WorldWideScience

Sample records for pathogen ustilago maydis

  1. The role of repellents and hydrophobins in Ustilago maydis

    NARCIS (Netherlands)

    Teertstra, W.R.

    2009-01-01

    Ustilago maydis is an important model organism to study fungal pathogenicity. U. maydis can grow yeast-like and filamentous. In the latter form this fungus infects maize. In my Thesis the expression and function of hydrophobins and repellents of U. maydis were studied. Hydrophobins are produced by

  2. Establishment of compatibility in the Ustilago maydis/maize pathosystem

    NARCIS (Netherlands)

    Doehlemann, Gunther; Wahl, Ramon; Vranes, Miroslav; de Vries, Ronald P; Kämper, Jörg; Kahmann, Regine

    The fungus Ustilago maydis is a biotrophic pathogen parasitizing on maize. The most prominent symptoms of the disease are large tumors in which fungal proliferation and spore differentiation occur. In this study, we have analyzed early and late tumor stages by confocal microscopy. We show that

  3. Induction of infection in Teosinte (Zea diploperennis through the phytopathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martha Concepción Pérez Díaz

    2017-01-01

    Full Text Available Introduction: The corn and teosinte share morphological and molecular similarities latter being those that support the theory of teosinte (Zea parviglumis as its predecessor, both species are attacked by specific pathogens like Ustilago maydis. Objective: To analyze the infectious process that presents U. maydis on the variety of the teosinte Zea diploperennis. Materials and Methods: We used the strain of U. maydis FB-D12, which was kept a culture media rich in nutrients (CPES pH 7.0. Viable cells without morphological alterations to the inoculation method of puncture in teosinte seedlings were used. Monitoring of infection was carried out every 24 hours by measuring concentration of chlorophyll and plant tissue through microscopic observation Results: In the seedlings of Zea diploperennis inoculated with U. maydis the symptoms of the infection were presented, wilt and chlorosis in the leaves; The chlorosis was confirmed with the low concentration of chlorophyll 12 days later to the inoculation. In the microscopic observation of cuts of the tissue plant was found mycelium long and branched from the third day of the inoculation, until the appearance of tumors in seedlings of 45 days. Conclusions: The typical signs of infection with Ustilago maydis in the variety of teosinte Zea diploperennis do not differ from those reported for corn. Ustilago maydis presents its full life cycle within the plant, confirming that the diploperennis variety is susceptible.

  4. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Doehlemann, Gunther

    2013-01-01

    While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.

  5. Identification of O-mannosylated virulence factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Alfonso Fernández-Álvarez

    Full Text Available The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis.

  6. Selection of aggressive pathogenic and solopathogenic strains of Ustilago maydis to improve Huitlacoche production

    Directory of Open Access Journals (Sweden)

    Porfirio Raúl Galicia-García

    Full Text Available ABSTRACT Ustilago maydis is a basidiomycete known as the causative agent of 'common smut', worldwide disease of maize that is recognized by the galls it forms, which have considerable potential as a gourmet food. Results of infection are quite variable, even under optimal greenhouse conditions. In order to find pathogenic strains able to be used as a highly infective and stable inoculum for the successful production of galls either in greenhouses or in the field, ears with gall symptoms containing teliospores were recovered from maize plants. The teliospores were suspended in water and plated on nutrient-rich medium. Twenty-six colonies developed, containing three types of yeast-like colonies: saprotrophic, pathogenic, and solopathogenic. DAPI staining confirmed the presence of solopathogenic strains with diploid sporidia. Groups of different mating types were found when pairs of the 26 strains were arranged resembling partial-diallel combinations. Amplification of the partial b locus revealed that the strains found harbor the alleles b3 and b4, allowing the formation in dikaryotic strains of heterodimeric regulatory proteins associated with fungal development and pathogenicity. In this study, we isolated compatible haploid and solopathogenic diploid strains for their high capacity for inducing smut.

  7. Microfungal spores (Ustilago maydis and U. digitariae) immobilised chitosan microcapsules for heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Arslan, Gulsin; Kaya, Murat

    2016-03-15

    Designing effective chitosan-based biosorbents from unexploited biomass for heavy metal removal has received much attention over the past decade. Ustilago, loose smut, is a ubiquitous fungal plant pathogen infecting over 4000 species including maize and weed. This study aimed to establish whether the spores of the phytopathogenic microfungi Ustilago spores can be immobilised in cross-linked chitosan matrix, and it reports findings on heavy metal sorption performance of chitosan/Ustilago composite microcapsules. Immobilisation of Ustilago maydis and U. digitariae spores (from maize and weed) in chitosan microcapsules was achieved via glutaraldehyde cross-linking. The cross-linked microcapsules were characterised using scanning electron microscopy, FT-IR spectroscopy and thermogravimetric analysis. Sorption capacities of chitosan-U. maydis and chitosan-U. digitariae microcapsules were investigated and compared to cross-linked chitosan beads: Cu(II): 66.72, 69.26, 42.57; Cd(II): 49.46, 53.96, 7.87; Cr(III): 35.88, 49.40, 43.68; Ni(II): 41.67, 33.46, 16.43 and Zn(II): 30.73, 60.81, 15.04mg/g, respectively. Sorption experiments were conducted as a function of initial metal ion concentration (2-10mg/L), contact time (60-480min), temperature (25, 35 and 45°C), amount of the sorbent (0.05-0.25g) and pH of the metal solution. The microcapsules with spores exhibited better performance over the plain chitosan beads, demonstrating their potential use in water treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison

    Directory of Open Access Journals (Sweden)

    Saville Barry J

    2007-09-01

    Full Text Available Abstract Background Ustilago maydis is the basidiomycete fungus responsible for common smut of corn and is a model organism for the study of fungal phytopathogenesis. To aid in the annotation of the genome sequence of this organism, several expressed sequence tag (EST libraries were generated from a variety of U. maydis cell types. In addition to utility in the context of gene identification and structure annotation, the ESTs were analyzed to identify differentially abundant transcripts and to detect evidence of alternative splicing and anti-sense transcription. Results Four cDNA libraries were constructed using RNA isolated from U. maydis diploid teliospores (U. maydis strains 518 × 521 and haploid cells of strain 521 grown under nutrient rich, carbon starved, and nitrogen starved conditions. Using the genome sequence as a scaffold, the 15,901 ESTs were assembled into 6,101 contiguous expressed sequences (contigs; among these, 5,482 corresponded to predicted genes in the MUMDB (MIPS Ustilago maydis database, while 619 aligned to regions of the genome not yet designated as genes in MUMDB. A comparison of EST abundance identified numerous genes that may be regulated in a cell type or starvation-specific manner. The transcriptional response to nitrogen starvation was assessed using RT-qPCR. The results of this suggest that there may be cross-talk between the nitrogen and carbon signalling pathways in U. maydis. Bioinformatic analysis identified numerous examples of alternative splicing and anti-sense transcription. While intron retention was the predominant form of alternative splicing in U. maydis, other varieties were also evident (e.g. exon skipping. Selected instances of both alternative splicing and anti-sense transcription were independently confirmed using RT-PCR. Conclusion Through this work: 1 substantial sequence information has been provided for U. maydis genome annotation; 2 new genes were identified through the discovery of 619

  9. The Filament-specific Rep1-1 Repellent of the Phytopathogen Ustilago maydis Forms Functional Surface-active Amyloid-like Fibrils

    NARCIS (Netherlands)

    Teertstra, Wieke R.; van der Velden, Gisela J.; de Jong, Jan F.; Kruijtzer, John A. W.; Liskamp, Rob M. J.; Kroon-Batenburg, Loes M. J.; Muller, Wally H.; Gebbink, Martijn F. B. G.; Wosten, Han A. B.

    2009-01-01

    Repellents of the maize pathogen Ustilago maydis are involved in formation of hydrophobic aerial hyphae and in cellular attachment. These peptides, called Rep1-1 to Rep1-11, are encoded by the rep1 gene and result from cleavage of the precursor protein Rep1 during passage of the secretion pathway.

  10. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response

    Science.gov (United States)

    Mating of compatible haploid cells of Ustilago maydis is essential for infection and disease development in the host. For mating and subsequent filamentous growth and pathogenicity, the transcription factor, prf1 is necessary. Prf1 is in turn regulated by the cAMP and MAPK pathways and other regul...

  11. The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Kai Heimel

    Full Text Available In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity. Here, we identify a set of 345 bE/bW responsive genes which show altered expression during these developmental changes; several of these genes are associated with cell cycle coordination, morphogenesis and pathogenicity. 90% of the genes that show altered expression upon bE/bW-activation require the zinc finger transcription factor Rbf1, one of the few factors directly regulated by the bE/bW heterodimer. Rbf1 is a novel master regulator in a multilayered network of transcription factors that facilitates the complex regulatory traits of sexual and pathogenic development.

  12. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Ramon Wahl

    2010-02-01

    Full Text Available Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1 from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.

  13. Compensatory role for Rad52 during recombinational repair in Ustilago maydis

    DEFF Research Database (Denmark)

    Kojic, Milorad; Mao, Ninghui; Zhou, Qingwen

    2008-01-01

    A single Rad52-related protein is evident by blast analysis of the Ustilago maydis genome database. Mutants created by disruption of the structural gene exhibited few discernible defects in resistance to UV, ionizing radiation, chemical alkylating or cross-linking agents. No deficiency was noted...

  14. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  15. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2015-08-01

    Full Text Available Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.

  16. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  17. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  18. Plant surface cues prime Ustilago maydis for biotrophic development.

    Directory of Open Access Journals (Sweden)

    Daniel Lanver

    2014-07-01

    Full Text Available Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development.

  19. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    Directory of Open Access Journals (Sweden)

    Klement Tobias

    2012-04-01

    Full Text Available Abstract Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on

  20. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    Science.gov (United States)

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  1. The metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro

    Science.gov (United States)

    The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for seven days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcripto...

  2. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Marie Tollot

    2016-06-01

    Full Text Available The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 "late effectors" was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection.

  3. Two phosphodiesterases from Ustilago maydis share structural and biochemical properties with non-fungal phosphodiesterases

    Directory of Open Access Journals (Sweden)

    Charu eAgarwal

    2010-11-01

    Full Text Available The dependence of Protein Kinase A (PKA activity on cAMP levels is an important facet of the dimorphic switch between budding and filamentous growth as well as for pathogenicity in some fungi. To better understand these processes in the pathogenic fungus Ustilago maydis, we characterized the structure and biochemical functions of two phosphodiesterase (PDE genes. Phosphodiesterases are enzymes involved in cAMP turnover and thus, contribute to the regulation of the cAMP-PKA signaling pathway. Two predicted homologues of PDEs were identified in the genome of U. maydis and hypothesized to be involved in cAMP turnover, thus regulating activity of the PKA catalytic subunit. Both umpde1 and umpde2 genes contain domains associated with phosphodiesterase activity predicted by InterPro analysis. Biochemical characterization of recombinantly produced UmPde1 (U. maydis Phosphodiesterase I and UmPde2 demonstrated that both enzymes have phosphodiesterase activity in vitro, yet neither was inhibited by the phosphodiesterase inhibitor IBMX. Moreover, UmPde1 is specific for cAMP, while UmPde2 has broader substrate specificity, utilizing cAMP and cGMP as substrates. In addition, UmPde2 was also found to have nucleotide phosphatase activity that was higher with GMP compared to AMP. These results demonstrate that UmPde1 is a bona fide phosphodiesterase, while UmPde2 has more general activity as a cyclic nucleotide phosphodiesterase and/or GMP/AMP phosphatase. Thus, UmPde1 and UmPde2 likely have important roles in cell morphology and development and share some characteristics with a variety of non-fungal phosphodiesterases.

  4. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence.

    Directory of Open Access Journals (Sweden)

    Isabel Alvarez-Tabarés

    Full Text Available BACKGROUND: Septins are a highly conserved family of GTP-binding proteins involved in multiple cellular functions, including cell division and morphogenesis. Studies of septins in fungal cells underpin a clear correlation between septin-based structures and fungal morphology, providing clues to understand the molecular frame behind the varied morphologies found in fungal world. METHODOLOGY/PRINCIPAL FINDINGS: Ustilago maydis genome has the ability to encode four septins. Here, using loss-of-function as well as GFP-tagged alleles of these septin genes, we investigated the roles of septins in the morphogenesis of this basidiomycete fungus. We described that septins in U. maydis could assemble into at least three different structures coexisting in the same cell: bud neck collars, band-like structures at the growing tip, and long septin fibers that run from pole to pole near the cell cortex. We also found that in the absence of septins, U. maydis cells lost their elongated shape, became wider at the central region and ended up losing their polarity, pointing to an important role of septins in the morphogenesis of this fungus. These morphological defects were alleviated in the presence of an osmotic stabilizer suggesting that absence of septins affected the proper formation of the cell wall, which was coherent with a higher sensitivity of septin defective cells to drugs that affect cell wall construction as well as exocytosis. As U. maydis is a phytopathogen, we analyzed the role of septins in virulence and found that in spite of the described morphological defects, septin mutants were virulent in corn plants. CONCLUSIONS/SIGNIFICANCE: Our results indicated a major role of septins in morphogenesis in U. maydis. However, in contrast to studies in other fungal pathogens, in which septins were reported to be necessary during the infection process, we found a minor role of septins during corn infection by U. maydis.

  5. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2.

    Directory of Open Access Journals (Sweden)

    André N Mueller

    2013-02-01

    Full Text Available The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity. In a previous study, we identified the secreted effector protein Pit2, which is essential for maintenance of biotrophy and induction of tumors. Deletion mutants for pit2 successfully penetrate host cells but elicit various defense responses, which stops further fungal proliferation. We now show that Pit2 functions as an inhibitor of a set of apoplastic maize cysteine proteases, whose activity is directly linked with salicylic-acid-associated plant defenses. Consequently, protease inhibition by Pit2 is required for U. maydis virulence. Sequence comparisons with Pit2 orthologs from related smut fungi identified a conserved sequence motif. Mutation of this sequence caused loss of Pit2 function. Consequently, expression of the mutated protein in U. maydis could not restore virulence of the pit2 deletion mutant, indicating that the protease inhibition by Pit2 is essential for fungal virulence. Moreover, synthetic peptides of the conserved sequence motif showed full activity as protease inhibitor, which identifies this domain as a new, minimal protease inhibitor domain in plant-pathogenic fungi.

  6. Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy.

    Science.gov (United States)

    Wagner-Vogel, Gaby; Lämmer, Frauke; Kämper, Jörg; Basse, Christoph W

    2015-02-06

    Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy. This study has revealed that Δatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI. Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage.

  7. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis.

    Science.gov (United States)

    Stirnberg, Alexandra; Djamei, Armin

    2016-12-01

    The biotrophic fungus Ustilago maydis, the causal agent of corn smut disease, uses numerous small secreted effector proteins to suppress plant defence responses and reshape the host metabolism. However, the role of specific effectors remains poorly understood. Here, we describe the identification of ApB73 (Apathogenic in B73), an as yet uncharacterized protein essential for the successful colonization of maize by U. maydis. We show that apB73 is transcriptionally induced during the biotrophic stages of the fungal life cycle. The deletion of the apB73 gene results in cultivar-specific loss of gall formation in the host. The ApB73 protein is conserved among closely related smut fungi. However, using virulence assays, we show that only the orthologue of the maize-infecting head smut Sporisorium reilianum can complement the mutant phenotype of U. maydis. Although microscopy shows that ApB73 is secreted into the biotrophic interface, it seems to remain associated with fungal cell wall components or the fungal plasma membrane. Taken together, the results show that ApB73 is a conserved and important virulence factor of U. maydis that localizes to the interface between the pathogen and its host Zea mays. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  8. Phytohormone Involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue.

    Directory of Open Access Journals (Sweden)

    Erin N Morrison

    Full Text Available Ustilago maydis is the causative agent of common smut of corn. Early studies noted its ability to synthesize phytohormones and, more recently these growth promoting substances were confirmed as cytokinins (CKs. Cytokinins comprise a group of phytohormones commonly associated with actively dividing tissues. Lab analyses identified variation in virulence between U. maydis dikaryon and solopathogen infections of corn cob tissue. Samples from infected cob tissue were taken at sequential time points post infection and biochemical profiling was performed using high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS. This hormone profiling revealed that there were altered levels of ABA and major CKs, with a marked reduction in CK glucosides, increases in methylthiol CKs and a particularly dramatic increase in cisZ CK forms, in U. maydis infected tissue. These changes were more pronounced in the more virulent dikaryon relative to the solopathogenic strain suggesting a role for cytokinins in moderating virulence during biotrophic infection. These findings highlight the fact that U. maydis does not simply mimic a fertilized seed but instead reprograms the host tissue. Results underscore the suitability of the Ustilago maydis- Zea mays model as a basis for investigating the control of phytohormone dynamics during biotrophic infection of plants.

  9. Cloning and characterization of the rec2 gene of Ustilago maydis

    International Nuclear Information System (INIS)

    Bauchwitz, R.P.; Holloman, W.K.

    1989-01-01

    The authors are exploring the molecular basis for genetic recombination using the corn smut fungus Ustilago maydis, from which the first two eucaryotic DNA repair and recombination mutants, rec1 and rec2, were described. Cells mutant at the rec2 locus are unable to repair lethal damage to their DNA from UV and X irradiation or from chemical alkylating agents such as N-methyl-nitrosoguanidine. Rec2 mutants retain only a residual level of DNA-damage inducible mitotic recombination, and are unable to complete meiosis. Using an autonomously replicating plasmid vector for Ustilago, they established the first nonintegrating plasmid library of the Ustilago genome. The rec2 locus was cloned by complementation of the rec2 mutation in vivo. One clone was found to restore all of the deficient activities. Although this rec2 complementing clone is present on a multicopy plasmid, the authors observed that it fully restored but did not further increase the fifty-fold inducibility of heteroallelic recombination at the nitrate reductase and inositol loci of rec2 or wild type cells. Northern blot analysis using the rec2 complementing clone revealed three UV inducible transcripts, one of which is absent in a rec2 mutant strain. This transcript organization resembles that of the yeast rad10 and the human ERCC-1 genes (MCB 9:1794), but sequence obtained to date from rec2 does not show homology with these genes. They have also observed that the rec2 mutation may alter the level of homologous integration of transformed DNA markers. Integration of a Leu1 complementing plasmid by Scott Fotheringham of the lab has shown that while much of plasmid integration in wild type Ustilago is nonhomologous, integration in at least some rec2 strains is entirely homologous. They are using the cloned rec2 gene to confirm that rec2 is indeed involved in altering the level of homologous integration in Ustilago, and if so, they plan to clone a mammalian analogue of rec2

  10. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells.

    Directory of Open Access Journals (Sweden)

    Gunther Doehlemann

    2009-02-01

    Full Text Available The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for penetration. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, Deltapep1 mutants arrest during penetration of the epidermal cell and elicit a strong plant defense response. Using Affymetrix maize arrays, we identified 116 plant genes which are differentially regulated in Deltapep1 compared to wild type infections. Most of these genes are related to plant defense. By in vivo immunolocalization, live-cell imaging and plasmolysis approaches, we detected Pep1 in the apoplastic space as well as its accumulation at sites of cell-to-cell passages. Site-directed mutagenesis identified two of the four cysteine residues in Pep1 as essential for function, suggesting that the formation of disulfide bridges is crucial for proper protein folding. The barley covered smut fungus Ustilago hordei contains an ortholog of pep1 which is needed for penetration of barley and which is able to complement the U. maydis Deltapep1 mutant. Based on these results, we conclude that Pep1 has a conserved function essential for establishing compatibility that is not restricted to the U. maydis / maize interaction.

  11. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings.

    Science.gov (United States)

    Karakkat, Brijesh B; Gold, Scott E; Covert, Sarah F

    2013-12-01

    Members of the fungal-specific velvet protein family regulate sexual and asexual spore production in the Ascomycota. We predicted, therefore, that velvet homologs in the basidiomycetous plant pathogen Ustilago maydis would regulate sexual spore development, which is also associated with plant disease progression in this fungus. To test this hypothesis, we studied the function of three U. maydis velvet genes, umv1, umv2 and umv3. Using a gene replacement strategy, deletion mutants were made in all three genes in compatible haploid strains, and additionally for umv1 and umv2 in the solopathogenic strain, SG200. None of the mutants showed novel morphological phenotypes during yeast-like, in vitro growth. However, the Δumv1 mutants failed to induce galls or teliospores in maize. Chlorazol black E staining of leaves infected with Δumv1 dikaryons revealed that the Δumv1 hyphae did not proliferate normally and were blocked developmentally before teliospore formation. The Δumv2 mutants were able to induce galls and teliospores in maize, but were slow to do so and thus reduced in virulence. The Δumv3 mutants were not affected in teliospore formation or disease progression. Complementation of the Δumv1 and Δumv2 mutations in the SG200 background produced disease indices similar to those of SG200. These results indicate that two U. maydis velvet family members, umv1 and umv2, are important for normal teliospore development and disease progression in maize seedlings. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations.

    Directory of Open Access Journals (Sweden)

    Ronny Kellner

    Full Text Available The maintenance of an intimate interaction between plant-biotrophic fungi and their hosts over evolutionary times involves strong selection and adaptative evolution of virulence-related genes. The highly specialised maize pathogen Ustilago maydis is assigned with a high evolutionary capability to overcome host resistances due to its high rates of sexual recombination, large population sizes and long distance dispersal. Unlike most studied fungus-plant interactions, the U. maydis - Zea mays pathosystem lacks a typical gene-for-gene interaction. It exerts a large set of secreted fungal virulence factors that are mostly organised in gene clusters. Their contribution to virulence has been experimentally demonstrated but their genetic diversity within U. maydis remains poorly understood. Here, we report on the intraspecific diversity of 34 potential virulence factor genes of U. maydis. We analysed their sequence polymorphisms in 17 isolates of U. maydis from Europe, North and Latin America. We focused on gene cluster 2A, associated with virulence attenuation, cluster 19A that is crucial for virulence, and the cluster-independent effector gene pep1. Although higher compared to four house-keeping genes, the overall levels of intraspecific genetic variation of virulence clusters 2A and 19A, and pep1 are remarkably low and commensurate to the levels of 14 studied non-virulence genes. In addition, each gene is present in all studied isolates and synteny in cluster 2A is conserved. Furthermore, 7 out of 34 virulence genes contain either no polymorphisms or only synonymous substitutions among all isolates. However, genetic variation of clusters 2A and 19A each resolve the large scale population structure of U. maydis indicating subpopulations with decreased gene flow. Hence, the genetic diversity of these virulence-related genes largely reflect the demographic history of U. maydis populations.

  13. Nutritional value of huitlacoche, maize mushroom caused by Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Mehmet AYDOĞDU

    2017-09-01

    Full Text Available Abstract Smutty maize cobs, caused by Ustilago maydis ((DC Corda., a fungus belonging to Basidiomycetes, can be seen wherever maize is grown. It is considered as a fungal disease limiting maize yield worldwide. However, in Mesoamerica, it is called as “huitlacoche” and evaluated as an edible mushroom. The present study was conducted to examine nutritional characteristics of this mushroom. In the study, smutty cobs naturally infected by U. maydis were randomly gleaned from plants in maize producing areas in the Mediterranean region of Turkey, in 2015. Huitlacoche was analyzed in terms of proximate composition, fatty acids, mineral elements, total phenolic and flavonoid matters and antioxidant activity. Average protein content was 12%, while fatty acids ranged from 0.44 to 42.49% (dry basis. Of the 11 fatty acids, oleic and linoleic acids had the highest percentages. Phosphorus (342.07 mg/kg and magnesium (262.69 mg/kg were found in high quantities. As for total phenolic and flavonoid matters were 113.11 mg GAE/kg and 28.51 mg CE/kg, respectively. The study suggests that huitlacoche has numerous good nutritional features for human diet, thus, it can be evaluated as a valuable food source in international cuisines.

  14. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  15. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  16. Ustilago maydis: ascenso de un hongo mexicano de la gastronomía local al mundo científico

    OpenAIRE

    José Ruiz Herrera

    2008-01-01

    En el presente trabajo se describe la naturaleza del hongo Ustilago maydis, su papel como causante de una enfermedad del maíz, su uso en la cocina mexicana y las condiciones que lo llevaron a convertirse en material de estudio científico, además de algunas características descollantes de su fisiología, genética y bioquímica. U. maydis es un hongo patógeno biotrófico específico del maíz, y el teozintle, siendo el agente causal del "huitlacoche" o carbón común, una enfermedad de distribución m...

  17. The fungus Ustilago maydis and humans share disease-related proteins that are not found in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Steinberg Gero

    2007-12-01

    Full Text Available Abstract Background The corn smut fungus Ustilago maydis is a well-established model system for molecular phytopathology. In addition, it recently became evident that U. maydis and humans share proteins and cellular processes that are not found in the standard fungal model Saccharomyces cerevisiae. This prompted us to do a comparative analysis of the predicted proteome of U. maydis, S. cerevisiae and humans. Results At a cut off at 20% identity over protein length, all three organisms share 1738 proteins, whereas both fungi share only 541 conserved proteins. Despite the evolutionary distance between U. maydis and humans, 777 proteins were shared. When applying a more stringent criterion (≥ 20% identity with a homologue in one organism over at least 50 amino acids and ≥ 10% less in the other organism, we found 681 proteins for the comparison of U. maydis and humans, whereas the both fungi share only 622 fungal specific proteins. Finally, we found that S. cerevisiae and humans shared 312 proteins. In the U. maydis to H. sapiens homology set 454 proteins are functionally classified and 42 proteins are related to serious human diseases. However, a large portion of 222 proteins are of unknown function. Conclusion The fungus U. maydis has a long history of being a model system for understanding DNA recombination and repair, as well as molecular plant pathology. The identification of functionally un-characterized genes that are conserved in humans and U. maydis opens the door for experimental work, which promises new insight in the cell biology of the mammalian cell.

  18. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, G.R.; Taylor, S.Y. (National Institute for Medical Research, London (England))

    1988-12-01

    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number.

  19. RNA polymerase activity of Ustilago maydis virus

    Energy Technology Data Exchange (ETDEWEB)

    Yie, S.W.

    1986-01-01

    Ustilago maydis virus has an RNA polymerase enzyme which is associated with virion capsids. In the presence of Mg/sup 2 +/ ion and ribonucleotide triphosphate, the enzyme catalyzes the in vitro synthesis of mRNA by using dsRNA as a template. The products of the UmV RNA polymerase were both ssRNA and dsRNA. The dsRNA was determined by characteristic mobilities in gel electrophoresis, lack of sensitivity to RNase, and specific hybridization tests. The ssRNAs were identified by elution from a CF-11 column and by their RNase sensitivity. On the basis of the size of ssRNAs, it was concluded that partial transcripts were produced from H dsRNA segments, and full length transcripts were produced from M and L dsRNA segments. The following observations indicates that transcription occurs by strand displacement; (1) Only the positive strand of M2 dsRNA was labeled by the in vitro reaction. (2) The M2 dsRNA which had been labeled with /sup 32/''P-UTP in vitro could be chased from dsRNA with unlabeled UTP. The transcription products of three UmV strains were compared, and the overall pattern of transcription was very similar among them.

  20. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  1. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.

    Science.gov (United States)

    Moretti, Marino; Wang, Lei; Grognet, Pierre; Lanver, Daniel; Link, Hannes; Kahmann, Regine

    2017-09-01

    Regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling negatively. To broaden an understanding of the roles of RGS proteins in fungal pathogens, we functionally characterized the three RGS protein-encoding genes (rgs1, rgs2 and rgs3) in the phytopathogenic fungus Ustilago maydis. It was found that RGS proteins played distinct roles in the regulation of development and virulence. rgs1 had a minor role in virulence when deleted in a solopathogenic strain. In crosses, rgs1 was dispensable for mating and filamentation, but was required for teliospore production. Haploid rgs2 mutants were affected in cell morphology, growth, mating and were unable to cause disease symptoms in crosses. However, virulence was unaffected when rgs2 was deleted in a solopathogenic strain, suggesting an exclusive involvement in pre-fusion events. These rgs2 phenotypes are likely connected to elevated intracellular cAMP levels. rgs3 mutants were severely attenuated in mating, in their response to pheromone, virulence and formation of mature teliospores. The mating defect could be traced back to reduced expression of the transcription factor rop1. It was speculated that the distinct roles of the three U. maydis RGS proteins were achieved by direct modulation of the Gα subunit-activated signaling pathways as well as through Gα-independent functions. © 2017 John Wiley & Sons Ltd.

  2. The telomerase reverse transcriptase subunit from the dimorphic fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Dolores Bautista-España

    Full Text Available In this study, we investigated the reverse transcriptase subunit of telomerase in the dimorphic fungus Ustilago maydis. This protein (Trt1 contains 1371 amino acids and all of the characteristic TERT motifs. Mutants created by disrupting trt1 had senescent traits, such as delayed growth, low replicative potential, and reduced survival, that were reminiscent of the traits observed in est2 budding yeast mutants. Telomerase activity was observed in wild-type fungus sporidia but not those of the disruption mutant. The introduction of a self-replicating plasmid expressing Trt1 into the mutant strain restored growth proficiency and replicative potential. Analyses of trt1 crosses in planta suggested that Trt1 is necessary for teliospore formation in homozygous disrupted diploids and that telomerase is haploinsufficient in heterozygous diploids. Additionally, terminal restriction fragment analysis in the progeny hinted at alternative survival mechanisms similar to those of budding yeast.

  3. Tartronate semialdehyde reductase defines a novel rate-limiting step in assimilation and bioconversion of glycerol in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Yanbin Liu

    Full Text Available BACKGROUND: Glycerol is a by-product of biodiesel production. Currently, it has limited applications with low bioconversion efficiency to most metabolites reported. This is partly attributed to the poor knowledge on the glycerol metabolic pathway in bacteria and fungi. METHODOLOGY/PRINCIPAL FINDINGS: We have established a fast screening method for identification of genes that improve glycerol utilization in Ustilago maydis. This was done by comparing the growth rates of T-DNA tagged mutant colonies on solid medium using glycerol as the sole carbon source. We present a detailed characterization of one of the mutants, GUM1, which contains a T-DNA element inserted into the promoter region of UM02592 locus (MIPS Ustilago maydis database, MUMDB, leading to enhanced and constitutive expression of its mRNA. We have demonstrated that um02592 encodes a functional tartronate semialdehyde reductase (Tsr1, which showed dual specificity to cofactors NAD(+ and NADP(+ and strong substrate specificity and enantioselectivity for D-glycerate. Improved glycerol assimilation in GUM1 was associated with elevated expression of tsr1 mRNA and this could be phenocopied by over-expression of the gene. Glycolipid accumulation was reduced by 45.2% in the knockout mutant whereas introduction of an extra copy of tsr1 driven by the glyceraldehyde phosphate dehydrogenase promoter increased it by 40.4%. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that tartronate semialdehyde reductase (TSR plays an important role in glycerol assimilation in U. maydis and defines a novel target in genetic engineering for improved conversion of glycerol to higher value products. Our results add significant depth to the understanding of the glycerol metabolic pathway in fungi. We have demonstrated, for the first time, a biological role of a eukaryotic TSR.

  4. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  5. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Nancy Martínez-Montiel

    Full Text Available The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor mainly for Homo sapiens and Saccharomyces cerevisiae. This process is highly conserved in eukaryotes but functional diversity can be observed in various species. Ustilago maydis is a basidiomycete and the best-known smut, which has become a model to study molecular and cellular eukaryotic mechanisms. In this study, we performed in silico analysis to investigate the structural and biochemical properties of the putative UPF1 homolog in Ustilago maydis. The putative homolog for UPF1 was recognized in the annotated genome for the basidiomycete, exhibiting 66% identity with its human counterpart at the protein level. The known structural and functional domains characteristic of UPF1 homologs were also found. Based on the crystal structures available for UPF1, we constructed different three-dimensional models for umUPF1 in order to analyze the secondary and tertiary structural features of this factor. Using these models, we studied the spatial arrangement of umUPF1 and its capability to interact with UPF2. Moreover, we identified the critical amino acids that mediate the interaction of umUPF1 with UPF2, ATP, RNA and with UPF1 itself. Mutating these amino acids in silico showed an important effect over the native structure. Finally, we performed molecular dynamic simulations for UPF1 proteins from H. sapiens and U. maydis and the results obtained show a similar behavior and physicochemical properties for the protein in both organisms. Overall, our results indicate that the putative UPF1 identified in U. maydis shows a very similar sequence, structural organization

  6. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis.

    Science.gov (United States)

    Martínez-Montiel, Nancy; Morales-Lara, Laura; Hernández-Pérez, Julio M; Martínez-Contreras, Rebeca D

    2016-01-01

    The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD) is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor mainly for Homo sapiens and Saccharomyces cerevisiae. This process is highly conserved in eukaryotes but functional diversity can be observed in various species. Ustilago maydis is a basidiomycete and the best-known smut, which has become a model to study molecular and cellular eukaryotic mechanisms. In this study, we performed in silico analysis to investigate the structural and biochemical properties of the putative UPF1 homolog in Ustilago maydis. The putative homolog for UPF1 was recognized in the annotated genome for the basidiomycete, exhibiting 66% identity with its human counterpart at the protein level. The known structural and functional domains characteristic of UPF1 homologs were also found. Based on the crystal structures available for UPF1, we constructed different three-dimensional models for umUPF1 in order to analyze the secondary and tertiary structural features of this factor. Using these models, we studied the spatial arrangement of umUPF1 and its capability to interact with UPF2. Moreover, we identified the critical amino acids that mediate the interaction of umUPF1 with UPF2, ATP, RNA and with UPF1 itself. Mutating these amino acids in silico showed an important effect over the native structure. Finally, we performed molecular dynamic simulations for UPF1 proteins from H. sapiens and U. maydis and the results obtained show a similar behavior and physicochemical properties for the protein in both organisms. Overall, our results indicate that the putative UPF1 identified in U. maydis shows a very similar sequence, structural organization, mechanical stability

  7. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Natalia Carbó

    2010-07-01

    Full Text Available It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered.

  8. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    Science.gov (United States)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-05-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  9. LOCATION OF ACYL GROUPS ON TWO PARTLY ACYLATED GLYCOLIPIDS FROM STRAINS OF USTILAGO (SMUT FUNGI),

    Science.gov (United States)

    erythritol from Ustilago sp. (probably U. nuda (Jens.) Rostr. = U. tritici (Pers.) Rostr.) PRL-627 were acetalated with methyl vinyl ether, deacylated...Partly acylated ustilagic acids 8 (from Ustilago maydis (DC) Corda (= U. zeae Unger) PRL-119), consisting of partially esterified beta-cellobiosyl

  10. Response of Ustilago maydis against the Stress Caused by Three Polycationic Chitin Derivatives

    Directory of Open Access Journals (Sweden)

    Dario Rafael Olicón-Hernández

    2017-12-01

    Full Text Available Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast Ustilago maydis to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH, oligochitosan (OCH, and glycol-chitosan (GCH. Yeasts were cultured with each of these molecules at 1 mg·mL−1 in minimal medium. To compare plasma membrane damage, cells were cultivated in isosmolar medium. Membrane potential (Δψ as well as oxidative stress were measured. Changes in the total plasma membrane phospholipid and protein profiles were analyzed using standard methods, and fluorescence-stained mitochondria were observed. High osmolarity did not protect against CH inhibition and neither affected membrane potential. The OCH did produce higher oxidative stress. The effects of these molecules were evidenced by modifications in the plasma membrane protein profile. Also, mitochondrial damage was evident for CH and OCH, while GCH resulted in thicker cells with fewer mitochondria and higher glycogen accumulation.

  11. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants.

    Science.gov (United States)

    Quijano, Carolina Diaz; Wichmann, Fabienne; Schlaich, Thomas; Fammartino, Alessandro; Huckauf, Jana; Schmidt, Kerstin; Unger, Christoph; Broer, Inge; Sautter, Christof

    2016-09-01

    Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  12. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants

    Directory of Open Access Journals (Sweden)

    Carolina Diaz Quijano

    2016-09-01

    Full Text Available Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4 is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  13. Applying Unconventional Secretion in Ustilago maydis for the Export of Functional Nanobodies

    Directory of Open Access Journals (Sweden)

    Marius Terfrüchte

    2017-04-01

    Full Text Available Exploiting secretory pathways for production of heterologous proteins is highly advantageous with respect to efficient downstream processing. In eukaryotic systems the vast majority of heterologous proteins for biotechnological application is exported via the canonical endoplasmic reticulum–Golgi pathway. In the endomembrane system target proteins are often glycosylated and may thus be modified with foreign glycan patterns. This can be destructive for their activity or cause immune reactions against therapeutic proteins. Hence, using unconventional secretion for protein expression is an attractive alternative. In the fungal model Ustilago maydis, chitinase Cts1 is secreted via an unconventional pathway connected to cell separation which can be used to co-export heterologous proteins. Here, we apply this mechanism for the production of nanobodies. First, we achieved expression and unconventional secretion of a functional nanobody directed against green fluorescent protein (Gfp. Second, we found that Cts1 binds to chitin and that this feature can be applied to generate a Gfp-trap. Thus, we demonstrated the dual use of Cts1 serving both as export vehicle and as purification tag. Finally, we established and optimized the production of a nanobody against botulinum toxin A and hence describe the first pharmaceutically relevant target exported by Cts1-mediated unconventional secretion.

