con enfermedad en humanos o animales, sin embargo, es necesario realizar nuevas investigaciones para lograr un mayor conocimiento del riesgo potencial de transmisión de rickettsiosis en la región. SUMMARY. “Candidatus Rickettsia andeanae” in Amblyomma tigrinum ticks from San Luis (Argentina. The aim of this study was to detect species of Rickettsia in Amblyomma tigrinum ticks collected from domestic carnivores and blood of domestic dogs of San Luis (Argentina. Between 2013 and 2015, 56 adults of A. tigrinum from dogs and cats and 65 blood from dogs were collected. Three ticks were positive by amplification of a 23S-5S rRNA fragment, and the sequence of one of the positive products was obtained. The positive sample sequenced was positive by PCRs of fragments of genes gltA and ompA. The sequences obtained were 100% identical with "Candidatus Rickettsia andeanae". All blood samples were negative. “Ca. R. andeanae” has not been associated with disease in humans or animals; however, further research is necessary to achieve greater

  12. First report of Rickettsia raoultii and Rickettsia helvetica in Dermacentor reticulatus ticks from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Rudolf, Ivo; Venclíková, Kristýna; Blažejová, Hana; Betášová, Lenka; Mendel, Jan; Hubálek, Zdeněk; Parola, P.

    2016-01-01

    Roč. 7, č. 6 (2016), s. 1222-1224 ISSN 1877-959X Institutional support: RVO:68081766 Keywords : Rickettsia spp. * Dermacentor spp. * DEBONEL * SENLAT Subject RIV: GJ - Animal Vermins ; Diseases , Veterinary Medicine Impact factor: 3.230, year: 2016

  13. A molecular survey of Rickettsia felis in fleas from cats and dogs in Sicily (Southern Italy.

    Directory of Open Access Journals (Sweden)

    Elisabetta Giudice

    Full Text Available Rickettsia felis, the agent of flea-borne spotted fever, has a cosmopolitan distribution. Its pathogenic role in humans has been demonstrated through molecular and serologic tests in several cases. The cat flea (Ctenocephalides felis is considered the main reservoir and the biological vector. The aim of this study was to assess the presence and occurrence of R. felis in fleas collected from dogs and cats in various sites of Palermo (Sicily. Between August and October 2012, 134 fleas were collected from 42 animals: 37 fleas from 13 dogs and 97 fleas from 29 cats. Two species of fleas were identified: 132 Ctenocephalides felis (98.51% collected on all animals and only two C. canis (1.49% on one dog. Out of 132 C. felis, 34 (25.76%, 12 from dogs (32.43% and 22 (22.68% from cats, were positive for R. felis DNA by a polymerase chain reaction (PCR, confirmed by sequencing. The only two C. canis fleas were negative. About half of examined animals (47.62%, 20/42 were infested with at least one infected flea; in particular 46.15% of dogs (6/13 and 48.28% of cats (14/29. It seems that in the Palermo district there is a peri-domestic cycle, with a relatively high prevalence of R. felis infection in the cat flea, an insect widely diffused in home environments and which can frequently bite humans. The results also suggest that R. felis should be considered in the human differential diagnosis of any spotted-like fever or febrile illness without a clear source of infection in Sicily, especially if the patient is known to have been exposed to flea bites.

  14. Antibodies against rickettsiae from spotted fever groups in horses from two mesoregions in the state of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    A.P. Medeiros

    2013-12-01

    Full Text Available Bacteria of the Rickettsia genus are agents of Brazilian Spotted Fever (BSF, a zoonotic disease which is difficult to diagnose, evolves quickly and can result in death. Antibodies against Rickettsia spp. in horses were studied, by means of Indirect Immunofluorescence Assay (IFAT ≥64, in 150 blood samples taken from animals in two Santa Catarina mesoregions (Planalto Serrano and Vale do Itajaí. The overall occurrence of Rickettsia spp. antibodies in horses was 18.66%, with cross-reactivity occurring in all positive samples for at least two of the species tested. Separately, according to the species, 25 (16.66% samples were positive for R. rickettsii, 15 (10% for R. parkeri, 22 (14.66% for R. amblyommii, 23 (15.33% for R. rhipicephali, 16 (10.66% for R. bellii and 19 (12.66% for R. felis. Only two animals resulted in a conclusive serodiagnosis, one for R. bellii and the other for R. rickettsii, at maximum dilutions of 1:4096 and 1:512, respectively. The occurrence of antibodies against Rickettsia spp. in horses from two mesoregions in the state of Santa Catarina indicates the movement of BSF agents in these sentinel animals and confirms the importance of studying spotted fever in the state of Santa Catarina.

  15. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features.

    Science.gov (United States)

    Pilgrim, Jack; Ander, Mats; Garros, Claire; Baylis, Matthew; Hurst, Gregory D D; Siozios, Stefanos

    2017-10-01

    There is increasing interest in the heritable bacteria of invertebrate vectors of disease as they present novel targets for control initiatives. Previous studies on biting midges (Culicoides spp.), known to transmit several RNA viruses of veterinary importance, have revealed infections with the endosymbiotic bacteria, Wolbachia and Cardinium. However, rickettsial symbionts in these vectors are underexplored. Here, we present the genome of a previously uncharacterized Rickettsia endosymbiont from Culicoides newsteadi (RiCNE). This genome presents unique features potentially associated with host invasion and adaptation, including genes for the complete non-oxidative phase of the pentose phosphate pathway, and others predicted to mediate lipopolysaccharides and cell wall modification. Screening of 414 Culicoides individuals from 29 Palearctic or Afrotropical species revealed that Rickettsia represent a widespread but previously overlooked association, reaching high frequencies in midge populations and present in 38% of the species tested. Sequence typing clusters the Rickettsia within the Torix group of the genus, a group known to infect several aquatic and hematophagous taxa. FISH analysis indicated the presence of Rickettsia bacteria in ovary tissue, indicating their maternal inheritance. Given the importance of biting midges as vectors, a key area of future research is to establish the impact of this endosymbiont on vector competence. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Inventory and update on argasid ticks and associated pathogens in Algeria

    Directory of Open Access Journals (Sweden)

    I. Lafri

    2018-05-01

    Full Text Available Argasid ticks include vectors of relapsing fevers caused by Borrelia spp. in humans, and they can transmit arboviruses and other bacterial pathogens. Knowledge about soft ticks (Ixodida: Argasidae in Algeria is incomplete, and distribution data need to be updated. Here we report a series of entomologic investigations that we conducted in five different areas in Algeria between 2012 and 2015. Ticks were identified by entomologic keys and molecular tools (16S rRNA gene. Six distinct species belonging to two genera were identified, including Ornithodoros capensis s.s., Ornithodoros rupestris, Ornithodoros occidentalis, Ornithodoros erraticus, Ornithodoros sonrai and Argas persicus. The present study highlights the distribution of soft ticks, the establishment of an update inventory with nine species and associated pathogens detected in argasid ticks in Algeria. Keywords: Argasid, Borrelia, Ornithodoros, Rickettsia

  17. E. coli bacteremia in comparison to K. pneumoniae bacteremia: influence of pathogen species and ESBL production on 7-day mortality

    Directory of Open Access Journals (Sweden)

    R. Leistner

    2016-10-01

    Full Text Available Abstract In a previous study, we demonstrated prolonged length of hospital stay in cases of extended-spectrum beta-lactamase (ESBL-positive K. pneumoniae bacteremia compared to bacteremia cases due to E. coli (ESBL-positive and –negative and ESBL-negative K. pneumoniae. The overall mortality was significantly higher in bacteremia cases resulting from ESBL-positive pathogens but also in K. pneumoniae cases disregarding ESBL-production. In order to examine whether pathogen species rather than multidrug resistance might affect mortality risk, we reanalyzed our dataset that includes 1.851 cases of bacteremia.

  18. Molecular Survey on Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi Sensu Lato, and Babesia spp. in Ixodes ricinus Ticks Infesting Dogs in Central Italy.

    Science.gov (United States)

    Morganti, Giulia; Gavaudan, Stefano; Canonico, Cristina; Ravagnan, Silvia; Olivieri, Emanuela; Diaferia, Manuela; Marenzoni, Maria Luisa; Antognoni, Maria Teresa; Capelli, Gioia; Silaghi, Cornelia; Veronesi, Fabrizia

    2017-11-01

    Dogs are a common feeding hosts for Ixodes ricinus and may act as reservoir hosts for zoonotic tick-borne pathogens (TBPs) and as carriers of infected ticks into human settings. The aim of this work was to evaluate the presence of several selected TBPs of significant public health concern by molecular methods in I. ricinus recovered from dogs living in urban and suburban settings in central Italy. A total of 212 I. ricinus specimens were collected from the coat of domestic dogs. DNA was extracted from each specimen individually and tested for Rickettsia spp., Borrelia burgdorferi sensu lato, Babesia spp., and Anaplasma phagocytophilum, using real-time and conventional PCR protocols, followed by sequencing. Sixty-one ticks (28.8%) tested positive for TBPs; 57 samples were infected by one pathogen, while four showed coinfections. Rickettsia spp. was detected in 39 specimens (18.4%), of which 32 were identified as Rickettsia monacensis and seven as Rickettsia helvetica. Twenty-two samples (10.4%) tested positive for A. phagocytophilum; Borrelia lusitaniae and Borrelia afzelii were detected in two specimens and one specimen, respectively. One tick (0.5%) was found to be positive for Babesia venatorum (EU1). Our findings reveal the significant exposure of dogs to TBPs of public health concern and provide data on the role of dogs in the circulation of I. ricinus-borne pathogens in central Italy.

  19. Distribution and Diversity of Pathogenic Leptospira Species in Peri-domestic Surface Waters from South Central Chile.

    Directory of Open Access Journals (Sweden)

    Meghan R Mason

    2016-08-01

    Full Text Available Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease.Water samples (n = 104 were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples.This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.

  20. Distribution and Diversity of Pathogenic Leptospira Species in Peri-domestic Surface Waters from South Central Chile.

    Science.gov (United States)

    Mason, Meghan R; Encina, Carolina; Sreevatsan, Srinand; Muñoz-Zanzi, Claudia

    2016-08-01

    Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease. Water samples (n = 104) were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples. This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.

  1. Occurrence of potential pathogenic Aeromonas species in tropical seafood, aquafarms and mangroves off Cochin coast in South India

    Directory of Open Access Journals (Sweden)

    Alphonsa Vijaya Joseph

    2013-12-01

    Full Text Available Background: The genus Aeromonas include gram-negative, motile, facultative anaerobic, rod shaped and oxidase positive bacteria comprising several species, associated with the aquatic environment. Aeromonas species have been implicated in human pathogenesis and are linked with gastroenteritis, muscle infections, septicemia, and skin diseases. In fish they are renowned as enteric pathogens causing haemorrhagic septicemia, fin rot, soft tissue rot and furunculosis resulting in major die-offs and fish kills. Aim: This study reports the occurrence of potential pathogenic Aeromonas sp. in tropical seafood (Squids, Prawns and Mussels, aquafarms and mangroves of Cochin, Kerala, South India. Materials and Methods :Tropical seafood (Squid, Prawn and Mussel, sediment and water samples from aquafarms and associated mangroves were screened for Aeromonas contamination. The isolates were identified by 16S rDNA sequence analysis and subjected to morphological and biochemical characterization. Haemolytic assay was used for determining pathogenicity of the organisms. Antibiotic susceptibility against 12 antibiotics were performed and the MAR index was calculated. Results: A total of 134 isolates were recovered from the samples of which 15 were identified as Aeromonas species by 16S rDNA sequence analysis and were assigned to 5 species namely, A. hydrophila, A. enteropelogenes, A. caviae, A. punctataand A. aquarorium. Morphological, biochemical and phylogenetic analyses revealed relatedness and variability among the strains. All the isolates were haemolytic on blood agar indicating their pathogenicity. The isolates exhibited varying degrees of resistance to vancomycin (86.66%, ampicillin (46.66%, nalidixic acid (20%, tetracycline (6.66%, co-trimaxozole (6.66% and rifampicin (6.66% and were susceptible to antibiotics like gentamycin, streptomycin, trimethoprim, azithromycin, cefixime and chloramphenicol. 20% of Aeromonas sp. showed MAR index > 0.2 indicative of the

  2. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    L. M. N. Pinto

    Full Text Available The control of Acromyrmex leaf-cutting ants is necessary due to the severe damage they cause to diverse crops. A possibility was to control them using the bacterium Bacillus thuringiensis (Bt that characteristically produces insecticidal crystal proteins (ICPs. The ICPs have been effective in controlling lepidopterans, dipterans, and coleopterans, but their action against hymenopterans is unknown. This paper describes an attempt to isolate Bt from ants of two Acromyrmex species, to evaluate its pathogenicity towards these ants, and to test isolates by PCR. Bacterial isolates of Bt obtained from A. crassispinus and A. lundi have been assayed against A. lundi in the laboratory. The bioassays were carried out in BOD at 25°C, with a 12-hour photoperiod, until the seventh day after treatment. The Bt isolates obtained were submitted to total DNA extraction and tested by PCR with primers specific to cry genes. The results showed Bt presence in 40% of the assessed samples. The data from the in vivo assays showed a mortality rate higher than 50% in the target population, with the Bt HA48 isolate causing 100% of corrected mortality. The PCR results of Bt isolates showed a magnification of DNA fragments relative to cry1 genes in 22% of the isolates, and cry9 in 67%. Cry2, cry3, cry7, and cry8 genes were not detected in the tested samples, and 22% had no magnified DNA fragments corresponding to the assessed cry genes. The results are promising not only regarding allele identification in new isolates, but also fort the assays aimed at determining the Bt HA48 LC50's, which can eventually be applied in controlling of Acromyrmex leaf-cutting ants.

  3. Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri.

