WorldWideScience

Sample records for pathogen pathway project

  1. Hi-Jack: a novel computational framework for pathway-based inference of host–pathogen interactions

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2015-03-09

    Motivation: Pathogens infect their host and hijack the host machinery to produce more progeny pathogens. Obligate intracellular pathogens, in particular, require resources of the host to replicate. Therefore, infections by these pathogens lead to alterations in the metabolism of the host, shifting in favor of pathogen protein production. Some computational identification of mechanisms of host-pathogen interactions have been proposed, but it seems the problem has yet to be approached from the metabolite-hijacking angle. Results: We propose a novel computational framework, Hi-Jack, for inferring pathway-based interactions between a host and a pathogen that relies on the idea of metabolite hijacking. Hi-Jack searches metabolic network data from hosts and pathogens, and identifies candidate reactions where hijacking occurs. A novel scoring function ranks candidate hijacked reactions and identifies pathways in the host that interact with pathways in the pathogen, as well as the associated frequent hijacked metabolites. We also describe host-pathogen interaction principles that can be used in the future for subsequent studies. Our case study on Mycobacterium tuberculosis (Mtb) revealed pathways in human-e.g. carbohydrate metabolism, lipids metabolism and pathways related to amino acids metabolism-that are likely to be hijacked by the pathogen. In addition, we report interesting potential pathway interconnections between human and Mtb such as linkage of human fatty acid biosynthesis with Mtb biosynthesis of unsaturated fatty acids, or linkage of human pentose phosphate pathway with lipopolysaccharide biosynthesis in Mtb. © The Author 2015. Published by Oxford University Press. All rights reserved.

  2. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition...... the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...

  3. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway.

    Science.gov (United States)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter

    2017-01-01

    The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.

  4. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    Science.gov (United States)

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  5. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...... of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination....

  6. A Model of an Integrated Immune System Pathway in Homo sapiens and Its Interaction with Superantigen Producing Expression Regulatory Pathway in Staphylococcus aureus: Comparing Behavior of Pathogen Perturbed and Unperturbed Pathway

    Science.gov (United States)

    Tomar, Namrata; De, Rajat K.

    2013-01-01

    Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the

  7. Pathogen-secreted proteases activate a novel plant immune pathway.

    Science.gov (United States)

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  8. Research Project Evaluation-Learnings from the PATHWAYS Project Experience.

    Science.gov (United States)

    Galas, Aleksander; Pilat, Aleksandra; Leonardi, Matilde; Tobiasz-Adamczyk, Beata

    2018-05-25

    Every research project faces challenges regarding how to achieve its goals in a timely and effective manner. The purpose of this paper is to present a project evaluation methodology gathered during the implementation of the Participation to Healthy Workplaces and Inclusive Strategies in the Work Sector (the EU PATHWAYS Project). The PATHWAYS project involved multiple countries and multi-cultural aspects of re/integrating chronically ill patients into labor markets in different countries. This paper describes key project's evaluation issues including: (1) purposes, (2) advisability, (3) tools, (4) implementation, and (5) possible benefits and presents the advantages of a continuous monitoring. Project evaluation tool to assess structure and resources, process, management and communication, achievements, and outcomes. The project used a mixed evaluation approach and included Strengths (S), Weaknesses (W), Opportunities (O), and Threats (SWOT) analysis. A methodology for longitudinal EU projects' evaluation is described. The evaluation process allowed to highlight strengths and weaknesses and highlighted good coordination and communication between project partners as well as some key issues such as: the need for a shared glossary covering areas investigated by the project, problematic issues related to the involvement of stakeholders from outside the project, and issues with timing. Numerical SWOT analysis showed improvement in project performance over time. The proportion of participating project partners in the evaluation varied from 100% to 83.3%. There is a need for the implementation of a structured evaluation process in multidisciplinary projects involving different stakeholders in diverse socio-environmental and political conditions. Based on the PATHWAYS experience, a clear monitoring methodology is suggested as essential in every multidisciplinary research projects.

  9. Hi-Jack: a novel computational framework for pathway-based inference of host–pathogen interactions

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Wong, Limsoon; Archer, John A.C.; Kalnis, Panos

    2015-01-01

    also describe host-pathogen interaction principles that can be used in the future for subsequent studies. Our case study on Mycobacterium tuberculosis (Mtb) revealed pathways in human-e.g. carbohydrate metabolism, lipids metabolism and pathways related

  10. Research Project Evaluation—Learnings from the PATHWAYS Project Experience

    Directory of Open Access Journals (Sweden)

    Aleksander Galas

    2018-05-01

    Full Text Available Background: Every research project faces challenges regarding how to achieve its goals in a timely and effective manner. The purpose of this paper is to present a project evaluation methodology gathered during the implementation of the Participation to Healthy Workplaces and Inclusive Strategies in the Work Sector (the EU PATHWAYS Project. The PATHWAYS project involved multiple countries and multi-cultural aspects of re/integrating chronically ill patients into labor markets in different countries. This paper describes key project’s evaluation issues including: (1 purposes, (2 advisability, (3 tools, (4 implementation, and (5 possible benefits and presents the advantages of a continuous monitoring. Methods: Project evaluation tool to assess structure and resources, process, management and communication, achievements, and outcomes. The project used a mixed evaluation approach and included Strengths (S, Weaknesses (W, Opportunities (O, and Threats (SWOT analysis. Results: A methodology for longitudinal EU projects’ evaluation is described. The evaluation process allowed to highlight strengths and weaknesses and highlighted good coordination and communication between project partners as well as some key issues such as: the need for a shared glossary covering areas investigated by the project, problematic issues related to the involvement of stakeholders from outside the project, and issues with timing. Numerical SWOT analysis showed improvement in project performance over time. The proportion of participating project partners in the evaluation varied from 100% to 83.3%. Conclusions: There is a need for the implementation of a structured evaluation process in multidisciplinary projects involving different stakeholders in diverse socio-environmental and political conditions. Based on the PATHWAYS experience, a clear monitoring methodology is suggested as essential in every multidisciplinary research projects.

  11. Identification of Discriminating Metabolic Pathways and Metabolites in Human PBMCs Stimulated by Various Pathogenic Agents

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2018-02-01

    Full Text Available Immunity and cellular metabolism are tightly interconnected but it is not clear whether different pathogens elicit specific metabolic responses. To address this issue, we studied differential metabolic regulation in peripheral blood mononuclear cells (PBMCs of healthy volunteers challenged by Candida albicans, Borrelia burgdorferi, lipopolysaccharide, and Mycobacterium tuberculosis in vitro. By integrating gene expression data of stimulated PBMCs of healthy individuals with the KEGG pathways, we identified both common and pathogen-specific regulated pathways depending on the time of incubation. At 4 h of incubation, pathogenic agents inhibited expression of genes involved in both the glycolysis and oxidative phosphorylation pathways. In contrast, at 24 h of incubation, particularly glycolysis was enhanced while genes involved in oxidative phosphorylation remained unaltered in the PBMCs. In general, differential gene expression was less pronounced at 4 h compared to 24 h of incubation. KEGG pathway analysis allowed differentiation between effects induced by Candida and bacterial stimuli. Application of genome-scale metabolic model further generated a Candida-specific set of 103 reporter metabolites (e.g., desmosterol that might serve as biomarkers discriminating Candida-stimulated PBMCs from bacteria-stimuated PBMCs. Our analysis also identified a set of 49 metabolites that allowed discrimination between the effects of Borrelia burgdorferi, lipopolysaccharide and Mycobacterium tuberculosis. We conclude that analysis of pathogen-induced effects on PBMCs by a combination of KEGG pathways and genome-scale metabolic model provides deep insight in the metabolic changes coupled to host defense.

  12. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.

    Science.gov (United States)

    Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E

    2016-02-10

    Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The cAMP Signaling and MAP Kinase Pathways in Plant Pathogenic Fungi

    NARCIS (Netherlands)

    Mehrabi, R.; Zhao, X.; Kim, Y.; Xu, J.R.

    2009-01-01

    The key components of the well conserved cyclic AMP signaling and MAP kinase pathways have been functionally characterized in the corn smut Ustilago maydis, rice blast fungus Magnaporthe grisea, and a few other fungal pathogens. In general, the cAMP signaling and the MAP kinase cascade homologous to

  14. Molecular Tracing of Viral Pathogen in Aquaculture (MOLTRAQ): a new EMIDA project

    DEFF Research Database (Denmark)

    Jensen, B. Bang; Aldrin, M.; Avarre, M. C.

    2012-01-01

    a generic approach to viral disease control by using information on epidemiological and phylogenetic attributes from several important aquatic animal viruses. The project will i) generate and use spatio-temporal epidemiological data, phylogeographic data and gene expression data for important host......-viral pathogen systems to identify important factors affecting the spread of diseases in aquaculture, and ii) integrate these in scenario simulation models to assess effects of various control strategies for selected host-pathogen systems. The project consists of six workpackages: WP 1: Project co...

  15. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    Science.gov (United States)

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  16. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.

    Science.gov (United States)

    Jiang, Zhenhong; He, Fei; Zhang, Ziding

    2017-07-01

    Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study

  17. The Arginine Decarboxylase Pathways of Host and Pathogen Interact to Impact Inflammatory Pathways in the Lung

    Science.gov (United States)

    Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753

  18. The arginine decarboxylase pathways of host and pathogen interact to impact inflammatory pathways in the lung.

    Directory of Open Access Journals (Sweden)

    Nick B Paulson

    Full Text Available The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic.

  19. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    OpenAIRE

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flav...

  20. The EbpA-RpoN Regulatory Pathway of the Pathogen Leptospira interrogans Is Essential for Survival in the Environment

    Science.gov (United States)

    Hu, Wei-Lin; Pappas, Christopher J.; Zhang, Jun-Jie; Yang, You-Yun; Yan, Jie

    2016-01-01

    ABSTRACT Leptospira interrogans is the agent of leptospirosis, a reemerging zoonotic disease. It is transmitted to humans through environmental surface waters contaminated by the urine of mammals chronically infected by pathogenic strains able to survive in water for long periods. Little is known about the regulatory pathways underlying environmental sensing and host adaptation of L. interrogans during its enzootic cycle. This study identifies the EbpA-RpoN regulatory pathway in L. interrogans. In this pathway, EbpA, a σ54 activator and putative prokaryotic enhancer-binding protein (EBP), and the alternative sigma factor RpoN (σ54) control expression of at least three genes, encoding AmtB (an ammonium transport protein) and two proteins of unknown function. Electrophoresis mobility shift assay demonstrated that recombinant RpoN and EbpA bind to the promoter region and upstream of these three identified genes, respectively. Genetic disruption of ebpA in L. interrogans serovar Manilae virtually abolished expression of the three genes, including amtB in two independent ebpA mutants. Complementation of the ebpA mutant restored expression of these genes. Intraperitoneal inoculation of gerbils with the ebpA mutant did not affect mortality. However, the ebpA mutant had decreased cell length in vitro and had a significantly lowered cell density at stationary phase when grown with l-alanine as the sole nitrogen source. Furthermore, the ebpA mutant has dramatically reduced long-term survival ability in water. Together, these studies identify a regulatory pathway, the EbpA-RpoN pathway, that plays an important role in the zoonotic cycle of L. interrogans. IMPORTANCE Leptospirosis is a reemerging disease with global importance. However, our understanding of gene regulation of the spirochetal pathogen Leptospira interrogans is still in its infancy, largely due to the lack of robust tools for genetic manipulation of this spirochete. Little is known about how the pathogen

  1. The EbpA-RpoN Regulatory Pathway of the Pathogen Leptospira interrogans Is Essential for Survival in the Environment.

    Science.gov (United States)

    Hu, Wei-Lin; Pappas, Christopher J; Zhang, Jun-Jie; Yang, You-Yun; Yan, Jie; Picardeau, Mathieu; Yang, X Frank

    2017-02-01

    Leptospira interrogans is the agent of leptospirosis, a reemerging zoonotic disease. It is transmitted to humans through environmental surface waters contaminated by the urine of mammals chronically infected by pathogenic strains able to survive in water for long periods. Little is known about the regulatory pathways underlying environmental sensing and host adaptation of L. interrogans during its enzootic cycle. This study identifies the EbpA-RpoN regulatory pathway in L. interrogans In this pathway, EbpA, a σ 54 activator and putative prokaryotic enhancer-binding protein (EBP), and the alternative sigma factor RpoN (σ 54 ) control expression of at least three genes, encoding AmtB (an ammonium transport protein) and two proteins of unknown function. Electrophoresis mobility shift assay demonstrated that recombinant RpoN and EbpA bind to the promoter region and upstream of these three identified genes, respectively. Genetic disruption of ebpA in L. interrogans serovar Manilae virtually abolished expression of the three genes, including amtB in two independent ebpA mutants. Complementation of the ebpA mutant restored expression of these genes. Intraperitoneal inoculation of gerbils with the ebpA mutant did not affect mortality. However, the ebpA mutant had decreased cell length in vitro and had a significantly lowered cell density at stationary phase when grown with l-alanine as the sole nitrogen source. Furthermore, the ebpA mutant has dramatically reduced long-term survival ability in water. Together, these studies identify a regulatory pathway, the EbpA-RpoN pathway, that plays an important role in the zoonotic cycle of L. interrogans IMPORTANCE: Leptospirosis is a reemerging disease with global importance. However, our understanding of gene regulation of the spirochetal pathogen Leptospira interrogans is still in its infancy, largely due to the lack of robust tools for genetic manipulation of this spirochete. Little is known about how the pathogen achieves its

  2. Interplay of pathogenic forms of human tau with different autophagic pathways.

    Science.gov (United States)

    Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria

    2018-02-01

    Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Science.gov (United States)

    Calo, Silvia; Nicolás, Francisco E; Lee, Soo Chan; Vila, Ana; Cervantes, Maria; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2017-03-01

    Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  4. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Directory of Open Access Journals (Sweden)

    Silvia Calo

    2017-03-01

    Full Text Available Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip and a Sad-3-like helicase (rnhA, as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  5. IntPath--an integrated pathway gene relationship database for model organisms and important pathogens.

    Science.gov (United States)

    Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon

    2012-01-01

    Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and

  6. Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Elodie Gaulin

    Full Text Available Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids.

  7. Community-researcher liaisons: the Pathways to Resilience Project ...

    African Journals Online (AJOL)

    The Pathways to Resilience Project is an ongoing, community-based participatory research (CBPR) project. Its express focus is the exploration of how at-risk youths use formal services and/or informal, naturally occurring resources to beat the odds that have been stacked against them, with the intent of partnering with ...

  8. the Pathways to Resilience Project Advisory Panel

    African Journals Online (AJOL)

    the South African Pathways to Resilience Project, between 2008 and the present, in order to ... vice versa, and divergent objectives (e.g. building community infrastructure versus ... inadequate time and resources and associated risks. A review ...

  9. A nitrogen response pathway regulates virulence in plant pathogenic fungi: role of TOR and the bZIP protein MeaB.

    Science.gov (United States)

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-12-01

    Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.

  10. The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum.

    Science.gov (United States)

    Zhu, Wenjun; Zhou, Man; Xiong, Zeyang; Peng, Fang; Wei, Wei

    2017-01-01

    Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. Understanding the mechanisms of the cruciferous plant- C. higginsianum interactions will be important in facilitating efficient control of anthracnose diseases. The cAMP-PKA signaling pathway plays important roles in diverse physiological processes of multiple pathogens. C. higginsianum contains two genes, ChPKA1 and ChPKA2 , that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To analyze the role of cAMP signaling pathway in pathogenicity and development in C. higginsianum , we characterized ChPKA1 and ChPKA2 genes, and adenylate cyclase ( ChAC ) gene. The ChPKA1 and ChAC deletion mutants were unable to cause disease and significantly reduced in hyphal growth, tolerance to cell wall inhibitors, conidiation, and appressorial formation with abnormal germ tubes, but they had an increased tolerance to elevated temperatures and exogenous H 2 O 2 . In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting that ChPKA1 contributes mainly to PKA activities in C. higginsianum . Moreover, we failed to generate Δ ChPKA1ChPKA2 double mutant, indicating that deletion of both PKA catalytic subunits is lethal in C. higginsianum and the two catalytic subunits possibly have overlapping functions. These results indicated that ChPKA1 is the major PKA catalytic subunit in cAMP-PKA signaling pathway and plays significant roles in hyphal growth, pathogenicity, appressorial formation, conidiation, and stress tolerance in C. higginsianum .

  11. The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2017-07-01

    Full Text Available Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. Understanding the mechanisms of the cruciferous plant–C. higginsianum interactions will be important in facilitating efficient control of anthracnose diseases. The cAMP-PKA signaling pathway plays important roles in diverse physiological processes of multiple pathogens. C. higginsianum contains two genes, ChPKA1 and ChPKA2, that encode the catalytic subunits of cyclic AMP (cAMP-dependent protein kinase A (PKA. To analyze the role of cAMP signaling pathway in pathogenicity and development in C. higginsianum, we characterized ChPKA1 and ChPKA2 genes, and adenylate cyclase (ChAC gene. The ChPKA1 and ChAC deletion mutants were unable to cause disease and significantly reduced in hyphal growth, tolerance to cell wall inhibitors, conidiation, and appressorial formation with abnormal germ tubes, but they had an increased tolerance to elevated temperatures and exogenous H2O2. In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting that ChPKA1 contributes mainly to PKA activities in C. higginsianum. Moreover, we failed to generate ΔChPKA1ChPKA2 double mutant, indicating that deletion of both PKA catalytic subunits is lethal in C. higginsianum and the two catalytic subunits possibly have overlapping functions. These results indicated that ChPKA1 is the major PKA catalytic subunit in cAMP-PKA signaling pathway and plays significant roles in hyphal growth, pathogenicity, appressorial formation, conidiation, and stress tolerance in C. higginsianum.

  12. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    Directory of Open Access Journals (Sweden)

    Corinne Barbey

    Full Text Available The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  13. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    Science.gov (United States)

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  14. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    Science.gov (United States)

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus , a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays , and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays , there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus . Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus .

  15. the Pathways to Resilience Project Advisory Panel

    African Journals Online (AJOL)

    Its express focus is the exploration of how at-risk youths use formal services ... the South African Pathways to Resilience Project, between 2008 and the present, .... included daily, meaningful interaction with the local youth; and (iii) willingness to be ..... the theory of resilience that Khazimula advocated (see Theron, in press, ...

  16. AMPK in Pathogens

    OpenAIRE

    Mesquita, Inês Morais; Moreira, Diana; Marques, Belém Sampaio; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo Jorge Leal

    2016-01-01

    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recogn...

  17. Attention to impact pathways in EISs of large dam projects

    International Nuclear Information System (INIS)

    Brismar, Anna

    2004-01-01

    The importance of addressing cumulative environmental impacts in Environmental Impact Statements (EISs) of large development projects is increasingly underlined. However, cumulative impacts are generated through complex impact pathways, involving multiple root causes and lower and higher order effects, interlinked by cause-effect relationships. Consideration to potential impact pathways may thus be difficult without appropriate analytical methods, expertise, and supportive Environmental Impact Assessment guidelines and terms-of-references (TOR). This paper presents the results of an analysis of six EISs prepared for large dam projects between 1994 and 2001. The objective was to analyze if, how, and to what extent potential impact pathways involved in the generation of dam-related cumulative impacts have been addressed in the analyzed material. For this purpose, a theoretical framework was developed, which identifies four key root causes, their potential effects, and associated cause-effect relationships. The analysis revealed various shortcomings. Important imbalances were found in the degree of attention given to effects of different categories. Lower order effects received greater attention than higher order, and the potential effects of reservoir filling were more extensively attended to than those of flow blockage, storage, and regulation. Most importantly, little effort was made to carefully explain the potential impact pathways involved; root causes were often referred to in general terms only, and potential pathways leading up to an anticipated higher order effect or following upon an expected lower order effect were often inadequately addressed or ignored. Probable reasons for the discovered shortcomings are discussed and recommendations are presented for improving the World Bank EIA guidelines for large dam projects

  18. Activation of the TREM-1 pathway in human monocytes by periodontal pathogens and oral commensal bacteria.

    Science.gov (United States)

    Varanat, M; Haase, E M; Kay, J G; Scannapieco, F A

    2017-08-01

    Periodontitis is a highly prevalent disease caused in part by an aberrant host response to the oral multi-species biofilm. A balance between the oral bacteria and host immunity is essential for oral health. Imbalances in the oral microbiome lead to an uncontrolled host inflammatory response and subsequent periodontal disease (i.e. gingivitis and periodontitis). TREM-1 is a signaling receptor present on myeloid cells capable of acting synergistically with other pattern recognition receptors leading to amplification of inflammatory responses. The aim of this study was to investigate the activation of the TREM-1 pathway in the human monocyte-like cell line THP-1 exposed to both oral pathogens and commensals. The relative expression of the genes encoding TREM-1 and its adapter protein DAP12 were determined by quantitative real-time polymerase chain reaction. The surface expression of TREM-1 was determined by flow cytometry. Soluble TREM-1 and cytokines were measured by enzyme-linked immunosorbent assay. The results demonstrate that both commensal and pathogenic oral bacteria activate the TREM-1 pathway, resulting in a proinflammatory TREM-1 activity-dependent increase in proinflammatory cytokine production. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Development of a European resource on the origins of pathogens of aquaculture: The Europa Project

    DEFF Research Database (Denmark)

    Snow, M.; Barja, J.; Colquhoun, D.

    2004-01-01

    This workshop described the EUROPA project, an EU-funded program aimed at creating a web-based database of molecular sequence data-sets related to significant pathogens of aquaculture. The project aims to focus the efforts of fish health researchers into generating large, evolving and readily ava...

  20. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection.

    Science.gov (United States)

    Sun, H; Liu, P; Nolan, L K; Lamont, S J

    2016-12-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  1. A self-lysis pathway that enhances the virulence of a pathogenic bacterium.

    Science.gov (United States)

    McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L

    2015-07-07

    In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.

  2. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway.

    Directory of Open Access Journals (Sweden)

    Eun Jo Du

    2016-01-01

    Full Text Available Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS, hypochlorous acid (HOCl in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A transcript spliced with exon10b (TrpA1(A10b that is present in a subset of midgut enteroendocrine cells (EECs is critical for uracil-dependent defecation. TRPA1(A10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A10a isoform. Consistent with TrpA1's role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A10b, thereby minimizing the chances that bacteria adapt to survive host defense systems.

  4. The spore differentiation pathway in the enteric pathogen Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Fátima C Pereira

    Full Text Available Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F in the forespore, and σ(E in the mother cell control early stages of development and are replaced, at later stages, by σ(G and σ(K, respectively. Starting with σ(F, the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E is partially independent of σ(F, that σ(G activity is not dependent on σ(E, and that the activity of σ(K does not require σ(G. We also show that σ(K is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F-to-σ(E, σ(E-to-σ(G, and σ(G-to-σ(K cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.

  5. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae.

    Science.gov (United States)

    Wang, Rongbo; Zhang, Meixiang; Liu, Hong; Xu, Jing; Yu, Jia; He, Feng; Zhang, Xiong; Dong, Suomeng; Dou, Daolong

    2016-04-01

    Pathogen nutrient acquisition and metabolism are critical for successful infection and colonization. However, the nutrient requirements and metabolic pathways related to pathogenesis in oomycete pathogens are unknown. In this study, we bioinformatically identified Phytophthora sojae aspartate aminotransferases (AATs), which are key enzymes that coordinate carbon and nitrogen metabolism. We demonstrated that P. sojae encodes more AATs than the analysed fungi. Some of the AATs contained additional prephenate dehydratase and/or prephenate dehydrogenase domains in their N-termini, which are unique to oomycetes. Silencing of PsAAT3, an infection-inducible expression gene, reduced P. sojae pathogenicity on soybean plants and affected the growth under N-starving condition, suggesting that PsAAT3 is involved in pathogen pathogenicity and nitrogen utilisation during infection. Our results suggest that P. sojae and other oomycete pathogens may have distinct amino acid metabolism pathways and that PsAAT3 is important for its full pathogenicity. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea.

    Science.gov (United States)

    Adachi, Hiroaki; Ishihama, Nobuaki; Nakano, Takaaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2016-06-02

    MEK2-SIPK/WIPK cascade, a Nicotiana benthamiana mitogen-activated protein kinase (MAPK) cascade, is an essential signaling pathway for plant immunity and involved in hypersensitive response (HR) accompanied by cell death. WRKY transcription factors as substrates of SIPK and WIPK have been isolated and implicated in HR cell death. Here, we show virus-induced gene silencing of WRKY genes compromised constitutively active MEK2-triggered cell death in N. benthamiana leaves. In general, HR cell death enhances susceptibility to necrotrophic pathogens such as Botrytis cinerea. However, the WRKY gene silencing elevated susceptibility to B. cinerea. These findings suggest that downstream WRKYs of MEK2-SIPK/WIPK cascade are required for cell death-dependent and -independent immunities in N. benthamiana.

  7. Microbial Murders Crime Scene Investigation: An Active Team-Based Learning Project that Enhances Student Enthusiasm and Comprehension of Clinical Microbial Pathogens.

    Science.gov (United States)

    Steel, J Jordan

    2017-01-01

    Microbial disease knowledge is a critical component of microbiology courses and is beneficial for many students' future careers. Microbiology courses traditionally cover core concepts through lectures and labs, but specific instruction on microbial diseases varies greatly depending on the instructor and course. A common project involves students researching and presenting a disease to the class. This method alone is not very effective, and course evaluations have consistently indicated that students felt they lacked adequate disease knowledge; therefore, a more hands-on and interactive disease project was developed called Microbial Murders. For this team-based project, a group of students chooses a pathogen, researches the disease, creates a "mugshot" of the pathogen, and develops a corresponding "crime scene," where a hypothetical patient has died from the microbe. Each group gives a presentation introducing the microbial pathogen, signs/symptoms, treatments, and overall characteristics. The students then visit each other's crime scenes to match the pathogen with the correct crime scene by critically thinking through the clues. This project has shown remarkable success. Surveys indicate that 73% of students thought the project helped them understand the material and 84% said it was worth their time. Student participation, excitement, understanding, and application of microbial disease knowledge have increased and are evident through an increase in course evaluations and in student assessment scores. This project is easy to implement and can be used in a wide variety of biology, microbiology, or health classes for any level (middle school through college).

  8. AMPK in Pathogens.

    Science.gov (United States)

    Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo

    2016-01-01

    During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

  9. Benefits of a European project on diagnostics of highly pathogenic agents and assessment of potential "dual use" issues.

    Science.gov (United States)

    Grunow, Roland; Ippolito, G; Jacob, D; Sauer, U; Rohleder, A; Di Caro, A; Iacovino, R

    2014-01-01

    Quality assurance exercises and networking on the detection of highly infectious pathogens (QUANDHIP) is a joint action initiative set up in 2011 that has successfully unified the primary objectives of the European Network on Highly Pathogenic Bacteria (ENHPB) and of P4-laboratories (ENP4-Lab) both of which aimed to improve the efficiency, effectiveness, and response capabilities of laboratories directed at protecting the health of European citizens against high consequence bacteria and viruses of significant public health concern. Both networks have established a common collaborative consortium of 37 nationally and internationally recognized institutions with laboratory facilities from 22 European countries. The specific objectives and achievements include the initiation and establishment of a recognized and acceptable quality assurance scheme, including practical external quality assurance exercises, comprising living agents, that aims to improve laboratory performance, accuracy, and detection capabilities in support of patient management and public health responses; recognized training schemes for diagnostics and handling of highly pathogenic agents; international repositories comprising highly pathogenic bacteria and viruses for the development of standardized reference material; a standardized and transparent Biosafety and Biosecurity strategy protecting healthcare personnel and the community in dealing with high consequence pathogens; the design and organization of response capabilities dealing with cross-border events with highly infectious pathogens including the consideration of diagnostic capabilities of individual European laboratories. The project tackled several sensitive issues regarding Biosafety, Biosecurity and "dual use" concerns. The article will give an overview of the project outcomes and discuss the assessment of potential "dual use" issues.

  10. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    Science.gov (United States)

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  11. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Directory of Open Access Journals (Sweden)

    R van der Geize

    2011-08-01

    Full Text Available Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551, ipdB (rv3552, fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD and 3aα-H-4α(3'-propionic acid-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP. Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  12. Complement Evasion by Pathogenic Leptospira.

    Science.gov (United States)

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  13. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    Science.gov (United States)

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  14. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  15. Benefits of a European Project on Diagnostics of Highly Pathogenic Agents and Assessment of Potential “Dual Use” Issues

    Science.gov (United States)

    Grunow, Roland; Ippolito, G.; Jacob, D.; Sauer, U.; Rohleder, A.; Di Caro, A.; Iacovino, R.

    2014-01-01

    Quality assurance exercises and networking on the detection of highly infectious pathogens (QUANDHIP) is a joint action initiative set up in 2011 that has successfully unified the primary objectives of the European Network on Highly Pathogenic Bacteria (ENHPB) and of P4-laboratories (ENP4-Lab) both of which aimed to improve the efficiency, effectiveness, and response capabilities of laboratories directed at protecting the health of European citizens against high consequence bacteria and viruses of significant public health concern. Both networks have established a common collaborative consortium of 37 nationally and internationally recognized institutions with laboratory facilities from 22 European countries. The specific objectives and achievements include the initiation and establishment of a recognized and acceptable quality assurance scheme, including practical external quality assurance exercises, comprising living agents, that aims to improve laboratory performance, accuracy, and detection capabilities in support of patient management and public health responses; recognized training schemes for diagnostics and handling of highly pathogenic agents; international repositories comprising highly pathogenic bacteria and viruses for the development of standardized reference material; a standardized and transparent Biosafety and Biosecurity strategy protecting healthcare personnel and the community in dealing with high consequence pathogens; the design and organization of response capabilities dealing with cross-border events with highly infectious pathogens including the consideration of diagnostic capabilities of individual European laboratories. The project tackled several sensitive issues regarding Biosafety, Biosecurity and “dual use” concerns. The article will give an overview of the project outcomes and discuss the assessment of potential “dual use” issues. PMID:25426479

  16. Inflammasome/IL-1β Responses to Streptococcal Pathogens

    Directory of Open Access Journals (Sweden)

    Christopher N. LaRock

    2015-10-01

    Full Text Available Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.

  17. Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

    Directory of Open Access Journals (Sweden)

    Xavier Latour

    2013-12-01

    Full Text Available Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

  18. Nurse Educator Pathway Project: a competency-based intersectoral curriculum.

    Science.gov (United States)

    Young, Lynne; Frost, Linda J; Bigl, Julie; Clauson, Marion; McRae, Cora; Scarborough, Kathy S; Murphy, Sue; Jillings, Carol; Gillespie, Frank

    2010-01-01

    In this paper, we begin by providing an overview of the Educator Pathway Project (EPP), an education infrastructure that was developed in response to emerging critical nursing workplace issues, and the related demand for enhanced workplace education. We then describe the EPP competency-based curriculum designed to prepare nurses as preceptors, mentors, and educators to lead learning with diverse learner groups. This competency-based curriculum was developed through a collaboration of nurse leaders across practice, academic, and union sectors and drew from a widely embraced curriculum development model (Iwasiw, Goldenberg, & Andrusyzyn, 2005). The goal of the curriculum was to prepare nurses through a four-level career pathway model that contextualized practice and education theory to various education-related roles and levels of experience within the practice setting. Over 1,100 nurses participated in this innovative intersectoral nursing initiative.

  19. Targeting the GPI biosynthetic pathway.

    Science.gov (United States)

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  20. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.

    Science.gov (United States)

    Oliveira, Alberto; Oliveira, Leticia C; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B; Silva, Arthur; Figueiredo, Henrique C P; Ghosh, Preetam; Portela, Ricardo W; De Carvalho Azevedo, Vasco A; Wattam, Alice R

    2017-01-01

    This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium , exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium . Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.

  1. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  2. Columbia River pathway report: phase I of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab.

  3. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    Science.gov (United States)

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  4. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli.

    Science.gov (United States)

    Bartelt, Luther A; Bolick, David T; Mayneris-Perxachs, Jordi; Kolling, Glynis L; Medlock, Gregory L; Zaenker, Edna I; Donowitz, Jeffery; Thomas-Beckett, Rose Viguna; Rogala, Allison; Carroll, Ian M; Singer, Steven M; Papin, Jason; Swann, Jonathan R; Guerrant, Richard L

    2017-07-01

    Diverse enteropathogen exposures associate with childhood malnutrition. To elucidate mechanistic pathways whereby enteric microbes interact during malnutrition, we used protein deficiency in mice to develop a new model of co-enteropathogen enteropathy. Focusing on common enteropathogens in malnourished children, Giardia lamblia and enteroaggregative Escherichia coli (EAEC), we provide new insights into intersecting pathogen-specific mechanisms that enhance malnutrition. We show for the first time that during protein malnutrition, the intestinal microbiota permits persistent Giardia colonization and simultaneously contributes to growth impairment. Despite signals of intestinal injury, such as IL1α, Giardia-infected mice lack pro-inflammatory intestinal responses, similar to endemic pediatric Giardia infections. Rather, Giardia perturbs microbial host co-metabolites of proteolysis during growth impairment, whereas host nicotinamide utilization adaptations that correspond with growth recovery increase. EAEC promotes intestinal inflammation and markers of myeloid cell activation. During co-infection, intestinal inflammatory signaling and cellular recruitment responses to EAEC are preserved together with a Giardia-mediated diminishment in myeloid cell activation. Conversely, EAEC extinguishes markers of host energy expenditure regulatory responses to Giardia, as host metabolic adaptations appear exhausted. Integrating immunologic and metabolic profiles during co-pathogen infection and malnutrition, we develop a working mechanistic model of how cumulative diet-induced and pathogen-triggered microbial perturbations result in an increasingly wasted host.

  5. A network approach to predict pathogenic genes for Fusarium graminearum.

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-10-04

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  6. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  7. Efferocytosis of Pathogen-Infected Cells

    Directory of Open Access Journals (Sweden)

    Niloofar Karaji

    2017-12-01

    Full Text Available The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via “find me” signals, recognition via “eat me” signals and down-modulation of regulatory “don’t eat me” signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.

  8. Quantitative proteomics links metabolic pathways to specific developmental stages of the plant-pathogenic oomycete Phytophthora capsici.