  14. The cAMP Signaling and MAP Kinase Pathways in Plant Pathogenic Fungi

    NARCIS (Netherlands)

    Mehrabi, R.; Zhao, X.; Kim, Y.; Xu, J.R.

    2009-01-01

    The key components of the well conserved cyclic AMP signaling and MAP kinase pathways have been functionally characterized in the corn smut Ustilago maydis, rice blast fungus Magnaporthe grisea, and a few other fungal pathogens. In general, the cAMP signaling and the MAP kinase cascade homologous to

  15. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  16. Production of itaconic acid by Ustilago maydis from agro wastes in solid state fermentation

    Directory of Open Access Journals (Sweden)

    MOKULA MD. RAFI

    2014-08-01

    Full Text Available Itaconic acid (IA is one of the hopeful substances within the cluster of organic acids. IA is used in artificial glass, bioactive compounds in pharmacy, medicine, agriculture, for the synthesis of fiber, resin, plastic, rubber, paints, surfactant, ion-exchange resins and lubricant. Most recurrently used microorganism for commercial production of IA is Aspergillus terreus. Some filamentous fungi belonging to Ustilaginales also produce IA. In the present work, an attempt was made to produce IA by Ustilago maydis employing Solid State Fermentation (SSF from various agro wastes like ground nut shells, rice bran, rice husk, orange pulp, ground nut oil cake, orange pulp and sugarcane bagasse as carbon substrates, which were used after pretreatment. 10 g of each substrate was taken in a 500 ml conical flasks separately and supplemented with 20 mL nutrient solution containing glucose, at pH 3. One milliliter inoculum containing 1×107 spores was added and moisture was maintained at 60%. After incubation at 32°C for 5 days, the acid production was estimated by spectrophotometric method and by HPLC analysis. Interestingly, the yield of itaconic acid was promising with all the above substrates, where orange pulp, sugarcane bagasse and rice bran supported higher yields.

  17. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    Science.gov (United States)

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  18. The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Nikola Kellner

    2014-01-01

    Full Text Available The conserved NineTeen protein complex (NTC is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking.

  19. Cambios postcosecha del hongo comestible huitlacoche (Ustilago maydis (D. C. Corda

    Directory of Open Access Journals (Sweden)

    A. Martínez-Flores

    2008-01-01

    Full Text Available El huitlacoche [(Ustilago maydis (D.C. Corda] ha sido un importante alimento en la dieta de los habitantes de la región Centro-Sur de México desde épocas precolombinas. Recientemente, su aceptación a nivel mundial se ha incrementado. A pesar de que es un producto muy perecedero no existen estudios postcosecha, por lo cual, el objetivo de este estudio fue identificar el cambio de parámetros físicos y fisiológicos en postcosecha de huitlacoche entero (mazorca y desgranado (agallas a temperatura ambiente, 3 y 10 °C, durante 11 días. Se evaluó el cambio de aspecto, color, pérdida de peso, respiración, producción de etileno y cambio en aminoácidos. La respiración promedio del huitlacoche entero a temperatura ambiente, 10 y 3 °C fue de 320.8, 120.8 y 71. 5 mlCO2·kg- 1·h-1, respectivamente; en tanto que para el desgranado fue de 372.8, 346.7 y 164.1 mlCO2·kg-1·h-1 a temperatura ambiente, 10 y 3 °C respectivamente. A los 7 días de almacenamiento, el hongo presentó pérdida de peso arriba del 80, 60 y 22 % a temperatura ambiente, 10 y 3 °C respectivamente. Se encontraron 18 aminoácidos, del contenido total los esenciales representaron 37.8 % de los cuales lisina representó el 27.2 %. Después del almacenamiento, el huitlacoche no mostró un cambio importante en el contenido de aminoácidos. A 3 °C el huitlacoche entero conservó mejor su apariencia, color y peso. No se detectó producción de etileno en las temperaturas evaluadas.

  20. MRN- and 9-1-1-Independent Activation of the ATR-Chk1 Pathway during the Induction of the Virulence Program in the Phytopathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    María Tenorio-Gómez

    Full Text Available DNA damage response (DDR leads to DNA repair, and depending on the extent of the damage, to further events, including cell death. Evidence suggests that cell differentiation may also be a consequence of the DDR. During the formation of the infective hypha in the phytopathogenic fungus Ustilago maydis, two DDR kinases, Atr1 and Chk1, are required to induce a G2 cell cycle arrest, which in turn is essential to display the virulence program. However, the triggering factor of DDR in this process has remained elusive. In this report we provide data suggesting that no DNA damage is associated with the activation of the DDR during the formation of the infective filament in U. maydis. We have analyzed bulk DNA replication during the formation of the infective filament, and we found no signs of impaired DNA replication. Furthermore, using RPA-GFP fusion as a surrogate marker of the presence of DNA damage, we were unable to detect any sign of DNA damage at the cellular level. In addition, neither MRN nor 9-1-1 complexes, both instrumental to transmit the DNA damage signal, are required for the induction of the above mentioned cell cycle arrest, as well as for virulence. In contrast, we have found that the claspin-like protein Mrc1, which in other systems serves as scaffold for Atr1 and Chk1, was required for both processes. We discuss possible alternative ways to trigger the DDR, independent of DNA damage, in U. maydis during virulence program activation.

  1. Heterologous production and characterization of a chlorogenic acid esterase from Ustilago maydis with a potential use in baking.

    Science.gov (United States)

    Nieter, Annabel; Kelle, Sebastian; Takenberg, Meike; Linke, Diana; Bunzel, Mirko; Popper, Lutz; Berger, Ralf G

    2016-10-15

    Ustilago maydis, an edible mushroom growing on maize (Zea mays), is consumed as the food delicacy huitlacoche in Mexico. A chlorogenic acid esterase from this basidiomycete was expressed in good yields cultivating the heterologous host Pichia pastoris on the 5L bioreactor scale (reUmChlE; 45.9UL(-1)). In contrast to previously described chlorogenic acid esterases, the reUmChlE was also active towards feruloylated saccharides. The enzyme preferred substrates with the ferulic acid esterified to the O-5 position of arabinose residues, typical of graminaceous monocots, over the O-2 position of arabinose or the O-6 position of galactose residues. Determination of kcat/Km showed that the reUmChlE hydrolyzed chlorogenic acid 18-fold more efficiently than methyl ferulate, p-coumarate or caffeate. Phenolic acids were released by reUmChlE from natural substrates, such as destarched wheat bran, sugar beet pectin and coffee pulp. Treatment of wheat dough using reUmChlE resulted in a noticeable softening indicating a potential application of the enzyme in bakery and confectionery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identificación de las proteínas secretadas por el hongo Ustilago maydis (DeCandole Corda (Basidiomiceto cultivado en condiciones in vitro

    Directory of Open Access Journals (Sweden)

    Andrés Adolfo Estrada-Luna

    2010-01-01

    Full Text Available Introducción: Ustilago maydis es un hongo basidiomiceto que infecta al maíz y teozintle produciendo una enfermedad conocida como carbón común o huitlacoche. Actualmente no existen reportes acerca del secretoma del hongo cultivado bajo condiciones in vitro. Un estudio de esta naturaleza permitiría caracterizar los genes involucrados en varios procesos importantes, entre los que se tienen aquellos relacionados con la nutrición, la patogenicidad y la diferenciación del hongo. El objetivo de esta investigación fue identificar las proteínas secretadas al medio de cultivo por las formas de levadura o micelio de este hongo cultivado en dos condiciones de pH. Método: Se generaron las formas de micelio o levadura de Ustilago maydis (cepa FB2¿a2b2 a través del cultivo en medios mínimos con pH 3 y 7 respectivamente y se determinó su cinética de crecimiento. Las proteínas secretadas al medio se concentraron en una columna de fase reversa Sep-Pak Plus C18 y se eluyeron con una solución de acetonitrilo (60 % + ácido trifluoroacético (0.1 %, seguida de su liofilización parcial, y precipitación con ácido tricloroacético-acetona. Posteriormente las muestras fueron sometidas a electroforesis en poliacrilamida (SDS-PAGE y los geles teñidos con azul de Coomassie. Las bandas de proteína se cortaron del gel y se digirieron con tripsina. Las mezclas de péptidos fueron inyectados para su análisis en un espectrómetro de masas y el espectro MS/MS obtenido fue procesado en Masslynx 4.0 antes de someterlo al programa MASCOT (Matrix Science para realizar las búsquedas no-redundantes en la base de datos del National Center for Biotechnology Information. Resultados: El crecimiento de U. maydis a pH 7 fue mayor que a pH 3 (D.O. a 600 nm= 1.35 y 0.85, respectivamente a las 30 h de incubación. El proceso dimórfico de levadura a micelio a pH 3 se inició a las 8 h después de iniciados los cultivos. A las 30 h de cultivo se observó que el 100 % de

  3. Ustilago maydis: ascenso de un hongo mexicano de la gastronomía local al mundo científico

    Directory of Open Access Journals (Sweden)

    José Ruiz Herrera

    2008-01-01

    Full Text Available En el presente trabajo se describe la naturaleza del hongo Ustilago maydis, su papel como causante de una enfermedad del maíz, su uso en la cocina mexicana y las condiciones que lo llevaron a convertirse en material de estudio científico, además de algunas características descollantes de su fisiología, genética y bioquímica. U. maydis es un hongo patógeno biotrófico específico del maíz, y el teozintle, siendo el agente causal del "huitlacoche" o carbón común, una enfermedad de distribución mundial que bajo ciertas condiciones puede causar severos daños económicos. Sin embargo, en México, las mazorcas infectadas han sido un alimento usado en la cocina tradicional desde la época pre-colombina, y actualmente también en la alta gastronomía del país y el extranjero. El hongo y sus huéspedes son nativos de la parte central de México, y fueron introducidos en Europa por los españoles, donde la enfermedad fue considerada como una alteración fisiológica de la planta. Su naturaleza como infección fúngica fue reconocida solo hasta la segunda mitad del siglo XIX. U. maydis se introdujo a los laboratorios de investigación a principios del Siglo XX, convirtiéndose en un modelo clásico para el estudio de las bases de la patogénesis fúngica en plantas, de la especificidad en el apareamiento y de la recombinación genética, entre otras. Esto fue debido a su facilidad de manejo, su corto ciclo de vida, y el ser posible su análisis mediante métodos de genética clásica y molecular. El ciclo de vida del hongo es complicado alternando formas de levadura haploide saprofítica y micelio dicariótico infeccioso. Este ciclo sexual solo se completa en su huésped natural, estando bajo el control de dos loci de apareamiento que controlan la fusión celular y la patogénesis. En condiciones de cultivo axénico, hemos demostrado que el hongo es capaz de infectar plantas filogenéticamente distantes del maíz; y hemos desarrollado

  4. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?

    Directory of Open Access Journals (Sweden)

    Hun Kim

    2011-07-01

    Full Text Available Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1 of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod.

  5. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?

    Science.gov (United States)

    Kim, Hun; Ridenour, John B; Dunkle, Larry D; Bluhm, Burton H

    2011-07-01

    Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1) of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod.

  6. The mitochondrial LSU rRNA group II intron of Ustilago maydis encodes an active homing endonuclease likely involved in intron mobility.

    Directory of Open Access Journals (Sweden)

    Anja Pfeifer

    Full Text Available BACKGROUND: The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg²⁺-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3' overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5'-GACGGGAAGACCCT-3' and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA. CONCLUSIONS/SIGNIFICANCE: The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.

  7. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?

    OpenAIRE

    Hun Kim; John B Ridenour; Larry D Dunkle; Burton H Bluhm

    2011-01-01

    Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor ho...

  8. Unfolded Protein Response (UPR Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martin Hampel

    Full Text Available The unfolded protein response (UPR, a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER, coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  9. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth.

    Science.gov (United States)

    Bluhm, Burton H; Dhillon, Braham; Lindquist, Erika A; Kema, Gert Hj; Goodwin, Stephen B; Dunkle, Larry D

    2008-11-04

    The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi.

  10. Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Eun Young Yu

    2015-10-01

    Full Text Available A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR. These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially in all the characteristic telomere aberrations of ALT cancer cells, including C-circles, a highly specific marker of ALT. Subsequently the ku mutants experience permanent G2 cell cycle arrest, accompanied by loss of telomere repeats from chromosome ends and even more drastic accumulation of very short ECTRs (vsECTRs. The deletion of atr1 or chk1 rescued the lethality of the ku mutant, and "trapped" the telomere aberrations in the early ALT-like stage. Telomere abnormalities are telomerase-independent, but dramatically suppressed by deletion of mre11 or blm, suggesting major roles for these factors in the induction of the ALT pathway. In contrast, removal of other DNA damage response and repair factors such as Rad51 has disparate effects on the ALT phenotypes, suggesting that these factors process ALT intermediates or products. Notably, the antagonism of Ku and Mre11 in the induction of ALT is reminiscent of their roles in DSB resection, in which Blm is also known to play a key role. We suggest that an aberrant resection reaction may constitute an early trigger for ALT telomeres, and that the outcomes of ALT are distinct from DSB because of the unique telomere nucleoprotein structure.

  11. Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Johannes Freitag

    2011-05-01

    Full Text Available Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently.

  12. Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis.

    Science.gov (United States)

    Freitag, Johannes; Lanver, Daniel; Böhmer, Christian; Schink, Kay Oliver; Bölker, Michael; Sandrock, Björn

    2011-05-01

    Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently.

  13. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex.

    Science.gov (United States)

    Saleh, Amgad A; Leslie, John F

    2004-01-01

    Cephalosporium maydis is an important plant pathogen whose phylogenetic position relative to other fungi has not been established clearly. We compared strains of C. maydis, strains from several other plant-pathogenic Cephalosporium spp. and several possible relatives within the Gaeumannomyces-Harpophora species complex, to which C. maydis has been suggested to belong based on previous preliminary DNA sequence analyses. DNA sequences of the nuclear genes encoding the rDNA ITS region, β-tubulin, histone H3, and MAT-2 support the hypothesis that C. maydis is a distinct taxon within the Gaeumannomyces-Harpophora species complex. Based on amplified fragment length polymorphism (AFLP) profiles, C. maydis also is distinct from the other tested species of Cephalosporium, Phialophora sensu lato and members of Gaeumannomyces-Harpophora species complex, which supports its classification as Harpophora maydis. Oligonucleotide primers for H. maydis were developed that can be used in a PCR diagnostic protocol to rapidly and reliably detect and identify this pathogen. These diagnostic PCR primers will aid the detection of H. maydis in diseased maize because this fungus can be difficult to detect and isolate, and the movement of authentic cultures may be limited by quarantine restrictions.

  14. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identity novel genes expressed during vegetative infectious, and repoductive growth

    OpenAIRE

    Bluhm, B.H.; Lindquist, E.; Kema, G.H.J.; Goodwin, S.B.; Dunkle, L.D.

    2008-01-01

    The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. R...

  15. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    OpenAIRE

    Bluhm, Burton H; Dhillon, Braham; Lindquist, Erika A; Kema, Gert HJ; Goodwin, Stephen B; Dunkle, Larry D

    2008-01-01

    Abstract Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and re...

  16. Susceptibilidad y resistencia del maíz al hongo comestible huitlacoche (Ustilago maydis Cda. mejorando su virulencia

    Directory of Open Access Journals (Sweden)

    L. Martínez

    2000-01-01

    Full Text Available El huitlacoche es un patógeno del maíz, muy apreciado como alimento humano en la región central de México. Actualmente seis industrias lo comercializan enlatado. El total de la producción industrial se abastece de la recolección espontánea del hongo en campos de cultivo de maíz para producción de grano. Debido a lo anterior, los objetivos planteados en este estudio fueron: evaluar y seleccionar patotipos de Ustilago maydis con una alta virulencia sobre maíz; evaluar y seleccionar familias de medios hermanos maternos de maíz de reacción susceptible y resistente al huitlacoche. En 1997, se evaluaron 100 aislamientos del hongo en un híbrido experimental, seleccionando 12 de ellos por su vigor, presentando en promedio 190 g del hongo por planta infectada, y 135.24 g por planta inoculada (8.11 t×ha-1, 60 000 plantas×ha-1, índice de severidad de 36.82 y una incidencia de 70.64%. De las 300 familias de medios hermanos maternos evaluadas (1998 por inoculación con la mezcla de los 12 aislamientos seleccionados (1997, se eligieron 16 familias susceptibles, que presentaron en promedio 154.97 g del hongo por planta infectada y 112.88 g por planta inoculada (6.67 t×ha-1, 76.67 % de incidencia y 34.82 de índice de severidad; así como 14 familias resistentes (0 % de incidencia al ataque del hongo.

  17. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identity novel genes expressed during vegetative infectious, and repoductive growth

    NARCIS (Netherlands)

    Bluhm, B.H.; Lindquist, E.; Kema, G.H.J.; Goodwin, S.B.; Dunkle, L.D.

    2008-01-01

    The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The

  18. Mycosarcoma (Ustilaginaceae), a resurrected generic name for corn smut (Ustilago maydis) and its close relatives with hypertrophied, tubular sori

    NARCIS (Netherlands)

    McTaggart, Alistair R; Shivas, Roger G; Boekhout, Teun; Oberwinkler, Franz; Vánky, Kálmán; Pennycook, Shaun R; Begerow, Dominik

    2016-01-01

    Ustilago is a polyphyletic genus of smut fungi found mainly on Poaceae. The development of a taxonomy that reflects phylogeny requires subdivision of Ustilago into smaller monophyletic genera. Several separate systematic analyses have determined that Macalpinomyces mackinlayi, M. tubiformis,

  19. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2011-09-01

    Full Text Available A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.

  20. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    Directory of Open Access Journals (Sweden)

    Kema Gert HJ

    2008-11-01

    Full Text Available Abstract Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. Results A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value ≤ 10-05 to characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions and biological processes based on Gene Ontology (GO classification. We identified numerous, previously undescribed genes with potential roles in photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively transcribed transposable element. Differential expression of selected genes was demonstrated by real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth. Conclusion Novel genes that are potentially involved in regulating growth, development, and pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi.

  1. The effect of local population of Ustilago trichophora on Echinochloa crus-galli

    Directory of Open Access Journals (Sweden)

    Wojciech Pusz

    2014-08-01

    Full Text Available Ustilago trichophora is a pathogenic fungus infecting the grass of Echinochloa genus. The effect of this pathogen on the growth of Echinochloa was not yet described. Ustilago trichophora was found and described first time in Poland in 1998 on Echinochloa crus-galli specimen. ThenU. trichophora was found in several places in the region of Lower Silesia in the following years. The aim of the investigation was to study the effects of Ustilago trichophora on the biometric parameters of plants as well as of seeds of Echinochloa crus-galli. The infected specimens of barnyards grass were found lower, they displayed poorer tillering and they produced a smaller number of panicles than the healthy plants. Seeds from infected bunches weight, were characterized by lower germination and energy capacity than the control ones.

  2. Amplified Fragment Length Polymorphism Diversity in Cephalosporium maydis from Egypt.

    Science.gov (United States)

    Saleh, Amgad A; Zeller, Kurt A; Ismael, Abou-Serie M; Fahmy, Zeinab M; El-Assiuty, Elhamy M; Leslie, John F

    2003-07-01

    ABSTRACT Cephalosporium maydis, the causal agent of late wilt of maize, was first described in Egypt in the 1960s, where it can cause yield losses of up to 40% in susceptible plantings. We characterized 866 isolates of C. maydis collected from 14 governates in Egypt, 7 in the Nile River Delta and 7 in southern (Middle and Upper) Egypt, with amplified fragment length polymorphism (AFLP) markers. The four AFLP primer-pair combinations generated 68 bands, 25 of which were polymorphic, resulting in 52 clonal haplotypes that clustered the 866 isolates into four phylogenetic lineages. Three lineages were found in both the Nile River Delta and southern Egypt. Lineage IV, the most diverse group (20 haplotypes), was recovered only from governates in the Nile River Delta. In some locations, one lineage dominated (up to 98% of the isolates recovered) and, from some fields, only a single haplotype was recovered. Under field conditions in Egypt, there is no evidence that C. maydis reproduces sexually. The nonuniform geographic distribution of the pathogen lineages within the country could be due to differences in climate or in the farming system, because host material differs in susceptibility and C. maydis lineages differ in pathogenicity.

  3. The role of certain oxidative enzymes, catalase, and beta-glucosidase on virulence of Cephalosporium maydis.

    Science.gov (United States)

    Abd-Elrazik, A; Darweish, F A; Rushdi, M H

    1978-01-01

    Isolates of Cephalosporium maydis varied in their pathogenicity to D.C. 67 maize cultivar from highly to weakly pathogenic. Highly pathogenic isolates showed lower activity of polyphenol oxidase, peroxidase, cytochrome oxidase, and beta-glucosidase enzymes and higher activity of catalase and dehydrogenase than weakly pathogenic isolates. Enzymes production by the tested isolates increased as the culture age increased; except in case of catalase enzyme, the reverse action was detected. The role of these enzymes in the virulence of C. maydis is suggested and discussed.

  4. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis Agressividade entre isolados dos grupos genéticos I e II de Cercospora zeae-maydis

    OpenAIRE

    Sandra Marisa Mathioni; Carvalho; Kátia Regiane Brunelli; André Beló; Luis Eduardo Aranha Camargo

    2006-01-01

    For many years, the gray leaf spot disease (GLS) caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L.) in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic groups (...

  5. Mutation avoidance and DNA repair proficiency in Ustilago maydis are differentially lost with progressive truncation of the REC1 gene product

    Energy Technology Data Exchange (ETDEWEB)

    Onel, K.; Thelen, M.P.; Ferguson, D.O.; Bennett, R.L.; Holloman, W.K. [Cornell Univ. Medical College, NY, NY (United States)

    1995-10-01

    The REC1 gene of Ustilago maydis has an uninterrupted open reading frame, predicted from the genomic sequence to encode a protein of 522 amino acid residues. Nevertheless, an intron is present, and functional activity of the gene in mitotic cells requires an RNA processing event to remove the intron. This results in a change in reading frame and production of a protein of 463 amino acid residues. The 3{prime}{r_arrow}5{prime} exonuclease activity of proteins derived form the REC1 genomic open reading frame, the intronless open reading frame, and several mutants was investigated. The mutants included a series of deletions constructed by removing restriction fragments at the 3{prime} end of the cloned REC1 gene and a set of mutant alleles previously isolated in screens for radiation sensitivity. The results indicated that elimination of the C-terminal third of the protein did not result in a serious reduction in 3{prime}{r_arrow}5{prime} exonuclease activity, but deletion into the midsection caused a severe loss of activity. The biological activity of the rec1-1 allele, which encodes a truncated polypeptide with full 3{prime}{r_arrow}5{prime} exonuclease activity, and the rec1-5 allele, which encodes a more severely truncated polypeptide with no exonuclease activity, was investigated. The two mutants were equally sensitive to the lethal effect of UV light, but the spontaneous mutation rate was elevated 10-fold over the wild-type rate in the rec1-1 mutant and 100-fold in the rec1-5 mutant. The elevated spontaneous mutation rate correlated with the ablation of exonuclease activity, but the radiation sensitivity did not. These results indicate that the C-terminal portion of the Rec1 protein is not essential for exonuclease activity but is crucial in the role of REC1 in DNA damage repair. 49 refs., 3 figs., 1 tab.

  6. Inverse pH regulation of plant and fungal sucrose transporters: a mechanism to regulate competition for sucrose at the host/pathogen interface?

    Directory of Open Access Journals (Sweden)

    Kathrin Wippel

    Full Text Available BACKGROUND: Plant sucrose transporter activities were shown to respond to changes in the extracellular pH and redox status, and oxidizing compounds like glutathione (GSSG or H(2O(2 were reported to effect the subcellular targeting of these proteins. We hypothesized that changes in both parameters might be used to modulate the activities of competing sucrose transporters at a plant/pathogen interface. We, therefore, compared the effects of redox-active compounds and of extracellular pH on the sucrose transporters UmSRT1 and ZmSUT1 known to compete for extracellular sucrose in the Ustilago maydis (corn smut/Zea mays (maize pathosystem. METHODOLOGY/PRINCIPAL FINDINGS: We present functional analyses of the U. maydis sucrose transporter UmSRT1 and of the plant sucrose transporters ZmSUT1 and StSUT1 in Saccharomyces cerevisiae or in Xenopus laevis oocytes in the presence of different extracellular pH-values and redox systems, and study the possible effects of these treatments on the subcellular targeting. We observed an inverse regulation of host and pathogen sucrose transporters by changes in the apoplastic pH. Under none of the conditions analyzed, we could confirm the reported effects of redox-active compounds. CONCLUSIONS/SIGNIFICANCE: Our data suggest that changes in the extracellular pH but not of the extracellular redox status might be used to oppositely adjust the transport activities of plant and fungal sucrose transporters at the host/pathogen interface.

  7. The Top 10 fungal pathogens in molecular plant pathology.

    Science.gov (United States)

    Dean, Ralph; Van Kan, Jan A L; Pretorius, Zacharias A; Hammond-Kosack, Kim E; Di Pietro, Antonio; Spanu, Pietro D; Rudd, Jason J; Dickman, Marty; Kahmann, Regine; Ellis, Jeff; Foster, Gary D

    2012-05-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  8. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis

    OpenAIRE

    Mathioni, Sandra Marisa; Carvalho,; Brunelli, Kátia Regiane; Beló, André; Camargo, Luis Eduardo Aranha

    2006-01-01

    For many years, the gray leaf spot disease (GLS) caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L.) in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic groups (...

  9. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis

    OpenAIRE

    Mathioni,Sandra Marisa; Carvalho,; Brunelli,Kátia Regiane; Beló,André; Camargo,Luis Eduardo Aranha

    2006-01-01

    For many years, the gray leaf spot disease (GLS) caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L.) in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic grou...

  10. Malazy, a degenerate, species-specific transposable element in Cercospora zeae-maydis.

    Science.gov (United States)

    Shim, Won-Bo; Dunkle, Larry D

    2005-01-01

    Two fungal pathogens, Cercospora zeae-maydis Groups I and II, cause gray leaf spot of maize. During the sequencing of a cosmid library from C. zeae-maydis Group I, we discovered a sequence with high similarity to Maggy, a transposable element from Magnaporthe grisea. The element from C. zeae-maydis, named Malazy, contained 194-base-pair terminal repeats and sequences with high similarity to reverse transcriptase and integrase, components of the POL gene in the gypsy-like retrotransposons in fungi. Sequences with similarity to other POL gene components, protease and ribonuclease, were not detected in Malazy. A single copy of the element was detected by PCR and Southern analyses in all six North American isolates of C. zeae-maydis Group I but was not detected in the four isolates of C. zeae-maydis Group II from three continents or in phylogenetically related species. Fragments of the core domains of reverse transcriptase and integrase contained a high frequency of stop codons that were conserved in all six isolates of Group I. Additional C:G to T:A transitions in occasional isolates usually were silent mutations, while two resulted in isolate-specific stop codons. The absence of Malazy from related species suggests that it was acquired after the divergence of C. zeae-maydis Groups I and II. The high frequency of stop codons and the presence of a single copy of the element suggest that it was inactivated soon after it was acquired. Because the element is inactive and because reading frames for other genes were not found in sequences flanking the element, Malazy does not appear to be the cause of differences leading to speciation or genetic diversity between C. zeae-maydis Groups I and II.

  11. Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain.

    Science.gov (United States)

    García-Carneros, A B; Girón, I; Molinero-Ruiz, L

    2012-01-01

    Late wilt of maize, caused by the vascular and soilborne pathogen Cephalosporium maydis, was identified in the Iberian Peninsula in 2008. During the last years the incidence and economical impact of the disease has importantly increased both in Portugal and Spain. Varieties of maize displaying tolerance to the pathogen are available, but the effectiveness can be dependent on the virulence of the fungus (i.e. ability to cause disease on a specific genotype). On the other hand, strains of crop pathogens from different geographic origins can differ with regard to the degree of disease caused on a specific genotype (i.e. aggressiveness). Our working hypothesis was that isolates of C. maydis from different maize growing areas may differ in aggressiveness towards maize plants. Seven fungal strains were isolated in 2009 from diseased plants collected in the most important maize growing regions of Spain and used to inoculate two susceptible maize varieties grown in shadehouse from March to July 2010. The experimental unit consisted of two 4-day-old seedlings planted in an 8-liter pot filled with sand/silt previously infested with 200 g of wheat grains colonized by the fungi. Non colonized wheat grains were used for the control treatments. Six replications (pots) were established for each variety/isolate combination according to a complete randomized 2 x 8 factorial design. The percentage of necrotic and dry aboveground tissues was recorded 14 weeks after inoculation and thereafter weekly until physiological senescence of the control plants. At the end of the experiment, weights of roots and aboveground parts of the plants were recorded. Initial occurrence of symptoms in the plants was significantly dependent on the isolate of C. maydis and on the maize variety. However, final severity of aboveground symptoms (leaf necroses and drying up) was only dependent on the fungal isolate. All the isolates significantly reduced the root weight of both varieties of maize. The highest

  12. Lipid, membrane, and mitochondrial characteristics of Ustilago maydis following exposure to ergosterol biosynthesis inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Waterfield, W.F. III

    1986-01-01

    Pencoazole at 0.5 ..mu..g/ml inhibited ergosterol biosynthesis in U. maydis. Polar lipids of sporidia grown with 0.5 ..mu..g/ml penconazole for 7.5 or 22 hr or 1.0 ..mu..g/ml fenarimol for 7.5 hr contained more 18:2 than 18:1 fatty acids. There was usually more 18:1 than 18:2 fatty acids in polar lipids of untreated sporidia but this ratio was influenced by culture cell density. The high 18:2 to 18:1 ratio in the polar lipids from penconazole grown cells was unaffected by cell density. There was an increase in free fatty acids and these were enriched with 18:2 members in cells grown with 0.5 ..mu..g/ml penconazole for 22 hr. Unsaturation of triglycerides fatty acids did not differ appreciably from that of untreated sporidia. Untreated WT U. maydis protoplasts lysed more slowly in 0.3 M sorbitol than those prepared from WT sporidia grown for 16 hr with 1.0 ..mu..g/ml penconazole or 2.0 ..mu..g/ml fenarimol or from untreated erg-40 sporidia. Protoplasts were more permeable to crystal violet than were those from untreated WT sporidia. Mitochondria from untreated WT sporidia oxidizing pyruvate plus malate or succinate yielded higher ADP/O rations than mitochondria from erg-40 or penconazole grown WT sporidia. The mitochondrial ATPase of control cells had a Km of 0.8 mM ATP whereas the mitochondrial ATPase of penconazole grown WT and erg-40 had a Km value of 3.7 and 3.2 mM ATP, respectively. When the mitochondrial catalytic subunit of the ATPase from these mitochondria were solubilized, the Km did not differ. These studies suggest that changes in sterols and membrane fatty acids resulting from treatments with EBI fungicides cause increased membrane fluidity which affects membrane stability, permeability and activity of the mitochondrial ATPase.

  13. Bean polygalacturonase inhibitor protein-1 (PGIP-1) inhibits polygalacturonases from Stenocarpella maydis

    CSIR Research Space (South Africa)

    Berger, DK

    2000-07-01

    Full Text Available Stenocarpella maydis, a fungal pathogen of maize, produced polygalacturonases (PGs) when grown on pectin or maize cell walls. An extract from bean (Phaseolus vulgaris L.) which contained an active inhibitor of Aspergillus niger PG, also inhibited S...

  14. Ecological genetics of the Bromus tectorum (Poaceae) - Ustilago Bullata (Ustilaginaceae): A role for frequency dependent selection?

    Science.gov (United States)

    Susan E. Meyer; David L. Nelson; Suzette Clement; Alisa Ramakrishnan

    2010-01-01

    Evolutionary processes that maintain genetic diversity in plants are likely to include selection imposed by pathogens. Negative frequency-dependent selection is a mechanism for maintenance of resistance polymorphism in plant - pathogen interactions. We explored whether such selection operates in the Bromus tectorum - Ustilago bullata pathosystem. Gene-for-gene...

  15. Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain

    OpenAIRE

    García-Carneros, Ana B.; Girón, I.; Molinero-Ruiz, Leire

    2012-01-01

    Late wilt of maize, caused by the vascular and soilborne pathogen Cephalosporium maydis, was identified in the Iberian Peninsula in 2008. During the last years the incidence and economical impact of the disease has importantly increased both in Portugal and Spain. Varieties of maize displaying tolerance to the pathogen are available, but the effectiveness can be dependent on the virulence of the fungus (i.e. ability to cause disease on a specific genotype). On the other hand, strains of crop ...

  16. Evidence for resistance polymorphism in the Bromus tectorum/Ustilago bullata pathosystem: implications for biocontrol

    Science.gov (United States)

    S. E. Meyer; D. L. Nelson; S. Clement

    2001-01-01

    Bromus tectorum L. (cheatgrass or downy brome) is an important exotic weed in natural ecosystems as well as in winter cereal cropland in semiarid western North America. The systemic, seedling-infecting head smut pathogen Ustilago bullata Berk. commonly infects cheatgrass stands, often at epidemic levels. We examined factors...

  17. Detection of Ustilago nuda (Jensen) Rostrup in winter barley seed

    OpenAIRE

    Ignjatov Maja; Petrović Dragana; Vujaković Milka; Taški-Ajduković Ksenija; Nikolić Zorica; Jovičić Dušica

    2011-01-01

    Barley is one of the most important cereals grown in our agroecological conditions. The causal agent of loose smut on barley Ustilago nuda (Jensen) Rostrup occurs frequently as varieties susceptible to this pathogen are present in the production. Disease symptoms are manifested on barley head (spike). Parasite is transmitted by seed (seedborne) and stays in the embryo tissue of the infected kernel as dormant mycelium. Recommended method for detection of U. nuda is given by ISTA Rules (method ...

  18. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis Agressividade entre isolados dos grupos genéticos I e II de Cercospora zeae-maydis

    Directory of Open Access Journals (Sweden)

    Sandra Marisa Mathioni

    2006-12-01

    Full Text Available For many years, the gray leaf spot disease (GLS caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L. in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic groups (I and II based on AFLP markers and on polymorphisms of the ITS and 5.8S rDNA regions. Until now, however, the biological implications of this distinction remain unclear. This study investigated whether isolates from the two genetic groups differ in aggressiveness towards maize. For this, symptoms of a susceptible hybrid were evaluated under greenhouse conditions with 9 and 11 isolates of C. zeae-maydis from groups I and II, respectively. Plants in the V3 growth stage were inoculated by placing sorghum seeds colonized with the pathogen in the leaf whorl and symptoms were evaluated with a visual rating scale 30 days later. On average, isolates of genetic group II were more aggressive than those of group I, with mean disease scores of 3.1 and 2.3, respectively. Differences were also observed between experiments, which suggested that group I and II might also differ in their fitness under different environments. This is the first report on differences in aggressiveness between the two genetic groups of C. zeae-maydis.Durante muitos anos, a cercosporiose, causada pelo fungo Cercospora zeae-maydis Tehon & Daniels, não foi considerada importante para a cultura do milho (Zea mays, L. no Brasil. Entretanto, a recente utilização de práticas culturais como o plantio direto e o cultivo sob pivôs centrais favoreceram o aumento de sua severidade e incidência, de forma que a doença é hoje considerada uma das mais importantes da cultura. Isolados de C. zeae-maydis

  19. Agrobacterium tumefaciens-mediated transformation as an efficient tool for insertional mutagenesis of Cercospora zeae-maydis.

    Science.gov (United States)

    Lu, Yuanyuan; Xiao, Shuqin; Wang, Fen; Sun, Jiaying; Zhao, Likun; Yan, Libin; Xue, Chunsheng

    2017-02-01

    An efficient Agrobacterium tumefaciens-mediated transformation (ATMT) approach was developed for the plant pathogenic fungus, Cercospora zeae-maydis, which is the causative agent of gray leaf spot in maize. The transformation was evaluated with five parameters to test the efficiencies of transformation. Results showed that spore germination time, co-cultivation temperature and time were the significant influencing factors in all parameters. Randomly selected transformants were confirmed and the transformants were found to be mitotically stable, with single-copy T-DNA integration in the genome. T-DNA flanking sequences were cloned by thermal asymmetric interlaced PCR. Thus, the ATMT approach is an efficient tool for insertional mutagenesis of C. zeae-maydis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Population studies of Cercospora zeae-maydis and related Cercospora fungi

    OpenAIRE

    Okori, Patrick

    2004-01-01

    Grey leaf spot caused by Cercospora zeae-maydis is considered a global threat to maize production. In Africa, the disease was first reported just over 10 years ago, but has rapidly spread to most maize growing countries of sub-Saharan Africa. Being a rapidly spreading new disease in the region, demands for a quick but effective control strategy. Since pathogen populations cause epiphytotics, it is logical that control strategies should target populations rather than individuals. Effectiveness...