    Directory of Open Access Journals (Sweden)

    Monika Bohacsova

    Full Text Available Arsenophonus nasoniae, a male-killing endosymbiont of chalcid wasps, was recently detected in several hard tick species. Following the hypothesis that its presence in ticks may not be linked to the direct occurrence of bacteria in tick's organs, we identified A. nasoniae in wasps emerging from parasitised nymphs. We confirmed that 28.1% of Ixodiphagus hookeri wasps parasitizing Ixodes ricinus ticks were infected by A. nasoniae. Moreover, in examined I. ricinus nymphs, A. nasoniae was detected only in those, which were parasitized by the wasp. However, in part of the adult wasps as well as in some ticks that contained wasp's DNA, we did not confirm A. nasoniae. We also found, that in spite of reported male-killing, some newly emerged adult wasp males were also infected by A. nasoniae. Additionally, we amplified the DNA of Rickettsia helvetica and Rickettsia monacensis (known to be Ixodes ricinus-associated bacteria in adult parasitoid wasps. This may be related either with the digested bacterial DNA in wasp body lumen or with a role of wasps in circulation of rickettsiae among tick vectors.

  4. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops.

    Science.gov (United States)

    Udayanga, Dhanushka; Castlebury, Lisa A; Rossman, Amy Y; Chukeatirote, Ekachai; Hyde, Kevin D

    2015-05-01

    Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations. Published by Elsevier Ltd.

  5. Shell-vial culture, coupled with real-time PCR, applied to Rickettsia conorii and Rickettsia massiliae-Bar29 detection, improving the diagnosis of the Mediterranean spotted fever.

    Science.gov (United States)

    Segura, Ferran; Pons, Immaculada; Sanfeliu, Isabel; Nogueras, María-Mercedes

    2016-04-01

    Rickettsia conorii and Rickettsia massiliae-Bar29 are related to Mediterranean spotted fever (MSF). They are intracellular microorganisms. The Shell-vial culture assay (SV) improved Rickettsia culture but it still has some limitations: blood usually contains low amount of microorganisms and the samples that contain the highest amount of them are non-sterile. The objectives of this study were to optimize SV culture conditions and monitoring methods and to establish antibiotic concentrations useful for non-sterile samples. 12 SVs were inoculated with each microorganism, incubated at different temperatures and monitored by classical methods and real-time PCR. R. conorii was detected by all methods at all temperatures since 7th day of incubation. R. massiliae-Bar29 was firstly observed at 28°C. Real-time PCR allowed to detected it 2-7 days earlier (depend on temperature) than classical methods. Antibiotics concentration needed for the isolation of these Rickettsia species from non-sterile samples was determined inoculating SV with R. conorii, R. massiliae-Bar29, biopsy or tick, incubating them with different dilutions of antibiotics and monitoring them weekly. To sum up, if a MSF diagnosis is suspected, SV should be incubated at both 28°C and 32°C for 1-3 weeks and monitored by a sensitive real-time PCR. If the sample is non-sterile the panel of antibiotics tested can be added. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Experimental infection of dogs with a Brazilian strain of Rickettsia rickettsii: clinical and laboratory findings

    Directory of Open Access Journals (Sweden)

    Eliane M Piranda

    2008-11-01

    Full Text Available The bacterium Rickettsia rickettsii is the etiological agent of an acute, severe disease called Rocky Mountain spotted fever in the United States or Brazilian spotted fever (BSF in Brazil. In addition to these two countries, the disease has also been reported to affect humans in Mexico, Costa Rica, Panama, Colombia and Argentina. Like humans, dogs are also susceptible to R. rickettsii infection. However, despite the wide distribution of R. rickettsii in the Western Hemisphere, reports of R. rickettsii-induced illness in dogs has been restricted to the United States. The present study evaluated the pathogenicity for dogs of a South American strain of R. rickettsii. Three groups of dogs were evaluated: group 1 (G1 was inoculated ip with R. rickettsii; group 2 (G2 was infested by R. rickettsii-infected ticks; and the control group (G3 was infested by uninfected ticks. During the study, no clinical abnormalities, Rickettsia DNA or R. rickettsii-reactive antibodies were detected in G3. In contrast, all G1 and G2 dogs developed signs of rickettsial infection, i.e., fever, lethargy, anorexia, ocular lesions, thrombocytopenia, anemia and detectable levels of Rickettsia DNA and R. rickettsii-reactive antibodies in their blood. Rickettsemia started 3-8 days after inoculation or tick infestation and lasted for 3-13 days. Our results indicate that a Brazilian strain of R. rickettsii is pathogenic for dogs, suggesting that canine clinical illness due to R. rickettsii has been unreported in Brazil and possibly in the other South American countries where BSF has been reported among humans.

  7. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.

    Science.gov (United States)

    Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia

    2009-11-01

    Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.

  8. DETECTION AND IDENTIFICATION OF PATHOGENIC CANDIDA SPECIES IN WATER USING FLOW CYTOMETRY COUPLED WITH TAQMAN PCR

    Science.gov (United States)

    As the incidence of human fungal infection increases, the ability to detect and identify pathogenic fungi in potential environmental reservoirs becomes increasingly important for disease control. PCR based assays are widely used for diagnostic purposes, but may be inadequate for...

  9. Experimental comparison of pathogenic potential of two sibling species Anisakis simplex s.s. and Anisakis pegreffii in Wistar rat.

    Science.gov (United States)

    del Carmen Romero, María; Valero, Adela; Navarro-Moll, María Concepción; Martín-Sánchez, Joaquina

    2013-08-01

    There are little data available on the pathology caused by the sibling species Anisakis simplex s.s. and Anisakis pegreffii. The differences shown in their ability to penetrate the muscle of fish may also be manifested in humans. The purpose of this study is to confirm possible differences in pathogenicity between A. simplex s.s. and A. pegreffii using an experimental model which simulates infection in humans. Female Wistar rats were infected with 190 Anisakis type I L3 larvae from the Iberian coastline. After the animal was sacrificed, these L3 larvae were then recovered and identified via PCR-RFLP of the ITS1-5.8S-ITS2. A logistic regression analysis was performed searching for association between experimental pathogenic potential and species. The distribution of A. simplex s.s. and A. pegreffii between Atlantic and Mediterranean waters of the Iberian Peninsula showed statistically significant differences (P  0.3). 21.6% showed pathogenic potential, interpreted as the capacity of the larvae to cause lesions, stick to the gastrointestinal wall or penetrate it. The species variable showed association with the pathogenic role of the larva (P = 0.008). Taking A. simplex s.s. as our reference, the OR for A. pegreffii is 0.351 (P = 0.028). Despite this difference, A. pegreffii is also capable of causing anisakiasis, being responsible for 14.3% of the penetrations of the gastric mucosa found in rats, which justifies both species being considered aetiologic agents of this parasitic disorder. © 2013 John Wiley & Sons Ltd.

  10. Human pathogenic Mycoplasma species induced cytokine gene expression in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines.

    Science.gov (United States)

    Schäffner, E; Opitz, O; Pietsch, K; Bauer, G; Ehlers, S; Jacobs, E

    1998-04-01

    We addressed the question whether the in vitro interaction of two Epstein-Barr virus (EBV)-genome-positive B cell lines (EB-3 and HilB-gamma) with either Mycoplasma pneumoniae or M. hominis, with the mycoplasma species (M. fermentans, M. fermentans subsp. incognitus, M. penetrans, M. genitalium) or with mycoplasma species known to be mere commensals of the respiratory tract (M. orale and M. salivarium) would result in expression of mRNAs for IL-2, IL-2R, IL-4 and IL-6 as determined by reverse transcriptase (RT)-PCR after 4 and 24 h of cocultivation. The pattern of cytokine gene expression observed depended on (i) the origin of the transformed cell line, (ii) the pathogenicity of the Mycoplasma species, and (iii) the length of cocultivation. The EBV-immortalized lymphoblastoid cell line HilB-gamma showed mRNA expression for IL-2, IL-2-receptor, IL-4 and IL-6 peaking 24 h after stimulation with M. pneumoniae and all AIDS-related mycoplasma species tested. The Burkitt lymphoma cell line EB-3 showed a distinct and isolated strong II-2/IL-2 R-mRNA expression within 4 h after contact with the pathogenic and all of the AIDS related mycoplasma species. In neither EBV-containing cell line cytokine was gene expression detectable after stimulation with the commensal mycoplasma species, M. orale and M. salivarium, indicating species differences in the ability of mycoplasmas to interact with and stimulate B-cell lines. Our data suggest that some mcyoplasma species may act as immunomodulatory cofactors by eliciting inappropriate cytokine gene expression in B cells latently infected with EBV. Therefore, this cultivation model may prove useful in evaluating the pathogenetic potential of novel isolated mycoplasma species. Copyright 1998 Academic Press Limited.

  11. High detection rate of Rickettsia africae in Amblyomma variegatum but low prevalence of anti-rickettsial antibodies in healthy pregnant women in Madagascar.

    Science.gov (United States)

    Keller, Christian; Krüger, Andreas; Schwarz, Norbert Georg; Rakotozandrindrainy, Raphael; Rakotondrainiarivelo, Jean Philibert; Razafindrabe, Tsiry; Derschum, Henri; Silaghi, Cornelia; Pothmann, Daniela; Veit, Alexandra; Hogan, Benedikt; May, Jürgen; Girmann, Mirko; Kramme, Stefanie; Fleischer, Bernhard; Poppert, Sven

    2016-02-01

    Tick-borne spotted fever group (SFG) rickettsioses are emerging infectious diseases in Sub-Saharan Africa. In Madagascar, the endemicity of tick-borne rickettsiae and their vectors has been incompletely studied. The first part of the present study was conducted in 2011 and 2012 to identify potential anthropophilic tick vectors for SFG rickettsiae on cattle from seven Malagasy regions, and to detect and characterize rickettsiae in these ticks. Amblyomma variegatum was the only anthropophilic tick species found on 262 cattle. Using a novel ompB-specific qPCR, screening for rickettsial DNA was performed on 111 A. variegatum ticks. Rickettsial DNA was detected in 96 of 111 ticks studied (86.5%). Rickettsia africae was identified as the only infecting rickettsia using phylogenetic analysis of ompA and ompB gene sequences and three variable intergenic spacers from 11 ticks. The second part of the study was a cross-sectional survey for antibodies against SFG rickettsiae in plasma samples taken from healthy, pregnant women at six locations in Madagascar, two at sea level and four between 450 and 1300m altitude. An indirect fluorescent antibody test with Rickettsia conorii as surrogate SFG rickettsial antigen was used. We found R. conorii-seropositives at all altitudes with prevalences between 0.5% and 3.1%. Our results suggest that A. variegatum ticks highly infected with R. africae are the most prevalent cattle-associated tick vectors for SFG rickettsiosis in Madagascar. Transmission of SFG rickettsiosis to humans occurs at different altitudes in Madagascar and should be considered as a relevant cause of febrile diseases. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field

    OpenAIRE

    Al-Sheikh, Hashem

    2010-01-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in...

  13. The Occurrence of Two Species of Entomophthorales (Entomophthoromycota, Pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae, in Tunisia

    Directory of Open Access Journals (Sweden)

    Ibtissem Ben Fekih

    2013-01-01

    Full Text Available The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR on the internal transcribed spacer 1 region (ITS1 was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota, Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.

  14. The occurrence of two species of Entomophthorales (Entomophthoromycota), pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae), in Tunisia.

    Science.gov (United States)

    Ben Fekih, Ibtissem; Boukhris-Bouhachem, Sonia; Eilenberg, Jørgen; Allagui, Mohamed Bechir; Jensen, Annette Bruun

    2013-01-01

    The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.

  15. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    Science.gov (United States)

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  16. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field.

    Science.gov (United States)

    Al-Sheikh, Hashem

    2010-10-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in laboratory scale. P. aphanidermatum appeared to be the most aggressive parasite under agar and pot experimental conditions.

  17. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines.

    Science.gov (United States)

    Babič, Monika Novak; Zalar, Polona; Ženko, Bernard; Schroers, Hans-Josef; Džeroski, Sašo; Gunde-Cimerman, Nina

    2015-03-01

    Energy constraints have altered consumer practice regarding the use of household washing machines. Washing machines were developed that use lower washing temperatures, smaller amounts of water and biodegradable detergents. These conditions may favour the enrichment of opportunistic human pathogenic fungi. We focused on the isolation of fungi from two user-accessible parts of washing machines that often contain microbial biofilms: drawers for detergents and rubber door seals. Out of 70 residential washing machines sampled in Slovenia, 79% were positive for fungi. In total, 72 strains belonging to 12 genera and 26 species were isolated. Among these, members of the Fusarium oxysporum and Fusarium solani species complexes, Candida parapsilosis and Exophiala phaeomuriformis represented 44% of fungi detected. These species are known as opportunistic human pathogens and can cause skin, nail or eye infections also in healthy humans. A machine learning analysis revealed that presence of detergents and softeners followed by washing temperature, represent most critical factors for fungal colonization. Three washing machines with persisting malodour that resulted in bad smelling laundry were analysed for the presence of fungi and bacteria. In these cases, fungi were isolated in low numbers (7.5 %), while bacteria Micrococcus luteus, Pseudomonas aeruginosa, and Sphingomonas species prevailed. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS coronavirus

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    2017-06-01

    Full Text Available Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV, which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV, associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  19. Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method.

    Science.gov (United States)

    Schötta, Anna-Margarita; Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold

    2017-07-01

    Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia , Rickettsiae , Anaplasma / Ehrlichia (including " Candidatus Neoehrlichia"), Babesia , and Coxiella The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis , Borrelia lusitaniae , and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. " Candidatus Neoehrlichia mikurensis," Babesia spp. ( B. venatorum , B. divergens , B. microti ), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and " Candidatus Neoehrlichia mikurensis" showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The

  20. Liolaemus lizards (Squamata: Liolaemidae) as hosts for the nymph of Amblyomma parvitarsum (Acari: Ixodidae), with notes on Rickettsia infection.