    Science.gov (United States)

    Pang, Zhili; Srivastava, Vaibhav; Liu, Xili; Bulone, Vincent

    2017-04-01

    The oomycete Phytophthora capsici is a plant pathogen responsible for important losses to vegetable production worldwide. Its asexual reproduction plays an important role in the rapid propagation and spread of the disease in the field. A global proteomics study was conducted to compare two key asexual life stages of P. capsici, i.e. the mycelium and cysts, to identify stage-specific biochemical processes. A total of 1200 proteins was identified using qualitative and quantitative proteomics. The transcript abundance of some of the enriched proteins was also analysed by quantitative real-time polymerase chain reaction. Seventy-three proteins exhibited different levels of abundance between the mycelium and cysts. The proteins enriched in the mycelium are mainly associated with glycolysis, the tricarboxylic acid (or citric acid) cycle and the pentose phosphate pathway, providing the energy required for the biosynthesis of cellular building blocks and hyphal growth. In contrast, the proteins that are predominant in cysts are essentially involved in fatty acid degradation, suggesting that the early infection stage of the pathogen relies primarily on fatty acid degradation for energy production. The data provide a better understanding of P. capsici biology and suggest potential metabolic targets at the two different developmental stages for disease control. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. Pathway to Graduation: A Pilot Reading Project for Middle School Students during the Summer Months

    Science.gov (United States)

    Hilsmier, Amanda Strong; Wood, Patricia F.; Wirt, Susan; McTamney, Diane; Malone, Mary Beth; Milstead, Becky

    2014-01-01

    The purpose of this article is to outline the implementation of a summer reading project targeted at middle school students with identified reading deficits and behavioral concerns called Pathway to Graduation (PTG). The project was a collaborative process between a school district, local university, and department of mental health. The students…

  10. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    Directory of Open Access Journals (Sweden)

    Gisselle Yang Xie

    Full Text Available Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary, including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific and also separately per region (region-specific. One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas

  11. Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor.

    Science.gov (United States)

    Hernández-Calderón, Erasto; Aviles-Garcia, Maria Elizabeth; Castulo-Rubio, Diana Yazmín; Macías-Rodríguez, Lourdes; Ramírez, Vicente Montejano; Santoyo, Gustavo; López-Bucio, José; Valencia-Cantero, Eduardo

    2018-02-01

    Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.

  12. Present and Future Projections of Habitat Suitability of the Asian Tiger Mosquito, a Vector of Viral Pathogens, from Global Climate Simulations.

    Science.gov (United States)

    Proestos, Y.; Christophides, G.; Erguler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.

    2014-12-01

    Climate change can influence the transmission of vector borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian Tiger mosquito (Aedes albopictus), which can transmit pathogens that cause Chikungunya, Dengue fever, yellow fever and various encephalitides. Using a general circulation model (GCM) at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the 21st century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that about 2.4 billion individuals in a land area of nearly 20 million square kilometres will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.

  13. Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement.

    Directory of Open Access Journals (Sweden)

    Anthony Kwasiborski

    Full Text Available Yeast Pichia anomala strain Kh6 Kurtzman (Saccharomycetales: Endomycetaceae exhibits biological control properties that provide an alternative to the chemical fungicides currently used by fruit or vegetable producers against main post-harvest pathogens, such as Botrytis cinerea (Helotiales: Sclerotiniaceae. Using an in situ model that takes into account interactions between organisms and a proteomic approach, we aimed to identify P. anomala metabolic pathways influenced by the presence of B. cinerea. A total of 105 and 60 P. anomala proteins were differentially represented in the exponential and stationary growth phases, respectively. In the exponential phase and in the presence of B. cinerea, the pentose phosphate pathway seems to be enhanced and would provide P. anomala with the needed nucleic acids and energy for the wound colonisation. In the stationary phase, P. anomala would use alcoholic fermentation both in the absence and presence of the pathogen. These results would suggest that the competitive colonisation of apple wounds could be implicated in the mode of action of P. anomala against B. cinerea.

  14. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    I Russel Lee

    Full Text Available Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase, URO2 (HIU hydrolase, URO3 (OHCU decarboxylase, DAL1 (allantoinase, DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein, and URE1 (urease. All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.

  15. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  16. Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato[C][W][OA

    Science.gov (United States)

    El Oirdi, Mohamed; El Rahman, Taha Abd; Rigano, Luciano; El Hadrami, Abdelbasset; Rodriguez, María Cecilia; Daayf, Fouad; Vojnov, Adrian; Bouarab, Kamal

    2011-01-01

    Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant’s defense system and to spread within the host. PMID:21665999

  17. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

    International Nuclear Information System (INIS)

    Elsen, S.; Collin-Faure, V.; Gidrol, X.; Lemercier, C.

    2013-01-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design. (authors)

  18. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens

    Directory of Open Access Journals (Sweden)

    Roberto eSolano

    2013-04-01

    Full Text Available An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease.

  19. Building integrated pathways to independence for diverse biomedical researchers: Project Pathways, the BUILD program at Xavier University of Louisiana.

    Science.gov (United States)

    Foroozesh, Maryam; Giguette, Marguerite; Morgan, Kathleen; Johanson, Kelly; D'Amour, Gene; Coston, Tiera; Wilkins-Green, Clair

    2017-01-01

    Xavier University of Louisiana is a historically Black and Catholic university that is nationally recognized for its science, technology, engineering and mathematics (STEM) curricula. Approximately 73% of Xavier's students are African American, and about 77% major in the biomedical sciences. Xavier is a national leader in the number of STEM majors who go on to receive M.D. degrees and Ph.D. degrees in science and engineering. Despite Xavier's advances in this area, African Americans still earn about 7.5% of the Bachelor's degrees, less than 8% of the Master's degrees, and less than 5% of the doctoral degrees conferred in STEM disciplines in the United States. Additionally, although many well-prepared, highly-motivated students are attracted by Xavier's reputation in the sciences, many of these students, though bright and capable, come from underperforming public school systems and receive substandard preparation in STEM disciplines. The purpose of this article is to describe how Xavier works to overcome unequal education backgrounds and socioeconomic challenges to develop student talent through expanding biomedical training opportunities and build on an established reputation in science education. The National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS)-funded BUILD (Building Infrastructure Leading to Diversity) Program at Xavier University of Louisiana, Project Pathways , is a highly-innovative program designed to broaden the career interests of students early on, and to engage them in activities that entice them to continue their education towards biomedical research careers. Project strategies involve a transformation of Xavier's academic and non-academic programs through the redesign, supplementation and integration of academic advising, tutoring, career services, personal counseling, undergraduate research training, faculty research mentoring, and development of new biomedical and research skills courses. The Program also

  20. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack

    NARCIS (Netherlands)

    Vos, M. de; Oosten, V.R. van; Poecke, R.M.P. van; Pelt, J.A. van; Pozo, Maria J.; Mueller, M.J.; Buchala, A.J.; Métraux, J.P.; Loon, L.C. van; Dicke, M.; Pieterse, C.M.J.

    2005-01-01

    Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific

  1. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack

    NARCIS (Netherlands)

    Vos, de M.; Oosten, van V.R.; Poecke, van R.M.P.; Pelt, van J.A.; Pozo, M.J.; Mueller, M.J.; Buchala, A.J.; Métraux, J.P.; Loon, van L.C.; Dicke, M.; Pieterse, C.M.J.

    2005-01-01

    Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense

  2. Pathogenic agents in freshwater resources

    Science.gov (United States)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  3. EPA oyster project: nitrogen in water. - Transport and fate of nutrient and pathogen loadings into nearshore Puget Sound: consequences for shellfish growing areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project seeks to develop and apply an assessment of shellfish growing area (SGA) vulnerability to closures caused by watershed- and marine-derived pathogens....

  4. Aims and first assessments of the French hydrogen pathways project HyFrance3

    Energy Technology Data Exchange (ETDEWEB)

    Le Duigou, Alain [CEA/DEN/DANS/I-Tese, Gif-sur-Yvette (France); Quemere, Marie-Marguerite [EDF R et D, Moret sur Loing (France). Dept. EPI; Marion, Pierre [IFP, Rueil Malmaison (FR)] (and others)

    2010-07-01

    The HyFrance Group was originally formed in France to support the European project HyWays, by providing (former projects HyFrance1 and HyFrance2) the French data and possible hydrogen pathways according to national specificities. HyFrance3 is a new project that focuses on the economic competitiveness of different steps of the hydrogen chain, from the production to end usage, at the time horizon of 2030 in France. The project is coordinated by CEA with the other partners being: ADEME (co-funding), AFH2, CNRS, IFP, Air Liquide, EdF, GdF Suez, TOTAL, ALPHEA. The project is divided into 4 sub-projects, that address present and future French hydrogen industrial markets for chemical and refinery uses, the analysis of the interplay between wind energy production and storage of hydrogen for different automotive requirements (refuelling stations, BtL plants, H2/NG mix), massive hydrogen storage to balance various offer and demand characteristics, and the supply network (pipeline option competitiveness vs. trucked in supply) to distribute hydrogen in a French region for automotive applications. Technical and economical issues, as well as GHG emissions, are addressed. (orig.)

  5. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  6. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens.

    Science.gov (United States)

    Harder, Robin; Heimersson, Sara; Svanström, Magdalena; Peters, Gregory M

    2014-08-19

    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2-9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28,600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series.

  7. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  8. Transparent national strategies for long-term decarbonization in compliance with the 2 deg. C goal: The Deep Decarbonization Pathways Project

    International Nuclear Information System (INIS)

    Colombier, Michel; Waisman, Henri

    2015-01-01

    Fifteen countries among the biggest emitters of greenhouse gases are involved in the Deep Decarbonization Pathways Project (DDPP), which is based on 'country teams' of climate experts. This international project seeks to draw the pathways for a transition toward national decarbonization in compliance with the goal of limiting global warming to 2 deg. C maximum by 2050. These pathways should serve to: a) foresee the economic, technical and behavioral 'ruptures' to be addressed in order to facilitate the transition; b) identify specifically national factors in pathways toward decarbonization; and c) analyze the effects over time of this transition and the sequencing of the measures that might cause them. A preliminary report was released in September 2014, and the final report is scheduled for mid-2015. In support of an international agreement during the Paris Climate Conference, it will focus on the implications of deep decarbonization and the conditions for achieving it

  9. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. In vivo Host-Pathogen Interaction as Revealed by Global Proteomic Profiling of Zebrafish Larvae

    Directory of Open Access Journals (Sweden)

    Francisco Díaz-Pascual

    2017-07-01

    Full Text Available The outcome of a host-pathogen interaction is determined by the conditions of the host, the pathogen, and the environment. Although numerous proteomic studies of in vitro-grown microbial pathogens have been performed, in vivo proteomic approaches are still rare. In addition, increasing evidence supports that in vitro studies inadequately reflect in vivo conditions. Choosing the proper host is essential to detect the expression of proteins from the pathogen in vivo. Numerous studies have demonstrated the suitability of zebrafish (Danio rerio embryos as a model to in vivo studies of Pseudomonas aeruginosa infection. In most zebrafish-pathogen studies, infection is achieved by microinjection of bacteria into the larvae. However, few reports using static immersion of bacterial pathogens have been published. In this study we infected 3 days post-fertilization (DPF zebrafish larvae with P. aeruginosa PAO1 by immersion and injection and tracked the in vivo immune response by the zebrafish. Additionally, by using non-isotopic (Q-exactive metaproteomics we simultaneously evaluated the proteomic response of the pathogen (P. aeruginosa PAO1 and the host (zebrafish. We found some zebrafish metabolic pathways, such as hypoxia response via HIF activation pathway, were exclusively enriched in the larvae exposed by static immersion. In contrast, we found that inflammation mediated by chemokine and cytokine signaling pathways was exclusively enriched in the larvae exposed by injection, while the integrin signaling pathway and angiogenesis were solely enriched in the larvae exposed by immersion. We also found important virulence factors from P. aeruginosa that were enriched only after exposure by injection, such as the Type-III secretion system and flagella-associated proteins. On the other hand, P. aeruginosa proteins involved in processes like biofilm formation, and cellular responses to antibiotic and starvation were enriched exclusively after exposure by

  11. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.

    Science.gov (United States)

    Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup

    2013-12-01

    Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms

  12. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu

    2014-01-01

    in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite......The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules...

  13. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts

    Czech Academy of Sciences Publication Activity Database

    Pálková, Z.; Váchová, Libuše

    2016-01-01

    Roč. 57, SEP (2016), s. 110-119 ISSN 1084-9521 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Pathogenic yeasts * Biofilms and colonies * Cell differentiation Subject RIV: EE - Microbiology, Virology Impact factor: 6.614, year: 2016

  14. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  15. Draft Air Pathway Report: Phase 1 of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-20

    This report summarizes the air pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project, conducted by Battelle staff at the Pacific Northwest Laboratory under the direction of an independent Technical Steering Panel. The HEDR Project is estimating historical radiation doses that could have been received by populations near the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the air-pathway dose reconstruction sought to determine whether dose estimates could be calculated for populations in the 10 counties nearest the Hanford Site from atmospheric releases of iodine-131 from the site from 1944--1947. Phase 1 demonstrated the following: HEDR-calculated source-term estimates of iodine-131 releases to the atmosphere were within 20% of previously published estimates; calculated vegetation concentrations of iodine-131 agree well with previously published measurements; the highest of the Phase 1 preliminary dose estimates to the thyroid are consistent with independent, previously published estimates of doses to maximally exposed individuals; and relatively crude, previously published measurements of thyroid burdens for Hanford workers are in the range of average burdens that the HEDR model estimated for similar reference individuals'' for the period 1944--1947. 4 refs., 10 figs., 9 tabs.

  16. Exploring NAD+ metabolism in host-pathogen interactions.

    Science.gov (United States)

    Mesquita, Inês; Varela, Patrícia; Belinha, Ana; Gaifem, Joana; Laforge, Mireille; Vergnes, Baptiste; Estaquier, Jérôme; Silvestre, Ricardo

    2016-03-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.

  17. Plant Responses to Pathogen Attack: Small RNAs in Focus.

    Science.gov (United States)

    Islam, Waqar; Noman, Ali; Qasim, Muhammad; Wang, Liande

    2018-02-08

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.

  18. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways.

    Science.gov (United States)

    Rohat, Guillaume

    2018-03-19

    The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure-i.e., mainly future population patterns-, neglecting future human vulnerability. This paper first explores the research gaps-mainly linked to the paucity of available projections-that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs-namely the scenario matching approach and an approach based on experts' elicitation and correlation analyses-and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods-such as the spatial disaggregation of existing projections and the use of sectoral models-show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely

  19. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  20. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway.

    Science.gov (United States)

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S; Ariño, Joaquín; Valls, Marc

    2016-06-03

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.

  1. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-18

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367 bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.

  2. Data on genome sequencing, analysis and annotation of a pathogenic Bacillus cereus 062011msu

    Directory of Open Access Journals (Sweden)

    Rashmi Rathy

    2018-04-01

    Full Text Available Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012 [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099. Keywords: Bacillus cereus, Genome sequencing, Abscessation, Virulence factors

  3. Signaling pathways in a Citrus EST database

    Directory of Open Access Journals (Sweden)

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  4. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  5. Intersection of autophagy with pathways of antigen presentation.

    Science.gov (United States)

    Patterson, Natalie L; Mintern, Justine D

    2012-12-01

    Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.

  6. Partial activation of SA- and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction

    Directory of Open Access Journals (Sweden)

    FRANCISCO AMIL-RUIZ

    2016-07-01

    Full Text Available Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5 and FaPR10 were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  7. Correlation of Metabolic Variables with the Number of ORFs in Human Pathogenic and Phylogenetically Related Non- or Less-Pathogenic Bacteria.

    Science.gov (United States)

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Garcia-Guevara, Jose Fernando; Rodríguez-Vázquez, Katya

    2016-06-01

    To date, a few works have performed a correlation of metabolic variables in bacteria; however specific correlations with these variables have not been reported. In this work, we included 36 human pathogenic bacteria and 18 non- or less-pathogenic-related bacteria and obtained all metabolic variables, including enzymes, metabolic pathways, enzymatic steps and specific metabolic pathways, and enzymatic steps of particular metabolic processes, from a reliable metabolic database (KEGG). Then, we correlated the number of the open reading frames (ORF) with these variables and with the proportions of these variables, and we observed a negative correlation with the proportion of enzymes (r = -0.506, p < 0.0001), metabolic pathways (r = -0.871, p < 00.0001), enzymatic reactions (r = -0.749, p < 00.0001), and with the proportions of central metabolism variables as well as a positive correlation with the proportions of multistep reactions (r = 0.650, p < 00.0001) and secondary metabolism variables. The proportion of multifunctional reactions (r: -0.114, p = 0.41) and the proportion of enzymatic steps (r: -0.205, p = 0.14) did not present a significant correlation. These correlations indicate that as the size of a genome (measured in the number of ORFs) increases, the proportion of genes that encode enzymes significantly diminishes (especially those related to central metabolism), suggesting that when essential metabolic pathways are complete, an increase in the number of ORFs does not require a similar increase in the metabolic pathways and enzymes, but only a slight increase is sufficient to cope with a large genome.

  8. Retroambiguus projections to the cutaneus trunci motoneurons may form a pathway in the central control of mating

    NARCIS (Netherlands)

    Gerrits, Peter O.; Vodde, Chris; Holstege, Gert

    Our laboratory has proposed that the nucleus retroambiguus (NRA) generates the specific motor performance displayed by female cats during mating and that it uses direct pathways to the motoneurons of the lower limb muscles involved in this activity. In the hamster a similar NRA-projection system

  9. Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway.

    Science.gov (United States)

    Fuller, Kevin K; Rhodes, Judith C

    2012-01-01

    Diverse fungal species are the cause of devastating agricultural and human diseases. As successful pathogenesis is dependent upon the ability of the fungus to adapt to the nutritional and chemical environment of the host, the understanding of signaling pathways required for such adaptation will provide insights into the virulence of these pathogens and the potential identification of novel targets for antifungal intervention. The cAMP-PKA signaling pathway is well conserved across eukaryotes. In the nonpathogenic yeast, S. cerevisiae, PKA is activated in response to extracellular nutrients and subsequently regulates metabolism and growth. Importantly, this pathway is also a regulator of pathogenesis, as defects in PKA signaling lead to an attenuation of virulence in diverse plant and human pathogenic fungi. This review will compare and contrast PKA signaling in S. cerevisiae vs. various pathogenic species and provide a framework for the role of this pathway in regulating fungal virulence.

  10. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    Science.gov (United States)

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  11. Virginia Solar Pathways Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Katharine; Cosby, Sarah

    2018-03-28

    This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments. The U.S. Department of Energy (DOE) funding award enabled DEV to take a focused approach to developing the Solar Strategy for its Virginia service territory. The structure and funding from the DOE award also facilitated valuable input from a formal stakeholder team convened to serve as advisors (Advisory Team) to the VSPP and contribute their perspectives and expertise to both the analysis and strategy development aspects of the Project. The development of the Solar Strategy involved three main goals: • Establish a policy and program framework that would integrate existing solar programs with new options appropriate for the Commonwealth’s policy environment and broader economic development objectives; • Promote wider deployment of solar within a low retail electric rate environment; and • Serve as a sustainable, utility-administered solar model that could be replicated in other states with similar policy environments, including, but not limited to, the entire Southeast region. In support of the VSPP goals, the Project Team commissioned four studies to support the Solar Strategy development. Two studies, completed by Navigant Consulting, focused on the integration of solar into the electric grid. The first solar integration study focused on integration of solar into the distribution grid where the utility system directly connects to and serves end-use customers

  12. AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes?

    Science.gov (United States)

    Moreira, Diana; Silvestre, Ricardo; Cordeiro-da-Silva, Anabela; Estaquier, Jérôme; Foretz, Marc; Viollet, Benoit

    2016-01-01

    Intracellular pathogens are known to manipulate host cell regulatory pathways to establish an optimal environment for their growth and survival. Pathogens employ active mechanisms to hijack host cell metabolism and acquire existing nutrient and energy store. The role of the cellular energy sensor AMP-activated protein kinase (AMPK) in the regulation of cellular energy homeostasis is well documented. Here, we highlight recent advances showing the importance of AMPK signaling in pathogen-host interactions. Pathogens interact with AMPK by a variety of mechanisms aimed at reprogramming host cell metabolism to their own benefit. Stimulation of AMPK activity provides an efficient process to rapidly adapt pathogen metabolism to the major nutritional changes often encountered during the different phases of infection. However, inhibition of AMPK is also used by pathogens to manipulate innate host response, indicating that AMPK appears relevant to restriction of pathogen infection. We also document the effects of pharmacological AMPK modulators on pathogen proliferation and survival. This review illustrates intricate pathogen-AMPK interactions that may be exploited to the development of novel anti-pathogen therapies.

  13. A More Flexible Lipoprotein Sorting Pathway

    Science.gov (United States)

    Chahales, Peter

    2015-01-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  14. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    Science.gov (United States)

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    Directory of Open Access Journals (Sweden)

    Marianna Feretzaki

    2016-03-01

    Full Text Available RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein and Qip1 (a homolog of N. crassa Qip were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor and Fzc28 (a transcription factor are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  16. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing.

    Science.gov (United States)

    Chen, Qi; Sun, Lijun; Chen, Zhijian J

    2016-09-20

    The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogens. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses through production of the second messenger cGAMP, which activates the adaptor STING. The cGAS-STING pathway not only mediates protective immune defense against infection by a large variety of DNA-containing pathogens but also detects tumor-derived DNA and generates intrinsic antitumor immunity. However, aberrant activation of the cGAS pathway by self DNA can also lead to autoimmune and inflammatory disease. Thus, the cGAS pathway must be properly regulated. Here we review the recent advances in understanding of the cGAS-STING pathway, focusing on the regulatory mechanisms and roles of this pathway in heath and disease.

  17. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different path...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for diff

  18. A Rab-centric perspective of bacterial pathogen-occupied vacuoles.

    Science.gov (United States)

    Sherwood, Racquel Kim; Roy, Craig R

    2013-09-11

    The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Plants, plant pathogens, and microgravity--a deadly trio

    Science.gov (United States)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  20. Purification and proteomics of pathogen-modified vacuoles and membranes

    Directory of Open Access Journals (Sweden)

    Jo-Ana eHerweg

    2015-06-01

    Full Text Available Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e. the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.

  1. The “CROMa” Project: A Care Pathway for Clinical Management of Patients with Bisphosphonate Exposure

    Directory of Open Access Journals (Sweden)

    Mauro Capocci

    2014-01-01

    Full Text Available Aim. To describe 7 years of activity of “CROMa” (Coordination of Research on Osteonecrosis of the Jaws project of “Sapienza” University of Rome. Materials and Methods. A preventive and therapeutic care pathway was created for patients with bisphosphonates (BPs exposure. Demographic, social, behavioural, pharmacological, and clinical variables were registered in a dedicated database. Results. In the project, 502 patients, 403 females and 99 males, were observed. Bone pathologies were 79% osteometabolic diseases (OMD and 21% metastatic cancer (CA. Females were 90% in OMD group and 41% in CA. BP administration was 54% oral, 31% IV, and 11% IM; 89% of BPs were amino-BP and 11% non-amino-BP. Consistently with bone pathology (OMD/CA, alendronate appears to be prevalent for OMD (40% relative, while zoledronate was indicated in 92% of CA patients. Out of 502 cases collected, 28 BRONJ were detected: 17 of them were related to IV BP treatment. Preventive oral assessment was required for 50% of CA patients and by 4% of OMD patients. Conclusions. The proposed care pathway protocols for BP exposed patients appeared to be useful to meet treatment and preventive needs, in both oncological and osteometabolic diseases patients. Patients’ and physicians’ prevention awareness can be the starting point of a multilevel prevention system.

  2. The Prenylflavonoid Xanthohumol Reduces Alzheimer-Like Changes and Modulates Multiple Pathogenic Molecular Pathways in the Neuro2a/APPswe Cell Model of AD

    Directory of Open Access Journals (Sweden)

    Xianfeng Huang

    2018-04-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder that has proved refractory to drug treatment. Given evidence of neuroprotection in animal models of ischemic stroke, we assessed the prenylflavonoid xanthohumol from the Common Hop (Humulus lupulus L. for therapeutic potential in murine neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APP, a well-characterized cellular model of AD. The ELISA and Western-blot analysis revealed that xanthohumol (Xn inhibited Aβ accumulation and APP processing, and that Xn ameliorated tau hyperphosphorylation via PP2A, GSK3β pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by Xn was also validated on HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis (2D-DIGE-coupled MS revealed a total of 30 differentially expressed lysate proteins in N2a/APP vs. wild-type (WT N2a cells (N2a/WT, and a total of 21 differentially expressed proteins in lysates of N2a/APP cells in the presence or absence of Xn. Generally, these 51 differential proteins could be classified into seven main categories according to their functions, including: endoplasmic reticulum (ER stress-associated proteins; oxidative stress-associated proteins; proteasome-associated proteins; ATPase and metabolism-associated proteins; cytoskeleton-associated proteins; molecular chaperones-associated proteins, and others. We used Western-blot analysis to validate Xn-associated changes of some key proteins in several biological/pathogenic processes. Taken together, we show that Xn reduces AD-related changes in stably transfected N2a/APP cells. The underlying mechanisms involve modulation of multiple pathogenic pathways, including those involved in ER stress, oxidative stress, proteasome molecular systems, and the neuronal cytoskeleton. These results suggest Xn may have potential for the treatment of AD and/or neuropathologically related

  3. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species

    Science.gov (United States)

    Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.

    2016-01-01

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232

  4. Disease management mitigates risk of pathogen transmission from maricultured salmonids

    DEFF Research Database (Denmark)

    Jones, Simon R. M.; Bruno, David W.; Madsen, Lone

    2015-01-01

    that increased risk of exposure to neighbouring farms is inversely related to distance from and directly related to biomass at the source of infection. Epidemiological techniques integrating data from oceanography, diagnostics and pathogen shedding rates and viability contribute to improved understanding...... management thresholds. For wild populations, risk of pathogen spillback is estimated from farm-based epidemiological data; however, validation, particularly for ISAV and SAV, is required using direct surveillance....... of pathogen transmission pathways among farms and permit the designation of areas of risk associated with sources of infection. Occupation of an area of risk may increase the likelihood of exposure, infection and disease among susceptible fish. Disease mitigation in mariculture occurs at 2 scales: area...

  5. Economic modelling of diagnostic and treatment pathways in National Institute for Health and Care Excellence clinical guidelines: the Modelling Algorithm Pathways in Guidelines (MAPGuide) project.

    Science.gov (United States)

    Lord, J; Willis, S; Eatock, J; Tappenden, P; Trapero-Bertran, M; Miners, A; Crossan, C; Westby, M; Anagnostou, A; Taylor, S; Mavranezouli, I; Wonderling, D; Alderson, P; Ruiz, F

    2013-12-01

    National Institute for Health and Care Excellence (NICE) clinical guidelines (CGs) make recommendations across large, complex care pathways for broad groups of patients. They rely on cost-effectiveness evidence from the literature and from new analyses for selected high-priority topics. An alternative approach would be to build a model of the full care pathway and to use this as a platform to evaluate the cost-effectiveness of multiple topics across the guideline recommendations. In this project we aimed to test the feasibility of building full guideline models for NICE guidelines and to assess if, and how, such models can be used as a basis for cost-effectiveness analysis (CEA). A 'best evidence' approach was used to inform the model parameters. Data were drawn from the guideline documentation, advice from clinical experts and rapid literature reviews on selected topics. Where possible we relied on good-quality, recent UK systematic reviews and meta-analyses. Two published NICE guidelines were used as case studies: prostate cancer and atrial fibrillation (AF). Discrete event simulation (DES) was used to model the recommended care pathways and to estimate consequent costs and outcomes. For each guideline, researchers not involved in model development collated a shortlist of topics suggested for updating. The modelling teams then attempted to evaluate options related to these topics. Cost-effectiveness results were compared with opinions about the importance of the topics elicited in a survey of stakeholders. The modelling teams developed simulations of the guideline pathways and disease processes. Development took longer and required more analytical time than anticipated. Estimates of cost-effectiveness were produced for six of the nine prostate cancer topics considered, and for five of eight AF topics. The other topics were not evaluated owing to lack of data or time constraints. The modelled results suggested 'economic priorities' for an update that differed from

  6. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens?

    Science.gov (United States)

    Dhusia, Kalyani; Bajpai, Archana; Ramteke, P W

    2018-01-10

    Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Swiss Army Pathogen: The Salmonella Entry Toolkit

    Directory of Open Access Journals (Sweden)

    Peter J. Hume

    2017-08-01

    Full Text Available Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS, a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.

  8. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  9. Toward a molecular pathogenic pathway for Yersinia pestis YopM

    Directory of Open Access Journals (Sweden)

    Annette M. Uittenbogaard

    2012-12-01

    Full Text Available YopM is one of the six effector Yops of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24 to 48 h post infection (p.i.. To identify potential direct effects of YopM in vivo we tested for effects of YopM at 1h and 16-18h p.i. in mice infected systemically with 106 bacteria. At 16 h p.i., there was a robust host response to both parent and yopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b+ cells from spleens of infected mice produced more than 100-fold greater IFN. In the corresponding sera there were more than 100-fold greater amounts of IFN, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to yopM-1 Y. pestis. Microarray analysis of the CD11b+ cells did not identify consistent transcriptional differences of > 4 fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1 was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription.

  10. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    Science.gov (United States)

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  11. A more flexible lipoprotein sorting pathway.

    Science.gov (United States)

    Chahales, Peter; Thanassi, David G

    2015-05-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. The Hippo Pathway: Immunity and Cancer.

    Science.gov (United States)

    Taha, Zaid; J Janse van Rensburg, Helena; Yang, Xiaolong

    2018-03-28

    Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.

  13. Common and uncommon pathogenic cascades in lysosomal storage diseases.

    Science.gov (United States)

    Vitner, Einat B; Platt, Frances M; Futerman, Anthony H

    2010-07-02

    Lysosomal storage diseases (LSDs), of which about 50 are known, are caused by the defective activity of lysosomal proteins, resulting in accumulation of unmetabolized substrates. As a result, a variety of pathogenic cascades are activated such as altered calcium homeostasis, oxidative stress, inflammation, altered lipid trafficking, autophagy, endoplasmic reticulum stress, and autoimmune responses. Some of these pathways are common to many LSDs, whereas others are only altered in a subset of LSDs. We now review how these cascades impact upon LSD pathology and suggest how intervention in the pathways may lead to novel therapeutic approaches.

  14. Switch region for pathogenic structural change in conformational disease and its prediction.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2010-01-01

    Full Text Available Many diseases are believed to be related to abnormal protein folding. In the first step of such pathogenic structural changes, misfolding occurs in regions important for the stability of the native structure. This destabilizes the normal protein conformation, while exposing the previously hidden aggregation-prone regions, leading to subsequent errors in the folding pathway. Sites involved in this first stage can be deemed switch regions of the protein, and can represent perfect binding targets for drugs to block the abnormal folding pathway and prevent pathogenic conformational changes. In this study, a prediction algorithm for the switch regions responsible for the start of pathogenic structural changes is introduced. With an accuracy of 94%, this algorithm can successfully find short segments covering sites significant in triggering conformational diseases (CDs and is the first that can predict switch regions for various CDs. To illustrate its effectiveness in dealing with urgent public health problems, the reason of the increased pathogenicity of H5N1 influenza virus is analyzed; the mechanisms of the pandemic swine-origin 2009 A(H1N1 influenza virus in overcoming species barriers and in infecting large number of potential patients are also suggested. It is shown that the algorithm is a potential tool useful in the study of the pathology of CDs because: (1 it can identify the origin of pathogenic structural conversion with high sensitivity and specificity, and (2 it provides an ideal target for clinical treatment.

  15. Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense.

    Directory of Open Access Journals (Sweden)

    Philip O Scumpia

    2017-07-01

    Full Text Available Successful host defense against pathogens requires innate immune recognition of the correct pathogen associated molecular patterns (PAMPs by pathogen recognition receptors (PRRs to trigger the appropriate gene program tailored to the pathogen. While many PRR pathways contribute to the innate immune response to specific pathogens, the relative importance of each pathway for the complete transcriptional program elicited has not been examined in detail. Herein, we used RNA-sequencing with wildtype and mutant macrophages to delineate the innate immune pathways contributing to the early transcriptional response to Staphylococcus aureus, a ubiquitous microorganism that can activate a wide variety of PRRs. Unexpectedly, two PRR pathways-the Toll-like receptor (TLR and Stimulator of Interferon Gene (STING pathways-were identified as dominant regulators of approximately 95% of the genes that were potently induced within the first four hours of macrophage infection with live S. aureus. TLR signaling predominantly activated a pro-inflammatory program while STING signaling activated an antiviral/type I interferon response with live but not killed S. aureus. This STING response was largely dependent on the cytosolic DNA sensor cyclic guanosine-adenosine synthase (cGAS. Using a cutaneous infection model, we found that the TLR and STING pathways played opposite roles in host defense to S. aureus. TLR signaling was required for host defense, with its absence reducing interleukin (IL-1β production and neutrophil recruitment, resulting in increased bacterial growth. In contrast, absence of STING signaling had the opposite effect, enhancing the ability to restrict the infection. These results provide novel insights into the complex interplay of innate immune signaling pathways triggered by S. aureus and uncover opposing roles of TLR and STING in cutaneous host defense to S. aureus.

  16. The sentinel tree nursery as an early warning system for pathway risk assessment: Fungal pathogens associated with Chinese woody plants commonly shipped to Europe.

    Directory of Open Access Journals (Sweden)

    Anna Maria Vettraino

    Full Text Available Introduction of and invasion by alien plant pathogens represents the main cause of emerging infectious diseases affecting domesticated and wild plant species worldwide. The trade in living plants is the most common pathway of introduction. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists. To help determine the potential risk of pest introduction through trading of ornamental plants, a sentinel nursery was established in Beijing, China in 2008. The sentinel nursery planting included four of the most common ornamental woody species shipped to Europe including Ilex cornuta var. fortunae, Zelkova schneideriana, Fraxinus chinensis and Buxus microphylla. Symptoms developing on these species within the sentinel nursery were detected in 2013 and consisted of necrotic spots on leaves, canker and stem necrosis, shoot blight and shoot necrosis. Fungi associated with the trees and their symptoms included Alternaria alternata detected from all hosts; Diaporthe liquidambaris and Diaporthe capsici from bark and leaf necrosis of Zelkova schneideriana; Botryosphaeria dothidea and Nothophoma quercina from stem cankers on Fraxinus chinensis and leaf necrosis on Ilex cornuta; and Pseudonectria foliicola from leaf necrosis on Buxus microphylla. Next generation sequencing analysis from asymptomatic tissues detected eighteen OTU's at species level among which some taxa had not been previously recorded in Europe. These results clearly demonstrate that looking at trees of internationally traded species in the region of origin can reveal the presence of potentially harmful organisms of major forestry, landscape or crop trees. Results of this study also provide an indication as to how some disease agents can be introduced using pathways other than the co-generic hosts. Hence, sentinel nurseries represent one potential mechanism to address the current lack of knowledge about pests in the countries from

  17. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways

    DEFF Research Database (Denmark)

    Zhang, Ziguo; Feechan, Angela; Pedersen, Carsten

    2007-01-01

    Penetration resistance is often the first line of defence against fungal pathogens. Subsequently induced defences are mediated by the programmed cell death (PCD) reaction pathway and the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signalling pathways. We previously demonstrated...