  1. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Templeton, M D; Rikkerink, E H; Solon, S L; Crowhurst, R N

    1992-12-01

    The glyceraldehyde-3-phosphate dehydrogenase gene (gpdA) has been identified from a genomic DNA library prepared from the plant pathogenic fungus Glomerella cingulata. Nucleotide sequence data revealed that this gene codes for a putative 338-amino-acid protein encoded by two exons of 129 and 885 bp, separated by an intron 216 bp long. The 5' leader sequence is also spliced by an intron of 156 bp. A cDNA clone was prepared using the polymerase chain reaction, the sequence of which was used to confirm the presence of the intron in the coding sequence and the splicing of the 5' leader sequence. The transcriptional start point (tsp) was mapped at -253 nt from the site of the initiation of translation by primer extension and is adjacent to a 42-bp pyrimidine-rich region. The general structure of the 5' flanking region shows similarities to gpdA from Aspergillus nidulans. The putative protein product is 71-86% identical at the aa level to GPDs from Aspergillus nidulans, Cryphonectria parasitica, Curvularia lunata, Podospora anserina and Ustilago maydis.

  2. Sienten Phyllachora maydis Maubl. ja Monographella maydis Müller & Samuels aiheuttaman asfalttilaikkutaudin esiintyvyys maissilla (Zea mays L.) Nicaraguassa

    OpenAIRE

    Höckerstedt, Layla

    2014-01-01

    Maissi (Zea mays L.) on yksi maailman merkittävimmistä ravintokasveista. Nicaraguassa maissia tuottavat lähinnä pienviljelijät, joilla ei ole mahdollisuutta käyttää maatalouskemikaaleja tautien torjuntaan. Suurin osa maissille tauteja aiheuttavista patogeeneistä on sieniä, kuten myös mustalaikkua aiheuttava ehdoton loissieni Phyllachora maydis Maubl. Yhdessä endofyyttisen sienen Monographella maydis Müller & Samuels kanssa, nämä yksinään melko harmittomat sienet voivat aiheuttaa asfalttilaiku...

  3. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    Directory of Open Access Journals (Sweden)

    Marianna Feretzaki

    2016-03-01

    Full Text Available RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein and Qip1 (a homolog of N. crassa Qip were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor and Fzc28 (a transcription factor are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  4. Genetic Relatedness of African and United States Populations of Cercospora zeae-maydis.

    Science.gov (United States)

    Dunkle, L D; Levy, M

    2000-05-01

    Two taxonomically identical but genetically distinct sibling species, designated groups I and II, of Cercospora zeae-maydis cause gray leaf spot of maize in the United States. Isolates of the gray leaf spot pathogen from Africa were compared with isolates from the United States by amplified fragment length polymorphism (AFLP) analysis and restriction digests of internal transcribed spacer (ITS) regions and 5.8S ribosomal DNA (rDNA), as well as by morphological and cultural characteristics. The isolates from Africa were morphologically indistinguishable from the U.S. isolates in both groups, but like isolates of group II, they grew more slowly and failed to produce detectable amounts of cercosporin in culture. Analysis of restriction fragments from the ITS and rDNA regions digested with five endonucleases indicated that all of the African isolates shared the profile of the C. zeae-maydis group II population from the eastern United States and, thus, are distinct from the group I population, which is more prevalent in the United States and other parts of the world. Cluster analysis of 85 AFLP loci confirmed that the African and U.S. group II populations were conspecific (greater than 97% average similarity) with limited variability. Among all group II isolates, only 8 of 57 AFLP loci were polymorphic, and none was specific to either population. Thus, although gray leaf spot was reported in the United States several decades prior to the first record in Africa, the relative age of the two populations on their respective continents could not be ascertained with confidence. The absence of C. zeae-maydis group I in our samples from four countries in the major maize-producing region of Africa as well as the greater AFLP haplotype diversity found in the African group II population, however, suggest that Africa was the source of C. zeae-maydis group II in the United States. The overall paucity of AFLP variation in this sibling species further suggests that its origin is

  5. Histone deacetylases: revealing the molecular base of dimorphism in pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2015-11-01

    Full Text Available Fungi, as every living organism, interact with the external world and have to adapt to its fluctuations. For pathogenic fungi, such interaction involves adapting to the hostile environment of their host. Survival depends on the capacity of fungi to detect and respond to external stimuli, which is achieved through a tight and efficient genetic control. Chromatin modifications represent a well-known layer of regulation that controls gene expression in response to environmental signals. However, less is known about the chromatin modifications that are involved in fungal virulence and the specific cues and signalling pathways that target chromatin modifications to specific genes. In a recently published study, our research group identified one such regulatory pathway. We demonstrated that the histone deacetylase (HDAC Hos2 is involved in yeast-to-hyphal transition (dimorphism and it is associated with the virulence of the maize pathogen Ustilago maydis, the causative agent of smut disease in corn. Hos2 activates mating-type genes by directly binding to their gene bodies. Furthermore, Hos2 acts downstream of the nutrient-sensing cyclic AMP-Protein Kinase A pathway. We also found that another HDAC, Clr3, contributes to this regulation, possibly in cooperation with Hos2. As a whole, our data suggest that there is a direct link between changes in the environment and acetylation of nucleosomes within certain genes. We propose that histone acetylation is critical to the proper timing and induction of transcription of the genes encoding factors that coordinate changes in morphology with pathogenesis.

  6. Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ.

    Science.gov (United States)

    van der Linde, Karina; Timofejeva, Ljudmilla; Egger, Rachel L; Ilau, Birger; Hammond, Reza; Teng, Chong; Meyers, Blake C; Doehlemann, Gunther; Walbot, Virginia

    2018-03-01

    Small proteins are crucial signals during development, host defense, and physiology. The highly spatiotemporal restricted functions of signaling proteins remain challenging to study in planta. The several month span required to assess transgene expression, particularly in flowers, combined with the uncertainties from transgene position effects and ubiquitous or overexpression, makes monitoring of spatiotemporally restricted signaling proteins lengthy and difficult. This situation could be rectified with a transient assay in which protein deployment is tightly controlled spatially and temporally in planta to assess protein functions, timing, and cellular targets as well as to facilitate rapid mutagenesis to define functional protein domains. In maize ( Zea mays ), secreted ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS1) was proposed to trigger somatic niche formation during anther development by participating in a ligand-receptor module. Inspired by Homer's Trojan horse myth, we engineered a protein delivery system that exploits the secretory capabilities of the maize smut fungus Ustilago maydis , to allow protein delivery to individual cells in certain cell layers at precise time points. Pathogen-supplied ZmMAC1 cell-autonomously corrected both somatic cell division and differentiation defects in mutant Zm mac1-1 anthers. These results suggest that exploiting host-pathogen interactions may become a generally useful method for targeting host proteins to cell and tissue types to clarify cellular autonomy and to analyze steps in cell responses. © 2018 American Society of Plant Biologists. All rights reserved.

  7. Characterization of pathogenic races of the sugarcane smut fungus by neutron activation analysis

    International Nuclear Information System (INIS)

    Amire, O.A.; Schmitt, R.A.; Trione, E.J.

    1982-01-01

    Representative samples of five major races of Ustilago scitaminea, the causal organism of the smut disease of sugarcane, were obtained from infected sugarcane fields in the Western hemisphere. The variations in concentration of 10 elements (Na, Mg, Al, Cl, K, Ca, Mn, Fe, Co, and Zn) in the sporidial yeast-like cells of this fungal pathogen were analyzed by neutron activation analysis. Comparative analysis of the elemental compositions in the different races of the fungus showed that the five pathogenic races of Ustilago scitaminea may be distinguished from each other on the basis of elemental compositions. (author)

  8. On a difference in the antifungal activity of tridemorph and its formulated product Calixin

    NARCIS (Netherlands)

    Kerkenaar, A.; Kaars Sijpesteijn, A.

    1979-01-01

    The antifungal effects of tridemorph and its formulated product Calixin were compared in vitro on Ustilago maydis, Saccharomyces cerevisiae, Torulopsis candida, Botrytis allii, and Cladosporium cucumerinum. MIC values for both products were about the same. In liquid media the products were somewhat

  9. Calcium homeostasis and signaling in fungi and their relevance for pathogenicity of yeasts and filamentous fungi

    Directory of Open Access Journals (Sweden)

    Renata Tisi

    2016-09-01

    Full Text Available Though fungi show peculiarities in the purposes and specific traits of calcium signaling pathways, the general scheme and the most important players are well conserved if compared to higher eukaryotes. This provides a powerful opportunity either to investigate shared features using yeast as a model or to exploit fungal specificities as potential targets for antifungal therapies. The sequenced genomes from yeast Saccharomyces cerevisiae, Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa were already published more than ten years ago. More recently the genome sequences of filamentous fungi of Aspergillus genus, some of which threatening pathogens, and dimorphic fungi Ustilago maydis were published, giving the chance to identify several proteins involved in calcium signaling based on their homology to yeast or mammalian counterparts. Nonetheless, unidentified calcium transporters are still present in these organisms which await to be molecularly characterized. Despite the relative simplicity in yeast calcium machinery and the availability of sophisticated molecular tools, in the last years, a number of new actors have been identified, albeit not yet fully characterized. This review will try to describe the state of the art in calcium channels and calcium signaling knowledge in yeast, with particular attention to the relevance of this knowledge with respect to pathological fungi.

  10. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array

    NARCIS (Netherlands)

    Schuster, M.; Kilaru, S.; Fink, G.; Collemare, J.A.R.; Roger, Y.; Steinberg, G.

    2011-01-01

    The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to

  11. On the antifungal mode of action of tridemorph

    NARCIS (Netherlands)

    Kerkenaar, A.; Barug, D.; Kaars Sijpesteijn, A.

    1979-01-01

    Tridemorph (2,6-dimethyl-N-tridecylmorpholine) was active against representative of nearly all taxonomic groups of fungi; gram-positive bacteria were also sensitive although gram-negative were not. Tridemorph, 3–10 μg/ml, inhibited the multiplication of sporidia of Ustilago maydis more strongly than

  12. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  13. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements.

    Science.gov (United States)

    Laurie, John D; Ali, Shawkat; Linning, Rob; Mannhaupt, Gertrud; Wong, Philip; Güldener, Ulrich; Münsterkötter, Martin; Moore, Richard; Kahmann, Regine; Bakkeren, Guus; Schirawski, Jan

    2012-05-01

    Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.

  14. A New Perspective on Radiation Resistance Based on Deinococcus radiodurans

    Science.gov (United States)

    2009-03-01

    tolerate 3,000–5000 Gy, but are rendered sterile. As a haploid, the basidiomycete fungus Ustilago maydis carries a single set of chromosomes per...salinarum NRC-1. Environ. Microbiol. 5 Jan 2009 (doi:10.1111/j.1462-2920.2008.01828.x). 21. Chan, H. L. et al. Proteomic analysis of UVC irradiation

  15. Molecular variability in the maize grey leaf spot pathogens in Brazil

    Directory of Open Access Journals (Sweden)

    Kátia R. Brunelli

    2008-01-01

    Full Text Available Isolates of Cercospora species from leaves displaying symptoms of grey leaf spot were collected in maize-producing areas of south-central Brazil in 2001 and 2002. Restriction digests of the internal transcribed spacer region of rDNA detected the presence of the same two Cercospora species described on maize in the United States, namely C. zeae-maydis and the recently described species, C. zeina . Genetic variability among isolates was assessed by analysing 104 amplified fragment length polymorphism loci. Cluster analysis confirmed the genetic separation of isolates into two species with a mean similarity of 35%. Similarity levels within species were high, averaging 93% and 92% among isolates of C. zeae-maydis and C. zeina , respectively. The mean genetic similarity between C. zeae-maydis and C. zeina and two isolates of C. sorghi f. sp. maydis was 45% and 35%, respectively. Results of this study showed that populations of the grey leaf spot pathogens in Brazil are similar to those in the United States regarding species composition and that C. zeina is also present in Brazil.

  16. Genome Comparison of Barley and Maize Smut Fungi Reveals Targeted Loss of RNA Silencing Components and Species-Specific Presence of Transposable Elements[W

    Science.gov (United States)

    Laurie, John D.; Ali, Shawkat; Linning, Rob; Mannhaupt, Gertrud; Wong, Philip; Güldener, Ulrich; Münsterkötter, Martin; Moore, Richard; Kahmann, Regine; Bakkeren, Guus; Schirawski, Jan

    2012-01-01

    Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts. PMID:22623492

  17. Basidiomycosis: a review of the literature Basidiomicoses: revisão da literatura

    Directory of Open Access Journals (Sweden)

    Carlos da Silva Lacaz

    1996-10-01

    Full Text Available The basidiomycosis, fungal infections provoked by basidiomycetes or agaric fungi have been recorded at growing frequencies in the medical literature, especially after the advent of AIDS in 1991. The basidiospores of these fungi, scattered in the atmosphere and transported by winds or air currents, reach the maxillary sinuses through the nasal route, most of the times causing signs and symptoms of chronic sinusitis. Basidiomycetes have also been isolated from sputum, especially Schizophyllum commune. Lesions of the buccal mucosa, brain abscesses, onychomycosis and endocarditis have been described, with a growing interest in this type of deep mycosis on the part of mycologists and infectologists. The present paper reports descriptions of mycetism as well as infectious processes caused by basidiomycetes, such as Schizophyllum commune, Ustilago maydis (= Ustilago zeae and Coprinus cinereusAs basidiomicoses, infecções fúngicas provocadas por basidiomicetos ou agáricos vêm sendo registradas cada vez com maior frequência na literatura médica, principalmente após o advento da AIDS/SIDA, em 1981. Os basidiosporos desses fungos, espalhados na atmosfera e veiculados através do vento ou de correntes aéreas, atingem por via nasal os seios maxilares, provocando quadros de sinusite crônica, na maioria das vezes. Do escarro também têm sido isolados basidiomicetos, principalmente o Schizophyllum commune. Lesões da mucosa da boca, abscessos cerebrais, onicomicoses e endocardites já foram descritas, aumentando o interesse dos micologistas e infectologistas para este tipo de micose profunda. O presente trabalho assinala, ao lado dos quadros dc micetismo, processos infecciosos provocados por basidiomicetos, a exemplo do Schizophyllum commune, Ustilago maydis (= Ustilago zeae e Coprinus cinereus.

  18. Damages caused by Bipolaris maydis in Panicum maximum cv. Tanzânia Dano causado por Bipolaris maydis em Panicum maximum cv. Tanzânia

    Directory of Open Access Journals (Sweden)

    Gilmar Franzener

    2010-12-01

    Full Text Available The aim of this research was to evaluate the damage caused by Bipolaris maydis in the quantity and quality of the Tanzania grass production. Tanzania grass plants were cultivated in pots of PVC tubes (50 cm of height x 15 cm of diameter containing a mixture of soil and sand (3:1. The plants were inoculated with spore pathogen suspension containing 102, 104 and 106 conidia/mL to obtain different levels of disease. Severity and number of tillers were evaluated weekly. After four weeks, it were evaluated the weight of the fresh matter of leaves (FM, percentage of dry matter (DM, crude protein (CP, neutral detergent fiber (NDF and acid detergent fiber (ADF. The disease reduced significantly the plant tillering and FM after the second evaluation (P O objetivo deste trabalho foi avaliar o dano causado por Bipolaris maydis (helmintosporiose na quantidade e qualidade da produção do capim Tanzânia. Plantas de capim Tanzânia foram cultivadas em vasos de tubos de PVC (50 cm de altura x 15 cm de diâmetro contendo mistura solo/areia (3:1. As plantas foram inoculadas com suspensões de esporos do patógeno com diferentes concentrações (102, 104 e 106 conídios/mL, visando obter gradiente de severidade de manchas foliares. Foram realizadas avaliações semanais da severidade e do número de perfilhos. Após quatro semanas avaliou-se o peso da matéria fresca de folhas (MF, porcentagem de matéria seca (PMS, de proteína bruta (PB, de fibra em detergente neutro (FDN e de fibra em detergente ácido (FDA. A doença reduziu significativamente o perfilhamento e MF a partir da segunda avaliação (P < 0,05. Não houve correlação significativa entre as variáveis PMS, FDA e área abaixo da curva de progresso da doença (AACPD. No entanto, houve correlação positiva (P < 0,01 e negativa (P < 0 ,05 entre PB e FDN, respectivamente, com a AACPD, como possível resultado da atividade do patógeno. Estes resultados indicam que B. maydis inibe o desenvolvimento do

  19. Detection of Ustilago nuda (Jensen Rostrup in winter barley seed

    Directory of Open Access Journals (Sweden)

    Ignjatov Maja

    2011-01-01

    Full Text Available Barley is one of the most important cereals grown in our agroecological conditions. The causal agent of loose smut on barley Ustilago nuda (Jensen Rostrup occurs frequently as varieties susceptible to this pathogen are present in the production. Disease symptoms are manifested on barley head (spike. Parasite is transmitted by seed (seedborne and stays in the embryo tissue of the infected kernel as dormant mycelium. Recommended method for detection of U. nuda is given by ISTA Rules (method 7-013. In tests, nine samples (weighing 120 g each of naturally infected barley seed (about 1000 seeds, depending on the absolute mass of seed were examined, observed and described using a Zeiss microscope with sub stage illumination with magnification range x 40 or higher. Mycelium of the fungus approximately 3 μ thick, golden brown in colour was detected and visible without a stain. The percentage of infected embryos in the examined samples of barley seeds ranged from 0.8% to 5.2%.

  20. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    KAUST Repository

    Ali, Shawkat

    2014-07-03

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  1. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    2014-07-01

    Full Text Available The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE, interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity

  2. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    KAUST Repository

    Ali, Shawkat; Laurie, John D.; Linning, Rob; Cervantes-Chá vez, José Antonio; Gaudet, Denis; Bakkeren, Guus

    2014-01-01

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  3. Genetic diversity of Ustilago scitaminea Syd. in Southern China ...

    African Journals Online (AJOL)

    The polymorphism and similarity relationships among 35 mating-type isolates of Ustilago scitaminea collected from Southern China were determined with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses. These fungal isolates were collected from 16 sugarcane cultivars ...

  4. F-16 Microbially Influenced Corrosion (MIC) Characterization & Prevention Study

    Science.gov (United States)

    2011-05-12

    Staphylococcus epidermidis Fungal Consortium Aspergillus fumigatus Fusarium oxysporum Penicillium oxalicum Rhodoturula sp . Trichoderma sp . Control... sp . (FI-18) – Hypocrea jecorina (FI-1) Penicillium oxalicum (FI-12) – Pleosporacea sp . (FI-17) Rhodoturala mucilaginosa (FI-7) – Ustilago maydis (FI...Growth, or Soil and Dirt Accumulation • Fungal Consortium – Aspergillus sp (FI-19) Aureobasidium pullulans (FI-16) – Fusarium oxysporum (FI-6) Fusarium

  5. Crop Management Practices in the Humid Hills from Northeastern Brazil between 670-530 Yrs BP: Palynological Evidences from Archaeological Site Evaristo I

    Directory of Open Access Journals (Sweden)

    Aline Gonçalves Freitas

    2015-12-01

    Full Text Available The first cultural traces of ancient pottery towns in the Serra de Baturité are presented. The pollen spectrum of sediments reveals a mosaic of moist mountainous vegetation, xerophytes, annual nitrophilous, hygrophilous and bog plants. Useful pollen recovered from ceramic, such as cassava (Manihot type, sweet potatoes (Ipomoea type, cotton (Gossypium type, palm trees and fruitful (Arecaceae, cf. Astronium and Anacardium type, together with pathogenic microfungi corn, cotton and some tubers (Curvularia type, Alternaria, Puccinia type and cf. Ustilago maydis indicate agricultural and livelihood activities. The coprophilous fungi of humans and other animals (Cercophora type Gelasinospora type and Sordariaceae reflect the time spent by these groups in the archaeological area. The Gelasinospora fungus also shows the use of fire as fuel for agricultural practices and hunting. These data demonstrate the use of ceramics in funerary and domestic contexts.

  6. Microbial Influenced Corrosion (MIC) Study

    Science.gov (United States)

    2012-05-23

    fumigatus Fusarium oxysporum Fungal Consortium Penicillium oxalicum Rhodoturula sp . Trichoderma sp . Dosed with microbes known to influence Control...Hypocrea jecorina (FI-1) Penicillium oxalicum (FI-12) – Pleosporacea sp . (FI-17) Rhodoturala mucilaginosa (FI-7) – Ustilago maydis (FI-13) T t S t• es...and Dirt Accumulation • Fungal Consortium – Aspergillus sp (FI-19) Aureobasidium pullulans (FI-16) – Fusarium oxysporum (FI-6) Fusarium sp . (FI-18

  7. Genética de la resistencia al complejo Phyllachora maydis Maubl., Monographella maydis Müller & Samuels y Coniothyrium phyllachorae Maubl., en diversos genotipos de maíz (Zea mays L.).

    OpenAIRE

    Hernández Ramos, Lervin

    2014-01-01

    El complejo de la mancha de asfalto del maíz, inducido por los hongos Phyllachora maydis y Monographella maydis, es una enfermedad de importancia económica en México y Centroamérica, debido a que provoca severas pérdidas en el rendimiento y deteriora la calidad del forraje. El mejoramiento genético de la resistencia del hospedante a través de la generación de genotipos resistentes representa la medida de control más eficiente para el control de la enfermedad. Se conoce poco respecto a la base...

  8. Occurrence of a Carboxin-Resistant Strain of Ustilago nuda in Italy

    Directory of Open Access Journals (Sweden)

    J. Menzies

    2005-08-01

    Full Text Available Loose smut of barley, caused by Ustilago nuda (Jens. Rostr., is commonly controlled through the use of systemic seed-treatment fungicides. The most widely used active ingredient in these fungicides has been carboxin. However, isolates of U. nuda resistant to carboxin have been reported in France. In 1996 and 1997, unsatisfactory levels of loose smut of barley were observed near Perugia (central Italy, despite the treatment of the barley seed with a carboxin-based fungicide. An isolate of U. nuda (97-255 was collected from this field to determine if the pathogen had developed resistance to carboxin. Germination tests on carboxin-amended agar media indicated that isolate 97- 255 was more resistant to carboxin than a wild type isolate of U. nuda collected in Canada. In tests in which isolate 97-255 was inoculated onto barley cv. Regal, the percentage of smutted plants arising from the inoculated seed was not reduced by a carboxin seed treatment. This is the first report of resistance to carboxin in populations of U. nuda from Italy.

  9. The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution.

    Science.gov (United States)

    Czedik-Eysenberg, Angelika; Seitner, Sebastian; Güldener, Ulrich; Koemeda, Stefanie; Jez, Jakub; Colombini, Martin; Djamei, Armin

    2018-04-05

    There is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox'/'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBox is exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana. In U. bromivora-infected grass, phenotypic differences between infected and uninfected plants were detectable weeks before qualitative head smut symptoms. Based on this, we could predict the infection outcome for individual plants with high accuracy. Using a PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we observe a time after infection-dependent impact of U. maydis effector deletion strains on phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established salt stress responses in N. benthamiana. We have developed an affordable, automated, open source imaging and data processing solution that can be adapted to various phenotyping applications in plant biology and beyond. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Przenoszenie się grzyba Ustilago perennans Bostr. z nasionami rajgrasu wyniosłego [Transmission of Ustilago perennans Rostr. with tall oat grass seeds

    Directory of Open Access Journals (Sweden)

    J. W. Tomala-Bednarek

    2015-06-01

    Full Text Available It was established that the mycelium of Ustilago perennans does not grow into the pericarp and seed coat of Arrhenatherum elatius caryopses. The main source of seedling infection at this year .seeds sowing were mycelium and gemmes present in hull tissues whereas ait last-year seeds sowing-the spores wintering on the hull and caryopsis surfaces, as they proved to be more survived. The ability of the fungus to seedling infection was decreasing gradually with the seed ageing.

  11. Mutagenesis-based research aimed at obtaining resistance to Helminthosporium maydis, straint T, in maize with Texas male sterile cytoplasm

    International Nuclear Information System (INIS)

    Cornu, A.; Vuillaume, E.; Cassini, R.; Berville, A.

    1977-01-01

    Mutagenesis was used on the French line F7T, with Texas male sterile cytoplasm, in order to obtain plants resistant to Helminthosporium maydis. The M 3 seedlings were screened for resistance either by using a fungus culture filtrate or through contamination with the fungus itself. In the first tests, carried out after the seeds had been treated with an aqueous solution of EMS, a number of families exhibiting original types of resistance to Helminthosporium maydis, strain T, were isolated. (author)

  12. Siderophores as iron storage compounds in the yeasts Rhodotorula minuta and Ustilago sphaerogena detected by in vivo Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Matzanke, B.F.; Winkelmann, G.; Bill, E.; Trautwein, A.X.

    1990-01-01

    In the yeasts Rhodotorula minuta and Ustilago sphaerogena siderophores represent the main intracellular iron pool. We suggest a ferritin substituting function of these siderophores in addition to their role as iron transport agents. In Rhodotorula transport and storage siderophore is the same compound whereas in Ustilago the iron-storage siderophore is ferrichrome. Besides siderophores, merely two iron metabolites can be observed. Other iron-requiring compounds are at least one order of magnitude less abundant in these yeasts. The ferrous metabolite has been detected in many other microbial systems and seems to be of general occurence and importance. (orig.)

  13. Capacidade de combinação em milho para resistência a Cercospora zeae-maydis Combining ability in maize for resistance to the Cercospora zeae-maydis

    Directory of Open Access Journals (Sweden)

    Marcio José Engelsing

    2011-03-01

    Full Text Available A resistência obtida pelo componente genético é um dos métodos mais eficientes de controle das doenças foliares da cultura do milho. Para avaliar a capacidade geral de combinação (CGC, capacidade específica de combinação (CEC, recíprocos, efeito materno e não-materno para resistência a Cercospora zeae-maydis, cinco linhagens (A, B, C, D e E foram cruzadas e os vinte híbridos obtidos foram utilizados em experimentos conduzidos em três ambientes. Foram avaliados a severidade da cercosporiose (CP no estádio fenológico R5 e o rendimento de grãos (RG na colheita. A análise dialélica demonstrou que ocorreu interação significativa (P The resistance due to genetic component is the most efficient method to control maize leaf diseases. The general combining ability (GCA, the specific combining ability (SCA, the reciprocal, the maternal and the not-maternal were evaluated for resistance to the Cercospora zeae-maydis at twenty hybrids. The hybrids were originated from crosses of five parents (A, B, C, D and E. The experiment was conducted in three environments. The resistance to Cercospora zeae-maydis was evaluated using grain yield (RG in the harvest and the severity of Gray leaf spot (GLS at physiological maturation, using the scale proposed by Agroceres (1996. The dialelic analysis demonstrated a significant interaction (P < 0,05 between hybrids versus places for GLS and RG. For the variable GLS, the GCA demonstrated that the best genitors had been D and E, different of that observed in grain yield (A and B. When considering SCA, the best hybrids combinations at the average places were AxD, BxE, AxE and BxC, and should be recommended the maintenance of these hybrids in the company breeding program.

  14. Siderophores as iron storage compounds in the yeasts Rhodotorula minuta and Ustilago sphaerogena detected by in vivo Mössbauer spectroscopy

    Science.gov (United States)

    Matzanke, B. F.; Bill, E.; Trautwein, A. X.; Winkelmann, G.

    1990-07-01

    In the yeasts Rhodotorula minuta and Ustilago sphaerogena siderophores represent the main intracellular iron pool. We suggest a ferritin substituting function of these siderophores in addition to their role as iron transport agents. In Rhodotorula transport and storage siderophore is the same compound whereas in Ustilago the iron-storage siderophore is ferrichrome. Besides siderophores, merely two iron metabolites can be observed. Other iron-requiring compounds are at least one order of magnitude less abundant in these yeasts. The ferrous metabolite has been detected in many other microbial systems and seems to be of general occurence and importance.

  15. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming

    Directory of Open Access Journals (Sweden)

    Lars Matthias Voll

    2011-08-01

    Full Text Available During compatible interactions with their host plants, biotrophic plant pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism towards colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, the corn smut fungus Ustilago maydis and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment.Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. Increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during

  16. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  17. Population studies of fungal plant pathogens: Perspectives for ...

    African Journals Online (AJOL)

    Using grey leaf spot of maize (Cercospora zeae-maydis) as a case study, we show how these techniques can be used to generate information on genetic variability, providing for logical development of a durable IDM programme. Key words: Cercospora zeae-maydis, disease management, genetic tools, molecular markers

  18. Use of nuclear techniques for mutation and selection of fungi for high protein yield utilizing carbon from inexpensive agricultural waste

    International Nuclear Information System (INIS)

    Georgopulos, S.

    1976-12-01

    The report briefly describes work carried out on the following subjects: Determination of protein in fungal strains (including Fusarium and Aspergillus niger); induction and selection of mutants (Aspergillus niger) giving higher yields of biomass and/or higher protein content; ability of fungi (Candida tropicalis) to utilize water extracts of carob bean pods; growth of Fusarium monoliforme at the expense of carob sugars; the use of alternate oxidase-negative mutants (of Ustilago maydis), for better utilization of substrates for growth (electron transport pathways in reoxidation of reduced coenzymes); kinetics of batch and continuous cultivation of Fusarium moniliforme (cultivated on aqueous carob extracts)

  19. Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization

    Directory of Open Access Journals (Sweden)

    Juliana Benevenuto

    2018-04-01

    Full Text Available Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic determinants. Hence, we aimed to expand comparative genomics analyses of smut fungi by including more species infecting different hosts and to define orphans and positively selected genes to gain further insights into the genetics basis of host specialization. We analyzed nine lineages of smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane, wheat, oats, Zizania latifolia (Manchurian rice, Echinochloa colona (a wild grass, and Persicaria sp. (a wild dicot plant. We assembled two new genomes: Ustilago hordei (strain Uhor01 isolated from oats and U. tritici (strain CBS 119.19 isolated from wheat. The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei species experienced genome expansions due to the proliferation of transposable elements and the amount of these elements varied among the two strains. Phylogenetic analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected misclassification of the U. tritici specimen. The comparison between smut pathogens of crop and non-crop hosts did not reveal distinct signatures, suggesting that host domestication did not play a dominant role in shaping the evolution of smuts. We found that host specialization in smut fungi likely has a complex genetic basis: different functional categories were enriched in orphans and lineage-specific selected genes. The diversification and gain/loss of effector genes are probably the most important determinants of host specificity.

  20. Occurrence of a Carboxin-Resistant Strain of Ustilago nuda in Italy

    OpenAIRE

    J. Menzies; R. McLeod; L. Tosi; C. Cappelli

    2005-01-01

    Loose smut of barley, caused by Ustilago nuda (Jens.) Rostr., is commonly controlled through the use of systemic seed-treatment fungicides. The most widely used active ingredient in these fungicides has been carboxin. However, isolates of U. nuda resistant to carboxin have been reported in France. In 1996 and 1997, unsatisfactory levels of loose smut of barley were observed near Perugia (central Italy), despite the treatment of the barley seed with a carboxin-based fungicide. An i...

  1. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of ustilago.

    Science.gov (United States)

    Menzies, J G; Bakkeren, G; Matheson, F; Procunier, J D; Woods, S

    2003-02-01

    ABSTRACT In the smut fungi, few features are available for use as taxonomic criteria (spore size, shape, morphology, germination type, and host range). DNA-based molecular techniques are useful in expanding the traits considered in determining relationships among these fungi. We examined the phylogenetic relationships among seven species of Ustilago (U. avenae, U. bullata, U. hordei, U. kolleri, U. nigra, U. nuda, and U. tritici) using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphisms (AFLPs) to compare their DNA profiles. Fifty-four isolates of different Ustilago spp. were analyzed using ISSR primers, and 16 isolates of Ustilago were studied using AFLP primers. The variability among isolates within species was low for all species except U. bullata. The isolates of U. bullata, U. nuda, and U. tritici were well separated and our data supports their speciation. U. avenae and U. kolleri isolates did not separate from each other and there was little variability between these species. U. hordei and U. nigra isolates also showed little variability between species, but the isolates from each species grouped together. Our data suggest that U. avenae and U. kolleri are monophyletic and should be considered one species, as should U. hordei and U. nigra.

  2. Significant characteristics of the new maize hybrid Rubin-7

    Directory of Open Access Journals (Sweden)

    Jeličić Zora

    2003-01-01

    Full Text Available The Rubin-7 maize hybrid belongs to the FAO 700 maturity group. It is characterized by high yield potential for kernels, which was proven during investigations by the Committee for Species. During the three year monitoring period, from 1999 to 2001, the average yield of kernel was 9.412 t/ha which is 5% above the ZP 704 standard, and was highly statistically significant. Resistance to disease was high for Ustilago maydis 0.49, Fusarium spp. 0.13, and Exerohilum turcicum 1.25. Tolerance against Ostrinia nubilalis is 3-33. All of the above parameters and the agreeable phenotype of this hybrid indicate the value of Rubin-7. .

  3. Maize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells.

    Science.gov (United States)

    Woriedh, Mayada; Merkl, Rainer; Dresselhaus, Thomas

    2015-08-01

    EMBRYO SAC1-4 (ES1-4) peptides belong to the defensin subgroup of cysteine-rich peptides known to mediate pollen tube burst in Zea mays (maize). ES1-4 are reported here to also be capable of inhibiting germination and growth of the maize fungal pathogens Fusarium graminearum and Ustilago maydis at higher concentrations. Dividing the peptides into smaller pieces showed that a 15-amino-acid peptide located in a highly variable loop region lacking similarity to other defensins or defensin-like peptides binds to maize pollen tube surfaces, causing swelling prior to burst. This peptide fragment and a second conserved neighbouring fragment showed suppression of fungal germination and growth. The two peptides caused swelling of fungal cells, production of reactive oxygen species, and finally the formation of big vacuoles prior to burst at high peptide concentration. Furthermore, peptide fragments were found to bind differently to fungal cells. In necrotrophic F. graminearum, a peptide fragment named ES-d bound only at cell surfaces whereas the peptide ES-c bound at cell surfaces and also accumulated inside cells. Conversely, in biotrophic U. maydis, both peptide fragments accumulated inside cells, but, if applied at higher concentration, ES-c but not ES-d accumulated mainly in vacuoles. Mapping of peptide interaction sites identified amino acids differing in pollen tube burst and fungal response reactions. In summary, these findings indicate that residues targeting pollen tube burst in maize are specific to the ES family, while residues targeting fungal growth are conserved within defensins and defensin-like peptides. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Huitlacoche yield in some maize varieties in the Mediterranean region of Turkey

    Directory of Open Access Journals (Sweden)

    Mehmet Aydoğdu

    2015-06-01

    Full Text Available Huitlacoche is the Aztecs name given to the smut galls on ears of maize caused by the pathogenic plant fungus Ustilago maydis [(DC Corda.]. It is known as maize mushroom, and it has been considered a delicacy and in Mesoamerica. The aim of the present study was to determine the responses of some maize varieties to the growth of the fungus in order to evaluate the prospect production of these smutty ears as a maize mushroom. A 2-year study was conducted in the Mediterranean region of Turkey in 2010 and 2011. Inoculations were performed by injecting inoculum into the ear through the silk channel of plants in plots. Each treatment had control plots. Average ear-gall (huitlacoche severity and incidence of all the varieties were at the rates of 4.0 and 41.6%, respectively. However, the highest severity of ear-gall (6.5 and incidence (60.6% were found in Karadeniz Yıldızı flint maize variety; colossal smutty ears were formed in the maize cultivars. This study showed that certain maize cultivars (flint corn and dent corn can be used efficiently in the production of huitlacoche.

  5. Capacidade de combinação em milho para resistência a Cercospora zeae-maydis Combining ability in maize for resistance to the Cercospora zeae-maydis

    OpenAIRE

    Marcio José Engelsing; Diane Simon Rozzetto; Jefferson Luís Meirelles Coimbra; Claitson Gustavo Zanin; Altamir Frederico Guidolin

    2011-01-01

    A resistência obtida pelo componente genético é um dos métodos mais eficientes de controle das doenças foliares da cultura do milho. Para avaliar a capacidade geral de combinação (CGC), capacidade específica de combinação (CEC), recíprocos, efeito materno e não-materno para resistência a Cercospora zeae-maydis, cinco linhagens (A, B, C, D e E) foram cruzadas e os vinte híbridos obtidos foram utilizados em experimentos conduzidos em três ambientes. Foram avaliados a severidade da cercosporiose...