    Science.gov (United States)

    Muñoz-Leal, Sebastián; Tarragona, Evelina L; Martins, Thiago F; Martín, Claudia M; Burgos-Gallardo, Freddy; Nava, Santiago; Labruna, Marcelo B; González-Acuña, Daniel

    2016-10-01

    Adults of Amblyomma parvitarsum are common ectoparasites of South American camelids of the genera Lama and Vicugna, occuring in highlands of Argentina, Bolivia, Chile, Peru and also in Argentinean Patagonia. Whereas larval stages of this tick are known to feed on small lizards, host records for the nymphal instar have remained unreported. Supported by morphological and molecular analyses, herein we report A. parvitarsum nymphs parasitizing two Liolaemus species (Reptilia: Squamata) in the Andean Plateau of Argentina and Chile. Additionally, by a PCR screening targetting gltA and ompA genes, DNA of Rickettsia was detected in one of the collected nymphs. Obtained sequences of this agent were identical to a recent Rickettsia sp. described infecting adults of this tick species in Chile and Argentina.

  1. Natamycin and Azithromycin are Synergistic in vitro against Ocular Pathogenic Aspergillus flavus species complex and Fusarium solani species complex Isolates.

    Science.gov (United States)

    Guo, Haoyi; Zhou, Lutan; He, Yi; Gao, Chuanwen; Han, Lei; Xu, Yan

    2018-05-07

    The interaction of natamycin-azithromycin combination against 60 ocular fungal isolates was tested in vitro The combination produced 100% synergistic interactions when natamycin added azithromycin at 20, 40, 50 μg/ml against Aspergillus flavus species complex (AFSC) isolates and added azithromycin at 50 μg/ml against Fusarium solani species complex isolates. The combination with 50 μg/ml azithromycin enhanced natamycin's effect against AFSC isolates by reducing natamycin MICs from MIC 90 64μg/ml to MIC 90 0.031μg/ml. No antagonism was observed. Copyright © 2018 American Society for Microbiology.

  2. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    Directory of Open Access Journals (Sweden)

    Marianna Feretzaki

    2016-03-01

    Full Text Available RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein and Qip1 (a homolog of N. crassa Qip were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor and Fzc28 (a transcription factor are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  3. Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

    Directory of Open Access Journals (Sweden)

    Angelyn Hilton

    2017-06-01

    Full Text Available Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-1α gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.

  4. Phylogenetic analysis reveals a cryptic species Blastomyces gilchristii, sp. nov. within the human pathogenic fungus Blastomyces dermatitidis.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Brown

    Full Text Available Analysis of the population genetic structure of microbial species is of fundamental importance to many scientific disciplines because it can identify cryptic species, reveal reproductive mode, and elucidate processes that contribute to pathogen evolution. Here, we examined the population genetic structure and geographic differentiation of the sexual, dimorphic fungus Blastomyces dermatitidis, the causative agent of blastomycosis.Criteria for Genealogical Concordance Phylogenetic Species Recognition (GCPSR applied to seven nuclear loci (arf6, chs2, drk1, fads, pyrF, tub1, and its-2 from 78 clinical and environmental isolates identified two previously unrecognized phylogenetic species. Four of seven single gene phylogenies examined (chs2, drk1, pyrF, and its-2 supported the separation of Phylogenetic Species 1 (PS1 and Phylogenetic Species 2 (PS2 which were also well differentiated in the concatenated chs2-drk1-fads-pyrF-tub1-arf6-its2 genealogy with all isolates falling into one of two evolutionarily independent lineages. Phylogenetic species were genetically distinct with interspecific divergence 4-fold greater than intraspecific divergence and a high Fst value (0.772, P<0.001 indicative of restricted gene flow between PS1 and PS2. Whereas panmixia expected of a single freely recombining population was not observed, recombination was detected when PS1 and PS2 were assessed separately, suggesting reproductive isolation. Random mating among PS1 isolates, which were distributed across North America, was only detected after partitioning isolates into six geographic regions. The PS2 population, found predominantly in the hyper-endemic regions of northwestern Ontario, Wisconsin, and Minnesota, contained a substantial clonal component with random mating detected only among unique genotypes in the population.These analyses provide evidence for a genetically divergent clade within Blastomyces dermatitidis, which we use to describe a novel species

  5. Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives

    NARCIS (Netherlands)

    Brun, S.; Madrid, H.; Gerritis van den Ende, B.; Andersen, B.; Marinach-Patrice, C.; Mazier, D.; de Hoog, G.S.

    2013-01-01

    The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species-complexes of

  6. Phylogenetic diversity of human pathogenic Fusarium and emergence of uncommon virulent species.

    Science.gov (United States)

    Salah, Husam; Al-Hatmi, Abdullah M S; Theelen, Bart; Abukamar, Mohammed; Hashim, Samar; van Diepeningen, Anne D; Lass-Florl, Cornelia; Boekhout, Teun; Almaslamani, Muna; Taj-Aldeen, Saad J

    2015-12-01

    Fusarium species cause a broad spectrum of infections. However, little is known about the etiological agents to the species level. We identified Fusarium species isolated from clinical specimens including those of high risk patients to better understand the species involved in the pathogenesis. A set of 44 Fusarium isolates were identified by two-locus sequence typing using partial sequences of the second largest subunit of RNA polymerase (RPB2) and translation elongation factor 1 alpha (TEF-1α). The identified species belonged to four species complexes (SC); the most common SC was Fusarium solani (FSSC) (75%), followed by Fusarium oxysporum (FOSC) (4.5%), Fusarium fujikuroi (FFSC) (13.6%), and Fusarium dimerum (FDSC) (6.8%). Sites of infections were nails (n = 19, 43.2%), skin (n = 7, 15.9%), cornea (n = 6, 13.6%), blood (n = 3, 9%), wound (n = 4, 6.8%), burn (n = 2, 4.5%), tissue (n = 2, 4.5%), and urine (n = 1, 2.27%). Fusarium acutatum was rare and seem restricted to the Middle East. Comorbidities associated with invasive infections were hematological malignancy and autoimmune disorders. Members of the FSSC predominantly caused cornea, nail and bloodstream infections. Less frequently encountered were the FOSC, FFSC and FDSC. More accurate molecular identification of Fusarium species is important to predict therapeutic outcome and the emergence of these species. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  7. Rickettsiae, protozoa, and opisthokonta/metazoa.

    Science.gov (United States)

    Schmutzhard, Erich; Helbok, Raimund

    2014-01-01

    Rhizobiales (formerly named Rickettsiales) cause in rare instances meningitis and meningovasculitis, respectively. In case of history of exposure, infection by Rhizobiales needs to be considered since both diagnosis and therapy may be extremely difficult and pathogen-specific. The same applies to protozoa; in this chapter, Babesia species, free-living amoebae and Entamoeba histolytica infection, including severe meningitis and brain abscess, infection by Trypanosoma species (South American and African trypanosomiasis) are discussed with respect to history, epidemiology, clinical signs, and symptoms as well as differential diagnosis and therapy. Parasitic flatworms and roundworms, potentially able to invade the central nervous system, trematodes (flukes), cestodes (in particular, Cysticercus cellulosae), but also nematodes (in particular, Strongyloides spp. in the immunocompromised) are of worldwide importance. In contrast, filarial worms, Toxocara spp., Trichinella spp., Gnathostoma and Angiostrongylus spp. are seen only in certain geographically confined areas. Even more regionally confined are infestations of the central nervous system by metazoa, in particular, tongue worms (=arthropods) or larvae of flies (=maggots). The aim of this chapter is (1) to alert the neurologist to these infections, and (2) to enable the attending emergency neurologist to take a knowledgeable history, with an emphasis on epidemiology, clinical signs, and symptoms as well as therapeutic management possibilities. © 2014 Elsevier B.V. All rights reserved.

  8. Structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Rickettsia prowazekii at 2.25 Å resolution

    International Nuclear Information System (INIS)

    Subramanian, Sandhya; Abendroth, Jan; Phan, Isabelle Q. H.; Olsen, Christian; Staker, Bart L.; Napuli, A.; Van Voorhis, Wesley C.; Stacy, Robin; Myler, Peter J.

    2011-01-01

    The R. prowazekii 3-ketoacyl-(acyl-carrier-protein) reductase is similar to those from other prokaryotic pathogens but differs significantly from the mammalian orthologue, strengthening its case as a potential drug target. Rickettsia prowazekii, a parasitic Gram-negative bacterium, is in the second-highest biodefense category of pathogens of the National Institute of Allergy and Infectious Diseases, but only a handful of structures have been deposited in the PDB for this bacterium; to date, all of these have been solved by the SSGCID. Owing to its small genome (about 800 protein-coding genes), it relies on the host for many basic biosynthetic processes, hindering the identification of potential antipathogenic drug targets. However, like many bacteria and plants, its metabolism does depend upon the type II fatty-acid synthesis (FAS) pathway for lipogenesis, whereas the predominant form of fatty-acid biosynthesis in humans is via the type I pathway. Here, the structure of the third enzyme in the FAS pathway, 3-ketoacyl-(acyl-carrier-protein) reductase, is reported at a resolution of 2.25 Å. Its fold is highly similar to those of the existing structures from some well characterized pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei, but differs significantly from the analogous mammalian structure. Hence, drugs known to target the enzymes of pathogenic bacteria may serve as potential leads against Rickettsia, which is responsible for spotted fever and typhus and is found throughout the world

  9. Identification of Two Pathogenic Aeromonas Species Isolated during Production Related Epizootics from Juvenile Burbot Lota lota maculosa.

    Science.gov (United States)

    Terrazas, Marc M; Anderson, Cort L; Jacobs, Sarah J; Cain, Kenneth D

    2018-05-25

    In response to population declines of Burbot Lota lota maculosa, conservation aquaculture methods have been developed for this species. In general, Burbot are relatively resistant to many salmonid pathogens; however, cultured juvenile Burbot have experienced periodic epizootic disease outbreaks during production. A series of trials were conducted to determine the virulence of select bacteria isolated from juvenile Burbot following outbreaks that occurred in 2012 and 2013 at the University of Idaho's Aquaculture Research Institute. Initial clinical diagnostics and sampling resulted in the isolation of numerous putative bacterial pathogens. To determine which bacteria were the most likely causative agents contributing to these epizootics, juvenile Burbot were injectied intraperitoneally (IP) with select bacteria in log phase growth. Mortality associated with specific isolates was recorded, and more comprehensive challenges followed this initial screening. These challenges used side-by-side IP and immersion methods to expose Burbot to potential pathogens. The challenges resulted in significantly higher mortalities in fish following IP injection of two Aeromonas sp. isolates compared to controls (P ≤ 0.01), but no difference in mortality for immersion challenged groups was observed (P = 0.42). Results demonstrate that two isolates (Aeromonas sp.) cultured from the epizootics are virulent to Burbot. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. A rapid method for selecting suitable animal species for studying pathogen interactions with plasma protein ligands in vivo.

    Science.gov (United States)

    Naudin, Clément; Schumski, Ariane; Salo-Ahen, Outi M H; Herwald, Heiko; Smeds, Emanuel

    2017-05-01

    Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Frequency of antibodies class IgG anti-Rickettsia rickettsii in horses of Universidade Federal Rural do Rio de Janeiro, Seropédica campus

    Directory of Open Access Journals (Sweden)

    Matheus Dias Cordeiro

    2015-03-01

    Full Text Available ABSTRACT. Cordeiro M.D., Raia V.A., Valim J.R.A., Castro G.N.S., Souza C.E. & Fonseca A.H. [Frequency of antibodies class IgG anti-Rickettsia rickettsii in horses of Universidade Federal Rural do Rio de Janeiro, Seropédica campus.] Frequência de anticorpos da classe IgG anti-Rickettsia rickettsii em equinos na Universidade Federal Rural do Rio de Janeiro, Campus Seropédica. Revista Brasileira de Medicina Veterinária, 37(1:78-82, 2015. Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Campus Seropédica, BR 465, Km7, Seropédica, RJ 23890-000, Brasil. E-mail: adivaldo@ufrrj.br The aim of this study was to verify, through the indirect immunofluorescence assay (IFA, the frequency of anti-Rickettsia rickettsii antibodies in horses at Universidade Federal Rural do Rio de Janeiro (UFRRJ Seropédica campus, state of Rio de Janeiro. We analyzed serum samples from 42 horses from Department of Breeding Equine of UFRRJ. All samples were tested using fixed slides with antigens for R. rickettsii, Rickettsia rhipicephali and Rickettsia parkeri. We observed an overall prevalence of Rickettsia spp. 83.33% (35/42. For the agent R. rickettsii revealed a prevalence of 66.67% (28/42, still being categorized in titers of 1:64 (19/28 and 1:128 (9/28. Nine of the 28 positives horses for R. rickettsii (21.43% were no reactive to other agents, with titers 1:64 (8/9 and 1:128 (1/9. The only tick species found parasitizing horses on the campus of UFRRJ during the collection period were Amblyomma cajennense and Dermacentor nitens. The UFRRJ presents an environment that provides a ideal epidemiological niche for the permanence of Rickettsia bacteria. The high prevalence found in this study indicates that attention to epidemiological agent of Brazilian Spotted Fever in the study area is of utmost importance. The aim of this study was to verify, through the indirect immunofluorescence assay (IFA, the

  12. Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives

    DEFF Research Database (Denmark)

    Brun, Sophie; Madrid, Hugo; Gerrits Van Den Ende, Bert

    2013-01-01

    The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species-complexes of morp......The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species...... trees based on ITS sequences did not differentiate strains of A. solani, A. tomatophila, and A. porri, but these three species formed a clade separate from strains of A. dauci. The resolution improved in trees based on gpd and Alt a 1, which distinguished strains of the four species as separate clades...... of A. solani, and the third included all strains of A. tomatophila, as well as all but one strain of A. solani, and one strain of A. porri. Thus, this study shows the usefulness of MALDI-TOF mass spectrometry as a promising tool for identification of these four species of Alternaria which are closely...

  13. A Molecular Survey for Francisella tularensis and Rickettsia spp. in Haemaphysalis leporispalustris (Acari: Ixodidae) in Northern California.