  18. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    Science.gov (United States)

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  19. Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira

    Science.gov (United States)

    Adhikarla, Haritha; Wunder, Elsio A.; Mechaly, Ariel E.; Mehta, Sameet; Wang, Zheng; Santos, Luciane; Bisht, Vimla; Diggle, Peter; Murray, Gerald; Adler, Ben; Lopez, Francesc; Townsend, Jeffrey P.; Groisman, Eduardo; Picardeau, Mathieu; Buschiazzo, Alejandro; Ko, Albert I.

    2018-01-01

    Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira. In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one (lvrB) or both genes (lvrA/B) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium. PMID:29600195

  20. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway

    Science.gov (United States)

    2014-01-01

    Background Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. Results Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 − Cullin − F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root

  1. The Role of Pathogenic Autoantibodies in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Merrill J. Rowley

    2015-11-01

    Full Text Available The serological presence of autoantibodies is diagnostic of autoimmunity, and these autoantibodies may be present for many years before the presentation of autoimmune disease (AID. Although a pathogenic role has been demonstrated for various autoantibodies reactive with cell surface and extracellular autoantigens, studies using monoclonal antibodies (mAb show not all antibodies in the polyclonal response are pathogenic. Differences depend on Fab-mediated diversity in epitope specificity, Fc-mediated effects based on immunoglobulin (Ig class and subclass, activation of complement, and the milieu in which the reaction occurs. These autoantibodies often occur in organ-specific AID and this review illustrates their pathogenic and highly specific effects. The role of autoantibodies associated with intracellular antigens is less clear. In vitro they may inhibit or adversely affect well-defined intracellular biochemical pathways, yet, in vivo they are separated from their autoantigens by multiple cellular barriers. Recent evidence that Ig can traverse cell membranes, interact with intracellular proteins, and induce apoptosis has provided new evidence for a pathogenic role for such autoantibodies. An understanding of how autoantibodies behave in the polyclonal response and their role in pathogenesis of AID may help identify populations of culprit B-cells and selection of treatments that suppress or eliminate them.

  2. Immunity to intestinal pathogens: lessons learned from Salmonella

    Science.gov (United States)

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  3. Extended Storage of Pathogen-Reduced Platelet Concentrates (PRECON)

    Science.gov (United States)

    2017-12-01

    transfusion. Our project proposes to determine the efficacy of using a pathogen inactivation technique (Mirasol) coupled with a platelet additive solution (PAS...technology, platelet additive solution, platelet recovery and survival, platelet storage, platelet storage solution, platelets, thrombocytopenia, transfusion...Platelets Report to 2017 Military Health System Research Symposium ……………………………………………………………….. 29 Extended Storage of Pathogen-Reduced Platelet Concentrates

  4. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack.

    Science.gov (United States)

    De Vos, Martin; Van Oosten, Vivian R; Van Poecke, Remco M P; Van Pelt, Johan A; Pozo, Maria J; Mueller, Martin J; Buchala, Antony J; Métraux, Jean-Pierre; Van Loon, L C; Dicke, Marcel; Pieterse, Corné M J

    2005-09-01

    Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv. tomato), a pathogenic leaf fungus (Alternaria brassicicola), tissue-chewing caterpillars (Pieris rapae), cell-content-feeding thrips (Frankliniella occidentalis), or phloem-feeding aphids (Myzus persicae). Monitoring the signal signature in each plant-attacker combination showed that the kinetics of SA, JA, and ET production varies greatly in both quantity and timing. Analysis of global gene expression profiles demonstrated that the signal signature characteristic of each Arabidopsis-attacker combination is orchestrated into a surprisingly complex set of transcriptional alterations in which, in all cases, stress-related genes are overrepresented. Comparison of the transcript profiles revealed that consistent changes induced by pathogens and insects with very different modes of attack can show considerable overlap. Of all consistent changes induced by A. brassicicola, Pieris rapae, and E occidentalis, more than 50% also were induced consistently by P. syringae. Notably, although these four attackers all stimulated JA biosynthesis, the majority of the changes in JA-responsive gene expression were attacker specific. All together, our study shows that SA, JA, and ET play a primary role in the orchestration of the plant's defense response, but other regulatory mechanisms, such as pathway cross-talk or additional attacker-induced signals, eventually shape the highly complex attacker-specific defense response.

  5. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  6. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase.

    Science.gov (United States)

    Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C

    2010-10-07

    Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable

  7. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

    Science.gov (United States)

    Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L

    2018-01-02

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.

  8. Protein prenylation: a new mode of host-pathogen interaction.

    Science.gov (United States)

    Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L

    2011-12-09

    Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

    Science.gov (United States)

    Kropf, Jan; Rössler, Wolfgang

    2018-01-01

    The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

  10. Contrasting effects of necrotrophic and biotrophic plant pathogens on the aphid Aphis fabae

    OpenAIRE

    Al-Naemi, F.; Hatcher, P. E.

    2013-01-01

    Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their comb...

  11. Future Projection of Droughts over South Korea Using Representative Concentration Pathways (RCPs

    Directory of Open Access Journals (Sweden)

    Byung Sik Kim

    2014-01-01

    Full Text Available The Standardized Precipitation Index (SPI, a method widely used to analyze droughts related to climate change, does not consider variables related to temperature and is limited because it cannot consider changes in hydrological balance, such as evapotranspiration from climate change. If we were to consider only the future increase in precipitation from climate change, droughts may decrease. However, because usable water can diminish from an increase in evapotranspiration, it is important to research on projected droughts considering the amount of evapotranspiration along with projecting and evaluating potential droughts considering the impact of climate change. As such, this study evaluated the occurrence of droughts using the Standardized Precipitation Evapotranspiration Index (SPEI as a newly conceptualized drought index that is similar to SPI but includes the temperature variability. We extracted simulated future precipitation and temperature data (2011 - 2099 from the Representative Concentration Pathway (RCP climate change scenario of IPCC AR5 to evaluate the impact of future climate change on the occurrence of droughts of South Korea. We analyzed the ratio of evapotranspiration to precipitation of meteorological observatories nationwide. In addition, we calculated the SPEI related to drought in the process to evaluate the future occurrence of droughts of South Korea. To confirm validity of SPEI results, extreme indices were analyzed. This resulted in the notion that as we go further into the future, the precipitation increases. But because of an increase in evapotranspiration also from a rise in temperature and continued dryness, the severity of droughts is projected to exacerbate.

  12. Comparative genomics of pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Science.gov (United States)

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  13. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  14. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives.

    Science.gov (United States)

    Schwind, Jessica S; Goldstein, Tracey; Thomas, Kate; Mazet, Jonna A K; Smith, Woutrina A

    2014-07-04

    The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development's Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global 'hot spot' regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of project scientists). A One

  15. Occurrence of antimicrobial resistance among bacterial pathogens

    OpenAIRE

    Hendriksen, Rene S.; Mevius, Dik J.; Schroeter, Andreas; Teale, Christopher; Jouy, Eric; Butaye, Patrick; Franco, Alessia; Utinane, Andra; Amado, Alice; Moreno, Miguel; Greko, Christina; Stärk, Katharina D.C.; Berghold, Christian; Myllyniemi, Anna-Liisa; Hoszowski, Andrzej

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003–05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria cau...

  16. Pathogens in Dairy Farming: Source Characterization and Groundwater Impacts

    Science.gov (United States)

    Atwill, E. R.; Watanabe, N.; Li, X.; Hou, L.; Harter, T.; Bergamaschi, B.

    2007-12-01

    Intense animal husbandry is of growing concern as a potential contamination source of enteric pathogens as well as antibiotics. To assess the public health risk from pathogens and their hydrologic pathways, we hypothesize that the animal farm is not a homogeneous diffuse source, but that pathogen loading to the soil and, therefore, to groundwater varies significantly between the various management units of a farm. A dairy farm, for example, may include an area with calf hutches, corrals for heifers of various ages, freestalls and exercise yards for milking cows, separate freestalls for dry cows, a hospital barn, a yard for collection of solid manure, a liquid manure storage lagoon, and fields receiving various amounts of liquid and solid manure. Pathogen shedding and, hence, therapeutic and preventive pharmaceutical treatments vary between these management units. We are implementing a field reconnaissance program to determine the occurrence of three different pathogens ( E. coli, Salmonella, Campylobacter) and one indicator organism ( Enterococcus) at the ground-surface and in shallow groundwater of seven different management units on each of two farms, and in each of four seasons (spring/dry season, summer/irrigation season, fall/dry season, winter/rainy season). Initial results indicate that significant differences exist in the occurrence of these pathogens between management units and between organisms. These differences are weakly reflected in their occurrence in groundwater, despite the similarity of the shallow geologic environment across these sites. Our results indicate the importance of differentiating sources within a dairy farm and the importance of understanding subsurface transport processes for these pathogens.

  17. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2018-05-01

    Full Text Available A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO, was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO were similar to those of the wild-type (WT strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP and mitogen-activated protein kinase (MAPK signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea.

  18. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao

    2018-01-01

    A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .

  19. Genomic and Phenotypic Variation in Morphogenetic Networks of Two Candida albicans Isolates Subtends Their Different Pathogenic Potential

    Directory of Open Access Journals (Sweden)

    Duccio Cavalieri

    2018-01-01

    Full Text Available The transition from commensalism to pathogenicity of Candida albicans reflects both the host inability to mount specific immune responses and the microorganism’s dimorphic switch efficiency. In this study, we used whole genome sequencing and microarray analysis to investigate the genomic determinants of the phenotypic changes observed in two C. albicans clinical isolates (YL1 and YQ2. In vitro experiments employing epithelial, microglial, and peripheral blood mononuclear cells were thus used to evaluate C. albicans isolates interaction with first line host defenses, measuring adhesion, susceptibility to phagocytosis, and induction of secretory responses. Moreover, a murine model of peritoneal infection was used to compare the in vivo pathogenic potential of the two isolates. Genome sequence and gene expression analysis of C. albicans YL1 and YQ2 showed significant changes in cellular pathways involved in environmental stress response, adhesion, filamentous growth, invasiveness, and dimorphic transition. This was in accordance with the observed marked phenotypic differences in biofilm production, dimorphic switch efficiency, cell adhesion, invasion, and survival to phagocyte-mediated host defenses. The mutations in key regulators of the hyphal growth pathway in the more virulent strain corresponded to an overall greater number of budding yeast cells released. Compared to YQ2, YL1 consistently showed enhanced pathogenic potential, since in vitro, it was less susceptible to ingestion by phagocytic cells and more efficient in invading epithelial cells, while in vivo YL1 was more effective than YQ2 in recruiting inflammatory cells, eliciting IL-1β response and eluding phagocytic cells. Overall, these results indicate an unexpected isolate-specific variation in pathways important for host invasion and colonization, showing how the genetic background of C. albicans may greatly affect its behavior both in vitro and in vivo. Based on this approach, we

  20. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    Science.gov (United States)

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  1. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  2. Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun

    2018-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis.

    Science.gov (United States)

    Chen, Rui; Han, Su; Liu, Xuefeng; Wang, Kunpeng; Zhou, Yong; Yang, Chundong; Zhang, Xi

    2018-05-15

    Osteoarthritis (OA) is a degenerative synovial joint disease affecting people worldwide. However, the exact pathogenesis of OA remains unclear. Metabolomics analysis was performed to obtain insight into possible pathogenic mechanisms and diagnostic biomarkers of OA. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS), followed by multivariate statistical analysis, was used to determine the serum amino acid profiles of 32 OA patients and 35 healthy controls. Variable importance for project values and Student's t-test were used to determine the metabolic abnormalities in OA. Another 30 OA patients were used as independent samples to validate the alterations in amino acids. MetaboAnalyst was used to identify the key amino acid pathways and construct metabolic networks describing their relationships. A total of 25 amino acids and four biogenic amines were detected by UPLC-TQ-MS. Differences in amino acid profiles were found between the healthy controls and OA patients. Alanine, γ-aminobutyric acid and 4-hydroxy-l-proline were important biomarkers distinguishing OA patients from healthy controls. The metabolic pathways with the most significant effects were involved in metabolism of alanine, aspartate, glutamate, arginine and proline. The results of this study improve understanding of the amino acid metabolic abnormalities and pathogenic mechanisms of OA at the molecular level. The metabolic perturbations may be important for the diagnosis and prevention of OA. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Combining Phylogenetic and Occurrence Information for Risk Assessment of Pest and Pathogen Interactions with Host Plants

    Directory of Open Access Journals (Sweden)

    Ángel L. Robles-Fernández

    2017-08-01

    Full Text Available Phytosanitary agencies conduct plant biosecurity activities, including early detection of potential introduction pathways, to improve control and eradication of pest and pathogen incursions. For such actions, analytical tools based on solid scientific knowledge regarding plant-pest or pathogen relationships for pest risk assessment are needed. Recent evidence indicating that closely related species share a higher chance of becoming infected or attacked by pests has allowed the identification of taxa with different degrees of vulnerability. Here, we use information readily available online about pest-host interactions and their geographic distributions, in combination with host phylogenetic reconstructions, to estimate a pest-host interaction (in some cases infection index in geographic space as a more comprehensive, spatially explicit tool for risk assessment. We demonstrate this protocol using phylogenetic relationships for 20 beetle species and 235 host plant genera: first, we estimate the probability of a host sharing pests, and second, we project the index in geographic space. Overall, the predictions allow identification of the pest-host interaction type (e.g., generalist or specialist, which is largely determined by both host range and phylogenetic constraints. Furthermore, the results can be valuable in terms of identifying hotspots where pests and vulnerable hosts interact. This knowledge is useful for anticipating biological invasions or spreading of disease. We suggest that our understanding of biotic interactions will improve after combining information from multiple dimensions of biodiversity at multiple scales (e.g., phylogenetic signal and host-vector-pathogen geographic distribution.

  5. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

    Directory of Open Access Journals (Sweden)

    Jan Kropf

    Full Text Available The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN convey olfactory information on ~900 projection neurons (PN in the antennal lobe (AL. To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB. This pathway comprises the medial (m-ALT and the lateral antennal lobe tract (l-ALT. PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

  6. Multi-Probe Investigation of Proteomic Structure of Pathogens

    International Nuclear Information System (INIS)

    Malkin, A J; Plomp, M; Leighton, T J; Vogelstein, B; Wheeler, K E

    2008-01-01

    Complete genome sequences are available for understanding biotransformation, environmental resistance and pathogenesis of microbial, cellular and pathogen systems. The present technological and scientific challenges are to unravel the relationships between the organization and function of protein complexes at cell, microbial and pathogens surfaces, to understand how these complexes evolve during the bacterial, cellular and pathogen life cycles, and how they respond to environmental changes, chemical stimulants and therapeutics. In particular, elucidating the molecular structure and architecture of human pathogen surfaces is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance and development of countermeasures against bioterrorist agents. The objective of this project was to investigate the architecture, proteomic structure, and function of bacterial spores through a combination of high-resolution in vitro atomic force microscopy (AFM) and AFM-based immunolabeling with threat-specific antibodies. Particular attention in this project was focused on spore forming Bacillus species including the Sterne vaccine strain of Bacillus anthracis and the spore forming near-neighbor of Clostridium botulinum, C. novyi-NT. Bacillus species, including B. anthracis, the causative agent of inhalation anthrax are laboratory models for elucidating spore structure/function. Even though the complete genome sequence is available for B. subtilis, cereus, anthracis and other species, the determination and composition of spore structure/function is not understood. Prof. B. Vogelstein and colleagues at the John Hopkins University have recently developed a breakthrough bacteriolytic therapy for cancer treatment (1). They discovered that intravenously injected Clostridium novyi-NT spores germinate exclusively within the avascular regions of tumors in mice and destroy advanced cancerous lesions. The bacteria were also

  7. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  8. Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Liming Wu

    2018-04-01

    Full Text Available Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacterium that induces resistance to a broad spectrum of pathogens. This study analyzed the mechanism by which FZB42 restricts leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. The oomycete foliar pathogen P. nicotianae is able to reopen stomata which had been closed by the plant innate immune response to initiate penetration and infection. Here, we showed that root colonization by B. amyloliquefaciens FZB42 restricted pathogen-mediated stomatal reopening in N. benthamiana. Abscisic acid (ABA and salicylic acid (SA-regulated pathways mediated FZB42-induced stomatal closure after pathogen infection. Moreover, the defense-related genes PR-1a, LOX, and ERF1, involved in the SA and jasmonic acid (JA/ethylene (ET signaling pathways, respectively, were overexpressed, and levels of the hormones SA, JA, and ET increased in the leaves of B. amyloliquefaciens FZB42-treated wild type plants. Disruption of one of these three pathways in N. benthamiana plants increased susceptibility to the pathogen. These suggest that SA- and JA/ET-dependent signaling pathways were important in plant defenses against the pathogen. Our data thus explain a biocontrol mechanism of soil rhizobacteria in a plant.

  9. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    Directory of Open Access Journals (Sweden)

    Nudelman Irina

    2010-10-01

    Full Text Available Abstract Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to

  10. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview

    OpenAIRE

    Taborda, Carlos P.; da Silva, Marcelo B.; Nosanchuk, Joshua D.; Travassos, Luiz R.

    2008-01-01

    Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles (“ghosts”) can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic ...

  11. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    Science.gov (United States)

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  12. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2011-11-01

    Full Text Available Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA, jasmonic acid (JA and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i Pathogenesis-Related (PR proteins with antifungal and antibacterial activities; (ii defense enzymes such as pheylalanine ammonia lyase (PAL and lipoxygenase (LOX which determine accumulation of phenylpropanoid compounds (PPCs and oxylipins with antiviral, antifugal and antibacterial activities and iii enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  13. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  14. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Qinghua eYu

    2015-03-01

    Full Text Available Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells, or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection.

  15. Transcriptional plant responses critical for resistance towards necrotrophic pathogens

    Directory of Open Access Journals (Sweden)

    Rainer P. Birkenbihl

    2011-11-01

    Full Text Available Plant defenses aimed at necrotrophic pathogens appear to be genetically complex. Despite the apparent lack of a specific recognition of such necrotrophs by products of major R genes, biochemical, molecular, and genetic studies, in particular using the model plant Arabidopsis, have uncovered numerous host components critical for the outcome of such interactions. Although the JA signaling pathway plays a central role in plant defense towards necrotrophs additional signaling pathways contribute to the plant response network. Transcriptional reprogramming is a vital part of the host defense machinery and several key regulators have recently been identified. Some of these transcription factors positively affect plant resistance whereas others play a role in enhancing host susceptibility towards these phytopathogens.

  16. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection.

    Directory of Open Access Journals (Sweden)

    Lulin Huang

    Full Text Available Host-pathogen interactions are complex relationships, and a central challenge is to reveal the interactions between pathogens and their hosts. Bacillus bombysepticus (Bb which can produces spores and parasporal crystals was firstly separated from the corpses of the infected silkworms (Bombyx mori. Bb naturally infects the silkworm can cause an acute fuliginosa septicaemia and kill the silkworm larvae generally within one day in the hot and humid season. Bb pathogen of the silkworm can be used for investigating the host responses after the infection. Gene expression profiling during four time-points of silkworm whole larvae after Bb infection was performed to gain insight into the mechanism of Bb-associated host whole body effect. Genome-wide survey of the host genes demonstrated many genes and pathways modulated after the infection. GO analysis of the induced genes indicated that their functions could be divided into 14 categories. KEGG pathway analysis identified that six types of basal metabolic pathway were regulated, including genetic information processing and transcription, carbohydrate metabolism, amino acid and nitrogen metabolism, nucleotide metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation and metabolism. Similar to Bacillus thuringiensis (Bt, Bb can also induce a silkworm poisoning-related response. In this process, genes encoding midgut peritrophic membrane proteins, aminopeptidase N receptors and sodium/calcium exchange protein showed modulation. For the first time, we found that Bb induced a lot of genes involved in juvenile hormone synthesis and metabolism pathway upregulated. Bb also triggered the host immune responses, including cellular immune response and serine protease cascade melanization response. Real time PCR analysis showed that Bb can induce the silkworm systemic immune response, mainly by the Toll pathway. Anti-microorganism peptides (AMPs, including of Attacin, Lebocin, Enbocin, Gloverin

  17. Macelignan inhibits bee pathogenic fungi Ascophaera apis growth through HOG1 pathway

    Directory of Open Access Journals (Sweden)

    Y.K. Shin

    2016-01-01

    Full Text Available Ascosphaera apis is a bee pathogen that causes bee larvae infection disease, to which treatment is not yet well investigated. The aim of this study was to investigate antifungal susceptibility in vitro against A. apis and to identify a new antifungal agent for this pathogen through minimal inhibitory concentration (MIC assay and western blot analysis. Macelignan had 1.56 and 3.125 μg/mL MIC against A. apis after 24 and 48 h, respectively, exhibiting the strongest growth inhibition against A. apis among the tested compounds (corosolic acid, dehydrocostus lactone, loganic acid, tracheloside, fangchinoline and emodin-8-O-β-D-glucopyranoside. Furthermore, macelignan showed a narrow-ranged spectrum against various fungal strains without any mammalian cell cytotoxicity. In spite of miconazole having powerful broad-ranged anti-fungal activity including A. apis, it demonstrated strong cytotoxicity. Therefore, even if macelignan alone was effective as an antifungal agent to treat A. apis, combined treatment with miconazole was more useful to overcome toxicity, drug resistance occurrence and cost effectiveness. Finally, HOG1 was revealed as a target molecule of macelignan in the anti-A. apis activity by inhibiting phosphorylation using S. cerevisiae as a model system. Based on our results, macelignan, a food-grade antimicrobial compound, would be an effective antifungal agent against A. apis infection in bees.

  18. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem.

    Science.gov (United States)

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J

    2017-11-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.

  19. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  20. Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum.

    Science.gov (United States)

    Raynal, José Tadeu; Bastos, Bruno Lopes; Vilas-Boas, Priscilla Carolinne Bagano; Sousa, Thiago de Jesus; Costa-Silva, Marcos; de Sá, Maria da Conceição Aquino; Portela, Ricardo Wagner; Moura-Costa, Lília Ferreira; Azevedo, Vasco; Meyer, Roberto

    2018-01-25

    Previous works defining antigens that might be used as vaccine targets against Corynebacterium pseudotuberculosis, which is the causative agent of sheep and goat caseous lymphadenitis, have focused on secreted proteins produced in a chemically defined culture media. Considering that such antigens might not reflect the repertoire of proteins expressed during infection conditions, this experiment aimed to investigate the membrane-associated proteins with pathogenic potential expressed by C. pseudotuberculosis grown directly in animal serum. Its membrane-associated proteins have been extracted using an organic solvent enrichment methodology, followed by LC-MS/MS and bioinformatics analysis for protein identification and classification. The results revealed 22 membrane-associated proteins characterized as potentially pathogenic. An interaction network analysis indicated that the four potentially pathogenic proteins ciuA, fagA, OppA4 and OppCD were biologically connected within two distinct network pathways, which were both associated with the ABC Transporters KEGG pathway. These results suggest that C. pseudotuberculosis pathogenesis might be associated with the transport and uptake of nutrients; other seven identified potentially pathogenic membrane proteins also suggest that pathogenesis might involve events of bacterial resistance and adhesion. The proteins herein reported potentially reflect part of the protein repertoire expressed during real infection conditions and might be tested as vaccine antigens.

  1. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    Science.gov (United States)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  2. Analysis of culture media screening data by projection to latent pathways: The case of Pichia pastoris X-33.

    Science.gov (United States)

    Isidro, Inês A; Ferreira, Ana R; Clemente, João J; Cunha, António E; Oliveira, Rui

    2016-01-10

    Cell culture media formulations contain hundreds of individual components in water solutions which have complex interactions with metabolic pathways. The currently used statistical design methods are empirical and very limited to explore such a large design space. In a previous work we developed a computational method called projection to latent pathways (PLP), which was conceived to maximize covariance between envirome and fluxome data under the constraint of metabolic network elementary flux modes (EFM). More specifically, PLP identifies a minimal set of EFMs (i.e., pathways) with the highest possible correlation with envirome and fluxome measurements. In this paper we extend the concept for the analysis of culture media screening data to investigate how culture medium components up-regulate or down-regulate key metabolic pathways. A Pichia pastoris X-33 strain was cultivated in 26 shake flask experiments with variations in trace elements concentrations and basal medium dilution, based on the standard BSM+PTM1 medium. PLP identified 3 EFMs (growth, maintenance and by-product formation) describing 98.8% of the variance in observed fluxes. Furthermore, PLP presented an overall predictive power comparable to that of PLS regression. Our results show iron and manganese at concentrations close to the PTM1 standard inhibit overall metabolic activity, while the main salts concentration (BSM) affected mainly energy expenditures for cellular maintenance. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  4. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  5. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Schembri, Mark A.; Sweet, Matthew J.

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  6. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  7. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

    Science.gov (United States)

    Qamar, Aarzoo; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2015-01-01

    Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection. PMID:26217357

  8. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens.

    Science.gov (United States)

    Fader, Claudio Marcelo; Aguilera, Milton Osmar; Colombo, María Isabel

    2015-10-01

    Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.

  9. Cytokine responses to two common respiratory pathogens in children are dependent on interleukin-1β

    Directory of Open Access Journals (Sweden)

    Alice C-H. Chen

    2017-10-01

    Full Text Available Protracted bacterial bronchitis (PBB in young children is a common cause of prolonged wet cough and may be a precursor to bronchiectasis in some children. Although PBB and bronchiectasis are both characterised by neutrophilic airway inflammation and a prominent interleukin (IL-1β signature, the contribution of the IL-1β pathway to host defence is not clear. This study aimed to compare systemic immune responses against common pathogens in children with PBB, bronchiectasis and control children and to determine the importance of the IL-1β pathway. Non-typeable Haemophilus influenzae (NTHi stimulation of peripheral blood mononuclear cells (PBMCs from control subjects (n=20, those with recurrent PBB (n=20 and bronchiectasis (n=20 induced high concentrations of IL-1β, IL-6, interferon (IFN-γ and IL-10. Blocking with an IL-1 receptor antagonist (IL-1Ra modified the cellular response to pathogens, inhibiting cytokine synthesis by NTHi-stimulated PBMCs and rhinovirus-stimulated PBMCs (in a separate PBB cohort. Inhibition of IFN-γ production by IL-1Ra was observed across multiple cell types, including CD3+ T cells and CD56+ NK cells. Our findings highlight the extent to which IL-1β regulates the cellular immune response against two common respiratory pathogens. While blocking the IL-1β pathway has the potential to reduce inflammation, this may come at the cost of protective immunity against NTHi and rhinovirus.

  10. Modeling the effects of a Staphylococcal Enterotoxin B (SEB on the apoptosis pathway

    Directory of Open Access Journals (Sweden)

    Hammamieh Rasha

    2006-05-01

    Full Text Available Abstract Background The lack of detailed understanding of the mechanism of action of many biowarfare agents poses an immediate challenge to biodefense efforts. Many potential bioweapons have been shown to affect the cellular pathways controlling apoptosis 1234. For example, pathogen-produced exotoxins such as Staphylococcal Enterotoxin B (SEB and Anthrax Lethal Factor (LF have been shown to disrupt the Fas-mediated apoptotic pathway 24. To evaluate how these agents affect these pathways it is first necessary to understand the dynamics of a normally functioning apoptosis network. This can then serve as a baseline against which a pathogen perturbed system can be compared. Such comparisons can expose both the proteins most susceptible to alteration by the agent as well as the most critical reaction rates to better instill control on a biological network. Results We explore this through the modeling and simulation of the Fas-mediated apoptotic pathway under normal and SEB influenced conditions. We stimulated human Jurkat cells with an anti-Fas antibody in the presence and absence of SEB and determined the relative levels of seven proteins involved in the core pathway at five time points following exposure. These levels were used to impute relative rate constants and build a quantitative model consisting of a series of ordinary differential equations (ODEs that simulate the network under both normal and pathogen-influenced conditions. Experimental results show that cells exposed to SEB exhibit an increase in the rate of executioner caspase expression (and subsequently apoptosis of 1 hour 43 minutes (± 14 minutes, as compared to cells undergoing normal cell death. Conclusion Our model accurately reflects these results and reveals intervention points that can be altered to restore SEB-influenced system dynamics back to levels within the range of normal conditions.

  11. The cereal pathogen Fusarium pseudograminearum produces a new class of active cytokinins during infection

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Benfield, Aurelie H.; Wollenberg, Rasmus Dam

    2018-01-01

    -senescence activities and the production of a cytokinin mimic by what was once considered a necrotrophic pathogen that promotes cell death and senescence challenges the simple view that this pathogen invades its hosts by employing a barrage of lytic enzymes and toxins. Through genome mining, a gene cluster in the F....... pseudograminearum genome for the production of Fusarium cytokinins was identified and the biosynthetic pathway established using gene knockouts. The Fusarium cytokinins could activate plant cytokinin signalling, demonstrating their genuine hormone mimicry. In planta analysis of the transcriptional response to one...

  12. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage.

    Directory of Open Access Journals (Sweden)

    Parul Mehrotra

    2014-07-01

    Full Text Available The success of Mycobacterium tuberculosis as a pathogen derives from its facile adaptation to the intracellular milieu of human macrophages. To explore this process, we asked whether adaptation also required interference with the metabolic machinery of the host cell. Temporal profiling of the metabolic flux, in cells infected with differently virulent mycobacterial strains, confirmed that this was indeed the case. Subsequent analysis identified the core subset of host reactions that were targeted. It also elucidated that the goal of regulation was to integrate pathways facilitating macrophage survival, with those promoting mycobacterial sustenance. Intriguingly, this synthesis then provided an axis where both host- and pathogen-derived factors converged to define determinants of pathogenicity. Consequently, whereas the requirement for macrophage survival sensitized TB susceptibility to the glycemic status of the individual, mediation by pathogen ensured that the virulence properties of the infecting strain also contributed towards the resulting pathology.

  13. Identification of Saprolegnia Spp. Pathogenic in Chinook Salmon : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Whisler, Howard C.

    1997-06-01

    This project has developed procedures to assess the role of the fungal parasite, Saprolegnia in the biology of salmon, particularly adult Chinook, in the Columbia River Basin. Both morphological and DNA ``fingerprinting`` surveys reveal that Saprolegnia parasitica (=S. diclina, Type I) is the most common pathogen of these fish. In the first phase of this study 92% of 620 isolates, from salmon lesions, conformed to this taxa of Saprolegnia. In the current phase, the authors have developed variants of DNA fingerprinting (RAPD and SWAPP analysis) that permit examination of the sub-structure of the parasite population. These results confirm the predominance of S. parasitica, and suggest that at least three different sub-groups of this fungus occur in the Pacific N.W., USA. The use of single and paired primers with PCR amplification permits identification of pathogenic types, and distinction from other species of the genus considered to be more saprophytic in character. A year`s survey of saprolegniaceous fungi from Lake Washington indicated that the fish-pathogen was not common in the water column. Where and how fish encounter this parasite can be approached with the molecular tags identified in this project.

  14. Pathogen analysis of NYSDOT road-killed deer carcass compost facilities.

    Science.gov (United States)

    2008-09-01

    Composting of deer carcasses was effective in reducing pathogen levels, decomposing the : carcasses and producing a useable end product after 12 months. The composting process used in this project : involved enveloping the carcasses of road-killed de...

  15. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    Science.gov (United States)

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed. © 2014 John Wiley & Sons Ltd.

  16. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ- free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  17. Developing cryotherapy to eliminate graft-transmissible pathogens in citrus

    Science.gov (United States)

    This article summarizes research being conducted as part of a project funded by the California Citrus Research Board to develop cryotherapy (freezing buds in liquid nitrogen, and then recovering them) as a viable method for elimination of graft transmissible pathogens from Citrus. There are current...

  18. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals.

    Science.gov (United States)

    Bach, Jean-François

    2018-02-01

    The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.

  19. Extending the Pathway: Building on a National Science Foundation Workforce Development Project for Underserved k-12 Students

    Science.gov (United States)

    Slattery, W.; Smith, T.

    2014-12-01

    With new career openings in the geosciences expected and a large number of presently employed geoscientists retiring in the next decade there is a critical need for a new cadre of geoscientists to fill these positions. A project funded by the National Science Foundation titled K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career involving Wright State University and the Ripley, Lewis, Union, Huntington k-12 school district in Appalachian Ohio took led to dozens of seventh and eighth grade students traveling to Sandy Hook, New Jersey for a one week field experience to study oceanography with staff of the New Jersey Sea Grant Consortium. Teachers, parent chaperones, administrators and university faculty accompanied the students in the field. Teachers worked alongside their students in targeted professional development during the weeklong field experience. During the two academic years of the project, both middle school and high school teachers received professional development in Earth system science so that all students, not just those that were on the summer field experience could receive enhanced science learning. All ninth grade high school students were given the opportunity to take a high school/college dual credit Earth system science course. Community outreach provided widespread knowledge of the project and interest among parents to have their children participate. In addition, ninth grade students raised money themselves to fund a trip to the International Field Studies Forfar Field Station on Andros Island, Bahamas to study a tropical aquatic system. Students who before this project had never traveled outside of Ohio are currently discussing ways that they can continue on the pathway to a geoscience career by applying for internships for the summer between their junior and senior years. These are positive steps towards taking charge of their

  20. Segal's Law, 16S rRNA gene sequencing, and the perils of foodborne pathogen detection within the American Gut Project.

    Science.gov (United States)

    Pettengill, James B; Rand, Hugh

    2017-01-01

    Obtaining human population level estimates of the prevalence of foodborne pathogens is critical for understanding outbreaks and ameliorating such threats to public health. Estimates are difficult to obtain due to logistic and financial constraints, but citizen science initiatives like that of the American Gut Project (AGP) represent a potential source of information concerning enteric pathogens. With an emphasis on genera Listeria and Salmonella , we sought to document the prevalence of those two taxa within the AGP samples. The results provided by AGP suggest a surprising 14% and 2% of samples contained Salmonella and Listeria , respectively. However, a reanalysis of those AGP sequences described here indicated that results depend greatly on the algorithm for assigning taxonomy and differences persisted across both a range of parameter settings and different reference databases (i.e., Greengenes and HITdb). These results are perhaps to be expected given that AGP sequenced the V4 region of 16S rRNA gene, which may not provide good resolution at the lower taxonomic levels (e.g., species), but it was surprising how often methods differ in classifying reads-even at higher taxonomic ranks (e.g., family). This highlights the misleading conclusions that can be reached when relying on a single method that is not a gold standard; this is the essence of Segal's Law: an individual with one watch knows what time it is but an individual with two is never sure. Our results point to the need for an appropriate molecular marker for the taxonomic resolution of interest, and calls for the development of more conservative classification methods that are fit for purpose. Thus, with 16S rRNA gene datasets, one must be cautious regarding the detection of taxonomic groups of public health interest (e.g., culture independent identification of foodborne pathogens or taxa associated with a given phenotype).