  6. La marchitez tardía del maíz (Zea mays L. causada por Cephalosporium maydis en la Península Ibérica, y otros hongos asociados

    Directory of Open Access Journals (Sweden)

    Carmen Maria Ortiz-Bustos

    2015-06-01

    Full Text Available Las especies de hongos de suelo asociadas a Cephalosporium maydis como agente causal de la marchitez tardía del maíz en la Península Ibérica se identificaron muestreando 19 campos con síntomas de marchitez en las principales zonas de cultivo entre 2011 y 2012. En el 47% de los campos no se identificó C. maydis, pero sí Fusarium graminearum, F. verticillioides, F. equiseti, F. proliferatum, Macrophomina phaseolina, Rhizoctonia solani y Trichoderma harzianum infectando las plantas de maíz. En los campos restantes, junto a C. maydis se identificaron otros hongos de suelo en porcentajes apreciables: F. verticillioides (19%, F. proliferatum (19%, F.equiseti (9%, F. oxysporum (9% y Pythium oligandrum (9%. El crecimiento vascular de C. maydis y de otras especies fúngicas en plantas de maíz se confirmó analizando plantas con marchitez procedentes de tres campos diferentes. Tanto C. maydis como F. graminearum, F. equiseti, F. proliferatum y T. harzianum se aislaron de la inserción entre la raíz y tallo y a 10 cm de altura en el tallo de las plantas. El efecto de la infección por C. maydis sobre la producción de las plantas de maíz se cuantificó en macetas y condiciones seminaturales en el 2011. En plantas inoculadas se obtuvo una reducción del peso de las mazorcas del 54%, además de pesos de raíz y de parte aérea (tallo y hojas significativamente menores en comparación con el control no inoculado, lo que sugiere el gran impacto económico que puede tener la marchitez tardía en condiciones naturales. Asimismo este trabajo pone de manifiesto el grado de complejidad de la etiología de la marchitez tardía, que debería ser estudiado mediante la confirmación de la patogenicidad de los hongos de suelo identificados en maíz, con el fin de determinar el papel que puede jugar cada una de estas especies en el desarrollo de la enfermedad y/o severidad de los síntomas.

  7. Resistance in barley against Drechslera teres induced by Bipolaris maydis and Septoria nodorum

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jørgen Lyngs; Lobeck, P.S.; Thordal-Christensen, Hans

    1998-01-01

    1.4.31 RESISTANCE IN BARLEY AGAINST DRECHSLERA TERES INDUCED BY BIPOLARIS MAYDIS AND SEPTORIA NODORUM HJL JORGENSEN, PS LOBECK, H THORDAL-CHRISTENSEN, E de NEERGAARD and V SMEDEGAARD-PETERSEN Department of Plant Biology, Royal Veterinary and Agricultural University, Thorvaidsensvej 40, DK-1871 Fr...

  8. A Novel Radiation-Resistant Yeast, Filobasidium elegans RRY1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harinder; Kim, Ha Ram; Song, Hyun Pa; Lim, Sang Yong; Kim, Dong Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2012-05-15

    The tolerance to ionizing radiation stress is present among different classes and species of organisms. As listed by Rainey et al., ionizing radiation resistant organisms were isolated from a variety of different sources like processed/canned food items, paper industry, soil and water samples. Apart from extensively reported bacteria and Archea group, many fungal species like Aspergillus, Curvularia, Alternaria, Cryptococcus, and Ustilago maydis have been found to be resistant to ionizing radiation. However, different environmental sources are constantly been explored for novel radioresistant organisms, which can help in understanding the molecular mechanism behind these extreme stress responses. On the basis of this, present study was initiated to find novel radiation resistant yeast from sea water source

  9. Chemical Genetics — A Versatile Method to Combine Science and Higher Level Teaching in Molecular Genetics

    Directory of Open Access Journals (Sweden)

    Björn Sandrock

    2012-10-01

    Full Text Available Phosphorylation is a key event in many cellular processes like cell cycle, transformation of environmental signals to transcriptional activation or polar growth. The chemical genetics approach can be used to analyse the effect of highly specific inhibition in vivo and is a promising method to screen for kinase targets. We have used this approach to study the role of the germinal centre kinase Don3 during the cell division in the phytopathogenic fungus Ustilago maydis. Due to the easy determination of the don3 phenotype we have chosen this approach for a genetic course for M.Sc. students and for IMPRS (International Max-Planck research school students. According to the principle of “problem-based learning” the aim of this two-week course is to transfer knowledge about the broad spectrum of kinases to the students and that the students acquire the ability to design their own analog-sensitive kinase of interest. In addition to these training goals, we benefit from these annual courses the synthesis of basic constructs for genetic modification of several kinases in our model system U. maydis.

  10. Microcycle Conidiation in Cercospora zeae-maydis.

    Science.gov (United States)

    Lapaire, Carrie L; Dunkle, Larry D

    2003-02-01

    ABSTRACT Conidia of Cercospora zeae-maydis are the primary inoculum causing gray leaf spot of maize. On nutrient-deficient substrates, but not on water on the leaf surface, conidia germinate and develop secondary conidia on conidiophores produced from germ tubes or conidial cells. A population of conidia increases its numbers more than twofold by 2 days on the surface of a water droplet and by fourfold on trichomes. This microcycle conidiation is suppressed by hydrogen peroxide and ammonium compounds but not by nitrate compounds, amino acids, or simple sugars. Microcycle conidiation is sensitive to alpha-amanitin and cycloheximide, suggesting that new RNA and proteins must be synthesized. Upon transfer from a humid to a dry atmosphere, secondary conidia and conidiophores dehydrate and collapse. Mature, dehydrated, secondary conidia are liberated by wind speeds approximately one-third those required to liberate hydrated conidia. The dispersed secondary conidia can rehydrate and germinate normally. Because this microcycle conidiation occurs at the expense of endogenous reserves, the ability to produce secondary conidia is lost after four successive cycles without a period of growth on nutrient media. This alternative method of maintaining inoculum potential during periods of fluctuating relative humidity may have epidemiological consequences when primary conidia fail to infect.

  11. Heritability and Components of Resistance to Cercospora zeae-maydis Derived from Maize Inbred VO613Y.

    Science.gov (United States)

    Gordon, Stuart G; Lipps, Patrick E; Pratt, Richard C

    2006-06-01

    ABSTRACT Gray leaf spot (GLS), caused by the fungus Cercospora zeae-maydis, is one of the most important foliar diseases of maize. This study was undertaken to estimate heritability of C. zeae-maydis resistance and examine the relationship between previously identified resistance loci and certain components of resistance including incubation period, lesion number, and maximum lesion length. Partially inbred progenies arising from hybridization between maize inbred lines VO613Y (high level of partial resistance) and Pa405 (susceptible) were examined in Ohio and South Africa. Heritability estimates of resistance were calculated based on severity and incubation period values. The range of heritability estimates based on severity was broad, with values ranging from approximately 0.46 to 0.81 (mean = 0.59). Estimates of mean heritability for incubation period were lowest (0.18), indicating that this component would likely be unsuitable for selection of germ plasm intended for deployment in diverse regions. Length of GLS lesions was significantly affected by host genotype, with resistant genotypes having shorter lesions from one site in Ohio during two seasons. Genotype also had a significant effect on incubation period and lesion number; the lower values for these components also were associated with resistant genotypes. The combined action of these resistance components resulted in lower overall disease severity.

  12. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi.

    Directory of Open Access Journals (Sweden)

    Jennifer Pöhlmann

    2014-09-01

    Full Text Available Microtubules (MTs are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.

  13. Efeito do meio de cultura e do regime de luz na esporulação de Cercospora zeae-maydis Effect of culture media and light exposure on the sporulation of Cercospora zeae-maydis

    Directory of Open Access Journals (Sweden)

    Kátia Regiane Brunelli

    2006-03-01

    Full Text Available Algumas espécies fúngicas não esporulam satisfatoriamente em meio de cultura, a exemplo de Cercospora zeae-maydis, agente causal da cercosporiose do milho. A esporulação deste patógeno foi avaliada em sete meios de cultura agarizados (V8, suco de tomate temperado, água de coco, aveia, BDA, extrato de folha de milho e extrato de folha de milho + CaCO3 sob dois regimes luminosos (fotoperíodo de 12 horas e seqüencial - 6 dias claro/3 dias escuro. O ensaio foi conduzido em esquema fatorial 7 x 2, com os tratamentos dispostos em delineamento inteiramente casualizado com cinco repetições. A parcela experimental compreendeu uma placa de petri contendo 20 mL de meio de cultura sobre o qual foram colocados 200 mL de uma suspensão de 8 x 10(4 esporos/mL. As culturas foram posteriormente incubadas a 27ºC durante nove dias. Os meios V8 e suco de tomate temperado (STT sob regime de fotoperíodo 12h/12h, foram aqueles que apresentaram melhor indução de esporulação, resultando na produção de 22,4 x 10(4 conídios/ mL e 28,62 x 10(4 conídios/mL, respectivamente.Some fungal species, like Cercospora zeae-maydis, causal agent of maize gray leaf spot, do not satisfactorily produce spores in artificial media. The conidial production of C. zeae-maydis was evaluated on seven culture media (V8, tomato juice, coconut water, oat, PDA, maize leaf extract and maize leaf extract plus CaCO3 under two light exposure regimens (12-hours photoperiod or six days under continuous light followed by three days of continuous darkness. The experiment was arranged as a 7 x 2 factorial design in a completely randomized design with five replicates. A single petri dish containing 20 mL of culture media inoculated with 200 mL of conidial suspension (8 x 10(4 conidia/mL comprised the experimental unit. Plates were incubated at 27ºC for nine days. The highest conidial production was obtained on V8 and tomato juice media under 12-hours photoperiod, resulting in the

  14. Researches on detection of barley varieties and lines against Ustilago nuda hordei “Jens.â€? Rostr. Schaffn.in Marmara Region

    OpenAIRE

    Gümüştekin, H.; Akın, K.

    2008-01-01

    This research has been started in 1994 to test barley varieties and lines against Ustilago nuda hordei “Jens.â€? Rostr. Schaffn. In 1994, 14 barley varieties and lines and in 1995 23 barley varieties and lines were tested. After testing 37 varieties and lines, 27 of them were found resistant (R), and 10 of them susceptible (S).

  15. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    International Nuclear Information System (INIS)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-01-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, γ-carotene; and one yellow mutant, β-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange-yellow, respectively. The white mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants

  16. PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development.

    Science.gov (United States)

    Bluhm, B H; Dunkle, L D

    2008-10-01

    DNA photolyases harvest light energy to repair genomic lesions induced by UV irradiation, whereas cryptochromes, presumptive descendants of 6-4 DNA photolyases, have evolved in plants and animals as blue-light photoreceptors that function exclusively in signal transduction. Orthologs of 6-4 photolyases are predicted to exist in the genomes of some filamentous fungi, but their function is unknown. In this study, we identified two putative photolyase-encoding genes in the maize foliar pathogen Cercospora zeae-maydis: CPD1, an ortholog of cyclobutane pyrimidine dimer (CPD) photolyases described in other filamentous fungi, and PHL1, a cryptochrome/6-4 photolyase-like gene. Strains disrupted in PHL1 (Deltaphl1) displayed abnormalities in development and secondary metabolism but were unaffected in their ability to infect maize leaves. After exposure to lethal doses of UV light, conidia of Deltaphl1 strains were abolished in photoreactivation and displayed reduced expression of CPD1, as well as RAD2 and RVB2, orthologs of genes involved in nucleotide excision and chromatin remodeling during DNA damage repair. This study presents the first characterization of a 6-4 photolyase ortholog in a filamentous fungus and provides evidence that PHL1 regulates responses to UV irradiation.

  17. Efeito do meio de cultura e do regime de luz na esporulação de Cercospora zeae-maydis Effect of culture media and light exposure on the sporulation of Cercospora zeae-maydis

    OpenAIRE

    Kátia Regiane Brunelli; Ana Carolina Fazza; Cândido Athayde Sobrinho; Luis Eduardo Aranha Camargo

    2006-01-01

    Algumas espécies fúngicas não esporulam satisfatoriamente em meio de cultura, a exemplo de Cercospora zeae-maydis, agente causal da cercosporiose do milho. A esporulação deste patógeno foi avaliada em sete meios de cultura agarizados (V8, suco de tomate temperado, água de coco, aveia, BDA, extrato de folha de milho e extrato de folha de milho + CaCO3) sob dois regimes luminosos (fotoperíodo de 12 horas e seqüencial - 6 dias claro/3 dias escuro). O ensaio foi conduzido em esquema fatorial 7 x ...

  18. Brh2-Dss1 interplay enables properly controlled recombination in Ustilago maydis

    DEFF Research Database (Denmark)

    Kojic, Milorad; Zhou, Qingwen; Lisby, Michael

    2005-01-01

    after DNA damage was almost fully restored by a chimeric form of Brh2 having a DNA-binding domain from RPA70 fused to the Brh2 N-terminal domain, but Rad51 focus formation and mitotic recombination were elevated above wild-type levels. The results provide evidence for a mechanism in which Dss1 activates...

  19. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review.

    Science.gov (United States)

    Hasanudin, Khairunnisa; Hashim, Puziah; Mustafa, Shuhaimi

    2012-08-13

    Corn silk (Stigma maydis) is an important herb used traditionally by the Chinese, and Native Americans to treat many diseases. It is also used as traditional medicine in many parts of the world such as Turkey, United States and France. Its potential antioxidant and healthcare applications as diuretic agent, in hyperglycemia reduction, as anti-depressant and anti-fatigue use have been claimed in several reports. Other uses of corn silk include teas and supplements to treat urinary related problems. The potential use is very much related to its properties and mechanism of action of its plant's bioactive constituents such as flavonoids and terpenoids. As such, this review will cover the research findings on the potential applications of corn silk in healthcare which include its phytochemical and pharmacological activities. In addition, the botanical description and its toxicological studies are also included.

  20. Development of a UPLC-MS/MS Method for Simultaneous Determination of Six Flavonoids in Rat Plasma after Administration of Maydis stigma Extract and Its Application to a Comparative Pharmacokinetic Study in Normal and Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bin-Bin Wei

    2017-07-01

    Full Text Available Maydis stigma is an important medicine herb used in many parts of the world for treatment of diabetes mellitus, which main bioactive ingredients are flavonoids. This paper describes for the first time a study on the comparative pharmacokinetics of six active flavonoid ingredients of Maydis stigma in normal and diabetic rats orally administrated with the decoction. Therefore, an efficient and sensitive ultra high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS method for the simultaneous determination of six anti-diabetic ingredients (cynaroside, quercetin, luteolin, isorhamnetin, rutin and formononetin of Maydis stigma in rat plasma has been developed and validated in plasma samples, which showed good linearity over a wide concentration range (r2 > 0.99, and gave a lower limit of quantification of 1.0 ng·mL−1 for the analytes. The intra- and interday assay variability was less than 15% for all analytes. The mean extraction recoveries and matrix effect of analytes and IS from rats plasma were all more than 85.0%. The stability results showed the measured concentration for six analytes at three QC levels deviated within 15.0%. The results indicated that significant differences in the pharmacokinetic parameters of the analytes were observed between the two groups of animals, whereby the absorptions of these analytes in the diabetic group were all significantly higher than those in the normal group, which provides an experimental basis for the role of Maydis stigma in anti-diabetic treatment.

  1. The effect of some organic substances on the mycelium of the fungus Ustilago nuda (Jens.) Rostr.

    Science.gov (United States)

    Krátká, J

    1976-01-01

    Research was performed for studying the effect of some organic compounds, considered by many authors as the products ob barley seed metabolism generated after anaerobic seed treatment, on the mycelium of the fungus Ustilago nuda (Jens.) Rostr. The author examined the effectiveness of ethylacohol, acetaldehyde, acetic acid, succinic acid, lactic acid, and hydroquinone in concentrations from 1 M to 10(-6) M, and the effectiveness of extracts from disinfected seeds in doses from 10 g to 0.001 g/l. The effect of the mentioned solutions was examined as exerted on the growth of dicaryotic mycelium and on the growth of the haploid promycelium of the fungus. The dicaryotic mycelium of Ustilago nuda (Jens.) Rostr. was cultivated on potato agar with benzoic acid. The presence of the acid prevents mitosis, and the chlamydospores germinate on the nutritive medium with two fibres having binuclear cells. The haploid promycelium was cultivated on potato agar; chlamydospores germinated with one four-cell fibre, and individual cells are mononuclear and haploid. Only later, a dicarytic mycelium is created in a complex process. In all the substances used, the concentration of 1 M was found to stop further growth of mycelium. The concentration of 10(-1) M of acetic acid and hydroquinone also stopped growth, the same concentration of acetaldehyde, lactic acid, succinic acid, ethylacohol stimulated mycelium growth in comparison with the control. The concentration of 10(-6) M stimulated mycelium growth in a majority of cases. Extracts from disinfected seeds did not influence mycelium growth significantly in all cases in comparison with the control. The results were similar in the two types of mycelium.

  2. Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust.

    Science.gov (United States)

    Rochi, Lucia; Diéguez, María José; Burguener, Germán; Darino, Martín Alejandro; Pergolesi, María Fernanda; Ingala, Lorena Romina; Cuyeu, Alba Romina; Turjanski, Adrián; Kreff, Enrique Domingo; Sacco, Francisco

    2018-03-01

    Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution.

    Science.gov (United States)

    Bolton, Melvin D; de Jonge, Ronnie; Inderbitzin, Patrik; Liu, Zhaohui; Birla, Keshav; Van de Peer, Yves; Subbarao, Krishna V; Thomma, Bart P H J; Secor, Gary A

    2014-01-01

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species. Published by Elsevier Inc.

  4. Stable carbon isotope discrimination in the smut fungus Ustilago violacea

    International Nuclear Information System (INIS)

    Will, O.H. III; Tieszen, L.L.; Kellen, M.; Gerlach, T.

    1986-01-01

    Haploid strains 15.10, I.C429, and I.C2y and diploid strain JK2 of Ustilago Piolacea were grown on one or more of the following carbon sources: glucose, sucrose, maltose, inulin, starch, inositol, glycerol, casein, and yeast extract. The media, both before and after fungal growth, and the fungal cells were analyzed for 13 C/ 12 C content (δ 13 values) using an isotope ratio mass spectrometer after combustion to CO 2 . In all cases, the used and unused media had identical δ 13 C values. Strain 15.10 had significantly less 13 C than the media when grown on glucose, sucrose, maltose, and inositol; significantly more 13 C when grown on inulin, starch, and glycerol; and no significant difference in δ 13 C values when grown on casein and yeast extract media. Other haploid strains responded similarly to 15.10. Diploid strain JK2 was also depleted in 13 C when grown on glucose and enriched in 13 C when grown on glycerol; however, JK2 was slightly depleted in 13 C when grown on casein, whereas all the tested haploid strains were enriched in 13 C

  5. Resistance of Hordeum chilense against loose smuts of wheat and barley (Ustilago tritici and U. nuda) and its expression in amphiploids with wheat

    OpenAIRE

    Rubiales, Diego; Moral, Ana

    2011-01-01

    Hordeum chilense is wild barley with high potential for cereal breeding purposes given its high crossability with other members of the Triticeae tribe. It is resistant to loose smuts of wheat (Ustilago tritici). The resistance is expressed in xTritordeum amphipoids, offering perspectives for its utilization both in tritordeum breeding and for its transfer to wheat. H. chilense and tritordeums are also resistant to barley loose smut (U. nuda). © 2010 Blackwell Verlag GmbH.

  6. Systemic fungicidal activity of 1,4-oxathiin derivatives.

    Science.gov (United States)

    Schmeling, B V; Kulka, M

    1966-04-29

    Treatment of pinto bean and barley seed with 1,4-oxathiin derivatives gave disease control by systemic fungicidal action of such pathogenic fungi as Uromyces phaseoli and Ustilago nuda. The two chemicals, D735 and F461, were highly specific and selective against the pathogens without injury of the hosts.

  7. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    Science.gov (United States)

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  8. Corn Silk (Stigma Maydis in Healthcare: A Phytochemical and Pharmacological Review

    Directory of Open Access Journals (Sweden)

    Shuhaimi Mustafa

    2012-08-01

    Full Text Available Corn silk (Stigma maydis is an important herb used traditionally by the Chinese, and Native Americans to treat many diseases. It is also used as traditional medicine in many parts of the world such as Turkey, United States and France. Its potential antioxidant and healthcare applications as diuretic agent, in hyperglycemia reduction, as anti-depressant and anti-fatigue use have been claimed in several reports. Other uses of corn silk include teas and supplements to treat urinary related problems. The potential use is very much related to its properties and mechanism of action of its plant’s bioactive constituents such as flavonoids and terpenoids. As such, this review will cover the research findings on the potential applications of corn silk in healthcare which include its phytochemical and pharmacological activities. In addition, the botanical description and its toxicological studies are also included.

  9. Complementation of CTB7 in the Maize Pathogen Cercospora zeina Overcomes the Lack of In Vitro Cercosporin Production.

    Science.gov (United States)

    Swart, Velushka; Crampton, Bridget G; Ridenour, John B; Bluhm, Burt H; Olivier, Nicholas A; Meyer, J J Marion; Berger, Dave K

    2017-09-01

    Gray leaf spot (GLS), caused by the sibling species Cercospora zeina or Cercospora zeae-maydis, is cited as one of the most important diseases threatening global maize production. C. zeina fails to produce cercosporin in vitro and, in most cases, causes large coalescing lesions during maize infection, a symptom generally absent from cercosporin-deficient mutants in other Cercospora spp. Here, we describe the C. zeina cercosporin toxin biosynthetic (CTB) gene cluster. The oxidoreductase gene CTB7 contained several insertions and deletions as compared with the C. zeae-maydis ortholog. We set out to determine whether complementing the defective CTB7 gene with the full-length gene from C. zeae-maydis could confer in vitro cercosporin production. C. zeina transformants containing C. zeae-maydis CTB7 were generated by Agrobacterium tumefaciens-mediated transformation and were evaluated for in vitro cercosporin production. When grown on nitrogen-limited medium in the light-conditions conducive to cercosporin production in other Cercospora spp.-one transformant accumulated a red pigment that was confirmed to be cercosporin by the KOH assay, thin-layer chromatography, and ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Our results indicated that C. zeina has a defective CTB7, but all other necessary machinery required for synthesizing cercosporin-like molecules and, thus, C. zeina may produce a structural variant of cercosporin during maize infection.

  10. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    Directory of Open Access Journals (Sweden)

    Azusa Saika

    Full Text Available Mannosylerythritol lipids (MELs belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S-erythritol (R-form as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R-erythritol (S-form as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.

  11. Efficacy of Newer Molecules, Bioagents and Botanicals against Maydis Leaf Blight and Banded Leaf and Sheath Blight of Maize

    Science.gov (United States)

    Malik, Vinod Kumar; Singh, Manjeet; Hooda, Karambir Singh; Yadav, Naresh Kumar; Chauhan, Prashant Kumar

    2018-01-01

    Maize (Zea mays L.; 2N=20) is major staple food crop grown worldwide adapted to several biotic and abiotic stresses. Maydis leaf blight (MLB) and banded leaf and sheath blight (BLSB) are serious foliar fungal diseases may cause up to 40% and 100% grain yield loss, respectively. The present studies were undertaken to work out the efficacy of chemicals, botanicals and bioagents for the management of MLB and BLSB under field condition for two seasons Kharif 2014 and 2015. Five molecules (propiconazole 25 EC, hexaconazole 25 EC, carbendazim 50 WP, mancozeb 75 WP and carbedazim 12 WP + mancozeb 63 WP), two bioagents i.e. Trichoderma harzianum and T. viridae and three botanicals namely azadirachtin, sarpagandha and bel pathar were tested for their efficacy against MLB. Eight newer fungicides viz., difenconazole 250 SC, hexaconazole 5 EC, carbendazim 50WP, validamycin 3 L, tebuconazole 250 EC, trifloxystrobin 50 WG + tebuconazole 50 WG, azoxystrobin 250 EC and pencycuron 250 SC were evaluated against BLSB. Analysis revealed significant effects of propiconazole at 0.1%, carbendazim 12 WP + mancozeb 63 WP at 0.125% and sarpagandha leaves at 10% against MLB pathogen, whereas validamycin at 0.1% and trifloxystrobin 25 WG + tebuconazole 50 WG at 0.05% were found effective against BLSB. The slow rate of disease control virtually by the bioagents might have not shown instant effect on plant response to the yield enhancing components. The identified sources of management can be used further in strengthening the plant protection in maize against MLB and BLSB. PMID:29628818

  12. Efficacy of Newer Molecules, Bioagents and Botanicals against Maydis Leaf Blight and Banded Leaf and Sheath Blight of Maize.

    Science.gov (United States)

    Malik, Vinod Kumar; Singh, Manjeet; Hooda, Karambir Singh; Yadav, Naresh Kumar; Chauhan, Prashant Kumar

    2018-04-01

    Maize ( Zea mays L.; 2N=20) is major staple food crop grown worldwide adapted to several biotic and abiotic stresses. Maydis leaf blight (MLB) and banded leaf and sheath blight (BLSB) are serious foliar fungal diseases may cause up to 40% and 100% grain yield loss, respectively. The present studies were undertaken to work out the efficacy of chemicals, botanicals and bioagents for the management of MLB and BLSB under field condition for two seasons Kharif 2014 and 2015. Five molecules (propiconazole 25 EC, hexaconazole 25 EC, carbendazim 50 WP, mancozeb 75 WP and carbedazim 12 WP + mancozeb 63 WP), two bioagents i.e. Trichoderma harzianum and T. viridae and three botanicals namely azadirachtin, sarpagandha and bel pathar were tested for their efficacy against MLB. Eight newer fungicides viz., difenconazole 250 SC, hexaconazole 5 EC, carbendazim 50WP, validamycin 3 L, tebuconazole 250 EC, trifloxystrobin 50 WG + tebuconazole 50 WG, azoxystrobin 250 EC and pencycuron 250 SC were evaluated against BLSB. Analysis revealed significant effects of propiconazole at 0.1%, carbendazim 12 WP + mancozeb 63 WP at 0.125% and sarpagandha leaves at 10% against MLB pathogen, whereas validamycin at 0.1% and trifloxystrobin 25 WG + tebuconazole 50 WG at 0.05% were found effective against BLSB. The slow rate of disease control virtually by the bioagents might have not shown instant effect on plant response to the yield enhancing components. The identified sources of management can be used further in strengthening the plant protection in maize against MLB and BLSB.

  13. Efficacy of Newer Molecules, Bioagents and Botanicals against Maydis Leaf Blight and Banded Leaf and Sheath Blight of Maize

    Directory of Open Access Journals (Sweden)

    2018-04-01

    Full Text Available Maize (Zea mays L.; 2N=20 is major staple food crop grown worldwide adapted to several biotic and abiotic stresses. Maydis leaf blight (MLB and banded leaf and sheath blight (BLSB are serious foliar fungal diseases may cause up to 40% and 100% grain yield loss, respectively. The present studies were undertaken to work out the efficacy of chemicals, botanicals and bioagents for the management of MLB and BLSB under field condition for two seasons Kharif 2014 and 2015. Five molecules (propiconazole 25 EC, hexaconazole 25 EC, carbendazim 50 WP, mancozeb 75 WP and carbedazim 12 WP + mancozeb 63 WP, two bioagents i.e. Trichoderma harzianum and T. viridae and three botanicals namely azadirachtin, sarpagandha and bel pathar were tested for their efficacy against MLB. Eight newer fungicides viz., difenconazole 250 SC, hexaconazole 5 EC, carbendazim 50WP, validamycin 3 L, tebuconazole 250 EC, trifloxystrobin 50 WG + tebuconazole 50 WG, azoxystrobin 250 EC and pencycuron 250 SC were evaluated against BLSB. Analysis revealed significant effects of propiconazole at 0.1%, carbendazim 12 WP + mancozeb 63 WP at 0.125% and sarpagandha leaves at 10% against MLB pathogen, whereas validamycin at 0.1% and trifloxystrobin 25 WG + tebuconazole 50 WG at 0.05% were found effective against BLSB. The slow rate of disease control virtually by the bioagents might have not shown instant effect on plant response to the yield enhancing components. The identified sources of management can be used further in strengthening the plant protection in maize against MLB and BLSB.

  14. Conversion of BAC Clones into Binary BAC (BIBAC) Vectors and Their Delivery into Basidiomycete Fungal Cells Using Agrobacterium tumefaciens

    KAUST Repository

    Ali, Shawkat

    2014-09-19

    The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Ustilago where they stably integrated into their genome. To this end, Bacterial Artificial Chromosome (BAC) clones containing large fungal genomic DNA fragments were converted via a Lambda phage-based recombineering step to Agrobacterium transfer-competent binary vectors (BIBACs) with a Ustilago-specific selection marker. The fungal genomic DNA fragment was subsequently successfully delivered as T-DNA through Agrobacterium-mediated transformation into Ustilago species where an intact copy stably integrated into the genome. By modifying the recombineering vector, this method can theoretically be adapted for many different fungi.

  15. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, H L [East Anglia Univ., Norwich (UK). School of Biological Sciences

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is.

  16. Inheritance of Carboxin Resistance in a European Field Isolate of Ustilago nuda.

    Science.gov (United States)

    Newcombe, G; Thomas, P L

    2000-02-01

    ABSTRACT Two carboxin-resistant field isolates of Ustilago nuda from Europe were crossed with a carboxin-sensitive field isolate from North America. Meiotic tetrads isolated from germinating F(1) teliospores of one of the hybrids were tested for carboxin resistance and mating type. Carboxin resistance was shown to be controlled by a single gene (CBX1R), because a 1:1 segregation of carboxin resistance was observed in all 27 tetrads. Tetrad analysis indicated that the loci for carboxin resistance (Cbx1) and mating type (MAT1) segregate independently but may be located on the same chromosome. Tetrad analysis was not possible with the F(1) hybrid of he other field isolate, and its resistance cannot yet be attributed to CBX1R. Carboxin resistance was qualitatively dominant to sensitivity in vitro, as demonstrated by triad analysis of germinating F(1) teliospores. Quantitative in planta infection percents supported the conclusion that CBX1R is dominant, although incompletely, in the F(1) hybrid of one of the field isolates. Also, fewer than expected carboxin-sensitive F(2) individuals were observed in planta. However, inoculations of host plants with U. nuda have resulted in similar, unexpected variation in the past.

  17. The Corn Smut ('Huitlacoche' as a New Platform for Oral Vaccines.

    Directory of Open Access Journals (Sweden)

    Margarita Juárez-Montiel

    Full Text Available The development of new alternative platforms for subunit vaccine production is a priority in the biomedical field. In this study, Ustilago maydis, the causal agent of common corn smut or 'huitlacoche'has been genetically engineered to assess expression and immunogenicity of the B subunit of the cholera toxin (CTB, a relevant immunomodulatory agent in vaccinology. An oligomeric CTB recombinant protein was expressed in corn smut galls at levels of up to 1.3 mg g-1 dry weight (0.8% of the total soluble protein. Mice orally immunized with 'huitlacoche'-derived CTB showed significant humoral responses that were well-correlated with protection against challenge with the cholera toxin (CT. These findings demonstrate the feasibility of using edible corn smut as a safe, effective, and low-cost platform for production and delivery of a subunit oral vaccine. The implications of this platform in the area of molecular pharming are discussed.

  18. The Corn Smut (‘Huitlacoche’) as a New Platform for Oral Vaccines

    Science.gov (United States)

    Juárez-Montiel, Margarita; Romero-Maldonado, Andrea; Monreal-Escalante, Elizabeth; Becerra-Flora, Alicia; Korban, Schuyler S.; Rosales-Mendoza, Sergio; Jiménez-Bremont, Juan Francisco

    2015-01-01

    The development of new alternative platforms for subunit vaccine production is a priority in the biomedical field. In this study, Ustilago maydis, the causal agent of common corn smut or ‘huitlacoche’has been genetically engineered to assess expression and immunogenicity of the B subunit of the cholera toxin (CTB), a relevant immunomodulatory agent in vaccinology. An oligomeric CTB recombinant protein was expressed in corn smut galls at levels of up to 1.3 mg g-1 dry weight (0.8% of the total soluble protein). Mice orally immunized with ‘huitlacoche’-derived CTB showed significant humoral responses that were well-correlated with protection against challenge with the cholera toxin (CT). These findings demonstrate the feasibility of using edible corn smut as a safe, effective, and low-cost platform for production and delivery of a subunit oral vaccine. The implications of this platform in the area of molecular pharming are discussed. PMID:26207365

  19. Dss1 interaction with Brh2 as a regulatory mechanism for recombinational repair

    DEFF Research Database (Denmark)

    Zhou, Qingwen; Kojic, Milorad; Cao, Zhimin

    2007-01-01

    Brh2, the BRCA2 ortholog in Ustilago maydis, enables recombinational repair of DNA by controlling Rad51 and is in turn regulated by Dss1. Interplay with Rad51 is conducted via the BRC element located in the N-terminal region of the protein and through an unrelated domain, CRE, at the C terminus....... Mutation in either BRC or CRE severely reduces functional activity, but repair deficiency of the brh2 mutant can be complemented by expressing BRC and CRE on different molecules. This intermolecular complementation is dependent upon the presence of Dss1. Brh2 molecules associate through the region...... overlapping with the Dss1-interacting domain to form at least dimer-sized complexes, which in turn, can be dissociated by Dss1 to monomer. We propose that cooperation between BRC and CRE domains and the Dss1-provoked dissociation of Brh2 complexes are requisite features of Brh2's molecular mechanism...

  20. Caractéristiques des souches d'Ustilago nuda, agent du charbon nu de l'orge, résistantes à la carboxine

    OpenAIRE

    Leroux , Pierre

    1986-01-01

    Des souches d’Ustilago nuda, agent du charbon nu de l’orge, résistantes à la carboxine ont été détectées en France et dans d’autres pays européens. Une résistance croisée positive s’observe entre ce fongicide, le fenfuram, la pyracarbolide et divers autres analogues structuraux ; le mépronil se singularise car il est plus toxique pour les isolats résistants à la carboxine que pour les isolats sensibles. Toutes les souches sont affectées de la même manière par l’antimycine A, l’azide de so...

  1. Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex.

    Science.gov (United States)

    Groenewald, Marizeth; Groenewald, Johannes Z; Harrington, Thomas C; Abeln, Edwin C A; Crous, Pedro W

    2006-12-01

    The genus Cercospora consists of numerous important, apparently asexual plant pathogens. We designed degenerate primers from homologous sequences in related species to amplify part of the C. apii, C. apiicola, C. beticola, C. zeae-maydis and C. zeina mating type genes. Chromosome walking was used to determine the full length mating type genes of these species. Primers were developed to amplify and sequence homologous portions of the mating type genes of additional species. Phylogenetic analyses of these sequences revealed little variation among members of the C. apii complex, whereas C. zeae-maydis and C. zeina were found to be dissimilar. The presence of both mating types in approximately even proportions in C. beticola, C. zeae-maydis and C. zeina populations, in contrast to single mating types in C. apii (MAT1) and C. apiicola (MAT2), suggests that a sexual cycle may be active in some of these species.

  2. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    International Nuclear Information System (INIS)

    Fletcher, H.L.

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is. (orig./AJ)

  3. Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex

    NARCIS (Netherlands)

    Groenewald, M.; Groenewald, J.Z.; Harrington, T.C.; Abeln, E.C.A.; Crous, P.W.

    2006-01-01

    The genus Cercospora consists of numerous important, apparently asexual plant pathogens. We designed degenerate primers from homologous sequences in related species to amplify part of the C. apii, C. apiicola, C. beticola, C. zeae-maydis and C. zeina mating type genes. Chromosome walking was used to

  4. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Science.gov (United States)

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  5. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Directory of Open Access Journals (Sweden)

    Yuridia Mercado-Flores

    2011-08-01

    Full Text Available Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease.

  6. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking.

    Directory of Open Access Journals (Sweden)

    Carl Haag

    2017-04-01

    Full Text Available In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport.

  7. Genetics of Ustilago violacea. XXXII. Genetic evidence for transposable elements.

    Science.gov (United States)

    Garber, E D; Ruddat, M

    1994-12-01

    Crosses between Ustilago violacea mutant strains with different color phenotypes that were derived from the 1.A1 and 2.A2 laboratory strains yielded, as expected, bisectored teliospore colonies with the parental colors as well as the a-1 and the a-2 mating-types. Generally, wild teliospore collections usually produced sporidia of both mating-types, providing two-mating-type (TMT) strains. Occasionally, however, sporidia with only one mating-type allele, a-1 or a-2, were obtained from teliospores, providing one-mating-type (OMT) strains. Crosses between OMT and laboratory strains with different color phenotypes gave (1) bisectored teliospore colonies with the parental colors or colonies with a parental color and a nonparental color and (2) nonsectored colonies with the nonparental color or with the parental color. The frequencies for the occurrence of non-parental color ranged from 41% to 93%, depending on the strain. The yield of teliospore colonies was usually reduced for these crosses. In many of these teliospore colonies, morphologically-altered sporidia (MAS phenotype) were observed. The morphology and the size of the sporidia with the MAS phenotype differed from those of teliospore colonies of the crosses between the laboratory strains. In addition, these sporidia did not form conjugants. A cross involving the TMT strains C449 yielded the MAS phenotype as well as a high incidence of tetrad colonies with a nonparental color. The high degree of instability of the parental color phenotypes, and the high frequency of the appearance of nonparental color phenotypes as well as the appearance of the MAS phenotype, are in accord with the presence of active and inactive transposable elements in the OMT strains, TMT strains, and laboratory strains.