    Science.gov (United States)

    Roth, Tara; Lane, Robert S; Foley, Janet

    2017-03-01

    Francisella tularensis and Rickettsia spp. have been cultured from Haemaphysalis leporispalustris Packard, but their prevalence in this tick has not been determined using modern molecular methods. We collected H. leporispalustris by flagging vegetation and leaf litter and from lagomorphs (Lepus californicus Gray and Sylvilagus bachmani (Waterhouse)) in northern California. Francisella tularensis DNA was not detected in any of 1,030 ticks tested by polymerase chain reaction (PCR), whereas 0.4% of larvae tested in pools, 0 of 117 individual nymphs, and 2.3% of 164 adult ticks were PCR-positive for Rickettsia spp. Positive sites were Laurel Canyon Trail in Tilden Regional Park in Alameda Contra Costa County, with a Rickettsia spp. prevalence of 0.6% in 2009, and Hopland Research and Extension Center in Mendocino County, with a prevalence of 4.2% in 1988. DNA sequencing revealed R. felis, the agent of cat-flea typhus, in two larval pools from shaded California bay and live oak leaf litter in Contra Costa County and one adult tick from a L. californicus in chaparral in Mendocino County. The R. felis in unfed, questing larvae demonstrates that H. leporispalustris can transmit this rickettsia transovarially. Although R. felis is increasingly found in diverse arthropods and geographical regions, prior literature suggests a typical epidemiological cycle involving mesocarnivores and the cat flea, Ctenocephalides felis. To our knowledge, this is the first report of R. felis in H. leporispalustris. Natural infection and transovarial transmission of this pathogen in the tick indicate the existence of a previously undocumented wild-lands transmission cycle that may intersect mesocarnivore-reservoired cycles and collectively affect human health risk. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Genetic Diversity of the Invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae and of its Rickettsia Endosymbiont, and Associated Sex-Ratio Differences.

    Directory of Open Access Journals (Sweden)

    Francesco Nugnes

    Full Text Available The blue-gum chalcid Leptocybe invasa Fisher & LaSalle (Hymenoptera: Eulophidae is a gall wasp pest of Eucalyptus species, likely native to Australia. Over the past 15 years it has invaded 39 countries on all continents where eucalypts are grown. The worldwide invasion of the blue gum chalcid was attributed to a single thelytokous morphospecies formally described in 2004. Subsequently, however, males have been recorded in several countries and the sex ratio of field populations has been found to be highly variable in different areas. In order to find an explanation for such sex ratio differences, populations of L. invasa from a broad geographical area were screened for the symbionts currently known as reproductive manipulators, and both wasps and symbionts were genetically characterized using multiple genes. Molecular analyses suggested that L. invasa is in fact a complex of two cryptic species involved in the rapid and efficient spread of the wasp, the first recovered from the Mediterranean region and South America, the latter from China. All screened specimens were infected by endosymbiotic bacteria belonging to the genus Rickettsia. Two closely related Rickettsia strains were found, each infecting one of the two putative cryptic species of L. invasa and associated with different average sex ratios. Rickettsia were found to be localized in the female reproductive tissues and transovarially transmitted, suggesting a possible role of Rickettsia as the causal agent of thelytokous parthenogenesis in L. invasa. Implications for the variation of sex ratio and for the management of L. invasa are discussed.

  15. Genetic Diversity of the Invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia Endosymbiont, and Associated Sex-Ratio Differences

    Science.gov (United States)

    Nugnes, Francesco; Gebiola, Marco; Monti, Maurilia Maria; Gualtieri, Liberata; Giorgini, Massimo; Wang, Jianguo; Bernardo, Umberto

    2015-01-01

    The blue-gum chalcid Leptocybe invasa Fisher & LaSalle (Hymenoptera: Eulophidae) is a gall wasp pest of Eucalyptus species, likely native to Australia. Over the past 15 years it has invaded 39 countries on all continents where eucalypts are grown. The worldwide invasion of the blue gum chalcid was attributed to a single thelytokous morphospecies formally described in 2004. Subsequently, however, males have been recorded in several countries and the sex ratio of field populations has been found to be highly variable in different areas. In order to find an explanation for such sex ratio differences, populations of L. invasa from a broad geographical area were screened for the symbionts currently known as reproductive manipulators, and both wasps and symbionts were genetically characterized using multiple genes. Molecular analyses suggested that L. invasa is in fact a complex of two cryptic species involved in the rapid and efficient spread of the wasp, the first recovered from the Mediterranean region and South America, the latter from China. All screened specimens were infected by endosymbiotic bacteria belonging to the genus Rickettsia. Two closely related Rickettsia strains were found, each infecting one of the two putative cryptic species of L. invasa and associated with different average sex ratios. Rickettsia were found to be localized in the female reproductive tissues and transovarially transmitted, suggesting a possible role of Rickettsia as the causal agent of thelytokous parthenogenesis in L. invasa. Implications for the variation of sex ratio and for the management of L. invasa are discussed. PMID:25970681

  16. Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis.

    Directory of Open Access Journals (Sweden)

    Yong Qi

    Full Text Available BACKGROUND: Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF, is an obligate intracellular bacterium. The surface-exposed proteins (SEPs of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. METHODS: R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA. RESULTS: Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. CONCLUSIONS: Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease.

  17. Differentiated THP-1 Cells Exposed to Pathogenic and Nonpathogenic Borrelia Species Demonstrate Minimal Differences in Production of Four Inflammatory Cytokines.

    Science.gov (United States)

    Stokes, John V; Moraru, Gail M; McIntosh, Chelsea; Kummari, Evangel; Rausch, Keiko; Varela-Stokes, Andrea S

    2016-11-01

    Tick-borne borreliae include Lyme disease and relapsing fever agents, and they are transmitted primarily by ixodid (hard) and argasid (soft) tick vectors, respectively. Tick-host interactions during feeding are complex, with host immune responses influenced by biological differences in tick feeding and individual differences within and between host species. One of the first encounters for spirochetes entering vertebrate host skin is with local antigen-presenting cells, regardless of whether the tick-associated Borrelia sp. is pathogenic. In this study, we performed a basic comparison of cytokine responses in THP-1-derived macrophages after exposure to selected borreliae, including a nonpathogen. By using THP-1 cells, differentiated to macrophages, we eliminated variations in host response and reduced the system to an in vitro model to evaluate the extent to which the Borrelia spp. influence cytokine production. Differentiated THP-1 cells were exposed to four Borrelia spp., Borrelia hermsii (DAH), Borrelia burgdorferi (B31), B. burgdorferi (NC-2), or Borrelia lonestari (LS-1), or lipopolysaccharides (LPS) (activated) or media (no treatment) controls. Intracellular and secreted interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured using flow cytometric and Luminex-based assays, respectively, at 6, 24, and 48 h postexposure time points. Using a general linear model ANOVA for each cytokine, treatment (all Borrelia spp. and LPS compared to no treatment) had a significant effect on secreted TNF-α only. Time point had a significant effect on intracellular IFN-γ, TNF-α and IL-6. However, we did not see significant differences in selected cytokines among Borrelia spp. Thus, in this model, we were unable to distinguish pathogenic from nonpathogenic borreliae using the limited array of selected cytokines. While unique immune profiles may be detectable in an in vitro model and may reveal predictors for pathogenicity in borreliae

  18. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway.

    Science.gov (United States)

    Reed, Shawna C O; Serio, Alisa W; Welch, Matthew D

    2012-04-01

    Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion. © 2011 Blackwell Publishing Ltd.

  19. Leptospira mayottensis sp. nov., a pathogenic species of the genus Leptospira isolated from humans.

    Science.gov (United States)

    Bourhy, Pascale; Collet, Louis; Brisse, Sylvain; Picardeau, Mathieu

    2014-12-01

    A group of strains representing species of the genus Leptospira, isolated from patients with leptospirosis in Mayotte (Indian Ocean), were previously found to be considerably divergent from other known species of the genus Leptospira. This was inferred from sequence analysis of rrs (16S rRNA) and other genetic loci and suggests that they belong to a novel species. Two strains from each serogroup currently identified within this novel species were studied. Spirochaete, aerobic, motile, helix-shaped strains grew well at 30-37 °C, but not at 13 °C or in the presence of 8-azaguanine. Draft genomes of the strains were also analysed to study the DNA relatedness with other species of the genus Leptospira. The new isolates formed a distinct clade, which was most closely related to Leptospira borgpetersenii, in multilocus sequence analysis using concatenated sequences of the genes rpoB, recA, fusA, gyrB, leuS and sucA. Analysis of average nucleotide identity and genome-to-genome distances, which have recently been proposed as reliable substitutes for classical DNA-DNA hybridization, further confirmed that these isolates should be classified as representatives of a novel species. The G+C content of the genomic DNA was 39.5 mol%. These isolates are considered to represent a novel species, for which the name Leptospira mayottensis sp. nov. is proposed, with 200901116(T) ( = CIP 110703(T) = DSM 28999(T)) as the type strain. © 2014 IUMS.

  20. Can biosecurity and local network properties predict pathogen species richness in the salmonid industry?

    Science.gov (United States)

    More, Simon J.; Geoghegan, Fiona; McManus, Catherine; Hill, Ashley E.; Martínez-López, Beatriz

    2018-01-01

    Salmonid farming in Ireland is mostly organic, which implies limited disease treatment options. This highlights the importance of biosecurity for preventing the introduction and spread of infectious agents. Similarly, the effect of local network properties on infection spread processes has rarely been evaluated. In this paper, we characterized the biosecurity of salmonid farms in Ireland using a survey, and then developed a score for benchmarking the disease risk of salmonid farms. The usefulness and validity of this score, together with farm indegree (dichotomized as ≤ 1 or > 1), were assessed through generalized Poisson regression models, in which the modeled outcome was pathogen richness, defined here as the number of different diseases affecting a farm during a year. Seawater salmon (SW salmon) farms had the highest biosecurity scores with a median (interquartile range) of 82.3 (5.4), followed by freshwater salmon (FW salmon) with 75.2 (8.2), and freshwater trout (FW trout) farms with 74.8 (4.5). For FW salmon and trout farms, the top ranked model (in terms of leave-one-out information criteria, looic) was the null model (looic = 46.1). For SW salmon farms, the best ranking model was the full model with both predictors and their interaction (looic = 33.3). Farms with a higher biosecurity score were associated with lower pathogen richness, and farms with indegree > 1 (i.e. more than one fish supplier) were associated with increased pathogen richness. The effect of the interaction between these variables was also important, showing an antagonistic effect. This would indicate that biosecurity effectiveness is achieved through a broader perspective on the subject, which includes a minimization in the number of suppliers and hence in the possibilities for infection to enter a farm. The work presented here could be used to elaborate indicators of a farm’s disease risk based on its biosecurity score and indegree, to inform risk-based disease surveillance and

  1. Can biosecurity and local network properties predict pathogen species richness in the salmonid industry?

    Directory of Open Access Journals (Sweden)

    Tadaishi Yatabe

    Full Text Available Salmonid farming in Ireland is mostly organic, which implies limited disease treatment options. This highlights the importance of biosecurity for preventing the introduction and spread of infectious agents. Similarly, the effect of local network properties on infection spread processes has rarely been evaluated. In this paper, we characterized the biosecurity of salmonid farms in Ireland using a survey, and then developed a score for benchmarking the disease risk of salmonid farms. The usefulness and validity of this score, together with farm indegree (dichotomized as ≤ 1 or > 1, were assessed through generalized Poisson regression models, in which the modeled outcome was pathogen richness, defined here as the number of different diseases affecting a farm during a year. Seawater salmon (SW salmon farms had the highest biosecurity scores with a median (interquartile range of 82.3 (5.4, followed by freshwater salmon (FW salmon with 75.2 (8.2, and freshwater trout (FW trout farms with 74.8 (4.5. For FW salmon and trout farms, the top ranked model (in terms of leave-one-out information criteria, looic was the null model (looic = 46.1. For SW salmon farms, the best ranking model was the full model with both predictors and their interaction (looic = 33.3. Farms with a higher biosecurity score were associated with lower pathogen richness, and farms with indegree > 1 (i.e. more than one fish supplier were associated with increased pathogen richness. The effect of the interaction between these variables was also important, showing an antagonistic effect. This would indicate that biosecurity effectiveness is achieved through a broader perspective on the subject, which includes a minimization in the number of suppliers and hence in the possibilities for infection to enter a farm. The work presented here could be used to elaborate indicators of a farm's disease risk based on its biosecurity score and indegree, to inform risk-based disease surveillance and

  2. Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species.

    Directory of Open Access Journals (Sweden)

    Henning Petersen

    Full Text Available Transmission of avian influenza viruses (AIV between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.

  3. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    Science.gov (United States)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  4. Barcoding and species recognition of opportunistic pathogens in Ochroconis and Verruconis.

    Science.gov (United States)

    Samerpitak, Kittipan; Gerrits van den Ende, Bert H G; Stielow, J Benjamin; Menken, Steph B J; de Hoog, G Sybren

    2016-02-01

    The genera Ochroconis and Verruconis (Sympoventuriaceae, Venturiales) have remarkably high molecular diversity despite relatively high degrees of phenotypic similarity. Tree topologies, inter-specific and intra-specific heterogeneities, barcoding gaps and reciprocal monophyly of all currently known species were analyzed. It was concluded that all currently used genes viz. SSU, ITS, LSU, ACT1, BT2, and TEF1 were unable to reach all 'gold standard' criteria of barcoding markers. They could nevertheless be used for reasonably reliable identification of species, because the markers, although variable, were associated with large inter-specific heterogeneity. Of the coding protein-genes, ACT1 revealed highest potentiality as barcoding marker in mostly all parts of the investigated sequence. SSU, LSU, ITS, and ACT1 yielded consistent monophyly in all investigated species, but only SSU and LSU generated clear barcoding gaps. For phylogeny, LSU was an informative marker, suitable to reconstruct gene-trees showing correct phylogenetic relationships. Cryptic species were revealed especially in complexes with very high intra-specific variability. When all these complexes will be taxonomically resolved, ACT1 will probably appear to be the most reliable barcoding gene for Ochroconis and Verruconis. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species

    NARCIS (Netherlands)

    Thompson, S.M.; Tan, Y.P.; Young, A.J.; Neate, S.M.; Aitken, E.A.B.; Shivas, R.G.