  1. Pathway enrichment analysis approach based on topological structure and updated annotation of pathway.

    Science.gov (United States)

    Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei

    2017-08-16

    Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations.

    Science.gov (United States)

    Sharott, Andrew; Vinciati, Federica; Nakamura, Kouichi C; Magill, Peter J

    2017-10-11

    Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits. SIGNIFICANCE STATEMENT Chronic depletion of dopamine

  3. The role of phenylpropanoid pathway metabolites in resistance of sorghum to pathogens

    Science.gov (United States)

    Sorghum is being developed for diverse uses, including for bioenergy and food. In order to increase efficiency of ethanol production from plant materials, sorghum lines with reduced lignin were developed by incorporating two mutations in lignin biosynthesis pathway genes: brown midrib (bmr) 6 and bm...

  4. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Klein Cátia S

    2009-12-01

    Full Text Available Abstract Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP. Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.

  5. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria.

    Science.gov (United States)

    Maier, R J

    2005-02-01

    Molecular hydrogen is produced as a fermentation by-product in the large intestine of animals and its production can be correlated with the digestibility of the carbohydrates consumed. Pathogenic Helicobacter species (Helicobacter pylori and H. hepaticus) have the ability to use H(2) through a respiratory hydrogenase, and it was demonstrated that the gas is present in the tissues colonized by these pathogens (the stomach and the liver respectively of live animals). Mutant strains of H. pylori unable to use H(2) are deficient in colonizing mice compared with the parent strain. On the basis of available annotated gene sequence information, the enteric pathogen Salmonella, like other enteric bacteria, contains three putative membrane-associated H(2)-using hydrogenase enzymes. From the analysis of gene-targeted mutants it is concluded that each of the three membrane-bound hydrogenases of Salmonella enterica serovar Typhimurium are coupled with an H(2)-oxidizing respiratory pathway. From microelectrode probe measurements on live mice, H(2) could be detected at approx. 50 muM levels within the tissues (liver and spleen), which are colonized by Salmonella. The half-saturation affinity of whole cells of these pathogens for H(2) is much less than this, so it is expected that the (H(2)-utilizing) hydrogenase enzymes be saturated with the reducing substrate in vivo. All three enteric NiFe hydrogenase enzymes contribute to virulence of the bacterium in a typhoid fever-mouse model, and the combined removal of all three hydrogenases resulted in a strain that is avirulent and (in contrast with the parent strain) one that is not able to pass the intestinal tract to invade liver or spleen tissue. It is proposed that H(2) utilization and specifically its oxidation, coupled with a respiratory pathway, is required for energy production to permit growth and maintain efficient virulence of a number of pathogenic bacteria during infection of animals. These would be expected to include

  6. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    Directory of Open Access Journals (Sweden)

    Susanne Zeilinger

    2007-01-01

    Full Text Available Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes.In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

  7. Metabolic Environments and Genomic Features Associated with Pathogenic and Mutualistic Interactions between Bacteria and Plants is accepted for publication in MPMI

    Energy Technology Data Exchange (ETDEWEB)

    Karpinets, Tatiana V [ORNL; Park, Byung H [ORNL; Syed, Mustafa H [ORNL; Klotz, Martin G [University of North Carolina, Charlotte; Uberbacher, Edward C [ORNL

    2014-01-01

    Most bacterial symbionts of plants are phenotypically characterized by their parasitic or matualistic relationship with the host; however, the genomic characteristics that likely discriminate mutualistic symbionts from pathogens of plants are poorly understood. This study comparatively analyzed the genomes of 54 plant-symbiontic bacteria, 27 mutualists and 27 pathogens, to discover genomic determinants of their parasitic and mutualistic nature in terms of protein family domains, KEGG orthologous groups, metabolic pathways and families of carbohydrate-active enzymes (CAZymes). We further used all bacteria with sequenced genomesl, published microarrays and transcriptomics experimental datasets, and literature to validate and to explore results of the comparison. The analysis revealed that genomes of mutualists are larger in size and higher in GC content and encode greater molecular, functional and metabolic diversity than the investigated genomes of pathogens. This enriched molecular and functional enzyme diversity included constructive biosynthetic signatures of CAZymes and metabolic pathways in genomes of mutualists compared with catabolic signatures dominant in the genomes of pathogens. Another discriminative characteristic of mutualists is the co-occurence of gene clusters required for the expression and function of nitrogenase and RuBisCO. Analysis of previously published experimental data indicate that nitrogen-fixing mutualists may employ Rubisco to fix CO2 not in the canonical Calvin-Benson-Basham cycle but in a novel metabolic pathway, here called Rubisco-based glycolysis , to increase efficiency of sugar utilization during the symbiosis with plants. An important discriminative characteristic of plant pathogenic bacteria is two groups of genes likely encoding effector proteins involved in host invasion and a genomic locus encoding a putative secretion system that includes a DUF1525 domain protein conserved in pathogens of plants and of other organisms. The

  8. Pathways for Emotions: Specializations in the Amygdalar, Mediodorsal Thalamic, and Posterior Orbitofrontal Network.

    Science.gov (United States)

    Timbie, Clare; Barbas, Helen

    2015-08-26

    The primate amygdala projects to posterior orbitofrontal cortex (pOFC) directly and possibly indirectly through a pathway to the magnocellular mediodorsal thalamic nucleus (MDmc), which may convey signals about the significance of stimuli. However, because MDmc receives input from structures in addition to the amygdala and MDmc projects to areas in addition to pOFC, it is unknown whether amygdalar pathways in MDmc innervate pOFC-bound neurons. We addressed this issue using double- or triple-labeling approaches to identify pathways and key cellular and molecular features in rhesus monkeys. We found that amygdalar terminations innervated labeled neurons in MDmc that project to pOFC. Projection neurons in MDmc directed to pOFC included comparatively fewer "core" parvalbumin neurons that project focally to the middle cortical layers and more "matrix" calbindin neurons that project expansively to the upper cortical layers. In addition, a small and hitherto unknown pathway originated from MDmc calretinin neurons and projected to pOFC. Further, whereas projection neurons directed to MDmc and to pOFC were intermingled in the amygdala, none projected to both structures. Larger amygdalar neurons projected to MDmc and expressed the vesicular glutamate transporter 2 (VGLUT2), which is found in highly efficient "driver" pathways. In contrast, smaller amygdalar neurons directed to pOFC expressed VGLUT1 found in modulatory pathways. The indirect pathway from the amygdala to pOFC via MDmc may provide information about the emotional significance of events and, along with a parallel direct pathway, ensures transfer of signals to all layers of pOFC. The amygdala-the brain's center for emotions-is strongly linked with the orbital cortex, a region associated with social interactions. This study provides evidence that a robust pathway from the amygdala reaches neurons in the thalamus that link directly with the orbital cortex, forming a tight tripartite network. The dual pathways from

  9. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    2016-04-01

    Full Text Available Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs, and NADPH-dependent thioredoxin reductase C (NTRC. However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA and jasmonic acid (JA-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens.

  10. Transcriptional control of drug resistance, virulence and immune system evasion in pathogenic fungi: a cross-species comparison.

    Directory of Open Access Journals (Sweden)

    Pedro Pais

    2016-10-01

    Full Text Available Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  11. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison.

    Science.gov (United States)

    Pais, Pedro; Costa, Catarina; Cavalheiro, Mafalda; Romão, Daniela; Teixeira, Miguel C

    2016-01-01

    Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis , and Candida tropicalis . Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  12. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    2009-04-01

    Full Text Available Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost.

  13. COXIELLA BURNETII PATHOGENICITY MOLECULAR BASIS

    Directory of Open Access Journals (Sweden)

    Yu. A. Panferova

    2016-01-01

    Full Text Available Coxiella burnetii is an obligate intracellular gram-negative bacterial pathogen, an ethiological agent of Q-fever, a zoonotic disease, elapsing as an acute (mostly atypical pneumonia or a chronic (mostly endocarditis form. The host range is represented by wide range of mammal, avian and arthropod species, but the main source of human infection are farm animals. The main route of infection is aerosolic. In case of contact with organism pathogen binds with phagocytal monocytic-macrophagal cell line. C. burnetii promotes maturation of specific phagolysosome-like compartment in host cell, called coxiella-containing vacuole, within this vacuole pathogen becames metabolically activated and actively replicates. Coxiella persists as metabolically inactive spore-like form in environment. Internalisation of C. burnetii occurs using actin-mediated phagocytosis and zipper mechanism. After internalization of bacteria maturation of phagolysosome-like compartment and large coxiella-containing vacuole formation occure, and vacuole can occupy nearly the whole cytoplasm of the host cell. Survivance of infected cells is important for chronic infection with C. burnetii. C. burnetii elongate the viability of host cell by two ways: it actively inhibits apoptotic signal cascades and induce pro-survival factors. Exceptthat C. burnetii involves autophagic pathway during coxiella-containing vacuole formation, and induction of autophagy promotes pathogen replication. During infection C. burnetii translocates effector substrates from bacterial cytosole to euca ryotic host cell cytosole using type IV secretion system, where effectors modulate host cell proteins. Overall approximately 130 secreted effectors of type IV transport system, but function of most of them remains unknown to date. Specific sec reted proteins for variety of strains and isolates were identified, confirmed that certain pathotypes of C. burnetii can exist. Identification and

  14. Acizzia solanicola (Hemiptera: Psyllidae) probing behaviour on two Solanum spp. and implications for possible pathogen spread

    Science.gov (United States)

    Valenzuela, Isabel; Trebicki, Piotr; Powell, Kevin S.; Vereijssen, Jessica; Norng, Sorn

    2017-01-01

    Piercing-sucking insects are vectors of plant pathogens, and an understanding of their feeding behaviour is crucial for studies on insect population dynamics and pathogen spread. This study examines probing behaviour of the eggplant psyllid, Acizzia solanicola (Hemiptera: Psyllidae), using the electrical penetration graph (EPG) technique, on two widespread and common hosts: eggplant (Solanum melongena) and tobacco bush (S. mauritianum). Six EPG waveforms were observed: waveform NP (non-probing phase), waveform C (pathway phase), G (feeding activities in xylem tissues), D (first contact with phloem tissues), E1 (salivation in the sieve elements) and E2 (ingestion from phloem tissues). Results showed that A. solanicola is predominantly a phloem feeder and time spent in salivation and ingestion phases (E1 and E2) differed between hosts. Feeding was enhanced on eggplant compared to tobacco bush which showed some degree of resistance, as evidenced by shorter periods of phloem ingestion, a higher propensity to return to the pathway phase once in the sieve elements and higher number of salivation events on tobacco bush. We discuss how prolonged phloem feeding could indicate the potential for A. solanicola to become an important pest of eggplant and potential pathogen vector. PMID:28575085

  15. DNA mutations mediate microevolution between host-adapted forms of the pathogenic fungus Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Denise A Magditch

    Full Text Available The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a "switch" from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease.

  16. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.

    Science.gov (United States)

    Norman-Setterblad, C; Vidal, S; Palva, E T

    2000-04-01

    We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.

  17. The modular nature of dendritic cell responses to commensal and pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Lisa Rizzetto

    Full Text Available The type of adaptive immune response following host-fungi interaction is largely determined at the level of the antigen-presenting cells, and in particular by dendritic cells (DCs. The extent to which transcriptional regulatory events determine the decision making process in DCs is still an open question. By applying the highly structured DC-ATLAS pathways to analyze DC responses, we classified the various stimuli by revealing the modular nature of the different transcriptional programs governing the recognition of either pathogenic or commensal fungi. Through comparison of the network parts affected by DC stimulation with fungal cells and purified single agonists, we could determine the contribution of each receptor during the recognition process. We observed that initial recognition of a fungus creates a temporal window during which the simultaneous recruitment of cell surface receptors can intensify, complement and sustain the DC activation process. The breakdown of the response to whole live cells, through the purified components, showed how the response to invading fungi uses a set of specific modules. We find that at the start of fungal recognition, DCs rapidly initiate the activation process. Ligand recognition is further enhanced by over-expression of the receptor genes, with a significant correspondence between gene expression and protein levels and function. Then a marked decrease in the receptor levels follows, suggesting that at this moment the DC commits to a specific fate. Overall our pathway based studies show that the temporal window of the fungal recognition process depends on the availability of ligands and is different for pathogens and commensals. Modular analysis of receptor and signalling-adaptor expression changes, in the early phase of pathogen recognition, is a valuable tool for rapid and efficient dissection of the pathogen derived components that determine the phenotype of the DC and thereby the type of immune response

  18. LncRNA pathway involved in premature preterm rupture of membrane (PPROM): an epigenomic approach to study the pathogenesis of reproductive disorders.

    Science.gov (United States)

    Luo, Xiucui; Shi, Qingxi; Gu, Yang; Pan, Jing; Hua, Maofang; Liu, Meilin; Dong, Ziqing; Zhang, Meijiao; Wang, Leilei; Gu, Ying; Zhong, Julia; Zhao, Xinliang; Jenkins, Edmund C; Brown, W Ted; Zhong, Nanbert

    2013-01-01

    Preterm birth (PTB) is a live birth delivered before 37 weeks of gestation (GW). About one-third of PTBs result from the preterm premature rupture of membranes (PPROM). Up to the present, the pathogenic mechanisms underlying PPROM are not clearly understood. Here, we investigated the differential expression of long chain non-coding RNAs (lncRNAs) in placentas of PTBs with PPROM, and their possible involvement in the pathogenic pathways leading to PPROM. A total number of 1954, 776, and 1050 lncRNAs were identified with a microarray from placentas of PPROM (group A), which were compared to full-term birth (FTB) (group B), PTB (group C), and premature rupture of membrane (PROM) (group D) at full-term, respectively. Instead of investigating the individual pathogenic role of each lncRNA involved in the molecular mechanism underlying PPROM, we have focused on investigating the metabolic pathways and their functions to explore what is the likely association and how they are possibly involved in the development of PPROM. Six groups, including up-regulation and down-regulation in the comparisons of A vs. B, A vs. C, and A vs. D, of pathways were analyzed. Our results showed that 22 pathways were characterized as up-regulated 7 down-regulated in A vs. C, 18 up-regulated and 15 down-regulated in A vs. D, and 33 up-regulated and 7 down-regulated in A vs. B. Functional analysis showed pathways of infection and inflammatory response, ECM-receptor interactions, apoptosis, actin cytoskeleton, and smooth muscle contraction are the major pathogenic mechanisms involved in the development of PPROM. Characterization of these pathways through identification of lncRNAs opened new avenues for further investigating the epigenomic mechanisms of lncRNAs in PPROM as well as PTB.

  19. LncRNA pathway involved in premature preterm rupture of membrane (PPROM: an epigenomic approach to study the pathogenesis of reproductive disorders.

    Directory of Open Access Journals (Sweden)

    Xiucui Luo

    Full Text Available Preterm birth (PTB is a live birth delivered before 37 weeks of gestation (GW. About one-third of PTBs result from the preterm premature rupture of membranes (PPROM. Up to the present, the pathogenic mechanisms underlying PPROM are not clearly understood. Here, we investigated the differential expression of long chain non-coding RNAs (lncRNAs in placentas of PTBs with PPROM, and their possible involvement in the pathogenic pathways leading to PPROM. A total number of 1954, 776, and 1050 lncRNAs were identified with a microarray from placentas of PPROM (group A, which were compared to full-term birth (FTB (group B, PTB (group C, and premature rupture of membrane (PROM (group D at full-term, respectively. Instead of investigating the individual pathogenic role of each lncRNA involved in the molecular mechanism underlying PPROM, we have focused on investigating the metabolic pathways and their functions to explore what is the likely association and how they are possibly involved in the development of PPROM. Six groups, including up-regulation and down-regulation in the comparisons of A vs. B, A vs. C, and A vs. D, of pathways were analyzed. Our results showed that 22 pathways were characterized as up-regulated 7 down-regulated in A vs. C, 18 up-regulated and 15 down-regulated in A vs. D, and 33 up-regulated and 7 down-regulated in A vs. B. Functional analysis showed pathways of infection and inflammatory response, ECM-receptor interactions, apoptosis, actin cytoskeleton, and smooth muscle contraction are the major pathogenic mechanisms involved in the development of PPROM. Characterization of these pathways through identification of lncRNAs opened new avenues for further investigating the epigenomic mechanisms of lncRNAs in PPROM as well as PTB.

  20. Columbia River pathway report

    International Nuclear Information System (INIS)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  1. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid.

    Science.gov (United States)

    Sanchez, Lisa; Courteaux, Barbara; Hubert, Jane; Kauffmann, Serge; Renault, Jean-Hugues; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan

    2012-11-01

    Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.

  2. RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization.

    Directory of Open Access Journals (Sweden)

    Julia F Pielage

    2008-03-01

    Full Text Available Internalization of the pathogenic bacterium Pseudomonas aeruginosa by non-phagocytic cells is promoted by rearrangements of the actin cytoskeleton, but the host pathways usurped by this bacterium are not clearly understood. We used RNAi-mediated gene inactivation of approximately 80 genes known to regulate the actin cytoskeleton in Drosophila S2 cells to identify host molecules essential for entry of P. aeruginosa. This work revealed Abl tyrosine kinase, the adaptor protein Crk, the small GTPases Rac1 and Cdc42, and p21-activated kinase as components of a host signaling pathway that leads to internalization of P. aeruginosa. Using a variety of complementary approaches, we validated the role of this pathway in mammalian cells. Remarkably, ExoS and ExoT, type III secreted toxins of P. aeruginosa, target this pathway by interfering with GTPase function and, in the case of ExoT, by abrogating P. aeruginosa-induced Abl-dependent Crk phosphorylation. Altogether, this work reveals that P. aeruginosa utilizes the Abl pathway for entering host cells and reveals unexpected complexity by which the P. aeruginosa type III secretion system modulates this internalization pathway. Our results furthermore demonstrate the applicability of using RNAi screens to identify host signaling cascades usurped by microbial pathogens that may be potential targets for novel therapies directed against treatment of antibiotic-resistant infections.

  3. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    Science.gov (United States)

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  4. Influence of Rack Design and Disease Prevalence on Detection of Rodent Pathogens in Exhaust Debris Samples from Individually Ventilated Caging Systems.

    Science.gov (United States)

    Bauer, Beth A; Besch-Williford, Cynthia; Livingston, Robert S; Crim, Marcus J; Riley, Lela K; Myles, Matthew H

    2016-11-01

    Sampling of bedding debris within the exhaust systems of ventilated racks may be a mechanism for detecting murine pathogens in colony animals. This study examined the effectiveness of detecting pathogens by PCR analysis of exhaust debris samples collected from ventilated racks of 2 different rack designs, one with unfiltered air flow from within the cage to the air-exhaust pathway, and the other had a filter between the cage and the air-exhaust pathway. For 12 wk, racks were populated with either 1 or 5 cages of mice (3 mice per cage) infected with one of the following pathogens: mouse norovirus (MNV), mouse parvovirus (MPV), mouse hepatitis virus (MHV), Helicobacter spp., Pasteurella pneumotropica, pinworms, Entamoeba muris, Tritrichomonas muris, and fur mites. Pathogen shedding by infected mice was monitored throughout the study. In the filter-containing rack, PCR testing of exhaust plenums yielded negative results for all pathogens at all time points of the study. In the rack with open air flow, pathogens detected by PCR analysis of exhaust debris included MHV, Helicobacter spp., P. pneumotropica, pinworms, enteric protozoa, and fur mites; these pathogens were detected in racks housing either 1 or 5 cages of infected mice. Neither MPV nor MNV was detected in exhaust debris, even though prolonged viral shedding was confirmed. These results demonstrate that testing rack exhaust debris from racks with unfiltered air flow detected MHV, enteric bacteria and parasites, and fur mites. However, this method failed to reliably detect MNV or MPV infection of colony animals.

  5. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  6. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  7. Long non-coding RNAs as molecular players in plant defense against pathogens.

    Science.gov (United States)

    Zaynab, Madiha; Fatima, Mahpara; Abbas, Safdar; Umair, Muhammad; Sharif, Yasir; Raza, Muhammad Ammar

    2018-05-31

    Long non-coding RNAs (lncRNAs) has significant role in of gene expression and silencing pathways for several biological processes in eukaryotes. lncRNAs has been reported as key player in remodeling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Host lncRNAs are reckoned as compulsory elements of plant defense. In response to pathogen attack, plants protect themselves with the help of lncRNAs -dependent immune systems in which lncRNAs regulate pathogen-associated molecular patterns (PAMPs) and other effectors. Role of lncRNAs in plant microbe interaction has been studied extensively but regulations of several lncRNAs still need extensive research. In this study we discussed and provide as overview the topical advancements and findings relevant to pathogen attack and plant defense mediated by lncRNAs. It is hoped that lncRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases. Copyright © 2018. Published by Elsevier Ltd.

  8. Virginia Solar Pathways Project: Economic Study of Utility-Administered Solar Programs: Soft Costs, Community Solar, and Tax Normalization Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mercer, Megan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-23

    This report presents economic considerations for solar development in support of the Virginia Solar Pathways Project (VSPP), an effort funded by the U.S. Department of Energy (DOE) SunShot Initiative that seeks to develop a collaborative utility-administered solar strategy for the Commonwealth of Virginia. The results presented are intended to be considered alongside the results of other studies conducted under the VSPP that evaluate the impacts of solar energy on the electric distribution, transmission, and generation systems in Virginia.

  9. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato.

    Science.gov (United States)

    Liu, An-Chi; Cheng, Chiu-Ping

    2017-10-01

    Ethylene response factors (ERFs) are a large plant-specific transcription factor family and play diverse important roles in various plant functions. However, most tomato ERFs have not been characterized. In this study, we showed that the expression of an uncharacterized member of the tomato ERF-IX subgroup, ERF68, was significantly induced by treatments with different bacterial pathogens, ethylene (ET) and salicylic acid (SA), but only slightly induced by bacterial mutants defective in the type III secretion system (T3SS) or non-host pathogens. The ERF68-green fluorescent protein (ERF68-GFP) fusion protein was localized in the nucleus. Transactivation and electrophoretic mobility shift assays (EMSAs) further showed that ERF68 was a functional transcriptional activator and was bound to the GCC-box. Moreover, transient overexpression of ERF68 led to spontaneous lesions in tomato and tobacco leaves and enhanced the expression of genes involved in ET, SA, jasmonic acid (JA) and hypersensitive response (HR) pathways, whereas silencing of ERF68 increased tomato susceptibility to two incompatible Xanthomonas spp. These results reveal the involvement of ERF68 in the effector-triggered immunity (ETI) pathway. To identify ERF68 target genes, chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) was performed. Amongst the confirmed target genes, a few genes involved in cell death or disease defence were differentially regulated by ERF68. Our study demonstrates the function of ERF68 in the positive regulation of hypersensitive cell death and disease defence by modulation of multiple signalling pathways, and provides important new information on the complex regulatory function of ERFs. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  10. Phylogenetic diversity of stress signalling pathways in fungi

    Directory of Open Access Journals (Sweden)

    Stansfield Ian

    2009-02-01

    Full Text Available Abstract Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol, oxidative (H2O2 and menadione and cell wall stresses (Calcofluor White and Congo Red. There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our

  11. Segal’s Law, 16S rRNA gene sequencing, and the perils of foodborne pathogen detection within the American Gut Project

    Directory of Open Access Journals (Sweden)

    James B. Pettengill

    2017-06-01

    Full Text Available Obtaining human population level estimates of the prevalence of foodborne pathogens is critical for understanding outbreaks and ameliorating such threats to public health. Estimates are difficult to obtain due to logistic and financial constraints, but citizen science initiatives like that of the American Gut Project (AGP represent a potential source of information concerning enteric pathogens. With an emphasis on genera Listeria and Salmonella, we sought to document the prevalence of those two taxa within the AGP samples. The results provided by AGP suggest a surprising 14% and 2% of samples contained Salmonella and Listeria, respectively. However, a reanalysis of those AGP sequences described here indicated that results depend greatly on the algorithm for assigning taxonomy and differences persisted across both a range of parameter settings and different reference databases (i.e., Greengenes and HITdb. These results are perhaps to be expected given that AGP sequenced the V4 region of 16S rRNA gene, which may not provide good resolution at the lower taxonomic levels (e.g., species, but it was surprising how often methods differ in classifying reads—even at higher taxonomic ranks (e.g., family. This highlights the misleading conclusions that can be reached when relying on a single method that is not a gold standard; this is the essence of Segal’s Law: an individual with one watch knows what time it is but an individual with two is never sure. Our results point to the need for an appropriate molecular marker for the taxonomic resolution of interest, and calls for the development of more conservative classification methods that are fit for purpose. Thus, with 16S rRNA gene datasets, one must be cautious regarding the detection of taxonomic groups of public health interest (e.g., culture independent identification of foodborne pathogens or taxa associated with a given phenotype.

  12. Histone deacetylases: revealing the molecular base of dimorphism in pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2015-11-01

    Full Text Available Fungi, as every living organism, interact with the external world and have to adapt to its fluctuations. For pathogenic fungi, such interaction involves adapting to the hostile environment of their host. Survival depends on the capacity of fungi to detect and respond to external stimuli, which is achieved through a tight and efficient genetic control. Chromatin modifications represent a well-known layer of regulation that controls gene expression in response to environmental signals. However, less is known about the chromatin modifications that are involved in fungal virulence and the specific cues and signalling pathways that target chromatin modifications to specific genes. In a recently published study, our research group identified one such regulatory pathway. We demonstrated that the histone deacetylase (HDAC Hos2 is involved in yeast-to-hyphal transition (dimorphism and it is associated with the virulence of the maize pathogen Ustilago maydis, the causative agent of smut disease in corn. Hos2 activates mating-type genes by directly binding to their gene bodies. Furthermore, Hos2 acts downstream of the nutrient-sensing cyclic AMP-Protein Kinase A pathway. We also found that another HDAC, Clr3, contributes to this regulation, possibly in cooperation with Hos2. As a whole, our data suggest that there is a direct link between changes in the environment and acetylation of nucleosomes within certain genes. We propose that histone acetylation is critical to the proper timing and induction of transcription of the genes encoding factors that coordinate changes in morphology with pathogenesis.

  13. Different corticostriatal integration in spiny projection neurons from direct and indirect pathways

    Directory of Open Access Journals (Sweden)

    Edén Flores-Barrera

    2010-06-01

    Full Text Available The striatum is the principal input structure of the basal ganglia (BG. Major glutamatergic afferents to the striatum come from the cerebral cortex and make monosynaptic contacts with medium spiny projection neurons (MSNs and interneurons. Despite differences in axonal projections, dopamine receptors expression and differences in excitability between MSNs from “direct” and “indirect” BG pathways, these neuronal classes have been thought as electrophysiologically very similar. Based on work with BAC transgenic mice, here it is shown that corticostriatal responses in D1- and D2-receptor expressing MSNs (D1- and D2-MSNs are radically different so as to establish an electrophysiological footprint that readily differentiates between them. Experiments in BAC mice allowed us to predict, with high probability (P>0.9, in rats or non-BAC mice, whether a recorded neuron, from rat or mouse, was going to be substance P or enkephalin immunoreactive. Responses are more prolonged and evoke more action potentials in D1-MSNs, while they are briefer and exhibit intrinsic autoregenerative responses in D2-MSNs. A main cause for these differences was the interaction of intrinsic properties with the inhibitory contribution in each response Inhibition always depressed corticostriatal depolarization in D2-MSNs, while it helped in sustaining prolonged depolarizations in D1-MSNs, in spite of depressing early discharge. Corticostriatal responses changed dramatically after striatal DA-depletion in 6-hydroxy-dopamine (6-OHDA lesioned animals: a response reduction was seen in SP+ MSNs whereas an enhanced response was seen in ENK+ MSNs. The end result was that differences in the responses were greatly diminished after DA depletion.

  14. Autophagy: More Than a Nonselective Pathway

    Directory of Open Access Journals (Sweden)

    Fulvio Reggiori

    2012-01-01

    Full Text Available Autophagy is a catabolic pathway conserved among eukaryotes that allows cells to rapidly eliminate large unwanted structures such as aberrant protein aggregates, superfluous or damaged organelles, and invading pathogens. The hallmark of this transport pathway is the sequestration of the cargoes that have to be degraded in the lysosomes by double-membrane vesicles called autophagosomes. The key actors mediating the biogenesis of these carriers are the autophagy-related genes (ATGs. For a long time, it was assumed that autophagy is a bulk process. Recent studies, however, have highlighted the capacity of this pathway to exclusively eliminate specific structures and thus better fulfil the catabolic necessities of the cell. We are just starting to unveil the regulation and mechanism of these selective types of autophagy, but what it is already clearly emerging is that structures targeted to destruction are accurately enwrapped by autophagosomes through the action of specific receptors and adaptors. In this paper, we will briefly discuss the impact that the selective types of autophagy have had on our understanding of autophagy.

  15. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    Science.gov (United States)

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance

  16. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along......Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  17. The oxylipin pathway in Arabidopsis.

    Science.gov (United States)

    Creelman, Robert A; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.

  18. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence.

    Science.gov (United States)

    Ponts, Nadia; Yang, Jianfeng; Chung, Duk-Won Doug; Prudhomme, Jacques; Girke, Thomas; Horrocks, Paul; Le Roch, Karine G

    2008-06-11

    Reversible modification of proteins through the attachment of ubiquitin or ubiquitin-like modifiers is an essential post-translational regulatory mechanism in eukaryotes. The conjugation of ubiquitin or ubiquitin-like proteins has been demonstrated to play roles in growth, adaptation and homeostasis in all eukaryotes, with perturbation of ubiquitin-mediated systems associated with the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. Here we describe the use of an HMM search of functional Pfam domains found in the key components of the ubiquitin-mediated pathway necessary to activate and reversibly modify target proteins in eight apicomplexan parasitic protozoa for which complete or late-stage genome projects exist. In parallel, the same search was conducted on five model organisms, single-celled and metazoans, to generate data to validate both the search parameters employed and aid paralog classification in Apicomplexa. For each of the 13 species investigated, a set of proteins predicted to be involved in the ubiquitylation pathway has been identified and demonstrates increasing component members of the ubiquitylation pathway correlating with organism and genome complexity. Sequence homology and domain architecture analyses facilitated prediction of apicomplexan-specific protein function, particularly those involved in regulating cell division during these parasite's complex life cycles. This study provides a comprehensive analysis of proteins predicted to be involved in the apicomplexan ubiquitin-mediated pathway. Given the importance of such pathway in a wide variety of cellular processes, our data is a key step in elucidating the biological networks that, in part, direct the pathogenicity of these parasites resulting in a massive impact on global health. Moreover, apicomplexan-specific adaptations of the ubiquitylation pathway may represent new therapeutic targets for much needed drugs against apicomplexan parasites.

  19. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  20. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    Directory of Open Access Journals (Sweden)

    Marchès Olivier

    2011-05-01

    Full Text Available Abstract The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.

  1. Faecal Pathogen Flows and Their Public Health Risks in Urban Environments: A Proposed Approach to Inform Sanitation Planning

    Science.gov (United States)

    Mills, Freya; Petterson, Susan; Norman, Guy

    2018-01-01

    Public health benefits are often a key political driver of urban sanitation investment in developing countries, however, pathogen flows are rarely taken systematically into account in sanitation investment choices. While several tools and approaches on sanitation and health risks have recently been developed, this research identified gaps in their ability to predict faecal pathogen flows, to relate exposure risks to the existing sanitation services, and to compare expected impacts of improvements. This paper outlines a conceptual approach that links faecal waste discharge patterns with potential pathogen exposure pathways to quantitatively compare urban sanitation improvement options. An illustrative application of the approach is presented, using a spreadsheet-based model to compare the relative effect on disability-adjusted life years of six sanitation improvement options for a hypothetical urban situation. The approach includes consideration of the persistence or removal of different pathogen classes in different environments; recognition of multiple interconnected sludge and effluent pathways, and of multiple potential sites for exposure; and use of quantitative microbial risk assessment to support prediction of relative health risks for each option. This research provides a step forward in applying current knowledge to better consider public health, alongside environmental and other objectives, in urban sanitation decision making. Further empirical research in specific locations is now required to refine the approach and address data gaps. PMID:29360775

  2. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea.

    Science.gov (United States)

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52 , from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea , compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea . In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

  3. Pathways to deep decarbonization - 2015 report

    International Nuclear Information System (INIS)

    Ribera, Teresa; Colombier, Michel; Waisman, Henri; Bataille, Chris; Pierfederici, Roberta; Sachs, Jeffrey; Schmidt-Traub, Guido; Williams, Jim; Segafredo, Laura; Hamburg Coplan, Jill; Pharabod, Ivan; Oury, Christian

    2015-12-01

    In September 2015, the Deep Decarbonization Pathways Project published the Executive Summary of the Pathways to Deep Decarbonization: 2015 Synthesis Report. The full 2015 Synthesis Report was launched in Paris on December 3, 2015, at a technical workshop with the Mitigation Action Plans and Scenarios (MAPS) program. The Deep Decarbonization Pathways Project (DDPP) is a collaborative initiative to understand and show how individual countries can transition to a low-carbon economy and how the world can meet the internationally agreed target of limiting the increase in global mean surface temperature to less than 2 degrees Celsius (deg. C). Achieving the 2 deg. C limit will require that global net emissions of greenhouse gases (GHG) approach zero by the second half of the century. In turn, this will require a profound transformation of energy systems by mid-century through steep declines in carbon intensity in all sectors of the economy, a transition we call 'deep decarbonization'

  4. Reducing the risk of invasive forest pests and pathogens: Combining legislation, targeted management and public awareness.

    Science.gov (United States)

    Klapwijk, Maartje J; Hopkins, Anna J M; Eriksson, Louise; Pettersson, Maria; Schroeder, Martin; Lindelöw, Åke; Rönnberg, Jonas; Keskitalo, E Carina H; Kenis, Marc

    2016-02-01

    Intensifying global trade will result in increased numbers of plant pest and pathogen species inadvertently being transported along with cargo. This paper examines current mechanisms for prevention and management of potential introductions of forest insect pests and pathogens in the European Union (EU). Current European legislation has not been found sufficient in preventing invasion, establishment and spread of pest and pathogen species within the EU. Costs associated with future invasions are difficult to estimate but past invasions have led to negative economic impacts in the invaded country. The challenge is combining free trade and free movement of products (within the EU) with protection against invasive pests and pathogens. Public awareness may mobilise the public for prevention and detection of potential invasions and, simultaneously, increase support for eradication and control measures. We recommend focus on commodities in addition to pathways, an approach within the EU using a centralised response unit and, critically, to engage the general public in the battle against establishment and spread of these harmful pests and pathogens.