  8. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil.

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison

    2015-11-01

    Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.

  9. Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci

    Directory of Open Access Journals (Sweden)

    Christina A. Cuomo

    2017-02-01

    Full Text Available Three members of the Puccinia genus, Puccinia triticina (Pt, P. striiformis f.sp. tritici (Pst, and P. graminis f.sp. tritici (Pgt, cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt. We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs/kb] nearly twice the level detected in Pt (2.57 SNPs/kb and that previously reported for Pgt. Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3 mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS of the HD and STE3 alleles reduced wheat host infection.

  10. The mating type locus (MAT and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi.

    Directory of Open Access Journals (Sweden)

    Banu Metin

    2010-05-01

    Full Text Available Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb, contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2 are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing

  11. Amino Acid Permeases and Virulence in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Kevin Felipe Cruz Martho

    Full Text Available Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis, where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work

  12. Aspects of DNA repair and nucleotide pool imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R.

    1985-01-01

    Evidence that optimum repair depends on adequate pools of deoxynucleotide triphosphates (dNTPs) comes from the study of pyrimidine auxotrophs of Ustilago maydis. These strains are sensitive to UV light and X-rays, and for pyr1-1 it has been shown that the intracellular concentration of dTTP is reduced about 7-fold. The survival curve of pyr1-1 after UV-treatment, and split dose experiments with wild-type cells, provide evidence for an inducible repair mechanism, which probably depends on genetic recombination. Although inducible repair saves cellular resources, it has the disadvantage of becoming ineffective at doses which are high enough to inactivate the repressed structural gene(s) for repair enzymes. It is clear that a wide variety of repair mechanisms have evolved to remove lesions which arise either spontaneously or as a result of damage from external agents. Nevertheless, it would be incorrect to assume that all species require all possible pathways of repair. It is now well established that the accuracy of DNA and protein synthesis depends on proof-reading or editing mechanisms. Optimum accuracy levels will evolve from the balance between error avoidance in macromolecular synthesis and physiological efficiency in growth and propagation.

  13. Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae.

    Science.gov (United States)

    Dauvergne, Duncan; Edelstein-Keshet, Leah

    2015-08-21

    We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Essential oils on the control of stem and ear rot in maize

    Directory of Open Access Journals (Sweden)

    Glauco Antonio Teixeira

    2013-11-01

    Full Text Available Stem and ear rot caused by Stenocarpella maydis are responsible for severe losses in maize production. Treatment of seeds with fungicides may induce environmental damage. Hence, this study aimed to evaluate the effects of essential oils extracted from Cymbopogon winterianus, Thymus vulgaris, Cymbopogon citratus, Corymbia citriodora, Cinnamomum zeylanicum, and Syzygium aromaticum on the development of in vitro S. maydis. In addition, maize seeds were treated with these essential oils to determine their possible mode of action and effects. The oils from S. aromaticum, C. zeylanicum, and T. vulgaris inhibited fungal development at concentrations higher than 0.025%. The oils from S. aromaticum and C. zeylanicum showed seed germination rates of 89.0% and 84.5%, which were higher than that of the control. The oils from S. aromaticum and C. zeylanicum reduced the pathogen incidence in the seeds to 39.0% and 28.0%, respectively. Further, these oils as well as that from T. vulgaris produced lower reduction of maize stand. Scanning electron microscopy examination revealed that essential oils from S. aromaticum and T. vulgaris acted directly on the conidia, impeding germination. The findings suggest that the oils from S. aromaticum, C. zeylanicum, and T. vulgaris are potential alternatives for maize seed treatment in the control of S. maydis.

  15. A kingdom-specific protein domain HMM library for improved annotation of fungal genomes

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2007-04-01

    Full Text Available Abstract Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs, which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam

  16. Toxicological evaluations of Stigma maydis (corn silk) aqueous extract on hematological and lipid parameters in Wistar rats.

    Science.gov (United States)

    Saheed, Sabiu; Oladipipo, Ajani E; Abdulazeez, Abubakar A; Olarewaju, Sulyman A; Ismaila, Nurain O; Emmanuel, Irondi A; Fatimah, Quadri D; Aisha, Abubakar Y

    2015-01-01

    Despite the acclaimed phytotherapeutic attributes of Stigma maydis in folkloric medicine, there is paucity of information on its toxicity profile on hematological and lipid parameters. The toxicological effect of aqueous extract of corn silk at 100, 200 and 400 mg/kg body weight on hematological indices in Wistar rats were evaluated progressively at 24 h after 1, 7, 14, 21 and 28 days. Lipid parameters were also analyzed at the end of the experimental period. We observed that the extract did not exhibit any significant ( p  > 0.05) effect on red blood cells, hematocrit, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean platelet volume at all the tested doses. The study however showed a significant increase in the serum levels of white blood cell, platelet, lymphocytes, high-density lipoprotein cholesterol; as well as feeding pattern in the animals, while the concentrations of total cholesterol, low-density lipoprotein cholesterol, and artherogenic index value were significantly lowered. These findings are suggestive of non-hematotoxic potential of the extract. Overall, the effect exhibited by corn silk extract in this study proved that, it is unlikely to be hematotoxic and could be a good candidature in the management of coronary heart diseases if consumed at the doses investigated.

  17. Rec2 Interplay with both Brh2 and Rad51 Balances Recombinational Repair in Ustilago maydis

    DEFF Research Database (Denmark)

    Kojic, M.; Zhou, Q.; Lisby, M.

    2006-01-01

    and allelic recombination are elevated. The Dss1-independent Brh2-RPA70 fusion protein is also active in restoring radiation sensitivity of rec2 but is hyperactive to an extreme degree in allelic recombination and in suppressing the meiotic block of rec2. However, the high frequency of chromosome...

  18. Effect of huitlacoche (Ustilago maydis DC Corda paste addition on functional, chemical and textural properties of tortilla chips

    Directory of Open Access Journals (Sweden)

    Karla Yuritzi Amador-Rodríguez

    2015-09-01

    Full Text Available AbstractThis study analyzed the addition of huitlacoche paste (HP in baked tortilla chips (TC, evaluating its effects on functional, physicochemical and structural changes during processing. Two blue corn grains were nixtamalized, stone milled, air dried and milled to obtain flour; commercial blue corn flour (TM1 and commercial TC (TM2 were used as controls. Additions of 0, 3, 6 and 9% of HP were formulated; masas were prepared at 55% moisture content (MC, precooked and baked in an industrial machine. TC crispiness was influenced by grain characteristics and percentage of HP. Huitlacoche paste addition caused an increase in total dietary fiber (from 5.27 to 14.54%, total soluble phenolics content (from 17.52 to 37.60 mg GAE/100 g and antioxidant capacity (from 6.74 to 7.98 μmol TE/g in TC. Results suggest that tortilla chips added with huitlacoche can be an alternative to prepare this traditional edible fungus and produce healthier snacks, not fried and enriched with bioactive compounds.

  19. Principles of mRNA transport in yeast.

    Science.gov (United States)

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  20. Toxicological evaluations of Stigma maydis (corn silk aqueous extract on hematological and lipid parameters in Wistar rats

    Directory of Open Access Journals (Sweden)

    Sabiu Saheed

    2015-01-01

    Full Text Available Despite the acclaimed phytotherapeutic attributes of Stigma maydis in folkloric medicine, there is paucity of information on its toxicity profile on hematological and lipid parameters. The toxicological effect of aqueous extract of corn silk at 100, 200 and 400 mg/kg body weight on hematological indices in Wistar rats were evaluated progressively at 24 h after 1, 7, 14, 21 and 28 days. Lipid parameters were also analyzed at the end of the experimental period. We observed that the extract did not exhibit any significant (p > 0.05 effect on red blood cells, hematocrit, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean platelet volume at all the tested doses. The study however showed a significant increase in the serum levels of white blood cell, platelet, lymphocytes, high-density lipoprotein cholesterol; as well as feeding pattern in the animals, while the concentrations of total cholesterol, low-density lipoprotein cholesterol, and artherogenic index value were significantly lowered. These findings are suggestive of non-hematotoxic potential of the extract. Overall, the effect exhibited by corn silk extract in this study proved that, it is unlikely to be hematotoxic and could be a good candidature in the management of coronary heart diseases if consumed at the doses investigated.

  1. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture.

    Science.gov (United States)

    Szilagyi-Zecchin, Vivian Jaskiw; Ikeda, Angela Cristina; Hungria, Mariangela; Adamoski, Douglas; Kava-Cordeiro, Vanessa; Glienke, Chirlei; Galli-Terasawa, Lygia Vitória

    2014-01-01

    Six endophytic bacteria of corn roots were identified as Bacillus sp. and as Enterobacter sp, by sequencing of the 16S rRNA gene. Four of the strains, CNPSo 2476, CNPSo 2477, CNPSo 2478 and CNPSo 2480 were positive for the nitrogen fixation ability evaluated through the acetylene reduction assay and amplification of nifH gene. Two Bacillus strains (CNPSo 2477 and CNPSo 2478) showed outstanding skills for the production of IAA, siderophores and lytic enzymes, but were not good candidates as growth promoters, because they reduced seed germination. However, the same strains were antagonists against the pathogenic fungi Fusarium verticillioides, Colletotrichum graminicola, Bipolaris maydis and Cercospora zea-maydis. As an indication of favorable bacterial action, Enterobacter sp. CNPSo 2480 and Bacillus sp. CNPSo 2481 increased the root volume by 44% and 39%, respectively, and the seed germination by 47% and 56%, respectively. Therefore, these two strains are good candidates for future testing as biological inoculants for corn.

  2. Pathogenic microorganisms of medicinal herbal drugs

    Directory of Open Access Journals (Sweden)

    Stević Tatjana

    2012-01-01

    Full Text Available All the parts of plants (root, leaf, flower naturally have a high level of microorganisms, bacteria and fungi, especially molds. Microbial contamination could be a result of inappropriate harvesting, cleaning of the raw plant material, unhygienic processing of the plants, unsuitable transport and storage. After examination of over 40 dried medicinal plant species, the lowest microbial quality was determined for Maydis stigma, Mentha leaf and herb, Equisetum herb, Calendula flower, Urtica leaf, Melissa leaf, Serpylli herb, Chamomilla flower etc. Although mixed infections are recorded with different types of fungus, Fusarium was observed as the most dominant genus in most of the tested drugs, followed by Aspergillus and Alternaria. In addition to these fungi species from the following genera were identified: Phoma, Cephalosporium, Nigrospora, Cladosporium, Epicoccum, Gliocladium, Myrothecium, Cercospora, Phomopsis, Verticillium, Dreschlera (=Bipolaris, Rhizoctonia, Septoria, Trichoderma, Curvularia, Stachybotrys, Trichothecium, Puccinia, Botrytis, Mucor and Rhizopus sp., depending on plant species.

  3. Phylogenetic analysis of cercospora and mycosphaerella based on the internal transcribed spacer region of ribosomal DNA.

    Science.gov (United States)

    Goodwin, S B; Dunkle, L D; Zismann, V L

    2001-07-01

    ABSTRACT Most of the 3,000 named species in the genus Cercospora have no known sexual stage, although a Mycosphaerella teleomorph has been identified for a few. Mycosphaerella is an extremely large and important genus of plant pathogens, with more than 1,800 named species and at least 43 associated anamorph genera. The goal of this research was to perform a large-scale phylogenetic analysis to test hypotheses about the past evolutionary history of Cercospora and Mycosphaerella. Based on the phylogenetic analysis of internal transcribed spacer (ITS) sequence data (ITS1, 5.8S rRNA gene, ITS2), the genus Mycosphaerella is monophyletic. In contrast, many anamorph genera within Mycosphaerella were polyphyletic and were not useful for grouping species. One exception was Cercospora, which formed a highly supported monophyletic group. Most Cercospora species from cereal crops formed a subgroup within the main Cercospora cluster. Only species within the Cercospora cluster produced the toxin cercosporin, suggesting that the ability to produce this compound had a single evolutionary origin. Intraspecific variation for 25 taxa in the Mycosphaerella clade averaged 1.7 nucleotides (nts) in the ITS region. Thus, isolates with ITS sequences that differ by two or more nucleotides may be distinct species. ITS sequences of groups I and II of the gray leaf spot pathogen Cercospora zeae-maydis differed by 7 nts and clearly represent different species. There were 6.5 nt differences on average between the ITS sequences of the sorghum pathogen Cercospora sorghi and the maize pathogen Cercospora sorghi var. maydis, indicating that the latter is a separate species and not simply a variety of Cercospora sorghi. The large monophyletic Mycosphaerella cluster contained a number of anamorph genera with no known teleomorph associations. Therefore, the number of anamorph genera related to Mycosphaerella may be much larger than suspected previously.

  4. Reacción de 100 variedades de caña de azúcar (saccharum officinarum) del banco de germoplasma del cincae, al carbón (ustilago scitaminea sydow), roya (puccinia melanocephala sydow) y mosaico (sugarcane mosaic virus) en la zona del cantón el triunfo

    OpenAIRE

    Fiallos Encalada, Freddy Fabian; Quilambaqui Jara, Miguel

    2009-01-01

    El presente trabajo tuvo como objetivo determinar la reacción de 100 variedades de Caña de Azúcar del Banco de Germoplasma del CINCAE inoculadas, al Carbón (Ustilago scitaminea Sydow), Roya (Puccinia melanocephala Sydow) y Mosaico (Sugarcane Mosaic Virus), las cuales son enfermedades que han causado enormes pérdidas en la producción del cultivo. El ensayo se realizó en el Centro de Investigación de la Caña de Azúcar del Ecuador (CINCAE), ubicado en el cantón El Triunfo, provincia del Guayas. ...

  5. Sibling species of cercospora associated with gray leaf spot of maize.

    Science.gov (United States)

    Wang, J; Levy, M; Dunkle, L D

    1998-12-01

    ABSTRACT Monoconidial isolates of the fungus causing gray leaf spot of maize were obtained from diseased leaves collected throughout the United States and analyzed for genetic variability at 111 amplified fragment length polymorphism (AFLP) loci. Cluster analysis revealed two very distinct groups of Cercospora zeae-maydis isolates. Both groups were found to be relatively uniform internally with an average genetic similarity among isolates of approximately 93 and 94%, respectively. The groups were separated from each other by a genetic distance of approximately 80%, a distance greater than that separating each group from the sorghum pathogen, C. sorghi (67 to 70%). Characteristics and dimensions of conidia and conid-iophores produced on infected plants or nutrient media were unreliable criteria for taxonomic differentiation of isolates composing the two groups of C. zeae-maydis. Nucleotide sequences of 5.8S ribosomal DNA (rDNA) and the internal transcribed spacer (ITS) regions were identical within each group but different between the two groups and different from C. sorghi. Restriction fragment length polymorphisms generated by digestion of the 5.8S rDNA and ITS regions with TaqI readily distinguished each group and C. sorghi. Isolates in one group were generally distributed throughout maize-producing regions of the United States; isolates in the other group were localized in the eastern third of the country. Both types were present in the same fields at some locations. The genetic distance based on AFLP profiles and different ITS nucleotide sequences between the two morphologically indistinguishable groups indicate that they are sibling species. Although it is unlikely that breeding for resistance to gray leaf spot will be confounded by local or regional variation in the pathogen, a vigilant approach is warranted, because two pathogenic species exist with unknown abilities to evolve new pathotypes.

  6. Proteomic analysis of the metabolic adaptation of the biocontrol agent Pseudozyma flocculosa leading to glycolipid production

    Directory of Open Access Journals (Sweden)

    Bélanger Richard R

    2010-02-01

    Full Text Available Abstract The yeast-like epiphytic fungus Pseudozyma flocculosa is known to antagonize powdery mildew fungi through proliferation on colonies presumably preceded by the release of an antifungal glycolipid (flocculosin. In culture conditions, P. flocculosa can be induced to produce or not flocculosin through manipulation of the culture medium nutrients. In order to characterize and understand the metabolic changes in P. flocculosa linked to glycolipid production, we conducted a 2-DE proteomic analysis and compared the proteomic profile of P. flocculosa growing under conditions favoring the development of the fungus (control or conducive to flocculosin synthesis (stress. A large number of protein spots (771 were detected in protein extracts of the control treatment compared to only 435 matched protein spots in extracts of the stress cultures, which clearly suggests an important metabolic reorganization in slow-growing cells producing flocculosin. From the latter treatment, we were able to identify 21 protein spots that were either specific to the treatment or up-regulated significantly (2-fold increase. All of them were identified based on similarity between predicted ORF of the newly sequenced genome of P. flocculosa with Ustilago maydis' available annotated sequences. These proteins were associated with the carbon and fatty acid metabolism, and also with the filamentous change of the fungus leading to flocculosin production. This first look into the proteome of P. flocculosa suggests that flocculosin synthesis is elicited in response to specific stress or limiting conditions.

  7. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Klein Cátia S

    2009-12-01

    Full Text Available Abstract Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP. Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.

  8. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae), Stigma maydis

    Science.gov (United States)

    Sabiu, S.; O'Neill, F. H.

    2016-01-01

    This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048

  9. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae, Stigma maydis

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2016-01-01

    Full Text Available This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction’s ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.

  10. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Science.gov (United States)

    2011-01-01

    leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence. PMID:21435244

  11. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    . tritici (Pst, and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um. While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence.

  12. AMPK in Pathogens.

    Science.gov (United States)

    Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo

    2016-01-01

    During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

  13. Pathogen inactivation techniques.

    Science.gov (United States)

    Pelletier, J P R; Transue, S; Snyder, E L

    2006-01-01

    The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area

  14. AMPK in Pathogens

    OpenAIRE

    Mesquita, Inês Morais; Moreira, Diana; Marques, Belém Sampaio; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo Jorge Leal

    2016-01-01

    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recogn...

  15. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.

    Science.gov (United States)

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima

    2017-07-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite

  16. Identification of multiple ear-colonizing insect and disease resistance in CIMMYT maize inbred lines with varying levels of silk maysin.

    Science.gov (United States)

    Ni, Xinzhi; Krakowsky, Matthew D; Buntin, G David; Rector, Brian G; Guo, Baozhu; Snook, Maurice E

    2008-08-01

    Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.

  17. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  18. Ketahanan Beberapa Jamur Patogen terhadap Fungisida

    Directory of Open Access Journals (Sweden)

    Christanti Sumardiyono

    1995-12-01

    Full Text Available Chemical control of plant pathogens have been done for a long time using contact and systemic fungicides. Resistance of the pathogens to fungicides may caused failure of disease control program. Studies by in vitro, in green house and fields were done at Yogyakarta to know the fungal which were resistant to several fungicides after treatment. The pathogen tested to fungicides were Colletotrichum capsici on red pepper to propineb, mancozeb, mixture of carbendazim and mancozeb, and thiophanate methyl, Alternaria porri on garlic to thiophanate methyl, Phytophthora palmivora on cocoa to Al-fosetyl, metalaxyl, mancozeb, and Copper Oxychloride, and Peronosclerospora maydis on corn to metalaxyl. The study indicated that C. capsici was resistant to propineb, mancozeb, and mixture of carbendazim and mancozeb, but sensitive to thiophanate methyl. A. porri from plant treated with thiophanate methyl indicated resistant to the fungicides. ED50 of Al-fosetyl and metalaxyl on P. palmivora were higher than on mancozeb and copper oxychloride, so that it was resistance strain. Key words: contact fungicides, systemic fungicides, resistance

  19. Frequency-Dependent Disease Transmission and the Dynamics of the Silene-Ustilago Host-Pathogen System

    NARCIS (Netherlands)

    Thrall, P.H.; Biere, A.; Uyenoyama, M.K.

    1995-01-01

    Models incorporating density-dependent disease transmission functions generally provide a good fit for airborne and directly transmitted bacterial or viral diseases. However, the transmission dynamics of sexually transmitted and vector-borne diseases are likely to be frequency- rather than density-

  20. Processes for managing pathogens.

    Science.gov (United States)

    Godfree, Alan; Farrell, Joseph

    2005-01-01

    Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.

  1. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.

    Science.gov (United States)

    Sabiu, S; O'Neill, F H; Ashafa, A O T

    2016-05-13

    Corn silk (Zea mays L., Stigma maydis) is an important herb used traditionally in many parts of the world to treat array of diseases including diabetes mellitus. Inhibitors of α-amylase and α-glucosidase offer an effective strategy to modulate levels of post prandial hyperglycaemia via control of starch metabolism. This study evaluated α-amylase and α-glucosidase inhibitory potentials of corn silk aqueous extract. Active principles and antioxidant attributes of the extract were also analysed. The α-amylase inhibitory potential of the extract was investigated by reacting its different concentrations with α-amylase and starch solution, while α-glucosidase inhibition was determined by pre-incubating α-glucosidase with different concentrations of the extract followed by addition of p-nitrophenylglucopyranoside. The mode(s) of inhibition of the enzymes were determined using Lineweaver-Burke plot. In vitro analysis of the extract showed that it exhibited potent and moderate inhibitory potential against α-amylase and α-glucosidase, respectively. The inhibition was concentration-dependent with respective half-maximal inhibitory concentration (IC50) values of 5.89 and 0.93mg/mL. Phytochemical analyses revealed the presence of alkaloids, flavonoids, phenols, saponins, tannins and phytosterols as probable inhibitory constituents. Furthermore, the extract remarkably scavenges reactive oxygen species like DPPH and nitric oxide radicals, elicited good reducing power and a significant metal chelating attributes. Overall, the non-competitive and uncompetitive mechanism of action of corn silk extract is due to its inhibitory effects on α-amylase and α-glucosidase, respectively. Consequently, this will reduce the rate of starch hydrolysis, enhance palliated glucose levels, and thus, lending credence to hypoglycaemic candidature of corn silk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    Science.gov (United States)

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  3. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle.

    Science.gov (United States)

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-05-22

    The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and

  4. Pathogen intelligence

    Directory of Open Access Journals (Sweden)

    Michael eSteinert

    2014-01-01

    Full Text Available Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behaviour, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behaviour, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.

  5. Efektivitas Formula Bacillus subtilis TM4 untuk Pengendalian Penyakit pada Tanaman Jagung

    Directory of Open Access Journals (Sweden)

    Nurasiah Djaenuddin

    2017-11-01

    Full Text Available Banded leaf and sheath blight (BLSB and maydis leaf blight (MLB caused by Rhizoctonia solani and Bipolaris maydis, respectively are considered as important diseases in maize.   The use of biopesticides is an alternative method to control the diseases. This study was conducted to determine the effectiveness of bacterial formula Bacillus subtilis to inhibit the development of BLSB and MLB on the plant. Testing of biopesticide formula was done in two different applications, i.e. seed treatment for BLSB control and leaf spraying in the field for MLB. The results showed that the B.subtilis formula effectively suppressed the development of BLSB but it was not effectively suppressed the development of MLB .Key words: Bacillus subtilis, biopesticide, Bipolaris maydis, leaf blight diseaseBanded leaf and sheath blight (BLSB and maydis leaf blight (MLB caused by Rhizoctonia solani and Bipolaris maydis, respectively are considered as important diseases in maize.   The use of biopesticides is an alternative method to control the diseases. This study was conducted to determine the effectiveness of bacterial formula Bacillus subtilis to inhibit the development of BLSB and MLB on the plant. Testing of biopesticide formula was done in two different applications, i.e. seed treatment for BLSB control and leaf spraying in the field for MLB. The results showed that the B.subtilis formula effectively suppressed the development of BLSB but it was not effectively suppressed the development of MLB.

  6. Phylogeographic Diversity of Pathogenic and Non-Pathogenic Hantaviruses in Slovenia

    Science.gov (United States)

    Korva, Miša; Knap, Nataša; Resman Rus, Katarina; Fajs, Luka; Grubelnik, Gašper; Bremec, Matejka; Knapič, Tea; Trilar, Tomi; Avšič Županc, Tatjana

    2013-01-01

    Slovenia is a very diverse country from a natural geography point of view, with many different habitats within a relatively small area, in addition to major geological and climatic differences. It is therefore not surprising that several small mammal species have been confirmed to harbour hantaviruses: A. flavicollis (Dobrava virus), A. agrarius (Dobrava virus–Kurkino), M. glareolus (Puumala virus), S. areanus (Seewis virus), M. agrestis, M. arvalis and M. subterraneus (Tula virus). Three of the viruses, namely the Dobrava, Dobrava–Kurkino and Puumala viruses, cause disease in humans, with significant differences in the severity of symptoms. Due to changes in haemorrhagic fever with renal syndrome cases (HFRS) epidemiology, a detailed study on phylogenetic diversity and molecular epidemiology of pathogenic and non-pathogenic hantaviruses circulating in ecologically diverse endemic regions was performed. The study presents one of the largest collections of hantavirus L, M and S sequences obtained from hosts and patients within a single country. Several genetic lineages were determined for each hantavirus species, with higher diversity among non-pathogenic compared to pathogenic viruses. For pathogenic hantaviruses, a significant geographic clustering of human- and rodent-derived sequences was confirmed. Several geographic and ecological factors were recognized as influencing and limiting the formation of endemic areas. PMID:24335778

  7. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  8. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  9. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2017-10-01

    Full Text Available Streptococcus agalactiae, or Group B Streptococcus (GBS, is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05, whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  11. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Lijiang eLiu

    2015-05-01

    Full Text Available A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus Sclerotinia sclerotiorum botybirnavirus 1 (SsBRV1 that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ~38 nm in diameter, and three dsRNA segments (dsRNA1, 2 and 3 with lengths of 6.4, 6.0 and 1.7 kbp, respectively were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA (SatlRNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1 and Ustilago maydis dsRNA virus-H1 (UmV-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. Notably, a growth hormone receptor binding domain (GHBP, Pfam12772 is detected in ORF2-encoded protein of SsBRV1, which have not been reported in any other viruses. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.

  12. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Murat, Claude [INRA, Nancy, France; Morin, Emmanuelle [INRA, Nancy, France; Le Tacon, F [UMR, France; Martin, Francis [INRA, Nancy, France

    2011-01-01

    It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in the L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.

  13. Impact of applying edible oils to silk channels on ear pests of sweet corn.

    Science.gov (United States)

    Ni, Xinzhi; Sparks, Alton N; Riley, David G; Li, Xianchun

    2011-06-01

    The impact of applying edible oils to corn silks on ear-feeding insects in sweet corn, Zea mays L., production was evaluated in 2006 and 2007. Six edible oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix neem oil and nC21 Sunspray Ultrafine, a horticultural mineral oil) were used as the controls for the experiment. Six parameters evaluated in this experiment were corn earworm [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] damage rating, the number of sap beetle [Carpophilus spp. (Coleoptera: Nitidulidae)] adults and larvae, the number of corn silk fly (or picture-winged fly) (Diptera: Ulidiidae) larvae, common smut [Ustilago maydis (D.C.) Corda] infection rate, and corn husk coverage. Among the two control treatments, neem oil reduced corn earworm damage at both pre- and postpollination applications in 2006, but not in 2007, whereas the mineral oil applied at postpollination treatments reduced corn earworm damage in both years. The mineral oil also reduced the number of sap beetle adults, whereas the neem oil applied at postpollination attracted the most sap beetle adults in 2007. Among the six edible oil treatments, the corn and sesame oils applied at postpollination reduced corn earworm damage only in 2007. The application of the peanut oil at postpollination attracted more sap beetle adults in 2006, and more sap beetle larvae in 2007. Olive and neem oils significantly reduced husk coverage compared with the water control in both years. The mineral oil application consistently increased smut infection rate in both 2006 and 2007. Ramifications of using oil treatments in ear pest management also are discussed.

  14. Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii

    Directory of Open Access Journals (Sweden)

    Gomes Suely L

    2006-07-01

    Full Text Available Abstract Background Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1 a large-scale comparative analysis between putative unigene sequences (uniseqs from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2 a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis. Results Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1 possible orthologues of genes previously identified as specific to animals and/or plants, and (2 genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots. Conclusion Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi.

  15. Differentiation between a pathogenic and a non-pathogenic form of Gyrodactylus salaris using PCR-RFLP

    DEFF Research Database (Denmark)

    Kania, Per Walther; Jørgensen, Thomas Rohde; Buchmann, Kurt

    2007-01-01

    A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form.......A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form....

  16. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    Directory of Open Access Journals (Sweden)

    Sarah I. Bonnet

    2017-06-01

    Full Text Available Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP, with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  17. Pathogenic agents in freshwater resources

    Science.gov (United States)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  18. Mapping and validation of quantitative trait loci for resistance to Cercospora zeae-maydis infection in tropical maize (Zea mays L.).

    Science.gov (United States)

    Pozar, Gilberto; Butruille, David; Silva, Heyder Diniz; McCuddin, Zoe Patterson; Penna, Julio Cesar Viglioni

    2009-02-01

    Breeding for resistance to gray leaf spot, caused by Cercospora zeae-maydis (Cz) is paramount for many maize environments, in particular under warm and humid growing conditions. In this study, we mapped and characterized quantitative trait loci (QTL) involved in the resistance of maize against Cz. We confirmed the impact of the QTL on disease severity using near-isogenic lines (NILs), and estimated their effects on three major agronomic traits using their respective near isogenic hybrids (NIHs), which we obtained by crossing the NILs with an inbred from a complementary heterotic pool. We further validated three of the four QTL that were mapped using the Multiple Interval Mapping approach and showed LOD values>2.5. NILs genotype included all combinations between favorable alleles of the two QTL located in chromosome 1 (Q1 in bin 1.05 and Q2 in bin 1.07), and the allele in chromosome 3 (Q3 in bin 3.07). Each of the three QTL separately significantly reduced the severity of Cz. However, we found an unfavorable epistatic interaction between Q1 and Q2: presence of the favorable allele at one of the QTL allele effectively nullified the effect of the favorable allele at the other. In contrast, the interaction between Q2 and Q3 was additive, promoting the reduction of the severity to a greater extent than the sum of their individual effects. When evaluating the NIH we found significant individual effects for Q1 and Q3 on gray leaf spot severity, for Q2 on stalk lodging and grain yield, and for Q3 on grain moisture and stalk lodging. We detected significant epitasis between Q1 and Q2 for grain moisture and between Q1 and Q3 for stalk lodging. These results suggest that the combination of QTL impacts the effectiveness of marker-assisted selection procedures in commercial product development programs.

  19. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle

    OpenAIRE

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-01-01

    Background The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is reg...

  20. Host pathogen relations: exploring animal models for fungal pathogens.

    Science.gov (United States)

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  1. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.

    Science.gov (United States)

    Oliveira, Alberto; Oliveira, Leticia C; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B; Silva, Arthur; Figueiredo, Henrique C P; Ghosh, Preetam; Portela, Ricardo W; De Carvalho Azevedo, Vasco A; Wattam, Alice R

    2017-01-01

    This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium , exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium . Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.

  2. Efferocytosis of Pathogen-Infected Cells

    Directory of Open Access Journals (Sweden)

    Niloofar Karaji

    2017-12-01

    Full Text Available The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via “find me” signals, recognition via “eat me” signals and down-modulation of regulatory “don’t eat me” signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.

  3. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  4. Host Pathogen Relations: Exploring Animal Models for Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Catherine G. Harwood

    2014-06-01

    Full Text Available Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  5. Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species.

    Science.gov (United States)

    Patra, Kailash P; Choudhury, Biswa; Matthias, Michael M; Baga, Sheyenne; Bandyopadhya, Keya; Vinetz, Joseph M

    2015-10-30

    Lipopolysaccharides (LPS) are complex, amphipathic biomolecules that constitute the major surface component of Gram-negative bacteria. Leptospira, unlike other human-pathogenic spirochetes, produce LPS, which is fundamental to the taxonomy of the genus, involved in host-adaption and also the target of diagnostic antibodies. Despite its significance, little is known of Leptospira LPS composition and carbohydrate structure among different serovars. LPS from Leptospira interrogans serovar Copenhageni strain L1-130, a pathogenic species, and L. licerasiae serovar Varillal strain VAR 010, an intermediately pathogenic species, were studied. LPS prepared from aqueous and phenol phases were analyzed separately. L. interrogans serovar Copenhageni has additional sugars not found in L. licerasiae serovar Varillal, including fucose (2.7%), a high amount of GlcNAc (12.3%), and two different types of dideoxy HexNAc. SDS-PAGE indicated that L. interrogans serovar Copenhageni LPS had a far higher molecular weight and complexity than that of L. licerasiae serovar Varillal. Chemical composition showed that L. interrogans serovar Copenhageni LPS has an extended O-antigenic polysaccharide consisting of sugars, not present in L. licerasiae serovar Varillal. Arabinose, xylose, mannose, galactose and L-glycero-D-mannoheptose were detected in both the species. Fatty acid analysis by gas chromatography-mass spectrometry (GC-MS) showed the presence of hydroxypalmitate (3-OH-C16:0) only in L. interrogans serovar Copenhageni. Negative staining electron microscopic examination of LPS showed different filamentous morphologies in L. interrogans serovar Copenhageni vs. L. licerasiae serovar Varillal. This comparative biochemical analysis of pathogenic and intermediately pathogenic Leptospira LPS reveals important carbohydrate and lipid differences that underlie future work in understanding the mechanisms of host-adaptation, pathogenicity and vaccine development in leptospirosis.

  6. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  7. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  8. Methods for detecting pathogens in the beef food chain: detecting particular pathogens

    Science.gov (United States)

    The main food-borne pathogens of concern in the beef food chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp.; however, the presence of other pathogens, including Listeria monocytogenes, Campylobacter spp., Clostridium spp., Bacillus cereus, and Mycobacterium avium subsp. par...

  9. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  10. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  11. Food-borne pathogens

    International Nuclear Information System (INIS)

    Niemand, J.G.

    1985-01-01

    The Salmonella scare reinforced the importance of never taking chances when it comes to controlling pathogens. The issue has been resolved by radurisation. The article deals with the various pathogens that can effect food and argues the case for radurisation in dealing with them. It also looks at some of the other food products that can be treated using this process

  12. Viral pathogen discovery

    Science.gov (United States)

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  13. Pathogenicity and Host Range of Pathogen Causing Black Raspberry (Rubus coreanus) Anthracnose in Korea

    OpenAIRE

    Uh Seong Jeong; Ju Hee Kim; Ki Kwon Lee; Seong Soo Cheong; Wang Hyu Lee

    2013-01-01

    The strains of Colletotrichum gloeosporioides, C. coccodes, C. acutatum isolated from black raspberry werepathogenic to apple and strawberry after dropping inoculation, but showed weak pathogenicity in hot-pepperand tomato. The anthracnose pathogens of C. gloeosporioides, C. orbiculare, C. acutatum isolated from apple,hot-pepper and pumpkin showed pathogenicity in black raspberry. Moreover, the anthracnose pathogensisolated from apple caused disease symptoms in non-wounded inoculation.

  14. A review on threat of gray leaf spot disease of maize in Asia

    Directory of Open Access Journals (Sweden)

    Narayan Bahadur Dhami

    2015-12-01

    Full Text Available Biotic and biotic constraints are yield limiting factors in maize producing regions. Among these gray leaf spot is a yield limiting foliar disease of maize in high land regions of Asia. This review is done from related different national and international journals, thesis, books, research papers etc. The objectives of this review are to become familiar with genetics and inheritance, epidemiology, symptoms and disease management strategies etc. High relative humidity, temperature, minimum tillage and maize monoculture are important factors responsible for disease development. The sibling species of Cercospora zeae-maydis (Tehon and Daniels, 1925 Group I and Group II and Cercospora sorghai var. maydis (Chupp, 1954 are associated with this disease. Pathogens colonize in maize debris. Conidia are the source of inoculums for disease spread. Severe blighting of leaves reduces sugars, stalk lodging and causes premature death of plants resulting in yield losses of up to 100%. Disease management through cultural practices is provisional. The use of fungicides for emergencies is effective however; their prohibitive cost and detrimental effects on the environment are negative consequences. The inheritance of tolerance is quantitative with small additive effects. The introgression of resistant genes among the crosses of resistant germplasm enhances the resistance. The crosses of resistant and susceptible germplasm possess greater stability than the crosses of susceptible and resistant germplasm. The development of gray leaf spot tolerant populations through tolerance breeding principle is an economical and sustainable approach to manage the disease.