    2012-01-01

    The identification of Diaporthe (anamorph Phomopsis) species associated with stem canker of sunflower (Helianthus annuus) in Australia was studied using morphology, DNA sequence analysis and pathology. Phylogenetic analysis revealed three clades that did not correspond with known taxa, and these are

  6. Phylogeny and pathogenicity of Lasiodiplodia species associated with dieback of mango in Peru

    NARCIS (Netherlands)

    Rodríguez-Gálvez, Edgar; Guerrero, Pakita; Barradas, Carla; Crous, Pedro W.; Alves, Artur

    Abstract Mango, which is an important tropical fruit crop in the region of Piura (Peru), is known to be prone to a range of diseases caused by Lasiodiplodia spp. The aim of this study was to evaluate the incidence and prevalence of mango dieback in the region of Piura, and to identify the species of

  7. Notes from the Field: Rickettsia parkeri Rickettsiosis - Georgia, 2012-2014.

    Science.gov (United States)

    Straily, Anne; Feldpausch, Amanda; Ulbrich, Carl; Schell, Kiersten; Casillas, Shannon; Zaki, Sherif R; Denison, Amy M; Condit, Marah; Gabel, Julie; Paddock, Christopher D

    2016-07-22

    During 2012-2014, five cases of Rickettsia parkeri rickettsiosis were identified by a single urgent care practice in Georgia, located approximately 40 miles southwest of Atlanta. Symptom onset occurred during June-October, and all patients had a known tick bite. Patients ranged in age from 27 to 72 years (median = 53 years), and all were male. The most commonly reported initial signs were erythema (n = 3) and swelling (n = 2) at the site of the bite. Two patients reported fever and a third patient reported a rash and lymphadenopathy without fever. Other symptoms included myalgia (n = 3), chills (n = 3), fatigue (n = 2), arthralgia (n = 2), and headache (n = 2). Eschar biopsy specimens were collected from each patient using a 4-mm or 5-mm punch and placed in 10% neutral buffered formalin or sterile saline. These specimens were tested by immunohistochemical (IHC) stains, quantitative polymerase chain reaction (qPCR) assays, or cell culture isolation to determine if there was evidence of infection with a Rickettsia species (1). IHC evidence of spotted fever group rickettsiae was found in the eschar biopsy specimens in all five cases. In four cases, the biopsy specimens were also positive for R. parkeri by qPCR. The fifth case (specimen positive only by IHC testing) was considered a probable R. parkeri case based on clinical signs and symptoms. R. parkeri was grown in cell culture from one specimen from which isolation was attempted. All patients were treated with oral doxycycline (100 mg twice daily) for a minimum of 10 days, and all recovered.

  8. Identifying the Achilles heel of multi-host pathogens: the concept of keystone ‘host’ species illustrated by Mycobacterium ulcerans transmission

    International Nuclear Information System (INIS)

    Roche, Benjamin; Eric Benbow, M; Merritt, Richard; Kimbirauskas, Ryan; McIntosh, Mollie; Small, Pamela L C; Williamson, Heather; Guégan, Jean-François

    2013-01-01

    Pathogens that use multiple host species are an increasing public health issue due to their complex transmission, which makes them difficult to mitigate. Here, we explore the possibility of using networks of ecological interactions among potential host species to identify the particular disease-source species to target to break down transmission of such pathogens. We fit a mathematical model on prevalence data of Mycobacterium ulcerans in western Africa and we show that removing the most abundant taxa for this category of pathogen is not an optimal strategy to decrease the transmission of the mycobacterium within aquatic ecosystems. On the contrary, we reveal that the removal of some taxa, especially Oligochaeta worms, can clearly reduce rates of pathogen transmission, and these should be considered as keystone organisms for its transmission because they lead to a substantial reduction in pathogen prevalence regardless of the network topology. Besides their potential application for the understanding of M. ulcerans ecology, we discuss how networks of species interactions can modulate transmission of multi-host pathogens. (letter)

  9. Hard ticks and their bacterial endosymbionts (or would be pathogens)

    Czech Academy of Sciences Publication Activity Database

    Ahantarig, A.; Trinachartvanit, W.; Baimai, V.; Grubhoffer, Libor

    2013-01-01

    Roč. 58, č. 5 (2013), s. 419-428 ISSN 0015-5632 Institutional support: RVO:60077344 Keywords : Ixodes ricinus * Candidatus Midichloria mitochondrii * Francisella-like endosymbionts * vector Ambylomma americanum * fever group Rickettsiae * Dermacentor and ersoni * spotted fever * borne pathogens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.145, year: 2013

  10. Molecular surveillance of spotted fever group rickettsioses in wildlife and detection of Rickettsia sibirica in a Topi (Damaliscus lunatus ssp. jimela) in Kenya.

    Science.gov (United States)

    Ndeereh, David; Thaiyah, Andrew; Muchemi, Gerald; Miyunga, Antoinette A

    2017-01-30

    Spotted fever group rickettsioses are a group of tick-borne zoonotic diseases caused by intracellular bacteria of the genus Rickettsia. The diseases are widely reported amongst international travellers returning from most sub-Saharan Africa with fever, yet their importance in local populations largely remains unknown. Although this has started to change and recently there have been increasing reports of the diseases in livestock, ticks and humans in Kenya, they have not been investigated in wildlife. We examined the presence, prevalence and species of Rickettsia present in wildlife in two regions of Kenya with a unique human-wildlife-livestock interface. For this purpose, 79 wild animals in Laikipia County and 73 in Maasai Mara National Reserve were sampled. DNA extracted from blood was tested using the polymerase chain reaction (PCR) to amplify the intergenic spacer rpmE-tRNAfMet and the citrate synthase-encoding gene gltA. Rickettsial DNA was detected in 2 of the 79 (2.5%) animals in Laikipia and 4 of the 73 (5.5%) in Maasai Mara. The PCR-positive amplicons of the gltA gene were sequenced to determine the detected Rickettsia species. This revealed Rickettsia sibirica in a Topi (Damaliscus lunatus ssp. jimela). This is the first report of spotted fever group rickettsioses in wildlife and the first to report R. sibirica in Kenya. The finding demonstrates the potential role of wild animals in the circulation of the diseases.

  11. Molecular surveillance of spotted fever group rickettsioses in wildlife and detection of Rickettsia sibirica in a Topi (Damaliscus lunatus ssp. jimela in Kenya

    Directory of Open Access Journals (Sweden)

    David Ndeereh

    2017-01-01

    Full Text Available Spotted fever group rickettsioses are a group of tick-borne zoonotic diseases caused by intracellular bacteria of the genus Rickettsia. The diseases are widely reported amongst international travellers returning from most sub-Saharan Africa with fever, yet their importance in local populations largely remains unknown. Although this has started to change and recently there have been increasing reports of the diseases in livestock, ticks and humans in Kenya, they have not been investigated in wildlife. We examined the presence, prevalence and species of Rickettsia present in wildlife in two regions of Kenya with a unique human–wildlife–livestock interface. For this purpose, 79 wild animals in Laikipia County and 73 in Maasai Mara National Reserve were sampled. DNA extracted from blood was tested using the polymerase chain reaction (PCR to amplify the intergenic spacer rpmE-tRNAfMet and the citrate synthase-encoding gene gltA. Rickettsial DNA was detected in 2 of the 79 (2.5% animals in Laikipia and 4 of the 73 (5.5% in Maasai Mara. The PCR-positive amplicons of the gltA gene were sequenced to determine the detected Rickettsia species. This revealed Rickettsia sibirica in a Topi (Damaliscus lunatus ssp. jimela. This is the first report of spotted fever group rickettsioses in wildlife and the first to report R. sibirica in Kenya. The finding demonstrates the potential role of wild animals in the circulation of the diseases.

  12. Pathogenic potentials of Aeromonas species isolated from aquaculture and abattoir environments.

    Science.gov (United States)

    Igbinosa, Isoken H; Beshiru, Abeni; Odjadjare, Emmanuel E; Ateba, Collins N; Igbinosa, Etinosa O

    2017-06-01

    The present study elucidated the presence of antibiotics resistance, virulence genes and biofilm potentials among Aeromonas species isolated from abattoir and aquaculture environments in Benin City, Nigeria. A total of 144 wastewater samples were obtained from two independent aquaculture and abattoir environments between May and October 2016. Aeromonas species were isolated on Glutamate Starch Phenol Red (GSP) agar and confirmed using API 20NE kits. Antimicrobial susceptibility profile of the isolates was carried out using standard disc diffusion assay while biofilm potentials were detected by the microtitre plate method and PCR technique was used to detect antibiotics resistance and virulence gene markers. Overall, 32 and 26 Aeromonas species were isolated from the abattoir and aquaculture environments respectively. Isolates from both environments were completely resistant (100%) to penicillin G, ertapenem and tetracycline; whereas aquaculture isolates exhibited absolute sensitivity (100%) towards cefepime. All the virulence gene markers (aerA, hlyA, alt, ast, laf, ascF-G, fla, lip, stx1, and stx2) investigated in this study (except laf) were detected in isolates from both environments. The laf genes were only detected in isolates from abattoir environments. Antibiotics resistant genes including pse, bla TEM and class 1 integron were detected in isolates from both environments. Majority of the isolates (53/58 91.4%) from both environments; demonstrated capacity for biofilm potential. The detection of antibiotic resistance and virulence gene markers as well as biofilm forming ability in Aeromonas species isolated from aquaculture and abattoir environments raise serious public health concern worthy of further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins.

    Science.gov (United States)

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Urbaniak, Monika

    2016-05-01

    Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers.

  14. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species

    Directory of Open Access Journals (Sweden)

    Mohammed Taha Moustafa

    2017-10-01

    Full Text Available Nanotechnology are fast advancing and currently became more effective than the conventional technologies used in water treatment that offers safe opportunities for using unconventional water supply sources. Fungi are more versatile in growth and metal tolerance in contrast to bacterial population. This work aims to demonstrate the extracellular synthesis of silver nanoparticle by using two filamentous fungi Penciillium Citreonigum Dierck and Scopulaniopsos brumptii Salvanet-Duval isolated from Lake Burullus, examine the biosynthesized nano-silver particles by UV–vis spectroscopy, transmission electron microscopy (TEM. The functional group of protein molecules surrounding AgNPs was identified using Fourier transform infrared (FTIR analysis. Check the antibacterial activity of biosynthesized silver nanoparticles at two concentrations (550.7 and 676.9 mg/l and interact it with bacteria for different durations (15, 60 and 120 min. Polyurethane foam was used as silver carrier and nano-silver solution for the removal of pathogenic bacteria in polluted water. The synthesized AgNPs showed an excellent antibacterial property on gram positive and gram negative bacterial strains.

  15. The Cell Wall-Associated Proteins in the Dimorphic Pathogenic Species of Paracoccidioides.

    Science.gov (United States)

    Puccia, Rosana; Vallejo, Milene C; Longo, Larissa V G

    2017-01-01

    Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis (PCM). They are dimorphic ascomycetes that grow as filaments at mild temperatures up to 28oC and as multibudding pathogenic yeast cells at 37oC. Components of the fungal cell wall have an important role in the interaction with the host because they compose the cell outermost layer. The Paracoccidioides cell wall is composed mainly of polysaccharides, but it also contains proportionally smaller rates of proteins, lipids, and melanin. The polysaccharide cell wall composition and structure of Paracoccidioides yeast cells, filamentous and transition phases were studied in detail in the past. Other cell wall components have been better analyzed in the last decades. The present work gives to the readers a detailed updated view of cell wall-associated proteins. Proteins that have been localized at the cell wall compartment using antibodies are individually addressed. We also make an overview about PCM, the Paracoccidioides cell wall structure, secretion mechanisms, and fungal extracellular vesicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Molecular Detection of Tick-Borne Pathogen Diversities in Ticks from Livestock and Reptiles along the Shores and Adjacent Islands of Lake Victoria and Lake Baringo, Kenya

    Directory of Open Access Journals (Sweden)

    David Omondi

    2017-06-01

    Full Text Available Although diverse tick-borne pathogens (TBPs are endemic to East Africa, with recognized impact on human and livestock health, their diversity and specific interactions with tick and vertebrate host species remain poorly understood in the region. In particular, the role of reptiles in TBP epidemiology remains unknown, despite having been implicated with TBPs of livestock among exported tortoises and lizards. Understanding TBP ecologies, and the potential role of common reptiles, is critical for the development of targeted transmission control strategies for these neglected tropical disease agents. During the wet months (April–May; October–December of 2012–2013, we surveyed TBP diversity among 4,126 ticks parasitizing livestock and reptiles at homesteads along the shores and islands of Lake Baringo and Lake Victoria in Kenya, regions endemic to diverse neglected tick-borne diseases. After morphological identification of 13 distinct Rhipicephalus, Amblyomma, and Hyalomma tick species, ticks were pooled (≤8 individuals by species, host, sampling site, and collection date into 585 tick pools. By supplementing previously established molecular assays for TBP detection with high-resolution melting analysis of PCR products before sequencing, we identified high frequencies of potential disease agents of ehrlichiosis (12.48% Ehrlichia ruminantium, 9.06% Ehrlichia canis, anaplasmosis (6.32% Anaplasma ovis, 14.36% Anaplasma platys, and 3.08% Anaplasma bovis,, and rickettsiosis (6.15% Rickettsia africae, 2.22% Rickettsia aeschlimannii, 4.27% Rickettsia rhipicephali, and 4.95% Rickettsia spp., as well as Paracoccus sp. and apicomplexan hemoparasites (0.51% Theileria sp., 2.56% Hepatozoon fitzsimonsi, and 1.37% Babesia caballi among tick pools. Notably, we identified E. ruminantium in both Amblyomma and Rhipicephalus pools of ticks sampled from livestock in both study areas as well as in Amblyomma falsomarmoreum (66.7% and Amblyomma nuttalli (100

  17. Molecular Detection of Tick-Borne Pathogen Diversities in Ticks from Livestock and Reptiles along the Shores and Adjacent Islands of Lake Victoria and Lake Baringo, Kenya.