  5. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    Science.gov (United States)

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  6. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  7. Direct Pathogenic Effects of HERV-encoded Proteins

    DEFF Research Database (Denmark)

    Hansen, Dorte Tranberg; Møller-Larsen, Anné; Petersen, Thor

    Background: Multiple sclerosis (MS) is a demyelinating, inflammatory disease of the central nervous system (CNS). MS is mediated by the immune system but the etiology of the disease remains unknown. Retroviral envelope (Env) proteins, encoded by human endogenous retroviruses (HERVs), are expressed...... in increased amounts on B cells from MS patients. Furthermore, the amount of anti-HERV antibodies in serum and cerebrospinal fluid from patients with MS is increased when compared with healthy controls. Aim: The overall aim of this project is to investigate the potential role of HERVs in the development of MS...... and the possible direct pathogenic effects of HERV-encoded Env proteins on the CNS. Methods: Construction and characterization of a panel of recombinant Env-proteins is initiated and their pathogenic potential will be investigated: Fusiogenic potential analyzed by flow cytometry and confocal microscopy. Analysis...

  8. Intrinsic JNK-MAPK pathway involvement requires daf-16-mediated immune response during Shigella flexneri infection in C. elegans.

    Science.gov (United States)

    Marudhupandiyan, Shanmugam; Balamurugan, Krishnaswamy

    2017-06-01

    The c-Jun N-terminal kinase-mitogen-activated protein kinase (JNK-MAPK) pathway assists in modulating signals for growth, survival, and metabolism, thereby coordinating many cellular events during normal and stress conditions. To understand the role of the JNK-MAPK pathway during bacterial infection, an in vivo model organism Caenorhabditis elegans was used. In order to check the involvement of the JNK-MAPK pathway, the survival rate of C. elegans wild type (WT), and JNK-MAPK pathway mutant worms' upon exposure to selective Gram-positive and Gram-negative pathogenic bacteria, was studied. Among the pathogens, Shigella flexneri M9OT was found to efficiently colonize inside the WT and JNK-MAPK pathway mutant worms. qPCR studies had suggested that the above pathway-specific genes kgb-2 and jnk-1 were prominently responsible for the immune response elicited by the host during the M9OT infection. In addition, daf-16, which is a major transcription factor of the insulin/insulin growth factor-1 signaling (IIS) pathway, was also found to be involved during the host response. Crosstalk between IIS and JNK-MAPK pathways has probably been involved in the activation of the host immune system, which consequently leads to lifespan extension. Furthermore, it is also observed that daf-16 activation by JNK-MAPK pathway leads to antimicrobial response, by activating lys-7 expression. These findings suggest that JNK-MAPK is not the sole pathway that enhances the immunity of the host. Nonetheless, the IIS pathway bridges the JNK-MAPK pathway that influences in protecting the host in counter to the M9OT infection.

  9. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    Science.gov (United States)

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  10. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    Science.gov (United States)

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  11. The secreted fructose 1,6-bisphosphate aldolase as a broad spectrum vaccine candidate against pathogenic bacteria in aquaculture.

    Science.gov (United States)

    Sun, Zhongyang; Shen, Binbing; Wu, Haizhen; Zhou, Xiangyu; Wang, Qiyao; Xiao, Jingfan; Zhang, Yuanxing

    2015-10-01

    The development of aquaculture has been hampered by different aquatic pathogens that can cause edwardsiellosis, vibriosis, or other diseases. Therefore, developing a broad spectrum vaccine against different fish diseases is necessary. In this study, fructose 1,6-bisphosphate aldolase (FBA), a conserved enzyme in the glycolytic pathway, was demonstrated to be located in the non-cytoplasmic components of five aquatic pathogenic bacteria and exhibited remarkable protection and cross-protection against these pathogens in turbot and zebrafish. Further analysis revealed that sera sampled from vaccinated turbot had a high level of specific antibody and bactericidal activity against these pathogens. Meanwhile, the increased expressions of immune response-related genes associated with antigen recognition and presentation indicated that the adaptive immune response was effectively aroused. Taken together, our results suggest that FBA can be utilized as a broad-spectrum vaccine against various pathogenic bacteria of aquaculture in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development of pathogen risk assessment models for the evaluation of sludge management alternatives

    International Nuclear Information System (INIS)

    Yeager, J.G.; Sheridan, R.E.; Ward, R.L.

    1979-01-01

    The constraints imposed on sewage treatment and disposal by clean air and water legislation make it clear that, in the near future, there will be increasing amounts of sewage sludge and fewer alternatives for its disposal. Additionally, this legislation has encouraged the use of waste management procedures which emphasize the recycling of waste materials. Decisions regarding optimal methods of sludge handling will primarily be controlled by economic considerations including the intrinsic value of the sludge, the cost of transporting sludge and sludge products, and the degree of treatment necessary to make the sludge suitable for particular applications. One principal reason to treat sludge is to inactivate pathogens. However, the actual health risks posed by pathogenic species that result from different methods of sludge utilization and how these risks are affected by different treatment processes are poorly understood. Therefore, computerized models are being developed to describe pathogen transport through environmental pathways and to help predict the risk of certain sludge utilization practices

  13. The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis.

    Directory of Open Access Journals (Sweden)

    Maria del Pilar Marquez-Villavicencio

    Full Text Available Pectobacterium species are necrotrophic bacterial pathogens that cause soft rot diseases in potatoes and several other crops worldwide. Gene expression data identified Pectobacterium carotovorum subsp. carotovorum budB, which encodes the α-acetolactate synthase enzyme in the 2,3-butanediol pathway, as more highly expressed in potato tubers than potato stems. This pathway is of interest because volatiles produced by the 2,3-butanediol pathway have been shown to act as plant growth promoting molecules, insect attractants, and, in other bacterial species, affect virulence and fitness. Disruption of the 2,3-butanediol pathway reduced virulence of P. c. subsp. carotovorum WPP14 on potato tubers and impaired alkalinization of growth medium and potato tubers under anaerobic conditions. Alkalinization of the milieu via this pathway may aid in plant cell maceration since Pectobacterium pectate lyases are most active at alkaline pH.

  14. Surface-expressed enolases of Plasmodium and other pathogens

    Directory of Open Access Journals (Sweden)

    Anil Kumar Ghosh

    2011-08-01

    Full Text Available Enolase is the eighth enzyme in the glycolytic pathway, a reaction that generates ATP from phosphoenol pyruvate in cytosolic compartments. Enolase is essential, especially for organisms devoid of the Krebs cycle that depend solely on glycolysis for energy. Interestingly, enolase appears to serve a separate function in some organisms, in that it is also exported to the cell surface via a poorly understood mechanism. In these organisms, surface enolase assists in the invasion of their host cells by binding plasminogen, an abundant plasma protease precursor. Binding is mediated by the interaction between a lysine motif of enolase with Kringle domains of plasminogen. The bound plasminogen is then cleaved by specific proteases to generate active plasmin. Plasmin is a potent serine protease that is thought to function in the degradation of the extracellular matrix surrounding the targeted host cell, thereby facilitating pathogen invasion. Recent work revealed that the malaria parasite Plasmodium also expresses surface enolase, and that this feature may be essential for completion of its life cycle. The therapeutic potential of targeting surface enolases of pathogens is discussed.

  15. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Pathogen inactivation techniques.

    Science.gov (United States)

    Pelletier, J P R; Transue, S; Snyder, E L

    2006-01-01

    The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area

  17. Businesses Partner with Schools, Community to Create Alternative Career Pathways

    Science.gov (United States)

    Overman, Stephenie

    2012-01-01

    Business, education and community leaders are working together to create alternative career pathways for young people who are not profiting from the four-year college track. The new Pathways to Prosperity Network brings together the Pathways to Prosperity Project at Harvard Graduate School of Education (HGSE), Jobs for the Future (JFF) and six…

  18. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.

    Science.gov (United States)

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima

    2017-07-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite

  20. Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia

    Directory of Open Access Journals (Sweden)

    Ivan Milenković

    2018-06-01

    Full Text Available During a survey in three declining and three healthy poplar plantations in Serbia, six different Phytophthora species were obtained. Phytophthora plurivora was the most common, followed by P. pini, P. polonica, P. lacustris, P. cactorum, and P. gonapodyides. Pathogenicity of all isolated species to four-month and one-year-old cuttings of Populus hybrid clones I-214 and Pánnonia, respectively, was tested using both a soil infestation and stem inoculation test. Isolates of P. polonica, P. × cambivora, P. cryptogea, and P. × serendipita from other host plants were included as a comparison. In the soil infestation test, the most aggressive species to clone I-214 were P. plurivora, P. × serendipita, and P. pini. On clone Pánnonia, P. gonapodyides and P. pini were the most aggressive, both causing 100% mortality, followed by P. cactorum, P. × cambivora, and P. polonica. In the underbark inoculation test, the susceptibility of both poplar clones to the different Phytophthora species was largely similar, as in the soil infestation test, with the exception of P. polonica, which proved to be only weakly pathogenic to poplar bark. The most aggressive species to clone I-214 was P. pini, while on clone Pánnonia, the longest lesions and highest disease incidence were caused by P. gonapodyides. Phytophthora cactorum and P. plurivora were pathogenic to both clones, whereas P. × cambivora showed only weak pathogenicity. The implications of these findings and possible pathways of dispersion of the pathogens are discussed.

  1. Important role of the nucleotide excision repair pathway in Mycobacterium smegmatis in conferring protection against commonly encountered DNA-damaging agents.

    Science.gov (United States)

    Kurthkoti, Krishna; Kumar, Pradeep; Jain, Ruchi; Varshney, Umesh

    2008-09-01

    Mycobacteria are an important group of human pathogens. Although the DNA repair mechanisms in mycobacteria are not well understood, these are vital for the pathogen's persistence in the host macrophages. In this study, we generated a null mutation in the uvrB gene of Mycobacterium smegmatis to allow us to compare the significance of the nucleotide excision repair (NER) pathway with two important base excision repair pathways, initiated by uracil DNA glycosylase (Ung) and formamidopyrimidine DNA glycosylase (Fpg or MutM), in an isogenic strain background. The strain deficient in NER was the most sensitive to commonly encountered DNA-damaging agents such as UV, low pH, reactive oxygen species, hypoxia, and was also sensitive to acidified nitrite. Taken together with previous observations on NER-deficient M. tuberculosis, these results suggest that NER is an important DNA repair pathway in mycobacteria.

  2. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2013-01-01

    Full Text Available Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (multiple sclerosis, and autism (, but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD to 33% (MS of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as to the disease itself.

  3. [Chlamydia trachomatis proteasome protein as one of the significant pathogenicity factors of exciter].

    Science.gov (United States)

    Davydov, D Iu; Zigangirova, N A

    2014-01-01

    Sex-related infections are a global problem. Such infections may lead to acute or chronic diseases. Chlamydia trachomatis is a dangerous and widespread pathogenicity factor that is not sensitive to conventional drugs and has no obvious symptoms. Protein CPAF is leading factor of pathogenesis. This protein inhibits the signaling pathways of host cell and supports long survival of the pathogen in the host cell. The goal of this work was to review general properties of the proteasome Chlamydia protein CPAF, its functions, and role in pathology. The role of protein CPAF in the anti-chlamydia immune reaction is discussed. The prospects of the development of promising anti-chlamydia vaccine, as well as new effective anti-chlamydia drugs are also discussed.

  4. Microbial antagonism as a potential solution for controlling selected root pathogens of crops

    Science.gov (United States)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2016-04-01

    Root pathogens of crops can cause large reduction in yield, however, there is a limited range of effective methods to control such pathogens. Soilborne pathogens that infect roots often need to survive in the rhizosphere, where there is high competition from other organisms. In such hot spots of microbial activity and growth, supported by root exudates, microbes have evolved antagonistic mechanisms that give them competitive advantages in winning the limited resources. Among these mechanisms is antibiosis, with production of some significant antifungal compounds including, antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Some of these mechanisms may suppress disease through controlling the growth of root pathogens. In this project we isolated various fungi and bacteria that suppress the growth of cotton pathogens in vitro. The pathogen-suppressive microbes were isolated from cotton production soils that are under different management strategies, with and without the use of organic amendments. The potential of pathogen-suppressing microbes for controlling the black root rot disease, caused by the soilborne pathogen Thielaviopsis basicola, was confirmed using soil assays. We identified isolates with potential use as inoculant for cotton production in Australia. Having isolated a diverse group of antagonistic microbes enhances the probability that some would survive well in the soil and provide an alternative approach to address the problem of root disease affecting agricultural crops.

  5. Anatomical study of the final common pathway for vocalization in the cat

    Science.gov (United States)

    Holstege, Gert

    1989-01-01

    Results are presented of an anatomical study of the neuronal pathways in the cat, via which the periaqueductal gray (PAG) produces excitation of motoneurons involved in vocalization. It is shown that a specific cell group in the lateral part of the caudal PAG and in the tegmentum just lateral to it projects bilaterally to the nucleus retroambiguus (NRA) in the caudal medulla oblongata. Neurons in the NRA in turn project, via a contralateral pathway through the ventral funiculus of the spinal cord, to the motoneuronal cell groups innervating intercostal and abdominal muscles. In the brainstem, the NRA neurons project to the motoneuronal cell groups innervating mouth-opening and perioral muscles as well as to motoneurons innervating the pharynx, soft palate, and tongue. These results indicate that the projections from PAG via NRA to vocalization motoneurons form the final common pathway in vocalization.

  6. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis.

    Science.gov (United States)

    Cai, Zhiying; Li, Guohua; Lin, Chunhua; Shi, Tao; Zhai, Ligang; Chen, Yipeng; Huang, Guixiu

    2013-07-19

    To gain more insight into the molecular mechanisms of Colletotrichum gloeosporioides pathogenesis, Agrobacterium tumefaciens-mediated transformation (ATMT) was used to identify mutants of C. gloeosporioides impaired in pathogenicity. An ATMT library of 4128 C. gloeosporioides transformants was generated. Transformants were screened for defects in pathogenicity with a detached copper brown leaf assay. 32 mutants showing reproducible pathogenicity defects were obtained. Southern blot analysis showed 60.4% of the transformants had single-site T-DNA integrations. 16 Genomic sequences flanking T-DNA were recovered from mutants by thermal asymmetric interlaced PCR, and were used to isolate the tagged genes from the genome sequence of wild-type C. gloeosporioides by Basic Local Alignment Search Tool searches against the local genome database of the wild-type C. gloeosporioides. One potential pathogenicity genes encoded calcium-translocating P-type ATPase. Six potential pathogenicity genes had no known homologs in filamentous fungi and were likely to be novel fungal virulence factors. Two putative genes encoded Glycosyltransferase family 28 domain-containing protein and Mov34/MPN/PAD-1 family protein, respectively. Five potential pathogenicity genes had putative function matched with putative protein of other Colletotrichum species. Two known C. gloeosporioides pathogenicity genes were also identified, the encoding Glomerella cingulata hard-surface induced protein and C. gloeosporioides regulatory subunit of protein kinase A gene involved in cAMP-dependent PKA signal transduction pathway. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Benefits of a European project on diagnostics of highly pathogenic agents and assessment of potential dual use issues

    Directory of Open Access Journals (Sweden)

    Roland eGrunow

    2014-11-01

    Full Text Available R. Grunow1 (Coordinator, G. Ippolito2 (Co-Coordinator, D. Jacob1, U. Sauer1, A. Rohleder1, A. Di Caro2, R. Iacovino2, and on behalf of the QUANDHIP partners31-Robert Koch Institute, Berlin, Germany; 2- L. Spallanzani National Institute for Infectious Diseases, Rome, Italy; 3- http://www.quandhip.info/Quandhip/EN/Home/Homepage_node.htmlQUANDHIP (Quality Assurance Exercises and Networking on the Detection of Highly Infectious Pathogens is a Joint Action initiative set up in 2011 that has successfully unified the primary objectives of the European Networks on Highly Pathogenic Bacteria (ENHPB and of P4 laboratories (ENP4 both of which aimed to improve the efficiency, effectiveness and response capabilities of laboratories directed at protecting the health of European citizens against high consequence bacteria and viruses of significant public health concern. Both networks have established a common collaborative consortium of 37 nationally and internationally recognized institutions with laboratory facilities from 22 European countries.The specific objectives and achievements include the initiation and establishment of-a recognized and acceptable quality assurance scheme, including practical External Quality Assurance Exercises, comprising living agents, that aim to improve laboratory performance, accuracy and detection capabilities in support of patient management and public health responses.-recognized training schemes for diagnostics and handling of highly pathogenic agents-an international repository comprising highly pathogenic bacteria and viruses for the development of standardized reference material-a standardized and transparent biosafety and biosecurity strategy safeguarding healthcare personnel and the community in dealing with high consequence pathogens-the design and organisation of response capabilities dealing with cross border events with highly infectious pathogens including the consideration of diagnostic capabilities of European

  8. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  9. The Geogenomic Mutational Atlas of Pathogens (GoMAP web system.

    Directory of Open Access Journals (Sweden)

    David P Sargeant

    Full Text Available We present a new approach for pathogen surveillance we call Geogenomics. Geogenomics examines the geographic distribution of the genomes of pathogens, with a particular emphasis on those mutations that give rise to drug resistance. We engineered a new web system called Geogenomic Mutational Atlas of Pathogens (GoMAP that enables investigation of the global distribution of individual drug resistance mutations. As a test case we examined mutations associated with HIV resistance to FDA-approved antiretroviral drugs. GoMAP-HIV makes use of existing public drug resistance and HIV protein sequence data to examine the distribution of 872 drug resistance mutations in ∼ 502,000 sequences for many countries in the world. We also implemented a broadened classification scheme for HIV drug resistance mutations. Several patterns for geographic distributions of resistance mutations were identified by visual mining using this web tool. GoMAP-HIV is an open access web application available at http://www.bio-toolkit.com/GoMap/project/

  10. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis

    NARCIS (Netherlands)

    Rejman, J; Oberle, [No Value; Zuhorn, IS; Hoekstra, D

    2004-01-01

    Non-phagocytic eukaryotic cells can internalize particles <1 mum in size, encompassing pathogens, liposomes for drug delivery or lipoplexes applied in gene delivery. In the present study, we have investigated the effect of particle size on the pathway of entry and subsequent intracellular fate in

  11. Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    Science.gov (United States)

    Butler, Geraldine; Rasmussen, Matthew D.; Lin, Michael F.; Santos, Manuel A.S.; Sakthikumar, Sharadha; Munro, Carol A.; Rheinbay, Esther; Grabherr, Manfred; Forche, Anja; Reedy, Jennifer L.; Agrafioti, Ino; Arnaud, Martha B.; Bates, Steven; Brown, Alistair J.P.; Brunke, Sascha; Costanzo, Maria C.; Fitzpatrick, David A.; de Groot, Piet W. J.; Harris, David; Hoyer, Lois L.; Hube, Bernhard; Klis, Frans M.; Kodira, Chinnappa; Lennard, Nicola; Logue, Mary E.; Martin, Ronny; Neiman, Aaron M.; Nikolaou, Elissavet; Quail, Michael A.; Quinn, Janet; Santos, Maria C.; Schmitzberger, Florian F.; Sherlock, Gavin; Shah, Prachi; Silverstein, Kevin; Skrzypek, Marek S.; Soll, David; Staggs, Rodney; Stansfield, Ian; Stumpf, Michael P H; Sudbery, Peter E.; Thyagarajan, Srikantha; Zeng, Qiandong; Berman, Judith; Berriman, Matthew; Heitman, Joseph; Gow, Neil A. R.; Lorenz, Michael C.; Birren, Bruce W.; Kellis, Manolis; Cuomo, Christina A.

    2009-01-01

    Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes. PMID:19465905

  12. Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense.

    Science.gov (United States)

    Gao, Ruimin; Ng, Florence Kai Lin; Liu, Peng; Wong, Sek-Man

    2012-12-01

    In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.

  13. Characterization of additional components of the environmental pH-sensing complex in the pathogenic fungus Cryptococcus neoformans.

    Science.gov (United States)

    Pianalto, Kaila M; Ost, Kyla S; Brown, Hannah E; Alspaugh, J Andrew

    2018-05-16

    Pathogenic microorganisms must adapt to changes in their immediate surroundings, including alterations in pH, to survive the shift from the external environment to that of the infected host. In the basidiomycete fungal pathogen Cryptococcus neoformans , these pH changes are primarily sensed by the fungal-specific, alkaline pH-sensing Rim/Pal pathway. The C. neoformans Rim pathway has diverged significantly from that described in ascomycete fungi. We recently identified the C. neoformans putative pH sensor Rra1, which activates the Rim pathway in response to elevated pH. In this study, we probed the function of Rra1 by analyzing its cellular localization and performing protein co-immunoprecipitation to identify potential Rra1 interactors. We found that Rra1 does not strongly colocalize or interact with immediate downstream Rim pathway components. However, these experiments identified a novel Rra1 interactor, the previously uncharacterized C. neoformans nucleosome assembly protein 1 (Nap1), which was required for Rim pathway activation. We observed that Nap1 specifically binds to the C-terminal tail of the Rra1 sensor, likely promoting Rra1 protein stability. This function of Nap1 is conserved in fungi closely related to C. neoformans that contain Rra1 orthologs, but not in the more distantly-related ascomycete fungus Saccharomyces cerevisiae In conclusion, our findings have revealed the sophisticated, yet distinct, molecular mechanisms by which closely and distantly related microbial phyla rapidly adapt to environmental signals and changes such as alterations in pH. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Parameters used in the environmental pathways (DESCARTES) and radiological dose (CIDER) modules of the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC) for the air pathway. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.; Farris, W.T.; Napier, B.A.; Ikenberry, T.A.; Gilbert, R.O.

    1992-09-01

    This letter report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate the radiation doses to individuals resulting from releases of radionuclides from the Hanford Site since 1944. This work is being done by staff at Battelle, Pacific Northwest Laboratories (Battelle) under a contract with the Centers for Disease Control (CDC) with technical direction provided by an independent Technical Steering Panel (TSP). The objective of this report is to-document the environmental accumulation and dose-assessment parameters that will be used to estimate the impacts of past Hanford Site airborne releases. During 1993, dose estimates made by staff at Battelle will be used by the Fred Hutchinson Cancer Research Center as part of the Hanford Thyroid Disease Study (HTDS). This document contains information on parameters that are specific to the airborne release of the radionuclide iodine-131. Future versions of this document will include parameter information pertinent to other pathways and radionuclides.

  15. NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes.

    Directory of Open Access Journals (Sweden)

    Smadar Peleg-Grossman

    Full Text Available BACKGROUND: Legumes are unique in their ability to establish symbiotic interaction with rhizobacteria from Rhizobium genus, which provide them with available nitrogen. Nodulation factors (NFs produced by Rhizobium initiate legume root hair deformation and curling that entrap the bacteria, and allow it to grow inside the plant. In contrast, legumes and non-legumes activate defense responses when inoculated with pathogenic bacteria. One major defense pathway is mediated by salicylic acid (SA. SA is sensed and transduced to downstream defense components by a redox-regulated protein called NPR1. METHODOLOGY/PRINCIPAL FINDINGS: We used Arabidopsis mutants in SA defense pathway to test the role of NPR1 in symbiotic interactions. Inoculation of Sinorhizobium meliloti or purified NF on Medicago truncatula or nim1/npr1 A. thaliana mutants induced root hair deformation and transcription of early and late nodulins. Application of S. meliloti or NF on M. truncatula or A. thaliana roots also induced a strong oxidative burst that lasted much longer than in plants inoculated with pathogenic or mutualistic bacteria. Transient overexpression of NPR1 in M. truncatula suppressed root hair curling, while inhibition of NPR1 expression by RNAi accelerated curling. CONCLUSIONS/SIGNIFICANCE: We show that, while NPR1 has a positive effect on pathogen resistance, it has a negative effect on symbiotic interactions, by inhibiting root hair deformation and nodulin expression. Our results also show that basic plant responses to Rhizobium inoculation are conserved in legumes and non-legumes.

  16. Prevalence and pathogenicity of Cryptosporidium suis in pre- and post-weaned pigs

    Czech Academy of Sciences Publication Activity Database

    Vítovec, J.; Hamadejová, K.; Landová, L.; Kváč, Martin; Květoňová, Dana; Sak, Bohumil

    2006-01-01

    Roč. 53, č. 5 (2006), s. 239-243 ISSN 0931-1793 R&D Projects: GA ČR GA524/05/0992 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cryptosporidium suis * piglets * pathogenicity Subject RIV: EG - Zoology Impact factor: 1.356, year: 2006

  17. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation.

    Science.gov (United States)

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A

    2013-11-29

    LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans.

    Science.gov (United States)

    Xiao, Yi; Liu, Fang; Zhao, Pei-Ji; Zou, Cheng-Gang; Zhang, Ke-Qin

    2017-11-01

    The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.

  19. ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments.

    Science.gov (United States)

    Wu, Yu; Pons, Valérie; Goudet, Amélie; Panigai, Laetitia; Fischer, Annette; Herweg, Jo-Ana; Kali, Sabrina; Davey, Robert A; Laporte, Jérôme; Bouclier, Céline; Yousfi, Rahima; Aubenque, Céline; Merer, Goulven; Gobbo, Emilie; Lopez, Roman; Gillet, Cynthia; Cojean, Sandrine; Popoff, Michel R; Clayette, Pascal; Le Grand, Roger; Boulogne, Claire; Tordo, Noël; Lemichez, Emmanuel; Loiseau, Philippe M; Rudel, Thomas; Sauvaire, Didier; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien

    2017-11-14

    Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.

  20. Agricultural pathogen decontamination technology-reducing the threat of infectious agent spread.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Bieker, Jill Marie; Tucker, Mark David

    2005-10-01

    Sandia decontamination chemistry were developed and tested against a few surrogate pathogens under conditions of relatively heavy organic load. Tests were conducted on surfaces commonly found in agricultural environments. Wide spectrum decontamination efficacy, low corrosivity, and biodegradability issues were addressed in developing an enhanced detergency formulation. A method for rapid assessment of loss of pathogenic activity (inactivation) was also assessed. This enhanced technology will enable rapid assessment of contamination following an intentional event, and will also be extremely useful in routine assessment of agricultural environments. The primary effort during the second year was progress towards a demonstration of both decontamination and viral inactivation technologies of Foot and Mouth virus (FMDv) using the modified SNL chemistry developed through this project. Lab studies using a surrogate virus (bovine enterovirus) were conducted using DF200, modified DF200 chemistry, and decontaminants currently recommended for use in heavily loaded organic, agricultural environments (VirkonS, 10% bleach, sodium hydroxide and citric acid). Tests using actual FMD virus will be performed at the Department of Homeland Security's Plum Island facilities in the fall of 2005. Success and the insight gained from this project will lead to enhanced response capability, which will benefit agencies such as USDA, DHS, DOD, and the agricultural industry.

  1. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  2. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection

    DEFF Research Database (Denmark)

    Ali, Youssif M; Lynch, Nicholas J; Haleem, Kashif S

    2012-01-01

    The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation...... to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse...... of C4. This study corroborates the essential function of MASP-2 in the lectin pathway and highlights the importance of MBL-independent lectin pathway activation in the host defense against pneumococci....

  3. Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jain Rishi

    2009-12-01

    Full Text Available Abstract Background RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. Escherichia coli/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of E. coli is the most comprehensive model at this time. Results Employing a metabolic modeling strategy known as "flux balance analysis" coupled with experimental studies, we were able to predict how viral infection would alter bacterial metabolism. Based on our simulations, we predicted that cell growth and biosynthesis of the cell wall would be halted. Furthermore, we predicted a substantial increase in metabolic activity of the pentose phosphate pathway as a means to enhance viral biosynthesis, while a break down in the citric acid cycle was predicted. Also, no changes were predicted in the glycolytic pathway. Conclusions Through our approach, we have developed a technique of modeling virus-infected host metabolism and have investigated the metabolic effects of viral infection. These studies may provide insight into how to design better drugs. They also illustrate the potential of extending such metabolic analysis to higher order organisms, including humans.

  4. DESCENDING PATHWAYS AND THE HOPPING RESPONSE IN THE RABBIT

    NARCIS (Netherlands)

    HOBBELEN, JF; GRAMSBERGEN, A; VANHOF, MW

    1992-01-01

    Descending pathways were studied in 5 adult rabbits by means of HRP, injected in the cervical spinal cord (in C2 and C3) at the right side. Results indicate the existence of pathways from the contralateral motor cortex, bilateral projections from the red nuclei, from the vestibular nuclei and from

  5. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    In the spring of 2004 naturally produced smolts outmigrating from the Yakima River Basin were collected for the sixth year of pathogen screening. This component of the evaluation is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Since 1999 the Cle Elum Hatchery has been releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. In 1998 and 2000 through 2004 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. Of these pathogens, only R. salmoninarum was detected in very low levels in the naturally produced smolts outmigrating in 2004. To date, only bacterial pathogens have been detected and prevalences have been low. There have been small variations each year and these changes are attributed to normal fluctuations in prevalence. All of the pathogens detected are widely distributed in Washington State.

  6. Functional redundancy and ecological innovation shape the circulation of tick-transmitted pathogens

    Czech Academy of Sciences Publication Activity Database

    Estrada-Peña, A.; de la Fuente, J.; Cabezas Cruz, Alejandro

    2017-01-01

    Roč. 7, MAY (2017), č. článku 234. ISSN 2235-2988 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : communities * networks * tick-borne pathogens * ticks Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.300, year: 2016

  7. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    Science.gov (United States)

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  8. Bactericidal activities of GM flax seedcake extract on pathogenic bacteria clinical strains.

    Science.gov (United States)

    Zuk, Magdalena; Dorotkiewicz-Jach, Agata; Drulis-Kawa, Zuzanna; Arendt, Malgorzata; Kulma, Anna; Szopa, Jan

    2014-07-29

    The antibiotic resistance of pathogenic microorganisms is a worldwide problem. Each year several million people across the world acquire infections with bacteria that are antibiotic-resistant, which is costly in terms of human health. New antibiotics are extremely needed to overcome the current resistance problem. Transgenic flax plants overproducing compounds from phenylpropanoid pathway accumulate phenolic derivatives of potential antioxidative, and thus, antimicrobial activity. Alkali hydrolyzed seedcake extract containing coumaric acid, ferulic acid, caffeic acid, and lignan in high quantities was used as an assayed against pathogenic bacteria (commonly used model organisms and clinical strains). It was shown that the extract components had antibacterial activity, which might be useful as a prophylactic against bacterial infection. Bacteria topoisomerase II (gyrase) inhibition and genomic DNA disintegration are suggested to be the main reason for rendering antibacterial action. The data obtained strongly suggest that the seedcake extract preparation is a suitable candidate for antimicrobial action with a broad spectrum and partial selectivity. Such preparation can be applied in cases where there is a risk of multibacterial infection and excellent answer on global increase in multidrug resistance in pathogenic bacteria.

  9. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  10. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  11. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  12. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  13. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  14. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.

    Science.gov (United States)

    Brunke, Sascha; Seider, Katja; Almeida, Ricardo Sergio; Heyken, Antje; Fleck, Christian Benjamin; Brock, Matthias; Barz, Dagmar; Rupp, Steffen; Hube, Bernhard

    2010-04-01

    Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.

  15. Determination of Profiles of Human Bacteria Pathogens in Nigerian Fish and Seafood for Export

    Energy Technology Data Exchange (ETDEWEB)

    Falana, A. A. [National Agency for Food and Drug Administration and Control (NAFDAC) (Nigeria)

    2005-01-15

    It may be concluded from this project that L. monocytogenes and V. cholerae are part of the normal flora of the tropical marine and fishing boat environment, and can be controlled through the implementation of safety assurance schemes such as Good Hygiene Practices (GHP) and Hazard Analysis Critical Control Point (HACCP) systems. It is noteworthy that pathogens were detected in seafood at the inception of the project but after the workshop training for the exporters on safe handling practices, these pathogens have been eliminated in packaged raw seafood products. This improvement was also reflected in the low levels of S. aureus and V. parahaemolyticus obtained in the samples that were analysed. It is expected that with maintenance of, and strict adherence to the GHP and HACCP systems, Nigerian seafood products would be readily acceptable in the EU and the world market. (author)

  16. Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation1

    Science.gov (United States)

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715

  17. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants

    Science.gov (United States)

    Atwood, Todd C.; Duncan, Colleen G.; Patyk, Kelly A.; Nol, Pauline; Rhyan, Jack; McCollum, Matthew; McKinney, Melissa A.; Ramey, Andy M.; Cerqueira-Cezar, Camila; Kwok, Oliver C H; Dubey, Jitender P; Hennager, S.G.

    2017-01-01

    Recent decline of sea ice habitat has coincided with increased use of land by polar bears (Ursus maritimus) from the southern Beaufort Sea (SB), which may alter the risks of exposure to pathogens and contaminants. We assayed blood samples from SB polar bears to assess prior exposure to the pathogens Brucella spp., Toxoplasma gondii, Coxiella burnetii, Francisella tularensis, and Neospora caninum, estimate concentrations of persistent organic pollutants (POPs), and evaluate risk factors associated with exposure to pathogens and POPs. We found that seroprevalence of Brucella spp. and T. gondii antibodies likely increased through time, and provide the first evidence of exposure of polar bears to C. burnetii, N. caninum, and F. tularensis. Additionally, the odds of exposure to T. gondii were greater for bears that used land than for bears that remained on the sea ice during summer and fall, while mean concentrations of the POP chlordane (ΣCHL) were lower for land-based bears. Changes in polar bear behavior brought about by climate-induced modifications to the Arctic marine ecosystem may increase exposure risk to certain pathogens and alter contaminant exposure pathways.

  18. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens.

    Science.gov (United States)

    Ellis, C; Turner, J G

    2001-05-01

    Jasmonates (JAs) inhibit plant growth and induce plant defense responses. To define genes in the Arabidopsis JA signal pathway, we screened for mutants with constitutive expression of a luciferase reporter for the JA-responsive promoter from the vegetative storage protein gene VSP1. One mutant, named constitutive expression of VSP1 (cev1), produced plants that were smaller than wild type, had stunted roots with long root hairs, accumulated anthocyanin, had constitutive expression of the defense-related genes VSP1, VSP2, Thi2.1, PDF1.2, and CHI-B, and had enhanced resistance to powdery mildew diseases. Genetic evidence indicated that the cev1 phenotype required both COI1, an essential component of the JA signal pathway, and ETR1, which encodes the ethylene receptor. We conclude that cev1 stimulates both the JA and the ethylene signal pathways and that CEV1 regulates an early step in an Arabidopsis defense pathway.