  15. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  16. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  17. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Science.gov (United States)

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  18. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Directory of Open Access Journals (Sweden)

    Penny F Langhammer

    Full Text Available Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39, and one recently thawed from cryopreserved stock (JEL427-P9. In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  19. Potatoes, pathogens and pests

    NARCIS (Netherlands)

    Lazebnik, Jenny

    2017-01-01

    Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into

  20. Mucosal immunity to pathogenic intestinal bacteria.

    Science.gov (United States)

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  1. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.

    Science.gov (United States)

    Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.

  2. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  3. Marmara Bölgesi'nde Arpa açık rastığı (Ustilago nuda hordei “Jens.â€? Rostr. Schaffn.)'na karşı arpa çeşit ve hatlarının reaksiyonlarının tespiti üzerinde araştırmalar.

    OpenAIRE

    Gümüştekin, H.; Akın, K.

    2008-01-01

    Arpa çeşit ve hatlarının, arpa açık rastık hastalığı (Ustilago nuda hordei “Jens.â€? Rostr. Schaffn.)'na karşı göstermiş olduğu reaksiyonları tespit etmek amacı ile bu çalışma 1994 yılında başlamıştır. 1994 Yılında 14 arpa çeşit ve hattı, 1995 yılında 23 arpa çeşit ve hattı kullanılmıştır. Denemelerde kullanılan 37 çeşit ve hattan 27'si hastalığa karşı dayanıklı (R) bulunurken, 10'u hassas (S) bulunmuştur.

  4. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  5. Priority setting of foodborne pathogens: disease burden and costs of selected enteric pathogens

    NARCIS (Netherlands)

    Kemmeren JM; Mangen MJJ; Duynhoven YTHP van; Havelaar AH; MGB

    2006-01-01

    Toxoplasmosis causes the highest disease burden among seven evaluated foodborne pathogens. This is the preliminary conclusion of a major study of the disease burden and related costs of foodborne pathogens. The other micro-organisms that were studied are Campylobacter spp., Salmonella spp.,

  6. Tropism and pathogenicity of rickettsiae

    Directory of Open Access Journals (Sweden)

    Tsuneo eUchiyama

    2012-06-01

    Full Text Available Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group and typhus group rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism towards cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and nonpathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and nonpathogenic species of spotted fever group rickettsiae in mammalian cells. The growth of nonpathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of nonpathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the nonpathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review.

  7. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  8. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  9. Pathogens' toolbox to manipulate human complement.

    Science.gov (United States)

    Fernández, Francisco J; Gómez, Sara; Vega, M Cristina

    2017-12-14

    The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effectiveness of irradiation in killing pathogens

    International Nuclear Information System (INIS)

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges

  11. High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes

    Directory of Open Access Journals (Sweden)

    González Mario

    2012-09-01

    Full Text Available Abstract Background O-glycosylation of secretory proteins has been found to be an important factor in fungal biology and virulence. It consists in the addition of short glycosidic chains to Ser or Thr residues in the protein backbone via O-glycosidic bonds. Secretory proteins in fungi frequently display Ser/Thr rich regions that could be sites of extensive O-glycosylation. We have analyzed in silico the complete sets of putatively secretory proteins coded by eight fungal genomes (Botrytis cinerea, Magnaporthe grisea, Sclerotinia sclerotiorum, Ustilago maydis, Aspergillus nidulans, Neurospora crassa, Trichoderma reesei, and Saccharomyces cerevisiae in search of Ser/Thr-rich regions as well as regions predicted to be highly O-glycosylated by NetOGlyc (http://www.cbs.dtu.dk. Results By comparison with experimental data, NetOGlyc was found to overestimate the number of O-glycosylation sites in fungi by a factor of 1.5, but to be quite reliable in the prediction of highly O-glycosylated regions. About half of secretory proteins have at least one Ser/Thr-rich region, with a Ser/Thr content of at least 40% over an average length of 40 amino acids. Most secretory proteins in filamentous fungi were predicted to be O-glycosylated, sometimes in dozens or even hundreds of sites. Residues predicted to be O-glycosylated have a tendency to be grouped together forming hyper-O-glycosylated regions of varying length. Conclusions About one fourth of secretory fungal proteins were predicted to have at least one hyper-O-glycosylated region, which consists of 45 amino acids on average and displays at least one O-glycosylated Ser or Thr every four residues. These putative highly O-glycosylated regions can be found anywhere along the proteins but have a slight tendency to be at either one of the two ends.

  12. The cultural significance of wild mushrooms in San Mateo Huexoyucan, Tlaxcala, Mexico

    Science.gov (United States)

    2014-01-01

    Background We performed an ethnomycological study in a community in Tlaxcala, Central Mexico to identify the most important species of wild mushrooms growing in an oak forest, their significance criteria, and to validate the Cultural Significance Index (CSI). Methods Thirty-three mestizo individuals were randomly selected in San Mateo Huexoyucan and were asked seven questions based on criteria established by the CSI. Among the 49 mushroom species collected in the oak forest and open areas, 20 species were mentioned most often and were analyzed in more detail. Ordination and grouping techniques were used to determine the relationship between the cultural significance of the mushroom species, according to a perceived abundance index, frequency of use index, taste score appreciation index, multifunctional food index, knowledge transmission index, and health index. Results The mushrooms with highest CSI values were Agaricus campestris, Ramaria spp., Amanita aff. basii, Russula spp., Ustilago maydis, and Boletus variipes. These species were characterized by their good taste and were considered very nutritional. The species with the lowest cultural significance included Russula mexicana, Lycoperdon perlatum, and Strobylomyces strobilaceus. The ordination and grouping analyses identified four groups of mushrooms by their significance to the people of Huexoyucan. The most important variables that explained the grouping were the taste score appreciation index, health index, the knowledge transmission index, and the frequency of use index. Conclusions A. aff. basii and A. campestris were the most significant wild mushrooms to the people of San Mateo. The diversity of the Russula species and the variety of Amanita and Ramaria species used by these people was outstanding. Environments outside the forest also produced useful resources. The CSI used in Oaxaca was useful for determining the cultural significance of mushrooms in SMH, Tlaxcala. This list of mushrooms can be used in

  13. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  14. Pathogenic mycoflora on carrot seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Altogether 300 seed samples were collected during 9 years in 8 regions of Poland and the fungi Were isolated and their pathogenicity to carrot seedlings was examined. Alternaria rudicina provcd to be the most important pathogen although. A. alternata was more common. The other important pathogens were Fusarium spp., Phoma spp. and Botrytis cinerea. The infection of carrot seeds by A. radicina should be used as an important criterium in seed quality evaluation.

  15. Biosensors for plant pathogen detection.

    Science.gov (United States)

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Waterborne Pathogens: Detection Methods and Challenges

    Directory of Open Access Journals (Sweden)

    Flor Yazmín Ramírez-Castillo

    2015-05-01

    Full Text Available Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.

  17. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  18. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  19. Mycological assessment of sediments in Ligurian beaches in the Northwestern Mediterranean: pathogens and opportunistic pathogens.

    Science.gov (United States)

    Salvo, Vanessa-Sarah; Fabiano, Mauro

    2007-05-01

    Sediments of five Ligurian beaches in compliance with European Union bathing water regulations were studied based on the characteristics of the fungal assemblage during the tourism season. Among the 179 taxa of filamentous fungi isolated, 120 were opportunistic pathogens, such as Acremonium sp., and the genus Penicillium was also present as the pathogenic species P. citrinum. Furthermore, 5% of the total filamentous fungi belonged to the dermatophyte genus Microsporum, whose species can cause mycoses. Beach sediments showed elevated densities of opportunistic pathogens, of pathogenic filamentous fungi, and of yeasts during the tourism season. Although monitoring of beach sediments for microbiological contamination is not mandatory, and disease transmission from sediments has not yet been demonstrated, our study suggests that beach sediments may act as a reservoir of potential pathogens, including fungi. In addition, the mycoflora displayed high sensitivity to critical environmental situations in the beaches studied. Therefore, the fungal community can be a useful tool for assessing the quality of sandy beaches in terms of sanitary and environmental quality.

  20. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  1. Contamination of water resources by pathogenic bacteria

    Science.gov (United States)

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  2. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  3. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae.

    Science.gov (United States)

    Wang, Rongbo; Zhang, Meixiang; Liu, Hong; Xu, Jing; Yu, Jia; He, Feng; Zhang, Xiong; Dong, Suomeng; Dou, Daolong

    2016-04-01

    Pathogen nutrient acquisition and metabolism are critical for successful infection and colonization. However, the nutrient requirements and metabolic pathways related to pathogenesis in oomycete pathogens are unknown. In this study, we bioinformatically identified Phytophthora sojae aspartate aminotransferases (AATs), which are key enzymes that coordinate carbon and nitrogen metabolism. We demonstrated that P. sojae encodes more AATs than the analysed fungi. Some of the AATs contained additional prephenate dehydratase and/or prephenate dehydrogenase domains in their N-termini, which are unique to oomycetes. Silencing of PsAAT3, an infection-inducible expression gene, reduced P. sojae pathogenicity on soybean plants and affected the growth under N-starving condition, suggesting that PsAAT3 is involved in pathogen pathogenicity and nitrogen utilisation during infection. Our results suggest that P. sojae and other oomycete pathogens may have distinct amino acid metabolism pathways and that PsAAT3 is important for its full pathogenicity. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Incidence of Fusarium moniliforme Sheld. in Zea mays L. in the rainforest zone of Nigeria.

    Science.gov (United States)

    Iloba, C

    1979-01-01

    45 seed samples from 7 states of the rainforest zone of Nigeria (Ogun, Ondo, Oyo, Bendel, Anambra, Imo, and Cross River) were screened for phytopathogen incidence. Whereas Drechslera maydis was found in 30 and Cephalosporium maydis in 79% of the samples were infected by Fusarium moniliforme, with 70% of the samples showing heavy infection. In view of the widespread nature of this economically important fungus on maize in the main cultivation area of Nigeria, the necessity for routine laboratory seed health tests is clearly indicated.

  6. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  7. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    Science.gov (United States)

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  8. Pathogenicity island mobility and gene content.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  9. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  10. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    Science.gov (United States)

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  11. Lectins in human pathogenic fungi.

    Science.gov (United States)

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  12. Occurrence of root parsley pathogens inhabiting seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available The studies on root parsley pathogens inhabiting seeds were conducted during 1981-1988 and in 1993. Filter paper method with prefreezing and keeping under light was used. Each test sample comprised 500 seeds. Pathogenicity of collected fungal isolates was tested following two laboratory methods. 238 seed samples were studied. 18 fungal species were found but only 7 proved to be important pathogens of root parsley. The most common inhabitants of root parsley seeds were Alternaria spp. A.allernata occurred on 74,8% of seeds but only a few isolates showed to be slightly pathogenic while A.petroselini and A.radicina were higly pathogenic and inhabited 11,4 and 4,2% of seeds, respectively. The second group of important pathogens were species of Fusarium found on 3,9% of seeds. F.avenaceum dominated as it comprised 48% of Fusarium isolates, the next were as follow: F.culmorum - 20%, F.equiseti - 15%, F.solani - 8%, F.oxysporum - 7% and F.dimerum -2%. Some fungi like Botrytis cinerea, Septoria petroselini and Phoma spp. inhabited low number of seeds, respectively O,4; 0,5 and 0,8%, but they were highly pathogenic to root parsley. The fungi: Bipolaris sorokiniana, Drechslera biseptata, Stemphylium botryosum and Ulocludium consortiale showed slight pathogenicity. They were isolated from 3,8% of seeds.

  13. Aptamer-Based Technologies in Foodborne Pathogen Detection.

    Science.gov (United States)

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

  14. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Jun Teng

    2016-09-01

    Full Text Available Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX; and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the first and critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make to accurate assessments on the risk of infections (humans and animals or contaminations (foods and other commodities caused by various pathogens. This article reviews the developments in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development of aptamer-based biosensors including optical biosensors for multiple pathogen detection in multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors, and lateral chromatography test strips, and their applications in the pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening, remain to be overcome.

  15. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2011-01-01

    Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis.

  16. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    Science.gov (United States)

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  17. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    .... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...

  18. Regulatory T cells and immunity to pathogens.

    Science.gov (United States)

    Rouse, Barry T; Suvas, Susmit

    2007-09-01

    Immune responses to pathogens are modulated by one or more types of cells that perform a regulatory function. Some cells with this function, such as CD4+ Foxp3+ natural regulatory T cells (nTreg), pre-exist prior to infections whereas others may be induced as a consequence of infection (adaptive Treg). With pathogens that have a complex pathogenesis, multiple types of regulatory cells could influence the outcome. One major property of Treg is to help minimize collateral tissue damage that can occur during immune reactions to a chronic infection. The consequence is less damage to the host but in such situations the pathogen is likely to establish persistence. In some cases, a fine balance is established between Treg responses, effector components of immunity and the pathogen. Treg responses to pathogens may also act to hamper the efficacy of immune control. This review discusses these issues as well as the likely mechanisms by which various pathogens can signal the participation of Treg during infection.

  19. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  20. New trends in emerging pathogens.

    Science.gov (United States)

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  1. Host-pathogen interactions: A cholera surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  2. Comparison of pathogenic domains of rabies and African rabies-related lyssaviruses and pathogenicity observed in mice

    Directory of Open Access Journals (Sweden)

    Joe Kgaladi

    2013-03-01

    Full Text Available Several lyssavirus species occur in Africa (Rabies virus, Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus and Ikoma lyssavirus, displaying a high sequence diversity between isolates belonging to the same species. There is limited information about comparative pathogenesis of these African lyssaviruses and this precludes authoritative opinion on the potential public and veterinary health impact. In this study, an analysis of representative African lyssaviruses attempted to correlate viral genomic sequence similarities and differences with the corresponding pathogenic profiles observed in mice. The study demonstrated that the virus isolates evaluated could be lethal to mice when introduced intramuscularly and that different isolates of the same lyssavirus species differ in their virulence. Using real-time polymerase chain reaction (PCR, viral RNA was detected in brain tissue, but no viral RNA was detected in the salivary glands or blood of mice that succumbed to infection. Comparison of known pathogenic domains indicated that pathogenicity is likely to be dependent on multiple domains. Cumulatively, our results re-emphasised the realisation that the pathogenicity of a lyssavirus species cannot be deduced based on studies of only a single isolate of the species or a single pathogenic domain.

  3. Targeting of the hydrophobic metabolome by pathogens.

    Science.gov (United States)

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  5. PIML: the Pathogen Information Markup Language.

    Science.gov (United States)

    He, Yongqun; Vines, Richard R; Wattam, Alice R; Abramochkin, Georgiy V; Dickerman, Allan W; Eckart, J Dana; Sobral, Bruno W S

    2005-01-01

    A vast amount of information about human, animal and plant pathogens has been acquired, stored and displayed in varied formats through different resources, both electronically and otherwise. However, there is no community standard format for organizing this information or agreement on machine-readable format(s) for data exchange, thereby hampering interoperation efforts across information systems harboring such infectious disease data. The Pathogen Information Markup Language (PIML) is a free, open, XML-based format for representing pathogen information. XSLT-based visual presentations of valid PIML documents were developed and can be accessed through the PathInfo website or as part of the interoperable web services federation known as ToolBus/PathPort. Currently, detailed PIML documents are available for 21 pathogens deemed of high priority with regard to public health and national biological defense. A dynamic query system allows simple queries as well as comparisons among these pathogens. Continuing efforts are being taken to include other groups' supporting PIML and to develop more PIML documents. All the PIML-related information is accessible from http://www.vbi.vt.edu/pathport/pathinfo/

  6. [Analysis of Pathogenic Bacteria in Reclaimed Water and Impact of UV Disinfection on the Removal of Pathogenic Bacteria].

    Science.gov (United States)

    Jing, Ming; Wang, Lei

    2016-02-15

    In the study, 454-pyrosequencing technology was employed to investigate the species of pathogenic bacteria and the proportion of each pathogen in secondary effluent. Culture-based, qPCR and Q-RT-PCR methods were employed to analyze the removal of indicator (E. coli) and pathogen (Salmonella and Mycobacterium) by ultraviolet (UV) disinfection at a dose of 60 mJ x Cm(-2). The results showed that 11 kinds of pathogenic bacteria were found and the most abundant potentially pathogenic bacteria in the secondary effluent were affiliated with the genera of Clostridium (2.96%), Arcobacter (0.82%) and Mycobacterium (0.36%). 99.9% of culturable E. coli and Salmonella were removed by UV disinfection (60 mJ x cm(-2), however, less than 90% of culturable Mycobacterium were removed. The removal efficiencies of viable E. coli, Salmonella and Mycobacterium were low. Q-RT-PCR seemed to be a promising method for evaluating viable microorganisms in samples. Besides, pathogenic bacteria entered into VBNC state at a UV dose of 60 mJ x cm(-2). Other advanced treatment processes were needed to ensure safe utilization of reclaimed water.

  7. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Loose smut of barley grown in three types of farming

    Directory of Open Access Journals (Sweden)

    T. Nedelcheva

    2016-09-01

    Full Text Available Abstract. Over the period of 2014-2015, on the experimental field of the Institute of Agriculture in Karnobat, Bulgaria, was set a field trial with twenty cultivars of barley – 15 two-row: Obzor, Emon, Perun, Orfey, Lardeya, Asparuh, Kuber, Zagorets, Imeon, Sayra, Devinya, Sitara, Krami, Vicky, Potok; 3 four-row: Veslets, Aheloy 2, Tamaris; and 2 six-row cultivars – IZ Bori and Bozhin. All the cultivars were grown in three types of farming: conventional, organic and biodynamic. In conventional farming were applied pesticides and nitrogen fertilization. In the organic production were not used pesticides, mineral and organic fertilizers; and in biodynamic farming was applied biodynamic compost prepared from manure and biodynamic preparations (also organic. In conventional farming, the seeds were disinfected before sowing with Kinto plus (Triticonazole 20 g/l + Prochloraz 60 g/l, at a rate of 150 ml/100 kg seeds. In organic and biodynamic farming were used nondisinfected seeds. In the phenophase of full maturity of barley was conducted monitoring survey for plants infected with loose smut in all 2 the trial variants, the number of infected plants per m were counted and the infection rates were calculated. Infected plants of Tamaris grown in the three types of farming underwent microscopic analysis and measurement of 100 teliospores from each variant. The aim of this experiment was to investigate varietal susceptibility of barley to Ustilago nuda, grown in three types of farming, and to establish if the growing method affects the size of the teliospores of the pathogen. With two-row barley were found plants of Lardeya, Kuber, Devinya, Krami and Vicky infected with Ustilago nuda. Krami manifested the lowest resistance in the three types of farming. With four-row barley, Tamaris was found to be highly susceptible and Veslets was poorly resistant. Both cultivars expressed weaker susceptibility in conventional and biodynamic farming and stronger in

  9. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    Science.gov (United States)

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  10. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    Directory of Open Access Journals (Sweden)

    Boyang Cao

    Full Text Available Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  11. A New Oligonucleotide Microarray for Detection of Pathogenic and Non-Pathogenic Legionella spp.

    Science.gov (United States)

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp. PMID:25469776

  12. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens.

    Science.gov (United States)

    Harder, Robin; Heimersson, Sara; Svanström, Magdalena; Peters, Gregory M

    2014-08-19

    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2-9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28,600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series.

  13. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    Science.gov (United States)

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

  14. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  15. Sensitizing pathogens to antibiotics using the CRISPR-Cas system.

    Science.gov (United States)

    Goren, Moran; Yosef, Ido; Qimron, Udi

    2017-01-01

    The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pathogen Decontamination of Food Crop Soil: A Review.

    Science.gov (United States)

    Gurtler, Joshua B

    2017-09-01

    The purpose of this review is to delineate means of decontaminating soil. This information might be used to mitigate soil-associated risks of foodborne pathogens. The majority of the research in the published literature involves inactivation of plant pathogens in soil, i.e., those pathogens harmful to fruit and vegetable production and ornamental plants. Very little has been published regarding the inactivation of foodborne human pathogens in crop soil. Nevertheless, because decontamination techniques for plant pathogens might also be useful methods for eliminating foodborne pathogens, this review also includes inactivation of plant pathogens, with appropriate discussion and comparisons, in the hopes that these methods may one day be validated against foodborne pathogens. Some of the major soil decontamination methods that have been investigated and are covered include chemical decontamination (chemigation), solarization, steaming, biofumigation, bacterial competitive exclusion, torch flaming, microwave treatment, and amendment with biochar. Other innovative means of inactivating foodborne pathogens in soils may be discovered and explored in the future, provided that these techniques are economically feasible in terms of chemicals, equipment, and labor. Food microbiology and food safety researchers should reach out to soil scientists and plant pathologists to create links where they do not currently exist and strengthen relationships where they do exist to take advantage of multidisciplinary skills. In time, agricultural output and the demand for fresh produce will increase. With advances in the sensitivity of pathogen testing and epidemiological tracebacks, the need to mitigate preharvest bacterial contamination of fresh produce will become paramount. Hence, soil decontamination technologies may become more economically feasible and practical in light of increasing the microbial safety of fresh produce.

  17. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  18. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  19. Pathogenicity of Shigella in chickens.

    Science.gov (United States)

    Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.

  20. Tracing pathogens in the food chain

    NARCIS (Netherlands)

    Brul, S.; Fratamico, P.M.; McMeekin, T.A.

    2010-01-01

    Successful methods for the detection and investigation of outbreaks of foodborne disease are essential for ensuring consumer safety. Increased understanding of the transmission of pathogens in food chains will also assist efforts to safeguard public health. Tracing pathogens in the food chain

  1. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  2. Land application of sewage sludge: Pathogen issues

    International Nuclear Information System (INIS)

    Chang, A.C.

    1997-01-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author)

  3. Land application of sewage sludge: Pathogen issues

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A C [Department of Soil and Environmental Sciences, Univ. of California at Riverside, Riverside, CA (United States)

    1997-10-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author). 8 refs, 3 tabs.

  4. Comparison of procedures to evaluate the pathogenicity of ...

    African Journals Online (AJOL)

    Ceratocystis fimbriata sensu lato(s.l.) is an important pathogen of Eucalyptus. Pathogenicity of isolates has typically been evaluated by inoculating seedlings under greenhouse conditions. It is, however, not clear how accurately this reflects pathogenicity under field conditions. In this study, five techniques to potentially ...

  5. ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants.

    Science.gov (United States)

    Patel, Ronak Y; Shah, Neethu; Jackson, Andrew R; Ghosh, Rajarshi; Pawliczek, Piotr; Paithankar, Sameer; Baker, Aaron; Riehle, Kevin; Chen, Hailin; Milosavljevic, Sofia; Bizon, Chris; Rynearson, Shawn; Nelson, Tristan; Jarvik, Gail P; Rehm, Heidi L; Harrison, Steven M; Azzariti, Danielle; Powell, Bradford; Babb, Larry; Plon, Sharon E; Milosavljevic, Aleksandar

    2017-01-12

    The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http

  6. Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens.

    Science.gov (United States)

    Reyher, K K; Dohoo, I R; Scholl, D T; Keefe, G P

    2012-07-01

    Major mastitis pathogens such as Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium spp. and coagulase-negative staphylococci (CNS). The current literature comprises several studies (n=38) detailing analyses with conflicting results as to whether intramammary infections (IMI) with the minor pathogens decrease, increase, or have no effect on the risk of a quarter acquiring a new IMI (NIMI) with a major pathogen. The Canadian Bovine Mastitis Research Network has a large mastitis database derived from a 2-yr data collection on a national cohort of dairy farms, and data from this initiative were used to further investigate the effect of IMI with minor pathogens on the acquisition of new major pathogen infections (defined as a culture-positive quarter sample in a quarter that had been free of that major pathogen in previous samples in the sampling period). Longitudinal milk samplings of clinically normal udders taken over several 6-wk periods as well as samples from cows pre-dry-off and postcalving were used to this end (n=80,397 quarter milk samples). The effects of CNS and Corynebacterium spp. on the major mastitis pathogens Staph. aureus, Strep. uberis, Strep. dysgalactiae, and coliform bacteria (Escherichia coli and Klebsiella spp.) were investigated using risk ratio analyses and multilevel logistic regression models. Quarter-, cow- and herd-level susceptibility parameters were also evaluated and were able to account for the increased susceptibility that exists within herds, cows and quarters, removing it from estimates for the effects of the minor pathogens. Increased quarter-level susceptibility was associated with increased risk of major pathogen NIMI for all pathogens except the coliforms. Increased somatic cell count was consistently associated with elevated risk of new major pathogen infections, but this was

  7. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  8. Social barriers to pathogen transmission in wild animal populations

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1995-03-01

    Diseases and pathogens are receiving increasing recognition as sources of mortality in animal populations. Immune system strength is clearly important in fending off pathogen attack. Physical barriers to pathogen entry are also important. Various individual behaviors are efficacious in reducing contact with diseases and pests. This paper focuses on a fourth mode of defense: social barriers to transmission. Various social behaviors have pathogen transmission consequences. Selective pressures on these social behaviors may therefore exist. Effects on pathogen transmission of mating strategies, social avoidance, group size, group isolation, and other behaviors are explored. It is concluded that many of these behaviors may have been affected by selection pressures to reduce transmission of pathogens. 84 refs., 1 tab.

  9. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  10. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene.

    Science.gov (United States)

    Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André

    2003-08-01

    Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.

  11. Pathogen avoidance by insect predators

    OpenAIRE

    Meyling, Nicolai V.; Ormond, Emma; Roy, Helen E.; Pell, Judith K.

    2008-01-01

    Insects can detect cues related to the risk of attack by their natural enemies. Pathogens are among the natural enemies of insects and entomopathogenic fungi attack a wide array of host species. Evidence documents that social insects in particular have adapted behavioural mechanisms to avoid infection by fungal pathogens. These mechanisms are referred to as 'behavioural resistance'. However, there is little evidence for similar adaptations in non-social insects. We have conducted experime...

  12. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  13. Foodborne pathogens

    Directory of Open Access Journals (Sweden)

    Thomas Bintsis

    2017-06-01

    Full Text Available Foodborne pathogens are causing a great number of diseases with significant effects on human health and economy. The characteristics of the most common pathogenic bacteria (Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, Cronobacter sakazakii, Esherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococccus aureus, Vibrio spp. and Yersinia enterocolitica, viruses (Hepatitis A and Noroviruses and parasites (Cyclospora cayetanensis, Toxoplasma gondii and Trichinella spiralis, together with some important outbreaks, are reviewed. Food safety management systems based on to classical hazard-based approach has been proved to be inefficient, and risk-based food safety approach is now suggested from leading researchers and organizations. In this context, a food safety management system should be designed in a way to estimate the risks to human health from food consumption and to identify, select and implement mitigation strategies in order to control and reduce these risks. In addition, the application of suitable food safety education programs for all involved people in the production and consumption of foods is suggested.

  14. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    Directory of Open Access Journals (Sweden)

    Dongsheng Che

    2014-01-01

    Full Text Available High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs. PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms.

  15. Modeling the intracellular pathogen-immune interaction with cure rate

    Science.gov (United States)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by

  16. Adaptive value of sex in microbial pathogens.

    Science.gov (United States)

    Michod, Richard E; Bernstein, Harris; Nedelcu, Aurora M

    2008-05-01

    Explaining the adaptive value of sex is one of the great outstanding problems in biology. The challenge comes from the difficulty in identifying the benefits provided by sex, which must outweigh the substantial costs of sex. Here, we consider the adaptive value of sex in viruses, bacteria and fungi, and particularly the information available on the adaptive role of sex in pathogenic microorganisms. Our general theme is that the varied aspects of sex in pathogens illustrate the varied issues surrounding the evolution of sex generally. These include, the benefits of sex (in the short- and long-term), as well as the costs of sex (both to the host and to the pathogen). For the benefits of sex (that is, its adaptive value), we consider three hypotheses: (i) sex provides for effective and efficient recombinational repair of DNA damages, (ii) sex provides DNA for food, and (iii) sex produces variation and reduces genetic associations among alleles under selection. Although the evolution of sex in microbial pathogens illustrates these general issues, our paper is not a general review of theories for the evolution of sex in all organisms. Rather, we focus on the adaptive value of sex in microbial pathogens and conclude that in terms of short-term benefits, the DNA repair hypothesis has the most support and is the most generally applicable hypothesis in this group. In particular, recombinational repair of DNA damages may substantially benefit pathogens when challenged by the oxidative defenses of the host. However, in the long-term, sex may help get rid of mutations, increase the rate of adaptation of the population, and, in pathogens, may infrequently create new infective strains. An additional general issue about sex illustrated by pathogens is that some of the most interesting consequences of sex are not necessarily the reasons for which sex evolved. For example, antibiotic resistance may be transferred by bacterial sex, but this transfer is probably not the reason sex

  17. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes

    DEFF Research Database (Denmark)

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen

    2015-01-01

    Comparative studies of pathogenic bacteria and their non-pathogenic counterparts has led to the discovery of important virulence factors thereby generating insight into mechanisms of pathogenesis. Protein-based antigens for vaccine development are primarily selected among unique virulence...... experimental approach. In addition we find proteins that are not unique to the pathogenic strains but expressed at levels different from the commensal strain, including the colonization factor YghJ and the surface adhesin antigen 43, which is involved in pathogenesis of other Gram-negative bacteria......-related factors produced by the pathogen of interest. However, recent work indicates that proteins that are not unique to the pathogen but instead selectively expressed compared to its non-pathogenic counterpart could also be vaccine candidates or targets for drug development. Modern methods in quantitative...

  18. Sieve analysis using the number of infecting pathogens.

    Science.gov (United States)

    Follmann, Dean; Huang, Chiung-Yu

    2017-12-14

    Assessment of vaccine efficacy as a function of the similarity of the infecting pathogen to the vaccine is an important scientific goal. Characterization of pathogen strains for which vaccine efficacy is low can increase understanding of the vaccine's mechanism of action and offer targets for vaccine improvement. Traditional sieve analysis estimates differential vaccine efficacy using a single identifiable pathogen for each subject. The similarity between this single entity and the vaccine immunogen is quantified, for example, by exact match or number of mismatched amino acids. With new technology, we can now obtain the actual count of genetically distinct pathogens that infect an individual. Let F be the number of distinct features of a species of pathogen. We assume a log-linear model for the expected number of infecting pathogens with feature "f," f=1,…,F. The model can be used directly in studies with passive surveillance of infections where the count of each type of pathogen is recorded at the end of some interval, or active surveillance where the time of infection is known. For active surveillance, we additionally assume that a proportional intensity model applies to the time of potentially infectious exposures and derive product and weighted estimating equation (WEE) estimators for the regression parameters in the log-linear model. The WEE estimator explicitly allows for waning vaccine efficacy and time-varying distributions of pathogens. We give conditions where sieve parameters have a per-exposure interpretation under passive surveillance. We evaluate the methods by simulation and analyze a phase III trial of a malaria vaccine. © 2017, The International Biometric Society.

  19. Isolation of antibiotic-resistant pathogenic and potentially ...

    African Journals Online (AJOL)

    2010-09-13

    Sep 13, 2010 ... The aim of the present study is to determine the pathogenic and potentially ... Keywords: pathogenic bacteria; antibiotic resistance; carpets; mosques; Tripoli; Libya .... During the process of praying, a Muslim is obliged to go.

  20. Lyophilization as a method for pathogens long term preservation

    Directory of Open Access Journals (Sweden)

    Milošević Mirjana B.

    2007-01-01

    Full Text Available Lyophilization (freeze-drying is one of the most suitable methods used for a long term preservation of pathogens. The aim of this paper was the application of lyophilization for storage of three significant plant pathogens: Fusarium graminearum, Helminthosporium gramineum, and Pseudomonas syringae pv. gylicinea, respectively. The plant material was collected continuously (during a four year period 2002-2006, depending on a plant development stage, from different localities in Vojvodina. Pathogens were isolated from diseased parts with characteristic symptoms, and placed on nutritive media specific for a certain pathogen, using standard phytopathological methods. Lyophilization was carried out in marked and coded ampoules by freezing and drying of pathogen suspension and nutritive medium. Revitalization of lyophilized isolates was done after four days. High percentage of revitalization was characteristic for all studied isolates, and it ranged from 85-92%, confirming that lyophilized pathogens would be capable of keeping viability for a long time in the collection. Besides above mentioned pathogens, there were 200 isolates in the collection, originating mostly from field and vegetable crops. Each isolate that was put into the Collection, was followed by all the necessary data such as: name of the pathogen, number of isolates, locality, host plant year of isolation, name of the researcher and other relevant data.

  1. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    OpenAIRE

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracellular fungal pathogen Cladosporium fulvum serves as a model system to study host resistance and susceptibility in plant-pathogen interactions. Resistance to C. fulvum in tomato plants follows the ge...

  2. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph

    2015-09-01

    Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.

  3. The trans-kingdom identification of negative regulators of pathogen hypervirulence.

    Science.gov (United States)

    Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E

    2016-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.

  4. Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-10-01

    Full Text Available Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptome of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNP in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.

  5. Host–Pathogen Interactions

    NARCIS (Netherlands)

    Smits, M.A.; Schokker, D.J.

    2011-01-01

    The outcome of an infection is determined by numerous interactions between hosts and pathogens occurring at many different biological levels, ranging from molecule to population. To develop new control strategies for infectious diseases in livestock species, appropriate methodologies are needed

  6. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  7. Using the Pathogen-Host Interactions database (PHI-base to investigate plant pathogen genomes and genes implicated in virulence

    Directory of Open Access Journals (Sweden)

    Martin eUrban

    2015-08-01

    Full Text Available New pathogen-host interaction mechanisms can be revealed by integrating mutant phenotype data with genetic information. PHI-base is a multi-species manually curated database combining peer-reviewed published phenotype data from plant and animal pathogens and gene/protein information in a single database.

  8. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  9. Antimicrobial resistance of mastitis pathogens.

    Science.gov (United States)

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur

  10. Daphnia magna shows reduced infection upon secondary exposure to a pathogen.

    Science.gov (United States)

    McTaggart, Seanna J; Wilson, Philip J; Little, Tom J

    2012-12-23

    Previous pathogen exposure is an important predictor of the probability of becoming infected. This is deeply understood for vertebrate hosts, and increasingly so for invertebrate hosts. Here, we test if an initial pathogen exposure changes the infection outcome to a secondary pathogen exposure in the natural host-pathogen system Daphnia magna and Pasteuria ramosa. Hosts were initially exposed to an infective pathogen strain, a non-infective pathogen strain or a control. The same hosts underwent a second exposure, this time to an infective pathogen strain, either immediately after the initial encounter or 48 h later. We observed that an initial encounter with a pathogen always conferred protection against infection compared with controls.

  11. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabido......The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used....... cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence...... genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance...

  12. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    Science.gov (United States)

    Redman, Regina S.; Rodriguez, Rusty J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a UV-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  13. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery.

    Science.gov (United States)

    Duffy, Sandra; Sykes, Melissa L; Jones, Amy J; Shelper, Todd B; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E; Avery, Vicky M

    2017-09-01

    Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. Copyright © 2017 Duffy et al.

  14. Exploring NAD+ metabolism in host-pathogen interactions.

    Science.gov (United States)

    Mesquita, Inês; Varela, Patrícia; Belinha, Ana; Gaifem, Joana; Laforge, Mireille; Vergnes, Baptiste; Estaquier, Jérôme; Silvestre, Ricardo

    2016-03-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.

  15. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  16. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    Science.gov (United States)

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  17. A network approach to predict pathogenic genes for Fusarium graminearum.

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-10-04

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  18. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  19. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  20. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity.

    Science.gov (United States)

    Fischer, Gregory J; Keller, Nancy P

    2016-03-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.

  1. Population genomics of fungal and oomycete pathogens

    Science.gov (United States)

    We are entering a new era in plant pathology where whole-genome sequences of many individuals of a pathogen species are becoming readily available. This era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. Population gen...

  2. Challenges in Fusarium, a Trans-Kingdom Pathogen

    NARCIS (Netherlands)

    van Diepeningen, Anne D; de Hoog, G Sybren

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi:

  3. Digital PCR for detection of citrus pathogens

    Science.gov (United States)

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  4. THE OCCURRENCE, GROWTH AND CONTROL OF PATHOGENS ...

    African Journals Online (AJOL)

    Fermented foods have many advantageous attributes such as improved nutritional value and safety against bacterial pathogens. These foods are also important for weaning purposes and hence play a role in protecting infants against foodborne diseases. However, pathogens have been isolated from some fermented foods ...

  5. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.

    Science.gov (United States)

    Shokal, Upasana; Yadav, Shruti; Atri, Jaishri; Accetta, Julia; Kenney, Eric; Banks, Katherine; Katakam, Akash; Jaenike, John; Eleftherianos, Ioannis

    2016-02-09

    Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects

  6. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    Science.gov (United States)

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  7. The pathogenic persona of community-associated oral streptococci.