    Science.gov (United States)

    Omondi, David; Masiga, Daniel K; Fielding, Burtram C; Kariuki, Edward; Ajamma, Yvonne Ukamaka; Mwamuye, Micky M; Ouso, Daniel O; Villinger, Jandouwe

    2017-01-01

    Although diverse tick-borne pathogens (TBPs) are endemic to East Africa, with recognized impact on human and livestock health, their diversity and specific interactions with tick and vertebrate host species remain poorly understood in the region. In particular, the role of reptiles in TBP epidemiology remains unknown, despite having been implicated with TBPs of livestock among exported tortoises and lizards. Understanding TBP ecologies, and the potential role of common reptiles, is critical for the development of targeted transmission control strategies for these neglected tropical disease agents. During the wet months (April-May; October-December) of 2012-2013, we surveyed TBP diversity among 4,126 ticks parasitizing livestock and reptiles at homesteads along the shores and islands of Lake Baringo and Lake Victoria in Kenya, regions endemic to diverse neglected tick-borne diseases. After morphological identification of 13 distinct Rhipicephalus, Amblyomma , and Hyalomma tick species, ticks were pooled (≤8 individuals) by species, host, sampling site, and collection date into 585 tick pools. By supplementing previously established molecular assays for TBP detection with high-resolution melting analysis of PCR products before sequencing, we identified high frequencies of potential disease agents of ehrlichiosis (12.48% Ehrlichia ruminantium , 9.06% Ehrlichia canis ), anaplasmosis (6.32% Anaplasma ovis , 14.36% Anaplasma platys , and 3.08% Anaplasma bovis ,), and rickettsiosis (6.15% Rickettsia africae , 2.22% Rickettsia aeschlimannii , 4.27% Rickettsia rhipicephali , and 4.95% Rickettsia spp.), as well as Paracoccus sp. and apicomplexan hemoparasites (0.51% Theileria sp., 2.56% Hepatozoon fitzsimonsi , and 1.37% Babesia caballi ) among tick pools. Notably, we identified E. ruminantium in both Amblyomma and Rhipicephalus pools of ticks sampled from livestock in both study areas as well as in Amblyomma falsomarmoreum (66.7%) and Amblyomma nuttalli (100%) sampled

  18. In silico serine β-lactamases analysis reveals a huge potential resistome in environmental and pathogenic species.

    Science.gov (United States)

    Brandt, Christian; Braun, Sascha D; Stein, Claudia; Slickers, Peter; Ehricht, Ralf; Pletz, Mathias W; Makarewicz, Oliwia

    2017-02-24

    The secretion of antimicrobial compounds is an ancient mechanism with clear survival benefits for microbes competing with other microorganisms. Consequently, mechanisms that confer resistance are also ancient and may represent an underestimated reservoir in environmental bacteria. In this context, β-lactamases (BLs) are of great interest due to their long-term presence and diversification in the hospital environment, leading to the emergence of Gram-negative pathogens that are resistant to cephalosporins (extended spectrum BLs = ESBLs) and carbapenems (carbapenemases). In the current study, protein sequence databases were used to analyze BLs, and the results revealed a substantial number of unknown and functionally uncharacterized BLs in a multitude of environmental and pathogenic species. Together, these BLs represent an uncharacterized reservoir of potentially transferable resistance genes. Considering all available data, in silico approaches appear to more adequately reflect a given resistome than analyses of limited datasets. This approach leads to a more precise definition of BL clades and conserved motifs. Moreover, it may support the prediction of new resistance determinants and improve the tailored development of robust molecular diagnostics.

  19. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    2011-01-01

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  20. Detection of Borrelia lusitaniae, Rickettsia sp. IRS3, Rickettsia monacensis, and Anaplasma phagocytophilum in Ixodes ricinus collected in Madeira Island, Portugal.

    Science.gov (United States)

    de Carvalho, Isabel Lopes; Milhano, Natacha; Santos, Ana Sofia; Almeida, Victor; Barros, Silvia C; De Sousa, Rita; Núncio, Maria Sofia

    2008-08-01

    A total of 300 Ixodes ricinus ticks were tested by polymerase chain reaction (PCR) for the presence of Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum. Sequence analysis demonstrated 8 (2.7%) ticks infected with B. lusitaniae, 60 (20%) with Rickettsia spp., and 1 (0.3%) with A. phagocytophilum. Seven (2.3%) ticks were coinfected with B. lusitaniae and Rickettsia spp., 2 (0.6%) with R. monacensis, and 5 (1.7%) with Rickettsia sp. IRS3. The results of this study suggest simultaneous transmission of multiple tick-borne agents on Madeira Island, Portugal.

  1. A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species.

    Directory of Open Access Journals (Sweden)

    Omür Baysal

    Full Text Available Beneficial microorganisms (also known as biopesticides are considered to be one of the most promising methods for more rational and safe crop management practices. We used Bacillus strains EU07, QST713 and FZB24, and investigated their inhibitory effect on Fusarium. Bacterial cell cultures, cell-free supernatants and volatiles displayed varying degrees of suppressive effect. Proteomic analysis of secreted proteins from EU07 and FZB24 revealed the presence of lytic enzymes, cellulases, proteases, 1,4-β-glucanase and hydrolases, all of which contribute to degradation of the pathogen cell wall. Further proteomic investigations showed that proteins involved in metabolism, protein folding, protein degradation, translation, recognition and signal transduction cascade play an important role in the control of Fusarium oxysporum. Our findings provide new knowledge on the mechanism of action of Bacillus species and insight into biocontrol mechanisms.

  2. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Institute of Scientific and Technical Information of China (English)

    Prabhakaran Priyaja; Puthumana Jayesh; Neil Scolastin Correya; Balachandran Sreelakshmi; Naduthalmuriparambil S Sudheer; Rosamma Philip; Isaac Sarogeni Bright Singh

    2014-01-01

    Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics.Methods:Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates werePseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp.Conclusions:Purification and structural elucidation of antagonistic compound were carried out. ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and The present investigation showed that Pseudomonas aeruginosa MCCB119 would be MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  3. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Directory of Open Access Journals (Sweden)

    Prabhakaran Priyaja

    2014-01-01

    Full Text Available Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics. Methods: Purification and structural elucidation of antagonistic compound were carried out. Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates were Pseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp. Conclusions: The present investigation showed that Pseudomonas aeruginosa MCCB119 would be ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  4. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  5. PCR evaluation of selected vector-borne pathogens in dogs with pericardial effusion.

    Science.gov (United States)

    Tabar, M-D; Movilla, R; Serrano, L; Altet, L; Francino, O; Roura, X

    2018-04-01

    To investigate evidence for selected vector-borne pathogen infections in dogs with pericardial effusion living in a Mediterranean area in which several canine vector-borne diseases are endemic. Archived EDTA blood (n=68) and pericardial fluid samples (n=58) from dogs with pericardial effusion (n=68) were included. Dogs without pericardial effusion examined for other reasons were included as controls (n=60). Pericardial effusion was classified as neoplastic in 40 dogs, idiopathic in 23 dogs and of unknown aetiology in 5 dogs. Real-time PCR was performed for Leishmania infantum, Ehrlichia/Anaplasma species, Hepatozoon canis, Babesia species, Rickettsia species and Bartonella species, and sequencing of PCR products from positive samples was used to confirm species specificity. Vector-borne pathogens were found in 18 dogs: 16 of 68 dogs with pericardial effusion (23·5%) and two of 60 control dogs (3·3%). Positive dogs demonstrated DNA of Leishmania infantum (n=7), Anaplasma platys (n=2, one dog coinfected with Leishmania infantum), Babesia canis (n=5), Babesia gibsoni (n=3) and Hepatozoon canis (n=2). Vector-borne pathogens were more commonly detected among dogs with pericardial effusion than controls (P=0·001). There was no relationship between aetiology of the pericardial effusion and evidence of vector-borne pathogens (P=0·932). Vector-borne pathogens are often detected in dogs with pericardial effusion and require further investigation, especially in dogs with idiopathic pericardial effusion. PCR can provide additional information about the potential role of vector-borne pathogens in dogs with pericardial effusion living in endemic areas. © 2018 British Small Animal Veterinary Association.

  6. Prevalence of ticks and tick-borne pathogens: Babesia and Borrelia species in ticks infesting cats of Great Britain.

    Science.gov (United States)

    Davies, Saran; Abdullah, Swaid; Helps, Chris; Tasker, Séverine; Newbury, Hannah; Wall, Richard

    2017-09-15

    In a study of tick and tick-borne pathogen prevalence, between May and October 2016, 278 veterinary practices in Great Britain examined 1855 cats. Six-hundred and one cats were found to have attached ticks. The most frequently recorded tick species was Ixodes ricinus (57.1%), followed by Ixodes hexagonus (41.4%) and Ixodes trianguliceps (1.5%). Male cats, 4-6 years of age living in rural areas were most likely to be carrying a tick; hair length and tick treatment history had no significant association with attachment. For cats that were parasitized by ticks in large urban areas, I. hexagonus was the most frequent species recorded. Molecular analysis was possible for 541 individual tick samples, others were too damaged for analysis; Babesia spp., and Borrelia burgdorferi sensu lato were identified in 1.1% (n=6) and 1.8% (n=10) of these, respectively. Babesia spp. included Babesia vulpes sp. nov./Babesia microti-like (n=4) in I. hexagonus and Babesia venatorum (n=2) in I. ricinus. Borrelia burgdorferi s.l. species included Borrelia garinii (n=6) and Borrelia afzelii (n=4). The majority of B. burgorferi s.l. cases were found in I. ricinus, with B. afzelii in one I. hexagonus nymph. No Borrelia or Babesia spp. were present in I. trianguliceps. To determine a true prevalence for ticks on cats, practices that only submitted questionnaires from cats with ticks and practices that submitted fewer than 5 returns per week were removed; amongst those considered to have adhered strictly to the collection protocol, feline tick prevalence amongst cats that had access to the outdoors was 6.6%. These results show that ticks can be found on cats throughout Great Britain, which harbour a range of species of Babesia and B. burgdorferi s.l. and that cats, particularly in green spaces within urban areas, may form an important host for I. hexagonus, a known vector of pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The susceptibility of Asian, European and North American Fraxinus species to the ash dieback pathogen Hymenoscyphus fraxineus reflects their phylogenetic history

    DEFF Research Database (Denmark)

    Nielsen, Lene Rostgaard; McKinney, Lea Vig; Hietala, Ari M.

    2017-01-01

    susceptibility where closely related Asian, European and North American species in section Fraxinus had relatively high levels of H. fraxineus DNA in the leaves and supported high production of apothecia. Leaves from some North American species also contained relatively high levels of H. fraxineus DNA, supported...... that there is species-specific variation in disease susceptibility among European and North American Fraxinus species, but a wider comparison at the genus level has been missing so far. We assessed disease symptoms and pathogen apothecium development in 17 Fraxinus species from Asia, Europe and North America exposed...

  8. Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Shao, Jin; Wan, Zhe; Li, Ruoyu; Yu, Jin

    2018-04-01

    This study aimed to validate the effectiveness of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification of filamentous fungi of the order Mucorales. A total of 111 isolates covering six genera preserved at the Research Center for Medical Mycology of Peking University were selected for MALDI-TOF MS analysis. We emphasized the study of 23 strains of Mucor irregularis predominantly isolated from patients in China. We first used the Bruker Filamentous Fungi library (v1.0) to identify all 111 isolates. To increase the identification rate, we created a compensatory in-house database, the Beijing Medical University (BMU) database, using 13 reference strains covering 6 species, including M. irregularis , Mucor hiemalis , Mucor racemosus , Cunninghamella bertholletiae , Cunninghamella phaeospora , and Cunninghamella echinulata All 111 isolates were then identified by MALDI-TOF MS using a combination of the Bruker library and BMU database. MALDI-TOF MS identified 55 (49.5%) and 74 (66.7%) isolates at the species and genus levels, respectively, using the Bruker Filamentous Fungi library v1.0 alone. A combination of the Bruker library and BMU database allowed MALDI-TOF MS to identify 90 (81.1%) and 111 (100%) isolates at the species and genus levels, respectively, with a significantly increased accuracy rate. MALDI-TOF MS poorly identified Mucorales when the Bruker library was used alone due to its lack of some fungal species. In contrast, this technique perfectly identified M. irregularis after main spectrum profiles (MSPs) of relevant reference strains were added to the Bruker library. With an expanded Bruker library, MALDI-TOF MS is an effective tool for the identification of pathogenic Mucorales. Copyright © 2018 American Society for Microbiology.

  9. Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen.

    Science.gov (United States)

    Taheri, Parissa; Kakooee, Tahereh

    2017-09-01

    Alternaria blight is a major and destructive disease of potato worldwide. In recent years, A. tenuissima is recognized as the most prevalent species of this phytopathogenic fungus in potato fields of Asian countries, which causes high yield losses every year. Any potato cultivar with complete resistance to this disease is not recognized, so far. Therefore, screening resistance levels of potatoes and identification of plant defense mechanisms against this fungus might be important for designing novel and effective disease management strategies for controlling the disease. In this research, the role of reactive oxygen species, antioxidants, lignin and phenolics in potato basal resistance to A. tenuissima was compared in the partially resistant Ramus and susceptible Bamba cultivars. Priming O 2 - and H 2 O 2 production and enhanced activity of peroxidase (POX) and catalase (CAT) during interaction with A. tenuissima were observed in Ramus cultivar. Application of ROS generating systems and scavengers revealed critical role of O 2 - and H 2 O 2 in potato defense, which was associated with lignification and phenolics production. More OH - and lipid peroxidation in the susceptible Bamba compared to Ramus cultivar showed their negative effects on resistance. Priming the POX and CAT activity, in correlation with upregulation of the corresponding genes was observed in Ramus. The POX and CAT inhibitors increased disease progress, which was related with decreased lignification. This assay demonstrated not only POX-dependency of lignification, but also its dependence on CAT. However, POX had more importance than CAT in potato defense and in lignification. These findings highlight the function of ROS accumulation and homeostasis in potato resistance against A. tenuissima. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. A serological and molecular survey of Babesia vogeli, Ehrlichia canis and Rickettsia spp. among dogs in the state of Maranhão, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Andréa Pereira da Costa

    Full Text Available This study evaluated exposure and infection by tick-borne agents (Babesia vogeli, Ehrlichia canis and Rickettsia spp. in 172 dogs in rural areas and 150 dogs in urban areas of the municipality of Chapadinha, state of Maranhão, northeastern Brazil, using molecular and serological methods. Overall, 16.1% of the sampled dogs (52/322 were seroreactive to B. vogeli, with endpoint titers ranging from 40 to 640. For E. canis, 14.6% of the dogs (47/322 were seroreactive, with endpoint titers from 80 to 163,840. Antibodies reactive to at least one of the five species of Rickettsia were detected in 18.9% of the dogs (61/322, with endpoint titers ranging from 64 to 4,096. High endpoint titers were observed for Rickettsia amblyommii. Three (0.9% and nine (2.8% canine blood samples were PCR-positive for Babesia spp. and E. canis. The ticks collected from urban dogs were all Rhipicephalus sanguineus sensu lato, whereas the rural dogs were infested by R. sanguineus s.l, Amblyomma cajennense sensu lato and Amblyomma ovale. One A. ovale tick was found to be infected by Rickettsia bellii. This study provides an epidemiological background for controlling and preventing canine tick-borne diseases in a neglected region of Brazil.