  19. Processes for managing pathogens.

    Science.gov (United States)

    Godfree, Alan; Farrell, Joseph

    2005-01-01

    Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.

  20. Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens

    Science.gov (United States)

    Millen, Hana T.; Gonnering, Jordan C.; Berg, Ryan K.; Spencer, Susan K.; Jokela, William E.; Pearce, John M.; Borchardt, Jackson S.; Borchardt, Mark A.

    2012-01-01

    The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group, for example US Environmental Protection Agency Method 1623 for Giardia and Cryptosporidium1, which means multiple methods are required if the sampling program is targeting more than one pathogen group. Another drawback of current methods is the equipment can be complicated and expensive, for example the VIRADEL method with the 1MDS cartridge filter for concentrating viruses2. In this article we describe how to construct glass wool filters for concentrating waterborne pathogens. After filter elution, the concentrate is amenable to a second concentration step, such as centrifugation, followed by pathogen detection and enumeration by cultural or molecular methods. The filters have several advantages. Construction is easy and the filters can be built to any size for meeting specific sampling requirements. The filter parts are inexpensive, making it possible to collect a large number of samples without severely impacting a project budget. Large sample volumes (100s to 1,000s L) can be concentrated depending on the rate of clogging from sample turbidity. The filters are highly portable and with minimal equipment, such as a pump and flow meter, they can be implemented in the field for sampling finished drinking water, surface water, groundwater, and agricultural runoff. Lastly, glass wool filtration is effective for concentrating a variety of pathogen types so only one method is necessary. Here we report on filter effectiveness in concentrating waterborne human enterovirus, Salmonella enterica, Cryptosporidium parvum, and avian influenza virus.

  1. Career pathways in research: support and management.

    Science.gov (United States)

    Kenkre, J E; Foxcroft, D R

    This article, the third in the series on career pathways, highlights support and management careers open to nurses working in the NHS and research and development, or people working for funding bodies or charitable organisations. These roles involve ensuring that the right infrastructure is in place to support research projects, and the correct decisions are made about which research projects should be supported and commissioned.

  2. Recombinant human tissue factor pathway inhibitor exerts anticoagulant, anti-inflammatory and antimicrobial effects in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    van den Boogaard, F. E.; Brands, X.; Schultz, M. J.; Levi, M. [=Marcel M.; Roelofs, J. J. T. H.; van 't Veer, C.; van der Poll, T.

    2011-01-01

    Background: Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia and a major cause of sepsis. Recombinant human tissue factor pathway inhibitor (rh-TFPI) attenuates sepsis-induced coagulation and has been evaluated in clinical trials involving patients

  3. Protein degradation pathways in Parkinson's disease: curse or blessing.

    Science.gov (United States)

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J

    2012-08-01

    Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.

  4. DMPD: Toll-like receptors and the host defense against microbial pathogens: bringingspecificity to the innate-immune system. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075354 Toll-like receptors and the host defense against microbial pathogens: brin...oc Biol. 2004 May;75(5):749-55. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Toll-like receptors and the host defense again...immune system. PubmedID 15075354 Title Toll-like receptors and the host defense against microbial pathogens:

  5. Genotype‐specific pathogenic effects in human dilated cardiomyopathy

    Science.gov (United States)

    Schuldt, Maike; Harakalova, Magdalena; Vink, Aryan; Asselbergs, Folkert W.; Pinto, Jose R.; Krüger, Martina; Kuster, Diederik W. D.; van der Velden, Jolanda

    2017-01-01

    Key points Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+‐sensitivity and reduced length‐dependent activation. TNNT2p.K217del caused increased passive tension.A mutation in the gene encoding Lamin A/C (LMNA p.R331Q) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy.Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. Abstract Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non‐sarcomeric genes. In this study we defined the pathogenic effects of three DCM‐causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation) and cardiac troponin T (TNNT2p.K217deletion; also known as the p.K210del) and the non‐sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane‐permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+‐sensitivity and impaired length‐dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild‐type troponin complex corrected troponin protein levels to 83% of

  6. Search for tick-borne pathogens in the Svalbard archipelago and Jan Mayen

    Czech Academy of Sciences Publication Activity Database

    Elsterová, Jana; Černý, Jiří; Müllerová, Jana; Šíma, Radek; Coulson, S.J.; Lorentzen, E.; Strøm, H.; Grubhoffer, Libor

    2015-01-01

    Roč. 34, 20 October 2015 (2015), s. 27466 ISSN 0800-0395 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GAP502/11/2116; GA ČR GAP302/12/2490; GA ČR GP13-12816P EU Projects: European Commission(XE) 278976 Grant - others:GA MŠk(CZ) LM2010009 Institutional support: RVO:60077344 Keywords : tick * Ixodes uriae * tick-borne pathogens * arboviruses * Borrelia spirochetes * Babesia apicomplexans Subject RIV: EE - Microbiology, Virology Impact factor: 1.728, year: 2015

  7. IFN-γ fails to overcome inhibition of selected macrophage activation events in response to pathogenic mycobacteria.

    Directory of Open Access Journals (Sweden)

    Shyamala Thirunavukkarasu

    Full Text Available According to most models of mycobacterial infection, inhibition of the pro-inflammatory macrophage immune responses contributes to the persistence of bacteria. Mycobacterium avium subsp. paratuberculosis (MAP is a highly successful pathogen in cattle and sheep and is also implicated as the causative agent of Crohn's disease in humans. Pathogenic mycobacteria such as MAP have developed multiple strategies to evade host defence mechanisms including interfering with the macrophages' capacity to respond to IFN-γ, a feature which might be lacking in non-pathogenic mycobacteria such as M. smegmatis. We hypothesized that pre-sensitisation of macrophages with the pro-inflammatory cytokine IFN-γ would help in overcoming the inhibitory effect of MAP or its antigens on macrophage inflammatory responses. Herein we have compared a series of macrophage activation parameters in response to MAP and M. smegmatis as well as mycobacterial antigens. While IFN-γ did overcome the inhibition in immune suppressive mechanisms in response to MAP antigen as well as M. smegmatis, we could not find a clear role for IFN-γ in overcoming the inhibition of macrophage inflammatory responses to the pathogenic mycobacterium, MAP. We demonstrate that suppression of macrophage defence mechanisms by pathogenic mycobacteria is unlikely to be overcome by prior sensitization with IFN-γ alone. This indicates that IFN-γ signaling pathway-independent mechanisms may exist for overcoming inhibition of macrophage effector functions in response to pathogenic mycobacteria. These findings have important implications in understanding the survival mechanisms of pathogenic mycobacteria directed towards finding better therapeutics and vaccination strategies.

  8. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  9. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

    Directory of Open Access Journals (Sweden)

    Mary M. Weber

    2018-01-01

    Full Text Available Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  10. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle.

    Science.gov (United States)

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-05-22

    The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and

  11. Studies of the binding of ficolin-2 and ficolin-3 from the complement lectin pathway to Leptospira biflexa, Pasteurella pneumotropica and Diarrheagenic Escherichia coli

    DEFF Research Database (Denmark)

    Sahagún-Ruiz, Alfredo; Breda, Leandro Carvalho Dantas; Valencia, Mónica Marcela Castiblanco

    2015-01-01

    Ficolins recognize pathogen associated molecular patterns and activate the lectin pathway of complement system. However, our knowledge regarding pathogen recognition of human ficolins is still limited. We therefore set out to explore and investigate the possible interactions of the two main serum...

  12. Pathogen intelligence

    Directory of Open Access Journals (Sweden)

    Michael eSteinert

    2014-01-01

    Full Text Available Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behaviour, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behaviour, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.

  13. Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future

    International Nuclear Information System (INIS)

    Foxon, Timothy J.; Pearson, Peter J.G.; Arapostathis, Stathis; Carlsson-Hyslop, Anna; Thornton, Judith

    2013-01-01

    This paper describes initial analysis of branching points on a set of transition pathways to a UK low carbon electricity future by 2050. As described in other papers in this special issue, we are exploring and analysing a set of core transition pathways, based on alternative governance patterns in which the ‘logics’ of market actors, government actors and civil society actors, respectively dominate. This core pathway analysis is enhanced by analyses of branching points within and across the pathways, which informs how competition between different logics plays out at key decision points. Branching points are defined as key decision points at which choices made by actors, in response to internal or external stresses or triggers, determine whether and in what ways the pathway is followed. A set of initial branching points for our three core transition pathways is identified through project and stakeholder workshops, and drawing on analysis of actors’ choices and responses at past branching points in energy system transitions. The potential responses of the actors are identified at these branching points, and risk mitigation strategies are formulated for the dominant actors to reinforce that pathway, as well as opportunities for actors to move away from the pathway. - Highlights: Transition Pathways is analysing three potential pathways to a low carbon future. ► Stresses lead to branching points, where actors make choices, creating pathways. ► These choices may lead to path-dependency. ► Differences in governance logics within transition pathways are also analysed. ► Studying branching points adds theoretical understanding and policy relevance to TP.

  14. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles.

    Science.gov (United States)

    Kües, Ursula; Nelson, David R; Liu, Chang; Yu, Guo-Jun; Zhang, Jianhui; Li, Jianqin; Wang, Xin-Cun; Sun, Hui

    2015-06-01

    Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of

  15. Phylogeographic Diversity of Pathogenic and Non-Pathogenic Hantaviruses in Slovenia

    Science.gov (United States)

    Korva, Miša; Knap, Nataša; Resman Rus, Katarina; Fajs, Luka; Grubelnik, Gašper; Bremec, Matejka; Knapič, Tea; Trilar, Tomi; Avšič Županc, Tatjana

    2013-01-01

    Slovenia is a very diverse country from a natural geography point of view, with many different habitats within a relatively small area, in addition to major geological and climatic differences. It is therefore not surprising that several small mammal species have been confirmed to harbour hantaviruses: A. flavicollis (Dobrava virus), A. agrarius (Dobrava virus–Kurkino), M. glareolus (Puumala virus), S. areanus (Seewis virus), M. agrestis, M. arvalis and M. subterraneus (Tula virus). Three of the viruses, namely the Dobrava, Dobrava–Kurkino and Puumala viruses, cause disease in humans, with significant differences in the severity of symptoms. Due to changes in haemorrhagic fever with renal syndrome cases (HFRS) epidemiology, a detailed study on phylogenetic diversity and molecular epidemiology of pathogenic and non-pathogenic hantaviruses circulating in ecologically diverse endemic regions was performed. The study presents one of the largest collections of hantavirus L, M and S sequences obtained from hosts and patients within a single country. Several genetic lineages were determined for each hantavirus species, with higher diversity among non-pathogenic compared to pathogenic viruses. For pathogenic hantaviruses, a significant geographic clustering of human- and rodent-derived sequences was confirmed. Several geographic and ecological factors were recognized as influencing and limiting the formation of endemic areas. PMID:24335778

  16. Central neural pathways for thermoregulation

    Science.gov (United States)

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  17. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  18. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  19. Heterogeneous pathogenicity of retroviruses: lessons from birds, primates, and rodents

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Geryk, Josef; Elleder, Daniel

    2003-01-01

    Roč. 87, - (2003), s. 59-126 ISSN 0065-230X R&D Projects: GA ČR GV312/96/K205; GA ČR GA524/01/0866; GA ČR GA204/01/0632; GA ČR GA204/02/0407 Institutional research plan: CEZ:AV0Z5052915 Keywords : pathogenicity of retroviruses * heterotransmission of retroviruses Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.938, year: 2003

  20. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pathways to deep decarbonization in India

    DEFF Research Database (Denmark)

    Shukla, P.; Dhar, Subash; Pathak, Minal

    This report is a part of the global Deep Decarbonisation Pathways (DDP) Project. The analysis consider two development scenarios for India and assess alternate roadmaps for transiting to a low carbon economy consistent with the globally agreed 2°C stabilization target. The report does not conside...

  2. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom

    Directory of Open Access Journals (Sweden)

    Heitman Joseph

    2010-09-01

    Full Text Available Abstract Background The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. Results Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. Conclusions The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural

  3. Non- chemical methods of seed treatment for control of seed- borne pathogens on vegetables

    NARCIS (Netherlands)

    Amein, T.; Wright, S.A.I.; Wickstrom, M.; Schmitt, A.; Koch, E.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Jahn, M.

    2006-01-01

    The aim of EU-project "Seed Treatments for Organic Vegetable Production" (STOVE) was to evaluate non-chemical methods for control of seed-borne pathogens in organic vegetable production. Physical (hot air, hot water and electron) and biologi-cal (microorganisms and different agents of natural

  4. Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions

    Directory of Open Access Journals (Sweden)

    Donatella Tesei

    2015-12-01

    Full Text Available In the current study a comparative proteomic approach was used to investigate the response of the human pathogen black yeast Exophiala dermatitidis toward temperature treatment. Protein functional analysis – based on cellular process GO terms – was performed on the 32 temperature-responsive identified proteins. The bioinformatics analyses and data presented here provided novel insights into the cellular pathways at the base of the fungus temperature tolerance. A detailed analysis and interpretation of the data can be found in “Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis” by Tesei et al. (2015 [1].

  5. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

    Science.gov (United States)

    Sun, Hui; Kamanova, Jana; Lara-Tejero, Maria; Galán, Jorge E

    2016-03-01

    Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen's virulence.

  6. Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response Constitutes a Pathogenic Strategy of group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Emanuel eHanski

    2014-08-01

    Full Text Available The connection between bacterial pathogens and unfolded protein response (UPR is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS induces endoplasmic reticulum (ER stress and UPR through which it captures the amino acid asparagine (ASN from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO and streptolysin S (SLS. By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.

  7. Risk and pathway assessment for the introduction of exotic insects and pathogens that could affect Hawai'i's native forests

    Science.gov (United States)

    Gregg A. DeNitto; Philip Cannon; Andris Eglitis; Jessie A. Glaeser; Helen Maffei; Sheri. Smith

    2015-01-01

    The unmitigated risk potential of the introduction of exotic insects and pathogens to Hawai'i was evaluated for its impact on native plants, specifically Acacia koa, Cibotium spp., Dicranopteris linearis, Diospyros sandwicensis, Dodonaea viscosa, ...

  8. The Gac/Rsm Signaling Pathway of a Biocontrol Bacterium, Pseudomonas chlororaphis O6

    Directory of Open Access Journals (Sweden)

    Anne J. Anderson

    2017-09-01

    Full Text Available Pseudomonas chlororaphis O6, isolated from the roots of dryland, field-grown commercial wheat in the USA, enhances plant health and therefore it is used in agriculture as a biofertilizer and biocontrol agent. The metabolites produced by this pseudomonad stimulate plant growth through direct antagonism of pathogens and by inducing systemic resistance in the plant. Studies upon P. chlororaphis O6 identify the pathways through which defined bacterial metabolites generate protection against pathogenic microbes, insects, and nematodes. P. chlororaphis O6 also triggers plant resistance to drought and salinity stresses. The beneficial determinants are produced from bacterial cells as they form biofilms during root colonization. Molecular control these processes in P. chlororaphis O6 involves the global regulatory Gac/Rsm signaling cascade with cross-talk between other global regulatory pathways. The Gac/Rsm regulon allows for coordinate phasing of expression of the genes that encode these beneficial traits among a community of cells. This review provides insights on the Gac/Rsm regulon in expression of beneficial traits of the P. chlororaphis O6 which can contribute to help yield enhancement and quality in agricultural production.

  9. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2017-10-01

    Full Text Available Streptococcus agalactiae, or Group B Streptococcus (GBS, is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05, whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  10. Differentiation between a pathogenic and a non-pathogenic form of Gyrodactylus salaris using PCR-RFLP

    DEFF Research Database (Denmark)

    Kania, Per Walther; Jørgensen, Thomas Rohde; Buchmann, Kurt

    2007-01-01

    A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form.......A new method based on PCR-RFLP is presented. It is able to differentiate between the Danish non-pathogenic form of Gyrodactylus salaris and the Norwegian pathogenic form....

  11. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth.

    Science.gov (United States)

    Kurthkoti, Krishna; Varshney, Umesh

    2012-04-01

    About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  13. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  14. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-04-01

    Full Text Available Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla is the primary cause of Phomopsis seed decay (PSD in soybean, Glycine max (L. Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI database. Additionally, 149 plant cell wall degrading enzymes (PCWDE were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  15. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    Directory of Open Access Journals (Sweden)

    Sarah I. Bonnet

    2017-06-01

    Full Text Available Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP, with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  16. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  17. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    Energy Technology Data Exchange (ETDEWEB)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  18. Modelling soil borne fungal pathogens of arable crops under climate change.

    Science.gov (United States)

    Manici, L M; Bregaglio, S; Fumagalli, D; Donatelli, M

    2014-12-01

    Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

  19. Pathways to Sustainability: 8-year follow-up from the PROSPER Project

    Science.gov (United States)

    Welsh, Janet A.; Chilenski, Sarah M.; Johnson, Lesley; Greenberg, Mark T.; Spoth, Richard L.

    2016-01-01

    The large-scale dissemination of evidence-based practices (EBPs) is often hindered by problems with sustaining initiatives past a period of initial grant funding. Communities often have difficulty generating resources needed to sustain and grow their initiatives, resulting in limited public health impact. The PROSPER project, initiated in 2001, provided community coalitions with intensive technical assistance around marketing, communications, and revenue generating strategies. Past reports from PROSPER have indicated that these coalitions were successful with sustaining their programming, and that sustainability could be predicted by early aspects of team functioning and leadership. The current study examines financial sustainability eight years following the discontinuation of grant funding, with an emphasis on sources of revenue and the relationships between revenue generation, team functioning, and EBP participation. This study used four waves of data related to resource generation collected between 2004-2010 by PROSPER teams in Iowa and Pennsylvania. Teams reported annually on the amount and sources of funding procured, as well as annual reports of team functioning and leadership and annual reports of EBP participation by youth and parents. Data revealed that teams' overall revenue generation increased over time. There was significant variation in success with revenue generation at both the community level and across the two states. Teams accessed a variety of sources. Cash revenue generation was positively and predictively associated with EBP participation, but relationships with team functioning and leadership ratings varied significantly by state. State level differences in in-kind support were also apparent. The results indicated that there are different pathways to sustainability, and that no one method works for all teams. The presence of state level infrastructures available to support prevention appeared to account for significant differences in

  20. The emerging role of toll-like receptor pathways in surgical diseases.

    LENUS (Irish Health Repository)

    Romics, Laszlo Jr

    2012-02-03

    OBJECTIVE: To outline the emerging significance of Toll-like receptor (TLR) signaling pathways in surgical diseases. DATA SOURCES: A systematic review of the literature was undertaken by searching the MEDLINE database for the period 1966 to 2005 without language restriction. STUDY SELECTION: Original or review articles that described experimental data on the activation of TLR signaling pathways in surgically relevant diseases were selected for inclusion in this review. DATA EXTRACTION: Data were obtained from peer-reviewed articles and references. DATA SYNTHESIS: The role of TLRs in the recognition of pathogens renders them a key figure in the activation of both innate and adaptive immune responses during sepsis. However, emerging evidence points to fundamentally important roles in ulcerative colitis, Crohn disease, and Helicobacter pylori infection in the gastrointestinal tract and in the development of atherosclerotic plaques in the cardiovascular system. Furthermore, recent studies suggest that the regulation of the TLR pathway fulfills a central role in anticancer immunotherapy and in organ rejection after transplantation. CONCLUSION: Given the clinical significance of TLR pathways, the targeting of individual molecular components is likely to offer a broad range of future therapeutic modalities.

  1. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle

    OpenAIRE

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-01-01

    Background The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is reg...

  2. DAF as a therapeutic target for steroid hormones: implications for host-pathogen interactions.

    Science.gov (United States)

    Nowicki, Bogdan; Nowicki, Stella

    2013-01-01

    In this chapter, we present a concise historic prospective and a summary of accumulated knowledge on steroid hormones, DAF expression, and therapeutic implication of steroid hormone treatment on multiple pathologies, including infection and the host-pathogen interactions. DAF/CD55 plays multiple physiologic functions including tissue protection from the cytotoxic complement injury, an anti-inflammatory function due to its anti-adherence properties which enhance transmigration of monocytes and macrophages and reduce tissue injury. DAF physiologic functions are essential in many organ systems including pregnancy for protection of the semiallogeneic fetus or for preventing uncontrolled infiltration by white cells in their pro- and/or anti-inflammatory functions. DAF expression appears to have multiple regulatory tissue-specific and/or menstrual cycle-specific mechanisms, which involve complex signaling mechanisms. Regulation of DAF expression may involve a direct or an indirect effect of at least the estrogen, progesterone, and corticosteroid regulatory pathways. DAF is exploited in multiple pathologic conditions by pathogens and viruses in chronic tissue infection processes. The binding of Escherichia coli bearing Dr adhesins to the DAF/CD55 receptor is DAF density dependent and triggers internalization of E. coli via an endocytic pathway involving CD55, lipid rafts, and microtubules. Dr+ E. coli or Dr antigen may persist in vivo in the interstitium for several months. Further understanding of such processes should be instrumental in designing therapeutic strategies for multiple conditions involving DAF's protective or pathologic functions and tailoring host expression of DAF.

  3. Host pathogen relations: exploring animal models for fungal pathogens.

    Science.gov (United States)

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  4. Advanced Instrumentation, Information, and Control Systems Technologies Pathway: FY 2016 External Review

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce Perry [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report describes an External Review conducted by the LWRS Program Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway to solicit feedback on the topics and results of the ongoing II&C research program. This review was held in conjunction with the Nuclear Energy Institute (NEI) Digital I&C Working Group meeting that was held at Idaho National Laboratory (INL) on August 9-10, 2016. Given the opportunity to visit INL and see the pathway research projects, NEI agreed that the Working Group would serve as the External Review panel for the purpose of obtaining expert input on the value and timing of the research projects. This consisted of demonstrations in the Human Systems Simulation Laboratory followed by presentations on the II&C research program in general as well as the five technology development areas. Following the meeting, the presentations were sent to each of the attendees so they could review them in more detail and refer to them in completing the feedback form. Follow-up activities were conducted with the attendees following the meeting to obtain the completed feedback forms. A total of 13 forms were returned. The feedback forms were reviewed by the pathway to compile the data and comments received, which are documented in the report. In all, the feedback provided by the External Review participants is taken to be a strong endorsement of the types of projects being conducted by the pathway, the value they hold for the nuclear plants, and the general timing of need. The feedback aligns well with the priorities, levels of efforts allocated for the research projects, and project schedules. The feedback also represents realistic observations on the practicality of some aspects of implementing these technologies. In some cases, the participants provided thoughtful challenges to certain assumptions in the formulation of the technologies or in deployment plans. These deserve further review and revision of plans if warranted

  5. Advanced Instrumentation, Information, and Control Systems Technologies Pathway: FY 2016 External Review

    International Nuclear Information System (INIS)

    Thomas, Kenneth David; Hallbert, Bruce Perry

    2016-01-01

    This report describes an External Review conducted by the LWRS Program Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway to solicit feedback on the topics and results of the ongoing II&C research program. This review was held in conjunction with the Nuclear Energy Institute (NEI) Digital I&C Working Group meeting that was held at Idaho National Laboratory (INL) on August 9-10, 2016. Given the opportunity to visit INL and see the pathway research projects, NEI agreed that the Working Group would serve as the External Review panel for the purpose of obtaining expert input on the value and timing of the research projects. This consisted of demonstrations in the Human Systems Simulation Laboratory followed by presentations on the II&C research program in general as well as the five technology development areas. Following the meeting, the presentations were sent to each of the attendees so they could review them in more detail and refer to them in completing the feedback form. Follow-up activities were conducted with the attendees following the meeting to obtain the completed feedback forms. A total of 13 forms were returned. The feedback forms were reviewed by the pathway to compile the data and comments received, which are documented in the report. In all, the feedback provided by the External Review participants is taken to be a strong endorsement of the types of projects being conducted by the pathway, the value they hold for the nuclear plants, and the general timing of need. The feedback aligns well with the priorities, levels of efforts allocated for the research projects, and project schedules. The feedback also represents realistic observations on the practicality of some aspects of implementing these technologies. In some cases, the participants provided thoughtful challenges to certain assumptions in the formulation of the technologies or in deployment plans. These deserve further review and revision of plans if warranted

  6. Host heme oxygenase-1: Friend or foe in tackling pathogens?

    Science.gov (United States)

    Singh, Nisha; Ahmad, Zeeshan; Baid, Navin; Kumar, Ashwani

    2018-05-14

    Infectious diseases are a major challenge in management of human health worldwide. Recent literature suggests that host immune system could be modulated to ameliorate the pathogenesis of infectious disease. Heme oxygenase (HMOX1) is a key regulator of cellular signaling and it could be modulated using pharmacological reagents. HMOX1 is a cytoprotective enzyme that degrades heme to generate carbon monoxide (CO), biliverdin, and molecular iron. CO and biliverdin (or bilirubin derived from it) can restrict the growth of a few pathogens. Both of these also induce antioxidant pathways and anti-inflammatory pathways. On the other hand, molecular iron can induce proinflammatory pathway besides making the cellular environment oxidative in nature. Since microbial infections often induce oxidative stress in host cells/tissues, role of HMOX1 has been analyzed in the pathogenesis of number of infections. In this review, we have described the role of HMOX1 in pathogenesis of bacterial infections caused by Mycobacterium species, Salmonella and in microbial sepsis. We have also provided a succinct overview of the role of HMOX1 in parasitic infections such as malaria and leishmaniasis. In the end, we have also elaborated the role of HMOX1 in viral infections such as AIDS, hepatitis, dengue, and influenza. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  7. Genotype-specific pathogenic effects in human dilated cardiomyopathy.

    Science.gov (United States)

    Bollen, Ilse A E; Schuldt, Maike; Harakalova, Magdalena; Vink, Aryan; Asselbergs, Folkert W; Pinto, Jose R; Krüger, Martina; Kuster, Diederik W D; van der Velden, Jolanda

    2017-07-15

    Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3 p.98trunc resulted in haploinsufficiency, increased Ca 2+ -sensitivity and reduced length-dependent activation. TNNT2 p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNA p.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3 p.98truncation ) and cardiac troponin T (TNNT2 p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNA p.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3 p.98trunc and TNNT2 p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3 p.98trunc showed pure haploinsufficiency, increased Ca 2+ -sensitivity and impaired length-dependent activation. The TNNT2 p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3

  8. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection.

    Science.gov (United States)

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-11-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American

  9. Pathways to Energy from Inertial Fusion. An Integrated Approach. Report of a Coordinated Research Project 2006-2010

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has continuously demonstrated its commitment to supporting the development of safe and environmentally clean nuclear fusion energy. Statistics show that at the current rate of energy consumption, fusion energy would remain an inexhaustible energy source for humankind for millions of years. Furthermore, some of the existing and foreseen risks - such as nuclear waste disposal and rising greenhouse gas emissions from the use of fossil fuels - can also be reduced. In the quest for fusion energy, two main lines of research and development are currently being pursued worldwide, namely the inertial and the magnetic confinement fusion concepts. For both approaches, the IAEA has conducted coordinated research activities focusing on specific physics and technological issues relevant the establishment of the knowledge base and foundation for the design and construction of fusion power plants. This report describes the recent research and technological developments and challenges in inertial fusion energy within the framework of such a coordinated research effort. The coordinated research project on Pathways to Energy from Inertial Fusion: An Integrated Approach was initiated in 2006 and concluded in 2010. The project involved experts and institutions from 16 Member States, addressing issues relevant to advancing inertial fusion energy research and development in its practical applications. The key topics addressed include: (i) high repetition rate, low cost, high efficiency ignition drivers; (ii) beam-matter/beam-plasma interaction related to inertial fusion target physics; (iii) target fusion chamber coupling and interface; and (iv) integrated inertial fusion power plant design. Participants in this coordinated research project have contributed 17 detailed research and technology progress reports of work performed at national and international levels. This report compiles all these reports while highlighting the various achievements.

  10. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    Science.gov (United States)

    Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.

    2016-01-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  11. Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen

    Directory of Open Access Journals (Sweden)

    Navajeet Chakravartty

    2017-12-01

    Full Text Available Sclerospora graminicola pathogen is the most important biotic production constraints of pearl millet in India, Africa and other parts of the world. We report a de novo whole genome assembly and analysis of pathotype 1, one of the most virulent pathotypes of S. graminicola from India. The whole genome sequencing was performed by sequencing of 7.38 Gb with 73,889,924 paired end reads from the paired-end library, and 1.15 Gb with 3,851,788 reads from the mate pair library generated from Illumina HiSeq 2500 and Illumina MiSeq, respectively. A total 597,293 filtered sub reads with average read length of 6.39 Kb was generated on PACBIO RSII with P6-C4 chemistry. Assembled draft genome sequence of S. graminicola pathotype 1 was 299,901,251 bp in length, N50 of 17,909 bp with a minimum of 1 Kb scaffold size. The GC content was 47.2 % consisting of 26,786 scaffolds with longest scaffold size of 238,843 bp. The overall coverage was 40X. The draft genome sequence was used for gene prediction using AUGUSTUS which resulted in 65,404 genes using Saccharomyces cerevisiae as a model. A total of 52,285 predicted genes found homology using BLASTX against nr database and 38,120 genes were observed with a significant BLASTX match with E-value cutoff of 1e-5 and 40% identity percentage. Out of 38,120 genes annotated a set of 11,873 genes had UniProt entries, while 7,248 were GO terms and 9,686 with KEGG IDs. Of the 7,248 GO terms, 2,724 were associated with the biological processes. The genome information of downy mildew pathogen is available in the NCBI GenBank database. The Sclerospora graminicola whole genome shotgun (WGS project has the project accession MIQA00000000. This version of the project (02 has the accession number MIQA02000000, and consists of sequences MIQA02000001-MIQA02026786, with BioProject ID PRJNA325098 and BioSample ID SAMN05219233. This study may help understand the evolutionary pattern of pathogen and aid elucidation of effector evolution for

  12. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  13. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria.

    OpenAIRE

    Seitz Patrick; Blokesch Melanie

    2013-01-01

    Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available, and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages, and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteri...

  14. The PD1: PD-L1/2 pathway from discovery to clinical implementation

    Directory of Open Access Journals (Sweden)

    Kankana Bardhan

    2016-12-01

    Full Text Available The immune system has the difficult challenge of discerning and defending against a diversity of microbial pathogens, while simultaneously avoiding self-reactivity. T lymphocytes function as effectors and regulators of the immune system. While central tolerance mechanism results in deletion of the majority of self-reactive T lymphocytes during thymic selection, a fraction of self reactive lymphocytes escapes to the periphery and retains the potential to inflict destructive autoimmune pathology. The immune system evolved various mechanisms to restrain such auto-reactive T cells and maintain peripheral tolerance, including T cell anergy, deletion, and suppression by regulatory T cells (TRegs. These effects are regulated by a complex network of stimulatory and inhibitory receptors expressed on T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of T cell encountering with cognate antigens. Among the inhibitory immune mediators, the pathway consisting of the programmed cell death 1 (PD-1 receptor (CD279 and its ligands PD-L1 (B7-H1, CD274 and PD-L2 (B7-DC; CD273 plays a vital role in the induction and maintenance of peripheral tolerance and for the maintenance of T cell homeostasis. In contrast to its beneficial role in self-tolerance, the PD-1: PD-L1/L2 pathway mediates potent inhibitory signals that prevent the expansion and function of T effector cells and have detrimental effects on antiviral and antitumor immunity. Therapeutic targeting of this pathway has resulted in successful enhancement of T cell immunity against viral pathogens and tumors. Here, we will provide a brief overview on the properties of the components of the PD-1 pathway, the signaling events that are regulated by PD-1 triggering, and their consequences on the function of T effector cells.

  15. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway.

    Science.gov (United States)

    Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A; Platt, Nick; Davis, Lianne C; Morgan, Anthony J; Höglinger, Doris; Tatituri, Raju Venkata V; Clark, Simon; Williams, Ian M; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S; Besra, Gurdyal S; Russell, David G; Brenner, Michael B; Sim, Edith; Platt, Frances M

    2016-11-18

    Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis , achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria

  16. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    Science.gov (United States)

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  17. Adverse pregnancy outcomes (APOs) and periodontal disease: pathogenic mechanisms.

    Science.gov (United States)

    Madianos, Phoebus N; Bobetsis, Yiorgos A; Offenbacher, Steven

    2013-04-01

    To evaluate the evidence on potential biological pathways underlying the possible association between periodontal disease (PD) and adverse pregnancy outcomes (APOs). Human, experimental and in vitro studies were evaluated. Periodontal pathogens/byproducts may reach the placenta and spread to the foetal circulation and amniotic fluid. Their presence in the foeto-placental compartment can stimulate a foetal immune/inflammatory response characterized by the production of IgM antibodies against the pathogens and the secretion of elevated levels of inflammatory mediators, which in turn may cause miscarriage or premature birth. Moreover, infection/inflammation may cause placental structural changes leading to pre-eclampsia and impaired nutrient transport causing low birthweight. Foetal exposure may also result in tissue damage, increasing the risk for perinatal mortality/morbidity. Finally, the elicited systemic inflammatory response may exacerbate local inflammatory responses at the foeto-placental unit and further increase the risk for APOs. Further investigation is still necessary to fully translate the findings of basic research into clinical studies and practice. Understanding the systemic virulence potential of the individual's oral microbiome and immune response may be a distinctly different issue from categorizing the nature of the challenge using clinical signs of PD. Therefore, a more personalized targeted therapy could be a more predictive answer to the current "one-size-fits-all" interventions.

  18. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro.

    Science.gov (United States)

    Zhu, Xuejiao; Wen, Libin; Sheng, Shaoyang; Wang, Wei; Xiao, Qi; Qu, Meng; Hu, Yiyi; Liu, Chuanmin; He, Kongwang

    2018-01-01

    Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro . Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro , elucidated the mechanism of P1's inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS), laying a foundation for elucidating the pathogenesis of P1.

  19. Host Pathogen Relations: Exploring Animal Models for Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Catherine G. Harwood

    2014-06-01

    Full Text Available Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  20. Development of inhibitors of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway enzymes as potential anti-infective agents

    NARCIS (Netherlands)

    Masini, Tiziana; Hirsch, Anna K H

    2014-01-01

    Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl

  1. Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species.