    Science.gov (United States)

    Whitmore, Sarah E; Lamont, Richard J

    2011-07-01

    The mitis group streptococci (MGS) are widespread in the oral cavity and are traditionally associated with oral health. However, these organisms have many attributes that contribute to the development of pathogenic oral communities. MGS adhere rapidly to saliva-coated tooth surfaces, thereby providing an attachment substratum for more overtly pathogenic organisms such as Porphyromonas gingivalis, and the two species assemble into heterotypic communities. Close physical association facilitates physiologic support, and pathogens such as Aggregatibacter actinomycetemcomitans display resource partitioning to favour carbon sources generated by streptococcal metabolism. MGS exchange information with community members through a number of interspecies signalling systems including AI-2 and contact dependent mechanisms. Signal transduction systems induced in P. gingivalis are based on protein dephosphorylation mediated by the tyrosine phosphatase Ltp1, and converge on a LuxR-family transcriptional regulator, CdhR. Phenotypic responses in P. gingivalis include regulation of hemin uptake systems and gingipain activity, processes that are intimately linked to the virulence of the organism. Furthermore, communities of S. gordonii with P. gingivalis or with A. actinomycetemcomitans are more pathogenic in animal models than the constituent species alone. We propose that MGS should be considered accessory pathogens, organisms whose pathogenic potential only becomes evident in the context of a heterotypic microbial community. © 2011 Blackwell Publishing Ltd.

  8. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes'

    Directory of Open Access Journals (Sweden)

    Saunders Nigel J

    2006-05-01

    Full Text Available Abstract Background Neisseria meningitidis causes the life-threatening diseases meningococcal meningitis and meningococcal septicemia. Neisseria gonorrhoeae is closely related to the meningococcus, but is the cause of the very different infection, gonorrhea. A number of genes have been implicated in the virulence of these related yet distinct pathogens, but the genes that define and differentiate the species and their behaviours have not been established. Further, a related species, Neisseria lactamica is not associated with either type of infection in normally healthy people, and lives as a harmless commensal. We have determined which of the genes so far identified in the genome sequences of the pathogens are also present in this non-pathogenic related species. Results Thirteen unrelated strains of N. lactamica were investigated using comparative genome hybridization to the pan-Neisseria microarray-v2, which contains 2845 unique gene probes. The presence of 127 'virulence genes' was specifically addressed; of these 85 are present in N. lactamica. Of the remaining 42 'virulence genes' only 11 are present in all four of the sequenced pathogenic Neisseria. Conclusion Assessment of the complete dataset revealed that the vast majority of genes present in the pathogens are also present in N. lactamica. Of the 1,473 probes to genes shared by all four pathogenic genome sequences, 1,373 hybridize to N. lactamica. These shared genes cannot include genes that are necessary and sufficient for the virulence of the pathogens, since N. lactamica does not share this behaviour. This provides an essential context for the interpretation of gene complement studies of the pathogens.

  9. Electrochemical Methodologies for the Detection of Pathogens.

    Science.gov (United States)

    Amiri, Mandana; Bezaatpour, Abolfazl; Jafari, Hamed; Boukherroub, Rabah; Szunerits, Sabine

    2018-05-25

    Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current

  10. Applied Genomics of Foodborne Pathogens

    DEFF Research Database (Denmark)

    and customized source of information designed for and accessible to microbiologists interested in applying cutting-edge genomics in food safety and public health research. This book fills this void with a well-selected collection of topics, case studies, and bioinformatics tools contributed by experts......This book provides a timely and thorough snapshot into the emerging and fast evolving area of applied genomics of foodborne pathogens. Driven by the drastic advance of whole genome shot gun sequencing (WGS) technologies, genomics applications are becoming increasingly valuable and even essential...... at the forefront of foodborne pathogen genomics research....

  11. Serpin functions in host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Jialing Bao

    2018-04-01

    Full Text Available Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.

  12. Genetic parameters for pathogen-specific mastitis resistance in Danish Holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Madsen, P.; Mark, Thomas

    2009-01-01

    The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus...... caused by different pathogens has been shown to differ greatly. Sampling bias may be present because there were not pathogen information on all mastitis treatments and because some farms do not record pathogen information. Therefore, improved recording of pathogen information and mastitis treatment sin...

  13. Modeling of pathogen survival during simulated gastric digestion.

    Science.gov (United States)

    Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru

    2011-02-01

    The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens.

  14. Competition between yogurt probiotics and periodontal pathogens in vitro.

    Science.gov (United States)

    Zhu, Yunwo; Xiao, Liying; Shen, Da; Hao, Yuqing

    2010-09-01

    To investigate the competition between probiotics in bio-yogurt and periodontal pathogens in vitro. The antimicrobial activity of bio-yogurt was studied by agar diffusion assays, using eight species of putative periodontal pathogens and a 'protective bacteria' as indicator strains. Four probiotic bacterial species (Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium) were isolated from yogurt and used to rate the competitive exclusion between probiotics and periodontal pathogens. Fresh yogurt inhibited all the periodontal pathogens included in this work, showing inhibition zones ranging from 9.3 (standard deviation 0.6) mm to 17.3 (standard deviation 1.7) mm, whereas heat-treated yogurt showed lower antimicrobial activity. In addition, neither fresh yogurt nor heat-treated yogurt inhibited the 'protective bacteria', Streptococcus sanguinis. The competition between yogurt probiotics and periodontal pathogens depended on the sequence of inoculation. When probiotics were inoculated first, Bifidobacterium inhibited Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas circumdentaria, and Prevotella nigrescens; L. acidophilus inhibited P. gingivalis, A. actinomycetemcomitans, P. circumdentaria, P. nigrescens, and Peptostreptococcus anaerobius; L. bulgaricus inhibited P. gingivalis, A. actinomycetemcomitans, and P. nigrescens; and S. thermophilus inhibited P. gingivalis, F. nucleatum, and P. nigrescens. However, their antimicrobial properties were reduced when both species (probiotics and periodontal pathogens) were inoculated simultaneously. When periodontal pathogens were inoculated first, Prevotella intermedia inhibited Bifidobacterium and S. thermophilus. The results demonstrated that bio-yogurt and the probiotics that it contains are capable of inhibiting specific periodontal pathogens but have no effect on the periodontal protective bacteria.

  15. Raft-like membrane domains in pathogenic microorganisms.

    Science.gov (United States)

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  17. Purification and proteomics of pathogen-modified vacuoles and membranes

    Directory of Open Access Journals (Sweden)

    Jo-Ana eHerweg

    2015-06-01

    Full Text Available Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e. the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.

  18. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts

    Czech Academy of Sciences Publication Activity Database

    Pálková, Z.; Váchová, Libuše

    2016-01-01

    Roč. 57, SEP (2016), s. 110-119 ISSN 1084-9521 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Pathogenic yeasts * Biofilms and colonies * Cell differentiation Subject RIV: EE - Microbiology, Virology Impact factor: 6.614, year: 2016

  19. Evolution of microbial pathogens

    National Research Council Canada - National Science Library

    DiRita, Victor J; Seifert, H. Steven

    2006-01-01

    ... A. Hogan vvi ■ CONTENTS 8. Evolution of Pathogens in Soil Rachel Muir and Man-Wah Tan / 131 9. Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of ...

  20. The role of social cognition in parasite and pathogen avoidance.

    Science.gov (United States)

    Kavaliers, Martin; Choleris, Elena

    2018-07-19

    The acquisition and use of social information are integral to social behaviour and parasite/pathogen avoidance. This involves social cognition which encompasses mechanisms for acquiring, processing, retaining and acting on social information. Social cognition entails the acquisition of social information about others (i.e. social recognition) and from others (i.e. social learning). Social cognition involves assessing other individuals and their infection status and the pathogen and parasite threat they pose and deciding about when and how to interact with them. Social cognition provides a framework for examining pathogen and parasite avoidance behaviours and their associated neurobiological mechanisms. Here, we briefly consider the relationships between social cognition and olfactory-mediated pathogen and parasite avoidance behaviours. We briefly discuss aspects of (i) social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on mate and social partner choice; (ii) the roles of 'out-groups' (strangers, unfamiliar individuals) and 'in-groups' (familiar individuals) in the expression of parasite/pathogen avoidance behaviours; (iii) individual and social learning, i.e. the utilization of the pathogen recognition and avoidance responses of others; and (iv) the neurobiological mechanisms, in particular the roles of the nonapeptide, oxytocin and steroid hormones (oestrogens) associated with social cognition and parasite/pathogen avoidance.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'. © 2018 The Author(s).

  1. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  2. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  3. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.

    2012-08-16

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.

  4. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  5. Impact of climate trends on tick-borne pathogen transmission

    Directory of Open Access Journals (Sweden)

    Agustin eEstrada-Pena

    2012-03-01

    Full Text Available Recent advances in climate research together with a better understanding of tick-pathogen interactions, the distribution of ticks and the diagnosis of tick-borne pathogens raise questions about the impact of environmental factors on tick abundance and spread and the prevalence and transmission of tick-borne pathogens. While undoubtedly climate plays a role in the changes in distribution and seasonal abundance of ticks, it is always difficult to disentangle factors impacting on the abundance of tick hosts from those exerted by human habits. All together, climate, host abundance and social factors may explain the upsurge of epidemics transmitted by ticks to humans. Herein we focused on tick-borne pathogens that affect humans with pandemic potential. Borrelia burgdorferi s.l. (Lyme disease, Anaplasma phagocytophilum (human granulocytic anaplasmosis and tick-borne encephalitis virus (tick-borne encephalitis are transmitted by Ixodes spp. Crimean-Congo hemorrhagic fever virus (Crimean-Congo hemorrhagic fever is transmitted by Hyalomma spp. In this review, we discussed how vector tick species occupy the habitat as a function of different climatic factors, and how these factors impact on tick survival and seasonality. How molecular events at the tick-pathogen interface impact on pathogen transmission is also discussed. Results from statistically and biologically derived models are compared to show that while statistical models are able to outline basic information about tick distributions, biologically derived models are necessary to evaluate pathogen transmission rates and understand the effect of climatic variables and host abundance patterns on pathogen transmission. The results of these studies could be used to build early alert systems able to identify the main factors driving the subtle changes in tick distribution and seasonality and the prevalence of tick-borne pathogens.

  6. The value of pathogen information in treating clinical mastitis.

    Science.gov (United States)

    Cha, Elva; Smith, Rebecca L; Kristensen, Anders R; Hertl, Julia A; Schukken, Ynte H; Tauer, Loren W; Welcome, Frank L; Gröhn, Yrjö T

    2016-11-01

    The objective of this study was to determine the economic value of obtaining timely and more accurate clinical mastitis (CM) test results for optimal treatment of cows. Typically CM is first identified when the farmer observes recognisable outward signs. Further information of whether the pathogen causing CM is Gram-positive, Gram-negative or other (including no growth) can be determined by using on-farm culture methods. The most detailed level of information for mastitis diagnostics is obtainable by sending milk samples for culture to an external laboratory. Knowing the exact pathogen permits the treatment method to be specifically targeted to the causation pathogen, resulting in less discarded milk. The disadvantages are the additional waiting time to receive test results, which delays treating cows, and the cost of the culture test. Net returns per year (NR) for various levels of information were estimated using a dynamic programming model. The Value of Information (VOI) was then calculated as the difference in NR using a specific level of information as compared to more detailed information on the CM causative agent. The highest VOI was observed where the farmer assumed the pathogen causing CM was the one with the highest incidence in the herd and no pathogen specific CM information was obtained. The VOI of pathogen specific information, compared with non-optimal treatment of Staphylococcus aureus where recurrence and spread occurred due to lack of treatment efficacy, was $20.43 when the same incorrect treatment was applied to recurrent cases, and $30.52 when recurrent cases were assumed to be the next highest incidence pathogen and treated accordingly. This indicates that negative consequences associated with choosing the wrong CM treatment can make additional information cost-effective if pathogen identification is assessed at the generic information level and if the pathogen can spread to other cows if not treated appropriately.

  7. Pathogenicity of Nectriaceous Fungi on Avocado in Australia.

    Science.gov (United States)

    Parkinson, Louisamarie E; Shivas, Roger G; Dann, Elizabeth K

    2017-12-01

    Black root rot is a severe disease of young avocado trees in Australia causing black necrotic roots, tree stunting, and leaf drop prior to tree death. Nectriaceous fungi (Nectriaceae, Hypocreales), are commonly isolated from symptomatic roots. This research tested the pathogenicity of 19 isolates from Calonectria, Cylindrocladiella, Dactylonectria, Gliocladiopsis, and Ilyonectria, spp. collected from young avocado trees and other hosts. Glasshouse pathogenicity tests with 'Reed' avocado (Persea americana) seedlings confirmed that Calonectria ilicicola is a severe pathogen of avocado, causing stunting, wilting, and seedling death within 5 weeks of inoculation. Isolates of C. ilicicola from peanut, papaya, and custard apple were also shown to be aggressive pathogens of avocado, demonstrating a broad host range. An isolate of a Calonectria sp. from blueberry and avocado isolates of Dactylonectria macrodidyma, D. novozelandica, D. pauciseptata, and D. anthuriicola caused significant root rot but not stunting within 5 to 9 weeks of inoculation. An isolate of an Ilyonectria sp. from grapevine closely related to Ilyonectria liriodendri, and avocado isolates of Cylindrocladiella pseudoinfestans, Gliocladiopsis peggii, and an Ilyonectria sp. were not pathogenic to avocado.

  8. Laser inactivation of pathogenic viruses in water

    Science.gov (United States)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-03-01

    Currently there is a situation that makes it difficult to provide the population with quality drinking water for the sanitary-hygienic requirements. One of the urgent problems is the need for water disinfection. Since the emergence of microorganisms that are pathogens transmitted through water such as typhoid, cholera, etc. requires constant cleansing of waters against pathogenic bacteria. In the water treatment process is destroyed up to 98% of germs, but among the remaining can be pathogenic viruses, the destruction of which requires special handling. As a result, the conducted research the following methods have been proposed for combating harmful microorganisms: sterilization of water by laser radiation and using a UV lamp.

  9. Bacterial food-borne pathogens in Indian food

    International Nuclear Information System (INIS)

    Bandekar, J.R.

    2015-01-01

    Food technology and food processing techniques have made tremendous advances in preservation of food and ensuring safety of food by killing food-borne pathogens. In addition to old techniques such as pasteurization, canning, dehydration, fermentation and salting, a number of new techniques such as radiation processing, high pressure technology and pulsed electric field technology are being applied for preservation of food and to ensure food safety. Total Quality Management (TQM) concepts have been developed to take care of food safety from farm to table. Hazard Analysis at Critical Control Points (HACCP) is being applied for mass scale production of food to make food free from pathogens. Despite these advances, food-borne diseases have become one of the most widespread public health problems in the world. About two thirds of all the outbreaks are traced to microbial contaminated food. According to World Health Organization (WHO) estimates, food-borne and waterborne diarrhoeal diseases kill an estimated 2 million people annually, including many children. Food safety is a major concern not only for developing countries but also for the developed countries. A number of factors such as emergence of new food-borne pathogens, development of drug resistance in pathogens, changing life style, globalization of the food supply etc. are responsible for the continuous persistence of food-borne diseases. The food-borne disease outbreaks due to E. coli O157:H7, Listeria monocytogenes, Salmonella and Campylobacter, are responsible for recall of many foods resulting in heavy losses to food industry. Due to consumer demand, a number of Ready-To-Eat (RTE) minimally processed foods are increasingly marketed; however, there is increased risk of foodborne diseases with these products. Food Technology Division of Bhabha Atomic Research Centre, Mumbai, has been working on food-borne bacterial pathogens particularly Salmonella, Campylobacter, Listeria monocytogenes, Vibrio and Aeromonasf

  10. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... [Docket No. APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant... regions where any subtype of highly pathogenic avian influenza (HPAI) is considered to exist. The interim... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  11. Evasion of Neutrophil Extracellular Traps by Respiratory Pathogens.

    Science.gov (United States)

    Storisteanu, Daniel M L; Pocock, Joanna M; Cowburn, Andrew S; Juss, Jatinder K; Nadesalingam, Angalee; Nizet, Victor; Chilvers, Edwin R

    2017-04-01

    The release of neutrophil extracellular traps (NETs) is a major immune mechanism intended to capture pathogens. These histone- and protease-coated DNA structures are released by neutrophils in response to a variety of stimuli, including respiratory pathogens, and have been identified in the airways of patients with respiratory infection, cystic fibrosis, acute lung injury, primary graft dysfunction, and chronic obstructive pulmonary disease. NET production has been demonstrated in the lungs of mice infected with Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. Since the discovery of NETs over a decade ago, evidence that "NET evasion" might act as an immune protection strategy among respiratory pathogens, including group A Streptococcus, Bordetella pertussis, and Haemophilus influenzae, has been growing, with the majority of these studies being published in the past 2 years. Evasion strategies fall into three main categories: inhibition of NET release by down-regulating host inflammatory responses; degradation of NETs using pathogen-derived DNases; and resistance to the microbicidal components of NETs, which involves a variety of mechanisms, including encapsulation. Hence, the evasion of NETs appears to be a widespread strategy to allow pathogen proliferation and dissemination, and is currently a topic of intense research interest. This article outlines the evidence supporting the three main strategies of NET evasion-inhibition, degradation, and resistance-with particular reference to common respiratory pathogens.

  12. Annotating pathogenic non-coding variants in genic regions.

    Science.gov (United States)

    Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B

    2017-08-09

    Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.

  13. Pathogenic human viruses in coastal waters

    Science.gov (United States)

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  14. Analyzing the Differences and Preferences of Pathogenic and Nonpathogenic Prokaryote Species

    Science.gov (United States)

    Nolen, L.; Duong, K.; Heim, N. A.; Payne, J.

    2015-12-01

    A limited amount of knowledge exists on the large-scale characteristics and differences of pathogenic species in comparison to all prokaryotes. Pathogenic species, like other prokaryotes, have attributes specific to their environment and lifestyles. However, because they have evolved to coexist inside their hosts, the conditions they occupy may be more limited than those of non-pathogenic species. In this study we investigate the possibility of divergent evolution between pathogenic and non-pathogenic species by examining differences that may have evolved as a result of the need to adapt to their host. For this research we analyzed data collected from over 1900 prokaryotic species and performed t-tests using R to quantify potential differences in preferences. To examine the possible divergences from nonpathogenic bacteria, we focused on three variables: cell biovolume, preferred environmental pH, and preferred environmental temperature. We also looked at differences between pathogenic and nonpathogenic species belonging to the same phylum. Our results suggest a strong divergence in abiotic preferences between the two groups, with pathogens occupying a much smaller range of temperatures and pHs than their non-pathogenic counterparts. However, while the median biovolume is different when comparing pathogens and nonpathogens, we cannot conclude that the mean values are significantly different from each other. In addition, we found evidence of convergent evolution, as the temperature and pH preferences of pathogenic bacteria species from different phlya all approach the same values. Pathogenic species do not, however, all approach the same biovolume values, suggesting that specific pH and temperature preferences are more characteristic of pathogens than certain biovolumes.

  15. Indicators for waterborne pathogens

    National Research Council Canada - National Science Library

    Committee on Indicators for Waterborne Pathogens, National Research Council

    2004-01-01

    ... not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples.Â...

  16. Susceptibility of pathogenic and nonpathogenic Naegleria ssp

    International Nuclear Information System (INIS)

    Whiteman, L.Y.

    1988-01-01

    The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with 3 H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenic or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with 125 I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae

  17. Plant pathology: monitoring a pathogen-targeted host protein.

    Science.gov (United States)

    Ellis, Jeff; Dodds, Peter

    2003-05-13

    A plant protein RIN4 is targeted and modified by bacterial pathogens as part of the disease process. At least two host resistance proteins monitor this pathogen interference and trigger the plant's defence responses.

  18. Pathogen reduction of blood components.

    Science.gov (United States)

    Solheim, Bjarte G

    2008-08-01

    Thanks to many blood safety interventions introduced in developed countries the risk of transfusion transmitted infections has become exceedingly small in these countries. However, emerging pathogens still represent a serious challenge, as demonstrated by West Nile virus in the US and more recently by Chikungunya virus in the Indian Ocean. In addition bacterial contamination, particularly in platelets, and protozoa transmitted by blood components still represent sizeable risks in developed countries. In developing countries the risk of all transfusion transmitted infections is still high due to insufficient funding and organisation of the health service. Pathogen reduction of pooled plasma products has virtually eliminated the risk of transfusion transmitted infections, without compromising the quality of the products significantly. Pathogen reduction of blood components has been much more challenging. Solvent detergent treatment which has been so successfully applied for plasma products dissolves cell membranes, and can, therefore, only be applied for plasma and not for cellular blood components. Targeting of nucleic acids has been another method for pathogen inactivation of plasma and the only approach possible for cellular blood products. As documented in more than 15 year's track record, solvent detergent treatment of pooled plasma can yield high quality plasma. The increased risk for contamination by unknown viruses due to pooling is out weighed by elimination of TRALI, significant reduction in allergic reactions and standardisation of the product. Recently, a promising method for solvent detergent treatment of single donor plasma units has been published. Methylene blue light treatment of single donor plasma units has a similar long track record as pooled solvent detergent treated plasma; but the method is less well documented and affects coagulation factor activity more. Psoralen light treated plasma has only recently been introduced (CE marked in Europe

  19. Inflammasome/IL-1β Responses to Streptococcal Pathogens

    Directory of Open Access Journals (Sweden)

    Christopher N. LaRock

    2015-10-01

    Full Text Available Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.

  20. Mixed infections reveal virulence differences between host-specific bee pathogens.

    Science.gov (United States)

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  1. PHIDIAS- Pathogen Host Interaction Data Integration and Analysis

    Indian Academy of Sciences (India)

    PHIDIAS- Pathogen Host Interaction Data Integration and Analysis- allows searching of integrated genome sequences, conserved domains and gene expressions data related to pathogen host interactions in high priority agents for public health and security ...

  2. Transcriptomic insight into pathogenicity-associated factors of Conidiobolus obscurus, an obligate aphid-pathogenic fungus belonging to Entomopthoromycota.

    Science.gov (United States)

    Wang, Jianghong; Zhou, Xiang; Guo, Kai; Zhang, Xinqi; Lin, Haiping; Montalva, Cristian

    2018-01-16

    Conidiobolus obscurus is a widespread fungal entomopathogen with aphid biocontrol potential. This study focused on a de novo transcriptomic analysis of C. obscurus. A number of pathogenicity-associated factors were annotated for the first time from the assembled 17 231 fungal unigenes, including those encoding subtilisin-like proteolytic enzymes (Pr1s), trypsin-like proteases, metalloproteases, carboxypeptidases and endochitinases. Many of these genes were transcriptionally up-regulated by at least twofold in mycotized cadavers compared with the in vitro fungal cultures. The resultant transcriptomic database was validated by the transcript levels of three selected pathogenicity-related genes quantified from different in vivo and in vitro material in real-time quantitative polymerase chain reaction (PCR). The involvement of multiple Pr1 proteases in the first stage of fungal infection was also suggested. Interestingly, a unique cytolytic (Cyt)-like δ-endotoxin gene was highly expressed in both mycotized cadavers and fungal cultures, and was more or less distinct from its homologues in bacteria and other fungi. Our findings provide the first global insight into various pathogenicity-related genes in this obligate aphid pathogen and may help to develop novel biocontrol strategy against aphid pests. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  4. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  5. Summary of taxa-specific research: 2. pathogens

    Science.gov (United States)

    Ned Klopfenstein; Brian Geils

    2009-01-01

    Damage caused by invasive forest pathogens is widely viewed as more severe, long-term, widespread, and difficult to restore than that caused by any other biological disturbance agent. In the last century, pathogens introduced into our native forests have threatened extinction of native tree species and critically degraded many different ecosystems across North America...

  6. Threats and opportunities of plant pathogenic bacteria.

    Science.gov (United States)

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen.

    Directory of Open Access Journals (Sweden)

    Dara A Satterfield

    Full Text Available Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha that infects monarch butterflies (Danaus plexippus. We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect.

  8. Fate and transport of pathogens in lakes and reservoirs.

    Science.gov (United States)

    Brookes, Justin D; Antenucci, Jason; Hipsey, Matthew; Burch, Michael D; Ashbolt, Nicholas J; Ferguson, Christobel

    2004-07-01

    Outbreaks of water-borne disease via public water supplies continue to be reported in developed countries even though there is increased awareness of, and treatment for, pathogen contamination. Pathogen episodes in lakes and reservoirs are often associated with rain events, and the riverine inflow is considered to be major source of pathogens. Consequently, the behaviour of these inflows is of particular importance in determining pathogen transport and distribution. Inflows are controlled by their density relative to that of the lake, such that warm inflows will flow over the surface of the lake as a buoyant surface flow and cold, dense inflows will sink beneath the lake water where they will flow along the bathymetry towards the deepest point. The fate of pathogens is determined by loss processes including settling and inactivation by temperature, UV and grazing. The general trend is for the insertion timescale to be shortest, followed by sedimentation losses and temperature inactivity. The fate of Cryptosporidium due to UV light inactivation can occur at opposite ends of the scale, depending on the location of the oocysts in the water column and the extinction coefficient for UV light. For this reason, the extinction coefficient for UV light appears to be a vitally important parameter for determining the risk of Cryptosporidium contamination. For risk assessment of pathogens in supply reservoirs, it is important to understand the role of hydrodynamics in determining the timescale of transport to the off-take relative to the timescale of inactivation. The characteristics of the riverine intrusion must also be considered when designing a sampling program for pathogens. A risk management framework is presented that accounts for pathogen fate and transport for reservoirs.

  9. High prevalence of pathogenic Yersinia enterocolitica in pig cheeks.

    Science.gov (United States)

    Laukkanen-Ninios, Riikka; Fredriksson-Ahomaa, Maria; Maijala, Riitta; Korkeala, Hannu

    2014-10-01

    Samples from pork cuts for minced meat and cheeks from processing plants and a slaughterhouse, and modified atmosphere (MA) packaged pork from retail were studied to estimate the prevalence of pathogenic, i.e. virulence plasmid bearing, Yersinia enterocolitica and Yersinia pseudotuberculosis in pork, as well as to quantify pathogenic Y. enterocolitica in pork cuts. Pathogenic (virF-positive) Y. enterocolitica was isolated from 17 pig cheeks (23%) but not from any of the MA-packaged 54 retail pork samples and only from one of the 155 pork cut (0.6%). Most (16/17) of the cheek samples were contaminated with pathogenic Y. enterocolitica 4/O:3 and one with bioserotype 2/O:9. No Y. pseudotuberculosis was isolated. The prevalence of pathogenic Y. enterocolitica was clearly higher (39%) in 155 pork cuts when studied with nested PCR targeting yadA on the virulence plasmid pYV although the contamination level was low varying between 0.1 and 1.6 MPN/g. Raw pork cuts and especially pig cheeks may serve as possible sources for yersiniosis caused by pathogenic Y. enterocolitica. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Pathogenic microbial ancient DNA: a problem or an opportunity?

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2006-01-01

    cloning. Yet these studies have used mobile insertion elements (e.g. IS 6110 in tuberculosis) or conserved loci (e.g. 16S) to detect the presence of pathogens, and very similar or identical sequences have been reported from environmental bacteria (Gilbert et al. 2004). For example, Rollo & Marota (1999......We agree with Donoghue & Spigelman (2005) that, although pathogen studies hold great potential, any discussion requires a critical assessment of the results to date. However, we did note, as did Pääbo et al. (2004), that the field of ancient pathogen DNA still lacks a series of well......-controlled and rigorous studies that address technical issues and reliability criteria. This is unfortunate, as the rapid evolutionary rate of many pathogens offers a unique means to establish the authenticity of ancient pathogen sequences-since they should clearly be ancestral to modern genetic diversity (e.g. Reid et...

  11. Pathogens in drinking water: Are there any new ones

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  12. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  13. Pseudomnas syringae – a Pathogen of Fruit Trees in Serbia

    Directory of Open Access Journals (Sweden)

    Veljko Gavrilović

    2009-01-01

    Full Text Available Data about symptomatology, pathogenicity and bacteriological characteristics of Pseudomonas syringae, and PCR methods for fast and reliable detection of the pathogen are given in this paper. P. syringae has been experimentaly proved as a pathogen of pear, apple, apricot, plum cherry, and raspberry, and pathogen strains have also been isolated from necrotic peach buds. Two pathogen varieties, syringae and morsprunorum, were found in our research in Serbia, the former being dominant on fruit trees.The most reliable method for detection of this bacteria is PCR, using BOX and REP primers. This method has also revealed significant differences among the strains originating from fruit trees in Serbia. Thus, it was proved that the population of P. syringae in Serbia is heterogeneous, which is very important for future epidemiologocal studies. Control of this pathogen includes mechanical, cultural and chemical measures, but integrated approach is very important for sustainable control.

  14. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions.

    Science.gov (United States)

    Butt, T M; Coates, C J; Dubovskiy, I M; Ratcliffe, N A

    2016-01-01

    Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The race between infection and immunity - how do pathogens set the pace?

    Energy Technology Data Exchange (ETDEWEB)

    Ribiero, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthe race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.

  16. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  17. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  18. AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes?

    Science.gov (United States)

    Moreira, Diana; Silvestre, Ricardo; Cordeiro-da-Silva, Anabela; Estaquier, Jérôme; Foretz, Marc; Viollet, Benoit

    2016-01-01

    Intracellular pathogens are known to manipulate host cell regulatory pathways to establish an optimal environment for their growth and survival. Pathogens employ active mechanisms to hijack host cell metabolism and acquire existing nutrient and energy store. The role of the cellular energy sensor AMP-activated protein kinase (AMPK) in the regulation of cellular energy homeostasis is well documented. Here, we highlight recent advances showing the importance of AMPK signaling in pathogen-host interactions. Pathogens interact with AMPK by a variety of mechanisms aimed at reprogramming host cell metabolism to their own benefit. Stimulation of AMPK activity provides an efficient process to rapidly adapt pathogen metabolism to the major nutritional changes often encountered during the different phases of infection. However, inhibition of AMPK is also used by pathogens to manipulate innate host response, indicating that AMPK appears relevant to restriction of pathogen infection. We also document the effects of pharmacological AMPK modulators on pathogen proliferation and survival. This review illustrates intricate pathogen-AMPK interactions that may be exploited to the development of novel anti-pathogen therapies.

  19. Methods to classify bacterial pathogens in cystic fibrosis

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Nielsen, Xiaohui Chen; Johansen, Ulla

    2011-01-01

    for identification of isolates from the Burkholderia complex to the species level. DNA typing by PFGE, which can be used for any bacterial pathogen, is described as it is employed for Pseudomonas aeruginosa. A commercially available ELISA method is described for measuring IgG antibodies against P. aeruginosa in CF......Many bacteria can be detected in CF sputum, pathogenic and commensal. Modified Koch's criteria for identification of established and emerging CF pathogens are therefore described. Methods are described to isolate bacteria and to detect bacterial biofilms in sputum or lung tissue from CF patients...

  20. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  1. Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phenotypes

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Hansen, Martin Asser; Jensen, Peter Østrup

    2013-01-01

    Achromobacter xylosoxidans is an environmental opportunistic pathogen, which infects an increasing number of immunocompromised patients. In this study we combined genomic analysis of a clinical isolated A. xylosoxidans strain with phenotypic investigations of its important pathogenic features. We...... that render it an opportunistic human pathogen, We found genes involved in anaerobic growth and the pgaABCD operon encoding the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamin. Furthermore, the genome contains a range of antibiotic resistance genes coding efflux pump systems and antibiotic modifying enzymes....... In vitro studies of A. xylosoxidans NH44784-1996 confirmed the genomic evidence for its ability to form biofilms, anaerobic growth via denitrification, and resistance to a broad range of antibiotics. Our investigation enables further studies of the functionality of important identified genes contributing...

  2. Pathogen communities of songbird-derived ticks in Europe's low countries.

    NARCIS (Netherlands)

    Heylen, Dieter; Fonville, Manoj; Docters van Leeuwen, Arieke; Stroo, Arjan; Duisterwinkel, Martin; van Wieren, Sip; Diuk-Wasser, Maria; de Bruin, Arnout; Sprong, Hein

    2017-01-01

    Birds play a major role in the maintenance of enzootic cycles of pathogens transmitted by ticks. Due to their mobility, they affect the spatial distribution and abundance of both ticks and pathogens. In the present study, we aim to identify members of a pathogen community [Borrelia burgdorferi

  3. Examining the effect of intramammary infections with minor mastitis pathogens on the acquisition of new intramammary infections with major mastitis pathogens--a systematic review and meta-analysis.

    Science.gov (United States)

    Reyher, K K; Haine, D; Dohoo, I R; Revie, C W

    2012-11-01

    Major mastitis pathogens such as Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Streptococcus dysgalactiae, and the coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium bovis and coagulase-negative staphylococci (CNS). The current literature contains several studies detailing analyses with conflicting results as to whether intramammary infection (IMI) with the minor pathogens decreases, increases, or has no effect on the risk of a quarter acquiring a new intramammary infection (NIMI) with a major pathogen. To investigate the available scientific evidence regarding the effect of IMI with minor pathogens on the acquisition of NIMI with major pathogens, a systematic review and meta-analysis were conducted. The total extant English- and French-language literature in electronic databases was searched and all publications cited by relevant papers were investigated. Results from 68 studies were extracted from 38 relevant papers. Random-effects models were used to investigate the effects of CNS and C. bovis on acquisition of new IMI with any of the major pathogens, as well as individually for the minor pathogens and Staph. aureus. Significant heterogeneity among studies exists, some of which could be accounted for by using meta-regression. Overall, observational studies showed no effect, whereas challenge studies showed strong and significant protective effects, specifically when major pathogens were introduced into the mammary gland via methods bypassing the teat end. Underlying risk can account for several unmeasured factors, and studies with higher underlying risk found more protective effects of minor pathogens. Larger doses of challenge organisms reduced the protective effect of minor pathogens, and studies with more stringent diagnostic criteria for pathogen IMI identified less protection. Smaller studies (those utilizing fewer than 40 cows) also showed a greater

  4. Molecular techniques for characterisation of pathogens

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise

    Pathogens have always had a major interest to humans due to their central role in sickness and death. Influenza A annually kills at least 250,000 humans, and has been the cause of millions of further deaths during pandemic years in the past. Plague (Yersinia pestis) has been the cause of the Black...... capture for the detection of Y. pestis in samples from the Justinian plague (600 AD) as an attempt to detect this pathogen as a cause of death in the victims....

  5. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    Directory of Open Access Journals (Sweden)

    Olga Pechanova

    2015-11-01

    Full Text Available Maize (Zea mays L. is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  6. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    Science.gov (United States)

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  7. Molecular aspects of avirulence and pathogenicity of the tomato pathogen Cladosporium fulvum

    NARCIS (Netherlands)

    Ackerveken, van den G.F.J.M.

    1993-01-01

    The molecular understanding of host-pathogen interactions and particularly of specificity forms the basis for studying plant resistance. Understanding why a certain plant species or cultivar is susceptible and why other species or cultivars are resistant is of great importance in order to

  8. AN INVESTIGATION ON PATHOGENIC VIBRIOS DISTRIBUTION IN DOMESTIC WASTEWATER

    OpenAIRE

    A. Almasi

    2005-01-01

    Municipal wastewater is one of the most important pollution sources for water supply resources. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for controlling and prevention planning of the infectious diseases. This research was carried out to identify the distribution of the recognized pathogenic Vibrios with emphasizing on identification of Vibrio cholera in the wastewater of Kermanshah city western Iran in 2002. The method of study was cr...

  9. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  10. Extracts against Various Pathogens

    Directory of Open Access Journals (Sweden)

    Ritika Chauhan

    2013-07-01

    The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.

  11. Food-borne pathogens. Is there a remedy

    Energy Technology Data Exchange (ETDEWEB)

    Niemand, J G

    1985-03-01

    The Salmonella scare reinforced the importance of never taking chances when it comes to controlling pathogens. The issue has been resolved by radurisation. The article deals with the various pathogens that can effect food and argues the case for radurisation in dealing with them. It also looks at some of the other food products that can be treated using this process.

  12. Bacterial Genome Engineering and Synthetic Biology: Combating Pathogens

    Science.gov (United States)

    2016-11-04

    extremely high genome sequence similarity between non-pathogenic and pathogenic strains by targeting small sequence variations present in the...Microbiol 2011, 14(5):524-531. 46. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA: Exploiting

  13. List of New Names of Plant Pathogenic Bacteria (2008-2010)

    Science.gov (United States)

    In 2010 the International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria published the Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007 to provide an authoritative register of names of plant pathogens. In this manuscript we up-date the list of na...