  11. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens.

    Science.gov (United States)

    Chapman, C M C; Gibson, G R; Rowland, I

    2012-08-01

    Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld

    2016-01-01

    Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A....... fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. noyofumigatus, A. parafelis, A. pseudofelis, A. pseudoyiridinutans, A. spinosus, A. therrnornutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37 °C...

  13. Antimicrobial potential of two traditional herbometallic drugs against certain pathogenic microbial species.

    Science.gov (United States)

    Wijenayake, A U; Abayasekara, C L; Pitawala, H M T G A; Bandara, B M R

    2016-09-15

    Mineral based preparations are widely used for centuries as antimicrobial agents. However, the efficacy and the mode of action of mineral based preparations are uncertain due to the insufficient antimicrobial studies. Arogyawardhana Vati (AV) and Manikya Rasa (MR) are such two Rasashastra herbo-minerallic drugs commonly in India and other countries in South Asia. Despite of their well known traditional use of skin diseases, reported antimicrobial and mineralogical studies are limited. Therefore, in this study antimicrobial activities of the drugs and their organic, inorganic fractions were evaluated against Pseudomonas aeruginosa, Escherischia coli, Staphylococcus aureus, Methecilline Resistance Staphylococcus aureus - MRSA and Candida albicans. Antimicrobial activity of the drugs, their inorganic residues and organic extracts were determined using four assay techniques viz agar well diffusion, modified well diffusion, Miles and Misra viable cell counting and broth turbidity measurements. Mineralogical constituents of the drugs were determined using X-ray diffraction, while total cation constituents and water soluble cation constituents were determined using inductively coupled plasma-mass spectrometer and the atomic absorption spectrophotometer respectively. Thermogravimetric analysis was used to determine the weight percentages of organic and inorganic fraction of the drugs. Particle sizes of the drugs were determined using the particle size analyzer. AV and MR drugs showed antibacterial activity against both gram positive and gram negative bacterial species when analyzed separately. Inorganic residues of the drugs and organic extracts showed activity at least against two or more bacterial species tested. All tested components were inactive against C. albicans. Common mineral constituents of drugs are cinnabar, biotite and Fe-rich phases. Drugs were rich in essential elements such as Na, K, Ca, Mg and Fe and toxic elements such as Zn, Cu and As. However, the

  14. Outbreaks of Rickettsia felis in Kenya and Senegal, 2010

    Centers for Disease Control (CDC) Podcasts

    This podcast describes the outbreak of Rickettsia felis in Kenya between August 2006 and June 2008, and in rural Senegal from November 2008 through July 2009. CDC infectious disease pathologist Dr. Chris Paddock discusses what researchers learned about this flea-borne disease and how to prevent infection.

  15. Direct evidence of Rickettsia typhi infection in Rhipicephalus ...

    African Journals Online (AJOL)

    These studies remarks that in addition to rats, other animals like cats, opossums and dogs could be implied in the transmission of Rickettsia typhi as infected fleas obtained from serologically positive animals have been detected in samples from endemic areas. In Mexico, the higher number of murine typhus cases have ...

  16. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria.

    Science.gov (United States)

    Stecher, Bärbel; Chaffron, Samuel; Käppeli, Rina; Hapfelmeier, Siegfried; Freedrich, Susanne; Weber, Thomas C; Kirundi, Jorum; Suar, Mrutyunjay; McCoy, Kathy D; von Mering, Christian; Macpherson, Andrew J; Hardt, Wolf-Dietrich

    2010-01-01

    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut

  17. High-throughput screening of tick-borne pathogens in Europe

    DEFF Research Database (Denmark)

    Michelet, Lorraine; Delannoy, Sabine; Devillers, Elodie

    2014-01-01

    was conducted on 7050 Ixodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia......, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia...

  18. Emerging Infectious Disease Implications of Invasive Mammalian Species: The Greater White-Toothed Shrew (Crocidura russula) Is Associated With a Novel Serovar of Pathogenic Leptospira in Ireland.

    Science.gov (United States)

    Nally, Jarlath E; Arent, Zbigniew; Bayles, Darrell O; Hornsby, Richard L; Gilmore, Colm; Regan, Siobhan; McDevitt, Allan D; Yearsley, Jon; Fanning, Séamus; McMahon, Barry J

    2016-12-01

    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.

  19. An annotated bibliography of invasive tree pathogens Sirococcus clavigignenti-juglandacearum, Phytophthora alni, and Phytophthora quercina and a regulatory policy and management practices for invasive species

    Science.gov (United States)

    T.M. Seeland; M.E. Ostry; R. Venette; J. Juzwik

    2006-01-01

    Provides a database of selected literature pertaining to the prevention, early detection and rapid response, control and management, and rehabilitation and restoration related to three invasive fungal pathogens of forest trees. Literature addressing regulatory policy and management practices for invasive species is also included.

  20. Horse species symposium: a novel approach to monitoring pathogen progression during uterine and placental infection in the mare using bioluminescence imaging technology and lux-modified bacteria.

    Science.gov (United States)

    Ryan, P L; Christiansen, D L; Hopper, R M; Walters, F K; Moulton, K; Curbelo, J; Greene, J M; Willard, S T

    2011-05-01

    Uterine and placental infections are the leading cause of abortion, stillbirth, and preterm delivery in the mare. Whereas uterine and placental infections in women have been studied extensively, a comprehensive examination of the pathogenic processes leading to this unsatisfactory pregnancy outcome in the mare has yet to be completed. Most information in the literature relating to late-term pregnancy loss in mares is based on retrospective studies of clinical cases submitted for necropsy. Here we report the development and application of a novel approach, whereby transgenically modified bacteria transformed with lux genes of Xenorhabdus luminescens or Photorhabdus luminescens origin and biophotonic imaging are utilized to better understand pathogen-induced preterm birth in late-term pregnant mares. This technology uses highly sensitive bioluminescence imaging camera systems to localize and monitor pathogen progression during tissue invasion by measuring the bioluminescent signatures emitted by the lux-modified pathogens. This method has an important advantage in that it allows for the potential tracking of pathogens in vivo in real time and over time, which was hitherto impossible. Although the application of this technology in domestic animals is in its infancy, investigators were successful in identifying the fetal lungs, sinuses, nares, urinary, and gastrointestinal systems as primary tissues for pathogen invasion after experimental infection of pregnant mares with lux-modified Escherichia coli. It is important that pathogens were not detected in other vital organs, such as the liver, brain, and cardiac system. Such precision in localizing sites of pathogen invasion provides potential application for this novel approach in the development of more targeted therapeutic interventions for pathogen-related diseases in the equine and other domestic species.

  1. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics.

    Directory of Open Access Journals (Sweden)

    Wenping Gong

    Full Text Available Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs, which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens.

  2. Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics

    Science.gov (United States)

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252

  3. Candidatus Rickettsia andeanae, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Nieri-Bastos

    2014-04-01

    Full Text Available Adult ticks of the species Amblyomma parvum were collected from the vegetation in the Pantanal biome (state of Mato Grosso do Sul and from horses in the Cerrado biome (state of Piauí in Brazil. The ticks were individually tested for rickettsial infection via polymerase chain reaction (PCR targeting three rickettsial genes, gltA, ompA and ompB. Overall, 63.5% (40/63 and 66.7% (2/3 of A. parvum ticks from Pantanal and Cerrado, respectively, contained rickettsial DNA, which were all confirmed by DNA sequencing to be 100% identical to the corresponding fragments of the gltA, ompA and ompB genes of Candidatus Rickettsia andeanae. This report is the first to describe Ca. R. andeanae in Brazil.

  4. The Distinct Transcriptional Response of the Midgut of Amblyomma sculptum and Amblyomma aureolatum Ticks to Rickettsia rickettsii Correlates to Their Differences in Susceptibility to Infection

    Directory of Open Access Journals (Sweden)

    Andréa C. Fogaça

    2017-04-01

    Full Text Available Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes Rocky Mountain Spotted Fever (RMSF. In Brazil, two species of ticks in the genus Amblyomma, A. sculptum and A. aureolatum, are incriminated as vectors of this bacterium. Importantly, these two species present remarkable differences in susceptibility to R. rickettsii infection, where A. aureolatum is more susceptible than A. sculptum. In the current study, A. aureolatum and A. sculptum ticks were fed on suitable hosts previously inoculated with R. rickettsii, mimicking a natural infection. As control, ticks were fed on non-infected animals. Both midgut and salivary glands of all positively infected ticks were colonized by R. rickettsii. We did not observe ticks with infection restricted to midgut, suggesting that important factors for controlling rickettsial colonization were produced in this organ. In order to identify such factors, the total RNA extracted from the midgut (MG was submitted to next generation RNA sequencing (RNA-seq. The majority of the coding sequences (CDSs of A. sculptum differentially expressed by infection were upregulated, whereas most of modulated CDSs of A. aureolatum were downregulated. The functional categories that comprise upregulated CDSs of A. sculptum, for instance, metabolism, signal transduction, protein modification, extracellular matrix, and immunity also include CDSs of A. aureolatum that were downregulated by infection. This is the first study that reports the effects of an experimental infection with the highly virulent R. rickettsii on the gene expression of two natural tick vectors. The distinct transcriptional profiles of MG of A. sculptum and A. aureolatum upon infection stimulus strongly suggest that molecular factors in this organ are responsible for delineating the susceptibility to R. rickettsii. Functional studies to determine the role played by proteins encoded by differentially expressed CDSs in the acquisition of R

  5. Do Tick Attachment Times Vary between Different Tick-Pathogen Systems?

    Directory of Open Access Journals (Sweden)

    Stephanie L. Richards

    2017-05-01

    Full Text Available Improvements to risk assessments are needed to enhance our understanding of tick-borne disease epidemiology. We review tick vectors and duration of tick attachment required for pathogen transmission for the following pathogens/toxins and diseases: (1 Anaplasma phagocytophilum (anaplasmosis; (2 Babesia microti (babesiosis; (3 Borrelia burgdorferi (Lyme disease; (4 Southern tick-associated rash illness; (5 Borrelia hermsii (tick-borne relapsing fever; (6 Borrelia parkeri (tick-borne relapsing fever; (7 Borrelia turicatae (tick-borne relapsing fever; (8 Borrelia mayonii; (9 Borrelia miyamotoi; (10 Coxiella burnetii (Query fever; (11 Ehrlichia chaffeensis (ehrlichiosis; (12 Ehrlichia ewingii (ehrlichiosis; (13 Ehrlichia muris; (14 Francisella tularensis (tularemia; (15 Rickettsia 364D; (16 Rickettsia montanensis; (17 Rickettsia parkeri (American boutonneuse fever, American tick bite fever; (18 Rickettsia ricketsii (Rocky Mountain spotted fever; (19 Colorado tick fever virus (Colorado tick fever; (20 Heartland virus; (21 Powassan virus (Powassan disease; (22 tick paralysis neurotoxin; and (23 Galactose-α-1,3-galactose (Mammalian Meat Allergy-alpha-gal syndrome. Published studies for 12 of the 23 pathogens/diseases showed tick attachment times. Reported tick attachment times varied (<1 h to seven days between pathogen/toxin type and tick vector. Not all studies were designed to detect the duration of attachment required for transmission. Knowledge of this important aspect of vector competence is lacking and impairs risk assessment for some tick-borne pathogens.

  6. Outbreaks of Rickettsia felis in Kenya and Senegal, 2010

    Centers for Disease Control (CDC) Podcasts

    2010-06-09

    This podcast describes the outbreak of Rickettsia felis in Kenya between August 2006 and June 2008, and in rural Senegal from November 2008 through July 2009. CDC infectious disease pathologist Dr. Chris Paddock discusses what researchers learned about this flea-borne disease and how to prevent infection.  Created: 6/9/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/24/2010.

  7. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species.

    Science.gov (United States)

    Nagayoshi, Yohsuke; Miyazaki, Taiga; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions.