    Science.gov (United States)

    Patra, Kailash P; Choudhury, Biswa; Matthias, Michael M; Baga, Sheyenne; Bandyopadhya, Keya; Vinetz, Joseph M

    2015-10-30

    Lipopolysaccharides (LPS) are complex, amphipathic biomolecules that constitute the major surface component of Gram-negative bacteria. Leptospira, unlike other human-pathogenic spirochetes, produce LPS, which is fundamental to the taxonomy of the genus, involved in host-adaption and also the target of diagnostic antibodies. Despite its significance, little is known of Leptospira LPS composition and carbohydrate structure among different serovars. LPS from Leptospira interrogans serovar Copenhageni strain L1-130, a pathogenic species, and L. licerasiae serovar Varillal strain VAR 010, an intermediately pathogenic species, were studied. LPS prepared from aqueous and phenol phases were analyzed separately. L. interrogans serovar Copenhageni has additional sugars not found in L. licerasiae serovar Varillal, including fucose (2.7%), a high amount of GlcNAc (12.3%), and two different types of dideoxy HexNAc. SDS-PAGE indicated that L. interrogans serovar Copenhageni LPS had a far higher molecular weight and complexity than that of L. licerasiae serovar Varillal. Chemical composition showed that L. interrogans serovar Copenhageni LPS has an extended O-antigenic polysaccharide consisting of sugars, not present in L. licerasiae serovar Varillal. Arabinose, xylose, mannose, galactose and L-glycero-D-mannoheptose were detected in both the species. Fatty acid analysis by gas chromatography-mass spectrometry (GC-MS) showed the presence of hydroxypalmitate (3-OH-C16:0) only in L. interrogans serovar Copenhageni. Negative staining electron microscopic examination of LPS showed different filamentous morphologies in L. interrogans serovar Copenhageni vs. L. licerasiae serovar Varillal. This comparative biochemical analysis of pathogenic and intermediately pathogenic Leptospira LPS reveals important carbohydrate and lipid differences that underlie future work in understanding the mechanisms of host-adaptation, pathogenicity and vaccine development in leptospirosis.

  2. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  3. Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    A Mark Ibekwe

    Full Text Available Current microbial source tracking (MST methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs, recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP, Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%, agricultural runoff sediment (6.52%, and Prado Park sediment (6.00%, respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78-4.08%. Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health.

  4. Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Leroy Magali

    2012-09-01

    Full Text Available Abstract Background Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals’ stress resistance and longevity. Results We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response. Conclusions Our study shows that development

  5. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  6. Pathway Distiller - multisource biological pathway consolidation.

    Science.gov (United States)

    Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong

    2012-01-01

    One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow

  7. Evidence for an ABC-Type Riboflavin Transporter System in Pathogenic Spirochetes

    Science.gov (United States)

    Deka, Ranjit K.; Brautigam, Chad A.; Biddy, Brent A.; Liu, Wei Z.; Norgard, Michael V.

    2013-01-01

    ABSTRACT Bacterial transporter proteins are involved in the translocation of many essential nutrients and metabolites. However, many of these key bacterial transport systems remain to be identified, including those involved in the transport of riboflavin (vitamin B2). Pathogenic spirochetes lack riboflavin biosynthetic pathways, implying reliance on obtaining riboflavin from their hosts. Using structural and functional characterizations of possible ligand-binding components, we have identified an ABC-type riboflavin transport system within pathogenic spirochetes. The putative lipoprotein ligand-binding components of these systems from three different spirochetes were cloned, hyperexpressed in Escherichia coli, and purified to homogeneity. Solutions of all three of the purified recombinant proteins were bright yellow. UV-visible spectra demonstrated that these proteins were likely flavoproteins; electrospray ionization mass spectrometry and thin-layer chromatography confirmed that they contained riboflavin. A 1.3-Å crystal structure of the protein (TP0298) encoded by Treponema pallidum, the syphilis spirochete, demonstrated that the protein’s fold is similar to the ligand-binding components of ABC-type transporters. The structure also revealed other salient details of the riboflavin binding site. Comparative bioinformatics analyses of spirochetal genomes, coupled with experimental validation, facilitated the discovery of this new ABC-type riboflavin transport system(s). We denote the ligand-binding component as riboflavin uptake transporter A (RfuA). Taken together, it appears that pathogenic spirochetes have evolved an ABC-type transport system (RfuABCD) for survival in their host environments, particularly that of the human host. PMID:23404400

  8. Pathways to deep decarbonization - Interim 2014 Report

    International Nuclear Information System (INIS)

    2014-01-01

    The interim 2014 report by the Deep Decarbonization Pathways Project (DDPP), coordinated and published by IDDRI and the Sustainable Development Solutions Network (SDSN), presents preliminary findings of the pathways developed by the DDPP Country Research Teams with the objective of achieving emission reductions consistent with limiting global warming to less than 2 deg. C. The DDPP is a knowledge network comprising 15 Country Research Teams and several Partner Organizations who develop and share methods, assumptions, and findings related to deep decarbonization. Each DDPP Country Research Team has developed an illustrative road-map for the transition to a low-carbon economy, with the intent of taking into account national socio-economic conditions, development aspirations, infrastructure stocks, resource endowments, and other relevant factors. The interim 2014 report focuses on technically feasible pathways to deep decarbonization

  9. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  10. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  11. NaVirCept - Nucleic Acid-Based Anti-Viral Project

    International Nuclear Information System (INIS)

    Stephen, E. R.; Wong, J.; Van Loon, D.

    2007-01-01

    Vaccines are generally considered to be the most effective countermeasures to bacterial and viral diseases, however, licensed vaccines against many disease agents are either not available or their efficacies have not been demonstrated. Vaccines are generally agent specific in terms of treatment spectrum and are subject to defeat through natural mutation or through directed efforts. With respect to viral therapeutics, one of the major limitations associated with antiviral drugs is acquired drug resistance caused by antigenic shift or drift. A number of next-generation prophylactic and/or therapeutic measures are on the horizon. Of these, nucleic acid-based drugs are showing great antiviral potential. These drugs elicit long-lasting, broad spectrum protective immune responses, especially to respiratory viral pathogens. The Nucleic Acid-Based Antiviral (NaVirCept) project provides the opportunity to demonstrate the effectiveness of novel medical countermeasures against military-significant endemic and other viral threat agents. This project expands existing DRDC drug delivery capability development, in the form of proprietary liposome intellectual property, by coupling it with leading-edge nucleic acid-based technology to deliver effective medical countermeasures that will protect deployed personnel and the warfighter against a spectrum of viral disease agents. The technology pathway will offer a means to combat emerging viral diseases or modified threat agents such as the bird flu or reconstructed Spanish flu without going down the laborious, time-consuming and expensive paths to develop countermeasures for each new and/or emerging viral disease organism.(author)

  12. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    Science.gov (United States)

    Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.

    2011-01-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664

  13. An endogenously produced fragment of cardiac myosin-binding protein C is pathogenic and can lead to heart failure.

    Science.gov (United States)

    Razzaque, Md Abdur; Gupta, Manish; Osinska, Hanna; Gulick, James; Blaxall, Burns C; Robbins, Jeffrey

    2013-08-16

    A stable 40-kDa fragment is produced from cardiac myosin-binding protein C when the heart is stressed using a stimulus, such as ischemia-reperfusion injury. Elevated levels of the fragment can be detected in the diseased mouse and human heart, but its ability to interfere with normal cardiac function in the intact animal is unexplored. To understand the potential pathogenicity of the 40-kDa fragment in vivo and to investigate the molecular pathways that could be targeted for potential therapeutic intervention. We generated cardiac myocyte-specific transgenic mice using a Tet-Off inducible system to permit controlled expression of the 40-kDa fragment in cardiomyocytes. When expression of the 40-kDa protein is induced by crossing the responder animals with tetracycline transactivator mice under conditions in which substantial quantities approximating those observed in diseased hearts are reached, the double-transgenic mice subsequently experience development of sarcomere dysgenesis and altered cardiac geometry, and the heart fails between 12 and 17 weeks of age. The induced double-transgenic mice had development of cardiac hypertrophy with myofibrillar disarray and fibrosis, in addition to activation of pathogenic MEK-ERK pathways. Inhibition of MEK-ERK signaling was achieved by injection of the mitogen-activated protein kinase (MAPK)/ERK inhibitor U0126. The drug effectively improved cardiac function, normalized heart size, and increased probability of survival. These results suggest that the 40-kDa cardiac myosin-binding protein C fragment, which is produced at elevated levels during human cardiac disease, is a pathogenic fragment that is sufficient to cause hypertrophic cardiomyopathy and heart failure.

  14. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sebastian J. Nintemann

    2017-11-01

    Full Text Available Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches—split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens—to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.

  15. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  16. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  17. Prevention of Alcohol-Related Crime and Trauma (PACT: brief interventions in routine care pathway – a study protocol

    Directory of Open Access Journals (Sweden)

    Jayaraj Rama

    2013-01-01

    Full Text Available Abstract Background Globally, alcohol-related injuries cause millions of deaths and huge economic loss each year . The incidence of facial (jawbone fractures in the Northern Territory of Australia is second only to Greenland, due to a strong involvement of alcohol in its aetiology, and high levels of alcohol consumption. The highest incidences of alcohol-related trauma in the Territory are observed amongst patients in the Maxillofacial Surgery Unit of the Royal Darwin Hospital. Accordingly, this project aims to introduce screening and brief interventions into this unit, with the aims of changing health service provider practice, improving access to care, and improving patient outcomes. Methods Establishment of Project Governance: The project governance team includes a project manager, project leader, an Indigenous Reference Group (IRG and an Expert Reference Group (ERG. Development of a best practice pathway: PACT project researchers collaborate with clinical staff to develop a best practice pathway suited to the setting of the surgical unit. The pathway provides clear guidelines for screening, assessment, intervention and referral. Implementation: The developed pathway is introduced to the unit through staff training workshops and associate resources and adapted in response to staff feedback. Evaluation: File audits, post workshop questionnaires and semi-structured interviews are administered. Discussion This project allows direct transfer of research findings into clinical practice and can inform future hospital-based injury prevention strategies.

  18. The Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas.

    Science.gov (United States)

    Pereira, Thaís Dos Santos Fontes; Diniz, Marina Gonçalves; França, Josiane Alves; Moreira, Rennan Garcias; Menezes, Grazielle Helena Ferreira de; Sousa, Sílvia Ferreira de; Castro, Wagner Henriques de; Gomes, Carolina Cavaliéri; Gomez, Ricardo Santiago

    2018-02-01

    The molecular pathogenesis of cemento ossifying fibroma (COF) is unclear. The purpose of this study was to investigate mutations in 50 oncogenes and tumor suppressor genes, including APC and CTNNB1, in which mutations in COF have been previously reported. In addition, we assessed the transcriptional levels of the Wnt/β-catenin pathway genes in COF. We used a quantitative polymerase chain reaction array to evaluate the transcriptional levels of 44 Wnt/β-catenin pathway genes in 6 COF samples, in comparison with 6 samples of healthy jaws. By using next-generation sequencing (NGS) in 7 COF samples, we investigated approximately 2800 mutations in 50 genes. The expression assay revealed 12 differentially expressed Wnt/β-catenin pathway genes in COF, including the upregulation of CTNNB1, TCF7, NKD1, and WNT5 A, and downregulation of CTNNBIP1, FRZB, FZD6, RHOU, SFRP4, WNT10 A, WNT3 A, and WNT4, suggesting activation of the Wnt/β-catenin signaling pathway. NGS revealed 5 single nucleotide variants: TP53 (rs1042522), PIK3 CA (rs2230461), MET (rs33917957), KIT (rs3822214), and APC (rs33974176), but none of them was pathogenic. Although NGS detected no oncogenic mutation, deregulation of key Wnt/β-catenin signaling pathway genes appears to be relevant to the molecular pathogenesis of COF. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Methods for detecting pathogens in the beef food chain: detecting particular pathogens

    Science.gov (United States)

    The main food-borne pathogens of concern in the beef food chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp.; however, the presence of other pathogens, including Listeria monocytogenes, Campylobacter spp., Clostridium spp., Bacillus cereus, and Mycobacterium avium subsp. par...

  20. All projects related to Canada | Page 2 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Bolivian public justice performance research study. Project ... A functioning immune system is critical for successful treatment of cancer. Region: ... Regulation of stem-cell mediated host immunity by the sphingolipid pathway. Project.

  1. INFLUENCE OF CULTIVARS AND SEED THERMAL TREATMENT ON THE DEVELOPMENT OF FUNGAL PATHOGENS IN CARROT AND ONION PLANTS

    Czech Academy of Sciences Publication Activity Database

    Koudela, M.; Novotný, Čeněk

    2016-01-01

    Roč. 64, č. 4 (2016), s. 1181-1189 ISSN 1211-8516 R&D Projects: GA MZe QJ1210165 Institutional support: RVO:61388971 Keywords : carrot * onion * fungal pathogens * plants infection Subject RIV: EE - Microbiology, Virology

  2. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    Science.gov (United States)

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  3. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Heitman, Joseph

    2013-01-01

    Many pathogenic fungi are dimorphic and switch between yeast and filamentous states. This switch alters host-microbe interactions and is critical for pathogenicity. However, in zygomycetes, whether dimorphism contributes to virulence is a central unanswered question. The pathogenic zygomycete Mucor circinelloides exhibits hyphal growth in aerobic conditions but switches to multi-budded yeast growth under anaerobic/high CO₂ conditions. We found that in the presence of the calcineurin inhibitor FK506, Mucor exhibits exclusively multi-budded yeast growth. We also found that M. circinelloides encodes three calcineurin catalytic A subunits (CnaA, CnaB, and CnaC) and one calcineurin regulatory B subunit (CnbR). Mutations in the latch region of CnbR and in the FKBP12-FK506 binding domain of CnaA result in hyphal growth of Mucor in the presence of FK506. Disruption of the cnbR gene encoding the sole calcineurin B subunit necessary for calcineurin activity yielded mutants locked in permanent yeast phase growth. These findings reveal that the calcineurin pathway plays key roles in the dimorphic transition from yeast to hyphae. The cnbR yeast-locked mutants are less virulent than the wild-type strain in a heterologous host system, providing evidence that hyphae or the yeast-hyphal transition are linked to virulence. Protein kinase A activity (PKA) is elevated during yeast growth under anaerobic conditions, in the presence of FK506, or in the yeast-locked cnbR mutants, suggesting a novel connection between PKA and calcineurin. cnaA mutants lacking the CnaA catalytic subunit are hypersensitive to calcineurin inhibitors, display a hyphal polarity defect, and produce a mixture of yeast and hyphae in aerobic culture. The cnaA mutants also produce spores that are larger than wild-type, and spore size is correlated with virulence potential. Our results demonstrate that the calcineurin pathway orchestrates the yeast-hyphal and spore size dimorphic transitions that contribute to

  4. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease.

    Science.gov (United States)

    Zhang, Yan; Liu, Dianming; Wang, Lihong; Wang, Shuyuan; Yu, Xuexin; Dai, Enyu; Liu, Xinyi; Luo, Shanshun; Jiang, Wei

    2015-12-01

    Coronary artery disease (CAD) is the most common type of heart disease. However, the molecular mechanisms of CAD remain elusive. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, inferring risk regulatory pathways is an important step toward elucidating the mechanisms underlying CAD. With advances in high-throughput data, we developed an integrated systems approach to identify CAD risk regulatory pathways and key regulators. Firstly, a CAD-related core subnetwork was identified from a curated transcription factor (TF) and microRNA (miRNA) regulatory network based on a random walk algorithm. Secondly, candidate risk regulatory pathways were extracted from the subnetwork by applying a breadth-first search (BFS) algorithm. Then, risk regulatory pathways were prioritized based on multiple CAD-associated data sources. Finally, we also proposed a new measure to prioritize upstream regulators. We inferred that phosphatase and tensin homolog (PTEN) may be a key regulator in the dysregulation of risk regulatory pathways. This study takes a closer step than the identification of disease subnetworks or modules. From the risk regulatory pathways, we could understand the flow of regulatory information in the initiation and progression of the disease. Our approach helps to uncover its potential etiology. We developed an integrated systems approach to identify risk regulatory pathways. We proposed a new measure to prioritize the key regulators in CAD. PTEN may be a key regulator in dysregulation of the risk regulatory pathways.

  5. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  6. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  7. Food-borne pathogens

    International Nuclear Information System (INIS)

    Niemand, J.G.

    1985-01-01

    The Salmonella scare reinforced the importance of never taking chances when it comes to controlling pathogens. The issue has been resolved by radurisation. The article deals with the various pathogens that can effect food and argues the case for radurisation in dealing with them. It also looks at some of the other food products that can be treated using this process

  8. Viral pathogen discovery

    Science.gov (United States)

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  9. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  10. Pathogenicity and Host Range of Pathogen Causing Black Raspberry (Rubus coreanus) Anthracnose in Korea

    OpenAIRE

    Uh Seong Jeong; Ju Hee Kim; Ki Kwon Lee; Seong Soo Cheong; Wang Hyu Lee

    2013-01-01

    The strains of Colletotrichum gloeosporioides, C. coccodes, C. acutatum isolated from black raspberry werepathogenic to apple and strawberry after dropping inoculation, but showed weak pathogenicity in hot-pepperand tomato. The anthracnose pathogens of C. gloeosporioides, C. orbiculare, C. acutatum isolated from apple,hot-pepper and pumpkin showed pathogenicity in black raspberry. Moreover, the anthracnose pathogensisolated from apple caused disease symptoms in non-wounded inoculation.

  11. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2011-09-01

    Full Text Available A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.

  12. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity.

    Science.gov (United States)

    Mine, Akira; Berens, Matthias L; Nobori, Tatsuya; Anver, Shajahan; Fukumoto, Kaori; Winkelmüller, Thomas M; Takeda, Atsushi; Becker, Dieter; Tsuda, Kenichi

    2017-07-11

    Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1 , HAI2 , and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato ( Pto ) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.

  13. In Silico Analysis of Putrefaction Pathways in Bacteria and Its Implication in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Harrisham Kaur

    2017-11-01

    Full Text Available Fermentation of undigested proteins in human gastrointestinal tract (gut by the resident microbiota, a process called bacterial putrefaction, can sometimes disrupt the gut homeostasis. In this process, essential amino acids (e.g., histidine, tryptophan, etc. that are required by the host may be utilized by the gut microbes. In addition, some of the products of putrefaction, like ammonia, putrescine, cresol, indole, phenol, etc., have been implicated in the disease pathogenesis of colorectal cancer (CRC. We have investigated bacterial putrefaction pathways that are known to be associated with such metabolites. Results of the comprehensive in silico analysis of the selected putrefaction pathways across bacterial genomes revealed presence of these pathways in limited bacterial groups. Majority of these bacteria are commonly found in human gut. These include Bacillus, Clostridium, Enterobacter, Escherichia, Fusobacterium, Salmonella, etc. Interestingly, while pathogens utilize almost all the analyzed pathways, commensals prefer putrescine and H2S production pathways for metabolizing the undigested proteins. Further, comparison of the putrefaction pathways in the gut microbiomes of healthy, carcinoma and adenoma datasets indicate higher abundances of putrefying bacteria in the carcinoma stage of CRC. The insights obtained from the present study indicate utilization of possible microbiome-based therapies to minimize the adverse effects of gut microbiome in enteric diseases.

  14. The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'

    Directory of Open Access Journals (Sweden)

    Migdoll Alexander M

    2008-06-01

    Full Text Available Abstract Background Phytoplasmas are insect-transmitted, uncultivable bacterial plant pathogens that cause diseases in hundreds of economically important plants. They represent a monophyletic group within the class Mollicutes (trivial name mycoplasmas and are characterized by a small genome with a low GC content, and the lack of a firm cell wall. All mycoplasmas, including strains of 'Candidatus (Ca. Phytoplasma asteris' and 'Ca. P. australiense', examined so far have circular chromosomes, as is the case for almost all walled bacteria. Results Our work has shown that 'Ca. Phytoplasma mali', the causative agent of apple proliferation disease, has a linear chromosome. Linear chromosomes were also identified in the closely related provisional species 'Ca. P. pyri' and 'Ca. P. prunorum'. The chromosome of 'Ca. P. mali' strain AT is 601,943 bp in size and has a GC content of 21.4%. The chromosome is further characterized by large terminal inverted repeats and covalently closed hairpin ends. Analysis of the protein-coding genes revealed that glycolysis, the major energy-yielding pathway supposed for 'Ca. P. asteris', is incomplete in 'Ca. P. mali'. Due to the apparent lack of other metabolic pathways present in mycoplasmas, it is proposed that maltose and malate are utilized as carbon and energy sources. However, complete ATP-yielding pathways were not identified. 'Ca. P. mali' also differs from 'Ca. P. asteris' by a smaller genome, a lower GC content, a lower number of paralogous genes, fewer insertions of potential mobile DNA elements, and a strongly reduced number of ABC transporters for amino acids. In contrast, 'Ca. P. mali' has an extended set of genes for homologous recombination, excision repair and SOS response than 'Ca. P. asteris'. Conclusion The small linear chromosome with large terminal inverted repeats and covalently closed hairpin ends, the extremely low GC content and the limited metabolic capabilities reflect unique features of 'Ca

  15. Electronic SSKIN pathway: reducing device-related pressure ulcers.

    Science.gov (United States)

    Campbell, Natalie

    2016-08-11

    This article describes how an interprofessional project in a London NHS Foundation Trust was undertaken to develop an intranet-based medical device-related pressure ulcer prevention and management pathway for clinical staff working across an adult critical care directorate, where life-threatening events require interventions using medical devices. The aim of this project was to improve working policies and processes to define key prevention strategies and provide clinicians with a clear, standardised approach to risk and skin assessment, equipment use, documentation and reporting clinical data using the Trust's CareVue (electronic medical records), Datix (incident reporting and risk-management tool) and eTRACE (online clinical protocol ordering) systems. The process included the development, trial and local implementation of the pathway using collaborative teamwork and the SSKIN care bundle tool. The experience of identifying issues, overcoming challenges, defining best practice and cascading SSKIN awareness training is shared.

  16. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    OpenAIRE

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by...

  17. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Science.gov (United States)

    Balakireva, Anastasia V.; Zamyatnin, Andrey A.

    2016-01-01

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. PMID:27763541

  18. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Directory of Open Access Journals (Sweden)

    Anastasia V. Balakireva

    2016-10-01

    Full Text Available Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD, allergy to wheat and non-celiac gluten sensitivity (NCGS. Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD, which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.

  19. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  20. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  1. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Science.gov (United States)

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  2. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Directory of Open Access Journals (Sweden)

    Penny F Langhammer

    Full Text Available Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39, and one recently thawed from cryopreserved stock (JEL427-P9. In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  3. Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: Extending MapMan ontology for grapevine

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2009-08-01

    Full Text Available Abstract Background Whole genome transcriptomics analysis is a very powerful approach because it gives an overview of the activity of genes in certain cells or tissue types. However, biological interpretation of such results can be rather tedious. MapMan is a software tool that displays large datasets (e.g. gene expression data onto diagrams of metabolic pathways or other processes and thus enables easier interpretation of results. The grapevine (Vitis vinifera genome sequence has recently become available bringing a new dimension into associated research. Two microarray platforms were designed based on the TIGR Gene Index database and used in several physiological studies. Results To enable easy and effective visualization of those and further experiments, annotation of Vitis vinifera Gene Index (VvGI version 5 to MapMan ontology was set up. Due to specificities of grape physiology, we have created new pictorial representations focusing on three selected pathways: carotenoid pathway, terpenoid pathway and phenylpropanoid pathway, the products of these pathways being important for wine aroma, flavour and colour, as well as plant defence against pathogens. This new tool was validated on Affymetrix microarrays data obtained during berry ripening and it allowed the discovery of new aspects in process regulation. We here also present results on transcriptional profiling of grape plantlets after exposal to the fungal pathogen Eutypa lata using Operon microarrays including visualization of results with MapMan. The data show that the genes induced in infected plants, encode pathogenesis related proteins and enzymes of the flavonoid metabolism, which are well known as being responsive to fungal infection. Conclusion The extension of MapMan ontology to grapevine together with the newly constructed pictorial representations for carotenoid, terpenoid and phenylpropanoid metabolism provide an alternative approach to the analysis of grapevine gene expression

  4. A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae

    Directory of Open Access Journals (Sweden)

    John Jacobs

    2015-01-01

    Full Text Available Climate change is expected to alter coastal ecosystems in ways which may have predictable consequences for the seasonality and geographical distribution of human pathogens and harmful algae. Here we demonstrate relatively simple approaches for evaluating the risk of occurrence of pathogenic bacteria in the genus Vibrio and outbreaks of toxin-producing harmful algae in the genus Alexandrium, with estimates of uncertainty, in U.S. coastal waters under future climate change scenarios through the end of the 21st century. One approach forces empirical models of growth, abundance and the probability of occurrence of the pathogens and algae at specific locations in the Chesapeake Bay and Puget Sound with ensembles of statistically downscaled climate model projections to produce first order assessments of changes in seasonality. In all of the case studies examined, the seasonal window of occurrence for Vibrio and Alexandrium broadened, indicating longer annual periods of time when there is increased risk for outbreaks. A second approach uses climate model projections coupled with GIS to identify the potential for geographic range shifts for Vibrio spp. in the coastal waters of Alaska. These two approaches could be applied to other coastal pathogens that have climate sensitive drivers to investigate potential changes to the risk of outbreaks in both time (seasonality and space (geographical distribution under future climate change scenarios.

  5. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Xuejiao Zhu

    2018-03-01

    Full Text Available Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro. Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro, elucidated the mechanism of P1’s inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS, laying a foundation for elucidating the pathogenesis of P1.

  6. Genome of the opportunistic pathogen Streptococcus sanguinis.

    Science.gov (United States)

    Xu, Ping; Alves, Joao M; Kitten, Todd; Brown, Arunsri; Chen, Zhenming; Ozaki, Luiz S; Manque, Patricio; Ge, Xiuchun; Serrano, Myrna G; Puiu, Daniela; Hendricks, Stephanie; Wang, Yingping; Chaplin, Michael D; Akan, Doruk; Paik, Sehmi; Peterson, Darrell L; Macrina, Francis L; Buck, Gregory A

    2007-04-01

    The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B(12) biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.

  7. Preliminary crystallographic studies of purine nucleoside phosphorylase from the cariogenic pathogen Streptococcus mutans

    International Nuclear Information System (INIS)

    Hou, Qiao-Ming; Liu, Xiang; Brostromer, Erik; Li, Lan-Fen; Su, Xiao-Dong

    2009-01-01

    Purine nucleoside phosphorylase (PNP), which is a pivotal enzyme in the nucleotide-salvage pathway, has been expressed in Escherichia coli strain BL21 (DE3) in a soluble form at a high level. After purification of the PNP enzyme, the protein was crystallized using the sitting-drop vapour-diffusion technique. The punA gene of the cariogenic pathogen Streptococcus mutans encodes purine nucleoside phosphorylase (PNP), which is a pivotal enzyme in the nucleotide-salvage pathway, catalyzing the phosphorolysis of purine nucleosides to generate purine bases and α-ribose 1-phosphate. In the present work, the PNP protein was expressed in Escherichia coli strain BL21 (DE3) in a soluble form at a high level. After purification of the PNP enzyme, the protein was crystallized using the sitting-drop vapour-diffusion technique; the crystals diffracted to 1.6 Å resolution at best. The crystals belonged to space group H3, with unit-cell parameters a = b = 113.0, c = 60.1 Å

  8. Increased TLR4 expression in murine placentas after oral infection with periodontal pathogens

    Science.gov (United States)

    Arce, R.M.; Barros, S.P.; Wacker, B.; Peters, B.; Moss, K.; Offenbacher, S.

    2009-01-01

    Maternal periodontitis has emerged as a putative risk factor for preterm births in humans. The periodontitis-associated dental biofilm is thought to serve as an important source of oral bacteria and related virulence factors that hematogenously disseminate and affect the fetoplacental unit; however the underlying biological mechanisms are yet to be fully elucidated. This study hypothesized that an oral infection with the human periodontal pathogens Campylobacter rectus and Porphyromonas gingivalis is able to induce fetal growth restriction, placental inflammation and enhance Toll-like receptors type 4 (TLR4) expression in a murine pregnancy model. Female Balb/C mice (n=40) were orally infected with C. rectus and/or P. gingivalis over a 16-week period and mated once per week. Pregnant mice were sacrificed at embryonic day (E) 16.5 and placentas were collected and analyzed for TLR4 mRNA levels and qualitative protein expression by real time PCR and immunofluorescence. TLR4 mRNA expression was found to be increased in C. rectus-infected group (1.98±0.886 fold difference, Pperiodontal pathogens. The TLR4 pathway has been implicated in the pathogenesis of preterm births; therefore the abnormal regulation of placental TLR4 may give new insights into how maternal periodontitis and periodontal pathogens might be linked to placental inflammation and preterm birth pathogenesis. PMID:19101032

  9. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach.

    Directory of Open Access Journals (Sweden)

    Gregory J Crowther

    Full Text Available BACKGROUND: The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni. METHODOLOGY/PRINCIPAL FINDINGS: Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths, and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets. CONCLUSIONS/SIGNIFICANCE: Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research community's current interest in certain specific proteins, and suggest

  10. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  11. Potatoes, pathogens and pests

    NARCIS (Netherlands)

    Lazebnik, Jenny

    2017-01-01

    Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into

  12. REGγ is associated with multiple oncogenic pathways in human cancers

    International Nuclear Information System (INIS)

    He, Jing; Wang, Zhuo; Shi, Tieliu; Zhang, Pei; Chen, Rui; Li, Xiaotao; Cui, Long; Zeng, Yu; Wang, Guangqiang; Zhou, Ping; Yang, Yuanyuan; Ji, Lei; Zhao, Yanyan; Chen, Jiwu

    2012-01-01

    Recent studies suggest a role of the proteasome activator, REGγ, in cancer progression. Since there are limited numbers of known REGγ targets, it is not known which cancers and pathways are associated with REGγ. REGγ protein expressions in four different cancers were investigated by immunohistochemistry (IHC) analysis. Following NCBI Gene Expression Omnibus (GEO) database search, microarray platform validation, differential expressions of REGγ in corresponding cancers were statistically analyzed. Genes highly correlated with REGγ were defined based on Pearson's correlation coefficient. Functional links were estimated by Ingenuity Core analysis. Finally, validation was performed by RT-PCR analysis in established cancer cell lines and IHC in human colon cancer tissues Here, we demonstrate overexpression of REGγ in four different cancer types by micro-tissue array analysis. Using meta-analysis of publicly available microarray databases and biological studies, we verified elevated REGγ gene expression in the four types of cancers and identified genes significantly correlated with REGγ expression, including genes in p53, Myc pathways, and multiple other cancer-related pathways. The predicted correlations were largely consistent with quantitative RT-PCR analysis. This study provides us novel insights in REGγ gene expression profiles and its link to multiple cancer-related pathways in cancers. Our results indicate potentially important pathogenic roles of REGγ in multiple cancer types and implicate REGγ as a putative cancer marker

  13. Mucosal immunity to pathogenic intestinal bacteria.

    Science.gov (United States)

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  14. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.

    Science.gov (United States)

    Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.

  15. Final report on the Pathway Analysis Task

    International Nuclear Information System (INIS)

    Whicker, F.W.; Kirchner, T.B.

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University's Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere

  16. Final report on the Pathway Analysis Task

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, F.W.; Kirchner, T.B. [Colorado State Univ., Fort Collins, CO (United States)

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University`s Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere.

  17. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  18. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island

    Directory of Open Access Journals (Sweden)

    Bonten Marc JM

    2010-04-01

    Full Text Available Abstract Background The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients. Results We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI, which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner. Conclusions Genes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come.

  19. Infectivity and pathogenicity of Cryptosporidium andersoni to a novel host, southern multimammate mouse (Mastomys coucha)

    Czech Academy of Sciences Publication Activity Database

    Kváč, Martin; Ondráčková, Z.; Květoňová, Dana; Sak, Bohumil; Vítovec, J.

    2007-01-01

    Roč. 143, 3/4 (2007), s. 229-233 ISSN 0304-4017 R&D Projects: GA ČR GA524/05/0992 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cryptosporidium andersoni * Mastomys coucha * infectivity * pathogenicity * 18S rRNA gene Subject RIV: EG - Zoology Impact factor: 2.016, year: 2007

  20. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  1. Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-08-30

    Mycosphaerella fijiensis, causative agent of the black Sigatoka disease of banana, is considered the most economically damaging banana disease. Despite its importance, the genetics of pathogenicity are poorly understood. Previous studies have characterized polyketide pathways with possible roles in pathogenicity. To identify additional candidate pathogenicity genes, we compared the transcriptome of this fungus during the necrotrophic phase of infection with that during saprophytic growth in medium. Transcriptome analysis was conducted, and the functions of differentially expressed genes were predicted by identifying conserved domains, Gene Ontology (GO) annotation and GO enrichment analysis, Carbohydrate-Active EnZymes (CAZy) annotation, and identification of genes encoding effector-like proteins. The analysis showed that genes commonly involved in secondary metabolism have higher expression in infected leaf tissue, including genes encoding cytochrome P450s, short-chain dehydrogenases, and oxidoreductases in the 2-oxoglutarate and Fe(II)-dependent oxygenase superfamily. Other pathogenicity-related genes with higher expression in infected leaf tissue include genes encoding salicylate hydroxylase-like proteins, hydrophobic surface binding proteins, CFEM domain-containing proteins, and genes encoding secreted cysteine-rich proteins characteristic of effectors. More genes encoding amino acid transporters, oligopeptide transporters, peptidases, proteases, proteinases, sugar transporters, and proteins containing Domain of Unknown Function (DUF) 3328 had higher expression in infected leaf tissue, while more genes encoding inhibitors of peptidases and proteinases had higher expression in medium. Sixteen gene clusters with higher expression in leaf tissue were identified including clusters for the synthesis of a non-ribosomal peptide. A cluster encoding a novel fusicoccane was also identified. Two putative dispensable scaffolds were identified with a large proportion of

  2. Learning about Foodborne Pathogens: Evaluation of Student Perceptions of Group Project Work in a Food Microbiology Course

    Science.gov (United States)

    Turner, Mark S.

    2009-01-01

    This study examined the experiences of students in an active learning group work exercise in an introductory food microbiology course involving the study of foodborne pathogens. Small groups were required to access, analyze, and present information regarding a single food poisoning bacterium. The presentations contained features and…

  3. Toll-Like Receptor Pathways in Autoimmune Diseases.

    Science.gov (United States)

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis.