  14. Spirochaetes as intestinal pathogens: Lessons from a Brachyspira genome

    Directory of Open Access Journals (Sweden)

    Hampson David J

    2009-05-01

    Full Text Available Abstract Anaerobic spirochaetes of the genus Brachyspira have long been known as important gut pathogens of pigs, but increasingly they are recognised as causing disease in birds and other animal species, including human beings. The genome sequence of the major swine pathogen Brachyspira hyodysenteriae was recently published, and this revealed extensive genome optimisation that leads to adaptation to the complex environment of the colon. The genome sequences of other pathogenic and non-pathogenic Brachyspira species are becoming available, and this data will help to reveal how these species have evolved and adapted to varied lifestyles in the large intestines of different species, and why some but not others can induce colitis and diarrhoea.

  15. Selection of media for antimicrobial susceptibility testing of fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Dalsgaard, Inger

    2001-01-01

    3, Diagnostic Sensitivity Test Agar) have been used in addition to media (Brain Heart Infusion Agar, Heart Infusion Agar, Columbia Blood Agar) normally utilized for cultivating fastidious bacteria. When testing marine pathogens, sodium chloride or seawater has been included in the media. Media...... pattern in fish pathogenic bacteria. The American guideline from The National Committee for Clinical Laboratory Standards (NCCLS) recommends Mueller-Hinton Agar for susceptibility testing of human pathogens and this validated medium appears to be adequate for the rapidly growing fish pathogens. Following......The available data concerning antimicrobial susceptibility testing of fish pathogens showed that there is no consensus to the basal medium currently being employed. Different media recommended for susceptibility testing of human pathogens (Mueller-Hinton Agar, Tryptone Soya Agar, Antibiotic Medium...

  16. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.

    Science.gov (United States)

    Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel

    2018-05-16

    Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  17. Machine learning for the meta-analyses of microbial pathogens' volatile signatures.

    Science.gov (United States)

    Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A

    2018-02-20

    Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.

  18. Human pathogen avoidance adaptations

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.

    2016-01-01

    Over the past few decades, researchers have become increasingly interested in the adaptations guiding the avoidance of disease-causing organisms. Here we discuss the latest developments in this area, including a recently developed information-processing model of the adaptations underlying pathogen

  19. Pathogenic Streptomyces spp. abundance affected by potato cultivars.

    Science.gov (United States)

    Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean

    2018-04-16

    Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.  .

  20. Modeling of Pathogen Survival during Simulated Gastric Digestion ▿

    Science.gov (United States)

    Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru

    2011-01-01

    The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens. PMID:21131530

  1. Pathogens in Dairy Farming: Source Characterization and Groundwater Impacts

    Science.gov (United States)

    Atwill, E. R.; Watanabe, N.; Li, X.; Hou, L.; Harter, T.; Bergamaschi, B.

    2007-12-01

    Intense animal husbandry is of growing concern as a potential contamination source of enteric pathogens as well as antibiotics. To assess the public health risk from pathogens and their hydrologic pathways, we hypothesize that the animal farm is not a homogeneous diffuse source, but that pathogen loading to the soil and, therefore, to groundwater varies significantly between the various management units of a farm. A dairy farm, for example, may include an area with calf hutches, corrals for heifers of various ages, freestalls and exercise yards for milking cows, separate freestalls for dry cows, a hospital barn, a yard for collection of solid manure, a liquid manure storage lagoon, and fields receiving various amounts of liquid and solid manure. Pathogen shedding and, hence, therapeutic and preventive pharmaceutical treatments vary between these management units. We are implementing a field reconnaissance program to determine the occurrence of three different pathogens ( E. coli, Salmonella, Campylobacter) and one indicator organism ( Enterococcus) at the ground-surface and in shallow groundwater of seven different management units on each of two farms, and in each of four seasons (spring/dry season, summer/irrigation season, fall/dry season, winter/rainy season). Initial results indicate that significant differences exist in the occurrence of these pathogens between management units and between organisms. These differences are weakly reflected in their occurrence in groundwater, despite the similarity of the shallow geologic environment across these sites. Our results indicate the importance of differentiating sources within a dairy farm and the importance of understanding subsurface transport processes for these pathogens.

  2. Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species.

    Science.gov (United States)

    Rothenburger, Jamie L; Himsworth, Chelsea H; Nemeth, Nicole M; Pearl, David L; Jardine, Claire M

    2017-09-01

    Knowledge of pathogen ecology, including the impacts of environmental factors on pathogen and host dynamics, is essential for determining the risk that zoonotic pathogens pose to people. This review synthesizes the scientific literature on environmental factors that influence the ecology and epidemiology of zoonotic microparasites (bacteria, viruses and protozoa) in globally invasive urban exploiter wildlife species (i.e., rock doves [Columba livia domestica], European starlings [Sturnus vulgaris], house sparrows [Passer domesticus], Norway rats [Rattus norvegicus], black rats [R. rattus] and house mice [Mus musculus]). Pathogen ecology, including prevalence and pathogen characteristics, is influenced by geographical location, habitat, season and weather. The prevalence of zoonotic pathogens in mice and rats varies markedly over short geographical distances, but tends to be highest in ports, disadvantaged (e.g., low income) and residential areas. Future research should use epidemiological approaches, including random sampling and robust statistical analyses, to evaluate a range of biotic and abiotic environmental factors at spatial scales suitable for host home range sizes. Moving beyond descriptive studies to uncover the causal factors contributing to uneven pathogen distribution among wildlife hosts in urban environments may lead to targeted surveillance and intervention strategies. Application of this knowledge to urban maintenance and planning may reduce the potential impacts of urban wildlife-associated zoonotic diseases on people.

  3. Neonatal intensive care unit: Reservoirs of Nosocomial pathogens ...

    African Journals Online (AJOL)

    Improvement in the care and treatment of neonates had contributed to their increased survival. Nosocomial infection remains an important problem in intensive care units. Hospital wards had been shown to act as reservoirs of pathogenic microorganisms associated with infection. To assess the prevalence of pathogenic ...

  4. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  5. Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Shannon, O.; Clausen, A.R.

    2007-01-01

    Common bacterial pathogens are becoming progressively more resistant to traditional antibiotics, representing a major public-health crisis. Therefore, there is a need for a variety of antibiotics with alternative modes of action. In our study, several nucleoside analogs were tested against pathog...... alternative for combating pathogenic bacteria.......Common bacterial pathogens are becoming progressively more resistant to traditional antibiotics, representing a major public-health crisis. Therefore, there is a need for a variety of antibiotics with alternative modes of action. In our study, several nucleoside analogs were tested against...... pathogenic staphylococci and streptococci. We show that pyrimidine-based nucleoside analogs, like 3'-azido-3'-deoxythymidine (AZT) and 2',2'-difluoro-2'deoxycytidine (gemcitabine), are specifically activated by the endogenous bacterial deoxyribonucleoside kinases, leading to cell death. Deoxyribonucleoside...

  6. The sunflower downy mildew pathogen Plasmopara halstedii.

    Science.gov (United States)

    Gascuel, Quentin; Martinez, Yves; Boniface, Marie-Claude; Vear, Felicity; Pichon, Magalie; Godiard, Laurence

    2015-02-01

    Downy mildew of sunflower is caused by Plasmopara halstedii (Farlow) Berlese & de Toni. Plasmopara halstedii is an obligate biotrophic oomycete pathogen that attacks annual Helianthus species and cultivated sunflower, Helianthus annuus. Depending on the sunflower developmental stage at which infection occurs, the characteristic symptoms range from young seedling death, plant dwarfing, leaf bleaching and sporulation to the production of infertile flowers. Downy mildew attacks can have a great economic impact on sunflower crops, and several Pl resistance genes are present in cultivars to protect them against the disease. Nevertheless, some of these resistances have been overcome by the occurrence of novel isolates of the pathogen showing increased virulence. A better characterization of P. halstedii infection and dissemination mechanisms, and the identification of the molecular basis of the interaction with sunflower, is a prerequisite to efficiently fight this pathogen. This review summarizes what is currently known about P. halstedii, provides new insights into its infection cycle on resistant and susceptible sunflower lines using scanning electron and light microscopy imaging, and sheds light on the pathogenicity factors of P. halstedii obtained from recent molecular data. Kingdom Stramenopila; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Plasmopara; Species Plasmopara halstedii. Sunflower seedling damping off, dwarfing of the plant, bleaching of leaves, starting from veins, and visible white sporulation, initially on the lower side of cotyledons and leaves. Plasmopara halstedii infection may severely impact sunflower seed yield. In spring, germination of overwintered sexual oospores leads to sunflower root infection. Intercellular hyphae are responsible for systemic plant colonization and the induction of disease symptoms. Under humid and fresh conditions, dissemination structures are produced by the pathogen on all

  7. Distribution of Plasmids in Distinct Leptospira Pathogenic Species.

    Science.gov (United States)

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-11-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  8. Whole-genome sequencing of veterinary pathogens

    DEFF Research Database (Denmark)

    Ronco, Troels

    -electrophoresis and single-locus sequencing has been widely used to characterize such types of veterinary pathogens. However, DNA sequencing techniques have become fast and cost effective in recent years and whole-genome sequencing data provide a much higher discriminative power and reproducibility than any...... genetic background. This indicates that dairy cows can be natural carriers of S. aureus subtypes that in certain cases lead to CM. A group of isolates that mostly belonged to ST151 carried three pathogenicity islands that were primarily found in this group. The prevalence of resistance genes was generally...

  9. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  10. Enteric pathogen modification by anaecic earthworm, Lampito Mauritii

    African Journals Online (AJOL)

    The biosolids from municipal wastewater treatment plant contains several enteric microbial pathogens, predominantly Salmonella and Escherichia species in the range of 15-18 x 104 CFU/g and 11-12 x 104 CFU/g respectively. The present study investigates the influence of earthworm, Lampito mauritii on enteric pathogen ...

  11. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  12. Timing of pathogen adaptation to a multicomponent treatment.

    Directory of Open Access Journals (Sweden)

    Romain Bourget

    Full Text Available The sustainable use of multicomponent treatments such as combination therapies, combination vaccines/chemicals, and plants carrying multigenic resistance requires an understanding of how their population-wide deployment affects the speed of the pathogen adaptation. Here, we develop a stochastic model describing the emergence of a mutant pathogen and its dynamics in a heterogeneous host population split into various types by the management strategy. Based on a multi-type Markov birth and death process, the model can be used to provide a basic understanding of how the life-cycle parameters of the pathogen population, and the controllable parameters of a management strategy affect the speed at which a pathogen adapts to a multicomponent treatment. Our results reveal the importance of coupling stochastic mutation and migration processes, and illustrate how their stochasticity can alter our view of the principles of managing pathogen adaptive dynamics at the population level. In particular, we identify the growth and migration rates that allow pathogens to adapt to a multicomponent treatment even if it is deployed on only small proportions of the host. In contrast to the accepted view, our model suggests that treatment durability should not systematically be identified with mutation cost. We show also that associating a multicomponent treatment with defeated monocomponent treatments can be more durable than associating it with intermediate treatments including only some of the components. We conclude that the explicit modelling of stochastic processes underlying evolutionary dynamics could help to elucidate the principles of the sustainable use of multicomponent treatments in population-wide management strategies intended to impede the evolution of harmful populations.

  13. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    Science.gov (United States)

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential.

  14. Transport of Ixodid ticks and tick-borne pathogens by migratory birds.

    Directory of Open Access Journals (Sweden)

    Gunnar eHasle

    2013-09-01

    Full Text Available Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.

  15. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  16. Identification of periodontal pathogens in atherosclerotic vessels

    DEFF Research Database (Denmark)

    Fiehn, Nils-Erik; Larsen, Tove; Christiansen, Natalia

    2005-01-01

    Epidemiological studies have shown that periodontitis may be associated with presence of atherosclerosis. DNA from periodontal pathogens has been detected in atherosclerotic lesions, but viable oral bacteria have not yet been isolated from atherosclerotic plaques. The purpose of the present study...... was to determine if viable oral bacteria could be isolated from atherosclerotic lesions and if DNA from periodontal pathogens could be detected by use of polymerase chain reaction (PCR) techniques....

  17. Opportunities for mitigating pathogen contamination during on-farm food production.

    Science.gov (United States)

    Doyle, Michael P; Erickson, Marilyn C

    2012-01-16

    Fruits, vegetables, and meat are susceptible to contamination by foodborne pathogens at many points from production through preparation in the home. This review will largely highlight approaches and progress made in the last five years to address strategies to reduce pathogen contamination in animal production but will also touch on the emerging field of preharvest produce food safety. Mitigation strategies can be divided into those that address pathogen reduction in the environment and those that target reduction/elimination of pathogen contamination in animals or plants. The former strategy has been encompassed in studies evaluating sanitation treatments of facilities as well as in numerous epidemiologic risk assessment studies (both on-farm assessments and computer simulation models) that identify management practices that impact pathogen prevalence in animals. Interventions to significantly reduce pathogen exposure via feed or water are dependent on their role as a significant contributor to pathogen contamination in the animal production system. In addition, inconsistent results obtained with interventions of dietary additives or formulation modifications (grain versus forage; inclusion of distiller's grains) on pathogen prevalence in animals have been attributed to a range of factors including target organism, grain type, level of inclusion, the animal's health or stress level, and ability to survive the gastric acidic conditions. Recent attempts to microencapsulate organic acids or bacteriophage within feed have met with only marginal improvements in reducing pathogen carriage in animals but this approach may have greater potential with other antimicrobial additives (i.e., essential oils). Bacteriophage therapy, in general, can significantly reduce pathogen carriage in animals but based on its transient nature and the potential for development of phage-resistant subpopulations, this approach should be administered to animals just prior to slaughter and

  18. [Highly pathogenic avian influenza--monitoring of migratory waterfowl].

    Science.gov (United States)

    Otsuki, Koichi; Ito, Toshihiro

    2006-10-01

    Since 1979, the group belonging to Departments of Veterinary Microbiology, Veterinary Public Health and the Avian Zoonoses Research Centre, Faculty of Agriculture, Tottori University is continuing isolation of avian influenza virus from such migratory waterfowls as whistling swan, pintail and tufted dugs flying from Siberia and/or northern China. They have already isolated many interesting influenza viruses. Serotype of the isolates is various; some H5 and H7 and human types of viruses were also isolated; and its pathogenicity for chickens is not high. It was interested that low pathogenic H5N3 virus isolated from whistling swan acquired severe pathogenicity during passage in chicks.

  19. Childhood urinary tract infection in Benin City: pathogens and ...

    African Journals Online (AJOL)

    Childhood urinary tract infection in Benin City: pathogens and antimicrobial ... of bacterial isolates implicated in urinary tract infection (UTI) amongst children was ... There is also an emerging resistance of common pathogens to azithromycin ...

  20. The ability of algal organic matter and surface runoff to promote the abundance of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in Long Island Sound, USA.

    Directory of Open Access Journals (Sweden)

    Jake D Thickman

    Full Text Available Food safety is a major concern in the shellfish industry, as severe illness can result from consuming shellfish that have accumulated waterborne pathogens. Shellfish harvesting areas are typically monitored for indicator bacteria such as fecal coliforms that serve as proxies for enteric pathogens although these indicators have shown little relation to some naturally occurring pathogenic bacteria such as Vibrio parahaemolyticus. To examine the dynamics and ecology of pathogenic and non-pathogenic strains of V. parahaemolyticus and address the relevance of indicator bacteria in predicting V. parahaemolyticus concentrations, field surveys and experiments were carried out in western Long Island Sound, NY, USA, a region that has experienced recent outbreaks of shellfish contaminated with V. parahaemolyticus. Pathogenic and non-pathogenic strains were quantified via PCR detection of marker genes and most probable number techniques. Field survey data showed little correspondence between fecal coliforms and V. parahaemolyticus, but significant correlations between V. parahaemolyticus and an alternative indicator, enterococci, and between V. parahaemolyticus and short-term (48 h rainfall were observed. Experiments demonstrated that enrichment of seawater with phytoplankton-derived dissolved organic matter significantly increased the concentration of total V. parahaemolyticus and the presence pathogenic V. parahaemolyticus, but higher temperatures did not. Collectively, these study results suggest that fecal coliforms may fail to account for the full suite of important shellfish pathogens but that enterococci could provide a potential alternative or supplement to shellfish sanitation monitoring. Given the ability of algal-derived dissolved organic matter to promote the growth of pathogenic V. parahaemolyticus, restricting nutrient inputs into coastal water bodies that promote algal blooms may indirectly decrease the proliferation of V. parahaemolyticus

  1. The Role of Pathogenic Autoantibodies in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Merrill J. Rowley

    2015-11-01

    Full Text Available The serological presence of autoantibodies is diagnostic of autoimmunity, and these autoantibodies may be present for many years before the presentation of autoimmune disease (AID. Although a pathogenic role has been demonstrated for various autoantibodies reactive with cell surface and extracellular autoantigens, studies using monoclonal antibodies (mAb show not all antibodies in the polyclonal response are pathogenic. Differences depend on Fab-mediated diversity in epitope specificity, Fc-mediated effects based on immunoglobulin (Ig class and subclass, activation of complement, and the milieu in which the reaction occurs. These autoantibodies often occur in organ-specific AID and this review illustrates their pathogenic and highly specific effects. The role of autoantibodies associated with intracellular antigens is less clear. In vitro they may inhibit or adversely affect well-defined intracellular biochemical pathways, yet, in vivo they are separated from their autoantigens by multiple cellular barriers. Recent evidence that Ig can traverse cell membranes, interact with intracellular proteins, and induce apoptosis has provided new evidence for a pathogenic role for such autoantibodies. An understanding of how autoantibodies behave in the polyclonal response and their role in pathogenesis of AID may help identify populations of culprit B-cells and selection of treatments that suppress or eliminate them.

  2. [A pathogenesis study of tic disorder in children based on pathogen incubation theory].

    Science.gov (United States)

    Zhou, Ya-bing; Wu, Min

    2007-11-01

    Pathogen incubation theory includes "no manifestation after infection" and "manifestation after incubation". Clinical data showed that the incidence and recurrence of tic disorders in children had a strong relevance to six exogenous factors. The pathogenesis is similar to the pathogenic mechanism based on incubation of pathogen theory, so we proposed a theory of "tic disorder induced by incubation of pathogen". Pathogenic wind can be classified into exterior wind and endogenous wind. Pathogenic wind is more apt to move, rise and migrate. The characteristics of pathogenic wind, especially easy mobility, determine the symptoms and signs of tic disorder, for pathogenic wind can be characterized by vibration and involuntary movement such as convulsion and tremor. If exogenous pathogenic wind moves into half-exterior and half-interior phase from the exterior, both the exterior and interior syndromes should be treated at the same time. We should regulate the function of the liver and the lung, expel pathogenic wind by dispersing the lung, and calm endogenous wind by removing obstruction in the collaterals and soothing the liver.

  3. Pathogen Causing Disease of Diagnosis PCR Tecnology

    OpenAIRE

    SEVİNDİK, Emre; KIR, A. Çağrı; BAŞKEMER, Kadir; UZUN, Veysel

    2013-01-01

    Polimerase chain reaction (PCR) with which, the development of recombinant DNA tecnology, a technique commonly used in field of moleculer biology and genetic. Duplication of the target DNA is provided with this technique without the need for cloning. Some fungus species, bacteria, viruses constitutent an important group of pathogenicity in human, animals and plants. There are routinely applied types of PCR in the detection of pathogens infections diseases. These Nested- PCR, Real- Time PCR, M...

  4. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.

    Science.gov (United States)

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-06-07

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.

  5. Comparative Genomics and Identification of an Enterotoxin-Bearing Pathogenicity Island, SEPI-1/SECI-1, in Staphylococcus epidermidis Pathogenic Strains.

    Science.gov (United States)

    Argemi, Xavier; Nanoukon, Chimène; Affolabi, Dissou; Keller, Daniel; Hansmann, Yves; Riegel, Philippe; Baba-Moussa, Lamine; Prévost, Gilles

    2018-02-25

    Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus ; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC) similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8-89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes ( hsrA and dfrG , respectively), and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus . Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis .

  6. Comparative Genomics and Identification of an Enterotoxin-Bearing Pathogenicity Island, SEPI-1/SECI-1, in Staphylococcus epidermidis Pathogenic Strains

    Directory of Open Access Journals (Sweden)

    Xavier Argemi

    2018-02-01

    Full Text Available Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8–89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes (hsrA and dfrG, respectively, and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus. Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis.

  7. Pathogen reduction of whole blood: utility and feasibility.

    Science.gov (United States)

    Allain, J-P; Goodrich, R

    2017-10-01

    To collect information on pathogen reduction applied to whole blood. Pathogen reduction (PR) of blood components has been developed over the past two decades, and pathogen-reduced fresh-frozen plasma and platelet concentrates are currently in clinical use. High cost and incomplete coverage of components make PR out of reach for low- and middle-income countries (LMIC). However, should PR become applicable to whole blood (WB), the main product transfused in sub-Saharan Africa, and be compatible with the preparation of clinically suitable components, cost would be minimised, and a range of safety measures in place at high cost in developed areas would become redundant. All articles called with "pathogen reduction", "pathogen inactivation" and "whole blood" were retrieved from Medline. References in articles were utilised. One such PR technology (PRT) applied to WB has been developed and has shown efficacious against viruses, bacteria and parasites in vitro; and has been able to inactivate nucleated blood cells whilst retaining the ability to prepare components with acceptable characteristics. The efficacy of this WB PRT has been demonstrated in vivo using the inactivation of Plasmodium falciparum as a model and showing a high degree of correlation between in vitro and in vivo data. Obtaining further evidence of efficacy on other suitable targets is warranted. Shortening of the process, which is currently around 50 min, or increasing the number of units simultaneously processed would be necessary to make PRT WB conducive to LMIC blood services' needs. Even if not 100% effective against agents that are present in high pathogen load titres, WB PRT could massively impact blood safety in LMIC by providing safer products at an affordable cost. © 2017 British Blood Transfusion Society.

  8. Parasites and pathogens of ticks ( Rhipicephalus species Acari ...

    African Journals Online (AJOL)

    The interaction of ticks with its environment as well as its natural hosts predisposes it to acquiring pathogens that could pose animal and human health risks. Identifying these pathogens could alert dog owners and others to reassess the predisposing factors and ensure control. The aim of the study was to identify the species ...

  9. Enteric pathogen sampling of tourist restaurants in Bangkok, Thailand.

    Science.gov (United States)

    Teague, Nathan S; Srijan, Apichai; Wongstitwilairoong, Boonchai; Poramathikul, Kamonporn; Champathai, Thanaporn; Ruksasiri, Supaporn; Pavlin, Julie; Mason, Carl J

    2010-01-01

    Travelers' diarrhea (TD) is the most prevalent disorder affecting travelers to developing countries. Thailand is considered "moderately risky" for TD acquisition, but the risk by city visited or behavior of the visitor has yet to be definitely defined. Restaurant eating is consistently associated with the acquisition of diarrhea while traveling, and pathogen-free meals serve as a marker of public health success. This study seeks to ascertain a traveler's risk of exposure to certain bacterial gastric pathogens while eating at Bangkok restaurants recommended in popular tourist guide books. A cross-sectional tourist restaurant survey was conducted. Thirty-five restaurants recommended in the two top selling Bangkok guidebooks on Amazon.com were sampled for bacterial pathogens known to cause diarrhea in Thailand, namely Salmonella, Campylobacter, and Arcobacter (a Campylobacter-like organism). A total of 70 samples from two meals at each restaurant were obtained. Suspected bacterial pathogens were isolated by differential culture and tested for antibiotic resistance. Salmonella group E was isolated from one meal (2%), and Arcobacter butzleri from nine meals (13%). Campylobacter spp. were not found. The large majority of A butzleri isolates were resistant to azithromycin but susceptible to ciprofloxacin and an aminoglycoside. A traveler's risk of exposure to established bacterial pathogens, Salmonella and Campylobacter, by eating in recommended restaurants is small. Arcobacter butzleri exposure risk is 13% per meal eaten, and rises to 75% when 10 meals are eaten. All restaurants, regardless of price, appear to be equally "risky." Current evidence points to Arcobacter being pathogenic in humans; however, further research is needed to conclusively define pathogenicity. Routine prophylaxis for diarrhea is not recommended; however, travelers should be aware of the risk and come prepared with adequate and appropriate self-treatment medications.

  10. Molecular mimicry modulates plant host responses to pathogens.

    Science.gov (United States)

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    Science.gov (United States)

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  12. LOW PATHOGENIC POTENTIAL IN HETEROTROPHIC BACTERIA FROM POTABLE WATER

    Science.gov (United States)

    Forty-five isolates of HPC bacteria, most of which express virulence-related characteristics are being tested for pathogenicity in immunocompromised mice. All forty-five were negative for facultative intracellular pathogenicity. All twenty-three isolates tested thus far were a...

  13. Biocontrol interventions for inactivation of foodborne pathogens on produce

    Science.gov (United States)

    Post-harvest interventions for control of foodborne pathogens on minimally processed foods are crucial for food safety. Biocontrol interventions have the primary objective of developing novel antagonists in combinations with physical and chemical interventions to inactivate pathogenic microbes. Ther...

  14. Genetic reprogramming of host cells by bacterial pathogens.

    Science.gov (United States)

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  15. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans.

    Directory of Open Access Journals (Sweden)

    Erica M Goss

    Full Text Available Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c.

  16. Description of 5-liter stainless-steel fermentors

    Energy Technology Data Exchange (ETDEWEB)

    Roxburgh, J M; Spencer, J F.T.; Sallans, H R

    1956-01-01

    Fermentors are described which are suitable for scale-up design. The same rate of oxidation of sodium sulfite and of production of ustilagic acid from Ustilago zeae per unit volume as in 200-gallon pilot-plant fermentation units.

  17. The cuticle and plant defense to pathogens

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eMetraux

    2014-06-01

    Full Text Available The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.

  18. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    Science.gov (United States)

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis.

  19. The wild life of tick-borne pathogens

    OpenAIRE

    Hofmeester, Tim R.

    2016-01-01

    Diseases that are transmitted by arthropod vectors from animal hosts to humans – so called zoonotic vector-borne diseases – have increased in incidence in the last decades. In North America and Europe, tick-borne pathogens cause the majority of vector-borne diseases, including Lyme borreliosis and tick-borne encephalitis. The pathogens causing these diseases are transmitted by tick species within the Ixodes ricinus complex. These are generalist ticks that have a multi-year lifecycle with thre...

  20. The genomic organization of plant pathogenicity in Fusarium species

    NARCIS (Netherlands)

    Rep, M.; Kistler, H.C.

    2010-01-01

    Comparative genomics is a powerful tool to infer the molecular basis of fungal pathogenicity and its evolution by identifying differences in gene content and genomic organization between fungi with different hosts or modes of infection. Through comparative analysis, pathogenicity-related chromosomes

  1. Pathogen-avoidance mechanisms and the stigmatization of obese people

    NARCIS (Netherlands)

    Park, Justin H.; Schaller, Mark; Crandall, Christian S.

    2007-01-01

    Humans possess pathogen-avoidance mechanisms that respond to the visual perception of morphological anomalies in others. We investigated whether obesity may trigger these mechanisms. Study I revealed that people who are chronically concerned about pathogen transmission have more negative attitudes

  2. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi

    Science.gov (United States)

    Swainsonine, a cytotoxic fungal alkaloid and a potential cancer therapy drug, is produced by the insect pathogen and plant symbiont, Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glo...

  3. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings.

    Science.gov (United States)

    Kandan, A; Radjacommare, R; Ramanathan, A; Raguchander, T; Balasubramanian, P; Samiyappan, R

    2009-01-01

    The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10-13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future.

  4. Fungi of the genus Fusarium as pathogens of soybean seedlings

    Directory of Open Access Journals (Sweden)

    Joanna Marcinkowska

    2013-12-01

    Full Text Available Twenty isolates of fungi of the genus Fusarium collected in the period 1980-1982 from various organs of diseased soybean plants were investigated. Eight of them proved pathogenic to soybean seedlings. The species F. culmorum was most numerously represented among the isolated (4 of 8 pathogens. Isolates of F. sambucinum were also pathogenic (2 of 4 and those of F. soloni (1 of 3, too. The only isolate of F. avenaceum also caused seedling blight. Two isolates of F. oxysporum and two of F. arthrosporioides were not pathogenic. Numerous isolates affected seed gernination and one greatly inhibited growth of the infected seedlings. Pathogenicity was tested in the laboratory in Petri plates on isolate cultures and on filter paper imbibed with fungal inoculum and, in the greenhouse on a peat and perlite substrate. The degree of infection and the character of the disease symptoms depended on the experimental conditions. The results of experiments in plates and in the greenhouse supplemented one another.

  5. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response

    NARCIS (Netherlands)

    Termorshuizen, A.J.; Rijn, van E.; Gaag, van der D.J.; Alabouvette, C.; Chen, Y.; Lagerlöf, J.; Malandrakis, A.A.; Paplomatas, E.J.; Rämert, B.; Ryckeboer, J.; Steinberg, C.; Zmora-Nahum, S.

    2006-01-01

    Compost is often reported as a substrate that is able to suppress soilborne plant pathogens, but suppression varies according to the type of compost and pathosystem. Reports often deal with a single pathogen while in reality crops are attacked by multiple plant pathogens. The goal of the present

  6. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Preston, Gail M

    2017-04-01

    One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens

  7. Pathogenicity gene variations within the order Entomophthorales

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Lange, Lene

    Fungi within the order Entomophthorales (subphylum Entomophthoromycotina) are obligate biotrophic pathogens of arthropods with a remarkable narrow host range. Infection takes place through the cuticle when conidia hit a susceptible host, facilitated by enzymatic and mechanical mechanisms. In the ...... pathogenicity genes within genera Entomophthora and Pandora, using fungal genomic DNA originating from field-collected, infected insect host species of dipteran (flies, mosquitoes) or hemipteran (aphid) origin.......Fungi within the order Entomophthorales (subphylum Entomophthoromycotina) are obligate biotrophic pathogens of arthropods with a remarkable narrow host range. Infection takes place through the cuticle when conidia hit a susceptible host, facilitated by enzymatic and mechanical mechanisms......, conidia are produced and discharged when humidity gets high—usually during night. In an earlier secretome study of field-collected grain aphids (Sitobion avenae) infected with entomophthoralean fungi, a number of pathogenesis-related, secreted enzymes were discovered (Fungal Genetics and Biology 2011, vol...

  8. PHIDIAS: a pathogen-host interaction data integration and analysis system

    OpenAIRE

    Xiang, Zuoshuang; Tian, Yuying; He, Yongqun

    2007-01-01

    The Pathogen-Host Interaction Data Integration and Analysis System (PHIDIAS) is a web-based database system that serves as a centralized source to search, compare, and analyze integrated genome sequences, conserved domains, and gene expression data related to pathogen-host interactions (PHIs) for pathogen species designated as high priority agents for public health and biological security. In addition, PHIDIAS allows submission, search and analysis of PHI genes and molecular networks curated ...

  9. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    Science.gov (United States)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  10. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  11. COXIELLA BURNETII PATHOGENICITY MOLECULAR BASIS

    Directory of Open Access Journals (Sweden)

    Yu. A. Panferova

    2016-01-01

    Full Text Available Coxiella burnetii is an obligate intracellular gram-negative bacterial pathogen, an ethiological agent of Q-fever, a zoonotic disease, elapsing as an acute (mostly atypical pneumonia or a chronic (mostly endocarditis form. The host range is represented by wide range of mammal, avian and arthropod species, but the main source of human infection are farm animals. The main route of infection is aerosolic. In case of contact with organism pathogen binds with phagocytal monocytic-macrophagal cell line. C. burnetii promotes maturation of specific phagolysosome-like compartment in host cell, called coxiella-containing vacuole, within this vacuole pathogen becames metabolically activated and actively replicates. Coxiella persists as metabolically inactive spore-like form in environment. Internalisation of C. burnetii occurs using actin-mediated phagocytosis and zipper mechanism. After internalization of bacteria maturation of phagolysosome-like compartment and large coxiella-containing vacuole formation occure, and vacuole can occupy nearly the whole cytoplasm of the host cell. Survivance of infected cells is important for chronic infection with C. burnetii. C. burnetii elongate the viability of host cell by two ways: it actively inhibits apoptotic signal cascades and induce pro-survival factors. Exceptthat C. burnetii involves autophagic pathway during coxiella-containing vacuole formation, and induction of autophagy promotes pathogen replication. During infection C. burnetii translocates effector substrates from bacterial cytosole to euca ryotic host cell cytosole using type IV secretion system, where effectors modulate host cell proteins. Overall approximately 130 secreted effectors of type IV transport system, but function of most of them remains unknown to date. Specific sec reted proteins for variety of strains and isolates were identified, confirmed that certain pathotypes of C. burnetii can exist. Identification and

  12. Interactions between the microbiota and pathogenic bacteria in the gut.

    Science.gov (United States)

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  13. Interactions between the microbiota and pathogenic bacteria in the gut

    Science.gov (United States)

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  14. An Endophytic Bacterial Strain Isolated from Eucommia ulmoides Inhibits Southern Corn Leaf Blight

    Directory of Open Access Journals (Sweden)

    Ting Ding

    2017-05-01

    Full Text Available Bacillus subtilis DZSY21 isolated from the leaves of Eucommia ulmoides oliv. was labeled by antibiotic marker and found to effectively colonize the leaves of maize plant. Agar diffusion assays and biocontrol effect experiments showed that strain DZSY21 and its lipopeptides had antagonistic activity against Bipolaris maydis, as well as high biocontrol effects on southern corn leaf blight caused by B. maydis. Using MALDI-TOF-MS analysis, we detected the presence of antimicrobial surfactin A, surfactin B, and fengycin in the strain DZSY21. Signaling pathways mediated by DZSY21 were analyzed by testing the expression of key plant genes involved in regulation of salicylic acid (SA or JA/ET pathways, the defense-related genes PR1 and LOX were concurrently expressed in the leaves of DZSY21-treated plants; this corresponded to slight increase in the expression level of PDF1.2 and decreases in ERF gene transcription levels. The results indicated an induced systemic response that is dependent on the SA and jasmonic acid (JA pathways. Thus, we hypothesized that the strain DZSY21 inhibits B. maydis by producing antifungal lipopeptides and activating an induced systemic response through SA- and JA-dependent signaling pathways. This work describes a mechanism behind reduced disease severity in plants inoculated with the endophytic bacteria DZSY21.

  15. Advances and Challenges in Viability Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Dexin Zeng

    2016-11-01

    Full Text Available Foodborne outbreaks are a serious public health and food safety concern worldwide. There is a great demand for rapid, sensitive, specific, and accurate methods to detect microbial pathogens in foods. Conventional methods based on cultivation of pathogens have been the gold standard protocols; however, they take up to a week to complete. Molecular assays such as polymerase chain reaction (PCR, sequencing, microarray technologies have been widely used in detection of foodborne pathogens. Among molecular assays, PCR technology conventional and real-time PCR (qPCR is most commonly used in the foodborne pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells, and this is a critical factor for the food industry, regulatory agencies and the consumer. To remedy this shortcoming, researchers have used biological dyes such as ethidium monoazide (EMA and propidium monoazide (PMA to pretreat samples before DNA extraction to intercalate the DNA of dead cells in food samples, and then proceed with regular DNA preparation and qPCR. By combining PMA treatment with qPCR (PMA-qPCR, scientists have applied this technology to detect viable cells of various bacterial pathogens in foods. The incorporation of PMA into PCR-based assays for viability detection of pathogens in foods has increased significantly in the last decade. On the other hand, some downsides with this approach have been noted, particularly to achieve complete suppression of signal of DNA from the dead cells present in some particular food matrix. Nowadays, there is a tendency of more and more researchers adapting this approach for viability detection; and a few commercial kits based on PMA are available in the market. As time goes on, more scientists apply this approach to a broader range of pathogen detections, this viability approach (PMA or other chemicals such as platinum compound

  16. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Directory of Open Access Journals (Sweden)

    Jason A Corwin

    2016-02-01

    Full Text Available The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs and nucleotide-binding site leucine-rich repeat proteins (NLRs, were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60% when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen

  17. Paleogene radiation of a plant pathogenic mushroom.

    Directory of Open Access Journals (Sweden)

    Martin P A Coetzee

    Full Text Available The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species.The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP, Maximum Likelihood (ML and Bayesian Inference (BI. A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach.Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana.The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere.

  18. Isolation and characterization of pathogenic leptospires associated with cattle

    Science.gov (United States)

    Pathogenic leptospires colonize the renal tubules of reservoir hosts of infection, including cattle, and are excreted via urine. In order to identify circulating serovars of pathogenic leptospires in beef cattle, and their associated rates of urinary excretion, a cross sectional study was performed....

  19. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the

  20. The public health implications of pathogens in polluted aquatic ...

    African Journals Online (AJOL)

    The public health implications of pathogens in polluted aquatic ecosystems: a review. ... Pathogen contamination in water sources and related diseases constitute ... of public water supply and most importantly, increased rate of human mortality. ... illnesses related to respiratory, gastrointestinal and dermatological systems, ...