  8. Study of infection by Rickettsiae of the spotted fever group in humans and ticks in an urban park located in the City of Londrina, State of Paraná, Brazil Estudo da infecção por Rickettsias do grupo da febre maculosa em humanos e carrapatos de um parque urbano na Cidade de Londrina, Estado do Paraná

    Directory of Open Access Journals (Sweden)

    Roberta Santos Toledo

    2011-06-01

    Full Text Available INTRODUCTION: Spotted fevers are emerging zoonoses caused by Rickettsia species in the spotted fever group (SFG. Rickettsia rickettsii is the main etiologic agent of Brazilian spotted fever (BSF and it is transmitted by Amblyomma spp. ticks. METHODS: The study aimed to investigate SFG rickettsiae in the Arthur Thomas Municipal Park in Londrina, PR, by collecting free-living ticks and ticks from capybaras and blood samples from personnel working in these areas. Samples from A. dubitatum and A. cajennense were submitted for PCR in pools to analyze the Rickettsia spp. gltA (citrate synthase gene. RESULTS: All the pools analyzed were negative. Human sera were tested by indirect immunofluorescence assay with R. rickettsii and R. parkeri as antigens. Among the 34 sera analyzed, seven (20.6% were reactive for R. rickettsii: four of these had endpoint titers equal to 64, 2 titers were 128 and 1 titer was 256. None of the samples were reactive for R. parkeri. An epidemiological questionnaire was applied to the park staff, but no statistically significant associations were identified. CONCLUSIONS: The serological studies suggest the presence of Rickettsiae related to SFG that could be infecting the human population studied; however, analysis of the ticks collected was unable to determine which species may be involved in transmission to humans.INTRODUÇÃO: A febre maculosa é uma zoonose emergente causada por espécies de Rickettsia do grupo febre maculosa (GFM. Rickettsia rickettsii é o principal agente etiológico da febre maculosa brasileira (FMB e é transmitida por Amblyomma spp. MÉTODOS: Com o objetivo de obter informações sobre GFM Rickettsiae no Parque Municipal Arthur Thomas em Londrina, PR, carrapatos de vida livre e de capivaras foram coletados, assim como amostras de sangue das pessoas que trabalham no parque. A. dubitatum e A. cajennense foram submetidos à PCR em pools para analises de Rickettsia spp. gltA (citrate synthase gene

  9. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species

    Science.gov (United States)

    Raymond, Frédéric; Boisvert, Sébastien; Roy, Gaétan; Ritt, Jean-François; Légaré, Danielle; Isnard, Amandine; Stanke, Mario; Olivier, Martin; Tremblay, Michel J.; Papadopoulou, Barbara; Ouellette, Marc; Corbeil, Jacques

    2012-01-01

    The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage. PMID:21998295

  10. Species-Level Discrimination of Psychrotrophic Pathogenic and Spoilage Gram-Negative Raw Milk Isolates Using a Combined MALDI-TOF MS Proteomics-Bioinformatics-based Approach.

    Science.gov (United States)

    Vithanage, Nuwan R; Bhongir, Jeevana; Jadhav, Snehal R; Ranadheera, Chaminda S; Palombo, Enzo A; Yeager, Thomas R; Datta, Nivedita

    2017-06-02

    Identification of psychrotrophic pathogenic and spoilage Gram-negative bacteria using rapid and reliable techniques is important in commercial milk processing, as these bacteria can produce heat-resistant proteases and act as postprocessing contaminants in pasteurized milk. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is a proven technology for identification of bacteria in food, however, may require optimization for identification of pathogenic and spoilage bacteria in milk and dairy products. The current study evaluated the effects of various culture conditions and sample preparation methods on assigning of raw milk isolates to the species level by MALDI-TOF MS. The results indicated that culture media, incubation conditions (temperature and time), and sample preparation significantly affected the identification rates of bacteria to the species level. Nevertheless, the development of spectral libraries of isolates grown on different media using a web tool for hierarchical clustering of peptide mass spectra (SPECLUST) followed by a ribosomal protein based bioinformatics approach significantly enhanced the assigning of bacteria, with at least one unique candidate biomarker peak identified for each species. Phyloproteomic relationships based on spectral profiles were compared to phylogenetic analysis using 16S rRNA gene sequences and demonstrated similar clustering patterns with significant discriminatory power. Thus, with appropriate optimization, MALDI-TOF MS is a valuable tool for species-level discrimination of pathogenic and milk spoilage bacteria.

  11. Patogenicidade de Helminthosporium oryzae a algumas espécies de gramíneas Pathogenicity of Helminthosporium oryzae against some grass species

    Directory of Open Access Journals (Sweden)

    V.H. Artigiani Filho

    1995-04-01

    Full Text Available O fungo Helminthosporium oryzae é um patógeno do arroz. Devido a sua variabilidade patogênica, foi investigada a possibilidade deste fungo infectar outras gramíneas. Através de inoculação artificial, ficou demonstrada a capacidade deste patógeno provocar infecção em aveia, cana, centeio, sorgo, trigo, Brachiaria decumbens e Panicum maximum. Assim, estas espécies vegetais podem ser consideradas potenciais hospedeiros do fungo na natureza.Helminthosporium oryzae is a rice pathogen. Due to its variability in pathogenicity, the possibility of this fungus Infecting other grasses was investigated. The capacity of this pathogen was demonstrated to be able to infect oat, sugar-cane, rye, sorghum, wheat, Brachiaria decumbens and Panicum maximum through artificial inoculations. Therefore, those plant species can be considered potencial hosts for the fungus in nature.

  12. Bacterial community dynamics in a cooling tower with emphasis on pathogenic bacteria and Legionella species using universal and genus-specific deep sequencing.

    Science.gov (United States)

    Pereira, Rui P A; Peplies, Jörg; Höfle, Manfred G; Brettar, Ingrid

    2017-10-01

    Cooling towers are the major source of outbreaks of legionellosis in Europe and worldwide. These outbreaks are mostly associated with Legionella species, primarily L. pneumophila, and its surveillance in cooling tower environments is of high relevance to public health. In this study, a combined NGS-based approach was used to study the whole bacterial community, specific waterborne and water-based bacterial pathogens, especially Legionella species, targeting the 16S rRNA gene. This approach was applied to water from a cooling tower obtained by monthly sampling during two years. The studied cooling tower was an open circuit cooling tower with lamellar cooling situated in Braunschweig, Germany. A highly diverse bacterial community was observed with 808 genera including 25 potentially pathogenic taxa using universal 16S rRNA primers. Sphingomonas and Legionella were the most abundant pathogenic genera. By applying genus-specific primers for Legionella, a diverse community with 85 phylotypes, and a representative core community with substantial temporal heterogeneity was observed. A high percentage of sequences (65%) could not be affiliated to an acknowledged species. L. pneumophila was part of the core community and the most abundant Legionella species reinforcing the importance of cooling towers as its environmental reservoir. Major temperature shifts (>10 °C) were the key environmental factor triggering the reduction or dominance of the Legionella species in the Legionella community dynamics. In addition, interventions by chlorine dioxide had a strong impact on the Legionella community composition but not on the whole bacterial community. Overall, the presented results demonstrated the value of a combined NGS approach for the molecular monitoring and surveillance of health related pathogens in man-made freshwater systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Detection of Rickettsia bellii and Rickettsia amblyommii in Amblyomma longirostre (Acari: Ixodidae) from Bahia state, Northeast Brazil.

    Science.gov (United States)

    McIntosh, Douglas; Bezerra, Rodrigo Alves; Luz, Hermes Ribeiro; Faccini, João Luiz Horacio; Gaiotto, Fernanda Amato; Giné, Gastón Andrés Fernandez; Albuquerque, George Rego

    2015-01-01

    Studies investigating rickettsial infections in ticks parasitizing wild animals in the Northeast region of Brazil have been confined to the detection of Rickettsia amblyommii in immature stages of Amblyomma longirostre collected from birds in the state of Bahia, and in immatures and females of Amblyomma auricularium collected from the striped hog-nosed skunk (Conepatus semistriatus) and armadillos (Euphractus sexcinctus) in the state of Pernambuco. The current study extends the distribution of R. amblyommii (strain Aranha), which was detected in A. longirostre collected from the thin-spined porcupine Chaetomys subspinosus and the hairy dwarf porcupine Coendou insidiosus. In addition, we report the first detection of Rickettsia bellii in adults of A. longirostre collected from C. insidiosus in the state of Bahia.

  14. Report on ticks collected in the Southeast and Mid-West regions of Brazil: analyzing the potential transmission of tick-borne pathogens to man

    Directory of Open Access Journals (Sweden)

    Figueiredo Luiz Tadeu Moraes

    1999-01-01

    Full Text Available Specimens of ticks were collected in 1993, 1996, 1997, and 1998, mostly from wild and domestic animals in the Southeast and Mid-West regions of Brazil. Nine species of Amblyommidae were identified: Anocentor nitens, Amblyomma cajennense, Amblyomma ovale, Amblyomma fulvum, Amblyomma striatum, Amblyomma rotundatum, Boophilus microplus, Boophilus annulatus, and Rhipicephalus sanguineus. The potential of these tick species as transmitters of pathogens to man was analyzed. A Flaviviridade Flavivirus was isolated from Amblyomma cajennense specimens collected from a sick capybara (Hydrochaeris hydrochaeris. Amblyomma cajennense is the main transmitter of Rickettsia rickettsii (=R. rickettsi, the causative agent of spotted fever in Brazil. Wild mammals, mainly capybaras and deer, infested by ticks and living in close contact with cattle, horses and dogs, offer the risk of transmission of wild zoonosis to these domestic animals and to man.

  15. Spotted fever group rickettsiae detected in immature stages of ticks parasitizing on Iberian endemic lizard Lacerta schreiberi Bedriaga, 1878

    Czech Academy of Sciences Publication Activity Database

    Kubelová, M.; Papoušek, I.; Bělohlávek, T.; Goüy de Bellocq, Joëlle; Baird, Stuart J. E.; Široký, P.

    2015-01-01

    Roč. 6, č. 6 (2015), s. 711-714 ISSN 1877-959X Institutional support: RVO:68081766 Keywords : Spotted fever group rickettsiae * Rickettsia monacensis * Rickettsia helvetica * Ixodes ricinus * Lacerta schreiberi Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.690, year: 2015

  16. Serological and molecular evidence for spotted fever group Rickettsia and Borrelia burgdorferi sensu lato co-infections in The Netherlands

    NARCIS (Netherlands)

    Koetsveld, Joris; Tijsse-Klasen, Ellen; Herremans, Tineke; Hovius, Joppe W. R.; Sprong, Hein

    2016-01-01

    Only a few reported cases indicate that Rickettsia helvetica and Rickettsia monacensis can cause disease in humans. Exposure to these two spotted fever group (SFG) rickettsiae occurs through bites of Ixodes ricinus, also the primary vector of Lyme borreliosis in Europe. To date, it is unclear how

  17. Catalase is a determinant of the colonization and transovarial transmission of Rickettsia parkeri in the Gulf Coast tick Amblyomma maculatum.

    Science.gov (United States)

    Budachetri, K; Kumar, D; Karim, S

    2017-08-01

    The Gulf Coast tick (Amblyomma maculatum) has evolved as a competent vector of the spotted-fever group rickettsia, Rickettsia parkeri. In this study, the functional role of catalase, an enzyme responsible for the degradation of toxic hydrogen peroxide, in the colonization of the tick vector by R. parkeri and transovarial transmission of this pathogen to the next tick generation, was investigated. Catalase gene (CAT) expression in midgut, salivary glands and ovarian tissues exhibited a 2-11-fold increase in transcription level upon R. parkeri infection. Depletion of CAT transcripts using an RNA-interference approach significantly reduced R. parkeri infection levels in midgut and salivary gland tissues by 53-63%. The role of CAT in transovarial transmission of R. parkeri was confirmed by simultaneously blocking the transcript and the enzyme by injecting double-stranded RNA for CAT and a catalase inhibitor (3-amino-1,2,4-triazole) into gravid females. Simultaneous inhibition of the CAT transcript and the enzyme significantly reduced the egg conversion ratio with a 44% reduction of R. parkeri transovarial transmission. These data suggest that catalase is required for rickettsial colonization of the tick vector and transovarial transmission to the next generation. © 2017 The Royal Entomological Society.

  18. Molecular epidemiological survey of bacterial and parasitic pathogens in hard ticks from eastern China.

    Science.gov (United States)

    Liu, Xiang-Ye; Gong, Xiang-Yao; Zheng, Chen; Song, Qi-Yuan; Chen, Ting; Wang, Jing; Zheng, Jie; Deng, Hong-Kuan; Zheng, Kui-Yang

    2017-03-01

    Ticks are able to transmit various pathogens-viruses, bacteria, and parasites-to their host during feeding. Several molecular epidemiological surveys have been performed to evaluate the risk of tick-borne pathogens in China, but little is known about pathogens circulating in ticks from eastern China. Therefore, this study aimed to investigate the presence of bacteria and parasites in ticks collected from Xuzhou, a 11258km 2 region in eastern China. In the present study, ticks were collected from domestic goats and grasses in urban districts of Xuzhou region from June 2015 to July 2016. After tick species identification, the presence of tick-borne bacterial and parasitic pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi, Rickettsia sp., Bartonella sp., Babesia sp., and Theileria sp., was established via conventional or nested polymerase chain reaction assays (PCR) and sequence analysis. Finally, a total of 500 questing adult ticks, identified as Haemaphysalis longicornis, were investigated. Among them, 28/500 tick samples (5.6%) were infected with A. phagocytophilum, and 23/500 (4.6%) with Theileria luwenshuni, whereas co-infection with these pathogens was detected in only 1/51 (2%) of all infected ticks. In conclusion, H. longicornis is the dominant tick species in the Xuzhou region and plays an important role in zoonotic pathogen transmission. Both local residents and animals are at a significant risk of exposure to anaplasmosis and theileriosis, due to the high rates of A. phagocytophilum and T. luwenshuni tick infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Human leptospirosis in Tanzania: sequencing and phylogenetic analysis confirm that pathogenic Leptospira species circulate among agro-pastoralists living in Katavi-Rukwa ecosystem.

    Science.gov (United States)

    Muller, Shabani K; Assenga, Justine A; Matemba, Lucas E; Misinzo, Gerald; Kazwala, Rudovick R

    2016-06-10

    Leptospirosis is a neglected zoonotic disease of worldwide public health importance. The disease affects humans, domestic animals and wildlife. However, leptospirosis is challenging in its diagnosis in humans. Culture technique, which is time consuming, is not recommended for clinical diagnosis. For these reasons, serological and molecular techniques remain the test of choice. The major objective of this study was to explore the genetic characteristic of Leptospira species which are prevalent among agro-pastoralists living in Katavi-Rukwa Ecosystem, Tanzania. A cross-sectional epidemiological study was carried out in the Katavi-Region South-west, Tanzania between August, 2013 and November, 2014. A total of 267 participants were randomly recruited for the study. Microscopic agglutination test (MAT) was used to detect antibody against six Leptospira antigens including local serogroups Icterohaemorrhagiae, Ballum, Grippotyphosa, Sejroe and reference serogroups Hebdomadis, and Australis. Samples with MAT titers ≥ 1:160 were scored as positive, samples with MAT titers ranging from 1:20 to 1:80 were scored as exposed to Leptospira, and absence of agglutination titers was scored as negative. All MAT positive samples, including the low titre samples were subjected to PCR using the respective 16S rRNA primers for the pathogenic and