  4. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  5. Electromigration techniques - rapid methods for the detection and identification of urinary tract pathogens

    Czech Academy of Sciences Publication Activity Database

    Růžička, F.; Holá, V.; Horká, Marie

    2004-01-01

    Roč. 10, Suppl. 3 (2004), s. 621-622 ISSN 1198-743X. [14th ECCMID. European Congress of Clinical Microbiology and Infectious Diseases /14./. Praha, 01.05.2004-04.05.2004] R&D Projects: GA AV ČR IAA4031302 Institutional research plan: CEZ:AV0Z4031919 Keywords : electromigration techniques * identification * pathogens Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.361, year: 2004

  6. Priority setting of foodborne pathogens: disease burden and costs of selected enteric pathogens

    NARCIS (Netherlands)

    Kemmeren JM; Mangen MJJ; Duynhoven YTHP van; Havelaar AH; MGB

    2006-01-01

    Toxoplasmosis causes the highest disease burden among seven evaluated foodborne pathogens. This is the preliminary conclusion of a major study of the disease burden and related costs of foodborne pathogens. The other micro-organisms that were studied are Campylobacter spp., Salmonella spp.,

  7. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    Science.gov (United States)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  8. From the "little brain" gastrointestinal infection to the "big brain" neuroinflammation: a proposed fast axonal transport pathway involved in multiple sclerosis.

    Science.gov (United States)

    Deretzi, Georgia; Kountouras, Jannis; Grigoriadis, Nikolaos; Zavos, Christos; Chatzigeorgiou, Stavros; Koutlas, Evangelos; Tsiptsios, Iakovos

    2009-11-01

    The human central nervous system (CNS) is targeted by different pathogens which, apart from pathogens' intranasal inoculation or trafficking into the brain through infected blood cells, may use a distinct pathway to bypass the blood-brain barrier by using the gastrointestinal tract (GIT) retrograde axonal transport through sensory or motor fibres. The recent findings regarding the enteric nervous system (often called the "little brain") similarities with CNS and GIT axonal transport of infections resulting in CNS neuroinflammation are mainly reviewed in this article. We herein propose that the GIT is the vulnerable area through which pathogens (such as Helicobacter pylori) may influence the brain and induce multiple sclerosis pathologies, mainly via the fast axonal transport by the afferent neurones connecting the GIT to brain.

  9. Parameters used in the environmental pathways and radiological dose modules of the Phase I air pathway code

    International Nuclear Information System (INIS)

    Shindle, S.F.; Ikenberry, T.A.; Napier, B.A.

    1992-05-01

    This report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate radiation doses to individuals resulting from releases of radionuclides from the Hanford Site since 1944, when facilities there first began operating. An independent Technical Steering Panel directs the project, which is conducted by Battelle staff from the Pacific Northwest Laboratory. The objective of Phase 1 of the HEDR Project was to demonstrate through calculation that adequate models and support data existed or could be developed to allow estimation of realistic doses to individuals from historical Hanford Site radionuclide releases. The HEDR Phase 1 computer code was used to model the transport of iodine-131 released to the atmosphere from the Hanford Site facilities, through environmental pathways to points of human exposure. Output from the code was preliminary estimates of doses received by members of the public living in the vicinity of the Hanford Site. Later project work continues to build upon Phase 1 progress in order to refine dose estimates

  10. Stable isotope database - Transport and fate of nutrient and pathogen loadings into nearshore Puget Sound: consequences for shellfish growing areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project seeks to develop and apply an assessment of shellfish growing area (SGA) vulnerability to closures caused by watershed- and marine-derived pathogens....

  11. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  12. Tropism and pathogenicity of rickettsiae

    Directory of Open Access Journals (Sweden)

    Tsuneo eUchiyama

    2012-06-01

    Full Text Available Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group and typhus group rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism towards cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and nonpathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and nonpathogenic species of spotted fever group rickettsiae in mammalian cells. The growth of nonpathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of nonpathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the nonpathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review.

  13. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Science.gov (United States)

    Greub, Gilbert; Kebbi-Beghdadi, Carole; Bertelli, Claire; Collyn, François; Riederer, Beat M; Yersin, Camille; Croxatto, Antony; Raoult, Didier

    2009-12-23

    With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  14. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  15. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis.

    Science.gov (United States)

    Ferreira, Viviana P; Fazito Vale, Vladimir; Pangburn, Michael K; Abdeladhim, Maha; Mendes-Sousa, Antonio Ferreira; Coutinho-Abreu, Iliano V; Rasouli, Manoochehr; Brandt, Elizabeth A; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Pereira, Marcos Horácio; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M C; Gontijo, Nelder F; Collin, Nicolas; Valenzuela, Jesus G

    2016-01-13

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

  16. A pathway for hospital librarians: why is it vital?

    Science.gov (United States)

    Tooey, Mary Joan M J

    2009-10-01

    By the mid 2000s, reports of hospital librarians losing jobs and hospital libraries closing were rife. In 2005, Vital Pathways: The Hospital Libraries Project was established by 2005/06 MLA President M.J. Tooey, AHIP, FMLA, to assess the truth of these reports and to study and develop strategies to support hospital librarians. Throughout this long-term project, opportunities were sought to understand the issues more clearly. A steering committee, along with three task forces, was established to carry out the work of the project. The steering committee provided oversight and had responsibility for promoting and marketing the project. The three task forces were responsible for conducting a survey on the status of hospital librarians, determining the involvement of librarians in medical education and accreditation, and researching and writing a document reviewing current and future roles for hospital librarians. Along the way, these responsibilities grew and evolved. After a little more than three years, the Task Force on Vital Pathways for Hospital Librarians Steering Committee presented a final report regarding its accomplishments to the MLA Board of Directors. A sampling of these accomplishments includes the status of hospital librarians survey, a website, a position document with an accompanying executive summary, a short promotional brochure, and a final culminating activity, this symposium. Although these are difficult times for all libraries, hospital librarians and libraries seem particularly affected. In a competitive health care environment that is driven by the bottom line, influenced by real estate hunger, and affected by the belief of hospital administrators that access to health information comes from the Internet and is free, the hospital librarian seems doomed. However, even in these difficult times, there are hospital librarians who are not only surviving, but thriving. Is it because they are entrepreneurial? Opportunistic? Innovative? Flexible? All

  17. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Science.gov (United States)

    Djonović, Slavica; Urbach, Jonathan M; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A; Priebe, Gregory P; Ausubel, Frederick M

    2013-03-01

    Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose

  18. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Directory of Open Access Journals (Sweden)

    Slavica Djonović

    2013-03-01

    Full Text Available Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic

  19. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  20. Pathogens' toolbox to manipulate human complement.

    Science.gov (United States)

    Fernández, Francisco J; Gómez, Sara; Vega, M Cristina

    2017-12-14

    The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Cheryl D Chun

    2007-02-01

    Full Text Available Fungal pathogens of humans require molecular oxygen for several essential biochemical reactions, yet virtually nothing is known about how they adapt to the relatively hypoxic environment of infected tissues. We isolated mutants defective in growth under hypoxic conditions, but normal for growth in normoxic conditions, in Cryptococcus neoformans, the most common cause of fungal meningitis. Two regulatory pathways were identified: one homologous to the mammalian sterol-response element binding protein (SREBP cholesterol biosynthesis regulatory pathway, and the other a two-component-like pathway involving a fungal-specific hybrid histidine kinase family member, Tco1. We show that cleavage of the SREBP precursor homolog Sre1-which is predicted to release its DNA-binding domain from the membrane-occurs in response to hypoxia, and that Sre1 is required for hypoxic induction of genes encoding for oxygen-dependent enzymes involved in ergosterol synthesis. Importantly, mutants in either the SREBP pathway or the Tco1 pathway display defects in their ability to proliferate in host tissues and to cause disease in infected mice, linking for the first time to our knowledge hypoxic adaptation and pathogenesis by a eukaryotic aerobe. SREBP pathway mutants were found to be a hundred times more sensitive than wild-type to fluconazole, a widely used antifungal agent that inhibits ergosterol synthesis, suggesting that inhibitors of SREBP processing could substantially enhance the potency of current therapies.

  2. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    Science.gov (United States)

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  3. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.

    Science.gov (United States)

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette

    2014-08-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.

  4. Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.

    Science.gov (United States)

    Hunter, Chyren

    The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin

  5. Alpha-Synuclein Toxicity in the Early Secretory Pathway: How it Drives Neurodegeneration in Parkinsons Disease

    Directory of Open Access Journals (Sweden)

    Ting eWang

    2015-11-01

    Full Text Available Alpha-synuclein is a predominant player in the pathogenesis of Parkinson’s Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the disfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress and others. Here we examine recent developments in alpha-synuclein’s toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration.

  6. Effectiveness of irradiation in killing pathogens

    International Nuclear Information System (INIS)

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges

  7. Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval.

    Science.gov (United States)

    Xu, Chun; Krabbe, Sabine; Gründemann, Jan; Botta, Paolo; Fadok, Jonathan P; Osakada, Fumitaka; Saur, Dieter; Grewe, Benjamin F; Schnitzer, Mark J; Callaway, Edward M; Lüthi, Andreas

    2016-11-03

    Memories about sensory experiences are tightly linked to the context in which they were formed. Memory contextualization is fundamental for the selection of appropriate behavioral reactions needed for survival, yet the underlying neuronal circuits are poorly understood. By combining trans-synaptic viral tracing and optogenetic manipulation, we found that the ventral hippocampus (vHC) and the amygdala, two key brain structures encoding context and emotional experiences, interact via multiple parallel pathways. A projection from the vHC to the basal amygdala mediates fear behavior elicited by a conditioned context, whereas a parallel projection from a distinct subset of vHC neurons onto midbrain-projecting neurons in the central amygdala is necessary for context-dependent retrieval of cued fear memories. Our findings demonstrate that two fundamentally distinct roles of context in fear memory retrieval are processed by distinct vHC output pathways, thereby allowing for the formation of robust contextual fear memories while preserving context-dependent behavioral flexibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. An overview of bioinformatics methods for modeling biological pathways in yeast.

    Science.gov (United States)

    Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin

    2016-03-01

    The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  10. Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Leng, Bingfeng

    2016-01-01

    Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby...... limit uptake of aminoglycosides (e.g., gentamicin). In this study, we have examined the pathways by which the fitness cost of SCVs can be ameliorated. Five gentamicin resistant SCVs derived from S. aureus JE2 were independently selected on agar plates supplemented with gentamicin. The SCVs carried...... mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (WT; 0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500...

  11. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  12. Prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan

    OpenAIRE

    Shabbir, Muhammad Z.; Jamil, Tariq; Ali, Asad A.; Ahmad, Arfan; Naeem, Muhammad; Chaudhary, Muhammad H.; Bilal, Muhammad; Ali, Muhammad A.; Muhammad, Khushi; Yaqub, Tahir; Bano, Asghari; Mirza, Ali I.; Shabbir, Muhammad A. B.; McVey, Walter R.; Patel, Ketan

    2015-01-01

    A multidisciplinary, collaborative project was conducted to determine the prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan and ascertain its Public Health Significance. Using a grid-based sampling strategy, soil samples (n = 145) were collected from villages (n = 29, 5 samples/village) and examined for Bacillus anthracis, Burkholderia mallei/pseudomallei, Coxiella burnetii, Francisella tularensis, and Yersinia pestis using real time PCR assays. Chemi...

  13. Pathogenic mycoflora on carrot seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Altogether 300 seed samples were collected during 9 years in 8 regions of Poland and the fungi Were isolated and their pathogenicity to carrot seedlings was examined. Alternaria rudicina provcd to be the most important pathogen although. A. alternata was more common. The other important pathogens were Fusarium spp., Phoma spp. and Botrytis cinerea. The infection of carrot seeds by A. radicina should be used as an important criterium in seed quality evaluation.

  14. Multiple activities of LigB potentiate virulence of Leptospira interrogans: inhibition of alternative and classical pathways of complement.

    Directory of Open Access Journals (Sweden)

    Henry A Choy

    Full Text Available Microbial pathogens acquire the immediate imperative to avoid or counteract the formidable defense of innate immunity as soon as they overcome the initial physical barriers of the host. Many have adopted the strategy of directly disrupting the complement system through the capture of its components, using proteins on the pathogen's surface. In leptospirosis, pathogenic Leptospira spp. are resistant to complement-mediated killing, in contrast to the highly vulnerable non-pathogenic strains. Pathogenic L. interrogans uses LenA/LfhA and LcpA to respectively sequester and commandeer the function of two regulators, factor H and C4BP, which in turn bind C3b or C4b to interrupt the alternative or classical pathways of complement activation. LigB, another surface-proximal protein originally characterized as an adhesin binding multiple host proteins, has other activities suggesting its importance early in infection, including binding extracellular matrix, plasma, and cutaneous repair proteins and inhibiting hemostasis. In this study, we used a recent model of ectopic expression of LigB in the saprophyte, L. biflexa, to test the hypothesis that LigB also interacts with complement proteins C3b and C4b to promote the virulence of L. interrogans. The surface expression of LigB partially rescued the non-pathogen from killing by 5% normal human serum, showing 1.3- to 48-fold greater survival 4 to 6 d following exposure to complement than cultures of the non-expressing parental strain. Recombinant LigB7'-12 comprising the LigB-specific immunoglobulin repeats binds directly to human complement proteins, C3b and C4b, with respective K(ds of 43±26 nM and 69±18 nM. Repeats 9 to 11, previously shown to contain the binding domain for fibronectin and fibrinogen, are also important in LigB-complement interactions, which interfere with the alternative and classical pathways measured by complement-mediated hemolysis of erythrocytes. Thus, LigB is an adaptable interface

  15. Development of an Automated Microfluidic System for DNA Collection, Amplification, and Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Bethany S.; Bruckner-Lea, Cynthia J.

    2002-12-01

    This project was focused on developing and testing automated routines for a microfluidic Pathogen Detection System. The basic pathogen detection routine has three primary components; cell concentration, DNA amplification, and detection. In cell concentration, magnetic beads are held in a flow cell by an electromagnet. Sample liquid is passed through the flow cell and bacterial cells attach to the beads. These beads are then released into a small volume of fluid and delivered to the peltier device for cell lysis and DNA amplification. The cells are lysed during initial heating in the peltier device, and the released DNA is amplified using polymerase chain reaction (PCR) or strand displacement amplification (SDA). Once amplified, the DNA is then delivered to a laser induced fluorescence detection unit in which the sample is detected. These three components create a flexible platform that can be used for pathogen detection in liquid and sediment samples. Future developments of the system will include on-line DNA detection during DNA amplification and improved capture and release methods for the magnetic beads during cell concentration.

  16. Biosensors for plant pathogen detection.

    Science.gov (United States)

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. PathwayAccess: CellDesigner plugins for pathway databases.

    Science.gov (United States)

    Van Hemert, John L; Dickerson, Julie A

    2010-09-15

    CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv.

  18. IT-supported integrated care pathways for diabetes: A compilation and review of good practices.

    Science.gov (United States)

    Vrijhoef, Hubertus Jm; de Belvis, Antonio Giulio; de la Calle, Matias; de Sabata, Maria Stella; Hauck, Bastian; Montante, Sabrina; Moritz, Annette; Pelizzola, Dario; Saraheimo, Markku; Guldemond, Nick A

    2017-06-01

    Integrated Care Pathways (ICPs) are a method for the mutual decision-making and organization of care for a well-defined group of patients during a well-defined period. The aim of a care pathway is to enhance the quality of care by improving patient outcomes, promoting patient safety, increasing patient satisfaction, and optimizing the use of resources. To describe this concept, different names are used, e.g. care pathways and integrated care pathways. Modern information technologies (IT) can support ICPs by enabling patient empowerment, better management, and the monitoring of care provided by multidisciplinary teams. This study analyses ICPs across Europe, identifying commonalities and success factors to establish good practices for IT-supported ICPs in diabetes care. A mixed-method approach was applied, combining desk research on 24 projects from the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) with follow-up interviews of project participants, and a non-systematic literature review. We applied a Delphi technique to select process and outcome indicators, derived from different literature sources which were compiled and applied for the identification of successful good practices. Desk research identified sixteen projects featuring IT-supported ICPs, mostly derived from the EIP on AHA, as good practices based on our criteria. Follow-up interviews were then conducted with representatives from 9 of the 16 projects to gather information not publicly available and understand how these projects were meeting the identified criteria. In parallel, the non-systematic literature review of 434 PubMed search results revealed a total of eight relevant projects. On the basis of the selected EIP on AHA project data and non-systematic literature review, no commonalities with regard to defined process or outcome indicators could be identified through our approach. Conversely, the research produced a heterogeneous picture in all aspects of the projects

  19. Waterborne Pathogens: Detection Methods and Challenges

    Directory of Open Access Journals (Sweden)

    Flor Yazmín Ramírez-Castillo

    2015-05-01

    Full Text Available Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.

  20. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  1. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  2. Mycological assessment of sediments in Ligurian beaches in the Northwestern Mediterranean: pathogens and opportunistic pathogens.

    Science.gov (United States)

    Salvo, Vanessa-Sarah; Fabiano, Mauro

    2007-05-01

    Sediments of five Ligurian beaches in compliance with European Union bathing water regulations were studied based on the characteristics of the fungal assemblage during the tourism season. Among the 179 taxa of filamentous fungi isolated, 120 were opportunistic pathogens, such as Acremonium sp., and the genus Penicillium was also present as the pathogenic species P. citrinum. Furthermore, 5% of the total filamentous fungi belonged to the dermatophyte genus Microsporum, whose species can cause mycoses. Beach sediments showed elevated densities of opportunistic pathogens, of pathogenic filamentous fungi, and of yeasts during the tourism season. Although monitoring of beach sediments for microbiological contamination is not mandatory, and disease transmission from sediments has not yet been demonstrated, our study suggests that beach sediments may act as a reservoir of potential pathogens, including fungi. In addition, the mycoflora displayed high sensitivity to critical environmental situations in the beaches studied. Therefore, the fungal community can be a useful tool for assessing the quality of sandy beaches in terms of sanitary and environmental quality.

  3. The varieties of immunological experience: of pathogens, stress, and dendritic cells.

    Science.gov (United States)

    Pulendran, Bali

    2015-01-01

    In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.

  4. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  5. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Directory of Open Access Journals (Sweden)

    Gilbert Greub

    Full Text Available BACKGROUND: With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS: We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE: This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  6. Multinucleation during C. trachomatis infections is caused by the contribution of two effector pathways.

    Directory of Open Access Journals (Sweden)

    Heather M Brown

    Full Text Available Chlamydia trachomatis is an obligate intracellular bacterial pathogen and the second leading cause of sexually transmitted infections in the US. Infections cause significant morbidity and can lead to serious reproductive sequelae, including an epidemiological link to increased rates of reproductive cancers. One of the overt changes that infected cells exhibit is the development of genomic instability leading to multinucleation. Here we demonstrate that the induction of multinucleation is not conserved equally across chlamydial species; C. trachomatis L2 caused high levels of multinucleation, C. muridarum intermediate levels, and C. caviae had very modest effects on multinucleation. Our data show that at least two effector pathways together cause genomic instability during infection leading to multinucleation. We find that the highly conserved chlamydial protease CPAF is a key effector for one of these pathways. CPAF secretion is required for the loss of centrosome duplication regulation as well as inducing early mitotic exit. The second effector pathway involves the induction of centrosome position errors. This function is not conserved in three chlamydial species tested. Together these two pathways contribute to the induction of high levels of genomic instability and multinucleation seen in C. trachomatis infections.

  7. Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici.

    Directory of Open Access Journals (Sweden)

    Alexander Yemelin

    Full Text Available A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify genes involved in dimorphic switch, a plate-based screening system was established. With this approach eleven dimorphic switch deficient random mutants were recovered, ten of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing high amount of mycelium under different incubation conditions. Using genome walking approach previously established, the T-DNA integration sites were recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics approach. As prove of concept, two of the random mutants obtained were selected for further investigation using targeted gene inactivation. Both genes deduced were found to encode known factors, previously characterized in other fungi: Ssk1p being constituent of HOG pathway and Ade5,7p involved in de novo purine biosynthesis. The targeted mutant strains defective in these genes exhibit a drastically impaired virulence within infection assays on whole wheat plants. Moreover exploiting further physiological assays the predicted function for both gene products could be confirmed in concordance with conserved biological role of homologous proteins previously described in other fungal organisms.

  8. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002-2004; the ARBAO-II study

    NARCIS (Netherlands)

    Hendriksen, R.S.; Mevius, D.J.; Schroeter, A.; Teale, C.; Jouy, E.; Butaye, P.; Franco, A.; Utinane, A.; Amado, A.; Moreno, M.; Greko, C.; Stark, K.D.; Berghold, C.; Myllyniemi, A.L.; Hoszowski, A.; Sunde, M.; Aerestrup, F.

    2008-01-01

    Background The project "Antibiotic resistance in bacteria of animal origin ¿ II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003¿05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility of pathogenic

  9. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.

  10. Proteomic analysis of the fish pathogen Flavobacterium columnare

    Directory of Open Access Journals (Sweden)

    Lawrence Mark L

    2010-06-01

    Full Text Available Abstract Background Flavobacterium columnare causes columnaris disease in cultured and wild fish populations worldwide. Columnaris is the second most prevalent bacterial disease of commercial channel catfish industry in the United States. Despite its economic importance, little is known about the expressed proteins and virulence mechanisms of F. columnare. Here, we report the first high throughput proteomic analysis of F. columnare using 2-D LC ESI MS/MS and 2-DE MALDI TOF/TOF MS. Results Proteins identified in this study and predicted from the draft F. columnare genome were clustered into functional groups using clusters of orthologous groups (COGs, and their subcellular locations were predicted. Possible functional relations among the identified proteins were determined using pathway analysis. The total number of unique F. columnare proteins identified using both 2-D LC and 2-DE approaches was 621, of which 10.95% (68 were identified by both methods, while 77.29% (480 and 11.76% (73 were unique in 2-D LC and 2-DE, respectively. COG groupings and subcellular localizations were similar between our data set and proteins predicted from the whole genome. Twenty eight pathways were significantly represented in our dataset (P Conclusion Results from this study provide experimental evidence for many proteins that were predicted from the F. columnare genome annotation, and they should accelerate functional and comparative studies aimed at understanding virulence mechanisms of this important pathogen.

  11. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates

  12. Brucella abortus: pathogenicity and gene regulation of virulence

    Directory of Open Access Journals (Sweden)

    Olga Rivas-Solano

    2015-06-01

    Full Text Available Brucella abortus is a zoonotic intracellular facultative pathogen belonging to the subdivision α2 of class Proteobacteria. It causes a worldwide distributed zoonotic disease called brucellosis. The main symptoms are abortion and sterility in cattle, as well as an undulant febrile condition in humans. In endemic regions like Central America, brucellosis has a high socioeconomic impact. A basic research project was recently conducted at the ITCR with the purpose of studying gene regulation of virulence, structure and immunogenicity in B. abortus. The present review was written as part of this project. B. abortus virulence seems to be determined by its ability to invade, survive and replicate inside professional and non-professional phagocytes. It reaches its intracellular replicative niche without the activation of host antimicrobial mechanisms of innate immunity. It also has gene regulation mechanisms for a rapid adaptation to an intracellular environment such as the two-component signal transduction system BvrR/BvrS and the quorum sensing regulator called Vjbr, as well as other transcription factors. All of them integrate a complex gene regulation network.

  13. Contamination of water resources by pathogenic bacteria

    Science.gov (United States)

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  14. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  15. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Directory of Open Access Journals (Sweden)

    Emmanouil A Trantas

    2015-08-01

    Full Text Available The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor and P. mediterranea (Pmed, are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for commercially significant chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of a type III secretion system and of known type III effectors from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes.

  16. All projects related to | Page 21 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Understanding the biological mechanisms of Zika virus disease. Project. The Zika virus is an emerging mosquito-transmitted human pathogen which has affected over 50 countries to date. Region: North and Central America, South America, Brazil. Program: Food, Environment, and Health. Total Funding: CA$ 506,000.00.

  17. Sensitivity of projected long-term CO 2 emissions across the Shared Socioeconomic Pathways

    NARCIS (Netherlands)

    Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D. E H J|info:eu-repo/dai/nl/372664636; Guivarch, C.; Havlik, P.; Huppmann, D.; Johnson, N.; Karkatsoulis, P.; Keppo, I.; Krey, V.; Ó Broin, E.; Price, J.; van Vuuren, Detlef|info:eu-repo/dai/nl/11522016X

    2017-01-01

    Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning

  18. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  19. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  20. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    Science.gov (United States)

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  1. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  2. Alteration of host-pathogen interactions in the wake of climate change - Increasing risk for shellfish associated infections?

    Science.gov (United States)

    Hernroth, Bodil E; Baden, Susanne P

    2018-02-01

    The potential for climate-related spread of infectious diseases through marine systems has been highlighted in several reports. With this review we want to draw attention to less recognized mechanisms behind vector-borne transmission pathways to humans. We have focused on how the immune systems of edible marine shellfish, the blue mussels and Norway lobsters, are affected by climate related environmental stressors. Future ocean acidification (OA) and warming due to climate change constitute a gradually increasing persistent stress with negative trade-off for many organisms. In addition, the stress of recurrent hypoxia, inducing high levels of bioavailable manganese (Mn) is likely to increase in line with climate change. We summarized that OA, hypoxia and elevated levels of Mn did have an overall negative effect on immunity, in some cases also with synergistic effects. On the other hand, moderate increase in temperature seems to have a stimulating effect on antimicrobial activity and may in a future warming scenario counteract the negative effects. However, rising sea surface temperature and climate events causing high land run-off promote the abundance of naturally occurring pathogenic Vibrio and will in addition, bring enteric pathogens which are circulating in society into coastal waters. Moreover, the observed impairments of the immune defense enhance the persistence and occurrence of pathogens in shellfish. This may increase the risk for direct transmission of pathogens to consumers. It is thus essential that in the wake of climate change, sanitary control of coastal waters and seafood must recognize and adapt to the expected alteration of host-pathogen interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection.

    Science.gov (United States)

    Kandhavelu, Jeyalakshmi; Demonte, Naveen Luke; Namperumalsamy, Venkatesh Prajna; Prajna, Lalitha; Thangavel, Chitra; Jayapal, Jeya Maheshwari; Kuppamuthu, Dharmalingam

    2017-01-30

    in the patient tear. Negative regulators of these defense pathways were also found in patient tear indicating a fine balance between pathogen clearance and host tissue destruction during fungal infection depending upon the individual specific host - pathogen interaction. This understanding could be used to predict the progression and outcome of infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  5. The role of microRNA-155/liver X receptor pathway in experimental and idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Kurowska-Stolarska, Mariola; Hasoo, Manhl K; Welsh, David J; Stewart, Lynn; McIntyre, Donna; Morton, Brian E; Johnstone, Steven; Miller, Ashley M; Asquith, Darren L; Millar, Neal L; Millar, Ann B; Feghali-Bostwick, Carol A; Hirani, Nikhil; Crick, Peter J; Wang, Yuqin; Griffiths, William J; McInnes, Iain B; McSharry, Charles

    2017-06-01

    Idiopathic pulmonary fibrosis (IPF) is progressive and rapidly fatal. Improved understanding of pathogenesis is required to prosper novel therapeutics. Epigenetic changes contribute to IPF; therefore, microRNAs may reveal novel pathogenic pathways. We sought to determine the regulatory role of microRNA (miR)-155 in the profibrotic function of murine lung macrophages and fibroblasts, IPF lung fibroblasts, and its contribution to experimental pulmonary fibrosis. Bleomycin-induced lung fibrosis in wild-type and miR-155 -/- mice was analyzed by histology, collagen, and profibrotic gene expression. Mechanisms were identified by in silico and molecular approaches and validated in mouse lung fibroblasts and macrophages, and in IPF lung fibroblasts, using loss-and-gain of function assays, and in vivo using specific inhibitors. miR-155 -/- mice developed exacerbated lung fibrosis, increased collagen deposition, collagen 1 and 3 mRNA expression, TGF-β production, and activation of alternatively activated macrophages, contributed by deregulation of the miR-155 target gene the liver X receptor (LXR)α in lung fibroblasts and macrophages. Inhibition of LXRα in experimental lung fibrosis and in IPF lung fibroblasts reduced the exacerbated fibrotic response. Similarly, enforced expression of miR-155 reduced the profibrotic phenotype of IPF and miR-155 -/- fibroblasts. We describe herein a molecular pathway comprising miR-155 and its epigenetic LXRα target that when deregulated enables pathogenic pulmonary fibrosis. Manipulation of the miR-155/LXR pathway may have therapeutic potential for IPF. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Uncovering transcription factor and microRNA risk regulatory pathways associated with osteoarthritis by network analysis.

    Science.gov (United States)

    Song, Zhenhua; Zhang, Chi; He, Lingxiao; Sui, Yanfang; Lin, Xiafei; Pan, Jingjing

    2018-05-01

    Osteoarthritis (OA) is the most common form of joint disease. The development of inflammation have been considered to play a key role during the progression of OA. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, deciphering these risk regulatory pathways is critical for elucidating the mechanisms underlying OA. We constructed an OA-specific regulatory network by integrating comprehensive curated transcription and post-transcriptional resource involving transcription factor (TF) and microRNA (miRNA). To deepen our understanding of underlying molecular mechanisms of OA, we developed an integrated systems approach to identify OA-specific risk regulatory pathways. In this study, we identified 89 significantly differentially expressed genes between normal and inflamed areas of OA patients. We found the OA-specific regulatory network was a standard scale-free network with small-world properties. It significant enriched many immune response-related functions including leukocyte differentiation, myeloid differentiation and T cell activation. Finally, 141 risk regulatory pathways were identified based on OA-specific regulatory network, which contains some known regulator of OA. The risk regulatory pathways may provide clues for the etiology of OA and be a potential resource for the discovery of novel OA-associated disease genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway.

    Directory of Open Access Journals (Sweden)

    Valéryane Dupuis-Maurin

    Full Text Available Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1 is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen.

  8. The Emerging Role of Complement Lectin Pathway in Trypanosomatids: Molecular Bases in Activation, Genetic Deficiencies, Susceptibility to Infection, and Complement System-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Ingrid Evans-Osses

    2013-01-01

    Full Text Available The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.

  9. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.

    Science.gov (United States)

    Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung

    2017-07-01

    Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

  10. Investigating host-pathogen behavior and their interaction using genome-scale metabolic network models.

    Science.gov (United States)

    Sadhukhan, Priyanka P; Raghunathan, Anu

    2014-01-01

    Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting from the genome sequence of an organism and contribute towards understanding and predicting the genotype-phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These models have been used to not only understand the flux distribution in evolutionary conserved pathways like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in Escherichia coli to predicting inborn errors of Homo sapiens metabolism. This chapter describes a protocol that delineates the process of genome scale metabolic modeling for analysing host-pathogen behavior and interaction using flux balance analysis (FBA). The steps discussed in the process include (1) reconstruction of a metabolic network from the genome sequence, (2) its representation in a precise mathematical framework, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The methods for biological interpretations of computed cell phenotypes in the context of individual host and pathogen models and their integration are also discussed.

  11. Ga and Gß Proteins Regulate the Cyclic AMP Pathway That Is Required for Development and Pathogenicity of the Phytopathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Mehrabi, A.; M'Barek, Ben S.; Lee, van der T.A.J.; Waalwijk, C.; Wit, de P.J.G.M.; Kema, G.H.J.

    2009-01-01

    We identified and functionally characterized genes encoding three G alpha proteins and one G beta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed

  12. Transcriptome analysis of Pseudostellaria heterophylla in response to the infection of pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Qin, Xianjin; Wu, Hongmiao; Chen, Jun; Wu, Linkun; Lin, Sheng; Khan, Muhammad Umar; Boorboori, Mohammad Reza; Lin, Wenxiong

    2017-09-18

    Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.

  13. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  14. Expression Profiles of TGF-β and TLR Pathways in Porphyromonas gingivalis and Prevotella intermedia Challenged Osteoblasts.

    Science.gov (United States)

    Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May

    2015-04-01

    The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption.

  15. Genome-Based Construction of the Metabolic Pathways of Orientia tsutsugamushi and Comparative Analysis within the Rickettsiales Order

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-01-01

    Full Text Available Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium that belongs to the order of Rickettsiales. Recently, we have reported that O. tsutsugamushi has a unique genomic structure, consisting of highly repetitive sequences, and suggested that it may provide valuable insight into the evolution of intracellular bacteria. Here, we have used genomic information to construct the major metabolic pathways of O. tsutsugamushi and performed a comparative analysis of the metabolic genes and pathways of O. tsutsugamushi with other members of the Rickettsiales order. While O. tsutsugamushi has the largest genome among the members of this order, mainly due to the presence of repeated sequences, its metabolic pathways have been highly streamlined. Overall, the metabolic pathways of O. tsutsugamushi were similar to Rickettsia but there were notable differences in several pathways including carbohydrate metabolism, the TCA cycle, and the synthesis of cell wall components as well as in the transport systems. Our results will provide a useful guide to the postgenomic analysis of O. tsutsugamushi and lead to a better understanding of the virulence and physiology of this intracellular pathogen.

  16. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    Science.gov (United States)

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  17. Pathogenicity island mobility and gene content.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  18. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health

    Czech Academy of Sciences Publication Activity Database

    Rizzoli, A.; Silaghi, C.; Obiegala, A.; Rudolf, Ivo; Hubálek, Zdeněk; Földvári, G.; Plantard, O.; Vayssier-Taussat, M.; Bonnet, S.; Špitalská, E.; Kazimírová, M.

    2014-01-01

    Roč. 2, č. 251 (2014) ISSN 2296-2565 EU Projects: European Commission(XE) 261504 - EDENEXT Institutional support: RVO:68081766 Keywords : ticks * Ixodes ricinus * tick-borne pathogens * urban habitats * Europe Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology

  19. Hydrogen-Bonded Networks Along and Bifurcation of the E-Pathway in Quinol: Fumarate Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Elena; Gu, Wei; Juhnke, Hanno D.; Haas, Alexander H.; Mantele, Werner; Simon, Jorg; Helms, Volkhard H.; Lancaster , C. Roy D.

    2012-09-19

    The E-pathway of transmembrane proton transfer has been demonstrated previously to be essential for catalysis by the diheme-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes. Two constituents of this pathway, Glu- C180 and heme bD ring C (bD-C-) propionate, have been validated experimentally. Here, we identify further constituents of the E-pathway by analysis of molecular dynamics simulations. The redox state of heme groups has a crucial effect on the connectivity patterns of mobile internal water molecules that can transiently support proton transfer from the bD-C-propionate to Glu-C180. The short H-bonding paths formed in the reduced states can lead to high proton conduction rates and thus provide a plausible explanation for the required opening of the E-pathway in reduced QFR. We found evidence that the bD-C-propionate group is the previously postulated branching point connecting proton transfer to the E-pathway from the quinol-oxidation site via interactions with the heme bD ligand His-C44. An essential functional role of His-C44 is supported experimentally by site-directed mutagenesis resulting in its replacement with Glu. Although the H44E variant enzyme retains both heme groups, it is unable to catalyze quinol oxidation. All results obtained are relevant to the QFR enzymes from the human pathogens Campylobacter jejuni and Helicobacter pylori.

  20. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.